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Abstract 
 

Random Estimating Functions to Accommodate Heterogeneity in Meta-Analysis 
By Na Bo 

 
 

Introduction: Meta-analysis is defined here as the statistical analysis of a collection of 
analytic results for the purpose of integrating the findings (DerSimonian & Laird, 1986). A 
major concern in meta-analysis is heterogeneity among the studies contributing analytic 
findings. Failure to account for heterogeneity could lead to misleading conclusions in a 
meta-analysis. The aim is to use statistical approaches to derive a common estimated odds 
ratio that represents the common truth behind multiple similar studies. 
 
Methods: To accommodate heterogeneity, we propose to add a random perturbation to each 
component estimating function. The advantages of this proposal over a random-effects 
model are that, under reparametrization, the random estimating function remains unbiased, 
remains subject to an additive perturbation, and has a variance that is well-governed and 
easy to evaluate. 
 
Results: Our new method can capture between- table heterogeneity and produces a valid 
estimate of the log odds ratio. An advantage of our new method is that it can be applied to 
further meta-analysis studies under reparametrization, by simply applying the Delta Method. 
 
Discussion: A major advantage of our random estimating equation method over existing 
random-effects methods is that our new method can be implemented into meta-analyses for 
any 1-1 transformation of the odds ratio. Unlike a random-effects model, however, our 
approach does not easily suggest a data generation mechanism, which makes it challenging 
to conduct a simulation study. The ways of generating random observations under our 
model of a randomly perturbed Mantel-Haenszel estimating function need to be explored 
further. 
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CHAPTER 1: INTRODUCTION 
 
1.1 Background 

Meta-analysis is defined here as the statistical analysis of a collection of analytic results 

for the purpose of integrating the findings (DerSimonian & Laird, 1986). A major 

concern in meta-analysis is heterogeneity among the studies contributing analytic 

findings. Failure to account for heterogeneity could lead to misleading conclusions in a 

meta-analysis (Kontopantelis et al., 2013). To explore these ideas, suppose the meta-

analysis consists of a collection of case-control studies, a series of 2´2 tables. The aim 

that is to use statistical approaches to derive a common estimated odds ratio that 

represents the common truth behind multiple similar studies. Complicating the statistical 

analysis, however, is the need to adjust for possible heterogeneity across the 2´2 tables. 

The two most widely used methods are the fixed-effect model (Mantel & Haenszel,1959) 

and the random-effect model (DerSimonian & Laird, 1986). The latter method adequately 

account for heterogeneity. However, problems arise under reparametrization, which we 

describe below.	

 

1.2 Problem Statement 

To accommodate heterogeneity in estimating a common log odds ratio in a meta-analysis, 

a popular approach is to use a random-effect model. Under this approach, each study has 

its own log odds ratio parameter, θ", with an additive random perturbation (Bhaumik et 

al., 2012; DerSimonian & Laird, 1986) 

θ" = 𝜃 + 𝜖',  ϵ"	𝑖𝑖𝑑	𝐹 0, 𝜏0 ,                                       
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where 𝐹 0, 𝜏0  is a distribution with mean 0 and variance τ0. Under this model, each 

study’s log odds ratio is unbiased, in the sense that 𝐸 𝜃' = 𝜃, with variance given by 

𝑣𝑎𝑟 𝜃' = 𝜏0. 

The above model is sensitive to the choice of parametrization and is limited to additive 

random perturbation. For example, when taking the square root of a study-specific log 

odds ratio, the reparametrized log odds ratio will be biased, E( 𝜃') ≠ 𝜃. Moreover, the 

exponent of θ" is subject to multiplicative, rather than additive perturbation: 

e;< = 𝑒>𝑒?@. 

Since random-effect models have properties that change drastically under 

reparametrization, we propose an alternative approach in the common situation where we 

are uncertain as to the singular choice of parameter which is subject to the additive 

random perturbations 𝜖'.  

In this paper, we put forward a new approach, in which a random perturbation is added 

into each component estimating function. By applying the random perturbations to the 

component estimating functions rather than to the exposure effects directly, we achieve 

inference in meta-analysis that is invariant under reparametrization. Moreover, our 

approach reduces to the simple Mantel-Haenszel estimator when there is no heterogeneity 

among the 2´2 tables. 

