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Abstract 

 

Comparisons of  conditional logistic regression vs. a discriminant function approach in a 

case-control study where matching is performed 

By Ruoxing Li 

 

 

The logistic regression model has been widely used for estimating adjusted odds ratio 

associated with a binary outcome in case-control study. When matching is involved, 

conditional logistic regression is more commonly used to estimate the odds ratio 

corresponding to a continuous predictor as an alternative to standard unconditional model to 

decrease the bias caused by sparse data. In this thesis the discriminant function approach is 

suggested to generate closed-form estimators, especially under conditions involving few or 

small matched sets. The application of  this approach, which given a multiple regression model 

form with the continuous predictor of  interest on the outcome, includes fixed intercept effects 

for each matched set. It is demonstrated that the estimator based on discriminant function 

approach outperform the usual maximum likelihood estimator from logistic regression based 

on our simulation works and examples. The advantages have seen in reducing bias and width 

of  CI for odds ratio, as well as generating reliable estimator under separation situations where 

logistic regression fails. Potential improvements for this study are also talked in the end of  the 

article. 

KEY WORDS: Logistic regression; Bias; Discriminant function approach.  
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Introduction 

In epidemiology, a case-control study is usually designed for determining whether a 

particular disease is affected by a factor (e.g., an exposure variable), during which, 

matching is an intuitive approach for adjusting potential confounders by selecting 

controls with similar characteristics as cases. However, if many confounders are 

controlled simultaneously, this can result in a large number of strata of small size 

and/or numerous strata containing only cases or controls which are not informative 

for analysis. In addition, problems for extrapolation arise when a continuous risk 

factor is broken into different levels to form strata (Breslow and Day 1980).   

In general, the logistic regression model provides a common tool for estimating 

adjusted odds ratios associated with a binary outcome. When matching is involved, 

conditional logistic regression is typically applied to decrease biases incurred by the 

standard unconditional model due to sparse data. However, researchers have found 

that conditional logistic regression can also suffer from bias, particularly when the 

model involves many covariates or very few matched sets (Greenland, Schwartzbaum 

and Finkle 2000). Under this situation, even a medium-size sample can result in 

infinite parameter estimates (Heinze and Schemper 2002).  

Historically, the discriminant function approach to odds ratio estimation preceded the 

development of logistic regression (Cornfield 1962). However, criticism for the 
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discriminant function approach arose, as disadvantages were pointed out when the 

joint normality assumption of independent variables does not hold. This would 

generate bias for the estimator, and logistic regression became more popular for its 

robustness in this situation (Halperin 1971). But recently an adaptation of the 

approach has been considered, where the focus is on estimating the covariate-

adjusted odds ratio corresponding to a single continuous exposure variable of interest 

(Lyles, Guo and Hill 2009). Under a more reasonable and testable univariate normality 

assumption, it was demonstrated that this approach can yield an unbiased log odds 

ratio estimator that is more precise than the estimator from standard logistic 

regression, and that this estimator avoids the risk of failure to converge due to the 

separation problems (Allison 2008, Heinze and Schemper 2002, Neuenschwander et 

al. 2000). The new look at the approach provided examples which confirmed the 

discriminant function method produced reliable estimates in no-covariate and 

covariate-adjusted cases and requires less strict assumptions relative to traditional 

discriminant function analysis in the latter case.  

In this thesis, we consider the potential of the discriminant function approach as an 

alternative to conditional logistic regression, particularly in settings involving few or 

small matched sets. For situations in which matching is used to adjust for more than 

one potential confounder and there is a primary continuous exposure is of interest, 

we use simulations and a real example to compare performance of the discriminant 
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function approach with that of traditional conditional and unconditional logistic 

regression. We include a uniformly minimum variance unbiased estimator for the 

adjusted odds ratio (Lyles et al., 2009), which becomes available using the 

discriminant function method and potentially leads to narrower confidence intervals. 

