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Abstract 

 

Spatial epidemiology of carbapenem-resistant Enterobacteriaceae (CRE) in Tennessee, 2015-

2018 

By Kyle E. Winston 

 

 

Carbapenem-resistant Enterobacteriaceae (CRE) is an emerging public health threat. Bacteria 

in this group are difficult to treat and readily share resistance genes. Because CRE was 

traditionally viewed as a hospital-acquired infection, most studies have investigated risk 

factors and transmission dynamics associated with healthcare settings. However, community 

spread of CRE is also an important and understudied threat. Beef cattle production is a 

potential driver of community transmission. Cattle have been shown to carry CRE organisms 

and cattle farms regularly spread bacteria into the surrounding environment. Analyses 

presented here examine the spatial structure of beef cattle farming, CRE rates, and covariates 

at the county level in Tennessee from 2015 to 2018. CRE case counts were collected by the 

Tennessee Department of Health through its mandatory disease reporting surveillance system. 

These counts, and yearly populations, were pooled at the county level across the four-year 

study period, and rates per 100,000 person-years were calculated for each county. Three 

potential exposures were evaluated—the number of beef cattle operations with 1-49 heads of 

cattle in each county, the number of beef cattle operations with 50 or more heads of cattle in 

each county, and the beef cattle counts in each county. Variable mapping, Moran’s I spatial 

autocorrelation tests, aspatial linear regression, and spatial Durbin regression were conducted 

to determine the association between beef cattle and CRE rates at the county level. These 

analyses demonstrated a weak but statistically significant protective effect between beef cattle 

and CRE rates, as well as a strong spatial autocorrelation in CRE rates between neighboring 

counties. These ecological findings provide insight into the utility of using spatial regression 

methods to understand community transmission of diseases and demonstrate there is 

community transmission of CRE demonstrate inter-county community spread of CRE. 
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1. Introduction 

1.1 Antimicrobial Resistance 

 In March 1942, Anne Miller, a 33-year-old mother from New Haven, Connecticut, was 

facing a grave threat. Streptococcal bacteria had invaded her bloodstream and none of the 

treatments her doctors had tried were able to clear the infection. That is when, through the 

determination of her doctors and a stroke of luck, they were able to obtain a small vial of 

penicillin. She received her first dose on March 14, and, by the next day, her fever had already 

broken. Miller is the first person to have been saved by penicillin, which was regarded by many 

as a miracle drug (Yale New Haven Health, 2017). 

 Penicillin was the first of many antibiotics that helped revolutionize modern medicine. 

Diseases that were difficult to survive suddenly became easy to treat, and many common 

infections no longer invoke fear in the minds of the public like they used to. However, pathogens 

have not been idle. Over time, resistance has evolved against many antibiotics, and resistance 

genes can rapidly spread through bacterial populations. The World Health Organization defines 

antimicrobial resistance (AMR) as occurring “when bacteria, viruses, fungi and parasites change 

over time and no longer respond to medicines making infections harder to treat and increasing 

the risk of disease spread, severe illness and death” (World Health Organization, 2020). There 

are many mechanisms through which a pathogen can become resistant to antimicrobials, which 

include restricting access of the antimicrobial into the cell, getting rid of the antimicrobial 

through pumps in the cell wall, creating enzymes to destroy the antimicrobial, change the 

molecules that the antimicrobial targets, and bypassing the mechanism that the antimicrobial 

disrupts. These mechanisms all follow the same general evolutionary pathway. Bacteria and 

other pathogens are ubiquitous in people, animals, and the environment and, through random 
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chance, some of them have mutations that make them resistant to an antimicrobial. Then, they 

encounter an antimicrobial which kills the susceptible germs, but not the resistant ones. These 

resistant germs then multiply and spread. Some can even pass on resistance genes directly to 

other germs (US Centers for Disease Control and Prevention, 2020). Thus, antimicrobial 

resistant strains begin to propagate and spread. 

Drug-resistant pathogens are an international threat. They can spread rapidly across the 

globe. Further, resistant populations of pathogens can take over and become the predominant 

strain that causes infections. For example, the rate of resistance to ciprofloxacin, a common 

antibiotic used to treat urinary tract infections, is as high as 92.9% for Escherichia coli and 

79.4% for Klebsiella pneumoniae in some countries. In many countries, over half the patients 

treated for these do not respond to traditional first-line treatments (World Health Organization, 

2020). 

 This threat is not just a global one. Here in the United States, best estimates from the 

Centers for Disease Control and Prevention (CDC) indicate that more than 2.8 million antibiotic-

resistant infections occur in the US each year and more than 35,000 people die each year as a 

result. Additionally, resistance extends hospital stays, undermines medical treatments, disrupts 

food production, and shortens life expectancies (US Centers for Disease Control and Prevention, 

2019). As germs develop new resistance mechanisms and spread to new populations, the threat 

of AMR continues to increase. It is an urgent public health issue. 

1.2 The Enterobacteriaceae Family of Bacteria 

 The Enterobacteriaceae family is a large family of rod-shaped, Gram-negative bacteria 

that are facultative anaerobes, meaning they grow with or without the presence of oxygen. Many 
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organisms in this family are part of the normal gut flora in the intestines of humans and animals. 

Others can be found in the environment or as parasites growing on animals and plants 

(Martinson et al., 2019; Woodford et al., 2014). The common genera that are relevant to 

antibiotic resistance in this family are Escherichia, Enterobacter, and Klebsiella. Other common 

genera include Citrobacter, Morganella, Proteus, Providencia, Salmonella, Serratia, and 

Shigella, as well as dozens of less common genera. These bacteria can cause a wide range of 

infections in respiratory, wound, urinary tract, invasive, tissue, other sites. They are also a major 

source of nosocomial, or hospital-acquired, infection (Lerner et al., 2013). 

 Members of the Enterobacteriaceae family often carry resistance genes, and they can 

transfer these genes between organisms through a process known as conjugation. Further, there 

are different levels of resistance. One class of resistant Enterobacteriaceae is known as extended-

spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. The beta-lactam class of 

antibiotics contains many narrow- and broad-spectrum antibiotics, such as penicillins, 

cephalosporins, and carbapenems. ESBL-producing Enterobacteriaceae produce an enzyme that 

breaks down many antibiotics in this class, but not the broad-spectrum carbapenems, which 

remain one of the few antibiotics that are effective against ESBL-producing bacteria. The CDC 

classifies these resistant bacteria as a serious threat (US Centers for Disease Control and 

Prevention, 2019). 