 

1.3 Purpose Statement 

The purpose of this paper is to generate a random-perturbed estimating function to 

estimate the common log odds ratio in meta-analysis, which accommodates heterogeneity 

across studies. Under 1-1 reparametrization, the new random estimating function remains 
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unbiased, subject to an additive perturbation, and has a variance that is well-governed and 

easily evaluated under reparametrization. Estimators of the common log odds ratio, 

between-table variance and variance of the common log odds ratio are examined under 

two cases: independent binomials with large row totals but a small number of strata ( i.e., 

non-sparse data); and independent binomials with a large number of strata but small row 

totals ( i.e., sparse data). Analyses of real data are conducted to compare our new 

approach with the Mantel-Haenszel method and the DerSimonian & Laird method. 

 

1.4 Dataset Description 

Eight randomized clinical trials with an exercise or diet intervention of at least 6 months 

of duration among participants at high risk of diabetes are included as the dataset that we 

use in this paper (Orozco et al., 2008). Since the specific interventions, eligibility criteria 

and the length of follow-up ranging from 1 to 6 years varied among studies, 

heterogeneity was likely to be considerable. 

We form 2 x 2 tables (a, b, c, d) using the outcomes data in Appendix 5 of Orozco et al. 

(2008). For example, in the Bo 2007 study, the incidence of diabetes was 3/169 in the 

exercise & diet intervention group and 12/166 in the control group, and so (a, b, c, d) 

entries are (3, 166, 12, 154). 

Here are the 2 x 2 tables  (a, b, c, d) data:  

Bo 2007:  3, 166, 12, 154   

Da Qing 1997:  58, 68, 89, 44 

DPP 2002:  155, 924, 313, 769 

DPS 2002:  44, 197, 72, 167 
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IDPP 2006: 47, 73, 73, 60 

Kosaka 2005:  3, 99, 33, 323 

Oldroyd 2005: 7, 30, 8, 24 

Wing 1998:  5, 27, 2, 29 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Meta-analysis 

The use of meta-analysis for research synthesis has become popular in medical research, 

where information on efficacy of a treatment is available from a number of clinical 

studies with similar treatment protocols. Meta-analysis is defined as the statistical 

analysis of a collection of analytic results for the purpose of integrating the findings. If 

we were to consider each individual study separately, then any one of the studies is either 

too small or too limited in scope to come to unequivocable or generalizable conclusions 

about the treatment effect. Combining findings across studies becomes an attractive way 

to show evidence of treatment efficacy. Meta-analysis in medical research often focuses 

on the odds ratio ( Engels et al. 2000; Deeks 2002) between treatment and control groups 

with a binary indicator of efficacy ( Bhaumik et al., 2012; DerSimonian & Laird, 1986). 

 

2.2 Mantel-Haenszel Estimate(MH) 

The Mantel-Haenszel estimator is popular, but considers no heterogeneity across studies. 

Let y" = (	a", 𝑏', 𝑐', 𝑑') be the entries in a 2×2 contingency table. Unconditionally, the 

(	a", 𝑏', 𝑐', 𝑑') are two independent bonmial distributions; if we were to condition on the 

row totals m"G, m"0 and column totals s"G, s"0, then the (	a", 𝑏', 𝑐', 𝑑') follow a non-central 

hypergeometric distribution with odds ratio ψ = e;, 

P 𝑎' = 𝑥 𝑚'G,𝑚'0; 𝜓 =
O@P
Q

O@R
S@PTQ

UQ

VW(U)
, 

where PX 𝜓 = Y@P
Z

Y@R
[@P\Z

𝜓Z]
Z^_ , 

where 𝑥 runs from a = max 0,𝑚'0 − 𝑠'G  to b = min	(m"G, 𝑠'G). 
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It is easily shown that  

𝐸 𝑎'𝑑' = 𝜓𝐸 𝑏'𝑐' ， 

so that 𝑔'(𝑦', 𝜃) = 𝑎'𝑑' − 𝑒>𝑏'𝑐' is a zero-mean estimating function for the log odds 

ratio, θ. 

