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Abstract 

 
Seafood Consumption, Glycemia, and Diabetes in Chennai, India: a Cross-Sectional 

Study 

By Timmy J. Pierce II 

 

 

 

 

Studies of the association between seafood consumption and diabetes risk generally focus 

on broad categories of fish and shellfish consumption. Seafoods are heterogeneous in 

nutrients and contaminants, so epidemiology considering specific seafoods is needed. Our 

objectives were to estimate the cross-sectional associations of seafood consumption with 

diabetes, glycated hemoglobin A1c, and fasting glucose and to evaluate if those 

associations differed across trophic level. A total of 6,979 adults participated in a diet and 

cardiometabolic disease survey in 2016, and a total of 24 types of seafood were 

considered in this analysis. More than monthly consumption of salmon and nagarai was 

associated with confounder-adjusted HbA1c distributions (Bonferroni-significant, with 

3d F-test P-values of 4 x 10−4 and 1 x 10−6); and confounder-adjusted fasting glucose 

was 5% lower among people eating salmon monthly, but this was not Bonferonni-

significant. However, these fish were not commonly eaten by the Chennai population. 

More than monthly consumption of katla and koduva was associated with lower adjusted 

odds of diabetes, but reverse causality is possible, where diabetes diagnosis changed 

dietary patterns. In meta-regression, trophic levels of seafood items did not predict 

seafood-specific associations. Overall, these results suggest that seafood is not a major 

driver of diabetes in Chennai. 
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Introduction    
Twenty-five years ago, a diverse community of practice interested in 

characterizing the relationships between human activity, ecological change, and human 

health coalesced into the now defunct International Society for Ecosystem Health, and 

accelerated a paradigm shift in epidemiology to consider ecological function as a driver 

of human health (Rapport et al., 1999). The goal of the Ecosystem Approaches to Human 

Health (EcoHealth) intellectual movement has sought to understand and promote health 

and wellbeing in the contexts of social and ecological interactions (Alonso Aguirre et al., 

2019). EcoHealth research began in earnest in 1997 with the start of the Ecosystem 

Approaches to Human Health (or EcoHealth) research program in Canada, which 

emphasized transdisciplinarity, multi-stakeholder participation, and gender and social 

analysis (Charron, 2014). Another trans-disciplinary examination of interconnected 

human and environmental wellbeing, which has gained wider interest in recent years, is 

One Health. The concept of One Health, which is the collaborative efforts of multiple 

disciplines working locally, nationally, and globally, to attain optimal health for people, 

animals, and our environment (King et al., 2008), has its origins in the 19th century 

discoveries of German physicist and pathologist Rudolf Virchow who thought there 

should be no division between human and animal health (Gyles, 2016). To facilitate 

sharing of information, a One Health Initiative was launched in 2018 to promote One 

Health across various platforms (One Health Initiative, 2018).  

Studies of the associations between seafood consumption and diabetes risk have 

generally focused on very broad categories such as total fish consumed, dark meat fish, 

fried fish, dried fish, and shellfish (Djousse, Gaziano, Buring, & Lee, 2011; Kaushik et 
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al., 2009; Nanri et al., 2011; Patel et al., 2009).  A 2009 population-based prospective 

cohort study focused on seafood consumption and incident considered fish exposures as 

lean or fatty (van Woudenbergh et al., 2009). A 2017 prospective cohort of Swedish men 

studying fish consumption in relation to diabetes looked at three more specific exposure 

groups of fish types: (herring/mackerel, salmon/whitefish/char, and cod/saithe/fish 

fingers) (Wallin et al., 2017). More detailed dietary assessment considering specific fish, 

in the context of their ecological niches, is needed, because nutrients and contaminants 

can vary dramatically with trophic position (Gribble et al., 2016). 

In this study, we expanded on the seafood and diabetes epidemiological literature 

by considering specific types of seafood, in a large population-representative survey 

sample, and evaluating whether trophic position is salient for the direction and magnitude 

of association of fish consumption with diabetes. 

