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Abstract

Topics in the analytic theory of L-functions and harmonic Maass forms

By Ian Wagner

This thesis presents several new results in the theory of L-functions, modular

forms, and harmonic Maass forms. In particular, we prove results on the p-

adic properties of modular and Maass forms, about the hyperbolicity of doubly

infinite families of polynomials related to the partition function and general L-

functions, and study Schwartz functions which tie together the field of modular

forms and problems like sphere packing and energy optimization.

We prove a general congruence result for mixed weight modular forms using

facts about direct products of Galois representations. As an application we

prove explicit congruences for the conjugacy growth series of wreath products

of finite groups and finitary permutations groups. We then start to answer a

question of Mazur’s about the existence of an eigencurve for harmonic Maass

forms. We begin to answer Mazur’s question by constructing two infinite

familes of harmonic Maass Hecke eigenforms, and then assemble these forms

to produce p-adic Hecke eigenlines.

In work with Larson, we make a result of Griffin, Ono, Rolen, and Zagier

effective by showing that p(n) satisfies the degree 3, 4, and 5 Túran inequalities

for all n ≥ 94, 206, and 381 respectively. We also show that p(n) satisfies the

degree d Túran inequality for all n ≥ (3d)24d(50d)3d2 .

Griffin, Ono, Rolen, and Zagier recently showed that for any degree d



all but at most finitely many of the Riemann zeta Jensen polynomials are

hyperbolic. We extended this result to any suitable L-function. In order to

prove this result, we also obtain improved estimates for the central derivatives

of these L-functions.

Recently, Viazovska explicitly constructed special functions using modular

forms which led to the resolution of the sphere packing problem in dimensions 8

and 24. Together with Rolen, we study possible generalizations of Viazovska’s

work which can be used to attack sphere packing problems in other dimen-

sions and other related problems. We construct a number of infinite families

of Schwartz functions using modular forms, which are eigenfunctions of the

Fourier transform.
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1

Chapter 1

Introduction

We will begin this section with a general background on classical modular

forms and the more recent field of harmonic Maass forms. For a more thorough

introduction to these subjects see [44] and [3]. We will then give a more

focused introduction to the main topics of this thesis and conclude each of

these subsections with a statement of the main results.

1.1 Modular forms, harmonic Maass forms,

and L-functions

Modular forms are connected to many important areas of mathematics in-

cluding arithmetic geometry, combinatorics, and representation theory. Most

famously, the modularity theorem ties modular forms to elliptic curves through

the theory of Galois representations. This connection was used by Wiles in
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the 1990s to prove Fermat’s last theorem.

Modular forms are holomorphic functions on the upper half-plane which

have certain growth conditions and transform nicely under action by elements

of SL2(Z) or one of its subgroups. Each modular form can be identified with

its Fourier expansion at infinity. The Fourier coefficients of these expansions

often have rich arithmetic meaning.

Harmonic Maass forms are natural generalizations of modular forms. They

are functions on the upper half-plane which also satisfy modular transfor-

mation properties. However, harmonic Maass forms are not generally holo-

morphic; instead they are annihilated by the hyperbolic Laplacian operator.

Zwegers famously showed that Ramanujan’s mock theta functions are the holo-

morphic parts of harmonic Maass forms [66]. In many cases their Fourier

coefficients also encode valuable arithmetic information.

1.1.1 Classical modular forms

We will begin with a review of classical modular forms. Denote the upper

half-plane by H := {z = x + iy ∈ C : y > 0}. The modular group, denoted

by SL2(Z), is the group of 2× 2 integer matrices with determinant one. It is

generated by the two elements

T :=

1 1

0 1

 and S :=

0 −1

1 0

 .
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An element γ =

a b

c d

 ∈ SL2(Z) acts on a point z ∈ H by the Möbius

transformation

γz :=
az + b

cz + d
.

We also define two level N congruence subgroups by

Γ0(N) :=


a b

c d

 ∈ SL2(Z) : c ≡ 0 (mod N)


Γ1(N) :=


a b

c d

 ∈ SL2(Z) : a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)


for any N ∈ N. The action of a congruence subgroup on H extends to an

action on Q ∪ {i∞}. A cusp of a congruence subgroup Γ is an equivalence

class of Q ∪ {i∞} under the action of Γ. For each integer k and each γ =a b

c d

 ∈ SL2(Z) define the slash operator on smooth functions f : H → C

by

f |kγ(z) := (cz + d)−kf(γz).

Let k be an integer in the following definition.

Definition 1.1.1. Suppose f : H → C is holomorphic and χ is a Dirichlet

character modulo N . Then f(z) is a holomorphic modular form of weight k

on Γ0(N) with character χ if
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1. f |kγ(z) = χ(d)f(z) for all γ =

a b

c d

 ∈ Γ0(N).

2. f(z) has at most polynomial growth as z → i∞, and analogous condi-

tions hold at the other cusps of Γ0(N).

In particular, notice that the action of S implies that there are no nonzero

odd weight modular forms on SL2(Z) with trivial character. We denote the

space of all such functions by Mk(Γ0(N), χ). We will suppress the character in

this notation whenever it is trivial. It is a basic fact that Mk(Γ0(N), χ) forms

a finite dimensional complex vector space for each k and N . If f(z) vanishes

at every cusp of Γ0(N) then it is called a cusp form. We denote this subspace

by Sk(Γ0(N), χ). Because T ∈ Γ0(N), each modular form can be identified

with its Fourier expansion at infinity

f(z) =
∑
n≥0

a(n)qn

where throughout q := e2πiz. Another important space is the space of weakly

holomorphic modular forms which is denoted by M !
k(Γ0(N), χ). Weakly holo-

morphic modular forms are allowed to have poles at the cusps and the vector

space of such forms is infinite dimensional for any given k and N .

Modular forms can often be constructed by averaging a suitable function

over the action of the modular group. The first examples of this idea are the
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Eisenstein series

Ek(z) :=
1

2ζ(k)

∑
(0,0)6=(n,m)∈Z2

1

(nz +m)k
∈Mk(SL2(Z)), (1.1)

where ζ(s) is the Riemann zeta-function. For k > 2, Ek(z) is absolutely

convergent and one can easily check the action of S and T to see it is modular

on SL2(Z). For even k > 2, its Fourier expansion is given by

Ek(z) = 1− 2k

Bk

∑
n≥1

σk−1(n)qn,

where Bk is the kth Bernoulli number and σk−1(n) is the sum of divisors

function given by

σk−1(n) =
∑
d|n

dk−1.

For k = 2, the Eisenstein series is no longer absolutely convergent. One can

still define the weight 2 Eisenstein series by its Fourier expansion:

E2(z) = 1− 24
∑
n≥1

σ1(n)qn.

E2(z) is still periodic, but has a slightly more complicated transformation

under S, given by

z−2E2

(
−1

z

)
= E2(z) +

6

πiz
.

The weight 2 Eisenstein series is the first example of a quasi-modular form.

We will discuss one way to correct the modularity of E2(z) by giving up holo-
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morphicity in Section 1.1.2. One can also sieve out some coefficients of E2(z)

in order to construct a modular form on another group. For example,

F2(z) :=
∑
n≥0

σ1(2n+ 1)q2n+1 ∈M2(Γ0(4)). (1.2)

The first example of a cusp form is the Delta function

∆(z) := q
∏
n≥1

(1− qn)24 ∈ S12(SL2(Z)).

The Delta function is non-vanishing on the upper half-plane and so it can be

used as a building block for the first example of a weakly holomorphic modular

form. The modular j-invariant is given by

j(z) :=
E3

4

∆
(z) ∈M !

0(SL2(Z)).

The j-invariant connects many different areas of mathematics; it parameterizes

isomorphism classes of elliptic curves over C and its Fourier coefficients give

the dimensions of the representations of the Monster group by the theory of

moonshine.

There are natural linear operators which act on spaces of modular forms

called Hecke operators. For each prime p - N , the integer weight Hecke opera-

tor T (p, k, χ) preserves the space Mk(Γ0(N), χ) (resp. Sk(Γ0(N), χ)) and acts



7

on f(z) =
∑

n≥0 a(n)qn ∈Mk(Γ0(N), χ) by

f(z)|T (p, k, χ) :=
∑
n≥0

(
a(pn) + χ(p)pk−1a(n/p)

)
qn, (1.3)

where a(n/p) = 0 if p - n. More generally, if m is a positive integer, then the

action of T (m, k, χ) is given by

f(z)|T (m, k, χ) :=
∑
n≥0

 ∑
d|gcd(m,n)

χ(d)dk−1a(mn/d2)

 qn.

A modular form is called a Hecke eigenform if it is an eigenfunction f(z)|T (m) =

αmf(z) for each m > 1. For example, the Delta function and all of the mod-

ular Eisenstien series are Hecke eigenforms due to the fact that they reside in

one dimensional spaces.

We will also review the theory of half-integral weight modular forms devel-

oped by Shimura [56]. Define

εd :=


1 if d ≡ 1 (mod 4)

i if d ≡ 3 (mod 4),

and let ( c
d
) denote the Kronecker character. We will also choose the branch of

the square root with argument in
(
−π

2
, π

2

]
.

Definition 1.1.2. Suppose f : H → C is holomorphic, χ is a Dirichlet char-

acter modulo 4N , and k ∈ 1
2

+ Z. Then f(z) is a holomorphic modular form

of weight k on Γ0(4N) with character χ if
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1. f(γz) = χ(d)( c
d
)2kε−2k

d (cz + d)kf(z) for all γ =

a b

c d

 ∈ Γ0(4N).

2. f(z) is holomorphic at the cusps of Γ0(4N).

Just as in the integer weight case, for any given k and N all such func-

tions form a finite dimensional complex vector space. There are also analogous

spaces of half-integral weight cusp forms and half-integral weight weakly holo-

morphic forms.

The first example of a half-integral weight modular form is given by Jacobi’s

theta function:

θ(z) :=
∑
n∈Z

qn
2 ∈M 1

2
(Γ0(4)).

The coefficients of half-integral weight modular forms also encode arithmetic

information. For example, it is well known that the coefficients of θ(z)3 are

related to the Hurwitz class numbers, which we define in Section 1.1.2. We

will also recall the Cohen-Eisenstein series, which are the half-integral weight

analogues of the Eisenstein series. In order to do this we need to introduce a

few new objects. Let

L(s, χ) :=
∑
n≥1

χ(n)

ns
(1.4)

be the L-function associated to the Dirichlet character χ and let

χD =

(
D

•

)

be the character associated to a fundamental discriminant D. For N ≥ 0,
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write (−1)rN = v2D, where D is a fundamental discriminant, and define the

coefficients H(r,N) by

H(r,N) :=


ζ(1− 2r) if N = 0

L(1− r, χD)
∑

a|v µ(a)χD(a)ar−1σ2r−1(v/a) if N > 0,

where µ is the Möbius function. For an integer r ≥ 2, the weight r + 1
2

Cohen-Eisenstein series is given by

Hr+ 1
2
(z) :=

∑
N≥0

H(r,N)qN ∈Mr+ 1
2
(Γ0(4)). (1.5)

Remark. These series are analogues to the integer weight Eisenstein series

because we can use the same averaging idea as in equation (1.1) to define

Er+ 1
2
(z) :=

∑
n>0 odd

m

(m
n

)(−4

n

)−r− 1
2

(nz +m)−r−
1
2

and

Fr+ 1
2
(z) := Er+ 1

2

(
− 1

4z

)
z−r−

1
2 .

These are the two Eisenstein series corresponding to the regular cusps of Γ0(4).

This means the Eisenstein series is non-vanishing at its associated cusp and

vanishes at all other cusps. Using these forms we can write

Hr+ 1
2
(z) = 2−2r−1ζ(1− 2r)

(
(1 + i2r+1)Er+ 1

2
(z) + i2r+1Fr+ 1

2
(z)
)
.
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The Cohen-Eisenstein series can also be explicitly written in terms of the

Jacobi theta function and F2(z) defined in equation (1.2). The first few series

are given by

H 5
2
(z) =

1

120

(
θ(z)5 − 20θ(z)F2(z)

)
,

H 7
2
(z) = − 1

252

(
θ(z)7 − 14θ(z)3F2(z)

)
,

H 9
2
(z) =

1

240

(
θ(z)9 − 16θ(z)5F2(z) + 16θ(z)F2(z)2

)
.

Just like E2(z) was not quite a modular form, one can also define a Fourier

series for H 3
2
(z) that is not quite modular. We will discuss how to complete

this series as well in Section 1.1.2.

If f(z) =
∑

n≥0 a(n)qn ∈Mr+ 1
2
(Γ0(4N), χ), then for each prime p - 4N the

half-integral weight Hecke operator T (p2, r, χ) preserves the spaceMr+ 1
2
(Γ0(4N), χ)

and acts by

f(z)|T (p2, r, χ) :=
∑
n≥0

(
a(p2n) + χ∗(p)

(
n

p

)
pr−1a(n) + χ∗(p2)p2r−1a(n/p2)

)
qn,

(1.6)

where χ∗(n) :=
(

(−1)r

n

)
χ(n). The Cohen-Eisenstein series are examples of

half-integral weight Hecke eigenforms.

1.1.2 Harmonic Maass forms

In his famous deathbed letter Ramanujan wrote to Hardy about a strange

family of q-series which he called mock theta functions. One such example is
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one of Ramanujan’s fifth order mock theta functions:

f0(q) :=
∑
n≥0

qn
2

(1 + q)(1 + q2) · · · (1 + qn)
. (1.7)

Ramanujan gave an inconsistent definition for these mock theta functions and

grouped them into categories that he never actually defined. Ramanujan’s

mock theta functions were not modular, but behaved somewhat like modular

forms near roots of unity. Since the time of his letter it was big mystery to

explain Ramanujan’s mock theta functions and determine how they fit into

the theory of modular forms.

Harmonic Maass forms are mild generalizations of the modular forms dis-

cussed in the previous section which were originally popularized by two pa-

pers [5, 66]. In his thesis Zwegers fit Ramanujan’s mock theta functions into

a beautiful framework of indefinite theta series. He showed that the mock

theta functions were the holomorphic parts of special harmonic Maass forms

coming from indefinite quadratic forms. Around the same time Bruinier and

Funke defined the current definition of a harmonic Maass form while studying

geometric theta lifts. Many of the foundational results in the subject can be

found in their paper.

Each harmonic Maass form has a holomorphic and nonholomorphic part.

The holomorphic part is often called a mock modular form and the nonholo-

morphic part has a modular cusp form associated to it called its shadow. We

shall define its connection shortly. To define a harmonic Maass form we relax
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the condition that the function be holomorphic and replace it with demanding

that the function satisfy a certain differential equation. To be precise, define

the weight k hyperbolic Laplacian operator on H by

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
= −4y2 ∂

∂z

∂

∂z
+ 2iky

∂

∂z
. (1.8)

We can now give the definition of a harmonic Maass form.

Definition 1.1.3. Suppose f : H→ C is a smooth function, k ∈ 1
2
Z, and χ is

a Dirichlet character modulo N . Then f is a harmonic Maass form of weight

k on Γ0(N) with character χ if

1.

f(γz) =


χ(d)(cz + d)kf(z) if k ∈ Z

χ(d)
(
c
d

)2k
ε−2k
d (cz + d)kf(z) if k ∈ 1

2
+ Z,

for all γ =

a b

c d

 ∈ Γ0(N).

2. ∆k(f) = 0.

3. There exists a polynomial Pf (q) ∈ C[q−1] such that f(z) − Pf (q) =

O (e−εy) as y →∞ for some ε > 0, and analogous conditions hold at the

other cusps of Γ0(N).

We denote the vector space of such forms by Hk(Γ0(N), χ). If the third

condition above is replaced with f(z) = O (eεy) as y → ∞ for some ε > 0,
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then we call the form a harmonic Maass form with manageable growth and

denote the vector space by H !
k(Γ0(N), χ). Both of these spaces are infinite

dimensional. The differential equation defined by the hyperbolic Laplacian

determines the shape of the Fourier expansion of a harmonic Maass form. In

order to describe this expansion we must introduce one special function. The

incomplete gamma function is defined by

Γ(s, z) :=

∫ ∞
z

e−tts−1dt,

for Re(s) > 0 and z ∈ C. (or any s ∈ C and z ∈ H).

Lemma 1.1.4. Let k ∈ 1
2
Z \ {1} and f(z) ∈ Hk(Γ0(N)). Then f has the

Fourier expansion

f(z) = f+(z) + f−(z)

=
∑

n�−∞

c+
f (n)qn + c−f (0)y1−k +

∑
n�−∞
n6=0

c−f (n)Γ(1− k, 4πny)q−n.

Here f+(z) is the holomorphic part of f(z), often called a mock modular

form, and f−(z) is the nonholomorphic part.

Define the weight k differential operator ξk by

ξk := 2iyk
∂

∂z
.

The following result due to Bruinier and Funke [5] ties the spaces of harmonic

Maass forms and modular forms to each other.
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Lemma 1.1.5 (Bruinier-Funke). Assuming the notation above, the following

are true.

1. The map ξ2−k : H2−k(Γ0(N) � Sk(Γ0(N)) is surjective and if f(z) ∈

H2−k(Γ0(N)), then

ξ2−k(f(z)) = ξ2−k(f
−(z)) = −(4π)k−1

∑
n≥1

c−f (n)nk−1qn.

2. The map ξ2−k : H !
2−k(Γ0(N) � M !

k(Γ0(N)) is surjective and if f(z) ∈

H !
2−k(Γ0(N)), then

ξ2−k(f(z)) = ξ2−k(f
−(z)) = (k − 1)c−f (0)− (4π)k−1

∑
n≥1

c−f (n)n1−kqn.

For any f(z) ∈ H2−k(Γ0(N)), the associated cusp form ξ2−k(f(z)) ∈ Sk(Γ0(N))

is called the shadow of f(z).

The averaging idea used to construct the Eisenstein series in Section 1.1.1

can be used to construct harmonic Maass forms as well. Let

Γ∞ := ±


1 n

0 1

 | n ∈ Z


and φ(z) be a translation invariant function. Then the weight k level N

Poincaré series for φ(z) is given by

P(φ; z) :=
∑

γ∈Γ∞\Γ0(N)

φ|kγ(z).
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One example of such a function is the completed weight 2 Eisenstein series. If

we let

E∗2(z) := E2(z)− 3

πy
,

then E∗2(z) ∈ H !
2(SL2(Z)). A wealth of examples of harmonic Maass forms

come from Zwegers’ work on indefinite theta functions. Given a quadratic

form Q of type (r − 1, 1), define its associated bilinear form by B(X, Y ) :=

Q(X + Y ) − Q(X) − Q(Y ). Then the theta function associated to Q with

characteristic a ∈ Rr and b ∈ Rr is the series

Θa,b(z) :=
∑

n∈a+Zr
ρ(n; z)e2πiB(n,b)qQ(n),

where ρ(n; z) is a special function that ensures the series converges. These

theta series are generally vector-valued harmonic Maass forms of weight r
2
.

For example, if we let Q(j, k) = 1
2
(5j2 − 2k2), a =

 1
10

0

, and b =

0

1
4

, then

Θ+
a,b(z) = 2q

1
40

 ∑
n+j≥0
n−j≥0

−
∑
n+j<0
n−j<0

 (−1)jq
5n2

2
+n

2
−j2 ,

which is related to Ramanujan’s fifth order mock theta function given in equa-

tion (1.7).

Remark. The complete definition of an indefinite theta function is slightly

more complex and the full scope of Zwegers’ work is much deeper than what
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is presented here. For a more complete overview see [66] or [3].

The first half-integral weight harmonic Maass form to be well understood

was Zagier’s weight 3
2

Eisenstein series. For non-zero integers D, let h(D) be

the class number of Q(
√
D). h(D) counts the number of binary quadratic

forms with discriminant D up to matrix equivalence. For a positive integer

N , let H(N) denote the Hurwitz class number, which counts the number of

binary quadratic forms with discriminant −N inversely weighted by the size

of their automorphism group (which is generally 2). We mentioned above that

the coefficients of θ(z)3 are related to the Hurwitz class numbers, so it seems

like
∑
H(N)qN should be a weight 3

2
modular form. This is not quite true,

but in [64] Zagier showed that the Hurwitz class number generating function

can be completed to a weight 3
2

harmonic Maass form. To be precise, Zagier

showed that if

H(z) := − 1

12
+
∑
N≥1

H(N)qN +
1

8π
√
y

+
1

4
√
π

∑
N≥1

Γ

(
−1

2
, 4πN2y

)
q−N

2

,

then H(z) ∈ H !
3
2

(Γ0(4)). Further, the shadow of H(z) is ξ 3
2
(H(z)) = − 1

16π
θ(z).

This series beautifully fits into the family of Cohen-Eisenstien series. In fact,

using the notation in Section 1.1.1 and the Dirichlet class number formula, one

can write
∑

N≥0H(1, N)qN = − 1
12

+
∑

n≥1H(N)qN , and so the Fourier series

of the weight 3
2

Cohen-Eisenstein series is the holomorphic part of Zagier’s
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weight 3
2

Eisenstein series:

H+(z) = H 3
2
(z).

1.1.3 L-functions

Dirichlet series and L-functions have classical roots going back to Euler and

have become an integral part of modern number theory. Fundamental prob-

lems such as the Riemann Hypothesis, the Birch and Swinnerton-Dyer Con-

jecture, and the Langlands program are formulated in terms of L-functions.

For an arithmetic function a(n) we define its Dirichlet series by

L(a, s) :=
∑
n≥1

a(n)n−s.

Depending on the arithmetic function a(n), the associated Dirichlet series

will usually converge absolutely in a small domain. If the function a(n) is

multiplicative, then its Dirichlet series has an Euler product :

L(a, s) =
∏
p

(
1 + a(p)p−s + a(p2)p−2s + . . .

)
,

where the product is over primes. The most famous example of a Dirichlet

series is the Riemann zeta function

ζ(s) :=
∑
n≥1

n−s =
∏
p

(1− p−s)−1 Re(s) > 1. (1.9)
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The Riemann zeta function is just the first case in many infinite families of

L-functions. For example, if χ is a Dirichlet character modulo N , then we

define the Dirichlet L-function as

L(χ, s) :=
∑
n≥1

χ(n)n−s Re(s) > 1. (1.10)

If K is a number field and OK is its ring of integers, then the Dedekind zeta

function for K is given by

ζK(s) :=
∑
a⊂OK
Integral

N(a)−s Re(s) > 1, (1.11)

where N(a) = [OK : a] reduces to the simple norm of the ideal a. Notice that

if χ is the trivial character or K = Q, then we return back to the Riemann

zeta function. A wealth of interesting arithmetic functions come in the form of

coefficients of modular forms. Let f =
∑

n≥1 a(n)qn ∈ Sk(Γ0(N)) be an even

weight newform with real coefficients and normalized so that a(1) = 1. The

modular L-function associated to f is given by

L(f, s) :=
∑
n≥1

a(n)n−s Re(s) > 1 +
k

2
. (1.12)

For special choices of arithmetic function the associated Dirichlet series

can be analytically continued. Using the integral representation of the gamma
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function we can write the completed Riemann zeta function as

Λ(s) := π−
s
2 Γ
(s

2

)
ζ(s) =

∫ ∞
0

∞∑
n=1

e−πn
2yy

s
2
dy

y
.

We can notice that the theta function shows up in this integral in order to

write

Λ(s) =
1

2

∫ ∞
0

(θ(iy)− 1) y
s
2
dy

y
.

By using the transformation property

θ

(
−1

z

)
= (−iz)

1
2 θ(z)

one can show that Λ(s) admits an analytic continuation to C \ {0, 1}, has

simple poles at s = 0 and s = 1 with residues −1 and 1 respectively, and

satisfies the functional equation

Λ(s) = Λ(1− s).

The following fundamental theorem says that this kind of behavior is not

unique, but behavior may vary within families. For example, Dedekind zeta

functions always have simple poles like the Riemann zeta funciton, while

Dirichlet L-functions may not.

Theorem 1.1.6 (Fundamental Theorem). The Dirichlet L-functions, Dedekind

zeta functions, and modular L-functions, L(s), listed above have completions
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Λ(s), have a meromorphic continuation to C, and satisfy a functional equation

Λ(s) = εΛ(k − s)

for some k ∈ Z and ε ∈ {±}.

For Dirichlet L-functions and Dedekind zeta functions the functional equa-

tion comes from the modular behavior of a certain theta function like in the

Riemann zeta case. The functional equation for a modular L-function comes

from the behavior of the modular form itself.

The completed zeta function clearly has zeros at each negative even integer.

Each completed L-function has similar trivial zeros. One of the fundamental

problems in all of number theory is to understand the non-trivial zeros of an

L-function. The generalized Riemann hypothesis (GRH) is the statement that

all of the non-trivial zeros should lie on the central line Re(s) = k
2
. More

details on L-functions are given in Section 3.2.

1.2 Congruences and p-adic modular forms

As noted above, modular forms often encode information about interesting

combinatorial objects. One famous is p(n), the number of partitions of n,

which occurs as the n-th coefficient of a weight −1
2

modular form. In order

to study the coefficients of modular forms we investigate their behavior under

the action by the Hecke operators. The fact that certain Hecke operators

annihilate specific modular forms modulo ` leads to the famous Ramanujan
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congruences [49]

p(5n+4) ≡ 0 (mod 5), p(7n+5) ≡ 0 (mod 7), and p(11n+6) ≡ 0 (mod 11).

These congruences are the first glimpse of the much deeper theory of modular

Galois representations, which played a key role in the proof of Fermat’s last

theorem. Work of Eichler, Shimura, Deligne, and Serre [21,22] guarantees that

for every integer weight newform and every prime `, there exists an associated

2-dimensional `-adic Galois representation that encodes the coefficients of the

newform. A peculiar application of this theory by Serre, using the Chebotarev

Density Theorem, implies that 100% of the coefficients of every newform are

multiples of m for every m. Inspired by the congruence properties of modular

forms Serre [55] introduced the notion of a p-adic modular form as a formal

power series that has a sequence of modular forms p-adically converging to

it. The theory of p-adic analytic families established by Serre has important

consequences, in particular to the special values of p-adic L-functions. This

section introduces the main results related to p-adic modular forms.

1.2.1 Conjugacy growth series for wreath product fini-

tary symmetric groups

In [2], Bacher and de la Harpe developed the theory of conjugacy growth series.

This theory uses the minimum word length statistics and the conjugacy classes

of a group to produce the conjugacy growth series. In particular, this theory
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ties together infinite permutation groups with finite support and the usual

number theoretic partition function.

Let G be a group and S a set that generates G. Then for each g ∈ G

define the word length, `G,S(g), to be the smallest nonnegative integer n for

which there are s1, s2, ..., sn ∈ S ∪ S−1 such that g = s1s2 · · · sn. Define the

conjugacy length, κG,S(g), as the smallest integer n for which there exists h in

the conjugacy class of g such that `G,S(h) = n. For n ∈ N define γG,S(n) ∈

N∪{0}∪{∞} as the number of conjugacy classes of G which contain elements

g with κG,S(g) = n. Whenever γG,S(n) is finite for all n, we can define the

conjugacy growth series :

CG,S(q) =
∞∑
n=0

γG,S(n)qn =
∑

g∈Conj(G)

qκG,S(g) ∈ N[[q]],

where the second sum is taken over representatives of conjugacy classes of G.