 Even more concerning is the class of bacteria known as carbapenem-resistant 

Enterobacteriaceae (CRE), which the CDC classifies as an urgent threat, the highest threat level. 

There are very few, if any, remaining antibiotics available to treat these bacteria (US Centers for 

Disease Control and Prevention, 2019). These bacteria can be resistant to carbapenem in multiple 

ways. Some genera, such as Proteus and Providencia, are naturally more resistant to some 
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carbapenems. Others gain resistance through a mix of chromosomal and acquired mutations that 

make it harder for carbapenems to be effective, such as a modification of the porin gene that 

limits antibiotic entry into the cell. Finally, the most concerning cause of carbapenem resistance 

is the production of carbapenemase enzymes. These enzymes specifically target and inactivate 

carbapenem antibiotics, as well as other beta-lactams. Unlike non-carbapenemase resistance 

mechanisms, the presence of just one carbapenemase gene is generally enough to confer 

carbapenem resistance. Further, these genes are usually located on mobile genetic elements 

called plasmids that are easily passed between different Enterobacteriaceae bacteria. The five 

most common carbapenemases are Klebsiella pneumoniae carbapenemase (KPC), New Delhi 

Metallo-beta-lactamase (NDM), Verona Integron-Encoded Metallo-beta-lactamase (VIM), 

Imipenemase (IMP), and Oxacillinase-48 (OXA-48). These were historically associated with 

healthcare exposure outside the US, but now are often linked to US healthcare and community-

acquired sources (US Centers for Disease Control and Prevention, 2019, 2021a). 

 In 2001, the first KPC-producing bacteria were identified in the US. KPC-producing and 

other carbapenemase-producing CRE organisms then rapidly spread across the country (US 

Centers for Disease Control and Prevention, 2021a). In 2017, there were approximately 13,100 

cases of patients who were hospitalized due to CRE in the US, a slight increase over previous 

years. Further, there were an estimated 1,100 deaths and an estimated $130 million in 

attributable healthcare costs (US Centers for Disease Control and Prevention, 2019). 

 Because CRE was traditionally viewed as a nosocomial infection, hospital-associated risk 

factors are the best known. The most prominent ones are prolonged contact with an index 

patient; mechanical ventilation; exposure to an intensive care unit; carriage or co-infection with 

another multidrug-resistant organism; and prior exposure to several antibiotics, including 
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carbapenems, cephalosporins, fluoroquinolones, and vancomycin (Schwartz-Neiderman et al., 

2016; US Centers for Disease Control and Prevention, 2021b). Risk factors for community-

acquired CRE is far less well-known. One study identified history of lung disease, nursing home 

residence, and recent antibiotic exposure as prominent risk factors for this type of CRE (Blatt et 

al., 2017). Due in part to the higher prevalence of ESBL-producing Enterobacteriaceae, more 

studies have been conducted to determine risk factors for community-acquired infections of this 

class of resistant organisms. These studies have identified recent antibiotic use, the use of 

medical devices, recurring urinary tract infections, and international travel as risk factors. 

However, many of these studies used medical records as their source of risk factor data and thus 

did not include a focus on environmental and animal reservoirs (Goyal et al., 2019; Karanika et 

al., 2016; Kizilca et al., 2012). In a population-based modelling study that collected prevalence 

and genetic data for ESBL-producing E. coli in the Netherlands from human, farm and 

companion animal, food, surface freshwater, and wild bird sources, non-human sources were 

found to be attributable for a significant portion of overall carriage, at around one-third. Food 

accounted for 18.9% (7.0–38.3) of carriage, companion animals for 7.9% (1.4–19.9), farm 

animals (non-occupational contact) for 3.6% (0.6–9.9), and swimming in freshwater and wild 

birds (environmental contact) for 2.6% (0.2–8.7). The model did not include carriage that was 

attributable to occupational contact with farm animals. Further, the authors identified 6,275 

occurrences of ESBL-producing E. coli in non-human sources, of which 4,026 were identified in 

farm animals (Mughini-Gras et al., 2019). Thus, while medical exposures are the most well-

studied for CRE and similar antibiotic-resistant organisms, animal and environmental contacts 

are an important and understudied potential source of CRE exposure. 
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1.3 Cattle as a Possible Source of CRE 

 Antibiotic resistance is a One Health problem. One Health is a disease framework that 

recognizes the link between human and animal health, and how diseases can threaten food 

supplies and economies (Mackenzie & Jeggo, 2019). According to the CDC, doctors’ offices and 

emergency departments in the US prescribe 47 million antibiotic courses—30% of all antibiotics 

that are prescribed by these sources—for infections that do not need them. Antibiotics are also 

sometimes applied to crops, and they can enter the environment through waste. Finally, they are 

often given to pets and food animals, including livestock, often with little oversight. All these 

lead to increased encounters between antibiotics and bacteria, and, through natural selection, 

drive the proliferation of antibiotic resistance. Further, these sources are all interconnected as 

resistant bacteria spread between them (US Centers for Disease Control and Prevention, n.d.-b, 

2019). Antibiotic resistance in non-human sources is still a threat to human health. 

 Enterobacteriaceae regularly colonize the guts of many animals, including cattle. This is 

significant since most beef cattle are raised on feedlots that present conditions that promote the 

evolution of antibiotic resistance. Feed lots have high densities of cattle; routine, intensive, and 

often unregulated antibiotic use; and unsanitary conditions. Additionally, many of the antibiotics 

that are used are considered medically important in protecting human health. The US in 

particular is at high risk of antibiotic resistance arising in cattle populations because it has one of 

the largest cattle industries in the world and the industry’s use of antibiotics is particularly 

intense (McDaniel et al., 2014; Wallinga, 2020). These resistant bacteria can then spread to 

humans. 