Suppose that there are k 2×2 contingency tables with a common odds ratio, and that a 

pooled estimating function is desired. The pooled Mantel-Haenszel estimating function is 

given by (Breslow & Liang, 1982), 

𝑔 𝑦, 𝜃 = G
√j

𝑔'(𝑦', 𝜃)j
'^G = G

√j
(𝑎'𝑑' − 𝑒>𝑏'𝑐')/𝑁'j

'^G , 

where 𝑁' = 𝑎' + 𝑏' + 𝑐' + 𝑑'. 

The Mantel-Haenszel estimating function is unbiased, in the sense that 𝐸 𝑔 𝑦, 𝜃 = 0, 

with variance that can be easily estimated by 𝑣𝑎𝑟 𝑔 𝑦, 𝜃 = 𝑘\G 𝑣𝑎𝑟{𝑔' 𝑦', 𝜃 }j
'^G . 

By solving the equation 𝑔 𝑦, 𝜃 = 0, the Mantel-Haenszel estimator of the log odds ratio 

is given by 𝜃 = log	( 𝑎'𝑑'/𝑁') − log	( 𝑏'𝑐'/𝑁'), which is consistent and 

asymptotically normal under mild regularity conditions ( Liang, 1985). 

The Mantel-Haenszel approach is popular because of its simplicity and wide application. 

The Mantel-Haenszel estimator is valid in both the large-strata setting ( large N", small k) 

and the sparse data setting ( small N", large k) ( Robins, Breslow & Greenland, 1986); 

moreover, the marginal row and column totals M" = (𝑚'G,𝑚'0, 𝑠'G, 𝑠'0) can be considered 

either fixed or random ( McCullagh, 1991), and extra-binomial variation is allowed 

within tables ( Liang, 1985). The chief drawback to the fixed-effects Mantel-Haenszel 

approach is its failure to take into account of the heterogeneity in a meta-analysis. 

The specific form of the asymptotic variance of 𝜃 depends on the above scenarios ( 

Breslow & Liang, 1982; Liang, 1985; Robins, Breslow & Greenland, 1986; McCullagh, 
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1991). For example, in the sparse data setting, the asymptotic variance of 𝜃 is given by ( 

Breslow & Liang, 1982) 

avar 𝜃 = w_x(y@)

z \
{|@
{}

R =
y@
R(~@,>)

�}�@�@
�@

R =
y@
R(~@,>)
�@�@
�@

R  . 

In this paper, we used combined estimator to estimate the variance of the MH log odds 

ratio, which shows consistency in both the large-strata setting and the sparse data setting 

(Robins, Breslow & Greenland, 1986). The empirical MH variance estimator of log odds 

ratio is defined by  

kVar� 𝑙𝑛𝜓�� = 𝑘𝑉z 𝜃 = 𝑘𝜓��\0 𝑉𝑎𝑟z(𝜓��) 

where Var� 𝜓�� = �@\U���@ R@ /j
�@
@@

, 

R" =
_@(Y@R\�@)

�@
, 

S" =
�@(Y@P\_@)

�@
, 

N" = 𝑚'G + 𝑚'0. 

The symmetric version of Hauck estimator is given by (Breslow & Liang, 1982) 

V�� =

𝑆'0
𝑤''

𝑅'0
𝑤'j

𝑆''
0 𝑅''

0

G
0

 

where w" =
G

_@�X.�
+ G

Y@P\_@�X.�
+ G

Y@R\�@�X.�
+ G

�@�X.�

\G
. 

The combined estimator is defined as  

V�  =
𝑁�𝑉�� + 𝑘0𝑉z
𝑁� + 𝑘0

 

where N� = 𝑁'' . 
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2.3 DerSimonian & Laird Estimate (DSL) 

The DerSimonian & Laird Method addresses two issues: (1) the assignment of weights 

that reflect the relative “value” of the information provided in a study in purpose of 

combining studies; (2) one may be using incommensurable studies to answer the same 

question (DerSimonian & Laird, 1986).  

The DerSimonian & Laird approach assumes that there is a distribution of treatment 

effects and utilize the observed effects from individual studies to estimate this 

distribution. The approach allows for treatment effects to vary across studies and 

provides an objective method for weighting that can be made progressively more general 

by incorporating study characteristics into the analysis (DerSimonian & Laird, 1986). 