We call Sym(N) the finitary symmetric group of N. It is the group of

permutations of N with finite support. Let the finitary alternating group of

N, Alt(N), be the subgroup of Sym(N) of permutations with even signature.

Define the two generating sets of Sym(N), SCoxN = {(i, i + 1) : i ∈ N} and

TN = {(x, y) : x, y ∈ N are distinct}. Let S ⊂ Sym(N) be a generating set

such that SCoxN ⊂ S ⊂ TN. Then Bacher and de la Harpe prove that (see

Proposition 1 of [2])

CSym(N),S(q) =
∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
,
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where p(n) counts the number of partitions of n. Similarly we can define

two generating sets of Alt(N), SAN = {(i, i + 1, i + 2) : i ∈ N} and TAN =⋃
g∈Alt(N) gS

A
N g
−1, where TAN is the subset of all 3-cycles.

Let S
′ ⊂ Alt(N) be a generating set such that SAN ⊂ S

′ ⊂ TAN . Then Bacher

and de la Harpe also prove that (see Proposition 11 of [2])

CAlt(N),S′ (q) =
∞∑
n=0

p(n)qn
∞∑
m=0

pe(m)qm =
1

2

∞∏
n=1

1

(1− qn)2
+

1

2

∞∏
n=1

1

1− q2n
,

where pe(m) denotes the number of partitions of m into an even number of

parts.

In Section 2.1.1 we will generate conjugacy growth series, CW ′M ,S
′
∗
(q), that

are powers of the series above. If M is a positive integer, let

∞∑
n=0

γW ′M ,S
′
∗
(n)qn =

(
1

2

∞∏
n=1

1

(1− qn)2
+

1

2

∞∏
n=1

1

1− q2n

)M

. (1.13)

Proposition 2.1.1 shows that these generating functions are the conjugacy

growth series for wreath products of Alt(N).

Let H be a group and let H(N) be the group of functions from N to H.

Then W := HoNSym(N) = H(N)o Sym(N) is called a permutation wreath prod-

uct. Sym(N) has a natural action on H(N); σ ∈ Sym(N) acts on φ ∈ H(N) by

σ(φ) = φ◦σ−1. One can also think of H(N) as |N| copies of H, and so an element

of H(N) can be thought of as |N| elements of H indexed by N. In particular,

Sym(N) acts naturally on these indices. For σ, τ ∈ Sym(N) and φ, ψ ∈ H(N),

the multiplication in the wreath product is given by (φ, σ)(ψ, τ) = (φσ(ψ), στ).
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The alternating wreath product, W
′

:= HoNAlt(N), can be defined analo-

gously.

In view of equation (1.13) and its interpretation in terms of conjugacy

growth series, it is natural to study the congruence properties of the coefficients

of these functions in the spirit of the earlier work of Bacher and de la Harpe

and Cotron, Dicks, and Fleming in [2] and [17]. In [17] Cotron, Dicks, and

Fleming only discuss congruences for CW ′M ,S
′
∗
(q) for M = 1 and for powers of

the primes 5 and 7. For example, they proved that

γW ′1,S
′
∗
(2 · 54n+ 1198) ≡ 0 (mod 5)

and

γW ′1 ,S
′
∗
(2 · 76n+ 225494) ≡ 0 (mod 49).

It is natural to ask for a more complete description of congruences for all of

the general wreath products. This also motivates the study of sums of mixed

weight modular forms in general.

Cotron, Dicks, and Fleming use the theory of modular forms to obtain their

results. Therefore, one expects to use modular forms to study the conjugacy

growth series given in equation (1.13). However, a difficulty arises; these

functions are mixed weight modular forms, finite sums of modular forms with

different weights. Therefore, we must first obtain a general theorem about

congruences for coefficients of mixed weight modular forms.

Theorem 1.2.1. Let K be an algebraic number field with ring of integers
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OK. Suppose fi(z) =
∑∞

n=0 ai(n)qn ∈ M !
ki

(Γ0(Ni), χi) ∩ OK((q)), gj(z) =∑∞
m=0 bj(m)qm ∈M !

λj+
1
2

(Γ0(Mj), χj) ∩ OK((q)) where 4 |Mj for every j, and

let

F (z) =
∑

A(n)qn =
u∑
i=1

fi(z) +
v∑
j=1

gj(z).

Let N be minimal such that Ni | N and Mj | N for every i and j, and let p

be prime such that (N, p) = 1. If r is a sufficiently large integer, then for each

positive integer j, a positive proportion of primes Q ≡ −1 (mod Npj) have

the property that

A(Q4t+3prn) ≡ 0 (mod pj),

where (Qp, n) = 1 and t is a nonnegative integer.

Remark. If there are any half integral weight forms in the sum of forms above,

then we will have 4|N . In this case, it is clear that p must be an odd prime.

Applying Thereom 1.2.1 to the conjugacy growth series leads to the fol-

lowing theorem.

Theorem 1.2.2. Suppose p ≥ 5 is prime and let j be a positive integer. If r

is a sufficiently large integer, then for a positive proportion of primes Q ≡ −1

(mod 576pj), we have that

γW ′M ,S
′
∗

(
Q4t+3prn+M

12

)
≡ 0 (mod pj)

for all n coprime to Qp, and for all nonnegative integers t.
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1.2.2 Harmonic Maass form eigencurves

In [53] Serre introduced the notion of a p-adic modular form and showed

the power of studying a p-adic analytic family of modular eigenforms. Work

of Hida [29] and Coleman [13] expanded on Serre’s initial definition of p-

adic modular form to introduce overconvergent modular forms and offered

more examples and applications. Coleman, in particular, defined the slope

of an eigenform as the p-adic valuation of its Up eigenvalue and proved that

overconvergent modular forms with small slope are classical modular forms.

In [14] Coleman and Mazur organized all of these results by constructing a

geometric object called the “eigencurve.” The eigencurve is a rigid-analytic

curve whose points correspond to normalized finite slope p-adic overconvergent

modular eigenforms.

Using Kummer’s congruences, Serre was able to give the first examples of p-

adic modular forms. Let vp be the p-adic valuation on Qp. If f =
∑
a(n)qn ∈

Q[[q]] is a formal power series in q then define vp(f) := infn vp(a(n)). We

then say that f is a p-adic modular form if there exists a sequence of classical

modular forms fi of weights ki such that vp(f − fi) → ∞ as i → ∞. The

weight of a p-adic modular form is given by the limits of weights of the classical

(holomorphic) modular forms in X := Zp × Z/(p− 1)Z. For a more in-depth

discussion of weights see [53].

Using the Eisenstein series Serre constructed the p-adic Eisenstein series.
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Define

σ
(p)
k :=

∑
d|n

gcd(d,p)=1

dk,

and let ζ(p)(s) be the p-adic zeta function (see [37]). We now have that

G
(p)
2k (z) =

1

2
ζ(p)(1− 2k) +

∞∑
n=1

σ
(p)
2k−1(n)qn

is a p-adic Eisenstein series of weight 2k. Clearly there is a sequence 2ki

of positive even integers that tends to 2k p-adically and σ2ki−1(n) tends to

σ
(p)
2k−1(n) p-adically. The p-adic Eisenstein series are also classical modular

forms on Γ0(p) and can be written as

G
(p)
2k (z) = G2k(z)− p2k−1G2k(pz).

This form is a p-stabilization of G2k(z) so that G
(p)
2k (z) is an eigenform for the

Up operator with eigenvalue coprime to p. The p-adic Eisenstein series satisfy

incredible congruences; we have that G
(p)
k1

(z) ≡ G
(p)
k2

(z) (mod pa) whenever

k1 ≡ k2 (mod (p − 1)pa−1) and k1 and k2 are not divisible by p − 1. For

example, 6 ≡ 10 (mod 4) and 6, 10 6≡ 0 (mod 4), so we have

G
(5)
6 (z) =

781

126
+ q + 33q2 + 244q3 + 1057q4 + q5 + · · · ,
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and

G
(5)
10 (z) =

488281

66
+ q + 513q2 + 19684q3 + 262657q4 + q5 + · · ·

are congruent modulo 5. The congruences can be explained using Kummer’s

congruences and Euler’s theorem.

Mazur recently raised the question of whether or not an eigencurve-like

object exists in the world of harmonic Maass forms. Harmonic Maass forms

are traditionally built using methods which rarely lead to forms which are

eigenforms (for background see [3]). Namely, the most well known construc-

tions involve Poincaré series, indefinite theta functions, and Ramanujan’s mock

theta functions. These methods do not generally offer Hecke eigenforms. To

this end, the first goal is to construct canonical families of harmonic Hecke

eigenforms, out of which one hopes to be able to construct an eigencurve.

Here we construct two families, one integer weight and one half-integer

weight, of harmonic Maass forms which are eigenforms for the Hecke oper-

ators (see Section 2.2.1 for the definition of the relevant Hecke operators).

A natural place to look for a suitable family of harmonic Maass forms is the

pullback under the ξ-operator of the classical Eisenstein series that Serre used.

The pullback, however, is infinite dimensional. For example, the ξ-operator

annihilates all weakly holomorphic modular forms. Therefore, the problem is

to construct forms that are the pullback under the ξ-operator, and are also

Hecke eigenforms and have p-adic properties. Our first family will be a pull-

back of the classical Eisenstein series that saitsfies these properties. For k > 0,
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define

G(z,−2k) :=
(2k)! ζ(2k + 1)

(2π)2k
+

(−1)k+1y1+2k21+2kπζ(−2k − 1)

2k + 1

+ (−1)k(2π)−2k(2k)!
∞∑
n=1

σ2k+1(n)

n2k+1
qn

+ (−1)k(2π)−2k

∞∑
n=1

σ2k+1(n)

n2k+1
Γ(1 + 2k, 4πny)q−n.

For half-integral weights, our family of forms will be a pullback of the

Cohen-Eisenstein series under the ξ-operator. Define

T χr (v) :=
∑
a|v

µ(a)χ(a)ar−1σ2r−1(v/a),

where r is an integer. Set (−1)rN = Dv2 with D the discriminant of Q(
√
D)

and let χD =
(
D
·

)
be the associated character as before. Let

cr(N) =


i2r+1L(1 + r, χD) 1

v2r+1T
χD
r+1(v) N > 0

i2r−1ζ(1 + 2r) + 22r+4iπ2r+1yr+
1
2 ζ(−1−2r)

(2r−3)Γ(2r+1)
N = 0

π3/2L(−r,χD)T
χD
r+1(v)

Nr+1
2

Γ( r+a2 )
Γ( r+1+a

2 )Γ(r+ 1
2)

Γ
(
r + 1

2
,−4πNy

)
N < 0,

(1.14)

where a = 0 if r is odd and a = 1 if r is even. Then, for r ≥ 1, define

H
(
z,−r +

1

2

)
:=
∑
N∈Z

cr(N)qN . (1.15)

Remark. The coefficients for N > 0 and N < 0 of H
(
z,−r + 1

2

)
alternate
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between L-functions for real and imaginary quadratic fields as r changes parity.

The L-functions for real quadratic fields are known to encode information

about the torsion groups of K-groups for real quadratic fields. Therefore,

the functions H
(
z,−r + 1

2

)
create a grid that encodes this information for

Kn(Q(
√
D)) as both n and D vary.

We now have the following theorem.

Theorem 1.2.3. Assuming the notation above, the following are true.

1. For positive integers k, we have that G(z,−2k) is a weight −2k harmonic

Maass form on SL2(Z). Furthermore, G(z,−2k) has eigenvalue 1+ 1
p2k+1

under the Hecke operator T (p).

2. For positive integers r, we have that H
(
z,−r + 1

2

)
is a weight −r + 1

2

harmonic Maass form on Γ0(4). Furthermore, H
(
z,−r + 1

2

)
has eigen-

value 1 + 1
p2r+1 under the Hecke operator T (p2).

Remark. The proof of Theorem 1.2.3 will show that these forms can be viewed

as two parameter functions in z and w where w is the weight of the form.

Specializing w to −2k for the integer weight case and to −r + 1
2

in the half-

integral weight case produces two families of harmonic Maass Hecke eigenforms

which define lines on two Hecke eigencurves.

Remark. Just as the weight 2 Eisenstein series is not a modular form, the

weight 0 form here is not a harmonic Maass form. However, we will see that

there is a weight 0 p-adic harmonic Maass form in the same way that there is

a weight 2 p-adic Eisenstein series.
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Remark. Integer weight non-holomorphic Eisenstein series have been studied

before. For example, in [65] Zagier considers the form

G̃(z, s) =
1

2

∑
(m,n)∈Z2

(m,n) 6=(0,0)

ys

|nz +m|2s
,

which transforms as a weight 0 modular form with respect to z is an eigenform

of ∆0 with eigenvalue s(1−s). This form plays an important role in the Rankin-

Selberg method [50], [52]. Zagier shows that it has a meromorphic continuation

so that G̃∗(z, s) = π−sΓ(s)G̃(z, s) satisfies G̃∗(z, s) = G̃∗(z, 1− s). The Maass

lowering operator L = −2iy2 ∂
∂z

takes a function that transforms like a modular

form of weight k to a function that transforms like a modular form of weight

k − 2. Furthermore, if f is an eigenform for ∆k with eigenvalue λ, then L(f)

is an eigenform for ∆k−2 with eigenvalue λ − k + 2 (Chapter 5 of [3]). In

particular, we can see that

Lk(G̃(z, s)) =
Γ(s+ k)

2Γ(s)

∑
(m,n)∈Z2

(m,n)6=(0,0)

ys+k(nz +m)2k

|nz +m|2s

is an eigenform of ∆−2k with eigenvalue −(s + k)(s − k − 1). Evaluating at

s = k + 1 makes the form harmonic and gives the same forms as the ones in

Theorem 1.2.3 (1).

Remark. The case of r = 0 has been constructed by Rhoades and Waldherr

in [51] using a slightly different method. Their result can be recovered using

the same method as in this paper and then sieving to suitably modify the
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Fourier expansion. The work of Rhoades and Waldherr follows up on work of

Duke and Imamoglu [25] and Duke, Imamoglu, and Tóth [26]. In [25] Duke and

Imamoglu use the Kronecker limit formula to construct a function which has

values of L-functions at s = 1 for its Fourier coefficients. This function was the

first example and the motivation for the work in [26] where Duke, Imamoglu,

and Tóth construct forms of weight 1
2

on Γ0(4) whose Fourier coefficients are

given in terms of cycle integrals of the modular j-function.

Remark. The forms in part 1 of Theorem 1.2.3 behave nicely under the flip-

ping operator (see [3]), which essentially switches the holomorphic and non-

holomorphic parts of a harmonic Maass form. Similar functions are studied

by Bringmann, Kane, and Rhoades in [4].

Serre used the classical Eisenstein series to build p-adic modular forms. In

a similar way we can use these harmonic Maass forms to build p-adic harmonic

Maass forms.

Definition 1.2.4. A weight k p-adic harmonic Maass form is a formal

power series

f(z) =
∑

n�−∞

c+
f (n)qn + c−f (0)y1−k +

∑
06=n�∞

c−f (n)Γ (1− k,−4πny) qn,

where Γ(1− k,−4πny) is taken as a formal symbol and where the coefficients

c±f (n) are in Cp, such that there exists a series of harmonic Maass forms fi(z),

of weights ki, such that the following properties are satisfied:

1. limi→∞ n
1−kic±fi(n) = n1−kc±f (n) for n 6= 0.
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2. limi→∞ c
±
fi

(0) = c±f (0).

Remark. Here limi→∞ n
1−kic±fi(n) = n1−kc±f (n) means vp(n

1−kic±fi(n)−n1−kc±f (n))

tends to ∞ and we have that k is the limit of the ki in X.

We will need a few definitions before describing our p-adic harmonic Maass

forms. Let Lp(s, χ) be the p-adic L-function (see [32]) and define

T χ,(p)r (v) :=
∑
a|v

gcd(a,p)=1

µ(a)χ(a)ar−1σ
(p)
2r−1(v/a).

Also define the usual p-adic Gamma function (see [40]) by

Γ(p)(n) := (−1)n
∏

0<j<n
p-j

j if n ∈ Z,

and

Γ(p)(x) := lim
n→x

Γ(p)(n) if x ∈ Zp.

For any x ∈ Zp we have vp(Γ
(p)(x)) = 1. In the following formulas we define

π := Γ(p)
(

1
2

)2
so that vp(π) = 1. We now have the following theorem.

Theorem 1.2.5. Suppose p is prime and let Γ(·, ·) be a formal symbol. Then

the following are true.

1. For each k ∈ X, we have that

G(p)(z,−2k) :=
Γ(p)(2k + 1)ζ(p)(2k + 1)

(2π)2k
+

(−1)k+1y1+2k21+2kπζ(p)(−2k − 1)

2k + 1
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+ (−1)k(2π)−2kΓ(p)(2k + 1)
∞∑
n=1

σ
(p)
2k+1(n)

n2k+1
qn

+ (−1)k(2π)−2k

∞∑
n=1

σ
(p)
2k+1(n)

n2k+1
Γ(1 + 2k, 4πny)q−n

is a weight −2k p-adic harmonic Maass form.

2. For each −r + 1
2
∈ X, let

c(p)
r (N) :=


i2r+1Lp(1 + r, χD) 1

v2r+1T
χD,(p)
r+1 (v) N > 0

i2r−1ζ(p)(1 + 2r) + 22r+4iπ2r+1yr+
1
2 ζ(p)(−1−2r)

(2r−3)Γ(p)(2r+1)
N = 0

π3/2Lp(−r,χD)T
χD,(p)
r+1 (v)

Nr+1
2

Γ(p)( r+a2 )
Γ(p)( r+1+a

2 )Γ(p)(r+ 1
2)

Γ
(
r + 1

2
,−4πNy

)
N < 0.

Then H(p)
(
z,−r + 1

2

)
=
∑

N∈Z c
(p)
r qN is a weight −r+ 1

2
p-adic harmonic

Maass form.

Remark. Note that these forms enjoy congruences similar to the ones for p-adic

modular forms because of the generalized Bernoulli number congruences. Con-

gruences for the holomorphic parts rely on the existence of a p-adic regulator

for L-functions.

Remark. When k is an integer, the forms G(p)(z,−2k) satisfy

G(p)(z,−2k) = G(z,−2k)−G(pz,−2k),

which is the analogue of the equation above that the classical p-adic Eisenstein

series satisfy. This implies that G(p)(z,−2k) is a standard harmonic Maass
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form on Γ0(p). We do not know a similar formula for the half-integral weight

forms.

Remark. Suppose p is a prime and consider an infinite sequence of even integers

which p-adically go to zero (i.e. {2pt}∞t=1). By the proof of Theorem 1.2.5,

taking the p-adic limit of a series of forms with these weights defines a p-

adic harmonic Maass form of weight 0. As noted above, this is the analogue

to the quasimodular form E2 which is not quite a modular form, but Serre

showed leads to a weight 2 p-adic modular form. In fact, the weight 0 p-adic

harmonic Maass form constructed here is the preimage of Serre’s weight 2

p-adic Eisenstein series under the ξ0-operator.

Remark. Theorem 1.2.5 implies that the Cohen-Eisenstein series are p-adic

modular forms in the sense of Serre. This fact was proven by Koblitz in [35].

Not much is known about harmonic Maass Hecke eigenforms except for

the forms constructed here. The fact that Hecke operators increase the order

of singularities at cusps poses a major roadblock in the study of harmonic

Maass Hecke eigenforms. The forms constructed here stand out because this

issue doesn’t arise. It is an open question of Mazur to describe what the

general structure of a “mock eigencurve” could be. For example, are there

other branches of the mock eigencurve that connect together other harmonic

Maass eigenforms?
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1.3 Distributions and Jensen polynomials

Some of the most natural and difficult problems in number theory involve

prime numbers. The first important result in the subject was the Prime Num-

ber Theorem which states that the number of primes up to X grows asymptot-

ically like X/logX. This result has been refined by Dirichlet’s Theorem and

the Chebotarev Density Theorem which, describe the proportion of primes in

a given arithmetic progression and the proportion of primes that have a cer-

tain splitting behavior in a given Galois extension. These results have their

origin in the study of the Riemann zeta-function ζ(s) and the Riemann Hy-

pothesis, which conjectures that all of the non-trivial zeros of ζ(s) have real

part 1
2
. Dyson, Montgomery, and Odlyzko [34,39,43] further conjectured that

these non-trivial zeros are distributed like the eigenvalues of random Hermi-

tian matrices. This prediction is now known as the Gaussian Unitary Ensemble

(GUE) random matrix model. The Jensen polynomials were originally defined

in order to study the zeros of ζ(s). This section introduces results related to

Jensen polynomials and the distributions of zeros of various L-functions.

1.3.1 Hyperbolicity of the partition Jensen polynomials

Given a function a : N → R and positive integers d and n, the associated

Jensen polynomial of degree d and shift n is defined by

Jd,na (X) :=
d∑
j=0

(
d

j

)
a(n+ j)Xj. (1.16)
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A polynomial is said to be hyperbolic if all of its zeros are real. Given an entire

real function ϕ(x) with Taylor expansion ϕ(x) =
∑

n≥0
α(n)xn

n!
, it is a theorem

of Jensen [33] that ϕ(x) is in the Laguerre-Pólya class if and only if all of the

associated Jensen polynomials Jd,0α (X) are hyperbolic.

In this paper, we study the hyperbolicity of Jensen polynomials Jd,np (X)

associated to the partition function p(n). Chen, Jia, and Wang conjectured

that for each positive integer d, Jd,np (X) is eventually hyperbolic [7]. For

example, hyperbolicity of J2,n
p (X) is equivalent to p(n+ 2)p(n) ≤ p(n+ 1)2, a

condition known as log concavity. Desalvo and Pak proved that this condition

holds for all n ≥ 25 in [23].

Recent results of Griffin-Ono-Rolen-Zagier [27] show that Jensen polyno-

mials for a large family of functions, including those associated to ξ(s) and the

partition function, are eventually hyperbolic. A more exact statement of their

theorem will be given in the next section. Their proof relates the polynomials

Jn,dp (X) to the Hermite polynomials Hd(X), defined by the generating function

etX−t
2

=
∞∑
d=0

Hd(X) · t
d

d!
= 1 +X · t+ (X2 − 2) · t

2

2
+ (X3 − 6X) · t

3

6
+ . . . .

More precisely, if

c :=
2

3
π2, w(n) :=

1√
c(n− 1

24
)
, δ(n) :=

cw(n)
3
2

√
2

,
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the authors prove that

lim
n→∞

2d

p(n)δ(n)d
· Jd,np

(
δ(n)X − e−cw(n)/2

)
= Hd(X). (1.17)

Since the Hermite polynomials have distinct real roots, it follows that the

polynomial on the left-hand side above, and hence Jd,np (X), is eventually hy-

perbolic. In other words, for each d there exists some N such that for all

n ≥ N , the polynomial Jd,np (X) is hyperbolic. Define N(d) to be the mini-

mal such N . For example, the results of Nicolas and Desalvo and Pak show

N(2) = 25. We determine the following further values of N(d).

Theorem 1.3.1. Let N(d) be defined as above. Then N(3) = 94, N(4) = 206,

and N(5) = 381.

Remark. During the preparation of this paper, the authors were notified that

Chen, Jia, and Wang [7] independently proved N(3) = 94 using different

methods.

The proof of Theorem 1.3.1 relies on obtaining functions that closely ap-

proximate the ratios p(n + j)/p(n) and bounding the error of these approx-

imations for large n. For d = 3, 4, 5, direct computation gives rise to good

bounds, allowing us to reduce Theorem 1.3.1 to checking a reasonably small

finite number of cases. As an illustration of these techniques, we also prove a

recent conjecture of Chen which involves an inequality of polynomials in ratios

of close partition numbers.
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Theorem 1.3.2 (Conjecture 6.13 in [6]). Let un = p(n + 1)p(n − 1)/p(n)2.

Then for all n ≥ 2, we have

4(1− un)(1− un+1) <

(
1 +

π√
24n3/2

)
(1− unun+1)2.

For arbitrary d, similar techniques, along with the convergence of Jd,np (X)

to the Hermite polynomials Hd(X) after change of variable, gives rise to an

upper bound for N(d). However, without the benefit of direct computation

we rely on rather rough estimates for the errors mentioned above. This yields

the following.

Theorem 1.3.3. For every positive integer d, we have N(d) ≤ (3d)24d(50d)3d2.

1.3.2 The Jensen-Pólya program for various L-functions

By extending notes of Jensen, Pólya [47] proved that the Riemann hypoth-

esis (RH) is equivalent to the hyperbolicity of the Jensen polynomials for

Riemann’s Xi-function. The Riemann Xi-function is the entire function that

shifts the zeros of the Riemann zeta-function, ζ(s), from the line with real part

1
2

to the real line. It is given by

Ξ(z) :=
1

2

(
−z2 − 1

4

)
π
iz
2
− 1

4 Γ

(
−iz

2
+

1

4

)
ζ

(
−iz +

1

2

)
,
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where Γ(s) is the gamma function. We can consider a change of variable and

define the coefficients γ(n) by the Taylor expansion of this new function:

Ξ1(x) =
1

8
· Ξ
(
i

2

√
x

)
=:
∑
n≥0

γ(n)

n!
· xn. (1.18)

Pólya originally proved that RH is equivalent to Ξ1 having an infinite product

expansion of the form Ξ1(x) = ceσx
∏

n≥1

(
1 + x

xn

)
, where c is a constant,

σ ≥ 0, xn ∈ R+, and
∑
x−1
n < ∞. This condition can be encoded by the

hyperbolicity of Jensen polynomials.

RH is equivalent to the hyperbolicity of Jd,nγ (X) for all d and n and where

γ is given in equation (1.18) as the Taylor coefficients of Ξ1(x) [19,24,47]. Due

to the difficulty of proving RH, research before [27] focused on establishing

hyperbolicity for all shifts n for small d. Work of Csordas, Norfolk, and Varga

and Dimitrov and Lucas [18, 24] shows that Jd,nγ (X) is hyperbolic for all n

when d ≤ 3. In [27], Griffin, Ono, Rolen, and Zagier prove that for any d ≥ 1,

Jd,nγ (X) is hyperbolic with at most finitely exceptions n. They prove this

by showing there is a family of sequences, called Hermite-Jensen sequences,

and then showing that for a fixed d the Jensen polynomial of degree d for

a sequence, a, in this family converges to the d-th Hermite polynomial as

n → ∞. The Hermite polynomials are known to have real distinct roots so

Jd,na (X) must also eventually have real distinct roots.

Definition 1.3.4. A real sequence a : N → R is Hermite-Jensen if there

exists sequences of positive real numbers {A(n)} and {δ(n)} with δ(n) tending
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to zero, which satisfy

log

(
a(n+ j)

a(n)

)
= A(n)j − δ(n)2j2 + o(δ(n)d) as n→∞ (1.19)

for some d ≥ 1 and all 0 ≤ j ≤ d.

Remark. In [27] the authors give a more general statement about the asymp-

totic behavior needed for the Jensen polynomials of a sequence to converge to

other families of polynomials.

In order to show that the Taylor coefficients of Riemann’s Xi-function are

Hermite-Jensen, an arbitrary precision asymptotic formula for the derivatives

Ξ(2n)(0) was found in [27]. To extend the results in [27] we show that any good

Dirichlet series is Hermite-Jensen.

Definition 1.3.5. A Dirichlet series L(s) =
∑

n≥1 a(n)n−s is good if the

following hold.