Methods 

For a binary outcome 𝑌, and a continuous explanatory variable 𝑋1, the odds ratio 

corresponding to a unit increase in 𝑋1 is defined as:  

𝑂𝑅 =
Pr(𝑌 = 1|𝑋1 = 𝑥 + 1) /Pr(𝑌 = 0|𝑋1 = 𝑥 + 1)

Pr(𝑌 = 1|𝑋1 = 𝑥) /Pr(𝑌 = 0|𝑋1 = 𝑥)
(1) 

Focusing on a case-control study, 𝑂𝑅 could also be written in terms of a conditional 

probability density function:  

𝑂𝑅 =
fX1|Y=1(𝑥 + 1)/ fX1|Y=1(𝑥)

fX1|Y=0(𝑥 + 1)/ fX1|Y=0(𝑥)
(2) 

When accounting for other potential risk factors or confounders, 𝑪 = (𝑋2, 𝑋3, … ,

𝑋𝑛)′, formulae (1) and (2) could be written as：  

𝑂𝑅 =
Pr(𝑌 = 1|𝑋1 = 𝑥 + 1, 𝑪)/ Pr(𝑌 = 0|𝑋1 = 𝑥 + 1, 𝑪)

Pr(𝑌 = 1|𝑋1 = 𝑥, 𝑪)/ Pr(𝑌 = 0|𝑋1 = 𝑥, 𝑪)
(3) 

and 

𝑂𝑅 =
fX1|Y=1,𝐂(𝑥 + 1)/ fX1|Y=1,𝐂(𝑥)

fX1|Y=0,𝐂(𝑥 + 1)/ fX1|Y=0,𝐂(𝑥)
(4) 
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Standard logistic regression 

Sir Francis Galton developed regression analysis in the late 19th century (Kutner, 

Nachtsheim, Neter and Li, 2004). Now regression methods are widely used to 

describe the statistical relationships between an outcome variable and one or more 

explanatory variables (covariates). The linear regression model is probably the most 

familiar, where the response variable is assumed to be continuous. However, our 

outcome of interest outcome is often discrete or binary, like disease status, and of 

course problems would arise if we use the linear regression model. With a binary 

outcome (Y), the natural model is to allow covariates to impact the Bernoulli 

probability for each experimental unit. A clear problem with a multiple linear 

regression model for Y that the assumption of normally distributed error items 

cannot be tenable. For a given set of predictor (X) variables, each error item, 𝜖𝑖 = 𝑌𝑖 −

(𝛽0 + ∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1 ) , can take on only two values (for 𝑌𝑖  equal to 1 or 0). A second 

problem is that error items would not have equal variances, i.e., 𝜎2{𝜖𝑖} = (𝛽0 +

∑ 𝛽𝑖𝑋𝑖)(1 − 𝛽0 − ∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1 )𝑝

𝑖=1 . According to this formula, its value would depend on 

𝑋𝑖 . Another problem is that when our outcome variable is a binary variable, the 

response function would be the probability that 𝑌𝑖 = 1 or 0, and should between 0 

and 1. However, linear regression does not impose this constraint. Among others, 

these difficulties in applying linear regression led to the development of logistic 

regression, which is the most often used model in data analysis when describing the 
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relationship between a binary outcome and other explanatory variables. 

Logistic regression derives its name from the logit transformation of a probability. 

Given a probability 𝑃𝑟, the logit transformation of 𝑃𝑟 is 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟) = 𝑙𝑜𝑔
𝑃𝑟

1−𝑃𝑟
(5)

With 𝑌 = 1  or 0 , given a set of explanatory variables 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝) , the 

standard logistic model is generally defined as  

𝑙𝑜𝑔𝑖𝑡{𝑃𝑟(𝑌 = 1|𝑋)} = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖

𝑝

𝑖=1

(6) 

or,  

𝑃𝑟(𝑌 = 1|𝑋) =
exp(𝛽0 + ∑ 𝛽𝑖𝑋𝑖

𝑝
𝑖=1 )

1 + exp(𝛽0 + ∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1 )

(7) 

The logistic regression method has seen wide use to make smooth estimates for risk 

ratios or odds ratios associated with model coefficients in epidemiology studies, such 

as cohort and case-control studies (Breslow and Day 1980). If 𝑋1  is still our 

continuous predictor of interest, then the 𝑂𝑅 corresponding to a unit increase is 𝑒𝛽1 . 

The estimator could be calculated based on the MLE of 𝛽1. 

Conditional logistic regression for matched case-control studies 

In a case-control study, stratification provides a common tool for control of 
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confounding, which is flexible to be introduced during the study design or at the 

analysis stage. Typically, we would seek to include the variables created for 

stratification to generalize the regression model. The new model is written as:  

𝑙𝑜𝑔𝑖𝑡{𝑃𝑟𝑘} = 𝛽0𝑘 + ∑ 𝛽𝑖𝑋𝑖

𝑝

𝑖=1

(8) 

where 𝑃𝑟𝑘 is the probability that Y=1 in stratum 𝑘.  

