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Abstract  
 

Possible benefits of the “logistic flip” in discerning between two logistic 

regression models 

by Svetlana Masalovich 

 
 We  investigated  the relationship between and properties of odds ratio estimates  

in two logistic regression models: the model  for a dichotomous  outcome (Y) and  

dichotomous   predictor (X)  including an auxiliary continuous  covariate, and  the 

“flipped” model where  X  and Y  are interchanged.  The odds ratio is invariant to flipping 

when no additional covariates are considered. However, its estimates yielded by the two 

models in the presence of covariates are generally different unless some finer adjustments 

for covariate effects on the outcome in the flipped model are made (e.g.,  involving 

polynomial terms). The reason  is appearing  in the flipped model a  non-linear function 

of the covariates and the model parameters and a function  of the conditional probability 

of the predictor  given the covariates are introduced.  We demonstrated that the odds ratio 

estimates from the two models can be similar without adjustment if the function of the 

covariate in the flipped model is approximately linear and the predictor and covariate in 

the initial model are independent or related through a logistic regression.  When the 

model for the predictor and covariate is not logistic, nonparametric approaches (such as 

LOESS) can be employed to estimate the conditional probability of X given the 

covariates.  

 We found that the extent of  the equivalence of  odds ratio estimates in initial and 

flipped models  can be useful in  data sets with covariates  when it is not known  which 

outcome is more appropriate, Y or X . We hypothesized   that the difference between the 

odds ratio estimates yielded by the initial and “flipped’ models with Y as the outcome  in 

the initial model, and that difference when, instead, X is the outcome,  can be used to 

discern  between the correct and incorrect models.  It was expected that the estimates 

based on the initial and reversed correct model would tend be closer to one another than 

the corresponding estimates based on the incorrect model.  The simulation study 



 
 

 
 
 

confirmed this hypothesis in general.  This approach can be useful in studies where it is 

not clear which model is more appropriate.  
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Introduction  

 Logistic regression is a widely used and intensively studied method for analyzing 

categorical data.  One of the most common measures of effect in the models for  

categorical variables  is the odds ratio (OR).  It can be estimated in many study designs, 

such as cross-sectional, prospective and retrospective.   One of the interesting features of 

the odds ratio is its invariance property.  In 2x2 contingency tables, it means that  the 

odds ratio  does not change when the orientation of the table reverses  [Agresti, 2002, 

p.45].  An important implication of this property is that the odds ratio can be defined 

using conditional probabilities in either direction. Accordingly, the sample odds ratio 

estimates the same parameter  in prospective, retrospective or cross-sectional sampling 

designs.    

 Similar to the 2x2 table case,  the invariance property  holds exactly in a logistic 

regression model with  a single  dichotomous  explanatory variable. If the independent 

and dependent variables  are reversed,   both  the initial and “flipped”  models are of 

logistic form.  By  “flipping” we mean that predictor and explanatory variables are   

reversed so that the predictor is replaced by the original outcome.  With  a single binary 

predictor,  the OR estimates yielded by  the initial model  and the reversed  model are 

equivalent  [Cornfield,1951].  This is a result of the fact that the estimated  regression 

coefficient of the explanatory variable in the original model is the same as that coefficient 

in the flipped model. In retrospective studies this symmetry in presentation between  Y 

and X   can be used to estimate  odds ratios based on a model for disease given the 

exposure  rather than the  reverse.  Modeling the former, sometimes referred to as 
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prospective probability, is usually more consistent with objectives, but in case-control 

studies one cannot estimate the prospective probability directly.   

  The reasonable question arises whether the flip of the outcome and a binary 

predictor preserves the estimate of the OR for the binary predictor in logistic regression 

with additional explanatory variables, either continuous or categorical.  Anderson [1972 ] 

suggested modeling the probability of disease conditional on  exposure and categorical 

explanatory vectors  and   showed  that after maximization over nuisance parameters the 

maximum likelihood estimate of the logistic regression coefficient  of the prospective 

model is the same that of the retrospective model. Prentice [1976]  used the  invariance 

property  and explored the effect of a covariate on the odds ratio in retrospective studies 

that  were modeled by a  logistic regression  model.  He illustrated that  for the fixed 

value of a continuous covariate  or   level of  a categorical covariate,   the odd ratio 

estimates are  equivalent,   if the assumption is made that the influence of the covariate on 

the probabilities  of the predictor conditional on regressors is the same for cases and 

controls.  To relax this restriction,  the interaction term between this predictor and the 

covariate  can  be  added to the model.  Then the odds ratio will be  a function of the 

regression coefficients corresponding to  the predictor and the  interaction term.  The 

author also illustrated  that  more generally  the two models, initial and flipped, yielded  

quite different parameter estimates.    