Suppose that there is a series of k comparative clinical consisting of treatment and control 

groups in each study. The number of patients with the event in each group are 

independent binomial random variables with probabilities p"G and p"0, i indexing from 1 

to k. The method divides the observed treatment effect in each study into two additive 

parts: the true treatment effect, θ", and the sampling error, e". The variance of sampling 

error is usually estimated by s'0 from the ith observed data. The true treatment effect θ" in 

each study is assumed to be associated with the mean effect for a population of possible 

treatment evaluations, 𝜃, and the deviation of the ith study’s effect from the population 

mean, 𝜖', 

θ" = 𝜃 + 𝜖', with ϵ"	𝑖𝑖𝑑	𝐹 0, 𝜏0 . 

In estimating pooled log odds ratio, DSL implicitly assume that the row totals m"G, m"0 

are large. The table-specific empirical odds ratios can be calculated by  
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y" = log	(
𝑎'𝑑'
𝑏'𝑐'

) 

with asymptotic variances well-approximated by  

w"
\G = G

_@
+ G

]@
+ G

�@
+ G

¤@
. 

The variance of the random effects is estimated by  

τ0 = max	{0,
𝑤' 𝑦' − 𝑦¥ 0 − 𝑘 − 1

𝑤' −
𝑤'0
𝑤'

} 

where y¥ =
¥@~@
¥@

. 

It is easily to be shown that the pooled log odds ratio is estimated by  

𝜃§�¨ = 𝑤'∗ 𝜏0 𝑦'/ 𝑤'∗(𝜏0) 

with avar 𝜃§�¨ = G
ª@
∗(«R)

 

where w'
∗ 𝜏0 = 𝜏0 + 𝑤'\G \G. 

The DSL approach is popular since it considers heterogeneity across study and the pooled 

treatment effect and between-study variance can be estimated intuitively. 

While attractive, the above model is sensitive to the choice of parametrization. Non-

affine transformations of 𝜃' generally are biased, e.g., 

𝐸 𝜃'0 = 𝜃0 + 𝜏0 ≠ 𝜃0; 
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moments that can be difficult to evaluate without further knowledge of the perturbation 

distribution 𝐹, e.g., 

𝐸 𝜃' = 𝐸 𝜃 + 𝜖'
P
R , 𝑣𝑎𝑟 𝜃' = 𝑣𝑎𝑟 𝜃 + 𝜖'

P
R ; 

 

moreover, exponential of 𝜃' is subject to multiplicative, rather than additive perturbation, 

e.g., 

𝑒>@ = 𝑒>𝑒?@. 
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CHAPTER 3: METHODOLOGY 

3.1 Study Design 

To accommodate heterogeneity, we propose to add a random perturbation to each 

component estimating function: 

g¬ 𝑦, 𝜃 =
1
𝑘

𝑔?' 𝑦', 𝜃 =
j

'^G

1
𝑘

{𝑔' 𝑦', 𝜃 + 𝜖'}
j

'^G

, 𝜖"	𝑖𝑖𝑑	𝐹 0, 𝜏0 , 

where the perturbations ϵ" and observations y are independent. It follows that the random 

estimating function above is unbiased, in the sense that E g¬ 𝑦, 𝜃 = 0, with variance 

larger than under the unperturbed model, var g¬ 𝑦, 𝜃 = 𝑣𝑎𝑟 𝑔 𝑦, 𝜃 + 𝜏0. If the ϵ" 

were observed, then one could estimate θ by directly solving the equation g¬ 𝑦, 𝜃 = 0, 

yielding a solution 𝜃? with larger asymptotic variance than the naïve estimator 𝜃 that 

ignores heterogeneity; for example, in sparse data setting, 

avar 𝜃? =
𝑘\G 𝑣𝑎𝑟(𝑔') + 𝜏0

𝑘\
G
0 𝐸 −𝜕𝑔'𝜕𝜃

0 > 𝑎𝑣𝑎𝑟 𝜃 . 