The objectives of this study were to estimate the cross-sectional associations of 

specific seafoods with fasting glucose, glycated hemoglobin A1c (HbA1c), and diabetes 

status in Chennai, India, and evaluate whether those associations differed according to the 

ecological niches of the consumed marine life. 

Methods 
Study Population 

The study sample consisted of 6,979 adults between 20 and 89 years old from 

Chennai, India participating in the Cardiometabolic Risk Reduction in South Asians 

(CARRS) study in 2016. The CARRS study is an ongoing population-based cohort study 

initiated from three cities in South Asia: Karachi, Delhi, Chennai (Nair et al., 2012). 
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Baseline assessment was conducted in 2010-2011, and annual follow-up visits were 

conducted thereafter. An ancillary study focused on diet, with emphasis on detailed 

seafood consumption history, was included in the Chennai survey component in 2016. 

The CARRS study was approved by the Institutional Ethics Committee of Public Health 

Foundation of India (TRC-IEC-34/09 (IRB no. IRB00006658), All India Institute of 

Medical Sciences (IEC/NP-17/07.09.09), Aga Khan University (1468-CHS-ERC-2010), 

and Madras Diabetes Research Foundation (IRB00002639), and the Institutional Review 

Board of Emory University (IRB00044159). 

Sociodemographic, Anthropometric, and Behavioral Data 

 Sociodemographic information such as participant age, sex, educational 

attainment, and monthly household income, along with behavioral risk factors such as 

tobacco use and alcohol consumption, were assessed by questionnaire given by trained 

study staff. Questions were derived from the Chennai Urban Population Study (CUPS), 

Chennai Urban Rural Epidemiological Study (CURES), and the Sentinel Surveillance 

Study (Nair et al., 2012). Sedentary lifestyle was estimated using the short form of the 

International Physical Activity Questionnaire (Rosenberg, Bull, Marshall, Sallis, & 

Bauman, 2008). 

 Body mass index (BMI) was calculated as a weight (kg) divided by height-

squared (𝑚2) based in the anthropometric measures collected by trained study personnel. 

Standardized procedures were used to measure weight to the nearest 0.1 kg (electronic 

body composition analyzer, Tanita BC-418, Tanita Co, Tokyo, Japan), height to the 

nearest 0.1 cm (portable stadiometer, SECA Model 213, SecaGmbh Co, Hamburg, 
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Germany), and waist and hip circumference to the nearest 0.1 cm (non-stretch measuring 

tape, Gulick II, Country Technology, Gay Mills, WI) based on the U.S. National Health 

and Nutrition Examination Survey (N-HANES-III) protocol (US Centers for Disease 

Control Prevention, 1988). 

Dietary Data 

 Dietary data were obtained by a questionnaire administered in Tamil, Hindi, and 

English with illustrative pictures of the seafood items (e.g., fish or shellfish). The 

exposure variables were the specific types of seafood that participants reported to 

consume. The frequency of consumption for each seafood item was recorded as less than 

weekly, monthly but less than weekly, weekly, several times a week, or daily.  

 The unhealthy diet score variable was an index calculated from the consumption 

frequency of ten food groups: meats, organic meats, desserts, deep fried western-style 

foods, deep fried South Asian-style foods, Western-style desserts, South Asian-style 

desserts, refined cereals, pickles, and cold beverages. For each one of the ten food 

groups, participants were assigned scores of 0 (“never consume”), 1 (“consume 

monthly”), 2 (“consume weekly”), or 3 (“consume daily”). These scores were summed 

such that the maximum unhealthy diet score was 30 and the minimum was 0. 

Ecological Data on Trophic Position of Fish 

 FishBase is a global species database that currently includes information on 

34,200 species of fish (Froese & Pauly, 2019). The FishBase database was accessed on 
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April 17th, 2019 to retrieve information on the trophic level of 24 different species of fish 

whose consumption frequency had been assessed by questionnaire in the Chennai survey. 

Glycemic Status of Participants 

 Diabetes status was defined by self-report of a physician’s diagnosis, which 

would be based on fasting glucose ≥ 126 mg/dL (7.0 mmol/L), or HbA1c ≥ 6.5% 

(48mmol/mol) ("Classification and Diagnosis of Diabetes," 2017). Fasting glucose and 

HbA1c were used as outcome measures separately from the diabetes status. The 

hexokinase/kinetic method was used to measure fasting glucose while high performance 

liquid chromatography was used to measure HbA1c. 