 Pursuing further the results presented by Prentice [1976] and Zelen [1971],  

Breslow and Powers [1978] compared  the estimates of the relative risks  from the  initial  

model and the model  with  flipped predictor and  explanatory variables in the context of 

prospective  and retrospective studies. They stated that  for analyzing retrospective 



3 
 

 
 
 

studies with linear logistic regression there are two valid approaches. In the prospective 

model the dependent variable is an indicator of  case/control status  and the independent  

variables include  exposure.  In the retrospective model  the dependent variable is an 

exposure and the independent  variables  include case/control status. Together with 

predictor, both models may contain confounding  factors as well as  their  interactions 

and require  covariate adjustment to achieve similar  estimates of OR.  The authors  

showed that when the covariates were  discrete or “nearly” continuous so that the  data 

could  be arranged into a series of  2x2 tables,  the two models yielded identical estimates 

of  the odds ratios if the covariate effects on the outcome were saturated.    

 A great body of research conducted to study the invariance property of the OR 

was motivated by the need to estimate parameters in case-control studies. Prentice and 

Pyke [1979] extended Anderson’s approach, generalized the findings of  Breslow and 

Powers and applied them to various designs in  case-control studies.  They showed that in 

case of a very general form of exposure modeling the “flipped” (in our terminology) 

model  is also  of logistic form when applied to  case-control data.  If the sample space 

for  the vector of  exposure variable  is finite, the  model for  exposure conditional on 

disease  is an ordinary logistic  and the odds ratio parameter estimates as well as their  

asymptotic variance matrices  can be obtained  by standard likelihood methods. However, 

they noted that more generally, due to the unspecified nuisance function in the “flipped” 

model, nonstandard estimation theory  is required. They developed   required likelihood 

equations and asymptotic distribution theory for the case of a very general form of 

regressor that may be continuous or mixed, forming strata on the basis of the exposure 

variable.  They also noted that if, instead,  the auxiliary variable is modeled,  the initial  



4 
 

 
 
 

and inverse models can be equivalent if  the sample space for the auxiliary variable  is 

finite  and the functions of the explanatory variables on the right side of the flipped model 

are unrestricted.  If the sample space for auxiliary variable  is not  finite, these  functions  

usually should  be restricted, for example  by  permitting for them to saturate as it was 

suggested by  Breslow  and Powers.  

  The present work is closely related to Breslow  and Powers‘s paper [1978]. The 

discussion of Prentice and Pyke [1979] also mentioned some issues considered in this 

work.  We have further explored the relations between the initial and flipped models and 

the properties of odds ratio estimates when there is  one dichotomous explanatory 

variable and an auxiliary covariate to be considered. However, unlike the Breslow and 

Powers work, we considered  the case where  the covariate is continuous. We have 

studied why in some cases the OR estimates are essentially invariant to “flipping” 

without the adjustment  proposed by Breslow  and Powers, and why this adjustment is 

needed in other instances.  Specifically, we have derived that the flipped model contains 

the sum of two (in general)  nonlinear functions:  a function of  the conditional 

probability  of the predictor on the covariate,  and  a function of  the covariate  and the 

initial model parameters. The former contains the unknown conditional probability of  the 

predictor given the covariate, and  it  can be linearly or  non-linearly  associated with the 

covariate. The latter is generally a nonlinear function of the covariate.  In  case  these  

terms  can be well approximated by a simple linear function of the  covariate,  the 

invariance of odds ratio estimates approximately holds.  It can be easily achieved when  

the continuous  covariate and binary predictor are also related  through  a linear logistic 

regression model (for the first term to be linear), and if either  the effect of the covariate 
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or the variance of the covariate is small (for the second term to be linear).  We have 

shown  that even in more general cases the invariance of OR estimates can  be achieved  

if  the response variable and covariate are  related by  a linear or  polynomial  logistic 

regression model  and  the non-linear term  in the flipped model  is  well approximated  

by  polynomials of the covariate.  This conclusion is consistent with the findings for 

relative risk presented by Breslow  and Powers,  but it was made  using a different 

perspective. We did not require the discretization o  the explanatory variable as in  