The advantages of this proposal over a random-effects model are that, under 

reparametrization, the random estimating function proposed above remains unbiased, 

remains subject to an additive perturbation, and has a variance that is well-governed and 

easy to evaluate. To see this, consider a 1-1 transformation θ ⟼ η(θ), such that the 

inverse function θ(η) is differentiable. Mimicking what would occur to the fully 

parametric score function under this transformation, we define the random estimating 

function under the η parametrization as  

g?∗ 𝑦, 𝜂 =
𝜕𝜃 𝜂
𝜕𝜂 𝑔? 𝑦, 𝜃 𝜂 , 
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where we see that E g?∗ 𝑦, 𝜂 = 0 and var g?∗ 𝑦, 𝜂 = ²> ³
²³

0
𝑣𝑎𝑟[𝑔? 𝑦, 𝜃 𝜂 ]. 

Moreover, if the ϵ" were observed, then the resulting estimator 𝜂? of η, found by solving 

g?∗ 𝑦, 𝜂 = 0, is invariant in the sense that 𝜂? = 𝜂(𝜃?), with asymptotic variance given by 

avar 𝜂? = ²³ >
²>

0
𝑎𝑣𝑎𝑟(𝜃?), in accordance with the Delta Theorem. 

 

3.2 Log Odds Ratio Estimation and Between Table Variance Estimation 

3.2.1 Estimation Process of 𝜃 and 𝜏0 

We can consider at least three cases: Case 1--Margins M" of 2×2 tables are fixed; Case 

2—independent binomials with large row totals m"G,𝑚'0; Case 3—independent binomial 

with small row totals m"G,𝑚'0. Case 2 and Case 3 will be evaluated in this paper.  

To estimate θ and τ0, we adopt the simple approach by Paule & Mandel (1982) to our 

random estimating function context. After initializing τ0 = 0, we iterate between the 

following two steps until the estimates of θ and τ0 converge: 

(a) Keeping the current estimate of τ0 fixed, solve the following estimating equation 

for θ: 

gª ¶R 𝑦, 𝜃 =
1
𝑘

𝑤' 𝜏0 𝑎'𝑑' − 𝑒>𝑏'𝑐'
𝑁'

= 0
j

'^G

, 

where w"(𝜏0) is a convenient choice of weight, discussed below, satisfying    

w" 0 = 1. It follows that 

 𝜃 𝜏0 = log	{ 𝑤' 𝜏0 𝑎'𝑑'/𝑁'} − log	{ 𝑤' 𝜏0 𝑏'𝑐'/𝑁'}, which reduces to the  

usual Mantel-Haenszel estimator when τ0 = 0. 
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(b) Keeping the current estimate of θ fixed, solve the following estimating equation 

for τ0: 

																					h y, τ0, 𝜃 = y@
R(~@,>)

«R�w_x{y@(~@,>)|?@;>}
j
'^G − 𝑘 − 1 = 0, 

where var{g"(𝑦', 𝜃)|𝜖'; 𝜃} is a model, discussed below, of the variance of the 

estimating function g" 𝑦', 𝜃 = (𝑎'𝑑' − 𝑒>𝑏'𝑐')/𝑁', keeping the perturbation ϵ" 

fixed. 

The specific choices of w"(𝜏0) and var{g"(𝑦', 𝜃)|𝜖'; 𝜃} for the use in steps (a) and 

(b) will depend on the underlying model assumptions. Case 2 and Case 3 are 

considered below. Both assume that extra-binomial variation is not present within 

the 2×2 tables. 

3.2.2 Case 2: Independent binomials with large row totals 𝑚'G, 𝑚'0. 

A convenient weight that is the optimal unconditional weight when θ = 0 is given by 

w" 𝜏0 =
z(\

{|¸@
{} ;>^X)

w_x(y¸@;>^X)
= 1 + «R�@

Y@PY@R¹@R G\¹@R

\G
, 

where, when the row totals are large and θ = 0, we can safely substitute the crude 

estimator 𝑝'0 = (𝑎' + 𝑐')/𝑁' for the unknown nuisance parameter p"0. When the row 

totals are large, Breslow & Liang (1982) suggest using the following approximation to 

the variance for use in step (b): 

var(g"|𝜖'; 𝜃) ≐ 𝑒0> ]@
R�@

R

�@
R (

G
_@�

P
R
+ G

]@�
P
R
+ G

�@�
P
R
+ G

¤@�
P
R
). 