A "perfect" form of stratification is where each case is matched to several controls 

with similar values of confounding variables. A simple example is 1:1 pair matching, 

where only one case and one control comprise each stratum. If there are 𝑘 pairs with 

𝑝 covariates, 𝑝 + 𝑘 parameters need to be estimated using the sample of size 2𝑘. 

We can notice that the number of parameters would increase as the sample size 

increases. The optimality properties of the method of maximum likelihood do not 

work well under this situation and standard logistic regression could yield serious 

bias (Hosmer, Lemeshow and Sturdivant 2013). Breslow and Day (1980) demonstrate 

that in a matched study where each stratum has a matched case-control pair with a 

single binary predictor, the OR estimator given by standard logistic regression 

converges to the square of the correct value. In part, that is why it is important to 

consider conditional logistic regression for matched case-control data. Hosmer, 

Lemeshow and Sturdivant (2013) review this approach, which involves using 

conditional likelihood analysis to create a likelihood function generating maximum 
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likelihood estimators for our parameters associated with covariates, by eliminating 

the nuisance parameters indexing each stratum.  

Consider a 1-M matched case-control study which means each case is matched to M 

controls. Or more generally, suppose there are 𝑘 matched sets, and the 𝑖𝑡ℎ stratum 

contains 𝑀𝑖  controls. Denote by 𝑋𝑖0 the column vector of exposures for the case in 

the stratum and by 𝑋𝑖𝑗  the vector of exposures for the 𝑗𝑡ℎ  control. Then we can 

write the conditional likelihood as:  

∏
𝑒𝜷′𝑋𝑖0

∑ 𝑒𝜷′𝑋𝑖𝑗𝑀𝑖

𝑗=0

= ∏
1

1 + ∑ 𝑒𝜷′(𝑋𝑖𝑗−𝑋𝑖0)𝑀𝑖

𝑗=1

𝑘

𝑖=1

𝑘

𝑖=1

(9) 

As for 1:1 pair matching, the above formula could be simplified to 

∏
1

1 + 𝑒𝜷′(𝑋𝑖𝑘−𝑋𝑖0)

𝑘

𝑖

(10) 

Based on these formulas, we could get estimators of the vector 𝜷 . If any of the 

variables in 𝑋  were used for matching, it would contribute no information to the 

likelihood and a corresponding parameter cannot be estimated. Moreover, a stratum 

also makes no contribution if it contains no case, or if the case and all controls have 

the same X values.  

Discriminant function approach 

A multivariable discriminant function approach, where multivariate normality is not 
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required, was suggested to be an alternative to the standard logistic regression 

method to give estimators of the odds ratio associated with an individual continuous 

exposure of interest (Lyles et al., 2009). Letting 𝑪 denote controlled risk factors and 

with 𝑋1 continuing to represent our continuous exposure, a discriminant function 

approach can be based on the following multiple linear regression model:  

𝐸(𝑋1|𝑌 = 𝑦, 𝑪) = 𝛽0
∗ + 𝛽1

∗𝑦 + 𝛾∗′𝑪 (11) 

Assuming the independent and identically distributed error items 𝜀 ∼ 𝑁(0, 𝜎2), (11) 

yields the following expression for the odds ratio associating a unit increase in X1 with 

Y:  

𝑂𝑅 = 𝑒𝛽1
∗/𝜎2

(12) 

and yields an estimator as the following: 

𝑂�̂� = 𝑒𝛽1
∗̂/𝑀𝑆𝐸 (13) 

where 𝛽1
∗̂ is the ordinary least squares estimator of 𝛽1

∗, and MSE is the usual residual 

variance estimator based on (11).  

An exact variance estimator for ln(𝑂𝑅)̂  based on the moment properties of the chi-

squared distribution and the independence of the random variables 𝛽1
∗̂ and MSE can 

be derived as follows (Lyles et al., 2009):  
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𝑣𝑎𝑟[ln(𝑂𝑅)̂ ] = (
𝑛−𝑇−2

𝑛−𝑇−4
)

2
(𝜎2)−2 [(

𝑛−𝑇−4

𝑛−𝑇−6
) 𝑣𝑎𝑟(𝛽1

∗̂) +
2𝛽1

2

𝑛−𝑇−6
]       (14) 

where 𝑛 is the number of subjects. 