1. L(s) has a completed form, Λ(s), that has an integral representation of

the form

Λ(s) = N
s
2

∫ ∞
0

[f(t)− f(∞)] ts
dt

t
,

where the function f(t) has the form

f(t) = α(0) +
∑
n≥n0

α(n)e−πnt,

where f(∞) = α(0).
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2. The function f(t) satisfies

f

(
1

Nt

)
= εN

k
2 tkf(t),

where ε ∈ {±1} which gives rise to an analytic continuation and a func-

tional equation Λ(s) = εΛ(k − s).

3. The coefficients of Λ(s) are real.

For a good Dirichlet series L(s), we define

Ξ(z) :=


(
−z2 − k2

4

)
Λ
(
k
2
− iz

)
if Λ(s) has a pole at s = k

Λ
(
k
2
− iz

)
otherwise.

(1.20)

If Λ(s) = Λ(k − s), then we define

Ξ1(x) := Ξ(i
√
x) =:

∑
n≥0

γ(n)

n!
xn, (1.21)

where

γ(n) = (−1)n
n!

(2n)!
· Ξ(2n)(0).

If Λ(s) = −Λ(k − s), then define

Ξ1(x) :=
Ξ(i
√
x)√
x

=:
∑
n≥0

γ(n)

n!
xn, (1.22)
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where

γ(n) = i2n+1 n!

(2n+ 1)!
· Ξ(2n+1)(0).

Theorem 1.3.6. Suppose that L(s) is a good Dirichlet series. Then Jd,nγ (X)

is hyperbolic with at most finitely many exceptions n for each fixed d ≥ 1.

Remark. This offers evidence for the generalized Riemann Hypothesis (GRH).

Remark. Notice that all of the information of γ(n) lies in the derivatives of

Ξ(z) at z = 0, or equivalently the derivatives of Λ(s) at s = k
2
. In order

to prove Theorem 1.3.6 we will prove an asymptotic formula with arbitrary

precision for these deriavtives.

Remark. All good L-series satisfy the Gaussian Unitary Ensemble (GUE)

random matrix prediction in derivative aspect. Dyson, Montgomery, and

Odlyzko [34,39,43] conjectured that the non-trivial zeros of the Riemann zeta

function and other suitable L-functions are distributed like the eigenvalues of

random Hermitian matrices. These eigenvalues and the roots of the suitably

normalized Hermite polynomials, Hd(X), as d → ∞ both satisfy Wigner’s

Semicircular Law (Chapter 3 of [1]). The roots of Jd,0γ (X), as d→∞, approx-

imate the zeros of Λ
(
k
2
− iz

)
[47] so these roots are also expected to satisfy

Wigner’s Semicircular Law. The derivatives of the completed L-function are

also predicted to satisfy GUE and higher derivatives correspond to n growing

in Jd,nγ (X) so it is natural to study Jd,nγ (X) as n→∞. For a good L-function

the Jd,nγ (X) converge to the Hermite polynomials which satisfy GUE in degree

aspect. This is what is meant by the statement that good L-functions satisfy
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GUE in derivative aspect.

The following corollaries give some examples of Hermite-Jensen Dirichlet

series.

Corollary 1.3.7. Dirichlet L-functions for real primitive self-dual characters

are good.

Corollary 1.3.8. Let f ∈ Snew2k (Γ0(N)) be a weight 2k modular newform on

Γ0(N), then the modular L-function associated to f is good.

Corollary 1.3.9. The Dedekind zeta-function for a number field is good.

In each of these cases we prove an arbitrary precision asymptotic formula

for the derivatives of the completed L-series at its central value. We do this

to show that these L-series are Hermite-Jensen, but these results are also of

independent interest. The statements and proofs of these formulas will be

given in Section 3.2.1.

1.4 Schwartz functions

In this section we will give a brief introduction to the recent advances in sphere

packing. The sphere packing problem started in 1611 when Kepler asked for

the best way to stack cannonballs in a crate. This is the dimension 3 case,

but more generally one can ask what proportion of Rd can be covered with

congruent balls. To be more precise, if P is a packing, then the finite density
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of P is

∆P(r) :=
Vol(P ∩Bd(0, r))

Vol(Bd(0, r))
.

The density of P is then ∆P := lim supr→∞∆P(r) and the sphere packing

constant is

∆d := sup
P⊂Rd

∆P . (1.23)

The sphere packing problem is then to determine ∆d for each dimension d.

Clearly we have ∆1 = 1, and in 1892 Thue [60] showed that ∆2 ≈ 0.9068 by

proving the hexagonal packing corresponding to the A2 lattice is optimal for

d = 2. It wasn’t until 1998 when Kepler’s original question was answered;

Hales showed that ∆3 = π√
18
≈ 0.7405. Recently a breakthrough was made by

Cohn and Elkies that showed solving the sphere packing problem in dimensions

8 and 24 was within reach. The Fourier transform of an L1 function f : Rd →

C is defined by

F(f)(y) = f̂(y) :=

∫
Rd
f(x)e−2πi〈x,y〉dx y ∈ Rd, (1.24)

where 〈x, y〉 is the standard scalar product in Rd. For example, the Fourier

transform of the Gaussian is

F
(
e−αx

2
)

=
(π
α

) d
2
e−

π2y2

α .

Given a lattice Λ with shortest nonzero vector of length r0, the density of
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the corresponding lattice packing is

∆d :=
πd/2

Γ
(
d
2

+ 1
) (r0

2

)d 1

|Λ|
.

It is common to define the center density sphere packing as

δd :=
(r0

2

)d 1

|Λ|
.

A function f(x) is a Schwartz function if f and all of its derivatives decay to

zero faster than any inverse power of x. In the following theorem we assume

the lattice Λ is self-dual. This kind of result is known as a linear programming

bound.

Theorem 1.4.1 (Cohn, Elkies [9]). Suppose f : Rd → R is a Schwartz func-

tion satisfying the following two conditions:

1. f(x) ≤ 0 for all |x|≥ r0.

2. f̂(x) ≥ 0 for all x ∈ Rd.

Then

∆d ≤
πd/2

Γ
(
d
2

+ 1
) (r0

2

)d f(0)

f̂(0)
,

or equivalently, the center density of sphere packings in Rd is bounded above

by
(
r0
2

)d f(0)

f̂(0)
.

Cohn and Elkies constructed functions for 4 ≤ d ≤ 36 which, when com-

bined with their theorem, led to the best known upper bounds for sphere
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packing in those dimensions. In particular, they showed that the upper bound

in dimensions 8 and 24 was extremely close to the known lower bound, which

provided evidence that there existed functions which would resolve the sphere

packing problem in those dimensions. In 2017 Viazovska explicitly constructed

such a function for d = 8 using special modular forms and quasi-modular forms.

Theorem 1.4.2 (Viazovska [62]). There exists a radial Schwartz function

f : R8 → R which satisfies

• f(x) ≤ 0 for all |x|≥
√

2,

• f̂(x) ≥ 0 for all x ∈ R8,

• f̂(0) = f(0) = 1.

Therefore the E8 lattice packing is the optimal packing in 8 dimensions.

Her methods were quickly modified by Cohn, Kumar, Miller, Radchenko,

and Viazovska to resolve the sphere packing problem for d = 24.

Theorem 1.4.3 (Cohn, Kumar, Miller, Radchenko, Viazovska [11]). There

exists a radial Schwartz function f : R24 → R which satisfies

• f(x) ≤ 0 for all |x|≥ 2,

• f̂(x) ≥ 0 for all x ∈ R24,

• f̂(0) = f(0) = 1.

Therefore the Leech lattice packing, Λ24, is the optimal packing in 24 dimen-

sions.
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The main ideas behind the proofs of these theorems was to split the problem

of constructing f into constructing a function f+ which is a +1 eigenfunction

for the Fourier transform and f− which is a −1 eigenfunction for the Fourier

transform. Letting f be a linear combination of these two functions allows

control over the necessary inequalities. The Poisson Summation Formula also

tells us that in order for the function f to resolve the sphere packing problem

in a given dimension it also needs to have zeros of specific orders at specific

points. To be precise, if r0 is the shortest vector length in a lattice packing,

then f(x) must have double zeros at all lattice points |x|> r0 and a simple

zero when |x|= r0. The details of these constructions will be given in Section

4.1.

For other dimensions not much is known for sphere packing. There are

conjectures for optimal packings in small dimensions, but in general little is

known. The best known lower bound is due to Venkatesh [61] and gives

∆d ≥
e−γ

2
log log d · 2−d,

but is only true for a sparse sequence of dimensions. The best known upper

bound has not been improved since 1978 when Kabatiansky and Levenshtein

[36] proved

∆d ≤ 2−0.599d.

There are problems related to sphere packing for which Viazovska’s construc-

tion may be useful. In particular, sphere packing is just a special case of an
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energy optimization problem. Given a discrete closed subset C ⊂ Rd and a

potential function p : (0,∞)→ R, we say C has p-energy

Ep(C) := lim inf
r∞

1

|C ∩Bd(0, r)|
∑

x,y∈C∩Bd(0,r)
x 6=y

p(|x− y|),

provided the limit exists. We say that C ⊂ Rd is universally optimal if it mini-

mizes p-energy whenever p : (0,∞)→ R is a completely monotonic function of

squared distance. The following theorem is the analogous linear programming

bound in this setting.

Theorem 1.4.4 (Cohn, Kumar [10]). Let p : (0,∞) → R be any potential

function and f : Rd → R be a Schwartz function satisfying

• f(x) ≤ p(|x|) for all x ∈ Rd \ {0},

• f̂(x) ≥ 0 for all x ∈ Rd.

Then every density ρ discrete subset of Rd has lower p-energy at least

ρf̂(0)− f(0).

Cohn and Kumar used this theorem to show that for d = 1, Z is universally

optimal and made the following conjecture.

Conjecture (Cohn, Kumar). A2, E8, and Λ24 are universally optimal in 2, 8,

and 24 dimensions respectively.
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There is hope that the techniques developed to solve the sphere packing

problems in dimensions 8 and 24 can be used to attack this conjecture. Here we

construct Schwartz functions using quasi-modular and modular forms which

behave well under the Fourier transform.

Theorem 1.4.5. For each dimension d there exists a radial Schwartz function

f : Rd → R and an n ∈ N such that

• f(x) = f+(x) + f−(x) and f̂(x) = (−i)− d2 (f+(x)− f−(x)),

• f(
√

2m) 6= 0 for 0 ≤ m < n,

• f(
√

2n) = 0 and f ′(
√

2n) 6= 0,

• f(
√

2m) = f ′(
√

2m) = 0 for m > n.

In particular, for each d ≡ 0 (mod 8), let n+ =
⌊
d
16

+ 1
2

⌋
and n− =

⌊
d
16

+ 1
⌋
.

Then there exists radial Schwartz functions f± : Rd → R which satisfies

• f̂±(x) = ±f±(x).

• f±(
√

2m) 6= 0 for 0 ≤ m < n±.

• f±(
√

2n±) = 0 and f ′±(
√

2n±) 6= 0.

• f±(
√

2m) = f ′±(
√

2m) = 0 for m > n±.

Remark. For any given d, it is straightforward to prove inequalities like those

in Theorem 1.4.2 and Theorem 1.4.3.
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Chapter 2

Congruences and p-adic

modular forms

This chapter is devoted to the proofs of Theorem 1.2.1, Theorem 1.2.2, The-

orem 1.2.3, and Theorem 1.2.5. Each section will contain some preliminary

results needed for the proof of the main theorems.

2.1 Conjugacy growth series for wreath prod-

uct finitary symmetric groups

To prove Theorems 1.2.1 and 1.2.2 we will make use of the theory of modular

forms. The relevant generating functions for Theorem 1.2.2 turn out to be

mixed weight modular forms. We will use the work of Treneer in [59] on

weakly holomorphic modular forms and a famous theorem of Serre (see [44]).
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We will show that Theorem 1.2.1 follows from a proposition of Ono and Skinner

in [46] which allows us to use the theory of Galois representations attached to

modular forms for a finite set of modular forms simultaneously. Section 2.1.2

will cover basic facts about The U and V operators on modular forms, the

modularity of eta-quotients, and will give important propositions of Treneer,

Serre, Ono, and others which are vital to our proofs. Theorem 1.2.1 will be

proved in Section 2.1.3 and Theorem 1.2.2 will be proved in Section 2.1.4. The

section will conclude with a short example in Section 2.1.5.

2.1.1 Conjugacy growth series for the finitary alternat-

ing wreath product

In Section 1.2.1 it was mentioned that there are other subgroups of the finitary

symmetric group that produce interesting conjugacy growth series. Recall the

wreath product W = HoNSym(N).

For a ∈ H \ {1} and m ∈ N, let φam ∈ W be the permutation that maps

(h,m) ∈ H×N to (ah,m) and fixes (h, n) if n 6= m. Note that (φam)a∈H\{1},m∈N

generates the subgroup H(N) and that φam and φbk are conjugate in W if and

only if a and b are conjugate in H. For m ∈ N, let Hm = {φam : a ∈ H \ {1}}

and let TH =
⋃
m∈NHm be a subset of H(N). Recall that TN is the subset of

all transpositions in Sym(N). We consider subsets SH ⊂ TH and SN ⊂ TN

and define S∗ to be the disjoint union SH t SN. If SH = {φa1m1
, ..., φarmr} where

{a1, ..., ar} generate H, then S∗ generates W . Define S
′
∗ analogously using

subsets of TAH and TAN ; then S
′
∗ generates W

′
= HoNAlt(N). This leads to the
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following proposition.

Proposition 2.1.1. Let H be a finite group; denote by M the number of con-

jugacy classes of H. If W
′
M = HoNAlt(N) and S

′
∗ is a generating set satisfying

(PCwr) in [2], then

CW ′M ,S
′
∗
(q) =

(
1

2

∞∏
n=1

1

(1− qn)2
+

1

2

∞∏
n=1

1

1− q2n

)M

.

Proof. For each w′ = (φ, σ) ∈ W
′
M = H oN Alt(N) we can split σ into the

product of an even number of cycles of even length, σe, and the product

of cycles of odd length, σo, so that w′ = (φ, σeσo). We can associate each

conjugacy class in W
′
M to an H∗-indexed family of partitions. Using the same

notation as in [2] we associate the conjugacy classes in H to the family of

partitions (
λ(1), ν(1); (µ(η), γ(η))η∈H∗\1

)
,

where ν(1) and γ(η) each have an even number of positive parts, in the following

way.

Let N(w) be the finite subset of N that is the union of the supports of φ

and σ and let σ be the product of the disjoint cycles c1, ..., ck where ci =

(x
(i)
1 , x

(i)
2 , ..., x

(i)
vi ) with x

(i)
j ∈ N(w) and vi = length(ci). We include cycles

of length 1 for each n ∈ N such that n ∈ sup(φ) and n /∈ sup(σ) so that

N(w) =
⊔

1≤i≤k sup(ci). Define ηw∗ (ci) ∈ H∗ to be the conjugacy class of

φ(x
(i)
vi )φ(x

(i)
vi−1) · · ·φ(x

(i)
1 ) ∈ H. For η ∈ H∗ and ` ≥ 1, let mw,η

` denote the

number of cycles c in {c1, ..., ck} that are of length ` and such that ηw∗ (c) = η.
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Let µw,η ` nw,η be the partition with mw,η
` parts equal to `, for all ` ≥ 1. Note

that
∑

η∈H∗,`≥1 n
w,η =

∑
η∈H∗,`≥1 `m

w,η
` = |N(w)|. Also observe that the parti-

tion µw,1 does not have parts of size 1 because if vi = 1 then ηw∗ (ci) 6= 1. Using

the same notation as above, let λw,1 be the partition with mw,1
` parts equal to

` − 1. Because we are working in Alt(N), we can write σ = σeσo; and so this

method actually splits to map to two partitions, one of which has an even num-

ber of parts. Define the type of w as the family
(
λ(1), ν(1); (µ(η), γ(η))η∈H∗\1

)
.

Then two elements in W
′
M are conjugate if and only if they have the same type.

Thus, each H∗-indexed family of partitions,
(
λ(1), ν(1); (µ(η), γ(η))η∈H∗\1

)
, is the

type of one conjugacy class in W
′
M .

Consider an H∗-indexed family of partitions
(
λ(1), ν(1); (µ(η), γ(η))η∈H∗\1

)
and the corresponding conjugacy class in W

′
M . Let u(1), v(1), u(η), v(η) be the

sums of the parts of λ(1), ν(1), µ(η), γ(η) and let k(1), t(1), k(η), t(η) be the be the

number of parts of λ(1), ν(1), µ(η), γ(η) respectively.

Choose a representative w′ = (φ, σ) of this conjugacy class such that

σ =
k∏
i=1

ci =
k∏
i=1

(x
(i)
1 , x

(i)
2 , ..., x

(i)
µi

)

and

φ
(
x

(i)
j

)
= 1 ∈ H for all j ∈ {1, ..., µi} when ηw∗ (ci) = 1

φ
(
x

(i)
j

)
=


1 for all j ∈ {1, ..., µi − 1}

h 6= 1 for j = µi

when ηw∗ (ci) 6= 1.
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Observe that

k = k(1) + t(1) +
∑

η∈H∗\1

(k(η) + t(η))

|N(w′)| = u(1) + k(1) + v(1) + t(1) +
∑

η∈H∗\1

(u(η) + v(η)).

Hence, the contribution to CW ′M ,S∗
(q) from

(
λ(1), ν(1); (µ(η), γ(η))η∈H∗\1

)
is

(
qu

(1)

qv
(1)

∏
η∈H∗\1

qu
(η)

qv
(η)
)
.

It follows that

CW ′M ,S∗
(q) =

[(
∞∏

u1=1

1

1− qu1

)(
1

2

∞∏
v1

1

1− qv1
+

1

2

∞∏
v1

1

1 + qv1

)]

×
∏

η∈H∗\1

 ∞∏
uη=1

1

1− quη

1

2

∞∏
vη

1

1− qvη
+

1

2

∞∏
vη

1

1 + qvη


=

[(
1

2

∞∏
n1=1

1

1− q2n1
+

1

2

∞∏
n1=1

1

(1− qn1)2

)]
×

∏
η∈H∗\1

1

2

∞∏
nη=1

1

1− q2nη
+

1

2

∞∏
nη=1

1

(1− qnη)2


=

(
1

2

∞∏
k=1

1

1− q2k
+

1

2

∞∏
k=1

1

(1− qk)2

)|H∗|

=

(
1

2

q1/12

η(z)2
+

1

2

q1/12

η(2z)

)|H∗|
.

The equality between the first and second line is given in the appendix of [2].

The switch of variables to n1 and nη keeps track that the number of products

is indexed by the conjugacy classes.
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2.1.2 Preliminaries

We will now recall some operators on integer weight modular forms. If f(z) =∑
n≥n0

a(n)qn, the U -operator, Ut, on f(z) is defined by

f(z)|Ut =
∑
n≥n0

a(tn)qn.

Similarly, the V -operator, Vt, is defined by

f(z)|Vt =
∑
n≥n0

a(n)qtn.

The following facts can be found in [44, p. 28]. Suppose f(z) ∈Mk(Γ0(N), χ),

where k is an integer.

1. If t is a positive integer, then

f(z)|Vt ∈Mk(Γ0(Nt), χ).

2. If t | N , then

f(z)|Ut ∈Mk(Γ0(N), χ).

Furthermore, if f(z) is a cusp form, then so are f(z)|Ut and f(z)|Vt.

We will now recall the analogous operators on half-integral weight modular

forms. If g(z) =
∑

n≥n0
b(n)qn, the U -operator, Ut, on g(z) is defined by

g(z)|Ut =
∑
n≥n0

b(tn)qn.
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Similarly, the V -operator, Vt, is defined by

g(z)|Vt =
∑
n≥n0

b(n)qtn.

The following can be found in [44, p. 50]. Suppose g(z) ∈Mλ+ 1
2
(Γ0(4N), χ).

1. If t is a positive integer, then

g(z)|Vt ∈Mλ+ 1
2

(
Γ0(4Nt),

(
4t

•

)
χ

)
.

2. If t | N , then

g(z)|Ut ∈Mλ+ 1
2

(
Γ0(4N),

(
4t

•

)
χ

)
.

Furthermore, if g(z) is a cusp form, then so are g(z)|Ut and g(z)|Vt.

Dedekind’s eta-function is a weight 1
2

modular form defined as

η(z) := q1/24

∞∏
n=1

(1− qn).

An eta-quotient is a function f(z) of the form

f(z) =
∏
δ|N

η(δz)rδ ,

where N ≥ 1 and rδ is an integer. We have the following useful proposition

for eta-quotients.

Proposition 2.1.2 ( [44, p. 18]). If f(z) =
∏

δ|N η(δz)rδ is an eta-quotient
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with weight k = 1
2

∑
δ|N rδ and the additional properties that

∑
δ|N

δrδ ≡ 0 (mod 24)

and ∑
δ|N

N

δ
rδ ≡ 0 (mod 24),

then f(z) satisfies

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for every

a b

c d

 ∈ Γ0(N). Here χ(d) :=
(

(−1)ks
d

)
where s :=

∏
δ|N δ

rδ .

In order to study congruence properties, we turn to a result from Serre on

the action of the Hecke operator on integral weight modular forms.

Proposition 2.1.3 (Serre, [55]). Suppose that f(z) =
∑∞

n=1 a(n)qn ∈ Sk(Γ0(N), χ)

has coefficients in OK, the ring of algebraic integers in the number field K,

and M is a positive integer. Furthermore, suppose k > 1. Then a positive

proportion of the primes p ≡ −1 (mod MN) have the property that

f(z)|T (p, k, χ) ≡ 0 (mod M).

There is an analogous proposition for half-integral weight modular forms

due to Ono which is proved using Proposition 2.1.3 and Shimura’s correspon-
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dence between half-integral weight modular forms and even integer weight

modular forms.

Proposition 2.1.4 (Ono, [44, p. 56]). Suppose that g(z) =
∑∞

m=1 b(m)qm ∈

Sλ+ 1
2
(Γ0(4N), χ) has coefficients in OK, the ring of algebraic integers in the

number field K, and M is a positive integer. Furthermore, suppose λ > 1.

Then a positive proportion of the primes ` ≡ −1 (mod 4MN) have the prop-

erty that

g(z)|T (`2, λ, χ) ≡ 0 (mod M).

It is natural to ask for a generalization of Propositions 2.1.3 and 2.1.4

where a Hecke operator for a prime p could simultaneously annihilate a finite

set of modular forms. In order to tackle this problem we will now turn our

attention to modular Galois representations. Let Q be an algebraic closure

of Q, and for each rational prime `, let Q` be an algebraic closure of Q`.

Fix an embedding of Q into Q`. This fixes a choice of decomposition group

D` = {σ ∈ Gal(K/Q) : œ(p`,K) = p`,K}. Specifically, if K is any finite

extension of Q and OK is the ring of integers of K, then for each ` this fixes a

choice of prime ideal p`,K of OK dividing `. Let F`,K = OK/p`,K be the residue

field of p`,K and let |·|` be an extension to Q` of the usual `-adic absolute value

on Q`.

Theorem 2.1.5 ( [44, p. 42]). Let f(z) =
∑∞

n=1 a(n)qn ∈ Sk(Γ0(N), χ) be

a newform, and let Kf be the field extension obtained by adjoining all of the

a(n) and values of χ to Q. If K is any finite extension of Q containing Kf
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and ` is any prime, then due to work of Eichler, Shimura, Deligne, and Serre

there is a continuous semisimple representation

ρf,` : Gal(Q/Q)→ GL2(F`,K)

for which the following are true:

1. ρf,` is unramified at all primes p - N`.

2. Tr(ρf,`(Frobp)) ≡ a(p) (mod p`,K) for all primes p - N`.

3. det(ρf,`(Frobp)) ≡ χ(p)pk−1 (mod p`,K) for all primes p - N`.

4. det(ρf,`(c)) = −1 for any complex conjugation c.

Remark. Let Df,` = Gf ∩D` where Gf is the subgroup of Gal(Q/Q) stabilizing

f , and let

Ff,` = FDf,``,K = {a ∈ F`,K : σ(a) = a ∀σ ∈ Df,`}.

If f does not have complex multiplication and ` is sufficiently large, then the

image of ρf,` contains a normal subgroup Hf conjugate to SL2(Ff,`). Essen-

tially, this means that the image of ρf,` is almost always ‘as large as possible’.

Newforms are eigenforms for the Hecke operator T (p, k, χ) with eigenvalues

given by the pth coefficients of the newform. The fact that the image of

ρf,` is large, along with an application of the Chebotarev Density Theorem,

tells us we can choose the image of Frobp to have a trace of zero a positive

proportion of the time. This determines the pth coefficient and thus implies
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Proposition 2.1.3 of Serre. The following lemma from [46] extends the idea of

these representations having large image and allows us to apply it to sums of

modular forms.

Lemma 2.1.6 (Ono-Skinner, [46]). Let f1, f2, ..., fv be newforms without com-

plex multiplication, and let fi(z) =
∑∞

n=1 ai(n)qn. Write ρfi,` = ρi and

Ffi,` = Fi. Then

1. the image of ρ1 × · · · × ρv is conjugate to SL2(F1)× · · · × SL2(Fv).

2. For each positive integer d and each w ∈ Fi, a positive density of primes

p ≡ 1 (mod d) satisfies

ai(p) ≡ w (mod p`,K).

3. For each pair of coprime positive integers r, d, a positive density of

primes p ≡ r (mod d) satisfies |ai(p)|`= 1.

Part (1) of Lemma 2.1.6 specifically tells us that, with small adjustments,

we can apply Propositions 2.1.3 and 2.1.4 to a finite set of modular forms

simultaneously. This fact is crucial for the proof of Theorem 1.2.1.

A large portion of the proofs of Theorems 1.2.1 and 1.2.2 will apply work

of Treneer in [59] to CW ′M ,S
′
∗
(q). The main result from [59] follows.

Proposition 2.1.7 (Treneer, [59]). Suppose p is an odd prime, and that k and

r are integers with k odd. Let N be a positive integer with 4 | N and (N, p) = 1,

and let χ be a Dirichlet character modulo N . Let K be an algebraic number
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field with ring of integers OK, and suppose f(z) =
∑
a(n)qn ∈M !

k
2

(Γ0(N), χ)∩

OK((q)). If r is sufficiently large, then for each positive integer j, a positive

proportion of primes Q ≡ −1 (mod Npj) have the property that

a(Q3prn) ≡ 0 (mod pj)

for all n coprime to Qp.

Remark. A similar statement is true for integer weight forms which will be

apparent in the proof. This should not be surprising due to the fact that Serre

has shown that almost all coefficients of integer weight forms are 0 (mod m)

for any integer m > 1.

2.1.3 Proof of Theorem 1.2.1

In order to find congruences for sums of mixed weight modular forms, we must

examine where their coefficients overlap. The following lemma will describe

this.

Lemma 2.1.8. Let fi(z) =
∑∞

n=0 ai(n)qn ∈Mki(Γ0(Ni), χi) and

gj(z) =
∑∞

m=0 bj(m)qm ∈Mλj+
1
2
(Γ0(4Mj), χj). If

fi(z)|Tpi ≡ 0 (mod Q)

and

gj(z)|T (`2
j) ≡ 0 (mod Q)
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with all pi and `j distinct, then

a1

(∏
i

p2ri+1
i

∏
j

`
4sj+3
j n

)
≡ · · · ≡ au

(∏
i

p2ri+1
i

∏
j

`
4sj+3
j n

)

≡ b1

(∏
i

p2ri+1
i

∏
j

`
4sj+3
j n

)
≡ · · · ≡ bv

(∏
i

p2ri+1
i

∏
j

`
4sj+3
j n

)
≡ 0 (mod Q),

where gcd(p1 · · · pu`1 · · · `v, n) = 1 and ri and sj are nonnegative integers.