Breslow  and Powers’ work,  and,   unlike Prentice and Pyke,  we did not restrict to case-

control  study designs.  

 It is not an unusual situation in biomedical  studies  when is not clear which  

variable  would be best modeled   better as a dependent and which as  an independent 

variable.   For example, in cross-sectional studies the exposure and disease are measured 

at the same point in time, and  it may not be possible to  distinguish whether the exposure 

preceded or followed the disease.  In our terminology, the choice of dependent variable 

becomes a decision regarding which model, the initial or flipped one,  is more  

appropriate. 

 Breslow and Powers [1978]  discussed “flipping”, but in a slightly different 

context. Both the prospective and retrospective models considered by the authors 

included a vector of explanatory (nuisance) variables  in the form of  functions  of  

covariates and the  interaction terms between this function and  the predictor. The two 

models provided similar estimates of the relative risk and OR   with an increasing degree 

of covariate adjustment that was achieved by adding polynomial terms to both models.   

The authors noted that one of the models can be preferred to another depending on the 
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degree of covariate adjustment, the type of risk factors, the simplicity of the modeling, or 

how strong  the association between the covariate and disease or risk factors is. 

 We were interested  in applying the invariance property of the  OR to a somewhat  

different situation than studied by  Breslow  and Powers and Prentice and Pyke,  and not 

necessarily assuming a  retrospective design.   

 

Objectives  

The purpose of this work is to investigate the properties of OR estimates in the initial and  

flipped models and find the conditions when the estimate of OR is invariant. We aimed to 

find out how this invariance can be achieved if it is not invariant in the reversed model 

with the original covariate. We were interested also in a possible application of this 

invariance property of  OR estimates. We found that it can be used to inform the choice 

of  which variable (X or Y) is best treated as the dependent variable in a logistic 

regression when the goal is to estimate  their adjusted odds ratio. We were also interested 

in  deriving a  measure or criteria for how to choose between the models.   This is 

motivated by the following reasoning:   

 Let us consider the case of a data set with two categorical variables  (Y and X) and 

one continuous covariate (Z), when it is not known whether Y or X is best treated as the 

true outcome and therefore,  whether  the logistic model  Y|X,Z or  X|Y,Z is the correct 

one.  We demonstrate that  very similar estimates of OR  in the two models  can be  

achieved  by adding polynomial terms of the covariate to  the  flipped model if  Y is the 

true outcome. However, if the wrong model (X|Y,Z ) is fit as the  initial one, it would be 

harder to achieve the invariance of OR estimates  by “flipping” because  this invariance is 
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predicated on the assumption that the initial model is correct.  We expect this will most 

often result in the finding that the initial  and  flipped OR estimates will be more different  

than the estimates were  in  the first case, when the correct model was fit as the initial 

one.    So the closeness of the two pairs of OR estimates can be used as a criteria to 

determine  the model  that describes the data the best. 

 

Methodology  

I. Invariance of Odds Ratio 

 Let Y and X  be correspondingly response and explanatory binary  variables taking  

values 0 and 1,  and let  Z  be  a continuous covariate.  

Denote by Z   a vector of covariates of length m,  and by  α, β   and γ  the 

regression coefficients in the model for Y conditional on X and Z .    

Using Bayes’ rule it easy to show that the OR is invariant in the following sense: 

   
Pr( 1 | 1, ) / Pr( 0 | 1, )
Pr( 1 | 0, ) / Pr( 0 | 0, )

Pr( 1 | 1, ) / Pr( 0 | 1, )
Pr( 1 | 0, ) / Pr( 0 | 0, )

Y X Z z Y X Z zOR
Y X Z z Y X Z z

X Y Z z X Y Z z
X Y Z z X X Z z

= = = = = =
=

= = = = = =
= = = = = =

=
= = = = = =

 

Now let us consider the logistic regression model with one predictor: 

                    [ ]logit Pr( 1 | ) *Y X x yα β= = = + . 