An unbiased estimator was suggested (Lyles et al., 2009) as:  

𝑣𝑎�̂�[ln(𝑂𝑅)̂ ] = (
𝑛−𝑇−2

𝑛−𝑇−4
)

2
𝑀𝑆𝐸−2 [𝑣𝑎𝑟(𝛽1

∗̂) +
2𝛽1

∗̂2

𝑛−𝑇−2
]      (15) 

where T is the dimension of the covariate vector C. As the prior authors noted, it is 

also of interest to note that a uniformly minimum variance unbiased (UMVU) 

estimator of ln(𝑂𝑅) is available in this framework. This estimator of ln(𝑂𝑅) and its 

variance can be written as:  

ln(𝑂�̂�)
𝑢𝑚𝑣𝑢

= (
𝑛 − 𝑇 − 4

𝑛 − 𝑇 − 2
) 𝛽1

∗̂/𝑀𝑆𝐸 (16) 

𝑣𝑎�̂� [ln(𝑂�̂�)
𝑢𝑚𝑣𝑢

] = (
𝑛−𝑇−4

𝑛−𝑇−2
)

2
𝑣𝑎�̂�[ln(𝑂𝑅)̂ ]             (17) 

where 𝑣𝑎�̂�[ln(𝑂𝑅)̂ ] in (17) is given as (15). 

In a matched case-control study, specially we would involve fixed intercept effects for 

each dataset based on (11). Continuing on the case-control study with 𝑘 matched 

sets, here we assume the 𝑖𝑡ℎ  stratum contains 𝑀𝑖  subjects, model (11) could be 

modified as:  

𝐸(𝑋𝑖𝑗|𝑌 = 𝑦, 𝑪) = (𝛽0
∗ + 𝑎𝑖) + 𝛽1

∗𝑦𝑖𝑗 + 𝛾∗′𝑪𝑖𝑗 (18) 
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Where 𝑎𝑖s are the fixed effects for each matched set, 𝑗 = 1, … , 𝑀𝑖 .  

With model (18) we could easily handle the large number of fixed effects. For 

computations with this model, we could use the “class” statement for matched set 

index ‘𝑖’ and the “no intercept” option in SAS Proc GLM. 

Examples 

Example 1. Consider a study of risk factors for high blood pressure in Georgia. The 

dataset provided by Drs. Donna Brogan and John Hanfelt was generated from Georgia 

High Blood Pressure Survey (Brogan 1985). Conducted in Georgia, the complex 

sample survey interviewed over 6000 adults and aimed to estimate how many 

noninstitutionalized Georgia adults having blood pressure, hypertension, or related 

health conditions. Residents in prisons, convents, military barracks, college 

dormitories and nursing homes were not included in the survey. We analyzed data 

from 5902 subjects, including hypertensive outcomes and multiple demographic and 

risk factor variables. The individuals were matched according to small geographic 

residential regions, yielding a total of 465 strata. We defined hypertensive subjects as 

those who had mean readings of their last two DBP (diastolic blood pressure) 

measurements larger than 95 mmHg. Thus, the outcome Y characterizes subjects’ 

blood pressure (1 if hypertensive, 0 otherwise). After some preliminary modeling, we 

selected two continuous risk factors (age and BMI) to be of primary interest, and 
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elected to control for 3 other baseline covariates. These included indicators of daily 

alcohol use (yes/no), black ethnicity (yes/no), and a three-category variable 

characterizing the habit of adding salt to food. The latter was indexed by two yes/no 

dummy variables (“adds significant salt” and “adds some salt”).  

Table 1 shows the estimators corresponding to age and BMI based on conditional 

logistic regression and the discriminant function approach. For the latter, UMVU 

estimators are also included in the table.  

Table1 Analysis of Georgia blood pressure data. OR corresponding to one unit increase in age/BMI 

(controlling for race, alcohol use, salt consumption, and BMI or age) 

  
 Conditional Logistic 

regression 

Multivariable discriminant 
analysis 

  
Discriminant 
function 

UMVU 

Age 

OR̂ 1.060 1.064 1.064 

ln(OR̂)(Std error) 0.058 (0.003) 0.062 (0.003) 0.062 (0.003) 

95% CI for OR (1.054, 1.065) (1.058, 1.070) (1.058, 1.070) 

BMI 

OR̂ 1.115 1.115 1.115 

ln(OR̂)(Std error) 0.109 (0.008) 0.109 (0.008) 0.109 (0.008) 

95% CI for OR (1.098, 1.132) (1.098, 1.133) (1.098, 1.133) 

During the analysis, we noticed that 59 strata contained no cases. These are called 

uninformative strata and make no contribution to the conditional logistic regression 

model fitting process. In order to investigate how the discriminant function approach 

handles such non-informative strata, we deleted those 59 strata (corresponding to a 

total of 530 individuals) and repeated the analysis. Table2 shows the estimators 

corresponding to age and BMI based on the discriminant function approach after 
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deleting uninformative strata.  