Remark. If pi = `j for some i and j, then remove the pi for the congruence to

hold. This is made clear in the following corollary and in the proof of Lemma

2.1.8.

Corollary. Let fi(z) and gj(z) be given as above. If fi(z)|Tp ≡ 0 (mod Q)

and gj(z)|T (p2) ≡ 0 (mod Q) for the same prime p, then

a1

(
p4t+3n

)
≡ · · · ≡ au

(
p4t+3n

)
≡ b1

(
p4t+3n

)
≡ · · · ≡ bv

(
p4t+3n

)
≡ 0 (mod Q),

where gcd(p, n) = 1 and t is a nonnegative integer.

Proof of Lemma 2.1.8. Assume that f(z)|T (p) ≡ 0 (mod Q) and g(z)|T (`2) ≡

0 (mod Q). Because f(z)|T (p, k, χ) ≡ 0 (mod Q), whenever p - n we have

a(pn) ≡ 0 (mod Q). If p | n then we can replace n with p2r with r and p

coprime in f(z)|T (p, k, χ) =
∑∞

n=0 (a(pn) + χ(p)pk−1a(n/p))qn to arrive at

∞∑
r=0

(a(p3r) + χ(p)pk−1a(pr))qp
2r ≡ 0 (mod Q).

Since we know a(pr) ≡ 0 (mod Q) in this case then a(p3r) ≡ 0 (mod Q)
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must be true for p and r coprime. This process can be repeated to show

a(p2t+1n) ≡ 0 (mod Q) for p and n coprime.

Using the same idea, because

g(z)|T (`2, λ, χ) =
∞∑
m=0

(b(`2m)+χ∗(`)
(m
`

)
`λ−1b(m)+χ∗(`2)`2λ−1b(m/`2))qm ≡ 0 (mod Q),

then whenever ` | m and `2 - m we have b(`2m) ≡ 0 (mod Q). Replacing m

with `s where (`, s) = 1 shows that b(`3s) ≡ 0 (mod Q). If `2 | m, then we

can replace m with `5s with ` and s coprime to get

∞∑
s=0

(b(`7s) + χ∗(`2)`2λ−1b(`3s))q`
5s ≡ 0 (mod Q).

We know that b(`3s) ≡ 0 (mod Q) so b(`7s) ≡ 0 (mod Q) must be true for `

and s coprime. This process can be repeated to show b(`4t+3m) ≡ 0 (mod Q)

for ` and m coprime. These two observations combined lead to Lemma 2.1.8.

Theorem 1.2.1 partly follows from being able to use the above corollary for

any set of modular forms. The congruence in Proposition 2.1.7 comes from

Treneer being able to show that any weakly holomorphic modular form has

coefficients that are congruent (mod pj) to the coefficients of a cusp form.

These details are worked out below for the conjugacy growth series in Section

2.1.1. Proposition 2.1.7 then follows by applying Proposition 2.1.3 or 2.1.4 to

that cusp form. In order to apply the above corollary, we need to be able to
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use Propositions 2.1.3 and 2.1.4 on a finite set of modular forms. Lemma 2.1.6

tells us that the images of the Galois representations of a finite set of modular

forms will almost always be simultaneously ‘as large as possible’. Due to this

fact, we can let g ∈ Im(ρ1 × · · · × ρv) be conjugate to

 0 1

−1 0

× · · · ×
 0 1

−1 0


and, by the Chebotarev Density Theorem, a positive proportion of primes

Q ≡ −1 (mod Npj) satisfy (ρ1 × · · · × ρv)(FrobQ) = g. This allows us to

apply Propositions 2.1.3 and 2.1.4 to a finite set of modular forms for the

same prime. Theorem 1.2.1 then follows from being able to use techniques

from [59] for a finite set of weakly holomorphic modular forms to show they

are all congruent to cusp forms. We can then use Propositions 2.1.3 and 2.1.4

on that set of forms to show they are simultaneously annihilated by Hecke

operators, so we can apply the above corollary.

2.1.4 Proof of Theorem 1.2.2

In this section we will explicitly work out the congruence properties of the

conjugacy growth series from Section 2.1.1 following the work of Treneer in [59].

Recall that

∞∑
n=0

γW ′M ,S
′
∗
(n)qn =

(
1

2

q1/12

η(z)2
+

1

2

q1/12

η(2z)

)M
.
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Define

FM(z) :=
∞∑

n=−M

bM(n)qn =

(
1

2

1

η(12z)2
+

1

2

1

η(24z)

)M

=
1

2M

M∑
k=0

(
M

k

)
1

η(12z)2(M−k)

1

η(24z)k

=
1

2M

M∑
k=0

(
M

k

)
FM,k(z),

where FM,k(z) =
∑∞

n=−M aM,k(n)qn ∈M k
2
−M(Γ0(NM,k)).

Lemma 2.1.9. Suppose p is an odd prime and r and NM,k are integers with

(NM,k, p) = 1. If r is sufficiently large, then for every positive integer j there

exists an integer β ≥ j − 1 and a cusp form

FM,k,p,j(z) ∈ S k
2
−M+

pβ(p2−1)
2

(Γ0(NM,kp
2))

such that

FM,k,p,j(z) ≡
∑
p-n

aM,k(p
rn)qn(mod pj).

Proof of Lemma 2.1.9. This proof will follow the proof of Proposition 3.1 in

[59]. The plan for this proof is to divide the cusps of Γ0(NM,kp
2) into two

groups. We will pick r large enough so that FM,k(z)|Upr =
∑
aM,k(p

rn)qn is

holomorphic at each cusp a
c

with p2 | c. Then we will define

FM,k,r(z) = FM,k(z)|Upr − FM,k(z)|Upr+1|Vp =
∑
p-n

aM,k(p
rn)qn
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such that it vanishes at these cusps. Define the eta-quotients

Fp(z) =


ηp

2
(z)

η(p2z)
∈M p2−1

2

(Γ0(p)) p ≥ 5

η27(z)
η3(9z)

∈M12(Γ0(9)) p = 3.

Fp(z) vanishes at every cusp a
c

where p2 - c and is 1 (mod p). By induction it

also clear that Fp(z)p
s−1 ≡ 1 (mod ps) for any integer s. Our cusp form will end

up being FM,k,r(z) · Fp(z)p
β

for some integer β. First we must find an explicit

description of the Fourier expansion of FM,k(z)|Upr at a cusp a
c

with p2 - c.

Note that for the remainder of this section the slash operator will be used on

forms that may have half-integral weights. We have not explicitly defined the

half-integral weight slash operator, but it can be defined analogously to the

integer weight version. More information can be found in [44].

Proposition 2.1.10. Let γ =

 a b

cp2 d

 ∈ SL2(Z) with ac > 0. Then there

exists an integer n0 ≥ −24M and a sequence {aM,k,0(n)}n≥n0 such that for

each r ≥ 1,

(FM,k(z)|Upr)| k
2
−Mγ =

∞∑
n=n0

n≡0 (mod pr)

aM,k,0(n)qn24pr

where qn24pr = e
2πinz
24pr .

Proof of Proposition 2.1.10. First we note that for any matrix A ∈ SL2(Z),

FM,k(z)| k
2
−MA =

∑∞
n=n0

aM,k,0(n)qn24 where n0 ≥ −24M . This can be seen by



68

following Theorem 1 in [31].

j∏
i=i

η(tiz)|κ/2

a b

c d



ni

transforms to

C

j∏
i=i

η(z)|κ/2

αi βi

0 δi



ni

where

ti 0

0 1


a b

c d

 =

ai bi

ci di


αi βi

0 δi

 and C is a constant. We can

see from this that tia = αiai and c = αici, so αi = (ti, c) ≤ ti. Taking

t1 = 12, n1 = −2(M − k), t2 = 24, and n2 = −k we arrive at the conclusion

that FM,k(z)| k
2
−MA =

∑∞
n=n0

aM,k,0(n)qn24 where n0 ≥ −24M . If we define

σv,t :=

1 v

0 t

, then notice that

FM,k(z)|Ut = t
k−2M

4
−1

t−1∑
v=0

FM,k(z)| k
2
−Mσv,t.

For each 0 ≤ v ≤ pr − 1, choose an integer sv ≡ 0 (mod 4) such that

svNM,k ≡ (a+ vcp2)−1(b+ vd) (mod pr)

and set wv = svNM,k. Note that wv runs through the residue classes of pr as
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v does. Also define

αv : =

a+ vcp2 b+vd−awv−wvvcp2
pr

cpr+2 d− wvcp2

 ,

so that σv,prγ = αvσwv ,pr . Putting this all together, we have

(FM,k(z)|Upr) | k
2
−Mγ = (pr)

k−2M
4
−1

pr−1∑
v=0

FM,k(z)| k
2
−Mσv,prγ

= (pr)
k−2M

4
−1

pr−1∑
v=0

FM,k(z)| k
2
−Mαvσwv ,pr .

In Lemma 3.4 of [59] Treneer shows that αvα
−1
0 ∈ Γ1(NM,k). Beacuse FM,k(z)

is invariant under action by Γ1(NM,k), we now have

(FM,k(z)|Upr) | k
2
−Mγ = (pr)

k−2M
4
−1

pr−1∑
v=0

FM,k(z)| k
2
−Mαvσwv ,pr

= (pr)
k−2M

4
−1

pr−1∑
v=0

FM,k(z)| k
2
−M(αvα

−1
0 )−1αvσwv ,pr

= (pr)
k−2M

4
−1

pr−1∑
v=0

FM,k(z)| k
2
−Mα0σwv ,pr .

Since α0 ∈ SL2(Z), we have

pr−1∑
v=0

FM,k(z)| k
2
−Mα0σwv ,pr =

pr−1∑
v=0

(
∞∑

n=n0

aM,k,0(n)qn24

)
| k
2
−Mσwv ,pr

=

pr−1∑
v=0

p
−r(k−2M)

4

∞∑
n=n0

aM,k,0(n)e
2πin(z+wv)

24pr
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= p
−r(k−2M)

4

∞∑
n=n0

aM,k,0(n)qn24pr

pr−1∑
v=0

e
2πinwv
24pr .

The numbers wv
24

run through the residue classes of pr as v does, therefore

pr−1∑
v=0

e
2πinwv
24pr =

pr−1∑
v=0

e
2πinv
pr =


pr if n ≡ 0 (mod pr)

0 otherwise,

which gives us

pr−1∑
v=0

FM,k(z)| k
2
−Mα0σwv ,pr = pr(1−

k−2m
4

)

∞∑
n=n0

n≡0 (mod pr)

aM,k,0(n)qn24pr .

Therefore,

(FM,k(z)|Upr)| k
2
−Mγ =

∞∑
n=n0

n≡0 (mod pr)

aM,k,0(n)qn24pr .

Proposition 2.1.11. Define

FM,k,r(z) := FM,k(z)|Upr − FM,k(z)|Upr+1|Vp ∈M k
2
−M(Γ0(NM,kp

2)).

Then for r sufficiently large, FM,k,r(z) vanishes at each cusp a
cp2

of (Γ0(NM,kp
2)

with ac > 0.
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Proof of Proposition 2.1.11. From Proposition 2.1.10, we know

(FM,k(z)|Upr)| k
2
−Mγ =

∞∑
n=n0

n≡0 (mod pr)

aM,k,0(n)qn24pr

where n0 ≥ −24M . For r sufficiently large, −pr < −24M ≤ n0. In the Fourier

expansion if aM,k,0(n) 6= 0, in order for n ≡ 0 (mod pr) to be true, n ≥ 0 must

be true. Therefore, we have

(FM,k(z)|Upr)| k
2
−Mγ =

∑
n≥0

n≡0 (mod pr)

aM,k,0(n)qn24pr ,

which shows FM,k(z)|Upr is holomorphic at the cusp a
cp2

. We will handle the

second term in a similar way as the first term in the proof of Proposition

2.1.10. Define τv,t =

1 v/t

0 1

, and note that

FM,k(z)|Ut|Vt = t−1

t−1∑
v=0

FM,k(z)| k
2
−Mτv,t.

Using this, we see that

(FM,k(z)|Upr)|Up|Vp| k
2
−Mγ = p−1

p−1∑
v=0

(FM,k(z)|Upr)| k
2
−Mτv,pγ.

For each 0 ≤ v ≤ p − 1, choose s
′
v ≡ 0 (mod 4) such that s

′
vNM,k ≡ a−1vd
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(mod p), and set w
′
v = s

′
vNM,k. Define

δv : =

1 + aw
′
vcp+ vw

′
vc

2p2 avd−a2w′v
p

− acvw′v − bvcp

w
′
vc

2p3 1− aw′vcp

 ,

so that τv,pγ = δvγτw′v ,p. In [59] Treneer also shows that δv ∈ Γ1(NM,kp), so

(FM,k(z)|Upr)| k
2
−Mτv,pγ = (FM,k(z)|Upr)| k

2
−Mδvγτw′v ,p = (FM,k(z)|Upr)| k

2
−Mγτw′v ,p.

Following the same method as in the proof of Proposition 2.1.10, we can write

(FM,k(z)|Upr)|Up|Vp| k
2
−Mγ = p−1

p−1∑
v=0

(FM,k(z)|Upr)| k
2
−Mγτw′v ,p

= p−1

p−1∑
v=0

 ∑
n≥0

n≡0 (mod pr)

aM,k,0(n)qn24pr

 | k2−Mτw′v ,p
= p−1

p−1∑
v=0

∑
n≥0

n≡0 (mod pr)

aM,k,0(n) exp

2πin(z + w
′
v

p
)

24pr


=

∑
n≥0

n≡0 (mod pr)

aM,k,0(n)qn24pr

p−1∑
v=0

exp

(
2πinw

′
v

24pr+1

)

=
∑
n≥0

n≡0 (mod pr)

aM,k,0(n)qn24pr

p−1∑
v=0

exp

(
2πiw

′
v

24p

(
n

pr

))
.
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The numbers w
′
v

24
run through the residue classes modulo p as v does, so

p−1∑
v=0

exp

(
2πiw

′
v

24p

(
n

pr

))
=

p−1∑
v=0

exp

(
2πiv

p

(
n

pr

))
=


p if p | n

pr

0 otherwise.

Putting everything together gives us

(FM,k(z)|Upr)|Up|Vp| k
2
−Mγ =

∑
n≥0

n≡0 (mod pr+1)

aM,k,0(n)qn24pr .

To finish the proof of Proposition 2.1.11, we have

FM,k,r(z)| k
2
−Mγ =

∑
n≥0

n≡0 (mod pr)

aM,k,0(n)qn24pr −
∑
n≥0

n≡0 (mod pr+1)

aM,k,0(n)qn24pr .

The constant terms (which may be 0) of each expansion cancel, so FM,k,r(z)

vanishes at the cusp a
cp2

.

Before discussing the cusp a
c

where p2 - c, notice that

FM,k,r(z) =
∞∑
n=1

aM,k(p
rn)qn −

∞∑
n=1

aM,k(p
r+1n)qpn =

∞∑
n=1
p-n

aM,k(p
rn)qn.

Recall the eta-quotients

Fp(z) =


ηp

2
(z)

η(p2z)
∈M p2−1

2

(Γ0(p)) p ≥ 5

η27(z)
η3(9z)

∈M12(Γ0(9)) p = 3,
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and recall that Fp(z) vanishes at every cusp a
c

where p2 - c. The forms Fp(z)

are 1 (mod p), and by induction it is easy to show Fp(z)p
s−1 ≡ 1 (mod ps) for

any integer s. Let r be sufficiently large, and fix j. If β ≥ j − 1 is sufficiently

large, then

FM,k,p,j(z) := FM,k,r(z) · Fp(z)p
β ≡ FM,k,r(z) (mod pj)

vanishes at all cusps a
c

of Γ0(NM,kp
2) where p2 - c. By Proposition 2.1.11,

FM,k,r,p,j(z) also vanishes at the cusps a
c

where p2 | c, so

FM,k,p,j(z) ∈ S k
2
−M+

pβ(p2−1)
2

(Γ0(NM,kp
2)).

As seen above,

FM,k,p,j(z) ≡ FM,k,r(z) ≡
∞∑
n=1
p-n

aM,k(p
rn)qn (mod pj).

This completes the proof of Lemma 2.1.9.

Lemma 2.1.12. 1. If k is even, then FM,k,p,j(z) is an integer weight cusp

form, so for a positive proportion of primes Q ≡ −1 (mod NM,kp
j), we

have

aM,k(Q
2t+1prn) ≡ 0 (mod pj)

for all nonegative integers t, and n coprime to Qp.

2. If k is odd, then FM,k,p,j(z) is a half-integral weight cusp form, so for a
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positive proportion of primes Q ≡ −1 (mod NM,kp
j), we have

aM,k(Q
4t+3prn) ≡ 0 (mod pj)

for all nonegative integers t, and n coprime to Qp.

Proof of Lemma 2.1.12. If k is even (resp. odd), then FM,k,p,j(z) is an inte-

gral (resp. half-integral) weight cusp form. Thus, by Proposition 2.1.3 (resp.

Proposition 2.1.4), for a positive proportion of primes Q ≡ −1 (mod NM,kp
j),

we have FM,k,p,j(z)|TQ ≡ 0 (mod pj) (resp. FM,k,p,j(z)|T (Q2) ≡ 0 (mod pj)).

If we let FM,k,p,j(z) =
∑∞

n=1 cM,k(n)qn, then by Lemma 2.1.8 we have cM,k(Q
2t+1n) ≡

0 (mod pj) (resp. cM,k(Q
4t+3n) ≡ 0 (mod pj)) for any nonnegative integer

t and Q and n coprime. The rest of the proof follows from the fact that

cM,k(n) ≡ aM,k(p
rn) (mod pj).

We will now refer back to part (1) of Lemma 2.1.6. Using this and Cheb-

otarev’s Density Theorem, we are able to apply Proposition 2.1.3 or 2.1.4

simultaneously to each term in a sum of modular forms, which in turn allows

us to apply Lemma 2.1.8 to our entire sum at the same time instead of piece

by piece as in Lemma 2.1.11. As in Theorem 1.2.1, if we have a sum of mod-

ular forms fi of mixed weights and level Ni, we can replace the level N in

Proposition 2.1.3 or 2.1.4 with the smallest N ′ such that each Ni divides N ′.

We will now complete the proof of Theorem 1.2.2. Recall that

∞∑
n=0

γW ′M ,S
′
∗
(n)qn =

(
1

2

q1/12

η(z)2
+

1

2

q1/12

η(2z)

)M
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and

FM(z) :=
∞∑

n=−M

bM(n)qn =

(
1

2

1

η(12z)2
+

1

2

1

η(24z)

)M

=
1

2M

M∑
k=0

(
M

k

)
1

η(12z)2(M−k)

1

η(24z)k

=
1

2M

M∑
k=0

(
M

k

)
FM,k(z),

so FM,k(z) =
∑∞

n=−M aM,k(n)qn ∈M k
2
−M(Γ0(NM,k)). Note also that

∞∑
n=−M

bM(n)qn =
M∑
k=0

∞∑
n=−M

(
M

k

)
aM,k(n)qn.

In this sum there will be a form of level 576 and all of the other forms will

have level dividing 576. Clearly, the sum will be a mix of integer weight and

half-integral weight modular forms. From Lemma 2.1.11 we know that for a

positive proportion of primes Q ≡ −1 (mod NM,kp
j), we have

aM,k(Q
2t+1prn) ≡ 0 (mod pj)

for k even and

aM,k(Q
4t+3prn) ≡ 0 (mod pj)

for k odd, for all nonegative integers t, and n coprime toQp. Theorem 2.1.5 and

Lemma 2.1.6 together imply that Lemma 2.1.11 can be applied to each FM,k(z)

simultaneously for a positive proportion of primes Q ≡ −1 (mod 576pj), so
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aM,k(Q
4t+3prn) ≡ 0 (mod pj) for each aM,k(n). Since the congruence holds for

each part of the sum, we also have

bM(Q4t+3prn) ≡ 0 (mod pj)

for a positive proportion of primes Q ≡ −1 (mod 576pj). Because bM(n) =

γW ′M ,S
′
∗

(
n+M

12

)
, we have

γW ′M ,S
′
∗

(
Q4t+3prn+M

12

)
≡ 0 (mod pj).

2.1.5 An example

We give the following example to demonstrate Theorem 1.2.2.

Example. We find that

γW ′2 ,S
′
∗

(
7n+ 2

12

)
≡ 0 (mod 7)

whenever n 6≡ 10 (mod 24). Moreover, the above congruence is true when

n = 24t+ 10 and t ≡ 2, 4, 5, or 6 (mod 7).

We will now give the details of this example. Define

∞∑
n=0

a1(n)qn =
∞∏
n=1

1

(1− qn)4
,

∞∑
n=0

a2(n)qn =
∞∏
n=1

1

(1− qn)2

∞∏
n=1

1

(1− q2n)2
,
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and
∞∑
n=0

a3(n)qn =
∞∏
n=1

1

(1− q2n)2
.

It is clear that

∞∑
n=0

γW ′2 ,S
′
∗
(n)qn =

1

4

∞∑
n=0

(a1(n) + a2(n) + a3(n)) qn.

By adapting Theorem 6 from [45], we have

∑
a1

(
pn+ 2

12

)
qn ≡ ∆

p2−1
6 (z)|Up|V12

η4p(12z)
(mod p),

∑
a2

(
pn+ 2

12

)
qn ≡ ∆

p2−1
12 (z)∆

p2−1
24 (2z)|Up|V12

η2p(12z)ηp(24z)
(mod p),

and ∑
a3

(
pn+ 2

12

)
qn ≡ ∆

p2−1
12 (2z)|Up|V12

η2p(24z)
(mod p).

Using a theorem of Sturm in [57], one can verify with a finite computation

that

∆8(z)|U7 ≡ 0 (mod 7),

∆4(z)∆2(2z)|U7 ≡ 0 (mod 7),

and

∆4(2z)|U7 ≡ 3∆(2z) (mod 7).
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From this it is clear that

∑
γW ′2,S

′
∗

(
7n+ 2

12

)
qn ≡ 3∆(24z)

η14(24z)
≡ 3η10(24z) (mod 7).

In [54], Serre showed that η10(z) is lacunary, so one should expect a lot of con-

gruences. In [20], Dawsey and the author use this fact to prove the congruences

necessary to complete the example.

2.2 Harmonic Maass form eigencurves

We will prove Theorem 1.2.3 and Theorem 1.2.5 in this section. Section 2.2.2

will be dedicated to the construction of the forms in Theorem 1.2.3 and proving

that they are Hecke eigenforms. Section 2.2.3 will be used to discuss the p-adic

properties of the forms in Theorem 1.2.5.

2.2.1 Hecke operators for harmonic Maass forms and

results of Zagier

In this subsection we will introduce Hecke operators for integer and half-

integral weight harmonic Maass forms. We will then present some results

of Zagier which are essential to the proofs of Theorem 1.2.3.

Proposition 2.2.1 (Proposition 7.1 of [3]). Suppose that f(z) ∈ H !
κ(Γ0(N), χ)

with κ ∈ 1
2
Z. Then the following are true.

1. For m ∈ N, we have that f |T (m) ∈ H !
κ(Γ0(N), χ).
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2. if κ ∈ Z, ε ∈ {±}, then, unless n = 0 and ε = −,

cεf |T (p)(n) = cεf (pn) + χ(p)pκ−1cεf

(
n

p

)
.

Moreover,

c−f |T (p)(0) = (pκ−1 + χ(p))c−f (0).

3. if κ ∈ 1
2
Z \ Z, then, with ε ∈ {±} (n 6= 0 for ε = −), we have that

cεf |T (p2)(n) = cεf (p
2n) + χ∗(p)

(
n

p

)
pκ−

3
2 cεf (n) + χ∗(p2)p2κ−2cεf

(
n

p2

)
,

where χ∗(n) :=

(
(−1)κ−

1
2

n

)
χ(n). If n = 0 and ε = −, then we have that

c−f |T (p2)(0) = (p−2+2κ + χ∗(p2))c−f (0).

The ξ-operator allows for a connection between the Hecke operators for

harmonic Maass forms and modular forms (see [3]). In particular, we have

that

pd(1−κ)ξκ(f |T (pd, κ, χ)) = ξκ(f)|T (pd, 2− κ, χ), (2.1)

where

d :=


1 if κ ∈ Z,

2 if κ ∈ 1
2

+ Z.

Several results of Zagier will be applicable to the construction of our forms.
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We will state them here.

Proposition 2.2.2 (Zagier, [64]). For positive integers a and c, let

λ(a, c) =


i
1−c
2

(
a
c

)
if c is odd, a even

i
a
2

(
c
a

)
if a is odd, c even

0 otherwise.

Define the Gauss sum γc(n) by

γc(n) :=
1√
c

2c∑
a=1

λ(a, c)e−πin
a
c .

Let n be a nonzero integer and define a Dirichlet series En(s) by

En(s) :=
1

2

∞∑
c=1
c odd

γc(n)

cs
+

1

2

∞∑
c=2
c even

γc(n)

(c/2)s
,

(i.e. En(s) =
∑
amm

−s where am = 1
2
(γm(n) + γ2m(n)) when m is odd, and

am = 1
2
γ2m(n) when m is even). Let K = Q(

√
n), D be the discriminant of

K, χD =
(
D
·

)
be the character of K, and L(s, χD) =

∑ χD(n)
ns

be the L-series

of K (if n is a perfect square, then χ(m) = 1 for any m and L(s, χ) = ζ(s)).

Then if n ≡ 2, 3 (mod 4), we have

En(s) = 0.
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If n ≡ 0, 1 (mod 4), we have

En(s) =
L(s, χD)

ζ(2s)

∑
a,c≥1
ac|v

µ(a)χD(a)

c2s−1as
=
L(s, χD)

ζ(2s)

T χDs (v)

v2s−1
,

where n = v2D and

T χs (v) =
∑
t|v

t2s−1
∑
a|t

µ(a)χ(a)

as
=
∑
a|v

µ(a)χ(a)as−1σ2s−1(v/a).

Furthermore, we have

E0(s) =
ζ(2s− 1)

ζ(2s)
.

Remark. It is clear from Zagier’s proof in [64] that En(s) can be continued to

a meromorphic function on the whole s-plane. It will also be beneficial to note

that T χs (v) = v2s−1T χ1−s(v).

It will be useful for us to define

Eodd
n (s) :=

∞∑
c=1
c odd

γc(n)c−s, (2.2)

and

Eeven
n (s) :=

∞∑
c=1
c even

γc(n)(c/2)−s, (2.3)

so that

En(s) =
1

2

(
Eodd
n (s) + Eeven

n (s)
)
.



83

2.2.2 Proof of Theorem 1.2.3

Here we prove Theorem 1.2.3. There are two cases to consider, the integer

weight and half-integral weight cases. In the next subsection we consider the

integer weight case.

Proof of Theorem 1.2.3 Part 1

We will construct the forms from Theorem 1.2.3 part 1 first. Let z ∈ H and

k ∈ Z. Define

G(z,−2k, s) :=
1

2

∑
n,m

′ (mz + n)2k

|mz + n|2s
,

where the primed sum means the sum runs over all (n,m) except (0, 0).