Statistical Analysis 

 All regression models used survey estimation methods for population inference 

accounting for the complex survey design. Missing data were handled using inverse-

probability of observation weighs to re-weight the “observed” sample (i.e., the analytic 

sample with no missing data) to resemble the total sample (i.e., all participants at 

baseline) with respect to specified covariates. We created inverse-probability weights 

based on education, religion, employment, age, sex, and body mass index. The inverse-

probability weights were multiplied by the survey design weight to generate a final 

analytic weight used in data analysis.   

We modeled conditional HbA1c and fasting glucose distributions using 

generalized gamma regression models Generalized gamma regression models have 

position, scale, and shape parameters allowing for flexible modeling of continuous 
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variables (Cox, Chu, Schneider, & Munoz, 2007). In a simplified generalized gamma 

regression where the scale and shape parameters are held constant between exposed and 

unexposed groups, and only the position parameter is allowed to differ by group, then the 

generalized gamma regression model is a proportionate percentiles regression model. In a 

proportionate percentiles model, the same constant (the exponentiated regression 

coefficient) is multiplied by each quantile of the ‘unexposed’ outcome distribution to 

arrive at the estimated ‘exposed’ outcome distribution. This allows for a straightforward 

interpretation of the association as “levels of Y were X% higher in the exposed compared 

to the unexposed”. In contrast, when the scale or shape parameters are significantly 

different by group, then there are different magnitude of differences between quantiles of 

the ‘exposed’ and ‘unexposed’ outcome distributions, rather than a constant proportional 

relationship. We first fit generalized gamma regression models allowing for three 

simultaneous regressions, one for the position parameter (multivariable-adjusted), one for 

the scale parameter (multivariable-adjusted), and one for the shape parameter 

(multivariable-adjusted). Then, in these flexible models, we tested for whether there were 

significant associations in scale and/or shape parameters; where these scale and shape 

parameter associations were not significant, we constrained the generalized gamma 

regression to be a proportionate percentiles model. Results from the models with 

significant scale or shape parameter associations are presented graphically; results from 

the proportionate percentile models are summarized in tables. We also estimated adjusted 

odds ratios for prevalent diabetes using logistic regressions models. Bonferroni correction 

was used to account for multiple comparisons and type 1 error. Our Bonferroni 
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significance threshold was 0.0007. This was calculated from seventy total tests that were 

being performed.  

Frequency of fish consumption was recoded into a binary variable for statistical 

anlaysis, distinguishing at least monthly consumption from less than monthly 

consumption. Other variables that were controlled for in the multivariable generalized 

gamma and logistic regression models included both continuous variables: participant age 

(linear and quadratic terms), and BMI; and categorical variables: sex, tertile of unhealthy 

diet score, educational attainment (3 categories: up to primary school, high 

school/secondary, or college graduate), tobacco use (3 categories: current, ever, or never), 

monthly household income (Indian Rupees [INR] ≤ 10,000 [equivalent to US $200], INR 

10,001-20,000 [US $200-$400], INR ≥ 20,001 [US $400], or income not declared), 

sedentary lifestyle (indicator for sitting or reclining but not sleeping ≥ 5 hours/day), self-

reported physician diagnosis of high blood pressure (yes or no), and self-reported 

diagnosis of high cholesterol (yes or no).  

 To assess whether the specific seafood consumption-glycemia associations 

differed according to the trophic level of the seafood, we performed a second-stage 

inverse-variance-weighted random-effects meta-regression (Thompson & Higgins, 2002). 

Separate meta-regression models were fit for fasting glucose, HbA1c, and diabetes status. 

The outcome of the meta-regression were the regression coefficient from the earlier 

models (i.e., differences in log-medians from the glycemic biomarker proportionate 

percentiles models; differences in log odds from the logistic regressions). The predictor 

variable of the meta-regression was trophic position of the seafood. 
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 All analyses were conducted using Stata SE 15.1 (StataCorp LLC, College 

Station, TX). 