Table2 Analysis of Georgia blood pressure data. OR corresponding to one unit increase in age/BMI. 

(controlling for race, alcohol use, salt consumption, and BMI or age) 

  Multivariable discriminant analysis 

  Discriminant Function UMVU 

Age 

OR̂ 1.063 1.063 

ln(OR̂)(Std error) 0.061(0.003) 0.061(0.003) 

95% CI for OR (1.057, 1.069) (1.057, 1.067) 

BMI 

OR̂ 1.118 1.118 

ln(OR̂)(Std error) 0.111 (0.008) 0.111 (0.008) 

95% CI for OR (1.100, 1.136) (1.100, 1.136) 

In general, we note that the estimators from the different approaches in Table1 are 

almost identical. Compared to Table2, the estimators based on the discriminant 

function approach changed slightly, although the difference was essentially negligible. 

Nevertheless, this suggests that (unlike conditional logistic regression), the 

discriminant function approach does make some use of traditionally non-informative 

strata.  

Example 2. A problem in standard logistic regression modeling is the possibility of a 

failure of convergence, commonly caused by complete or quasi-complete separation 

(Allison 2004). Penalized maximum likelihood has been demonstrated as a useful 

approach to deal with this problem (Firth 1995; Heinze and Schemper 2002), and 

exact logistic regression offers another possibility (Mehta and Patel 1995). However, 

common software may not always allow access to the penalized maximum likelihood 

approach, and exact logistic regression might not work when the dataset becomes 
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very large. It is encouraging to see that the discriminant function approach works well 

as an alternative to standard logistic regression when separation problems occur 

(Lyles et al., 2009). Our goal in this section is to demonstrate that the separation 

problem can also plague conditional logistic regression, and that the discriminant 

function continues to offer a feasible remedy. 

Table3. Simulated data illustrating separation problems 

Pair # Y X Y X 

1 0 5.0012 1 15.6853 

2 0 4.2045 1 14.9077 

3 0 6.6476 1 9.6886 

4 0 3.3183 1 11.1500 

5 0 5.8709 1 13.6066 

6 0 4.9812 1 13.8029 

7 0 1.4460 1 12.4873 

8 0 8.9625 1 11.9442 

9 0 6.1540 1 11.0878 

10 0 7.7568 1 14.2354 

11 0 4.8829 1 12.4879 

12 0 0.1809 1 13.2911 

13 0 5.7517 1 12.0722 

14 0 2.1629 1 13.8244 

15 0 3.0822 1 11.3953 

The data in table 3 were simulated under the condition of no covariates, where 

separation is occurring due to a lack of overlap in the X distribution for cases and 

controls. The exposure 𝑋 was generated from 𝑁(4, 4) and 𝑁(13, 4) distributions, 

respectively, when 𝑌  equals to 0 and 1. The true OR could be calculated from 

𝑒(13−4)/4 = 9.488. Conditional logistic regression failed under this situation, and gave 

estimates approaching infinity. Results based on standard logistic regression were not 
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reasonable, with a 95% CI for the OR of (1.008, 1.199). The top section of table 4 

shows the estimates based on the discriminant function approach. Note that the true 

OR was contained in the 95% CIs which is a noticeable improvement.  

Table4. Results based on dataset with separation problems. True OR=9.488, and ln(OR)=2.25.  

 Logistic 
regression 

Conditional Logistic 
regression 

Multivariable discriminant analysis 

 Discriminant Function UMVU 

OR̂ 1.100 Infinity 5.820 3.696 

95% CI for OR (1.008, 1.199) - (1.359, 24.931) (1.300, 15.747) 

ln(OR̂)(Std error) 0.095(0.044) - 1.761(0.742) 1.509(0.636) 

OR̂ 1.117 Infinity 10.212 9.510 

ln(OR̂)(Std error) 0.111(0.004) Infinity  2.282(0.276) 2.252(0.272) 

Mean CI width 

(median) 
0.066(0.065) Infinity (18.403) 11.495(10.185) 10.968(9.740) 

95% CI coverage 
for OR (%) 

0 8.0 93.7 93.4 

The bottom section of Table 4 summarizes a simulation under the same conditions in 

which we increased the dataset size to 300, with 1000 replications. Note that 

estimates based on the discriminant function approach (particularly based on the 

UMVU approach) now show very little bias, while standard and conditional logistic 

regression still failed.  