G(z,−2k, s) has a meromorphic continuation to the whole s-plane. Let

f(z,−2k, s) :=
∞∑

n=−∞

(z + n)2k|z + n|−2s.

Then we have

f(z,−2k, s) =
∞∑

n=−∞

hn,2k(s, y)e2πinz =
∞∑

n=−∞

hn(y,−2k, s)e2πinxe−2πny,

where

hn(y,−2k, s) =

∫ iy+∞

iy−∞
z2k|z|−2se−2πinzdz.



84

After making the substitution z = yt+ iy we have

hn(y,−2k, s) = y1+2k−2se2πny

∫ ∞
−∞

(t+ i)2k(t2 + 1)−se−2πinytdt.

For n = 0, we have h0(y,−2k, s) = y1+2k−2s
∫∞
−∞(t+ i)2k(t2 +1)−sdt. Following

Zagier, we choose our branch cut along the negative imaginary axis. Then

using contour integration, we find that

h0(y,−2k, s) = 2iy1+2k−2sekπi sin(π(s− 2k))

∫ −i∞
−i
|t+ i|2k−s|t− i|−sdt.

We substitute t for −i(2u+ 1) to arrive at

h0(y,−2k, s) = 22+2k−2sy1+2k−2sekπi sin(π(s− 2k))

∫ ∞
0

u2k−s(u+ 1)−sdu.

We make one more substitution, u = 1−v
v

. Then, we have

h0(y,−2k, s) = 22+2k−2sy1+2k−2sekπi sin(π(s− 2k))

∫ 1

0

(1− v)2k−sv2s−2k−2dv

= 22+2k−2sy1+2k−2sekπiπ
Γ(2s− 2k − 1)

Γ(s− 2k)Γ(s)
.

For n > 0, we define a path c1 as a clockwise path around −i from −i∞ to

−i∞. Then we have

hn(y,−2k, s) = y1+2k−2s

∫
c1

(v + i)2k(v2 + 1)−se−2πinyvdv.
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Substitute v for t− i and define the path c2 = c1 + i, then we have

hn(y,−2k, s) = y1+2k−2se−2πny

∫
c2

t2k−s(t− 2i)−se−2πinytdt.

For n < 0, define the path c3 as before to circle i clockwise from i∞ to i∞.

Making the substitutions v = t+ i and c4 = c3 − i, we arrive at

hn(y,−2k, s) = y1+2k−2se2πny

∫
c4

t−s(t+ 2i)2k−se−2πinytdt,

for n < 0. Notice that hn(my,−2k, s) = m1+2k−2shmn(y,−2k, s), so we have

G(z,−2k, s) =
1

2

∞∑
m=−∞

f(mz,−2k, s)

= ζ(2s− 2k) +
∞∑
m=1

f(mz,−2k, s)

= ζ(2s− 2k) +
∞∑
m=1

∞∑
n=−∞

m1+2k−2shmn(y,−2k, s)e2πinmx.

We want to now look at the limit as s goes to zero in order to obtain a

negative weight Eisenstein series. However, it is clear that for any n ∈ Z,

hn(y,−2k, 0) = 0. Thus, our G(z,−2k, 0) functions will also go to zero. In

order to work around this we will look at the derivative of our Eisenstein

series with respect to s. Define

G(z,−2k) := lim
s→0

d

ds
G(z,−2k, s). (2.4)
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We will now calculate the q-expansion of G(z,−2k). For n = 0, we have

d

ds
h0(y,−2k, s)|s=0 = y1+2k22+2kekπiπ

Γ(−2k − 1)

Γ(−2k)

=
(−1)k+1y1+2k22+2kπ

2k + 1
.

For n > 0, we have

d

ds
hn(y,−2k, s)|s=0 = −y1+2ke−2πny

∫
c2

t2k log(t(t− 2i))e−2πinytdt

= −y1+2ke−2πny(2πi)

∫ 0

−i∞
t2ke−2πinytdt

= (−1)ky1+2ke−2πny(2π)

∫ ∞
0

t2ke−2πnytdt

= (−1)k(2π)−2kn−2k−1Γ(2k + 1)e−2πny.

The log term jumps by 2πi across the branch cut, while everything else is

continuous. Similarly, for n < 0 we have

d

ds
hn(y,−2k, s)|s=0= (−1)k+1(2π)−2kn−2k−1e−2πnyΓ(1 + 2k,−4πny),

Let h′n(y,−2k, 0) := d
ds
hn(y,−2k, s)|s=0, then, from equation (2.4), we have

G(z,−2k) = 2ζ ′(−2k) +
∞∑

n=−∞

h′n(y,−2k, 0)σ2k+1(n)e2πinx.

Recall that σ2k+1(0) = 1
2
ζ(−2k − 1). Putting everything together leads to

the construction of the forms in Theorem 1.2.3 part 1. A short calculation
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shows these forms are harmonic. In order to show that G(z,−2k) is a Hecke

eigenform, notice that its image under the ξ-operator is a nonzero multiple

of the weight 2k + 2 Eisenstein series, E2k+2(z). E2k+2 is known to be an

eigenform with eigenvalue σ2k+1(p) = 1 + p2k+1 under the Hecke operator

T (p). By equation (2.1) and inspection it is clear that G(z,−2k) is then an

eigenform with eigenvalue 1 + 1
p2k+1 .

Proof of Theorem 1.2.3 part 2

Let k = 2r − 1 with r ≥ 1. We define the two Eisenstein series F
(
z,−k

2
, s
)

and E
(
z,−k

2
, s
)

by

F

(
z,−k

2
, s

)
=
∑
n,m∈Z
n>0
4|m

(m
n

)
ε−kn

(mz + n)k/2

|mz + n|2s
, (2.5)

and

E

(
z,−k

2
, s

)
=

(2z)k/2

|2z|2s
F

(
−1

4z
,−k

2
, s

)
,

where
(
m
n

)
is the Kronecker symbol and

εn :=


1 if n ≡ 1 (mod 4)

i if n ≡ 3 (mod 4).

A linear combination of these forms will have a meromorphic continuation to

the whole s-plane and evaluating at s = 0 will give our weight −k
2

form. We
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will abuse this fact by letting s = 0 in the assembly of the forms. We have

E

(
z,−k

2
, s

)
= 2

k
2
−2s

∑
n,m∈Z
n>0,odd

(m
n

)
ε−kn

(nz −m)k/2

|nz −m|2s
.

From this we have

E

(
z,−k

2
, s

)
= 2

k
2
−2s

∑
n>0,odd

ε−kn n
k
2
−2s

∑
m (mod n)

(m
n

) ∞∑
h=−∞

(
z − m

n
+ h
) k

2

|z − m
n

+ h|2s

= 2
k
2
−2s

∑
n>0,odd

ε−kn n
k
2
−2s

∞∑
N=−∞

∑
m (mod n)

(m
n

)
αN

(
y,−k

2
, s

)
e−

2πiNm
n qN

=
∞∑

N=−∞

a(N)qN ,

where

a(N) = 2
k
2
−2sαN

(
y,−k

2
, s

) ∑
n>0,odd

ε−kn n
k
2
−2s

∑
m (mod n)

(m
n

)
e−

2πiNm
n ,

and by the Poisson summation formula

αN

(
y,−k

2
, s

)
=

∫ iy+∞

iy−∞
z
k
2 |z|−2se−2πiNzdz.

Making the substitution z = yt+ iy gives us

αN

(
y,−k

2
, s

)
= y

k
2

+1−2se2πNy

∫ ∞
−∞

(t+ i)
k
2 (t2 + 1)−se−2πiNytdt.
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Following Zagier, we choose the branch cut along the negative imaginary axis.

Using contour integration we have

αN

(
y,−k

2
, s

)
= 2e

kπi
4 sin

(
π

(
k

2
− s
))

y
k
2

+1−2s

∫ ∞
0

t
k
2
−s(t+ 2)−se−2πNytdt.

Letting s = 0 we arrive at

αN

(
y,−k

2
, s

)
= 2e

kπi
4 sin

(
πk

2

)
y
k
2

+1

∫ ∞
0

t
k
2 e−2πNytdt

= 2e
kπi
4 sin

(
πk

2

)
y
k
2

+1(2πNy)−
k
2
−1

∫ ∞
0

t
k
2 e−tdt

= 2e
kπi
4 sin

(
πk

2

)
(2πN)−

k
2
−1Γ

(
k

2
+ 1

)
,

for N > 0. If we evaluate the similar integral for N ≤ 0, because we do

not cross a branch cut the integral is zero. It will be useful to evaluate the

derivative. We have that

d

ds
αN

(
y,−k

2
, s

) ∣∣∣
s=0

= −y
k
2

+1e4πNy(2πi)

∫ 0

i∞
(t+ 2i)

k
2 e−2πiNytdt

= −2y
k
2

+1πi
k
2

∫ ∞
2

t
k
2 e2πNytdt

= i−
k
2 (2π)−

k
2N−

k
2
−1Γ

(
k

2
+ 1,−4πNy

)
,

for N < 0, while

d

ds
α0

(
y,−k

2
, s

) ∣∣∣
s=0

= −2
7
2
−ri

k
2 y

k
2

+1π

2r − 3
.
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Similarly, for F
(
z,−k

2
, s
)

we have

F

(
z,−k

2
, s

)
= 1 +

∑
m>0
4|m

m
k
2
−2s

∑
n (mod m)

(m
n

)
ε−kn

∞∑
h=−∞

(
z + n

m
+ h
) k

2

|z + n
m

+ h|2s

= 1 +
∑
m>0
4|m

m
k
2
−2s

∑
n (mod m)

(m
n

)
ε−kn

∞∑
N=−∞

αN

(
y,−k

2
, s

)
e

2πiNn
m qN

= 1 +
∞∑

N=−∞

b(N)qN ,

where

b(N) = αN

(
y,−k

2
, s

)∑
m>0
4|m

m
k
2
−2s

∑
n (mod m)

(m
n

)
ε−kn e

2πiNn
m .

Using Proposition 2.2.2 and by manipulating the inner sums of a(N) and b(N),

it is not hard to show that

a(N) = 2
k
2
−2sαN

(
y,−k

2
, s

) ∑
n>0,odd

n
k
2
−2s

2n∑
m=1
m even

λ(m,n)e−πi(−1)rN m
n

= 2
k
2
−2sαN

(
y,−k

2
, s

) ∑
n>0,odd

n
k
2

+ 1
2
−2sγn((−1)rN)

= 2
k
2

+1−2sαN

(
y,−k

2
, s

)
1

2
Eodd

(−1)rN

(
−k

2
− 1

2
+ 2s

)
,

and

b(N) = (1 + i2r+1)4
k
2

+ 1
2
−2sαN

(
y,−k

2
, s

)
1

2

∑
m>0
m even

γm((−1)rN)

(m/2)−
k
2
− 1

2
+2s
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= (1 + i2r+1)4
k
2

+ 1
2
−2sαN

(
y,−k

2
, s

)
1

2
Eeven

(−1)rN

(
−k

2
− 1

2
+ 2s

)
.

We are now able to define our forms. Define

H
(
z,−r +

1

2

)
=

∞∑
N=−∞

cr(N)qN

:= lim
s→0

ζ(1 + 2r − 4s)

(
i2r−1F

(
z,−r +

1

2
, s

)
+ 2r−

1
2 (1 + i2r−1)E

(
z,−r +

1

2
, s

))
.

(2.6)

The rest of the construction is using Proposition 2.2.2. Similar calculations

can be found in [8] or [65]. Note that the functional equations for the zeta

function and the L-function are used and that there is pole when evaluating

the non-holomorphic coefficients. The image of H
(
z,−r + 1

2

)
under the ξ-

operator is a nonzero multiple of the weight r + 3
2

Cohen-Eisenstein series.

The weight r+ 3
2

Cohen-Eisenstein series is a Hecke eigenform with eigenvalue

1 + p2r+1 under the Hecke operator T (p2). Therefore, using equation (2.3), we

can see that

H
(
z,−r +

1

2

) ∣∣∣T (p2)−
(

1 +
1

p2r+1

)
H
(
z,−r +

1

2

)

is a weight −r + 1
2

holomorphic modular form in the Kohnen plus space (see

[44]). This space is empty and so H
(
z,−r + 1

2

)
must be a Hecke eigenform

with eigenvalue 1 + 1
p2r+1 .
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2.2.3 Proof of Theorem 1.2.5

In order to discuss p-adic harmonic Maass forms we will first need to recall some

facts about Bernoulli numbers. Values of the Reimann zeta function at nega-

tive integers are tied to Bernoulli numbers. In fact we have ζ(1− 2k) = −B2k

2k
,

and ζ(−2k) = 0. In a similar way, there is a connection between generalized

Bernoulli numbers and the values of L-functions at negative integers. The

generalized Bernoulli numbers B(n, χ) are defined by the generating function

∞∑
n=0

B(n, χ)
tn

n!
=

m−1∑
a=1

χ(a)teat

emt − 1
,

Where χ is a Dirichlet character modulo m. Generalized Bernoulli numbers

are known to give the values of Dirichlet L-functions at non-positive integers.

In fact, from [44] we know that if k is a positive integer and χ is a nontrivial

Dirichlet character, then

L(1− k, χ) = −B(k, χ)

k
.

This connection helps one define a p-adic L-function, Lp(s, χ). The p-adic

L-function is analytic except for a pole at s = 1 with residue
(

1− 1
p

)
. For

n ≥ 1 we have that

Lp(1− n, χ) = −(1− χ · ω−n(p)pn−1)
B(n, χ · ω−n)

n
, (2.7)
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where ω is the Teichmüller character. The Teichmüller character is a p-adic

Dirichlet character of conductor p if p is odd and conductor 4 if p = 2. It is

best to view it as a p-adic object. For more information see Chapter 5 of [63].

Kummer famously showed that if n ≡ m (mod (p − 1)pa) and (p − 1) - n,m

for an odd prime p, then

(1− pn−1)
Bn

n
≡ (1− pm−1)

Bm

m
(mod pa+1), (2.8)

where a is a nonnegative integer. Similar congruences hold for generalized

Bernoulli numbers as well. For example, if we let χ 6= 1 be a primitive Dirichlet

character with conductor not divisible by p, then if n ≡ m (mod pa) we have

(1−χ·ω−n(p)pn−1)
B(n, χ · ω−n)

n
≡ (1−χ·ω−m(p)pm−1)

B(m,χ · ω−m)

m
(mod pa+1).

(2.9)

Notice that twisting by the appropriate power of the Teichmüller character

removes the dependence on the residue class of n and m modulo p − 1 here.

The family of p-adic harmonic Maass forms coming from the integer weight

forms in Theorem 1.2.3 are constructed in the exact same way as the p-adic

Eisenstein series in [53]. Equation (2.8) shows that the constant term, the

p-adic zeta function at a negative integer, will satisfy congruences. The other

terms satisfy congruences due to Euler’s theorem which generalizes Fermat’s

Little Theorem. The algebraic parts of these p-adic harmonic Maass forms

enjoy similar congruences as their modular counterparts. In fact, the non-

holomorphic parts are nearly identical to the p-adic Eisenstein series. The
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holomorphic parts behave not quite as nicely only because the p-adic zeta

function at positive integers does not behave as nicely as at negative integers.

However, it is still expected that it satisfies similar congruences modulo some

p-adic regulator. For example, we have

G+,(5)(z,−2) = − 1

2π2

(
ζ(5)(3) + q +

9

8
q2 +

28

27
q3 +

73

64
q4 +

1

75
q5 + · · ·

)
,

while

G+,(5)(z,−6) = − 45

4π6

(
ζ(5)(7) + q +

129

128
q2 +

2188

2187
q3 +

16513

16384
q4 +

1

78125
q5 + · · ·

)
.

The family of p-adic harmonic Maass forms coming from the half-integral

weight forms from Theorem 1.2.3 are defined using p-adic L-functions and the

fact that T
χ,(p)
r (v) is the p-adic limit of T χr (v). As in the previous case, the

non-holomorphic parts satisfy nice congruences due to equation (2.9). The

holomorphic parts are expected to satisfy congruences modulo a p-adic regu-

lator.
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Chapter 3

Distributions and Jensen

polynomials

In this chapter we will prove the results related to Jensen polynomials and

hyperbolicity presented in Section 1.3. Section 3.1.1 will contain some prelim-

inary results for the partition Jensen polynomials. The proofs of Theorems

1.3.1 and 1.3.2 and Theorem 1.3.3 will be presented in Sections 3.1.2 and 3.1.3

respectively. Section 3.2.1 will contain a discussion of the asymptotics for

the derivatives of a general good Dirichlet series at its central point. We will

present and prove an asymptotic formula with arbitrary precision for these

derivatives in this section. We will prove Theorem 1.3.6 in Section 3.2.2 and

prove Corollary 1.3.7, Corollary 1.3.8, and Corollary 1.3.9 in Section 3.2.3,

Section 3.2.4, and Section 3.2.5 respectively. These sections will also contain

a short introduction to the type of Dirichlet series discussed there and and an
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asymptotic formula for the derivatives of that specific type of Dirichlet series.

3.1 Hyperbolicity of the partition Jensen poly-

nomials

In this section we will be concerned with the Jensen polynomials associated to

the partition function. We will present some necessary results and then prove

Theorem 1.3.1, Theorem 1.3.2, and Theorem 1.3.3.

3.1.1 Hankel determinants and ratios of close partition

numbers

The hyperbolicity of a polynomial P (X) = adX
d + ad−1X

d−1 + . . . + a0 is

equivalent to certain polynomial conditions in the coefficients ai, which we

now describe. If λ1, . . . , λd are the roots of P (X), let Sk = λk1 + . . .+λkd denote

the sum of kth powers of the roots. The m×m Hankel determinant associated

to P (X) is defined by

∆m(P (X)) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

S0 S1 · · · Sm−1

S1 S2 · · · Sm
...

...
...

Sm−1 Sm · · · S2m−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∑
i1<···<im

∏
a<b

(λia − λib)2. (3.1)
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In addition, let

Dd,m(P (X)) = Dd,m(a0, . . . , ad) := a2m−2
d ·∆m(P (X))

so that Dd,d(a0, . . . , ad) is the discriminant of P (X) and Dd,m(a0, . . . , ad) is a

homogeneous polynomial of degree 2m − 2 in the coefficients ai. A theorem

of Hermite [42] says the hyperbolicity of P (X) is equivalent to the condition

Dd,m(P (X)) ≥ 0 for all m = 2, . . . , d.

We will prove Theorems 1.3.1 and 1.3.3 by showing that

Dd,m(n) := Dd,m

(
Jd,np (X)

p(n)

)
= Dd,m

(
1,

(
d

1

)
p(n+ 1)

p(n)
,

(
d

2

)
p(n+ 2)

p(n)
, . . . ,

p(n+ d)

p(n)

)
> 0

for each m = 2, . . . , d and all n greater than the claimed quantities. Note that

Dd,m(n) approaches 0 in the limit as n → ∞, since limn→∞ J
d,n
p (X)/p(n) =

(X + 1)d. This fact is true because the partition ratios p(n+j)
p(n)

→ 1 as n→∞

for any fixed j. A priori, this makes the sign of Dd,m(n) difficult to ascertain.

However, the results in [27] determine the rate at which Dd,m(n) approaches

0 and the coefficient of the leading term. More precisely, by the behavior of

∆m under change of variable and equation (1.17), we know that

lim
n→∞

1

δ(n)m(m−1)
∆m

(
Jd,np (X)

p(n)

)
= lim

n→∞
∆m

(
Jd,np (δ(n)X − e−cw(n)/2)

p(n)

)
= ∆m(Hd(X)).
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Equivalently in terms of w = w(n) = 1/
√
c(n− 1/24) and Dd,m(n), we have

lim
w→0

1

w
3
2
m(m−1)

Dd,m(n) =

(
c√
2

)m(m−1)

∆m(Hd(X)). (3.2)

Because the Hermite polynomials have distinct, real roots, the term on the

right is a positive constant. Our strategy is to expand Dd,m(n) in powers of w

around zero, up to w
3
2
m(m−1). Because the above limit exists, we are guaranteed

that all lower powers of w cancel, and the coefficient of the w
3
2
m(m−1) term is

the specified positive multiple of ∆m(Hd(X)). We then must find explicit

bounds for the remaining terms that are tending to zero.

To do this, we need to study ratios of close partition numbers. In terms of

w, the Hardy-Ramanunjan asymptotic formula for the partition numbers [28]

takes the form

p(n) ∼ F (w) :=
π2

6
√

3
(w2 − w3)e1/w.

As observed in [27], w(n+ j) = w(n)√
1+cjw(n)2

, so the function

R(j, w) :=

F

(
w√

1+cjw2

)
F (w)

=
e

cjw

1+
√

1+cjw2 (
√

1 + cjw2 − w)

(1− w)(1 + cjw2)3/2
(3.3)

closely approximates p(n+ j)/p(n).

To bound the error of this approximation, we use Lehmer’s error bound

for Rademacher’s convergent series for the partition function, in which F (w)

is the leading term. In what follows, Ak(n) is a Kloosterman sum. The only

property we need is |A1(n)|= |A2(n)|= 1, so we do not define it here, instead
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referring the reader to [38].

Theorem 3.1.1 (Lehmer). Let w = w(n) = 1/
√
c(n− 1/24). For all n ≥ 1,

we have

p(n) =
π2

6
√

3
w2

N∑
k=1

Ak(n)√
k

(
(1− w)e1/kw + (1 + w)e−1/kw

)
+B(n,N) (3.4)

where

|B(n,N)|< π2N−2/3

√
3

(
N3w3 sinh

(
1

Nw

)
+

1

6
−N2w2

)
<
π2N−2/3

√
3

(
N3w3 e

1/Nw

2
+

1

6

)
.

In order for us to state precisely how well R(j, w) approximates p(n +

j)/p(n), let

L(w) :=
1 + 21w

1− w
· e−1/2w +

e−1/w

w2 − w3
.

Lemma 3.1.2. For all n ≥ 1, we have

∣∣∣∣p(n+ j)

p(n)
−R(j, w)

∣∣∣∣ ≤ R(j, w)
2L(w)

1− L(w)
∼ 2e−1/2w.

Proof. Let E(w(n)) = p(n) − F (w(n)). The function F (w) appears in the

k = 1 term of (3.4). Gathering the rest of that term, the k = 2 term, and the

Lehmer’s bound on |B(n, 2)| we find

|E(w)| ≤ π2

6
√

3

(
(w2 + w3)e−1/2w + (w2 − w3 + 12 · 25/6w3)e1/2w + 2−7/6

)
≤ π2

6
√

3

(
(w2 + 21w3)e1/2w + 1

)
,
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where in the last line we have used that w ≤ 1/
√
c. Hence, |E(w)/F (w)|≤

L(w). Noting that the function L(w) is increasing in w for 0 < w ≤ 1/
√
c it

follows that

∣∣∣∣p(n+ j)

p(n)
− F (w(n+ j))

F (w(n))

∣∣∣∣ =
F (w(n+ j))

F (w(n))

∣∣∣∣∣1 + E(w(n+j))
F (w(n+j))

1 + E(w)
F (w)

− 1

∣∣∣∣∣
= R(j, w)

∣∣∣∣∣
E(w(n+j))
F (w(n+j))

− E(w(n))
F (w(n))

1 + E(w)
F (w)

∣∣∣∣∣ ≤ R(j, w)
2L(w)

1− L(w)
.

To study the behavior p(n+ j)/p(n) for large n, we want to study R(j, w)

near w = 0. To this end, let As(j, w) be the degree s− 1 Taylor polynomial of

R(j, w). Applying Lemma 3.1.2 and Taylor’s theorem, we immediately obtain

the following.

Lemma 3.1.3. Let n ≥ 1 and suppose w = 1/
√
c(n− 1/24) ∈ [0, ε] for some

0 < ε ≤ 1/
√
c. Then we have

p(n+ j)

p(n)
= As(j, w) + Es(j, w)ws

where

|Es(j, w)|≤ 1

s!
· sup
x∈[0,ε]

∣∣R(s)(j, x)
∣∣+ sup

x∈[0,ε]

∣∣∣∣R(j, x)
2L(x)

xs(1− L(x))

∣∣∣∣ . (3.5)
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3.1.2 Proof of Theorems 1.3.1 and 1.3.2

We now prove Theorem 1.3.1 by bounding the error terms that accumulate

from approximating p(n + j)/p(n) by the Taylor polynomials As(j, w) in the

polynomial expression forDd,m(n). This allows us to reduce to checking finitely

many cases.

Proof of Theorem 1.3.1. Using the Newton-Girard identities to write the power

sums of the roots in terms of the elementary symmetric functions, one can

generate symbolic expressions for the polynomials Dd,m(a0, . . . , ad) in terms of

a0, . . . , an. To obtain Dd,m(n), we substitute

(
d

j

)
(A10(j, w) + Ejw

s)

in for aj in these polynomials, introducing Ej as a variable. This gives rise to a

polynomial expression in w whose coefficients are polynomials in Ej. It turns

out that all coefficients of wi for i < k = 3
2
m(m− 1) vanish in this expression.

In addition, dividing through by wk gives rise to an expression of the form

Dd,m(w) = c0 +c1w+c2(E1, . . . , Ed)w
2 + . . .+c(2m−2)s−k(E1, . . . , Ed)w

(2m−2)s−k

where c0 and c1 are positive constants.

We then use Mathematica to calculate the upper bound on Ej = E10(j, w)
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for w ∈ [0, ε] given in Lemma 3.1.3, where we choose

ε = 0.021, 0.0163, 0.0081 for d = 3, 4, 5 respectively.

From these, we can obtain a lower bound −c′i ≤ ci(E1, . . . , Ed) for each i ≥ 2,

giving rise to an expression of the form

Dd,m(w) ≥ c0 + c1w − c′2w2 − . . .− c′(2m−2)s−kw
(2m−2)s−k.

Moreover, we can arrange for each of the c′i above to be nonnegative so that

the function on the right crosses zero at most once in the interval [0, ε]. For

our chosen values of ε, evaluating the right-hand side at w = ε is positive, so

Dd,m(w) > 0 for all 1 ≤ m ≤ d and w ≤ ε. Equivalently, Jd,np (X) is hyperbolic

for all n ≥ 1
cε2

+ 1
24

. Using the values of ε listed above, this shows J3,n
p (X) is

hyperbolic for all n > 344, J4,n
p (X) is hyperbolic for all n > 572 and J5,n

p is

hyperbolic for all n > 2316. Checking the finite number of remaining possi-

ble counter examples directly now proves the theorem. Annotated Sage and

Mathematica code to implement the full procedure described above appears

in the appendix.

Remark. With our chosen parameters, the total run time of this procedure is

about 15 minutes. We note that by increasing the number of terms s that

we take in the Taylor expansion of R(j, w), the number of cases one needs to

check directly can be brought down. However, this increases total run time,

as checking more particular cases directly is faster than carrying out the more
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complex symbolic manipulations. For example, when d = 5, by increasing s

to 16, one may increase ε to 0.013, corresponding to checking n = 899 cases

directly, but this has a total run time of about an hour.

Remark. For d ≥ 6 one would need to keep more than s = 10 terms in order to

see the cancellation of lower order terms in w take place. The main obstruction

of applying this method in higher degrees is tracking the increasing number

of error terms in the increasingly complex symbolic expressions for Dd,m(n).

A code for d = 6 with s = 16 did not finish within 36 hours when run on a

laptop.