Results 
Seafood Consumption, HbA1c, Fasting Glucose, and Diabetes 

 Table 1 presents the total consumption frequencies and the estimated percentage 

of the population that consumed the seafood items analyzed in the study. Table 2 

presents baseline characteristics of the study participants. There were 3,755 (53.8%) 

women and 3,224 (46.2%) men participating in this study. Their mean age was 41.37 

years old. Almost a quarter (n=1,453; 24.1%) of the participants reported a physician’s 

diagnosis of having diabetes.  

 There were 5 seafood items whose generalized gamma regression models had 

significant “scale” or “shape” parameters, indicating that the extent of difference in 

HbA1c distributions of persons consuming seafood more vs. less than monthly was 

heterogenous across the quantiles of the HbA1c distribution.: salmon, karapodi, nagarai, 

sheela, and vanjaram. The distributions of HbA1c were different according to frequency 

of salmon and nagarai consumption, based on a Bonferroni-significant P-value from the 

3d F-test for the generalized gamma model’s beta, sigma, and kappa parameter regression 

coefficients. The comparison of HbA1c distributions by salmon consumption had a 3d F-

test P-value of 4 x 10−4, while the comparison by nagarai consumption had a 3d F-test P-

value of 1 x 10−6. Modeled HbA1c distributions, adjusted for confounders, are shown in 

Figure 1.  



9 
 

 The associations between seafood consumption frequency and HbA1c for the 

remaining 17 seafood items could be described adequately using proportionate percentile 

models. Results from the survey estimation multivariable-adjusted proportionate 

percentile generalized gamma regressions models for HbA1c are shown in Table 3. We 

did not see any significant associations of seafood item consumption with HbA1c. The 

point estimates for these 17 seafood-HbA1c associations were approximately null except 

for surameen, which had an estimated ~4% lower HbA1c among persons eating more 

than monthly compared to persons eating less than monthly (percentile ratio: 0.96, 95% 

Confidence Interval: 0.88, 1.03).  

The extent of difference between fasting glucose distributions according seafood 

consumption frequency was different across the quantiles of the fasting glucose 

distribution (i.e., significant “scale” or “shape” parameters in the generalized gamma 

regression) for 8 seafood items: karapodi, kezhanga, navara, nethili, suthumbu, valai, 

vavval, and kola. The fasting glucose distributions between monthly vs. less than 

monthly consumers of navara and valai were distinct at a level that was Bonferroni-

significant: for each fish, there was a P-value of 5 x 10−7 for the 3d F-test of the 

generalized gamma model’s position, scale, and shape parameters’ regression 

coefficients. Modeled fasting glucose distributions, adjusted for confounders, are shown 

in Figure 2. 

Associations between seafood consumption frequency and fasting glucose 

distributions for the remaining  16 seafood items are shown in Table 4. Fasting glucose 

was approximately 5% lower (95% Confidence Interval: 1% lower, 10% lower) among 

persons eating salmon at least monthly vs. less than monthly. However, with a p-value of 
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0.042, this finding was not Bonferroni-significant. The other estimated associations were 

all approximately null. 

The odds ratios for prevalent diabetes according to seafood consumption are 

shown in Table 5. Frequent consumption of katla and koduva was associated with lower 

odds of diabetes. The odds ratio for physician-diagnosed diabetes among frequent 

consumers of these two types of seafood were 0.30 (95% CI: 0.11, 0.84) for katla and 

0.42 (95% CI: 0.26, 0.67) for koduva. Neither of these were observed to have Bonferroni-

significance.  

The meta-regression findings are shown in Figure 3-5. We observed null 

associations for fasting glucose, HbA1c, and diabetes status across the different trophic 

levels of the seafood.  

Discussion 
  In summary, there was little evidence supporting a relationship between monthly 

seafood consumption and diabetes status. We observed Bonferroni- significant cross-

sectional joint associations in the beta, sigma, and kappa regression coefficients between 

consuming salmon and nagarai with HbA1c; and navara and valai with fasting glucose. 