Simulation Studies and Results 

In our hypertension example with such a large sample, conditional logistic regression 

performed essentially equivalently to the discriminant function approach. We 

suspected that if we reduced the sample size, the differences between the estimators 

would get larger. Thus, we conducted simulations loosely mimicking the real dataset 
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and assuming smaller overall samples of size 200 or 500. All binary covariates 

(representing black ethnicity, significant (“salt_add”) and moderate (“saltsome”) use 

of salt, and daily alcohol use) were generated as independent Bernoulli variates with 

probabilities equal to the corresponding observed proportions in the actual dataset. 

The binary outcome Y (“hypertension”) was generated as Bernoulli with 20% 

prevalence. The small geographic region stratification variable (“geo”) was generated 

as normal with mean and variance equal to 0 and 0.25, respectively. Age was 

generated according to a fitted multivariable linear model in the Georgia blood 

pressure dataset, with random errors distributed as normal with mean 0 and variance 

300:  

�̂�(𝑎𝑔𝑒) = 48.9 − 9.2𝑠𝑎𝑙𝑡_𝑎𝑑𝑑 − 5.5𝑠𝑎𝑙𝑡𝑠𝑜𝑚𝑒 − 0.6𝑎𝑙𝑐 − 3.2𝑏𝑙𝑎𝑐𝑘 

BMI was generated according to the following discriminant function model, also 

based on estimates obtained using the real data: 

𝐵𝑀𝐼 = 20 + 2.49𝑌 + .03𝑎𝑔𝑒 − .84𝑎𝑙𝑡_𝑎𝑑𝑑 

               −.31𝑠𝑎𝑙𝑡𝑠𝑜𝑚𝑒 − .56𝑎𝑙𝑐 + 1.14𝑏𝑙𝑎𝑐𝑘 + 𝑔𝑒𝑜 + 𝜖 

where Y is the outcome (1 if hypertensive, 0 otherwise), and 𝜖 ∼ 𝑁(0, 22.79). This 

process was repeated for 1000 independent simulated datasets. Note that the latter 

model dictates a true ln(OR) of 2.49/22.79 = 0.109. 

Table5 Simulation mimicking Georgia blood pressure data (N=500/200, 1000 iterations). OR 
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corresponding to one unit increase in BMI. Controlling some baseline covariates, such as race, et al. 

True OR=1.115, ln(OR)=0.109. 

  Logistic  

regression 

Conditional 
Logistic 
regression 

Multivariable discriminant analysis 

  Discriminant function  UMVU 

Size 
200 

ln(OR̂)(Std error) 0.226(0.096) 0.136 (0.085) 0.110 (0.058) 0.107 (0.056) 

OR̂ 1.270 1.150 1.118 1.114 

95% CI coverage for OR 
(%) 

77.0 96.0 88.4 88.0 

Mean CI width (median) 0.525(0.415) 0.352(0.302) 0.210 (0.208) 0.218 (0.217) 

Size 
500 

ln(OR̂)(Std error) 0.184(0.050) 0.118(0.040) 0.110(0.034) 0.109(0.034) 

OR̂ 1.205 1.126 1.117 1.115 

95% CI coverage for OR 
(%) 

66.2 94.2 94.3 94.0 

Mean CI width (median) 0.238(0.230) 0.175(0.171) 0.155(0.154) 0.153(0.153) 

Table5 summarizes 1000 replications for each case when sample size is set to 200 and 

500. The estimators of ln(OR)  based on discriminant analysis (both UMVU and 

discriminant function estimators) show less bias compared to estimators based on 

conditional logistic regression (true  ln(OR) =0.109). The mean standard errors for 

ln(OR)  are also noticeably reduced when we move from conditional logistic 

regression to discriminant analysis. Bias reduction is maintained when we consider 

OR estimators, along with variance reduction leading to narrower CIs via discriminant 

analysis.  