This equation implies that  

 exp( )Pr( 1 | ) ( ) 1/(1 exp( ))
1 exp( )

xY X x x x
x

α βπ α β
α β
+

= = = = = + − −
+ +

. 

It can be shown (Cornfield, 1951) that the above model also implies a logistic model of 

the binary variable   X=1 conditional on y, i.e., 
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   [ ]logit Pr( 1 | ) *X Y y yα β= = = + , 

with  the same coefficient β  as the model above. 

Indeed,  since ~ (1, ( ))Y Bin xπ , 

 1 exp( )Pr( | ) ( ) (1 ( ))   
1 exp( )

y y x yY y X x x x
x

α βπ π
α β

− +
= = = − =

+ +
  

Applying  Bayes’ theorem  we  can derive 

 
1

Pr( | 1) Pr( 1)Pr( 1 | )
Pr( | 1) Pr( 1) Pr( | 0) Pr( 0)

1 1 exp( )1 exp( ) 1/(1 exp( * )),
1 exp( )

x

x

Y y X XX Y y
Y y X X Y y X X

p y y
p

α β β α β
α

−

= = =
= = =

= = = + = = =

⎡ ⎤⎡ ⎤ ⎡ ⎤− + +
= + − = + − −⎢ ⎥⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦⎣ ⎦

 

where  Pr( 1)xp X= =   and  1 exp( )* ln ln
1 1 exp( )

x

x

p
p

αα
α β

⎡ ⎤ ⎡ ⎤+
= +⎢ ⎥ ⎢ ⎥− + +⎣ ⎦⎣ ⎦

. 

Hence, exp( )OR β=    is  the same as in  the previous  model and the logistic link is 

preserved. 

 Now consider the logistic regression models with one predictor  and  covariates: 

                    logit[Pr( 1 | , ) logit[ ( , )]Y X x Z z x z x zπ α β γ ′= = = = = + + ,  (1) 

We can show that logistic model for probability X=1 conditional on y and z is given by 

equation: 

                     logit[Pr( 1 | , ) * *X Y y Z z y zα β γ ′= = = ≈ + +     

in special cases (details to follow),  or  by the equation  

    logit[Pr( 1 | , ) * * ( )X Y y Z z y u zα β γ ′= = = = + +      (2) 
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in the general case.  Since ~ (1, ( , ))Y Bin x zπ , 

 1 exp( )
Pr( | , ) ( , ) (1 ( , ))

1 exp( )
y y x z y

Y y X x Z z x z x z
x z

α β γ
π π

α β γ
− ′+ +

= = = = − =
′+ + +

.  

Then we  derive 

       1

|
*

|

Pr( 1 | , )

1 exp( )1 11 exp( )
1 exp( ) 1 exp( )

x z

x z z

X Y y Z z

zp
y

p z y
α β γ

β
α γ α β

−

= = = =

⎡ ⎤⎡ ⎤⎡ ⎤ ′+ + +−
= + − =⎢ ⎥⎢ ⎥⎢ ⎥ ′+ + + − −⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 , 

where  | Pr( 1 | )x zp X Z z= = = ,   and 

              |*

|

1 exp( )
ln ln

1 1 exp( )
x z

z
x z

zp
p z

α γ
α

α β γ
⎡ ⎤⎡ ⎤ ′+ +

= + ⎢ ⎥⎢ ⎥ ′− + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 .    (3)  

Throughout the paper we will use the following notation:   

  |
1

|

 ( )= ln
1

x z

x z

p
g z

p
⎡ ⎤
⎢ ⎥−⎢ ⎥⎣ ⎦

   

 and    

  2

1 exp( )
( ) ln

1 exp( )
z

g z
z

α γ
α β γ

⎡ ⎤′+ +
= ⎢ ⎥′+ + +⎢ ⎥⎣ ⎦

 . 