In the addendum to Breslow & Liang (1982), it pointed out that is variance 

approximation has a ‘curious lack of symmetry’ under interchange of the rows or 

columns in the 2×2 table. A symmetrized version is available by briefly considering the 



 - 14 - 

rescaled estimating function g'∗ = 𝑒\
}
R(𝑎'𝑑' − 𝑒>𝑏'𝑐')/𝑁', where interchange of the rows 

or columns in the 2×2 table would have the effect of merely changing the sign of g'∗. 

Using the geometric mean of the two available large-sample variance approximation of 

g'∗,  it follows that  

var g" 𝜖'; 𝜃 = 𝑒>𝑣𝑎𝑟(𝑔'∗|𝜖'; 𝜃) ≐ 𝑒> _@]@�@¤@
�@
R ( G

_@�
P
R
+ G

]@�
P
R
+ G

�@�
P
R
+ G

¤@�
P
R
). 

3.2.3 Case 3: Independent binomials with small row totals 𝑚'G, 𝑚'0. 

When the row totals within the 2×2 tables are not large, it is advisable to ‘borrow 

strength’ to better estimate the nuisance parameter p"0 in the unconditional weight (4). A 

simple shrinkage estimator of p'0 such as would arise from an Empirical Bayes approach 

when the prior distribution is p"0~𝐵𝑒𝑡𝑎(𝛼, 𝛽), when θ = 0 is given by 

p"0∗ = _@��@�Á∗

�@�Á∗�Â∗
, 

where 𝛼∗ = 𝑝∗(1 − 𝛾∗)/𝛾∗ and 𝛽∗ = (1 − 𝑝∗)(1 − 𝛾∗)/𝛾∗, with 

𝑝∗ = (𝑎' + 𝑐')/ ( 𝑁') and 𝛾∗ obtained by solving the equation 

𝑞 𝑦, 𝑝∗, 𝛾∗ = _@��@\�@¹∗ R

�@¹∗ G\¹∗ {G� �@\G Å∗}
j
'^G − 𝑘 − 1 = 0. 

When 𝜃 ≠ 0, the unconditional variance for use in step (b) is (McCullagh, 1991, p. 277) 

𝑣𝑎𝑟 𝑔' 𝜖'; 𝜃 = Y@PY@RÆ}

�@
R {𝑚'G𝑝'G 1 − 𝑝'G + 𝑚'0𝑝'0 1 − 𝑝'0 + 𝑝'G − 𝑝'0 0}, 

where we can estimate the parameters 𝑝'G and 𝑝'0 by 

𝑝'G
Ç =

È@R
É

PTÈ@R
É �}

G�	
È@R
É

PTÈ@R
É �}

, 𝑝'0
Ç = �@�ÁR

É

Y@R�ÁR
É�ÂR

É, 

with 𝛼0
Ç = 𝑝0

Ç(1 − 𝛾0
Ç)/𝛾0

Ç, 𝛽0
Ç = (1 − 𝑝0

Ç)(1 − 𝛾0
Ç)/𝛾0

Ç, 𝑝0
Ç = 𝑐' /( 𝑚'0), and 𝛾0

Ç 

obtained by solving the equation 
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𝑞 𝑦, 𝑝0
Ç, 𝛾0

Ç =
�@\Y@R¹R

É R

Y@R¹R
É G\¹R

É {G� Y@R\G ÅR
É}

j
'^G − 𝑘 − 1 = 0. 