 Zoonosis is the process where pathogens pass from animals to infect humans. Bovine 

zoonosis is a well-known and commonly studied issue. Geographically, it occurs worldwide, and 
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transmission routes include ingestion and contact. A systematic review identified 45 pathogens 

than can pass from cattle to humans, many of which are in the Enterobacteriaceae family 

(McDaniel et al., 2014). Additionally, drug-resistant strains of bacteria have been found on beef 

in grocery stores and on livestock and workers in processing plants. Environmental 

contamination is also significant, with drug-resistant bacteria being detected in air, soil, and 

water samples. Coming into contact with any of these sources poses a risk of infection. The 

environmental contamination can spread even farther from feed lots through the sale of manure 

as fertilizer and through natural disasters such as flooding (Wallinga, 2020). Cattle farming and 

processing practices present plenty of opportunities for infection by resistant bacteria. 

 Enterobacteriaceae are among the most common bacteria that can be passed from cattle 

to humans (McDaniel et al., 2014). Furthermore, CRE and other antibiotic-resistant strains of 

Enterobacteriaceae have been detected living commensally in cattle, demonstrating the potential 

for zoonotic transmission. A systematic review of CRE in wildlife, food-producing, and 

companion animals found that many studies detected CRE in seafood, wildlife, pets, and 

livestock. There was no study that used a selective screening approach for cattle included in the 

systematic review, but multiple included studies did find CRE in cattle isolates (Köck et al., 

2018; Sawant et al., 2007). In a study of two cattle farms in the High Plains region of the US, 

CRE was detected in several isolates. These included multiple resistant Enterobacteriaceae 

species as well as a variety of carbapenemase and other resistance genes, including a novel 

carbapenemase (blaOXA-497) (Webb et al., 2016). Finally, a CRE prevalence study in beef cattle in 

South Africa found that resistance to various carbapenem antibiotics ranged from 28% to 42%, 

indicating that CRE can become widespread in beef cattle populations (Tshitshi et al., 2020). 

While the above studies did not examine transmission of CRE from cattle to humans, other 



8 

 

studies have found evidence of ESBL-producing Enterobacteriaceae passing between humans 

and cattle through genetic analyses (Adler et al., 2015; Subramanya et al., 2021). 

1.4 Spatial Analysis as an Opportunity to Understand Community-Acquired CRE Transmission 

 Most studies on the transmission of CRE focus on nosocomial infections. In general, 

there is a gap in the literature on the transmission dynamics of community-acquired CRE. It did 

not become a nationally notifiable disease in the US until 2018, meaning national data is limited. 

However, some states, such as Tennessee, implemented reporting requirements as early as 2011, 

with the current case definition being implemented in 2015. That case definition follows the 

standard CDC case definition, which is “Enterobacterales that test resistant to at least one of the 

carbapenem antibiotics (ertapenem, meropenem, doripenem, or imipenem) or produce a 

carbapenemase” (APIC Governmental Affairs, 2014; Tennessee Department of Health, 2018; US 

Centers for Disease Control and Prevention, n.d.-a, 2021a). 

 Tennessee is also notable because of the importance of cattle farming to its agricultural 

industry. Beef cattle rank among the state’s top three agricultural commodities, and the state is 

home to more than two million cattle and 45,000 cattle operations (Tennessee Department of 

Agriculture, n.d.). Due to the known risk of environmental contamination with drug-resistant 

bacteria by cattle feedlots, studying spatial patterns of CRE prevalence in Tennessee is likely a 

helpful tool for understanding the transmission patterns of community-acquired CRE and the risk 

to the community presented by cattle feedlots. 
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2. Methods 

2.1 Study Population and Outcome Data 

 Carbapenem-resistant Enterobacteriaceae is classified as a reportable disease for both 

healthcare providers and laboratories in the state of Tennessee. The state requires all healthcare 

providers, laboratories, or other persons knowing of or suspecting a reportable disease to report it 

to the health department. For CRE specifically, healthcare providers and laboratories must call in 

a case report within a day and submit a general reporting form within a week. Further, 

laboratories must submit an isolate to the state health department (Tennessee Department of 

Health, 2021a, 2021b). The state follows the 2015 CDC case definition where a case is 

considered to be any species of “Enterobacterales that test resistant to at least one of the 

carbapenem antibiotics (ertapenem, meropenem, doripenem, or imipenem) or produce a 

carbapenemase” (US Centers for Disease Control and Prevention, 2021a).  

The study population for this project is the entire population of Tennessee from 2015 to 

2018. The outcome is the rate per 100,000 person-years of CRE cases reported from the start of 

the newest case definition (2015) to the latest year of data that is available (2018), aggregated at 

the county level. Both CRE case counts and yearly population data were pooled across four years 

for each county, then the overall county-level rate was calculated. The yearly CRE case data and 

the yearly population data were obtained from the Tennessee Department of Health’s interactive 

data portal, which provides a county-level breakdown of population and CRE case data for each 

year from 1995 to 2018 (Tennessee Department of Health, n.d.). 

2.2 Exposure and Covariate Data 
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 Every five years, the US Department of Agriculture’s National Agriculture Statistics 

Service (NASS) conducts a national census of agriculture. The goal of that census is to reach all 

farms in the country, which are defined as “any place from which $1,000 or more of agricultural 

products were produced and sold, or normally would have been sold, during the census year” 

(USDA NASS, 2019a). In the 2017 Census of Agriculture, NASS sent census forms to 2,259,750 

agriculture operations that were thought to meet the farm definition and 739,348 operations that 

were potential farms. In that census, Tennessee had a response rate of around 75%, above the 

national average (USDA NASS, 2019a, 2019b). Exposure data were obtained from the 2017 

Census of Agriculture using the NASS Quick Stats portal (USDA NASS, n.d.). County-level 

beef cattle inventories and county-level beef cattle operation counts, subdivided by number of 

heads of cattle, were retrieved to be evaluated as potential exposure variables. 

 The CDC National Center for Health Statistics (NCHS) has developed an urbanicity scale 

that categorizes counties into six urbanicity levels using data from the Office of Management and 

Budget’s metropolitan and micropolitan statistical areas. This scale was designed with the 

intention to be more useful in analyzing health data. Counties are classified as large central 

metro, large fringe metro, medium metro, small metro, micropolitan, and non-core (see Table 1). 