If we rewrite the logistic equation  for  X  in the form 

  | *

|

Pr( 1 | , )

1 exp( )
ln ln

1 1 exp( )
x z

z
x z

X Y y Z z

zp
y y

p z
α γ

β β α
α β γ

= = =

⎡ ⎤⎡ ⎤ ′+ +
= + + = +⎢ ⎥⎢ ⎥ ′− + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     (4)   

it is easy to notice that  (4)  is  a linear -logistic regression  equation  if   1( )g z  and 2 ( )g z   

can be well approximated by a simple linear function of z . Then the OR invariance 

property will hold directly in the sense that a logistic regression of  X on Y  and the 
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elements of z  allows valid estimates of  β .   In general, however,  neither  1( )g z  nor 

2 ( )g z  is a linear function of z .   Note that 1( )g z  contains the unknown probability of X 

given z , whereas   2 ( )g z  is a known and generally non-linear function of unknown 

parameters α , β , γ ,  and z . 

 In fact, for the model (4)  to be logistic we do not need  to restrict 1( )g z  and  

2 ( )g z  to only simple  linear functions of z .  If there is any function, linear with respect 

to regression coefficients,  that closely approximates *
zα , then  (4)  still will  approximate 

a linear logistic model. This will be the case, for example, if *
zα   is well approximated by 

a linear predictor involving higher order terms in z . 

 Note that  1( )g z  can be approximated by a function of z  linear w.r.t regression 

coefficients, if  a linear- logistic regression  is  an appropriate model for x| z . In other 

words,  if  

               |
1 1

|

logit Pr( 1 | ) ln ( )
1

x z

x z

p
X z a b v z

p
⎡ ⎤

′= = = +⎢ ⎥−⎢ ⎥⎣ ⎦
 ,      (5)              

 where  ( )v z   is any  function of  z   linear w.r.t. coefficients of  z ,   including  a 

function with higher power terms in z .   Note that in case of perfect independency 

between X and Z , |x z xp p=  and  1( )g z  is a constant that does not depend on z .  

However, this rarely occurs in practice.  

 The third term in  (4), 2 ( )g z ,  is  generally an  S-shaped (sigmoidal)  function and  

it is not a linear function of z , although  it is approximately linear for some range of 

values of z  or if zγ ′  is small enough as it will be shown in the appendix. Note that  at 
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very large values of zγ ′   the solution to equation (1) may not exist, since in this 

situation  Pr( | , )Y y X x Z z= = =  is close to 1  and therefore,  Y  takes values  1 (or 0)  at  

nearly   all values of  z  (see Appendix for details).  Therefore, we expect that  2 ( )g z  will 

be a linear  or almost linear  function of  z  in many data sets.   In the general case, 2 ( )g z  

can be approximated by  a linear  combination  of  polynomials of z :                 

  

  2 2 2

1 exp( )
( ) ln ( )

1 exp( )
z

g z a b w z
z

α γ
α β γ

′+ +
′= ≈ +

′+ + +
,                (6)      

where   ( )w z  can be any  function of  z , linear w.r.t. coefficients of  z    including  a 

function with higher power terms in z .  Note that any smooth function can be 

approximated by polynomials to some degree of precision. 

Finally, (3) can be written as   

   * * * ( )z u zα α γ ′= +                 (7) 

Here   ( ) ( ) ( )u z z w zν= +  and  1 2* a aα ≈ + . Note that  first order term  1 1 2* b bγ ≈ + .  

Consequently,  (2) is  a logistic model  for X conditional on y and  z  , and it  can be 

written as: 

    logit( 1 | , ) * * ( )X y z x u zα β γ ′= = + +      (8) 

Therefore, we can expect that with an appropriate choice of ( )u z  the estimate of  β  in 

(8)   would  equal or closely approximate the estimate of  β  in the initial model (1).   

This  implies an  OR estimate invariance property in the model with  a continuous 

covariate.  
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 How can we choose ( )u z ?  First we need to estimate the expressions for 1( )g z  

and 2( )g z . In case  the association between  x and z   is adequately described by the 

linear logistic regression  for  X conditional on z ,   the  linear coefficients for 1( )g z  can 

be estimated by fitting this model with first or higher order terms of  z .   