In order to assess the performance of the discriminant function approach more 

comprehensively, another simulation was conducted to mimic the common practice 

of case-control study matching based on gender and age. The outcome 𝑌 (disease 

status) and gender were generated as Bernoulli variables with probabilities 0.25 and 

0.5 respectively. We assumed the age of patients was normally distributed with the 
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mean 60 and the standard deviation 10. Our continuous predictor 𝑋 was generated 

based on the following model:  

𝑋 = 4 + 𝑌 + 0.05𝑎𝑔𝑒 − 0.5𝑔𝑒𝑛𝑑𝑒𝑟 + 𝜖 

where 𝜖~𝑁(0, 0.5). Note that this model dictates a true ln(OR) of 1/0.5 = 2.  

Sizes of dataset and matched sets varied with our settings (shown in the following 

table). Every time the dataset generated, objects were matched based on their gender 

and ages using K-means clustering method (Mitchell Lyles et al. 2014). Although 

desired number of matched sets could be automatically generated through this way, 

case number in each set differs: some may have more than one case while some having 

none.  

Table6 Results of simulation to assess performance of the discriminant function. This process was 

repeated for 4000 independent simulated datasets with matched sets of varying size obtained via k-

means clustering (see text). When ‘Correlation’ is designated, this means ‘Age’ was generated as linearly 

associated with ‘Y’. True OR=7.389, ln(OR)=2.  

Situation  Approach ln(OR̂) 

(Mean estimated SE) 

OR̂ Mean CI width 
(Median) 

95% CI coverage 
(%) 

#Clusters: 50 

Dataset size: 
300 

Logistic 
regression 

2.241(0.914) 12.443 21.68(16.76) 67.18 

Conditional 
Logistic 
regression 

2.037(0.325) 8.110 11.63(9.79) 95.35 

Discriminant 
function  

2.013(0.275) 7.783 9.12(8.40) 95.33 

UMVU 1.986(0.272) 7.191 8.89(8.20) 95.18 

#Clusters: 50 

Dataset size: 
200 

Logistic 
regression 

2.763(0.935) 26.269 232.12(34.70) 70.07 

Conditional 
Logistic 
regression 

2.100(0.480) 9.402 24.42(13.68) 95.65 
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Situation  Approach ln(OR̂) 

(Mean estimated SE) 

OR̂ Mean CI width 
(Median) 

95% CI coverage 
(%) 

Discriminant 
function  

2.032(0.365) 8.186 13.06(11.20) 95.00 

UMVU 2.005(0.360) 7.418 12.48(10.73) 94.40 

#Clusters: 50 

Dataset size: 
100 

Logistic 
regression 

3.983(1.879) 
1107.3
2 

>105(335.17) 88.95 

Conditional 
Logistic 
regression 

2.578(2.495) 3.159 >105(42.49) 95.70 

Discriminant 
function  

2.087(0.665) 10.538 62.83(24.19) 95.80 

UMVU 2.059(0.656) 8.496 49.16(20.95) 94.90 

#Clusters: 30 

Dataset size: 
300 

Logistic 
regression 

1.416(1.209) 7.130 9.82(8.89) 56.95 

Conditional 
Logistic 
regression 

2.025(0.303) 7.956 10.15(8.84) 95.28 

Discriminant 
function  

2.006(0.266) 7.709 8.56(7.91) 95.40 

UMVU 1.983(0.262) 7.186 8.35(7.73) 95.25 

#Clusters: 30 

Dataset size: 
200 

Logistic 
regression 1.759(1.282) 10.774 24.19(15.38) 62.38 

Conditional 
Logistic 
regression 

2.053(0.413) 8.579 15.65(11.77) 96.02 

Discriminant 
function  2.014(0.349) 7.988 11.64(10.15) 95.58 

UMVU 1.990(0.344) 7.333 11.19(9,78) 95.48 

#Clusters: 30 

Dataset size: 
100 

Logistic 
regression 

2.924(1.742) 
1028.4
3 

>105(68.00) 77.90 

Conditional 
Logistic 
regression 

2.258(0.998) 
12850.
53 

>105(24.36) 96.18 

Discriminant 
function  

2.061(0.557) 9.370 27.63(17.88) 95.70 

UMVU 2.036(0.550) 8.056 24.53(16.22) 94.98 

#Clusters: 30 

Dataset size: 
300 

Correlation 

Logistic 
regression 2.238(0.579) 10.714 17.61(14.04) 85.65 

Conditional 
Logistic 
regression 

2.042(0.330) 8.167 11.87(10.04) 95.70 

Discriminant 
function  

2.016(0.275) 7.806 9.30(8.64) 95.43 

UMVU 1.993(0.271) 7.244 9.08(8.44) 95.18 
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Situation  Approach ln(OR̂) 