Counties classified in the first four levels on this scale are metropolitan, while levels 5 and 6 are 

non-metropolitan. The 2013 NCHS Urban-Rural Classification Scheme for Counties that was 

used in this analysis was retrieved from the NCHS website (CDC NCHS, 2017). 
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Table 1: Definition of 2013 NCHS Urban-Rural Classification Scheme for Counties. 

Coding Definition 

1 Large central metro 

2 Large fringe metro 

3 Medium metro 

4 Small metro 

5 Micropolitan 

6 Non-core 

 

Finally, because this was a spatial analysis, geography data were needed to add the spatial 

component. Data for the geography of Tennessee’s counties were retrieved from the US Census 

Bureau using the Tigris package in the R statistical analysis program (Walker, 2020). 

2.3 Statistical Analysis 

 Statistical analyses were conducted using R version 4.0.2 (R Core Team, 2020). The 

exposure, outcome, and covariate datasets were imported into R. To create an analytic dataset, 

the four years of numerator (CRE case counts) and denominator (population) were pooled across 

the four years included in this study for each county and the CRE rate per 100,000 person-years 

was calculated for each county (see Appendix). Then CRE case counts, population, CRE rate, 

and covariates were merged together by county FIPS ID. Three potential exposure variables were 

evaluated: county-level cattle counts, county-level number of cattle operations with fewer than 

50 heads of cattle, and county-level number of cattle operations with greater than or equal to 50 

heads of cattle. First, the three potential exposures were mapped at the county level to understand 
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their overall distribution across the state of Tennessee. Then, CRE rates per 100,000 person-

years were calculated for each county and smoothed using non-spatial Empirical Bayes 

smoothing. Non-spatial smoothing was used because CRE was a rare event in some counties, 

which was the cause for rate instability. However, there was still good stability in the crude data. 

Both the crude and smoothed CRE rates were mapped. Finally, the 2013 NCHS urbanicity score, 

which was included as a confounder, was mapped to understand its distribution. 

 Next, Pearson correlation coefficients were calculated for the three potential exposure 

variables to assess degree of collinearity and to understand the spatial structure of cattle within 

each county. Because of collinearity issues between the exposure variables, only the county-level 

number of cattle operations with fewer than 50 heads of cattle was used as an exposure variable 

in regression analyses. Then, a series of aspatial linear regression models was conducted 

assessing exposure-outcome associations and fit statistics were calculated to determine the best-

fitting model. Linear regression was used because it is more compatible with spatial analysis. 

The distribution of the county-level CRE rates was checked to ensure it was normal, satisfying 

the assumption of a normal distribution for linear regression models. Residuals were then 

mapped and a Moran’s I was calculated to determine the spatial autocorrelation of the residuals. 

The autocorrelation of residuals indicates the degree to which the spatial structure—or spatial 

dependence—in CRE rates was explained by the aspatial linear regression.  Next, a spatial 

Durbin model was run. An aspatial linear regression model allows for dependence between the 

covariates and outcome within a county, but it assumes that the covariates and outcomes in 

neighboring counties are independent of one another. In situations where there is spillover of the 

covariates or the outcome between counties, a spatial regression model can be run. The spatial 

Durbin model is the only model that remains unbiased in scenarios where there is spillover in 
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both the covariates and the outcome, and it provides measures to estimate the exposure-outcome 

associations within and between counties, as well as the outcome-outcome relationships between 

counties. Because there is potential spatial spillover in covariates and in the outcome, a spatial 

Durbin model was used. Finally, impact measures were calculated. A p-value of less than 0.05 

was considered significant. 
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3. Results 

3.1 Geographic Context of Tennessee 

 

Figure 1: Map of the surrounding states, 95 counties, and five largest metropolitan areas of Tennessee. 

 The neighboring states, counties, and five largest metropolitan cities of Tennessee were 

mapped (Figure 1). Tennessee is a state in the Southeastern United States. It is surrounded by 

eight other states: North Carolina to the east; Georgia, Alabama, and Mississippi to the south; 

Arkansas and Missouri to the west; and Kentucky and Virginia to the north. Its five largest 

metropolitan areas are spread across the state. The largest, Memphis, is located on the state’s 

western border. Next is Nashville in central Tennessee, and then Knoxville, Chattanooga, and 

Kingsport, which are all located in the eastern part of the state. Tennessee is home to 95 counties, 

which are approximately equal in size. 

3.2 Spatial Structure of Covariates 
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Figure 2: Map of the urbanicity codes for each county in Tennessee. The color palette ranges from the lightest colors 

representing the most rural counties to the darkest colors representing the most urban counties. 

The 2013 NCHS urbanicity codes for each county in Tennessee were mapped (Figure 2). 

Urbanicity is potentially associated with the exposure, beef cattle production, as this agricultural 

activity is more likely to be conducted in rural areas than urban areas. Additionally, urbanicity is 

potentially associated with the outcome, CRE, as more urbanized communities present 

opportunities for the rapid spread of infectious diseases, including those in the 

Enterobacteriaceae family (Neiderud, 2015). Therefore, urbanicity was included as a confounder 

in this analysis. Shelby and Davidson Counties, home to Memphis and Nashville, are the most 

urbanized, with urbanicity codes of one. There is a stretch of counties in eastern Tennessee from 

Hamilton County, home to Chattanooga, to Sullivan County, home to Kingsport, that have 

moderate levels of urbanization. The rest of the counties in the state are generally the most rural. 
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Figure 3: Maps of the county-level distributions of three possible exposure variables: number of beef cattle operations with 1-49 

heads of cattle, number of beef cattle operations with 50 or more heads of cattle, and beef cattle counts in Tennessee. Cutpoints 

were determined by dividing the counties into five quantiles. The color palette ranges from the lightest colors representing the 

counties with the fewest cattle counts or operations to the darkest colors representing counties with the most. 

 The number of beef cattle operations with 1-49 heads of cattle, the number of beef cattle 

operations with 50 or more heads of cattle, and the beef cattle counts, all at the county level, 

were mapped to understand their spatial structures (Figure 3). All three have similar distributions 

of high and low values across the state of Tennessee. Counties in central and northeastern 

Tennessee have high levels of beef cattle production using all three metrics, while counties in 

western Tennessee have low levels of beef cattle production. Shelby and Davidson Counties, the 

two most urbanized counties in the state, have among the lowest beef cattle production, but 

elsewhere it appears to be grouped based more on geography than urbanicity. Counties with high 

numbers of small operations generally also have high numbers of large operations, indicating 

that there are distinct regions in the state where cattle production occurs. These maps 
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demonstrate that cattle production is spatially structured, with heterogeneity between counties. 