 We are also interested in very realistic practical situations when the association 

between X and Z   is  not well described by a logistic model  and an underlying 

parametric form  for 1( )g z  is unknown.   To obtain the coefficients for linear 

combinations approximating  1( )g z  in this case,   we need to estimate Pr( | )X z .  It turns 

out that Pr( | )X z  can be well  approximated   by predicted values of  X  obtained by  

fitting the model for X on z by nonparametric approaches.  Among those are,   for 

example, the generalized  additive model (GAM) [Hastie and Tibshirani, 1990]  and the 

local regression method  (LOESS) [Cleveland, 1988].   We used the latter because it 

yielded better results in our experimental cases.  In local regression, the relationship 

between the dependent and independent variables is modeled locally by weighted  

regression. One of the attractive features of local regression for estimating Pr( | )X z  is 

that the fitting is performed in a moving fashion, similar to what could be done if we 

wanted to roughly estimate Pr( | )X z  without any regression techniques [Copas,1983].  

In the LOESS  method,   the regression surface  is estimated by fitting locally  linear or 

quadratic  functions of predictors  in  some parametric class  using weighted least 

squares. The smoothness of the estimated surface is controlled by the fraction of the data 

in each local neighborhood,   called the smoothing parameter.  The smoothing parameter 

can be chosen automatically, for example, by  a method  that minimizes a criterion that 
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incorporates both the tightness of the fit and the model complexity.  One  such  method,  

AICC1 ,  is  based on bias- corrected Akaike information criteria [Cohen,1999].  AICC1  

was shown to avoid the  tendency of uncorrected AIC  to undersmooth and  it seems to be  

the most  appropriate for our goal .   

 After the estimates for Pr( | )X z  are obtained, the function 1( )g z  can be easily 

calculated. To find  the  approximation to 2( )g z ,  the logistic model (1)  is fitted and the 

estimates of  ,α β  and   γ   are used to compute the 2 ( )g z  for each  z.  Next, using the 

estimated 1( )g z  and  2( )g z ,  *
zα  is calculated and  a multiple  regression model for *

zα  

with linear and higher degree terms in z is fitted.  We use a model selection procedure to 

select a parsimonious set of  terms that provides  a desirable  level of R2 . If it is reached, 

it will  suggest  that the corresponding multiple linear regression  model is adequate for 

approximating *
zα , and the selected   polynomial terms in z  will comprise  ( )u z  in 

equation (8).  Note, for example, the  regression model  could be fitted for 2 ( )g z  only,  if 

1( )g z  is well  described by a logistic model and/or if the range of  1( )g z  is  very small 

compared to that of  2 ( )g z . However, if neither is the case, fitting the regression model 

for the sum of these functions may allow one to select fewer polynomial terms.  So 

*( )z zα  was fitted in all cases in what follows.  
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  II. Logistic flip in discerning between two logistic models 

 Now consider a data set with two binary  variables (Y and X) and one continuous 

covariate (Z)  where it is not known which of the  binary variables  is best treated as the 

outcome to obtain a valid estimate of the adjusted OR (β ). Suppose the true outcome is 

Y and the data are well described by model (1). Introducing  additional  indices with the 

aim to distinguish  between the models for  the correct outcome and the model for the  

wrong one (c and w, respectively)   as well  as to indicate  the  initial and flipped  models  

(i and f, “initial” and “flipped” ones),  the  initial model (1) for the true outcome   can be 

written as    

      logit[Pr( 1 | , ) ci ci ciY X x Z z x zα β γ= = = = + +  .   (9a) 

The reversed model for the true outcome is described by the equation: 

   logit[Pr( 1 | , ) ( )cf cf cf cX Y y Z z y u zα β γ= = = = + +  . (9b) 

If  the function   ( )cf cf u zα γ+   is  a  good   linear approximation of  *
czα , the estimates  of 

ciβ  and cfβ  should  be similar  ( ˆ ˆ ˆ
ci cf cβ β β≈ ≈ ).  