However, it is possible that these associations are nonetheless spurious given the small 

number of participants who consumed these specific fish more than monthly. Meta-

regression analysis did not support trophic levels of fish as a strong predictor of the 

associations between seafood consumption frequency and diabetes, fasting glucose, or 

HbA1c. Based on these results, we conclude that biomagnifying seafood contaminants 

are unlikely to be major contributors to the diabetes epidemic in Chennai, India. 

However, two types of seafood, katla and koduva were associated with lower odds of 
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prevalent physician-diagnosed diabetes; this may be consistent with changes in dietary 

behaviors after diabetes has been diagnosed, or possibly some nutritional idiosyncrasies 

of those specific seafood items. 

 Our study has several strengths, but limitations as well. A strength of our study is 

that it is a complex survey sample and our data was collected using standardized 

procedures. The complex survey sample helps us ensure reasonable inference without 

selection bias for the population of Chennai. Our study is a cross-sectional observational 

study, and no temporal relationship between exposure and outcome can be assessed. 

Another limitation of this study is that we are lacking data on the way the seafood was 

prepared. Fish in India is either eaten dried, fried, or fried and then cooked with 

vegetables, gravy, or lots of spices, condiments, and cooking oil (Agrawal, Millett, 

Subramanian, & Ebrahim, 2014), which may alter the health consequences of fish 

consumption. A study in Alaska in 2009 found that seafood preparation methods could 

significantly affect contaminant concentrations (Moses, Whiting, Muir, Wang, & O'Hara, 

2009). A prospective cohort study in the UK did not find fried fish significantly 

associated with diabetes risk (Patel et al., 2009), but a study involving Dutch participants 

observed a relative risk decrease after an additional adjustment for fried fish intake (van 

Woudenbergh et al., 2009).   

 Another limitation of the study is that we did not have trophic level data for 

kadamba, nagarai, kezhanga, kilachi, and kola. These species of seafood were excluded 

from the meta-regression analysis. 
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 In conclusion, our data indicates that no particular species of seafood that is 

consumed in Chennai is associated with diabetes. Additional research is needed to 

understand the contaminants and concentrations in the seafood.  
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Tables and Figures 
Table 1 

Consumption Frequency of Specific Seafood Items 

Seafood N (% of population) 

Eral 1,532 (21.54%) 

Kadamba 236 (3.44%) 

Kanankelithi 595 (8.11%) 

Karapodi 269 (3.80%) 

Katla 85 (1.23%) 

Kezhanga 642 (9.71%) 

Kilachi 209 (2.87%) 

Koduva 97 (1.42%) 

Kola 39 (0.75%) 

Mathi 669 (10.44%) 

Naakumeen 32 (0.39%) 

Nagarai 81 (1.17%) 

Nandu 708 (9.93%) 

Navara 321 (4.58%) 

Nethili 351 (4.63%) 

Paarai 143 (1.74%) 

Salmon 22 (0.22%) 

Sankara 2,089 (29.26%) 

Sheela 444 (6.01%) 

Surameen 55 (1.00%) 

Suthumbu 77 (1.28%) 

Valai 143 (1.95%) 

Vanjaram 645 (8.83%) 

Vavval 172 (2.14%) 
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Table 2 

Demographics 

 Diabetes Status  Fasting Glucose ≥ 126 mg/dL HbA1c ≥ 6.5% 

Gender    

Male 660 947 1,161 

Female 793 867 1,123 

Age    

20-29 51 29 54 

30-49 720 454 659 

50-64 527 297 478 

65+ 155 83 142 

Body Mass Index (kg/𝒎𝟐)    

<23 210 138 201  

≥23 and <25 730 103 138 

≥25 and <30 1,674 268 422 

≥30 2,252 354 572 

Sedentary Lifestyle    

No 341 511 630 

Yes 1,112 1,303 1,654 

Educational Attainment    

No Education 399 187 253 

Up to Primary 299 159 212 

High School/Secondary 3,278 1,257 1,570 

College Graduate 599 211 249 

Tobacco Use    

Never 1,800 1,332 1,695 

Ever 69 49 68 

Current 535 433 521 

Monthly Household 

Income (Indian Rupees) 
   