Further, there appears to be some spatial autocorrelation, as counties with high and low 

production are often grouped together. 

3.3 Spatial Structure of Outcome 

 

Figure 4: Maps of the county-levels distributions of crude and Empirical Bayes non-spatially smoothed CRE rates per 100,000 

person-years from 2015-2018 in Tennessee. Cutpoints were determined by dividing the counties into five quantiles. The color 

palette ranges from the lightest colors representing the counties with the lowest CRE rates to the darkest colors representing 

counties with the highest. 

  The county-levels rates of CRE, both crude and Empirical Bayes non-spatially smoothed, 

were mapped to understand the spatial distribution of the outcome in this study (Figure 4). In the 

four-year study period, there were 2,415 cases of CRE across Tennessee, ranging from 391 to 

679 per year. The state population at risk varied from 6,600,211 to 6,768,611 people for an 

overall statewide CRE rate of 9.03 cases per 100,000 person-years across the study period (Table 

2). The crude county-level CRE rates ranged from 0.00 to 34.60 cases per 100,000 person-years, 

while the smoothed county-level rates ranged from 2.58 to 27.47 cases per 100,000 person-years. 
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As with the distributions of beef cattle production across Tennessee, there is also spatial structure 

in this variable, where counties with the highest CRE rates are generally grouped together. The 

region with the highest CRE rates was western Tennessee. It was high in both the rural counties 

of this area and the more urbanized ones around Memphis. Additionally, the counties in the far 

northeast corner of the state around Kingsport have high rates of CRE in both maps. The patterns 

in spatial structure persisted after the aspatial smoothing, indicating that there was good stability 

in the crude data and the spatial patterns did not appear to be spurious due to sparse counts in 

some counties. 

Table 2: Statewide CRE case counts and population by year in Tennessee. 

Year 2015 2016 2017 2018 Pooled 

Cases 391 678 679 667 2415 

Population 6600211 6651130 6715862 6768611 26735814 

 

3.4 Selecting an Exposure Variable 

 The USDA NASS provides county-level for beef cattle counts and beef cattle operations 

for the state of Tennessee. Because of data suppression out of concern for farm privacy, the cattle 

counts for 21 of the 95 Tennessee counties were suppressed. The number of beef cattle 

operations was available for all counties. Additionally, the county-level number of operations 

from the NASS was subdivided into seven categories based on the number of heads of cattle in 

each operation, which were aggregated into two variables based on herd size, number of small 
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operations (1-49 heads of cattle) and number of large operations (greater than 50 heads of cattle). 

A cut-off of 50 heads of cattle was chosen because farms with fewer than 50 cattle are often 

hobby farms that do not have cattle production as a primary income source. These farms 

generally have less use of technology, less vaccination, and fewer safe antibiotic practices than 

farms with 50 or more heads of cattle (Lhermie et al., 2019). After preparing the data, the 

distributions of the three variables were checked using Q-Q plots, and all three were 

approximately normally distributed.  

To better understand the distribution of cattle within each county, the correlations 

between the three variables were assessed by calculating Pearson correlation coefficients. The 

Pearson correlation coefficient between number of small operations and cattle count was 0.91 

[0.86, 0.94] (p < 2.2e-16), and the Pearson correlation coefficient between number of large 

operations and cattle count was 0.97 [0.95, 0.98] (p < 2.2e-16). This means cattle count was very 

strongly correlated with both the number of small and number of large operations variables. 

Additionally, the correlation was also strong between the number of small and number of large 

operations variables (r = 0.83 [0.75, 0.88], p < 2.2e-16). These results indicate that the density of 

cattle within each county was consistent regardless of operation size. There were no counties that 

had high counts of cattle due to many small operations and no large ones, or due to having some 

large operations and no small ones. Further, counties with large numbers of small operations also 

generally had many large ones, and vice versa. This means that the three exposure variables were 

good proxies for each other. 

Because of the strong correlations between the three potential exposure variables, only 

one could be included in the regression analysis out of concern of running into collinearity 

issues. Because of the missing data in the cattle count variable and the research that shows 
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smaller farms tend to be poorer antibiotic stewards and lower users of technology—and thus 

potentially presenting a higher risk of spreading CRE—the number of small operations (1-49 

heads of cattle) was chosen as the exposure variable for this analysis. 

3.5 Description of Study Population 

Table 3: Characteristics of Tennessee counties (n = 95). 

 Beef Cattle Operations (1 – 49 Heads of Cattle) 

 
Tertile 1 

3 – 173 Operations 

Tertile 2 

173 – 330 Operations 

Tertile 3 

346 – 1276 Operations 

Counties (n) 32 32 31 

CRE Rate per 

100,000 PY 

(mean ± SD) 

13.09 ± 9.91 9.13 ± 5.85 6.15 ± 3.33 

Nonmetropolitan (%) 62.5 59.4 45.2 

 

 All 95 Tennessee counties were included in this analysis. To understand the distribution 

of the CRE rates and urbanicity of the counties, they were broken into tertiles based on their 

number of small beef cattle operations. The first tertile, which included 32 counties, had between 

3 and 173 operations per county, had a mean smoothed CRE rate of 13.09 cases per 100,000 

person-years (SD: 9.91), and had 62.5% of its counties classified as nonmetropolitan. The middle 

tertile, with 32 counties, had between 173 and 330 operations per county, had a mean smoothed 

CRE rate of 9.13 cases per 100,000 person-years (SD: 5.85), and had 59.4% of its counties 

classified as nonmetropolitan. Finally, the third tertile, with 31 counties, had between 346 and 

1,276 operations per county, had a mean smoothed CRE rate of 6.15 cases per 100,000 person-

years (SD: 3.33), and had 45.2% of its counties classified as nonmetropolitan. 
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 From looking at these characteristics alone, it is possible to see a potential dose response 

between number of small beef cattle operations and CRE rate, where counties that have more 

operations have a lower CRE rate. There is also evidence of a potential dose response 

relationship between number of operations and urbanicity, where counties with more cattle 

operations are less likely to be nonmetropolitan (rural).  