Taylor expanding R(j, w) and symbolically keeping track of errors can be

used to prove inequalities about other polynomial equations involving ratios

of close partition numbers. We now prove Theorem 1.3.2 using this idea.

Proof. Setting ai = p(n+ i)/p(n) we can rewrite equation (1.3.2) as

0 <

(
1 +

π4

9
w3

)
(a2

1 − a−1a1a2)2 − 4a2
1(1− a−1a1)(a2

1 − a2).

We follow the same procedure and notation as in the proof of Theorem 1.3.1,

taking s = 6 and ε = 0.013. Substituting ai = A6(i, w) + Eiw
6 into the right-

hand side above gives rise to a polynomial expression in w with coefficients

that are polynomials in the Ei, where the first term is a positive constant times

w10. We then minimize all the coefficients as before, using the bounds on |Ei|
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from Lemma 3.1.3. This leaves us with an expression of the form

w10

(
25

729
π12 − x(w)

)
≤
(

1 +
π4

9
w3

)
(a2

1−a−1a1a2)2−4a2
1(1−a−1a1)(a2

1−a2),

where x(w) is a strictly increasing polynomial in w. Evaluating the left-hand

side at w = ε yields a positive number, so the right-hand side is positive for

all w ∈ [0, ε]. Equivalently, the proposition holds for all n > 900. Checking all

n ≤ 900 directly completes the proof.

3.1.3 Bounds for general d

The polynomial Dd,m(n) we wish to study is homogeneous of degree 2m − 2

in the coefficients of Jd,np (X)/p(n) and homogeneous of degree m(m− 1) in its

roots. That is, it has the form

Dd,m(n) =
∑

i1+...+i2m−2=m(m−1)

Ai1,...,i2m−2 ·
2m−2∏
k=1

(
d

ik

)
p(n+ d− ik)

p(n)
, (3.6)

where the Ai1,...,i2m−2 are constants. To bound errors when we expand in terms

of w, we find bounds on the derivatives R(s)(j, w) for w in the interval [0, ε],

where ε := (3d)−12d(50d)−
3
2
d2 , corresponding to our eventual bound on N(d).

For convenience, let t = t(j) := cj.

Lemma 3.1.4. Assume that w ∈ [0, ε] with ε as above. Then

∣∣R(m)(j, w)
∣∣ ≤ m!

(
m+ 3

3

)
eg(ε)(4e2tεt)m, (3.7)
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where g(ε) = tε
1+
√

1+tε2
.

Proof. The idea of the proof is to use the product rule to split up R(j, w)

into four more manageable parts and use Faà di Bruno’s formula for iterated

applications of the chain rule to evaluate each part as needed. This formula

says that for differentiable functions f(x) and g(x), we have

dn

dxn
f (g(x)) =

∑
m1+2·m2+···+n·mn=n

n!

m1! · · ·mn!
f (m1+m2+···+mn) (g(x))

n∏
j=1

(
g(j)(x)

j!

)mj
.

(3.8)

Let

A = A(t, w) := e
tw

1+
√

1+tw2 B = B(t, w) :=
√

1 + tw2 − w,

C = C(t, w) :=
1

1− w
D = D(t, w) :=

1

(1 + tw2)3/2
,

so that

R(m)(j, w) =
∑

m1+m2+m3+m4=m

m!

m1! · · ·m4!

(
dm1A

dwm1

)
·
(
dm2B

dwm2

)
·
(
dm3C

dwm3

)
·
(
dm4D

dwm4

)
.

(3.9)

We will focus on A first. Let f(w) = ew and g(w) = tw
1+
√

1+tw2 . By equation

(3.8), we have

dnA

dwn
=

dn

dwn
f(g(w)) =

∑
m1+2·m2+···+n·mn=n

n!

m1! · · ·mn!
eg(w)

n∏
i=1

(
g(i)(w)

i!

)mi
.

(3.10)
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By the product rule, it is easy to see that

g(i)(w) = tw

(
d

dw

)i
1

1 +
√

1 + tw2
+ it

(
d

dw

)i−1
1

1 +
√

1 + tw2
. (3.11)

Next, let g∗(w) := 1
1+
√

1+tw2 and let α(k) :=
(
d
dw

)k√
1 + tw2. We use equation

(3.8) again to show

g(i)
∗ (w) =

∑
r1+···+i·ri=i

i!

r1! · · · ri!
(−1)r1+···+ri(r1 + · · ·+ ri)!

(1 +
√

1 + tw2)r1+···+ri+1

i∏
k=1

(
α(k)

k!

)rk
.

(3.12)

Using equation (3.8) once more we have

α(k) =
∑

s1+2s2=k

k!

s1! s2!

(
1
2

s1 + s2

)
(2tw)s1ts2

(1 + tw2)s1+s2− 1
2

≤ k! e2twtk.

We can plug this back into equation (3.12) to find that

g(i)
∗ (w) ≤ i! (e2twt)i

∑
r1+···+i·ri=i

(r1 + · · ·+ ri)!

r1! · · · ri!
≤ i! (2e2twt)i,

where we used the fact that the sum is counting the number of ordered parti-

tions of i. Next, we plug this into equation (3.11) and use the fact that tw ≤ 1

to find
∣∣g(i)(w)

∣∣ ≤ i! ·2(2λt)i. Finally, we are able to plug into equation (3.10)

to find that

∣∣∣∣dnAdwn

∣∣∣∣ ≤ n! eg(w)(2e2twt)n ·
∑

m1+···+n·mn=n

2m1+···+mn

m1! · · ·mn!
≤ n! eg(w)(4e2twt)n. (3.13)
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Next, it is easy to show that

∣∣∣∣dnBdwn
∣∣∣∣ ≤ |α(n)| ≤ n! (e2twt)n, (3.14)

and ∣∣∣∣dnCdwn

∣∣∣∣ =
n!

(1− w)n+1
≤ n! (e2twt)n. (3.15)

Lastly, we have

∣∣∣∣dnDdwn
∣∣∣∣ ≤ ∑

r1+···+n·rn=n

n!

r1! · · · rn!

(3
2
)r1+···+rn

(1 + tw2)
3
2

+r1+···+rn

n∏
k=1

(
|α(k)|
k!

)rk
≤ n! (2e2twt)n.

(3.16)

where (x)n := x(x + 1) · · · (x + n − 1) is the rising factorial. Finally, we

substitute the bounds in equations (3.13), (3.14), (3.15), and (3.16) back into

equation (3.9) and use the fact that the sum over m1 + . . .+m4 = m contains(
m+3

3

)
terms.

Given some i = (i1, . . . , i2m−2) with i1 + . . . + i2m−2 = m(m − 1), let

Td,m(i;w) be the degree 3
2
m(m− 1) Taylor polynomial of

∏2m−2
k=1 R(d− ik, w).

Lemma 3.1.5. Suppose w ∈ [0, ε]. Then

2m−2∏
k=1

p(n+ d− ik)
p(n)

= Td,m(i;w) + Ed,m(i;w)w
3
2
m(m−1)+1 (3.17)

where

|Ed,m(i;w)|≤ e2(3d)10d−10(4cd)
3
2
d2 + 8m · 62m ≤ 2e2(3d)10d−10(4cd)

3
2
d2 .
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Proof. By Lemma 3.1.2, we can write

2m−2∏
k=1

p(n+ d− ik)
p(n)

=
2m−2∏
k=1

R(d− ik, w)(1 +Uk(w)) =
2m−2∏
k=1

R(d− ik, w) +U(w),

where

|U(w)| ≤
2m−2∏
k=1

R(d− ik, w)

((
1 +

2L(w)

1− L(w)

)2m−2

− 1

)

≤ 22m−2 · (2m− 2) · 32m−2 · 2L(w)

1− L(w)
≤ 8m · 62m · e−1/2w.

Let s = 3
2
m(m− 1) + 1. Note also that we can easily bound

e−1/2w

ws
≤ e−1/2ε

εs
≤ exp

(
3

2
d2

(
2d log(3d) +

3

2
d2 log(50d)

)
− 1

2
(3d)12d(50d)

3
2
d2
)
< 1.

Meanwhile, from Lemma 3.1.4 and the product rule, we know that

1

s!

∣∣∣∣∣ dsdws
2m−2∏
k=1

R(d− ik, w)

∣∣∣∣∣ ≤ e(2m−2)g(ε)(4e2cdεcd)s

×
∑

n1+···+n2m−2= 3
2
m(m−1)+1

(
n1 + 3

3

)
· · ·
(
n2m−2 + 3

3

)
.

The largest term in the sum on the right hand side occurs if each ni is equal,

which is in turn bounded by replacing each ni with m ≥
3
2
m(m−1)+1

2m−2
. Counting

the number of terms, we see that the sum is bounded above by

(
3
2
m(m− 1) + 2m− 2

2m− 3

)
·
(
m+ 3

3

)2m−2

≤ (2m2)2m−2 ·
(

3

2
m3

)2m−2

= (3m)10m−10.
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This shows that

∣∣∣∣∣
2m−2∏
k=1

R(d− ik, w)− Td,m(i;w)

∣∣∣∣∣ ≤ e(2m−2)g(ε)(4e2dεcd)s(3m)10m−10 · ws

≤ e2(3d)10d−10(4cd)
3
2
d2 · ws.

In order to finish bounding the monomials in equation (3.6) we need the

following result. We include the extra factor out front because of how it enters

in equation (3.2).

Lemma 3.1.6. Suppose 0 ≤ m ≤ d and i1 + . . . + i2m−2 = m(m − 1) for

positive integers ik. Then we have

∣∣∣∣∣∣
(√

2

c

)m(m−1) 2m−2∏
k=1

(
d

ik

)∣∣∣∣∣∣ ≤
(
e

4e
c2

)d2
. (3.18)

Proof. The product
∏2m−2

k=1

(
d
ik

)
is maximized when all ik are equal (i.e. ik =

m
2

). Using standard bounds on binomial coefficients, we therefore have
∏2m−2

k=1

(
d
ik

)
≤(

2ed
m

)m(m−1)
. For 0 ≤ m ≤ d, the function

(
2
√

2ed
cm

)m2

achieves its maximum at

m = 2
√

2ed
c

. Thus

∣∣∣∣∣∣
(√

2

c

)m(m−1) 2m−2∏
k=1

(
d

ik

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
(

2
√

2ed

cm

)m2
∣∣∣∣∣∣ ≤

(
e

4e
c2

)d2
.

We now have bounds on the errors of our approximations of each monomial
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in (3.6). We also must bound the number of such terms that appear in this

equation for Dd,m(n).

Lemma 3.1.7. Suppose n > (3d)24d(50d)3d2 and let Ai1,...,i2m−2 be as in equa-

tion (3.6). Then

∑
i1,...,i2m−2

|Ai1,...,i2m−2|≤ m! (m− 1)m2m
2−2 ≤ d2d · 2d2 . (3.19)

Proof. By the Newton-Girard identities, the power sums Sk in the matrix in

(3.1) can be written as a sum of at most

k
∑

r1+···+k·rk=k

(r1 + · · ·+ rk − 1)!

r1! · · · rk!
≤ k2k−1

monomials in the coefficients of our polynomial. The determinant of the matrix

in equation (3.1) is made up of a sum of at most m! monomials of the form

m∏
`=1

Si` where i1 + · · ·+ im = m(m− 1).

Plugging in the elementary symmetric functions for each Si` in this product

and expanding will express each of these “S-monomials” as a sum of at most

m∏
`=1

il2
i`−1 ≤ (m− 1)m2m(m−2)

monomials in the coefficients. To obtain Dd,m(n) from this, we must multiply

by (p(n+d)
p(n)

)2m−2. Since n is so large, we easily have p(n + d)/p(n) ≤ 2, for
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example by using Lemma 3.1.2 with s = 1. Multiplying together the factors

discussed above gives the result.

The last ingredient we need to prove Theorem 1.3.3 is a lower bound on

the Hankel determinants of Hermite polynomials.

Lemma 3.1.8. For each m ≤ d, we have ∆m(Hd(X)) ≥ 1.

Proof. We know ∆m(Hd(X)) =
∑

i1<···<im
∏

a<b(λia−λib)2 so by the inequality

of the arithmetic and geometric mean

∆m(Hd(X)) ≥
(
d

m

) ∏
i1<···<im

(∏
a<b

(λia − λib)2

) 1

( dm)
=

(
d

m

)(∏
j<k

(λj − λk)2( d−2
m−2)

) 1

( dm)

=

(
d

m

)
∆d(Hd(X))

m(m−1)
d(d−1) .

By Theorem 6.71 of [58], and the fact that ad(Hd(X)) = 2d, we have

∆d(Hd(X)) =
Disc(Hd(X))

22d(d−1)
= 2−

d(d−1)
2

d∏
ν=1

νν ≥ 1,

so the result follows.

Proving Theorem 1.3.3 is now just a matter of collecting and bounding all

of the higher order terms from expanding Dd,m(n) in terms of w.

Proof of Theorem 1.3.3. Suppose n > (3d)24d(50d)3d2 so that w(n) ∈ [0, ε]. By
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(3.2), we have

Dd,m(n)

w
3
2
m(m−1)

=
∑

i1,...,i2m−2=m(m−1)

Ai1,...,i2m−2

w
3
2
m(m−1)

·
2m−2∏
k=1

(
d

ik

)(
Td,m(i;w) + Ed,m(w)w

3
2
m(m−1)+1

)
=

(
c√
2

)m(m−1)

∆m(Hd(X)) + w · Ed,m(w),

where by Lemmas 3.1.5, 3.1.6, and 3.1.7

(√
2

c

)m(m−1)

· |Ed,m(w)|·w ≤ d2d · 2d2 ·
(
e

4e
c2

)d2
· 2e2(3d)10d−10(4cd)

3
2
d2 · w

< (3d)12d(50d)
3
2
d2 · w ≤ 1.

Since ∆m(Hd(X)) ≥ 1, it follows that Dd,m(n) > 0 and therefore, Jd,np (X) is

hyperbolic.

3.2 The Jensen-Pólya program for various L-

functions

In this section we will the hyperbolicity of the Jensen polynomials associated to

various different L-functions. We will present and prove an arbitrary precision

asymptotic formula for the derivatives of good L-functions at their central

values and then use this to prove Theorem 1.3.6. The corollaries on specific

cases of good L-functions will also be discussed.



113

3.2.1 Asymptotics for Ξ(n)(0).

Let L(s) =
∑

n≥1 a(n)n−s be a good Dirichlet series. We thus know that L(s)

has a completed form

Λ(s) = N
s
2

J∏
j=1

ΓR(s)
M∏
m=1

ΓC(s) · L(s)

= N
s
2

∫ ∞
0

[f(t)− f(∞)] ts
dt

t
,

where ΓR(s) := π−
s
2 Γ
(
s
2

)
, ΓC(s) := 2(2π)−sΓ(s), and Γ(s) :=

∫∞
0
e−tts−1dt is

the usual gamma function. Because of the transformation properties of f(t),

we split the integral at 1√
N

to arrive at

Λ(s) =
(εs− s+ k)f(∞)

s(s− k)
+

∫ ∞
1√
N

(f(t)− f(∞))
(
εN

k−s
2 tk−s +N

s
2 ts
) dt
t
.

(3.20)

We have the following expression for the derivatives of Λ(s):

Λ(n)(s) =
[(−1)n+1(k − s)n+1 − εsn+1]f(∞)n!

sn+1(k − s)n+1

+

∫ ∞
1√
N

(f(t)− f(∞))
(
N

s
2 ts + (−1)nεN

k−s
2 tk−s

)(1

2
log(N) + log(t)

)n
dt

t
.

At s = k
2

and z = 0 we have

Λ(n)

(
k

2

)
=

2n+1f(∞)n! ((−1)n+1 − ε)
kn+1

+ F (n) (3.21)
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and

Ξ(n)(0) =


(−i)n 8(n2)F (n−2)−k2F (n)

4
if Λ(s) has a pole at s = k

(−i)nF (n) otherwise,

(3.22)

where

F (n) =
1

2n

∫ ∞
1√
N

(f(t)− f(∞))N
k
4 t

k
2
−1(1 + (−1)nε) (log(N) + 2 log(t))n dt

(3.23)

for all n ≥ 0. The large asymptotics of Λ(n)
(
k
2

)
and Ξ(n)(0) are obtained from

the following theorem.

Theorem 3.2.1. The function F (n) defined in equation (3.23) is given to all

orders in n by the asymptotic expansion

F (n) ∼ α(n0)
√

2πN
k
4 (1 + (−1)nε)

2n
Ln+1√(

1 + L
2

)
n−

(
k
2
− 1
)
L2

(3.24)

× e
k
4

(L−log(N))− 2n
L
− k

2
+1

(
1 +

b1

n
+
b2

n2
+ · · ·

)
(n→∞),

where L = L(n) ≈ 2 log
(

n
√
N

log(n
√
N)

)
is the unique positive solution of the equa-

tion n = 1
2

(
πn0e

L−log(N)
2 − k

2
+ 1
)
L and each coefficient bk belongs to Q(L),

the first value being b1 = 2(31L4+189L3+542L2+744L+496)
3(L+2)3

.

Proof of Theorem 3.2.1. We approximate the integrand in equation (3.23) by
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the function

g(t) = α(n0)e−πn0tN
k
4 (1 + (−1)nε)t

k
2
−1(log(N) + 2 log(t))n.

From now on we let n be fixed and will omit it from our notations. We have

that t d
dt

(log(g(t))) = 2n
log(N)+2 log(t)

− πn0t + k
2
− 1, so g(t) assumes its unique

maximum at t = a where a is the solution in
(

1√
N
,∞
)

of

n =
1

2

(
πn0a−

k

2
+ 1

)
(log(N) + 2 log(a)).

For convenience, we define L = log(N) + 2 log(a) so we have

n =
1

2

(
πn0e

L−log(N)
2 − k

2
+ 1

)
L.

We can then use Lambert’s W function to asymptotically solve this equation.

Lambert’s W function is defined as the solution to z = W (z)eW (z). It has the

nice property that Y = XeX if and only if X = W (Y ). If we take a branch cut

to restrict W to be real valued, then we have that the principal branch has a

Taylor series around 0 given by W (x) =
∑∞

n=1
(−n)n−1

n!
xn. For large x, W (x) is

asymptotic to W (x) = ln(x)− ln ln(x) + ln ln(x)(ln ln(x)−2)

ln2(x)
+O

((
ln ln(x)
ln(x)

)3
)

[15].

Therefore, we have L ≈ 2 log
(

n
√
N

log(n
√
N)

)
. We now follow [27] and apply the

saddle point method. The Taylor expansion of g(t) around t = a is given by

g((1 + λ)a)

g(a)
=

(
1 +

2 log(1 + λ)

log(N) + 2 log(a)

)n
(1+λ)

k
2
−1e−πn0λa = e−

Cλ2

2

(
1 + A3λ

3 + A4λ
4 + · · ·

)
,
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where C = n
(
ε
2

+ ε2
)

+ k
8
− 1

4
, ε = 1

log(N)+2 log(a)
= L−1, and the Ai are

polynomials of degree bi/3c in n with coefficients in Q[ε]. This expansion

was found by expanding log(g((1 + λ)a)) − log(g(a)) in λ. The linear term

vanises by choice of a and the quadratic term is −Cλ2

2
. The coefficients of

the higher powers of λ are all linear expressions in n with coefficients in Q[ε].

Exponentiating this expansions gives our expression for g((1 +λ)a)/g(a). The

important behavior is that the dominant term of each Ai comes primarily from

the exponential of the cubic term of the logarithmic expansion. The first few

Ai are

A3 = 2n

(
ε

3
+ ε2 +

4ε3

3

)
+
k

6
− 1

3
,

A4 = −n
(
ε

2
+

11ε2

6
+ 4ε3 + 4ε4

)
− k

8
+

1

4
,

A5 = n

(
2ε

5
+

5ε2

3
+

14ε3

3
+ 8ε4 +

32ε5

5

)
+

k

10
− 1

5
,

A6 = n2

(
2ε2

9
+

4ε3

3
+

34ε4

9
+

16ε5

3
+

32ε6

9

)
+
k2 − 7k + 10

36

+ n

(
(10k − 50)ε

90
+

(30k − 197)ε2

90
+

(40k − 530)ε3

90
− 34ε4

3
− 16ε5 − 32ε6

3

)
.

We plug in t = (1 + λ)a to arrive at the asymptotic expansion

1

2n

∫ ∞
1√
N

g(t)dt =
ag(a)

2n

∫ ∞
−1+ 1

a
√
N

e−
Cλ2

2

(
1 + A3λ

3 + A4λ
4 + · · ·

)
dλ

=
ag(a)

2n

√
2π

C

(
1 +

3A4

C2
+

15A6

C3
+ · · ·+ (2i− 1)! !A2i

Ci
+ · · ·

)
.

This expression and the one in Theorem 3.2.1 are interpreted as asymptotic
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expansions. These series do not converge for a fixed n, but we can truncate the

approximation at O(n−A) for some A > 0, and as n→ +∞ this approximation

becomes true to the given precision. We substitute the formulas for C and Ai

in terms of n in order to obtain the statement in the theorem. We also replace

F (n) by the integral over g(t) with only the A2i with i ≤ 3k contributing to

bk. The same asymptotic formula will hold with this replacement because the

ratio of g(t) and the integrand of F (n) is equal to 1 +O(n−K) for any K > 0

for t near a.

3.2.2 Proof of Theorem 1.3.6

Our goal is to show that {γ(n)} satisfies the growth conditions of Definition

1.3.4. Recall from Section 1 that

γ(n) =


(−1)n n!

(2n)!
Ξ(2n)(0) if ε = 1

i2n+1 n!
(2n+1)!

Ξ(2n+1)(0) if ε = −1,

(3.25)

where γ(n) are the Taylor coefficients of Ξ1(x). Therefore, if we have

F̂ (n) =
α(n0)

√
2πN

k
4 (1 + (−1)nε)Ln+1

2n
√(

1 + L
2

)
n−

(
k
2
− 1
)
L2

e
k
4

(L−log(N))− 2n
L
− k

2
+1

(
1 +

b1

n

)
(3.26)
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and

Ξ̂(n)(0) =


(−i)n2

(
n

2

)
F̂ (n− 2) if Λ(s) has a pole

(−i)nF̂ (n) otherwise

 = Ξ(n)(0)·
(

1 +O

(
1

n2−ε

))

as in the example above, then

γ̂(n) =



n!

(2n− 2)!
F̂ (2n− 2) if Λ(s) has a pole and ε = 1

n!

(2n− 1)!
F̂ (2n− 1) if Λ(s) has a pole and ε = −1

n!

(2n)!
F̂ (2n) if Λ(s) does not have a pole and ε = 1

n!

(2n+ 1)!
F̂ (2n+ 1) if Λ(s) does not have a pole and ε = −1


= γ(n)·

(
1 +O

(
1

n2−ε

))
.

(3.27)

We will show that the γ(n) = n!
m!
F̂ (m)·

(
1 +O

(
1

n2−ε

))
form = 2n−2, 2n−1, 2n,

or 2n+ 1 form a Hermite-Jensen sequence. Recall that

b1 =
2(31L4 + 189L3 + 542L2 + 744L+ 496)

3(L+ 2)3
.

Using Stirling’s approximation r! =
√

2πr
(
r
e

)r · (1 + 1
12r

)
· (1 +O(1/r2)), we

have

γ(n) =
α(n0)N

k
4 (1 + (−1)mε)em−nnn+ 1

2

(
1 + 1

12n

)
L(m)m

2mmm+ 1
2

(
1 + 1

12m

) ·

√
2π

C(m)
(3.28)

× exp

(
k

4
(L(m)− log(N))− 2m

L(m)
− k

2
+ 1

)(
1 +

b1(m)

m

)
·
(

1 +O

(
1

n2−ε

))
.
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Recall that L(m) and b1(m) are given in Theorem 3.2.1 and C(m) = m
(
L(m)−1

2
+ L(m)−2

)
+

k
8
− 1

4
. L(m) can be viewed as a holomorphic and non-vanishing function for

Re(m) > 0, so we have a Taylor expansion in j for the ratio L(m+ 2j)/L(m)

given by

L(j;m) :=
L(m+ 2j)

L(m)
= 1 +

∑
r≥1

`r(m)

r!
· jr (3.29)

which converges when |j|< m
2

, so we will assume this throughout the proof.

If we let J = λm
2

for some −1 < λ < 1, then the asymptotic L(m) ≈

log
( √

Nm
log(
√
Nm)

)
gives the limit

lim
m→∞

L(J ;m) = lim
m→∞

L(m(λ+ 1))

L(m)
= 1.

This implies that `r(m) = o
((

2
m

)r)
. If we expand

m+ 2j =
L(m) · L(j;m)

2

(
πn0e

L(m)·L(j;m)−log(N)
2 − k

2
+ 1

)

in j then we find `1(m) = 8
4m(L/2+1)+L2(k/2−1)

= 2
C·L2 and `2(m) = −(L/2+2)(m+kL/4−L/2)

C3·L5 ,

where L = L(m) and C = C(m). We will also define

C(j;m) :=
C(m+ 2j)

C(m)
= 1 +

∑
r≥1

cr(m)

r!
· jr,

and

B(j;m) :=
1 + b1(m+2j)

m+2j

1 + b1(m)
m

= 1 +
∑
r≥1

βr(m)

r!
· jr.
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We have the limits

lim
m→∞

C(J ;m) = 1 + λ and lim
m→∞

m

2
(B(J ;m)− 1) = 0,

which imply cr(m) = o
((

2
m

)r)
and βr(m) = o

((
2
m

)r+1
)

. Using the expansion

for L(j;m) and the expression for `1(m) we can find that c1(m) = L+2
C·L2−m(L+4)

C2·L4 .

Define Rγ(j;m) := γ̂(n+j)
γ̂(n)

, then after some manipulations we have

Rγ(j;m) =
ejnjL(m)2j

22jm2j
·
(
n+j
n

)n+j+ 1
2(

m+2j
m

)m+2j+ 1
2

(
1 + 1

12(n+j)

) (
1 + 1

12m

)
(
1 + 1

12n

) (
1 + 1

12(m+2j)

) · L(j;m)m+2j√
C(j;m)

× exp

(
kL(m)

4
(L(j;m)− 1)− 2(m+ 2j)

L(j;m)L(m)
+

2m

L(m)

)
· B(j;m).

By equation (3.28), for j fixed and as m→∞ (and thus n→∞), we have

γ(n+ j)

γ(n)
= Rγ(j;m) ·

(
1 +O

(
1

n2−ε

))
. (3.30)

Notice that the first factor in R(j;m) is the jth power of enL(m)2

22m2 . This factor

will essentially be eA(n). We will now look at the expansion

logR(j;m) =:
∑
r≥1

gr(m)jr.

We again let J = mλ
2

for −1 < λ < 1, then we have

lim
m→∞

2 logR(J ;m)

m
=
∑
r≥1

gr(m)
(m

2

)r−1

λr = −(λ+ 1) log(λ+ 1),
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which tells us that gr(m) = O
((

m
2

)1−r
)

. We can use our previous expansions

and the formula for Rγ(j;m) to find

g1(m) = log

(
nL2

4m2

)
+m · `1(m)

(
L+ 2

L

)
− 4

L
+
k · `1(m) · L

4
− c1(m)

2
+O

(
1

n2−ε

)
,

g2(m) = − 2

m
+ (4`1(m) +m · `2(m))

(
L+ 2

2L

)
−m · `1(m)2

(
L+ 4

2L

)
+O

(
1

n2−ε

)
.