Alternatively, symmetry-corrected estimates of 𝑝'G and 𝑝'0 might be preferred, given by 

the geometric means 𝑝'G
Ç 𝑝'G

ÇÇ
P
R and 𝑝'0

Ç 𝑝'0
ÇÇ

P
R, where  

𝑝'G
ÇÇ = _@�ÁP

É

Y@P�ÁP
É�ÂP

É, 𝑝'0
ÇÇ =

È@P
ÉÉ

PTÈ@P
ÉÉ�

T}

G�
È@P
ÉÉ

PTÈ@P
ÉÉ�

T}
, 

with 𝛼G
Ç = 𝑝G

Ç(1 − 𝛾G
Ç)/𝛾G

Ç , 𝛽G
Ç = (1 − 𝑝G

Ç)(1 − 𝛾G
Ç)/𝛾G

Ç , 𝑝G
Ç = 𝑎' /( 𝑚'G) , and 𝛾G

Ç 

obtained by solving the equation 

𝑞 𝑦, 𝑝G
Ç, 𝛾G

Ç =
_@\Y@P¹P

É R

Y@P¹P
É G\¹P

É {G� Y@R\G ÅP
É}

j
'^G − 𝑘 − 1 = 0. 

 

3.3 Variance Estimation of Log Odds Ratio 

3.3.1 Variance Estimator of Log Odds Ratio in Case 2 

We use the fact that  

𝑒> − 𝑒> = ¥@(«R)(_@¤@\Æ}]@�@)/�@
¥@ «R ]@�@/�@

, 

to obtain  

𝑎𝑣𝑎𝑟(𝑒>) ≐
¥@
R «R {«R�Æ}�@�@�@�@

�@
R ( P

�@Ê
P
R
Ê P
�@Ê

P
R
Ê P
�@Ê

P
R
Ê P
�@Ê

P
R
)}

Ë@ ÌR �@�@
�@

R . 

By using the Delta Theorem, it yields 

avar 𝜃 ≐ 𝑉0 =
¥@
R «R {«R�Æ}�@�@�@�@

�@
R ( P

�@Ê
P
R
Ê P
�@Ê

P
R
Ê P
�@Ê

P
R
Ê P
�@Ê

P
R
)}

Ë@ ÌR �@�@
�@

R . 
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3.3.2 Variance Estimator of Log Odds Ratio in Case 3 

We borrow the idea of weight average of Empirical estimator and model based estimator 

from Breslow & Liang (1982) to generate the variance estimator. 

A model-based estimator of the variance is given by 

avar 𝜃 ≐ 𝑉Í� 					=
¥@
R «R [«R�

O@PO@R�
} O@PÈ@P PTÈ@P ÊO@RÈ@R PTÈ@R Ê È@PTÈ@R

R

�@
R ]

ÆR}
Ë@ ÌR O@PO@R PTÈ@P È@R

�@

R , 

where we substitute p"G
Ç 𝑝'G

ÇÇ
P
R and p"0

Ç 𝑝'0
ÇÇ

P
R for unknown p"G and p"0.  

Alternatively, an empirical estimator of the variance is given by 

avar 𝜃 ≐ 𝑉Íz =

Ë@
R ÌR �@�@T�

}�@�@
R

�@
R

Ë@ ÌR �@�@
�@

R . 

Following the strategy of Breslow & Liang (1982), a combined estimator that is 

consistent under both asymptotic scenarios, Case 2 and Case 3, is the weighted average  

VÎÏ =
�@ ÐR�jRÐÑÒ

�@ �jR
, (𝑗 ∈ 𝑀, 𝐸 ). 
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CHAPTER 4: RESULTS 

The meta-analysis of exercise and diet interventions to prevent type 2 diabetes (Orozeo et 

al., 2008) included two studies with small row totals, and six studies with large row 

totals, and so conceivably, we could use either Case 2 method or our Case 3 method. 

After initializing τ0 = 0, we iterated between the two steps discussed in section 3.2.1 

until the difference in parameter estimate between estimates of parameters θ and τ0 

converged. We set the convergence condition as the current iteration and last iteration 

less than or equal to 0.0001.  

4.1 Case 2 Results: Independent Binomials with large row totals 𝒎𝒊𝟏, 𝒎𝒊𝟐. 

Table1 

 theta se(theta) tau.sq 
MH  -0.815 0.083 0.000 

 DSL  -0.795 0.098 0.008 
random 

estimating 
equation 

-0.819 0.084 0.406 

 

Under Case 2, we obtained a convergence in the third iteration (Table 2). As expected, 

the estimated log odds ratios were similar using the MH method, DSL method, and our 

proposed method, but the estimated heterogeneity across tables differed considerably, as 

did the estimated standard errors. The estimated between-table variance under MH 

method, DSL method and our method are 0.000, 0.008 and 0.406, respectively. Since our 

method measures the between-table variance as the estimating function scale and the DSl 

method measures the between-table variance on the exposure effect scale, the two 

estimates of τ0 are not comparable. The estimated standard errors under the MH method, 

DSL method and our method were 0.08332074, 0.09759384 and 0.0842608, respectively. 