3.6 Aspatial Linear Regression 

 First, an aspatial linear regression model was constructed and run with the smoothed CRE 

rate as the outcome, the number of small operations as the exposure, and urbanicity as a 

confounder. Interaction between the number of operations and urbanicity was assessed. 

However, the interaction term was not statistically significant (p = 0.50), so it was dropped from 

the model. Therefore, the following aspatial linear regression model was used to evaluate the 

relationship between the county-level CRE rate and the number of small beef cattle operations 

per county: 

 Y = β0 + β1 (number of small operations) + β2 (urbanicity code) + ε. 

 There was a statistically significant relationship between the rate of CRE and the number 

of small beef cattle operations. The rate of CRE per 100k PY decreased by 0.84 for every 100-

operation increase in the number of beef cattle operations with 1-49 heads of cattle in the county 

(p = 0.003), controlling for urbanicity.  

3.7 Spatial Linear Regression 

CRE is an infectious disease that can easily spread across county borders. Additionally, 

environmental contamination due to beef cattle operations can also easily spill across county 

lines. Therefore, each county in the analysis is likely not independent of the others, and there is  
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Figure 4: Map of studentized residuals from the aspatial linear regression model for each county in Tennessee. Cutpoints were 

determined by dividing the counties into five quantiles. 

likely a spatial component in the disease generating process. To assess how well the exposure 

variable accounted for the spatial structure in the CRE rate data, the studentized residuals from 

the aspatial linear regression model were mapped (Figure 6). Additionally, Queen contiguity 

neighbors were created and a Moran’s I statistic was calculated to assess the spatial 

autocorrelation of the residuals. With a Moran’s I statistic of 0.44 (p < 0.001), there was 

moderately strong spatial autocorrelation in the residuals, indicating that a significant portion of 

the spatial structure in CRE rates was unexplained by the aspatial linear regression model. 

 Because of the spatial spillover of both the exposure and the outcome, as well as the 

spatial autocorrelation of the residuals, a spatial Durbin regression model was run. It is the only 

spatial regression model that remains unbiased when there is spillover in both the exposure and 

the outcome. The lower AIC (542.33 compared to 567.84) and the lower log-likelihood ratio (-

256.17 compared to -285.78) indicate that the spatial Durbin model had a better fit than the 

aspatial linear regression model. The within-county effect of the number of small beef cattle 

operations on CRE rate was -0.0036, but this effect was not statistically significant (p = 0.08). 

The spatial Durbin model also provides spatially lagged parameter estimates. The γ parameter, 

which is the effect on the rate of CRE due to a change in the number of small beef cattle 
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operations in neighboring counties, was -0.0008. Again, this parameter was not statistically 

significant (p = 0.82). Because of the spatial lag, the values in each county are not independent, 

so the above parameters cannot be interpreted as they would be for normal linear regression. 

Therefore, impact measures were calculated.  Bayesian Markov Chain Monte Carlo simulations 

(n = 199) were run to quantify the bounds of these impacts to determine if they appear to be 

statistically significant from zero. 

 The direct impact is the effect of the number of small cattle operations in a given county 

on the CRE rate of that county, which was equal to -0.0042 (95% credible interval: [-0.0085, -

0.0003]). This means the rate of CRE per 100k PY decreased by 0.42 for every 100-operation 

increase in the number of beef cattle operations with 1-49 heads of cattle in the county, 

controlling for urbanicity, and the effect appeared to be statistically significant, as the 95% 

credible interval did not contain zero. The indirect impact is the effect of the number of small 

beef cattle operations in neighboring counties on the CRE rate of a given county, and the total 

effect combines the direct and indirect effects. In this analysis, the indirect impact was -0.0074 

(95% credible interval: [-0.0224, 0.0100]) while the total effect was -0.0117 (95% credible 

interval: [-0.0287, 0.0081]), but neither of these appeared to be statistically significant after 

running Monte Carlo simulations. 

Next, the ρ parameter was 0.62 (p < 9.8e-12), indicating that there was statistically 

significant strong correlation of CRE rates between a given county and its neighboring counties 

after controlling for the spatially lagged covariates. Finally, a Lagrange Multiplier test, which is 

a hypothesis test used to test model fit based on adding parameters, was conducted to test for the 

significance of spatial autocorrelation of the residuals. The test statistic of 0.004 was not 

statistically significant (p = 0.95), indicating that there was not spatial autocorrelation in the 
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residuals and the spatial Durbin model did an effective job accounting for the spatial structures 

of the disease generating process. 

 While there was not autocorrelation in the error, the exposure variable, or the confounder 

variable in the spatial Durbin model, there was autocorrelation in the outcome variable, CRE. 

This ecological result is consistent with inter-county community spread. Thus, it is worthy of 

further evaluation and more in-depth analysis of community transmission dynamics. However, 

the number of small beef cattle operations in a county and the urbanicity of a county do not 

explain this spatial process. Instead, there is some unknown process that is leading to the spatial 

structure of CRE. Additionally, even though there was a statistically significant protective 

relationship between the number of small beef cattle operations and the rate of CRE in each 

county, it does not make logical sense that the number of cattle operations would be protective 

for CRE. Therefore, there is some unknown factor in counties with high numbers of small beef 

cattle operations that is protective for CRE for which the number of operations acted as a proxy. 
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4. Discussion 

4.1 Limitations 

This study has several limitations. First, because the CRE case data were collected 

through a passive surveillance system, it is likely that cases were missed. A survey of healthcare 

providers in Tennessee found that, while providers recognized their responsibility to comply 

with disease reporting (98.4%) and most acknowledged that they had cared for a patient with a 

reportable disease (83.2%), fewer than half said they had actually reported a disease to health 

authorities (43.3%). A lack of knowledge of which diseases are reportable and uncertainty about 

the logistics to report a disease were the largest barriers (Fill et al., 2017). 