We can use the formulas for `1(m) and `2(m) to simplify these to

g1(m) = log

(
nL2

4m2

)
+

(k − 1)L− 2

2C · L2
+
m(L+ 4)

2C2 · L4
+O

(
1

n2−ε

)
, (3.31)

g2(m) = − 2

m
+

4

C · L2
+O

(
1

n2−ε

)
. (3.32)

We now let

A(n) = log

(
nL2

4m2

)
+

(k − 1)L− 2

2C · L2
+
m(L+ 4)

2C2 · L4
(3.33)

δ(n) =

√
2

m
− 4

C · L2
. (3.34)

These functions satisfy the conditions of Definition 1.3.4 for the sequence

{γ(n)}. The fact that δ(n) → 0 follows from the asymptotics given above

and the precision of O
(

1
n2−ε

)
satisfies the necessary growth conditions given

in Definition 1.3.4.
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3.2.3 Dirichlet L-functions

Proof of Corollary 1.3.7

Let χ be a Dirichlet character modulo N > 1. Then we define the Dirichlet

L-function as

L(χ, s) :=
∑
n≥1

χ(n)

ns
(3.35)

for Re(s) > 1. If we let χ be the trivial character, then our L-function is the

Riemann zeta function. This case was handled in [27]. Next, recall the twisted

theta function

θχ(z) = χ(0) + 2
∑
n≥1

χ(n)nνeπin
2z (3.36)

where ν = 0 if χ is even and ν = 1 if χ is odd. The twisted theta function

satisfies the functional equation

θχ(z) =
τ(χ)

iν
√
N(−iNz)

1
2

+ν
θχ̄

(
1

N2z

)
(3.37)

where τ(χ) is a Gauss sum and χ̄ is the dual character. We will focus on real

primitive self-dual characters so we have χ = χ̄ and τ(χ) = iν
√
N . Define the

completed Dirichlet L-function by

Λ(χ, s) :=

(
N

π

) s+ν
2

Γ

(
s+ ν

2

)
L(χ, s) (3.38)

=
1

2
N

s+ν
2

∫ ∞
0

θχ(iy)y
s+ν
2
dy

y
.
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Using equation 3.37 and the fact that χ is a real primitive self-dual character,

we have the following functional equation

Λ(χ, s) = Λ(χ, 1− s). (3.39)

The completed Dirichlet L-function has the required integral representation,

functional equation, and real coefficients so it is good.

Derivatives at central values and Dirichlet Jensen polynomials

We want to study the derivatives of Λ(χ, s) which are given by

Λ(n) (χ, s) =
1

22n+1

∫ ∞
1
N

θχ(iy)
(

(Ny)
s+ν
2 + (−1)n(Ny)

1−s+ν
2

) (
log(N2) + 2 log(y)

)n dy
y
.

(3.40)

At the central value s = 1
2

we have

Λ(n)

(
χ,

1

2

)
=

1

22n+1

∫ ∞
1
N

θχ(iy)(Ny)
1
4

+ ν
2 (1 + (−1)n)(log(N2) + 2 log(y))n

dy

y
.

(3.41)

Because the Dirichlet L-functions fit into our framework we have the follow-

ing theorem which gives an arbitrary precision asymptotic formula for these

derivatives.

Theorem 3.2.2. Assume the notation above. The large n asymptotics for
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Λ(n)
(
χ, 1

2

)
and Ξ(n)(χ, 0) are given to all orders by the asymptotic expansion

F (n) ∼
√

2πN
1
4

+ ν
2 (1 + (−1)n)

22n

Ln+1√
4n
(
1 + L

2

)
−
(

3
4
− ν

2

)
L2

(3.42)

×e(
1
8

+ ν
4 )(L−log(N2))− 2n

L
+ 3

4
− ν

2

(
1 +

b1

n
+
b2

n2
+ · · ·

)
(n→∞),

where L = L(n) ≈ 2 log
(

nN
log(nN)

)
is the unique positive solution to n =

1
2

(
πe

L−log(N2)
2 + 3

4
− ν

2

)
L and each coefficient bk belongs to Q(L), the first

value being b1 = L4+9L3+32L2+24L+16
24(L+2)3

.

Example. Let χ4 be the odd Dirichlet character of modulus 4. Using the

two-term approximation F̂ (n) given in equation (3.26) we give some approxi-

mations γ̂χ4(n) in the table below.

n γ̂χ4(n) γχ4(n) γχ4(n)/γ̂χ4(n)

10 ≈ 8.6123842782× 10−14 ≈ 8.5921206983× 10−14 ≈ 0.997647158

100 ≈ 1.0054943805× 10−174 ≈ 1.0057597216× 10−174 ≈ 0.9997361785

1000 ≈ 1.7838444188× 10−2350 ≈ 1.7838866878× 10−2350 ≈ 0.9999763051

10000 ≈ 1.7271165350× 10−30650 ≈ 1.7271200653× 10−30650 ≈ 0.9999979560

100000 ≈ 8.1291521235× 10−384416 ≈ 8.1291531304× 10−384416 ≈ 0.9999998761

In the previous section we showed that the Dirichlet L-function L(χ, s) is
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good. Dirichlet L-functions have a pole at s = 1 if χ is principal so we define

Ξ(χ, z) :=


(
−z2 − 1

4

)
Λ
(

1
2
− iz

)
if χ is principal

Λ
(
χ, 1

2
− iz

)
else

(3.43)

and

Ξ1(χ, x) := Ξ(χ, i
√
x) =

∑
n≥0

γχ(n)

n!
xn (3.44)

where

γχ(n) = (−1)n
n!

(2n)!
· Ξ(2n)(χ, 0). (3.45)

By Theorem 1.3.6 or by using the asymptotic expansion above we know that

if d ≥ 1, then Jd,nγχ (X) is hyperbolic with at most finitely many exceptions n.

3.2.4 Modular L-functions

Proof of Corollary 1.3.8

Let f ∈ Sk (Γ0(N)) be an even weight newform with real coefficients and write

f(z) =
∑

n≥1 a(n)e2πinz. Assume that f is normalized so that a(1) = 1. We

focus newforms with trivial character. Define the L-function associated to f

by

L(f, s) :=
∑
n≥1

a(n)

ns
(3.46)

for Re(s) > 1 + k
2
. Define the completed modular L-function by

Λ(f, s) := N
s
2 (2π)−sΓ(s)L(f, s). (3.47)
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We have the transformation property

f

(
i

Ny

)
= ikεfN

k
2 ykf(iy), (3.48)

which gives rise to the functional equation

Λ(f, s) = ikεfΛ(f, k − s), (3.49)

where εf ∈ {±1} is the eigenvalue of f under the Atkin-Lehner involution. The

completed modular L-function Λ(f, s) has the required integral representation,

the modular properties of f(z) gives a functional equation, and the coefficients

are real so L(f, s) is good.

Derivatives at central values and modular Jensen polynomials

Similarly to the Dirichlet L-function case, the nth derivative takes the form

Λ(n)(f, s) =
1

2n

∫ ∞
1√
N

f(iy)
(
N

s
2ys + (−1)nikεfN

k−s
2 yk−s

)
(ln(N) + 2 ln(y))n

dy

y
.

(3.50)

At the central value s = k
2

we have

Λ(n)

(
f,
k

2

)
=

1

2n

∫ ∞
1√
N

f(iy)N
k
4 y

k
2
−1(1 + (−1)nikεf ) (ln(N) + 2 ln(y))n dy.

(3.51)

The following theorem gives an arbitrary precision asymptotic formula for

these derivatives at central values.
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Theorem 3.2.3. Assume the notation above. Large n asymptotics for Λ(n)
(
f, k

2

)
and Ξ(n)(f, 0) is given to all orders by the asymptotic expansion

F (n) ∼
√

2πN
k
4 (1 + (−1)nikεf )

2n+1

Ln+1√(
1 + L

2

)
n−

(
k
2
− 1
)
L2

(3.52)

× e
k
4

(L−log(N))− 2n
L
− k

2
+1

(
1 +

b1

n
+
b2

n2
+ · · ·

)
(n→∞),

where L = L(n) ≈ 2 log
(

n
√
N

log(n
√
N)

)
is the unique solution of the equation

n = 1
2

(
πe

L−log(N)
2 − k

2
+ 1
)
L and each coefficient bk belongs to Q(L), the first

value being b1 = L4+9L3+32L2+24L+16
24(L+2)3

.

We have showed that the modular L-function L(f, s) and does not have a

pole so define

Ξ(f, z) := Λ

(
f,
k

2
− iz

)
. (3.53)

Depending on the sign of the functional equation we define the Taylor coeffi-

cients by

Ξ1(f, x) =
∑
n≥0

γf (n)

n!
xn =


Ξ(i
√
x) if ikεf = 1

Ξ(i
√
x)√
x

if ikεf = −1,

(3.54)

where

γf (n) =


(−1)n n!

(2n)!
· Ξ(2n)(0) if ikεf = 1

i2n+1 n!
(2n+1)!

· Ξ(2n+1)(0) if ikεf = −1.

(3.55)

By Theorem 1.3.6 or from the asymptotic expansion above we have that if
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d ≥ 1, thenJd,nγf (X) is hyperbolic with at most finitely many exceptions n.

3.2.5 Dedekind zeta-functions

Proof of Corollary 1.3.9

The Dedekind zeta-function case will require some setup and notation. We will

mostly follow the notation in [41]. Let K be a number field of degree j and OK

its ring of integers. Denote the embeddings by σ1, . . . , σr1 , ρ1, ρ1, . . . , ρr2 , ρr2

where there are r1 real embeddings and r2 pairs of complex embeddings so

that r1 + 2r2 = j. Denote the class group of K by Cl(K). Let C =
∏

τ C

and R = [
∏

τ C]+ = {z ∈ C : z = z} be the Minkowski space of K where

z = (zτ ) = (zτ ) is the usual complex conjugation and τ runs over the j

embeddings. We define the trace and norm by

Tr(z) =
∑
τ

zτ N(z) =
∏
τ

zτ , (3.56)

and have a Hermitian scalar product given by

〈x, y〉 =
∑
τ

xτyτ . (3.57)

We will also require the spaces

R± =

[∏
τ

R

]+

= {x ∈ R : xτ = xτ} (3.58)
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and

R∗+ =

[∏
τ

R∗+

]+

= {x ∈ R± : ∀τ xτ > 0} (3.59)

in order to define the two homomorphisms

| | : R∗ → R∗+ x = (xτ ) 7→ |x|= (|xτ |) (3.60)

log : R∗+
∼−→ R± x = (xτ ) 7→ log x = (log xτ ). (3.61)

Let p = {σ, σ} denote a conjugacy class of embeddings (so p has one or two

elements depending on whether the embedding is real or complex) and observe

that there is an isomorphism between R∗+ and
∏

pR∗+. We now have a Haar

measure, which we denote by dy
y

, that corresponds to the product measure∏
p
dt
t

where dt
t

is the usual Haar measure on R∗+. We can now define a suitable

generalization of the gamma function by

ΓK(s) = 2(1−2s)r2Γ(s)r1Γ(2s)r2 =

∫
R∗+

N(e−yys)
dy

y
. (3.62)

The Dedekind zeta-function for K is given by

ζK(s) =
∑
a⊂OK
integral

N(a)−s (3.63)

for Re(s) > 1, where N(a) = [OK : a] is the norm of the ideal a. For each



130

B ∈ Cl(K) we define the partial zeta function by

ζB(s) =
∑
a∈B

integral

N(a)−s. (3.64)

We therefore have

ζK(s) =
∑

B∈Cl(K)

ζB(s). (3.65)

We define the completed partial Dedekind zeta-function by

Λ(B, s) = |dK |
s
2π−

js
2 ΓK

(s
2

)
ζB(s) (3.66)

=

∫
R∗+

g(iy)N(y)s
dy

y

where dK is the discriminant of K and g is some theta function that we will not

specify now. The image of the unit groupO∗K under the mapping | |: R∗ → R∗+,

which we will denote by |O∗K |, is contained in the norm-one hypersurface

S = {x ∈ R∗+ : N(x) = 1}. (3.67)

We obtain a direct decomposition R∗+ = S × R∗+ by writing

y = xt
1
j , x =

y

N(y)
1
j

, t = N(y)

for any y ∈ R∗+. We will need to choose a fundamental domain F for the



131

action of the group

|O∗K |2= {|ε|2: ε ∈ O∗K}

on S. The log map log : R∗+ → R± takes S to the trace-zero space

H = {x ∈ R± : Tr(x) = 0}

and by Dirichlet’s unit theorem the group |O∗K | is taken to a complete lattice

G in H. We may choose F to be the preimage of any fundamental mesh of

the lattice 2G. Now using this decomposition we have that

Λ(B, s) =

∫ ∞
0

(f(a, t)− f(a,∞))t
s
2
dt

t
(3.68)

where B is the class of a−1 and

f(a, t) = fF (a, t) =
1

wK

∫
F

θ(a, ixt
1
j )d∗x. (3.69)

In the above equation wK is the number of roots of unity in K, d∗x is the

appropriate Haar measure such that d∗x × dt
t

= dy
y

, and the theta function is

defined by

θ(a, z) =
∑
a∈a

eπid
− 1
j

a 〈az,a〉 (3.70)

where da = |N(a)|2|dK | is the absolute value of the discriminant of a. Using
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the properties of the theta function it is not difficult to show

fF

(
a,

1

t

)
= t

1
2fF−1((adK)−1, t) (3.71)

and

fF (a,∞) = f(∞) =
2r1+r2−1R(k)

wK
, (3.72)

where F−1 is again a fundamental domain, dK is the different ideal of K, and

R(K) is the regulator of K. Note that (adK)−1 is the dual lattice of a and that

f(∞) does not depend on the fundamental domain or ideal choice so we will

supress notation whenever possible. We now define the completed Dedekind

zeta-function by

Λ(K, s) =
∑

B∈Cl(K)

Λ(B, s) = |dK |
s
2π−

js
2 ΓK

(s
2

)
ζK(s) (3.73)

=
2r1+r2R(K)hK
s(s− 1)wK

+

hK∑
i=1

∫ ∞
1

(f(ai, t)− f(∞))
(
t
s
2 + t

1−s
2

) dt
t
,

where hK is the class number of K and if Bi, 1 ≤ i ≤ hk are ideal classes, then

Bi is the class of a−1
i . This shows that we have the functional equation

Λ(K, s) = Λ(K, 1− s). (3.74)

The completed Dedekind zeta-function has suitable integral representation,

functional equation, and real coefficients so ζK(s) is good.
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Derivatives at central values and Dedekind Jensen polynomials

The nth derivative of the completed Dedekind zeta-function has the form

Λ(n)(K, s) =
2r1+r2R(K)hK · n!

wK
· (s− 1)n+1 − sn+1

sn+1(1− s)n+1
(3.75)

+

hK∑
i=1

1

2n

∫ ∞
1

(f(ai, t)− f(∞))
(
t
s
2 + (−1)nt

1−s
2

)
logn(t)

dt

t
.

At the central value s = 1
2

we have

Λ(n)

(
K,

1

2

)
=

2r1+r2+n+1R(K)hK((−1)n − 1)n!

wK
(3.76)

+

hK∑
i=1

1

2n

∫ ∞
1

(f(ai, t)− f(∞)) t
1
4 (1 + (−1)n) logn(t)

dt

t
.

In order to state the asymptotic expansion we need to find the first nonzero

coefficient of each f(ait). Let ε be a unit with norm 1, then the smallest

nonzero exponent in f(ai, t) is given by

mai = min{〈aε, a〉 : a ∈ ai, a 6= 0}.

Let

Mai = #{a ∈ ai : 〈aε, a〉 = mai},

then the expansion of f(ai, t) begins

f(ai, t) = f(∞) +
2r1+r2−1R(K)

wK
Maie

−πmai

(
t
dai

) 1
j

+ · · · . (3.77)
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We will let Ci = 2r1+r2−1R(K)
wK

Mai and

Fi(n) =
1

2n

∫ ∞
i

(f(ai, t)− f(∞)) t−
3
4 (1 + (−1)n) logn(t)dt (3.78)

in order to simplify the next theorem.

Theorem 3.2.4. Assume the notation above, then we have

Λ(n)

(
K,

1

2

)
=

2r1+r2+n+1R(K)hK((−1)n − 1)n!

wK
+

hK∑
i=1

Fi(n) (3.79)

and Fi(n) is given to all orders by the asymptotic expansion

Fi(n) ∼ Ci
√

2π(1 + (−1)n)

2n
Ln+1
i√

n
(

1 + Li
j

)
− 3

4j
L2
i

(3.80)

× e
Li
4
− jn
Li

+ 3j
4

(
1 +

bi,1
n

+
bi,2
n2

+ · · ·
)

(n→∞),

where Li = Li(n) ≈ j log
(

n
log(n)

)
is the unique solution of the equation n =(

maid
− 1
j

ai

j
πe

Li
j + 3

4

)
Li and each coefficient bi,k belongs to Q(Li).

We have shown that ζK(s) is good so define

Ξ(z) :=

(
−z2 − 1

4

)
Λ

(
K,

1

2
− iz

)
(3.81)

and

Ξ1(x) := Ξ(i
√
x) =

∑
n≥0

γK(n)

n!
xn (3.82)
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where the Taylor coefficients are given by

γk(n) = (−1)n
n!

(2n)!
· Ξ(2n)(0). (3.83)

The derivatives Ξ(2n)(0) are given by

Ξ(2n)(0) = (−1)n
hK∑
i=1

8
(

2n
2

)
Fi(2n− 2)− Fi(2n)

4

and so we can use the above asymptotic expansion above or Theorem 1.3.6

to show that if d ≥ 1, then Jd,nγK (X) is hyperbolic with at most finitely many

exceptions n.
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Chapter 4

Schwartz functions

This section will contain generalizations of the constructions use by Viazovska

and Cohn, Kumar, Miller, Radchennko, and Viazovska to solve the sphere

packing problem in dimension 8 and 24. We will discuss constructions analo-

gous to Viazovska’s +1 eigenfunction in Section 4.1 and constructions analo-

gous to Viazovska’s −1 eigenfunction in Section 4.2. Together these sections

prove the first part of Theorem 1.4.5. In Section 4.3 we will discuss sphere pack-

ing upper bounds via modular forms which proves the remainder of Theorem

1.4.5. Appendix B contains some other constructions of Schwartz functions

which have nice Fourier transforms using modular forms.



137

4.1 Background on modular forms

Recall that we have the following structure for the following graded rings:

M(SL2(Z)) =
⊕
k∈Z

Mk(SL2(Z)) = C[E4, E6],

M !(Γ) =
⊕
k∈Z

M !
k(Γ) = M(Γ)[∆−1].

We also recall the Jacobi theta functions

θ2(z) =
∑
n∈Z

eπi(n+ 1
2)

2
z,

θ3(z) =
∑
n∈Z

eπin
2z,

θ4(z) =
∑
n∈Z

(−1)neπin
2z.

Following the notation in [12] we define

U(z) = θ3(z)4

V (z) = θ2(z)4

W (z) = θ4(z)4.

(4.1)

With this notation we can write the Jacobi identity as U = V + W and we

have the fact

M(Γ(2)) = C[V,W ]. (4.2)
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The modular forms U, V , and W transform under SL2(Z) as follows:

U |2T = W, V |2T = −V, W |2T = U, (4.3)

U |2S = −U, V |2S = −W, W |2S = −V. (4.4)

We will also require the modular function

λ(z) :=
V

U
(z) ∈M !

0(Γ(2)). (4.5)

The function λ(s) is the Hauptmodul for Γ(2). It takes the values 0, 1, and∞

at the cusps i∞, 0, and −1 of Γ(2) respectively, and it decreases from 1 to 0

as z goes from 0 to i∞ along the imaginary axis. The function λ(z) satisfies

the transformation properties

(λ|0S)(z) = 1− λ(z)

(λ|0T )(z) = − λ(z)

1− λ(z)
.

(4.6)

If we define λS(z) := (λ|0S)(z), then we also have

(λS|0T )(z) =
1

λS(z)
. (4.7)

We again follow [12] to define logarithms of λ and λS. Because λ and λS do
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not vanish on H we can define

L(z) :=

∫ z

0

λ′(w)

λ(w)
dw and Ls(z) := −

∫ ı∞

z

λ′S(w)

λS(w)
dw, (4.8)

where the contours are chosen to approach 0 or i∞ along vertical lines. These

functions are essentially the regularized Eichler integrals of the weight 2 weakly

holomorphic modular form λ′(z)
λ(z)

at the cusps 0 and i∞. They therefore are

the holomorphic parts of some weight 0 harmonic Maass form and will play

the same role for constructing Schwartz functions on the “minus” side as E2

plays on the “plus” side. For more information on these topics see [3]. These

functions satisfy

L(it) = log(λ(it)) and LS(it) = log(λS(it)) = log(1− λ(it))

for t > 0, and so are holomorphic functions for which eL = λ and eLS = λS,

but are not in general the principal branches of the logarithms of λ and λS.

We have the following asymptotics as q → 0:

L(z) = πiz + 4 log(2)− 8q
1
2 +O(q)

LS(z) = −16q
1
2 − 64

3
q

3
2 +O(q

5
2 ).

(4.9)

The functions L and LS satisfy the transformation properties

L|0T±1 = L − LS ± πi, LS|0T = −LS, (4.10)

L|0S = LS, LS|0S = L, (4.11)
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where f |kT−1 = f(z − 1).

4.2 Proof of Theorem 1.4.5

4.2.1 The +1 eigenfunction construction

In this section we discuss generalizations of Viazovska’s +1 eigenfunction con-

struction. Let

φ(z) =
∑

cφ(n)qn,

be a 1-periodic function on the upper half-plane. The following proposition

presents our function of interest in a form where its Fourier transform is easily

calculable.

Proposition 4.2.1. Let φ(z) be a 1-periodic function that vanishes as z → i∞

and suppose there is an r0 ≥ 0 such that

φ

(
i

t

)
= O

(
t−

d
2

+2er
2
0πt
)

t→∞.

Then for x ∈ Rd

a(x) :=

∫ i

−1

φ

(
− 1

z + 1

)
(z + 1)

d
2
−2eπi|x|

2zdz +

∫ i

1

φ

(
− 1

z − 1

)
(z − 1)

d
2
−2eπi|x|

2zdz

− 2

∫ i

0

φ

(
−1

z

)
z
d
2
−2eπi|x|

2zdz + 2

∫ i∞

i

φ (z) eπi|x|
2zdz

is a radial Schwartz function and â(x) = (−i)− d2a(x).
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Proof. By hypothesis, φ(z) decays exponentially as Im(z) → ∞, all of the

above terms will be bounded and a and all of its derivatives will decay expo-

nentially so a is Schwartz.

Because the integrals are absolutely and uniformly convergent we can

switch the order of the integrals to see

â(x) =

∫ i

−1

φ

(
− 1

z + 1

)
(z + 1)

d
2
−2(−iz)−

d
2 eπi|x|

2(− 1
z )dz

+

∫ i

1

φ

(
− 1

z − 1

)
(z − 1)

d
2
−2(−iz)−

d
2 eπi|x|

2(− 1
z )dz

− 2

∫ i

0

φ

(
−1

z

)
z
d
2
−2(−iz)−

d
2 eπi|x|

2(− 1
z )dz + 2

∫ i∞

i

φ (z) (−iz)−
d
2 eπi|x|

2(− 1
z )dz.

Let w = −1
z

then

â(x) = (−i)−
d
2

∫ i

1

φ

(
1− 1

w − 1

)(
1− 1

w

) d
2
−2

w
d
2
−2eπi|x|

2wdw

+ (−i)−
d
2

∫ i

−1

φ

(
1− 1

w + 1

)(
−1− 1

w

) d
2
−2

w
d
2
−2eπi|x|

2wdw

− 2(−i)−
d
2

∫ i

i∞
φ (w) eπi|x|

2wdw + 2(−i)−
d
2

∫ 0

i

φ

(
− 1

w

)
w

d
2
−2eπi|x|

2wdw

= (−i)−
d
2

∫ i

1

φ

(
− 1

w − 1

)
(w − 1)

d
2
−2 eπi|x|

2wdw

+ (−i)−
d
2

∫ i

−1

φ

(
− 1

w + 1

)
(−w − 1)

d
2
−2 eπi|x|

2wdw

+ 2(−i)−
d
2

∫ i∞

i

φ (w) eπi|x|
2wdw − 2(−i)−

d
2

∫ i

0

φ

(
− 1

w

)
w

d
2
−2eπi|x|

2wdw

= (−i)−
d
2a(x).
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The only thing we used here is that φ(z) is 1-periodic.

In her work, Viazovska used special choices of functions φ to show that the

resulting a(x) has the additional property that it has double zeros at vectors

of length
√

2k, for k > 1 and k > 2, and a single zero at vectors of length
√

2 and 2 in dimensions 8 and 24 respectively. The significance of this is that

the former numbers are the non-minimal length vectors in the E8 and Leech

lattice respectively. Her idea was to relate a(r) satisfying the hypothesis in

the proposition above to a function with these specific zeros. The asymptotic

behavior of the φ combined with the simple characterization zeros of the sin2

factor in the next proposition offers this description.

Proposition 4.2.2. Suppose that φ(z) is a weakly holomorphic quasi-modular

form of weight k = −d
2

+ 4 and depth 2 on SL2(Z) satisfying the conditions of

Proposition 4.2.1. Then if r ≥ r0 we have that

a(r) = −4 sin2

(
πr2

2

)∫ i∞

0

φ

(
−1

z

)
z
d
2
−2eπir

2zdz.

Proof. By direct calculation we have that

− 4 sin2

(
πr2

2

)∫ i∞

0

φ

(
−1

z

)
z
d
2
−2eπir

2zdz

=

∫ i∞

0

φ

(
−1

z

)
z
d
2
−2eπir

2(z+1)dz − 2

∫ i∞

0

φ

(
−1

z

)
z
d
2
−2eπir

2zdz

+

∫ i∞

0

φ

(
−1

z

)
z
d
2
−2eπir

2(z−1)dz

=

∫ i∞+1

1

φ

(
− 1

z − 1

)
(z − 1)

d
2
−2eπir

2zdz − 2

∫ i∞

0

φ

(
−1

z

)
z
d
2
−2eπir

2zdz
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+

∫ i∞−1

−1

φ

(
− 1

z + 1

)
(z + 1)

d
2
−2eπir

2zdz.

We can deform the path of integration because the integrand decays as Im(z)→

∞ to arrive at

∫ i

1

φ

(
− 1

z − 1

)
(z − 1)

d
2
−2eπir

2zdz − 2

∫ i

0

φ

(
−1

z

)
z
d
2
−2eπir

2zdz

+

∫ i

−1

φ

(
− 1

z + 1

)
(z + 1)

d
2
−2eπir

2zdz

+

∫ i∞

i

[
φ

(
− 1

z − 1

)
(z − 1)

d
2
−2 + φ

(
− 1

z + 1

)
(z + 1)

d
2
−2 − 2φ

(
−1

z

)
z
d
2
−2

]
eπir

2zdz.

By using the transformation properties of a depth 2 quasi-modular form we

find that this last expression is a(r).