≤10,000 1,169 1,472 1,844 

>10,000 279 333 428 

Self-Reported High Blood 

Pressure 
   

No 1,056 1,490 1,841 

Yes 397 324 443 

Self-Reported High 

Cholesterol 
   

No 1,371 1,744 2,193 

Yes 82 70 91 

Unhealthy Diet Score    

0-6 509 539 716 

7-12 746 952 1,178 

13-18 182 291 352 
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19-24 16 32 38 

25-30 0 0 0 

 

Table 3 

Multi-Variable Proportion-Percentile Generalized Gamma Regression Results for HbA1c 

Seafood Relative Median Confidence Interval 

Eral 0.99 0.97, 1.00 

Kadamba 1.00 0.98, 1.03 

Kanankelithi 1.00 0.99, 1.02 

Katla 0.98 0.94, 1.02 

Kezhanga 1.00 0.98, 1.02 

Kilachi 1.00 0.98, 1.03 

Koduva 0.98 0.95, 1.02 

Mathi 1.00 0.98, 1.02 

Naakumeen 0.98 0.96, 1.00 

Nandu 0.99 0.97, 1.01 

Navara 1.00 0.98, 1.02 

Nethili 0.99 0.97, 1.02 

Paarai 0.98 0.94, 1.01 

Sankara 0.99 0.98, 1.01 

Surameen 0.96 0.88, 1.03 

Valai 0.99 0.96, 1.02 

Vavval 1.00 0.98, 1.03 
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Table 4 

Multi-Variable Proportion-Percentile Generalized Gamma Regression Results for 

Fasting Glucose 

Seafood Relative Median Confidence Interval 

Eral 0.99 0.97, 1.01 

Kadamba 0.97 0.89, 1.05 

Kanankelithi 0.98 0.95, 1.02 

Katla 1.02 0.99, 1.06 

Kilachi   

Koduva 1.02 0.99, 1.06 

Mathi 1.00 0.97, 1.03 

Naakumeen 1.00 0.96, 1.05 

Nandu 1.01 1.00, 1.03 

Nagarai 1.01 0.97, 1.05 

Paarai 0.98 0.94, 1.02 

Salmon 0.95 0.91, 1.00 

Sankara 1.00 0.98, 1.02 

Sheela 1.00 0.98, 1.02 

Surameen 1.00 0.95, 1.06 

Vanjaram 1.00 0.97, 1.01 
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Table 5 

Seafood Odds Ratio Confidence Interval 

Eral 0.88 0.65, 1.19 

Kadamba 1.14 0.70, 1.85 

Kanankelithi 0.99 0.69, 1.42 

Karapodi 1.28 0.65, 2.52 

Katla 0.29 0.11, 0.79 

Kezhanga 1.36 1.03, 1.79 

Kilachi 1.13 0.73, 1.74 

Koduva 0.46 0.28, 0.76 

Kola 1.28 0.77, 2.13 

Mathi 0.98 0.64, 1.50 

Naakumeen 0.81 0.29, 2.24 

Nagarai 0.78 0.16, 3.75 

Nandu 0.84 0.61, 1.16 

Navara 0.76 0.54, 1.05 

Nethili 0.71 0.43, 1.18 

Paarai 1.17 0.70, 1.93 

Salmon 0.78 0.39, 1.55 

Sankara 0.94 0.69, 1.27 

Sheela 1.00 0.69, 1.45 

Surameen 0.70 0.14, 3.45 

Suthumbu 2.27 0.98, 5.23 

Valai 1.06 0.44, 2.54 

Vanjaram 0.91 0.63, 1.31 

Vavval 1.69 0.96, 2.97 
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Figure 1 

HbA1c Generalized Gamma Regression Results 
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Figure 2 

Fasting Glucose Generalized Gamma Regression Results 
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Figure 2 cont. 
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Figure 3 

Diabetes Meta-Regression Results 
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Figure 4 

Fasting Glucose Meta-Regression Results 
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Figure 5 

HbA1c Meta-Regression Results 

 

 