Another limitation is the limited data for CRE cases. The Tennessee Department of 

Health only provided the county case counts and county populations for each year, but additional 

information would be helpful in determining patterns in CRE cases. For example, information 

about whether a case was hospital-acquired or community-acquired would improve the quality of 

analyses that focus on one source and help unmask underlying trends. This analysis was limited 

by the fact that such information was unavailable. 

4.2 Conclusions and Public Health Implications 

 CRE is an emerging public health threat that has rapidly spread across the United States 

in the past couple decades. The CDC recognizes these bacteria to be an urgent threat, its highest 

threat level (US Centers for Disease Control and Prevention, 2019). Yet little is known about its 

risk factors, especially for community-acquired CRE. Gaining an increased understanding of 

how CRE spreads in the community is important step in containing this public health threat. 
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 Additionally, cattle have been recognized as a potential source of zoonotic transmission 

for many pathogens, including Enterobacteriaceae (McDaniel et al., 2014). Poor antibiotic 

stewardship in agricultural practices, such as the overuse of antibiotics, contributes to antibiotic-

resistant strains of bacteria arising in cattle populations, especially beef cattle populations, which 

can then be passed on to humans through environmental and other contamination (Wallinga, 

2020). Several studies have also detected CRE in cattle populations and demonstrated that it can 

quickly become widespread within them (Köck et al., 2018; Sawant et al., 2007; Tshitshi et al., 

2020; Webb et al., 2016). Thus, it was hypothesized that beef cattle could be an important 

contributor to the community spread of CRE. 

 However, the results of this study are not what was hypothesized. The regression 

analyses demonstrated a small statistically significant protective relationship between the number 

of small beef cattle operations and CRE rates. It could be the case where having a larger number 

of beef cattle operations is protective for CRE. But, after accounting for the fact that research 

shows cattle operations generally contribute to zoonotic transmission of pathogens rather than 

protect against them, it is likely that the protective relationship is one where beef cattle farming 

acts as a proxy for a different, unknown factor. Further, cattle are potentially not drivers in of 

carbapenem resistance in Enterobacteriaceae, which could explain the small effect size detected 

in this study. Finally, there could be masking of the true effect due the lack of data on the source 

of infection, which makes it difficult to disentangle hospital-acquired infections, which are 

largely not related to cattle, with community-acquired infections, which are potentially related to 

cattle. The strong autocorrelation in CRE rates between counties indicates that CRE is spread 

between neighboring counties, but without source data, it is hard to say how indicative of 

community spread the spatial autocorrelation is. 
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 This study shows that gaps still persist in the understanding of risk factors for the 

community spread of CRE. There is potentially some unknown factor that is protective against 

CRE at the county level. Identifying this factor could guide future public health interventions by 

helping identify where they are needed, where they could be the most effective, and potentially 

even what components should be included in the intervention. CRE is an urgent public health 

threat and understanding its transmission dynamics and risk factors is the first step in protecting 

against it. 

4.3 Future Directions 

 The findings of this study help identify the importance of comprehensive data collection 

and the fact that reporting case counts alone is not enough to provide detailed understandings of 

disease transmission dynamics. Efforts should be taken to improve the breadth of CRE case and 

covariate data, while still protecting patient privacy. Additionally, further analyses should be 

conducted to examine transmission dynamics and risk factors of community-acquired CRE. In 

particular, they should include information about the source of CRE infection. Finally, attempts 

should be made to better understand the spatial structure of CRE rates in Tennessee to identify 

protective factors that could be used in future interventions. 
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6. Appendix 

Table 3: County-Level CRE Data 

County 
2015 

Cases 

2015 

Population 

2016 

Cases 

2016 

Population 

2017 

Cases 

2017 

Population 

2018 

Cases 

2018 

Population 

Pooled 

Cases 

Pooled 

Population 

Rate per 

100,000 PY 

Anderson 2 75760 4 75937 2 76262 3 75478 11 303437 3.625134707 

Bedford 1 47185 4 47492 6 48117 4 49045 15 191839 7.819056605 

Benton 1 16132 4 16019 7 15991 1 16183 13 64325 20.20987175 

Bledsoe 0 14477 1 14675 0 14722 0 14767 1 58641 1.70529152 

Blount 5 127260 0 128666 6 129933 5 131341 16 517200 3.09358082 

Bradley 12 104095 8 104484 9 105563 5 106738 34 420880 8.078312108 

Campbell 1 39758 2 39716 8 39647 6 39579 17 158700 10.71203529 

Cannon 1 13844 0 14047 3 14222 1 14473 5 56586 8.836107871 

Carroll 1 27909 2 28100 4 27859 4 28022 11 111890 9.8310841 

Carter 5 56485 7 56490 9 56479 4 56345 25 225799 11.07179394 

Cheatham 0 39741 4 39879 2 40334 1 40446 7 160400 4.364089776 

Chester 2 17475 1 17454 4 17126 0 17273 7 69328 10.09693053 

Claiborne 0 31710 2 31773 1 31621 1 31746 4 126850 3.153330706 

Clay 0 7779 0 7740 0 7714 1 7731 1 30964 3.229556905 

Cocke 2 35164 1 35214 4 35556 3 35779 10 141713 7.056515634 

Coffee 0 54282 7 54689 4 55027 4 55706 15 219704 6.827367731 

Crockett 5 14605 3 14403 5 14476 7 14319 20 57803 34.60028026 

Cumberland 2 58237 10 58665 8 59074 6 59695 26 235671 11.03232897 

Davidson 21 678888 45 684415 62 691239 44 692590 172 2747132 6.261075187 

Decatur 2 11662 2 11779 6 11751 5 11710 15 46902 31.98157861 

DeKalb 0 19190 1 19373 1 19836 1 20133 3 78532 3.820098813 

Dickson 1 51483 5 52187 3 52854 5 53439 14 209963 6.667841477 

Dyer 3 37887 5 37721 7 37460 9 37317 24 150385 15.95903847 

Fayette 8 39159 8 39598 6 40042 8 40510 30 159309 18.8313278 

Fentress 3 17915 1 18023 3 18129 1 18214 8 72281 11.0679155 

Franklin 0 41440 2 41686 4 41655 5 41887 11 166668 6.5999472 
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Gibson 5 49404 3 49414 11 49110 23 49052 42 196980 21.32196162 