4.2.2 The −1 eigenfunction construction

In the previous section we discussed the method Viazovska used to construct

Schwartz functions that were eigenfunctions of the Fourier transform with

eigenvalue +1. Viazovska also used theta functions to construct Schwartz

functions with eigenvalue −1 under the Fourier transform. Here we generalize

this by studying weakkly holomorphic modular forms on Γ(2). For a modular

form ψ(z) ∈M !
k(Γ(2)), let ψγ(z) := ψI(z)|kγ.

Proposition 4.2.3. Let ψI(z) be a weight −d
2

+2 weakly holomorphic modular

form on Γ(2) that vanishes as z → 0 and suppose that there is an r0 ≥ 0 such
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that

ψI(it) = O(er
2
0πt) t→∞

ψI(z) = ψT (z) + ψS(z).

Then for x ∈ Rd,

b(x) :=

∫ i

−1

ψT (z)eπi|x|
2zdz +

∫ i

1

ψT (z)eπi|x|
2zdz

− 2

∫ i

0

ψI(z)eπi|x|
2zdz − 2

∫ i∞

i

ψS(z)eπi|x|
2zdz.

is a radial Schwartz function and b̂(x) = −(−i)− d2 b(x).

Proof. The fact that b(x) is a Schwartz functions follows the same way as

before. The Fourier transform of b(x) is given as

b̂(x) =

∫ i

−1

ψT (z)(−iz)−
d
2 eπi|x|

2(− 1
z )dz +

∫ i

1

ψT (z)(−iz)−
d
2 eπi|x|

2(− 1
z )dz

− 2

∫ i

0

ψI(z)(−iz)−
d
2 eπi|x|

2(− 1
z )dz − 2

∫ i∞

i

ψS(z)(−iz)−
d
2 eπi|x|

2(− 1
z )dz.

We substitute w = −1
z

as before and use the facts

ψT

(
−1

z

)
= −ψT (z)z−

d
2

+2,

ψI

(
−1

z

)
= ψS(z)z−

d
2

+2

to show that b̂(x) = −(−i) d2 b(x).
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Following the same ideas as for a(x), we have

Proposition 4.2.4. Suppose that ψI(z) is a weakly holomorphic modular form

of weight −d
2

+ 2 on Γ(2) satisfying the conditions of Proposition 4.2.3. Then

if r ≥ r0 we have that

b(r) = −4 sin2

(
πr2

2

)∫ i∞

0

ψI(z)eπir
2zdz.

Proof. The proof follows almost the same as the proof for Proposition 4.2.2.

The main points we use to show this are that

ψI(z − 1) = ψI(z + 1) = ψT (z)

and

ψT (z)− ψI(z) = −ψS(z).

The following propositions generalize Proposition 4.2.3 and Proposition

4.2.4 to allow us to use L(z). As we will explain below, this construction was

not needed to resolve the sphere packing problem in dimensions 8 and 24, but

allows better control over n− in general in Theorem 1.4.2.

Proposition 4.2.5. Let g(z) = f(z)L(z) where f(z) is a weight −d
2
+2 weakly

holomorphic modular form on SL2(Z). Suppose g(z) vanishes as z → 0 and
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that there is an r0 ≥ 0 such that

g(it) = O(ter
2
0πt) t→∞.

Then for x ∈ Rd,

c(x) :=

∫ i

−1

gT (z)eπi|x|
2zdz +

∫ i

1

gT−1(z)eπi|x|
2zdz

− 2

∫ i

0

g(z)eπi|x|
2zdz − 2

∫ i∞

i

gS(z)eπi|x|
2zdz.

is a radial Schwartz function and ĉ(x) = −(−i)− d2 c(x).

Proof. As before we have

ĉ(x) =

∫ i

−1

gT (z)(−iz)−
d
2 eπi|x|

2(− 1
z )dz +

∫ i

1

gT−1(z)(−iz)−
d
2 eπi|x|

2(− 1
z )dz

− 2

∫ i

0

g(z)(−iz)−
d
2 eπi|x|

2(− 1
z )dz − 2

∫ i∞

i

gS(z)(−iz)−
d
2 eπi|x|

2(− 1
z )dz.

Let w = −1
z

to arrive at

ĉ(x) = (−i)−
d
2

∫ i

1

gT

(
− 1

w

)
w

d
2
−2eπi|x|

2wdw + (−i)−
d
2

∫ i

−1

gT−1

(
− 1

w

)
w

d
2
−2eπi|x|

2wdw

− 2(−i)−
d
2

∫ i

i∞
g

(
− 1

w

)
w

d
2
−2eπi|x|

2wdw − 2(−i)−
d
2

∫ 0

i

gS

(
− 1

w

)
w

d
2
−2eπi|x|

2wdw.

By using the transformation properties of L given in equation (4.10) we have
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that

gT |− d
2

+2S = −gT−1

gT−1|− d
2

+2S = −gT .

Using these properties it is clear to see that ĉ(x) = −(−i)− d2 c(x).

In analogy with the previous propositions we have the following.

Proposition 4.2.6. Suppose that g(z) is as in Proposition 4.2.5. Then if

r ≥ r0 we have that

c(r) = −4 sin2

(
πr2

2

)∫ i∞

0

g(z)eπir
2zdz.

Proof. By direct calculation we have

− 4 sin2

(
πr2

2

)∫ i∞

0

g(z)eπir
2zdz

=

∫ i∞

0

g(z)eπir
2(z+1)dz − 2

∫ i∞

0

g(z)eπir
2zdz +

∫ i∞

0

g(z)eπir
2(z−1)dz

=

∫ i∞

1

gT−1(z)eπir
2zdz − 2

∫ i∞

0

g(z)eπir
2zdz +

∫ i∞

−1

gT (z)eπir
2zdz.

The integrand decays as z → i∞ so we can deform the path of integration to

arrive at

∫ i

1

gT−1(z)eπir
2zdz − 2

∫ i

0

g(z)eπir
2zdz +

∫ i

−1

gT (z)eπir
2zdz
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+

∫ i∞

i

(gT−1(z) + gT (z)− 2g(z))eπir
2zdz.

By the properties of L given in equation (4.10) we have

gT±1 = fL|− d
2

+2T
±1 = f(L − LS ± πi).

From this it is clear that gT + gT−1 = 2g − 2gS. Using this transformation

property completes the proof.

4.2.3 The zeros of the Schwartz functions

The following proposition gives the conditions needed to control the location

of the simple zero and when the double zeros begin for the Schwartz functions.

Proposition 4.2.7. Assume that the minimal length vector of the lattice of

interest has the form r0 =
√

2k for some k ∈ Z. If

g(z) = p(z) +O
(
z2e2πiz

)
with

p(z) = c0e
−r20πiz + c1ze

−(r20−2)πiz + c2e
−(r20−2)πiz + · · ·+ c2k−1z + c2k

where the cj are constants and c0, c2m−1 6= 0 for 1 ≤ m ≤ k, then if

f(r) = −4 sin2

(
πr2

2

)∫ i∞

0

g(z)eπir
2zdz
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f
(√

2k
)

= f(r0) = 0,

f ′
(√

2k
)

= f ′(r0) 6= 0,

f
(√

2m
)
6= 0 0 ≤ m ≤ k − 1.

Proof. If we make the substitution z = it then

f(r) = −i
d
2
−14 sin2

(
πr2

2

)[∫ ∞
0

p(it)e−πr
2tdt+

∫ ∞
0

(g(it)− p(it)) e−πr2tdt
]
.

We have that

∫ ∞
0

p(it)e−πr
2tdt =

∫ ∞
0

(
c0e

r20πt + ic1te
(r20−2)πt + · · ·+ ic2k−1t+ c2k

)
e−πr

2tdt

=
c0

π(r2 − r2
0)

+
ic1

π2(r2 − r2
0 + 2)2

+
c2

π(r2 − r2
0 + 2)

+ · · ·+ ic2k−1

π2r4
+
c2k

πr2
.

When this term is multiplied by sin2
(
πr2

2

)
it is clear that we get a zero at

r = r0 =
√

2k and that a
(√

2m
)
6= 0 form 0 ≤ m ≤ k− 1. The first term also

ensures that the zero at r = r0 only has order one. It is also clear that a(r)

has double zeros at r =
√

2m for m > k.

To use this for the +1 eigenfunction we replace g(z) by φ
(
−1
z

)
z
d
2
−2. To

use it for the −1 eigenfunction we replace g(z) by ψ(z).
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4.3 Proof of Theorem 1.4.2

4.3.1 The +1 eigenfunction

In this section we will study when it is possible to construct the +1 eigenfunc-

tions. Let d ≡ 0 (mod 8). We can assume that our quasi-modular form φ(z)

is always a holomorphic quasi-modular form divided by some power of ∆(z).

The conditions given above are equivalent to demanding that

φ̃(z) = ∆n(z)φ(z)

is a weight −d
2

+ 4 + 12n quasi-modular form of depth 2 on SL2(Z) such that

φ̃(z) = O(qn+1) with n minimum. All such forms are of the form

φ̃(z) =
∑
i≥1

αiE
ai
2 (z)Ebi

4 (z)Eci
6 (z)

with atleast one ai = 2, all ai ≤ 2, and 2ai + 4bi + 6ci = −d
2

+ 4 + 12n for all

i. Equivalently

φ̃(z) ∈ E2
2M− d

2
+12n(SL2(Z))

⊕
E2M− d

2
+2+12n(SL2(Z))

⊕
M− d

2
+4+12n(SL2(Z)).

The number of such forms is

δd,n := dim
(
M− d

2
+4+12n(SL2(Z))

)
+dim

(
M− d

2
+2+12n(SL2(Z))

)
+dim

(
M− d

2
+12n(SL2(Z))

)
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where

dim(Mk(SL2(Z))) =


⌊
k
12

⌋
+ 1 k 6≡ 2 (mod 12)⌊

k
12

⌋
k ≡ 2 (mod 12).

A short calculation shows that δd,n = 3n − d
8

+ 2. In order to ensure that

φ̃(z) = O(qn+1) there needs to be a nontrivial solution to a system of n + 1

homogeneous equations with 3n − d
8

+ 2 variables. Therefore, we must have

2n > d
8
− 1.

Example. For d = 8 we can let n = 1 and find that φ̃(z) = E2
2E

2
4−2E2E4E6+

E2
6 which matches the function found in [62].

For d = 48 we can let n = 3 and find

φ̃(z) = ∆3(z)φ(z) = 1556796748E2
2(z)E3

4(z)− 77235475E2
2(z)E2

6(z)

− 704733786E2(z)E2
4(z)E6(z)− 1029088507E4

4(z) + 254261020E4(z)E2
6(z)

= −1673465440313507328q4 +O(q5).

Dimension d = 48 is especially interesting as the bound given by the +1 eigen-

function in this case exactly matches the lower bound given by the even uni-

modular lattice P48n.

4.3.2 The −1 eigenfunction

We will follow the same basic argument as in the previous section. Proposition

4.2.3 and Proposition 4.2.5 show that the modular function, ψ(z), we use to

construct our Schwartz function must be a sum of a modular form g of weight
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−d
2

+ 2 on Γ(2) such that g = gT + gS and a function of the form fL where f

is a modular form of weight −d
2

+ 2 on SL2(Z). In [12] it was shown that this

is equivalent to

ψ̃(z) ∈
(
U2 − V 2

)
M− d

2
−2+12n(SL2(Z))

⊕
WM− d

2
+12n(SL2(Z))

⊕
LM− d

2
+2+12n(SL2(Z)),

where ψ̃(z) = ∆n(z)ψ(z). We now want to choose a ψ̃(z) in this space such that

ψ̃(z) has a constant term without a z. This ensures that the Schwartz function

will have a simple zero at
√

2n. We also need to ensure ψ̃S(z) = O(qn+ 1
2 ) so

that that ψ(z) vanishes as z → 0. ψ̃S(z) is only supported on half-integral

exponents so this gives a system of n+ 2 homogeneous equations. Let

δ′d,n := dim
(
M− d

2
−2+12n(SL2(Z))

)
+dim

(
M− d

2
+12n(SL2(Z))

)
+dim

(
M− d

2
+2+12n(SL2(Z))

)
,

then a short computation shows δ′d,n = 3n − d
8

+ 1 and so to guarantee a

nontrivial solution we must have 2n ≥ d
8

+ 1.

Remark. One can ignore the contribution from L for d = 8 and d = 24 and

get the same minimal value for n. For example, for d = 8 using the method

described above we find

ψ̃(z) =
1

3

(
U2 − V 2

)
E6 +

2

3
WE2

4 ,

which is equal to the form used in [62]. For this reason L did not show up in

the constructions in [62] or [11].
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Remark. This also shows that for d = 48 the minimal possible n is n = 4.

Therefore, one cannot match the function found on the “plus” side and resolve

the sphere packing problem for d = 48 using this method.

The following table gives the sphere packing upper bounds obtained using

the functions constructed here.

d Given upper bound Best upper bound Best lower bound

8 0.25 0.25 0.25

16 0.235331 0.025 0.0147

24 0.0019 0.0019 0.0019

32 2.8× 10−3 1.3× 10−4 1.1× 10−5

40 1.2× 10−5 ??? 7.9× 10−8

48 2.3× 10−5 1.1× 10−6 2.3× 10−8

56 7.3× 10−8 ??? 2.3× 10−11

64 1.7× 10−7 ??? 1.3× 10−12

72 4.5× 10−10 4.0× 10−10 3.4× 10−20

80 1.1× 10−9 ??? 1.1−16

88 2.8× 10−12 ??? 6.3× 10−25

96 7.7× 10−12 1.3× 10−13 2.7× 10−27
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Appendix A

First Appendix

The Sage and Mathematica code below implements the procedure described

in the proof of Theorem 1.3.1.

Sage code

e p s i l o n l i s t = [0 , 0 , 0 . 0295 , 0 . 021 , 0 . 0163 , 0 . 0081 , 0 . 001 ] #l i s t o f our e p s i l o n c h o i c e s

e r r o r l i s t =[0 ,0 , [0 ,12719.9+1.59552∗10ˆ8 ,328255+1.7476∗10ˆ8] , [0 ,10559.2+4.30607∗10ˆ6 ,328255+4.

60022∗10ˆ6 ,3 .77919∗10ˆ6+4.91402∗10ˆ6] , [0 ,9026.37+51727.4 ,328255+54478.9 ,3 .77919∗10ˆ6+57374.2 ,

1 .75707∗10ˆ7+60420 .8 ] , [ 0 ,5893 .44+1.54878∗10ˆ 6 ,328255+1.58991∗10ˆ 6 ,3 .77919∗10ˆ6+1.63212∗10ˆ

6 ,1 .75708∗10ˆ7+1.67544∗10ˆ 6 ,5 .37043∗10ˆ7+1.71991∗10ˆ 6 ] ] #from Mathematica and Lemma 2 .3

#b u i l d s ymbo l i c e x p r e s s i o n s f o r Hankel de t e rminan t s in terms o f power sums s i

S.<s0 , s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8>=PolynomialRing (QQ)

s s =[s0 , s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 ]

Matr ices=[matrix ( [ [ s s [ k ] for k in [ j . . j+i 1 ] ] for j in [ 0 . . i 1 ] ] ) for i in [ 0 . . 5 ] ]

MM=[M. determinant ( ) for M in Matr ices ] #Hankel de t e rminant in terms o f S i

AA.<a0 , a1 , a2 , a3 , a4 , a5>=PolynomialRing (QQ) #the c o e f f i c i e n t s a j o f a po l ynomia l

aa=[a0 , a1 , a2 , a3 , a4 , a5 ]

var ( ’w, p , j ’ ) #p=p i

c=2∗pˆ2/3

s=10 #po in t o f bounding e r r o r s s ee Remark f o l l o w i n g t h e p roo f o f Theorem 1.1

#d e f i n e t h e f u n c t i o n R( j ,w) t h a t approx imates p (n+j )/ p (n)

R= exp ( j ∗c∗w/(1 + sq r t (1 + j ∗c∗wˆ2) ) )∗ ( sq r t (1 + j ∗c∗wˆ2) w)/ ( (w 1)∗(1 + j ∗c∗wˆ2)ˆ(3/2) )

A=R. s e r i e s (w, s ) . t runcate ( ) #degree s 1 Tay lor po l ynomia l

T.<E1 ,E2 , E3 , E4 , E5 ,w, p , j>=PolynomialRing (QQ)

EE=[0 ,E1 , E2 , E3 , E4 , E5 ]
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A=T(A) #put A in the po l ynomia l r i n g

def c o l l e c t e r r o r s ( c , e r r ) : #minimizes c , g i v en l i s t o f bounds on | E i |

M=c . monomials ( )

C=[a . n ( ) for a in c . c o e f f i c i e n t s ( ) ]

l=len (C)

to sub= dict ( (EE[ i ] , e r r [ i ] ) for i in [ 1 . . len ( e r r ) 1 ] )

new=[]

for i in [ 0 . . l 1 ] :

i f M[ i ] . degree (E1)==M[ i ] . degree (E2)==M[ i ] . degree (E3)==M[ i ] . degree (E4)==M[ i ] .

degree (E5)==0: #a monomial w i th no e r r o r terms w i l l s t a y t h e same

new . append (C[ i ]∗M[ i ] . subs (p=RR( pi ) ) . n ( ) )

else :

new . append ( abs (C[ i ]∗M[ i ] . subs ( to sub ) . subs (p=RR( pi ) ) . n ( ) ) )

return min(0 ,sum(new ) )

for d in [ 2 , 3 , 4 , 5 ] :

e p s i l o n=e p s i l o n l i s t [ d ]

elem = [ ( 1 ) ˆ i ∗aa [ d i ] / aa [ d ] for i in [ 0 . . d ] ] #elem sym f un c t s in r o o t s o f sum( a iX ˆ i )

for i in [ d+1..2∗d 2 ] :

elem . append (0)

power sums=[d ] #l i s t o f power sums

for k in [ 1 . . 2 ∗ d 2 ] : #b u i l d s power sums r e c u r s i v e l y u s ing Newton Girard formu lae

power sums . append ( ( 1 ) ˆ ( k 1 ) ∗ k∗elem [ k]+sum ( [ ( 1 ) ˆ ( k 1+ i )∗ elem [ k i ]∗ power sums

[ i ] for i in [ 1 . . k 1 ] ] ) )

h a n k e l l i s t =[0 ,0 ] #po lynomia l e x p r e s s i o n f o r Hankel d e t in terms o f c o e f f i c i e n t s a j

for m in [ 2 . . d ] :

to sub = dict ( ( s s [ i ] , power sums [ i ] ) for i in [ 0 . . 2 ∗m 2 ] )

D=MM[m] . subs ( to sub )∗ aa [ d ] ˆ (2∗m 2 )

D=AA(D) #put D back in po l ynomia l r i n g

h a n k e l l i s t . append (D)

e r r=e r r o r l i s t [ d ]

to sub = dict ( ( aa [ i ] , b inomial (d , i )∗ (A. subs ( j=i )+EE[ i ]∗wˆs ) ) for i in [ 0 . . d ] )

D e l t a i s p o s i t i v e =[ ]

for m in [ 2 . . d ] :

D=h a n k e l l i s t [m] #D i s D {d ,m}

Delta=T(D. subs ( to sub ) ) #wi th A s and symbo l i c e r r o r s p l u g g ed in

k=3∗m∗(m 1 ) / 2

w=T(w)

minimized Delta = sum ( [ Delta . c o e f f i c i e n t ({w: i } ) . subs (p=RR( pi ) ) . n ()∗wˆ( i k ) fo

r i in [ 0 . . k+1 ] ] ) + sum ( [ c o l l e c t e r r o r s ( Delta . c o e f f i c i e n t ({w: i } ) , e r r ) . n ()∗wˆ(

i k ) for i in [ k+2. . (2∗m 2 ) ∗ s ] ] )

i f minimized Delta . subs (w=ep s i l o n ) . n ( ) > 0 :

D e l t a i s p o s i t i v e . append (m)

else :

print d ,m, ’ choose sma l l e r e p s i l o n ’

i f len ( D e l t a i s p o s i t i v e )==d 1 :
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print ’ For d =’ , d , ’ Jˆ{n , d} i s hype rbo l i c f o r a l l n > ’ , f l o o r (1/( c . subs (p=R

R( pi ) )∗ ep s i l o n ˆ2)+1/24)

else :

print ’ choose sma l l e r e p s i l o n ’

Mathematica code

c = 2/3∗Pi ˆ2 ;

R[ j , w ] : = Exp [ c∗ j ∗w/(1+Sqrt [1+c∗ j ∗wˆ 2 ] ) ] ( Sqrt [1+c∗ j ∗ wˆ 2 ] w)/ ( (w 1 ) ( 1+ c∗ j ∗ wˆ2)ˆ(3/2) )

L [ w ]:=(1+21∗w) / ( 1 w)∗Exp [ 1 / ( 2 ∗w)]+Exp [ 1 /w] / (wˆ 2 wˆ3)

Do [ Pr int [N[ Maximize [{R[ i , w]∗L [w] / (wˆ10∗(1 L [w])) ,0<=w<=0.0295} ,w] , 3 0 ] ] , { i , 1 , 2} ]

Do [ Pr int [N[ Maximize [{R[ i , w]∗L [w] / (wˆ10∗(1 L [w])) ,0<=w<=0.021} ,w] , 3 0 ] ] , { i , 1 , 3} ]

Do [ Pr int [N[ Maximize [{R[ i , w]∗L [w] / (wˆ10∗(1 L [w])) ,0<=w<=0.0163} ,w] , 3 0 ] ] , { i , 1 , 4} ]

Do [ Pr int [N[ Maximize [{R[ i , w]∗L [w] / (wˆ10∗(1 L [w])) ,0<=w<=0.0081} ,w] , 3 0 ] ] , { i , 1 , 5} ]

Do [ Pr int [N[ Maximize [{Abs [D[R[ i ,w] ,{w, 1 0 } ] ] / Fa c t o r i a l [10] ,0<=w<=0.0295} ,w] , 3 0 ] ] , { i , 1 , 2} ]

Do [ Pr int [N[ Maximize [{Abs [D[R[ i ,w] ,{w, 1 0 } ] ] / Fa c t o r i a l [10] ,0<=w<=0.021} ,w] , 3 0 ] ] , { i , 1 , 3} ]

Do [ Pr int [N[ Maximize [{Abs [D[R[ i ,w] ,{w, 1 0 } ] ] / Fa c t o r i a l [10] ,0<=w<=0.0163} ,w] , 3 0 ] ] , { i , 1 , 4} ]

Do [ Pr int [N[ Maximize [{Abs [D[R[ i ,w] ,{w, 1 0 } ] ] / Fa c t o r i a l [10] ,0<=w<=0.0081} ,w] , 3 0 ] ] , { i , 1 , 5} ]

Do [ I f [ CountRoots [ Par t i t i onsP [ i +3]∗xˆ3+3∗Part i t i onsP [ i +2]∗xˆ2+3∗Part i t i onsP [ i +1]∗x+Pa r t i t i o n s

P[ i ] , x ]<3 , Pr int [ i ] ] , { i , 9 4 , 344} ]

Do [ I f [ CountRoots [ Par t i t i onsP [ i +4]∗xˆ4+4∗Part i t i onsP [ i +3]∗xˆ3+6∗Part i t i onsP [ i +2]∗xˆ2+4∗Par t i t

ionsP [ i +1]∗x+Part i t i onsP [ i ] , x ]<4 , Pr int [ i ] ] , { i , 2 06 , 572} ]

Do [ I f [ CountRoots [ Par t i t i onsP [ i +5]∗xˆ5+5∗Part i t i onsP [ i +4]∗xˆ4+10∗Part i t i onsP [ i +3]∗xˆ3+10∗Part

i t i on sP [ i +2]∗xˆ2+5∗Part i t i onsP [ i +1]∗x+Part i t i onsP [ i ] , x ]<5 , Pr int [ i ] ] , { i , 381 ,2105} ]
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Appendix B

Second Appendix

Here we discuss other possible constructions for Schwartz functions which be-

have well under the Fourier transform. Let Hn(x) be the n-th Hermite polyno-

mial. Let φ(z) =
∑

n≥n0
cφ(n)qn be a weight −d

2
weakly holomorphic modular

form. Define

h(r) :=

∫ i∞

0

φ

(
−1

z

)
z
d
2
−1H1

(√
−2πiz|r|

)
eπir

2zdz.

Proposition B.0.1. We have that

ĥ(r) = i
d
2h(r).

Proof. As before we can switch the order of integration. The Fourier transform
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of H1(
√
−2πiz|r|)eπir2z is

(
−i√
−iz

)d
eπir

2(− 1
z ) so we have

ĥ(r) =

∫ i∞

0

φ

(
−1

z

)
z
d
2
−1

(
−i√
−iz

)d
H1

(√
2π

−iz
|r|

)
eπir

2(− 1
z )dz.

We make the change of variable z = 1
w

to find

ĥ(r) = −i
d
2

∫ 0

i∞
φ(w)w−

d
2

+1+ d
2
−2H1(

√
−2πiw|r|)eπir2wdw

= i
d
2

∫ i∞

0

φ(w)w−1H1(
√
−2πiw|r|)eπir2wdw

= i
d
2

∫ i∞

0

φ

(
− 1

w

)
w

d
2
−1H1(

√
−2πiw|r|)eπir2wdw.

Proposition B.0.2. We have that

h(0) = 2
√

2πcφ(0).

Proof. We use the modular transformation of φ and the fact that H1(x) = 2x

to rewrite h(r) as

h(r) =

∫ i∞

0

φ(z)z−1
(

2
√
−2πiz|r|

)
eπir

2zdz

= 2
√

2π|r|
∫ ∞

0

φ(it)t−
1
2 e−πr

2tdt.
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We can evaluate the integral

∫ ∞
0

t−
1
2 e−πr

2tdt =
1

|r|

in order to prove the proposition.

The following is a generalization of a construction in work by Radchenko

and Viazovska [48] on Fourier interpolation on the real line. Much more can

actually be said using these kinds functions as building blocks.

Proposition B.0.3. Let gε(z) =
∑
cε(n)q

n
2 be a weight −d

2
+ 2 weakly holo-

morphic modular form such that gε
(
−1
z

)
= ε(−iz)−

d
2

+2gε(z) for ε ∈ {+,−}.

Define

jε(r) :=
1

2

∫ 1

−1

gε(z)eπir
2zdz,

where the integral is over the semicircle from −1 to 1. Then

ĵε(r) = (−i)dεjε(r)

and

jε(
√
n) = cε(−n).

The proof of this statement is similar to the ones presented in Section 4

so it won’t be given here. It should be noted that the behavior under Fourier

transformation can be proven without changing the path of the contour integral

so gε could be replaced by other (not necessarily holomorphic) modular objects.
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[49] S. Ramanujan. Congruence properties of the partition functions. Math-

ematische Zeitschrift, 9: 147-153, 1921.



166

[50] R. Rankin. Contributions to the theory of Ramanujan’s function

τ(n) and similar arithmetical functions. I. The zeros of the function∑∞
n=1 τ(n)/ns on the line Rs = 13/2. II. The order of the Fourier co-

efficients of integral modular forms. Proc. Cambridge Philos. Soc. 35,

351-372, 1939.

[51] R. Rhoades and M. Waldherr. A Maass lifting of θ3 and class numbers

of real and imaginary quadratic fields. Mathematical Research Letters,

18, 1001-1012, 2011.

[52] A. Selberg. Bemerkungen über eine Dirichletsche Reihe, die mit der

Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid.

43, 47-50, 1940.

[53] J.P. Serre. Formes modulaires et fonctions zêta p-adiques. Modular
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