The standard error under our random estimating equation approach was only slightly 
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larger than the standard error under the MH method, suggesting that the heterogeneity 

across studies in the meta-analysis was not large.  

 

4.2 Case 3 Results: Independent Binomials with small row totals 𝒎𝒊𝟏, 𝒎𝒊𝟐. 

Table 2 

 theta se(theta) tau.sq 
MH  -0.815 0.083 0.000 

 DSL  -0.795 0.098 0.008 
random 

estimating 
equation 

-0.818 0.084  0.267 

 

Under Case 3, we obtained convergence in the third iteration (Table 2). The DSL method 

was intended for Case 2 only, and makes no adjustment for small row totals, and so the 

DSL results remained the same as in Case 2. The estimated between-table variance under 

MH method, DSL method and our method are 0.000, 0.008 and 0.267 respectively. The 

estimated τ0′𝑠 show the same general conclusion as case 2. Compared with case 2, the 

estimated τ0 under our method was smaller here.   

The estimated log odds ratios under MH method, DSL method and our method were quit 

similar. The estimated standard errors under MH method, DSL method and our method 

(using our model-based method) were 0.083, 0.098 and 0.084, respectively. The standard 

error under our random estimating equation was only slightly larger than the standard 

error under the MH method.  

 

From these results above, we conclude that our new method can capture between- table 

variance and obtain a valid estimates of the log odds ratio. An advantage of our new 
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method is that it can be applied to further meta-analysis studies under reparametrization 

by simply applying the Delta Method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 20 - 

CHAPTER 5: Discussion 

5.1 Strengths 

The purpose of this report is to examine our new method of estimating the pooled log 

odds ratio in a meta-analysis, which unlike existing random-effects methods is not 

sensitive to the choice of parametrization. We considered two different cases: Case 2 

consisted of independent binomials with large row totals, and Case 3 consisted of 

independent binomials with small row totals. From the results in Chapter 4, we see that 

our proposed method successfully captures the heterogeneity across studies and yields 

valid log odds ratio estimates under these two scenarios. As expected, the standard error 

of the estimated log odds ratio was larger under our random estimating equation method 

than the one obtained by the MH method, which naively ignores heterogeneity. A major 

advantage of our random estimating equation method over existing random-effects 

methods is our the new method can be implemented into meta-analyses under any 1-1 

transformation θ ↦ η(θ), such that θ(η) is differentiable, by using the transformed 

estimating equation 

g?∗ 𝑦, 𝜂 = ²>(³)
²(³)

𝑔?{𝑦, 𝜃 𝜂 }, 

where E g?∗ 𝑦, 𝜂 = 0  with var g?∗ 𝑦, 𝜂 = ²> ³
²³

0
𝑣𝑎𝑟[𝑔? 𝑦, 𝜃 𝜂 ] . If ϵ"  were 

observed, then the resulting estimate of η¬ can be found by solving g?∗ 𝑦, 𝜂 = 0, which 

is invariant. Moreover, the estimated asymptotic variance of 𝜂? can be easily solved. 

 

5.2 Limitations 

While our proposed approach improved upon the MH method by incorporating possible 

heterogeneity across the 2×2 tables, the resulting standard error of the estimated log odds 
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ratio was only slightly larger under our method compared to the MH method. This may 

be because that the data set that we used here was not a purely Case 2 or Case 3 data set. 

We can see that the row totals in Oldroyd’s 2005 study and Wing’s 1998 study were 

relatively small compared with six other studies. This may affect the performance of our 

new method. In future research, we will examine this issue. 

In future research, we also will conduct a simulation study. This will be challenging, 

since the proposed method is not primarily used as a data generation process. The ways 

of generating random observations (a,b,c,d) under our model of a randomly perturbed 

Mantel-Haenszel estimating function need to be explored further.  
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