(Mean estimated SE) 

OR̂ Mean CI width 
(Median) 

95% CI coverage 
(%) 

#Clusters: 30 

Dataset size: 
200 

Correlation 

Logistic 
regression 

2.450(0.731) 16.164 50.53(22.94) 84.90 

Conditional 
Logistic 
regression 

2.075(0.454) 9.055 20.20(13.27) 95.48 

Discriminant 
function  

2.023(0.361) 8.099 12.74(11.04) 94.98 

UMVU 1.999(0.357) 7.384 12.24(10.64) 94.78 

#Clusters: 30 

Dataset size: 
100 

Correlation 

Logistic 
regression 3.316(1.624) 

36116
56.58 

>105(103.93) 88.83 

Conditional 
Logistic 
regression 

2.370(1.729) >105 >105(29.29) 96.58 

Discriminant 
function  2.060(0.571) 9.464 29.77(19.02) 96.10 

UMVU 2.036(0.564) 7.985 26.41(17.27) 9 

Table 6 summarizes the simulation results and provides us useful observations. 

Starting from the first situation (50 clusters and the sample size=300), ln(OR) 

estimators based on the discriminant function approach and UMVU estimators 

noticeably outperform estimators based on logistic regression, reducing bias and 

standard errors. Similar benefits can be observed with respect to the OR estimates, 

and variance reduction leads to narrower CIs via discriminant analysis. When more 

information is contained in each cluster (decreasing the number of clusters), the 

ln(OR)  estimators based on the discriminant function approach and UMVU 

estimators appear to have smaller standard errors, along with 95% CIs for the OR 

becoming narrower. When sample size and number of clusters go down, logistic 

regression failed to give reasonable results sometimes (e.g., 30 clusters and the 

sample size=100), and the discriminant function approach shows marked benefits 
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under this situation. As we expected, the generation of crude correlation between Y 

and age had some negative influences on the ln(OR) estimates in terms of precision. 

Nevertheless, the advantages of the discriminant function over standard and 

conditional logistic regression were still maintained. 

Discussion 

The discriminant function approach is a historical one and its application to odds ratio 

estimation preceded the development of logistic regression. As historical criticism for 

the discriminant function approach exists, it has perhaps been somewhat 

underestimated as an alternative to logistic regression. Recently, a fresh look at the 

approach highlighted the ready possibility of relaxing the multivariate normality 

assumption when estimating the covariate-adjusted odds ratio corresponding to a 

single continuous exposure variable of interest (Lyles, Guo and Hill 2009). They also 

derived UMVU estimators for adjusted odds ratios from the approach. Based on this 

newfound variation on the historical discriminant function approach, the current 

thesis specifically focuses on estimating the adjusted OR associated with a continuous 

predictor in situations (e.g., a matched case-control study) in which conditional 

logistic regression would be the typical approach.  

The discriminant function approach is not a replacement to logistic regression, but an 

alternative way to give a more precise estimator of odds ratio (particularly when 
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logistic regression is unstable or fails due to separation problems). As we could see 

from Example 1, when the sample size is large enough the conditional logistic 

regression model has little drawback and the discriminant function approach would 

not show much benefit. But in many real studies, the collected data are comprised of 

fewer observations, or complete records, for each patient. Problems can pop up, like 

our example 2 or the first simulation, leading to the nonexistence of the MLE estimate 

based on conditional logistic regression. In these instances, the discriminant function 

approach would clearly show performance benefits.  

Overall, the examples and simulation work in this thesis have shown the discriminant 

function to be a useful tool to estimate covariate-adjusted odds ratio relating to a 

continuous predictor in matched case-control studies. Its required assumptions are 

straightforward to assess (though normality of errors is required), which makes it 

potentially of practical use. Example 2 shows that discriminant function uses 

traditionally non-informative strata, which is not the case with conditional logistic 

regression. In later simulation work which mimicked our example data, we only 

focused on changes in the sample size. Further work could be done to drop non-

informative strata during the simulation process to assess the estimators based on 

the discriminant function approach. Another potential improvement could be done to 

better assess the discriminant function approach in comparison to using penalized 

maximum likelihood to deal with separation problems in the conditional logistic 
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regression setting (Heize and Puhr 2010). Although we obtained a SAS macro from 

the authors (G. Heinze, personal communication), we were unable to implement it at 

the time of this writing.  
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