Giles 1 28929 2 29304 4 29401 1 29504 8 117138 6.829551469 

Grainger 0 22844 2 23093 0 23148 0 23137 2 92222 2.168679925 

Greene 3 68585 10 68612 5 68800 3 69089 21 275086 7.633976284 

Grundy 0 13433 0 13366 0 13370 0 13322 0 53491 0 

Hamblen 0 63400 2 63786 3 64267 3 64570 8 256023 3.124719264 

Hamilton 20 354104 6 357745 7 361613 8 364286 41 1437748 2.851681936 

Hancock 1 6552 0 6565 1 6579 1 6532 3 26228 11.43815769 

Hardeman 6 25703 2 25434 2 25449 5 25227 15 101813 14.73289266 

Hardin 1 25761 2 25673 1 25846 1 25778 5 103058 4.851636942 

Hawkins 1 56472 5 56555 10 56463 7 56526 23 226016 10.17627071 

Haywood 2 18019 2 17847 5 17567 8 17339 17 70772 24.02079919 

Henderson 3 28016 4 27825 4 27751 3 27840 14 111432 12.56371599 

Henry 0 32152 3 32315 5 32454 2 32362 10 129283 7.734969021 

Hickman 0 24370 2 24288 0 24863 3 25048 5 98569 5.072588745 

Houston 0 8164 2 8121 4 8219 4 8269 10 32773 30.51292222 

Humphreys 1 18134 4 18351 7 18491 2 18498 14 73474 19.05435937 

Jackson 0 11492 2 11533 1 11683 2 11756 5 46464 10.76101928 

Jefferson 2 53250 6 53534 0 53810 3 53996 11 214590 5.126054336 

Johnson 1 17828 6 17743 2 17680 1 17777 10 71028 14.07895478 

Knox 17 451323 31 456117 26 461860 46 465293 120 1834593 6.540960311 

Lake 2 7575 0 7571 0 7470 1 7403 3 30019 9.993670675 

Lauderdale 7 26937 8 26775 8 25271 11 25825 34 104808 32.44027173 

Lawrence 0 42572 1 43094 7 43399 2 43740 10 172805 5.786869593 

Lewis 0 11847 0 11907 1 12026 0 12092 1 47872 2.088903743 

Lincoln 0 33757 0 33637 3 33747 1 34126 4 135267 2.957114448 

Loudon 1 51130 5 51461 8 52158 6 53054 20 207803 9.624500128 

McMinn 5 52647 6 52857 2 52884 5 53284 18 211672 8.503722741 

McNairy 0 26070 5 25951 6 26009 4 25827 15 103857 14.44293596 

Macon 1 23176 2 23442 1 24074 2 24262 6 94954 6.318849127 

Madison 10 97607 7 97668 7 97646 18 97606 42 390527 10.75469814 

Marion 1 28494 0 28450 1 28429 1 28588 3 113961 2.632479532 

Marshall 0 31551 2 31914 3 32933 1 33681 6 130079 4.612581585 
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Maury 0 87772 11 89974 8 92162 3 94342 22 364250 6.039807824 

Meigs 0 11825 0 12000 0 12064 0 12298 0 48187 0 

Monroe 1 45783 1 45969 1 46228 3 46366 6 184346 3.254749222 

Montgomery 10 193479 18 195729 26 200177 18 205953 72 795338 9.052754929 

Moore 2 6313 2 6322 0 6377 0 6421 4 25433 15.727598 

Morgan 1 21485 0 21548 2 21630 0 21572 3 86235 3.47886589 

Obion 3 30644 6 30580 6 30376 9 30256 24 121856 19.69537815 

Overton 1 22129 2 22041 2 22003 1 22072 6 88245 6.799252082 

Perry 1 7930 2 7958 3 7984 1 8057 7 31929 21.92364308 

Pickett 0 5132 0 5129 1 5060 0 5060 1 20381 4.906530592 

Polk 1 16770 3 16765 1 16754 1 16900 6 67189 8.93003319 

Putnam 1 74555 6 75943 1 77676 6 78840 14 307014 4.560052636 

Rhea 0 32529 1 32444 4 32695 3 33040 8 130708 6.120512899 

Roane 2 52755 3 52880 2 53032 4 53127 11 211794 5.193725979 

Robertson 0 68564 5 69175 6 70177 6 71014 17 278930 6.094719105 

Rutherford 7 298606 14 308257 19 317165 18 324896 58 1248924 4.643997553 

Scott 0 21935 2 21936 5 21985 3 22039 10 87895 11.37721145 

Sequatchie 1 14803 1 14883 1 14736 1 14872 4 59294 6.746045131 

Sevier 3 95948 8 96672 9 97629 12 97894 32 388143 8.244384157 

Shelby 112 938072 219 934612 178 936954 170 935767 679 3745405 18.12888059 

Smith 1 19288 1 19420 1 19634 0 19937 3 78279 3.832445483 

Stewart 0 13262 6 13175 4 13347 3 13563 13 53347 24.36875551 

Sullivan 21 156793 34 156669 26 157161 29 157671 110 628294 17.50772727 

Sumner 2 175987 16 180073 11 183546 16 187147 45 726753 6.191924904 

Tipton 19 61866 12 61306 7 61374 13 61594 51 246140 20.7199155 

Trousdale 1 8035 0 8266 0 10077 0 11009 1 37387 2.674726509 

Unicoi 1 17851 2 17730 2 17753 1 17746 6 71080 8.441193022 

Union 0 19089 2 19133 0 19430 2 19685 4 77337 5.172168561 

Van Buren 0 5636 0 5663 0 5711 0 5752 0 22762 0 

Warren 0 40444 3 40522 3 40655 0 40871 6 162492 3.692489476 

Washington 21 126301 17 127438 17 127800 10 128605 65 510144 12.74150044 

Wayne 0 16741 0 16715 2 16563 2 16562 4 66581 6.00771992 

Weakley 6 33962 6 33500 0 33336 6 33413 18 134211 13.41171737 
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White 0 26523 1 26661 1 26767 1 27110 3 107061 2.802140836 

Williamson 2 211674 4 219105 7 226249 8 231373 21 888401 2.363797429 

Wilson 2 128910 9 132764 4 136436 5 140632 20 538742 3.712352109 

 