The model  for the “wrong” outcome, X,  is  given by  

   logit[Pr( 1 | , ) wi wi wiX Y y Z z y zα β γ= = = = + + .    (10a) 

and the corresponding flipped model can be  written as  

      logit[Pr( 1 | , ) ( )wf wf wf wY X x Z z x u zα β γ= = = = + + . (10b) 
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Here *
wzα   is the sum of  1( )wg z  and  2 ( )wg z , which are now the functions of  Pr(Y|z) and   

,wi wiα β  , and  wiγ ,  respectively .  

 If model (10a) is not correct and hence, does not fit well,  the estimate of β  will 

be biased. Assuming the polynomial terms are needed in (10b), this model will generally  

not fit as  well as (9a) does, since the latter is assumed to be the correct model. Hence, the 

estimate of β will be not the same as in (9a)  and it will be  biased.   So we expect greater 

departure of the estimates of OR yielded by the models (10a) and (10b) from the true OR 

and between  themselves,  compared with the OR estimates  and their difference  given 

by  the models (9a) and (9b).  We conducted a simulation study to illustrate this point and 

to assess the extent of  equivalence of parameter estimates from the two models.  Note 

that in case  both  *
wzα  and *

czα  are close to linear in the first order term z,  

( ) ( )c wu z u z z= =  and all four models  yield similar estimates of true OR parameter.  We 

will discuss later that for *
czα , it occurs  when  1b  in the equation analogous to (5)  with Y 

as an outcome is small enough.  

  

Simulation study 

The simulation  study was conducted  to illustrate the behavior of   β  (OR) 

estimates from  the initial and flipped logistic models,  and  possible benefits of the 

interchanging of Y with X . In particular,  our goal was to compare the difference between 

the two  estimates obtained  under assumptions  that the initial model  Y|x,z  is correct on 

one side, and  that the flipped model  X|y,z  is correct, on another.  For this, the true 



16 
 

 
 
 

model  parameters  have to be known. For simplicity we included only one continuous 

covariate  ~ (0, )Z N σ .  To simulate the data for the logistic model, the outcome for the 

correct model was modeled as ~ (1, ( ))yY Bin xπ   with probability  

 ( ) 1/(1 exp( ))y x x zπ α β γ= + − − − , 

X  was simulated  as a binomial variable ~ (1, ( ))xX Bin zπ , where ( )x zπ  referred 

before as Pr( | )x z , does not have to be  a function of   z.  Parameters  σ  and γ  were 

chosen to obtain linear and  nonlinear functions for  *
zα , depending on the example. 

One example aimed to confirm  the  invariance of OR estimates in the models 

with almost linear *
zα .  We also wanted to investigate the effect of various functional 

forms of association between the binary predictor X  and covariate z, such as 

independence, linear-logistic  and non-logistic association.  Of special interest was to 

assess  the performance of local regression  in  estimating  Pr(X|z).   

 The software SAS 9.2 (SAS Institute, North Carolina,US) was used for simulating 

observations and estimating the parameters in the simulation study. In particular, the  

LOGISTIC procedure was used  for analyses of logistic models, the  REG was employed  

for assessing  linearity of *
zα ,  and the LOESS procedure  was used to estimate Pr(X|z) 

when needed.     

The  sample size  contains  500 observations,  since the OR and  β  estimates tend 

to be biased for  sample size less than  500  [Nemes, 2009]. The number of simulations is 

1000 in each case.   

  The covariate was centered in  an effort to avoid potential multicollinearity 

problems caused by correlations among the polynomial terms.  It was not required in our 
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example since the mean of z was zero, but it makes the code applicable to any 

distribution of covariates.   

If the association between  X and z  can be well described by logistic model (with 

or without higher order terms), fitting the logistic regression (5)   is expected  to provide a 

good approximation. As a criteria of good fit of the model (5), the Hosmer-Lemeshow 

test  was  used, with  a p-value < 0.05 taken to indicate that a better model is desirable.  

 To find  the approximation to 1( )g z   when the logistic model does not fit well,  

we have  to estimate Pr(X|z).  As aforementioned, we used loess regression as it is   

implemented in SAS   by PROC LOESS,  with an automated procedure of choosing the 

smoothing parameter based on AICC1. In cases when the true model for X conditional on  

z was   logistic,  possibly with higher order  terms,  we found that 1( )g z  was  as well 

approximated by loess regression  as by logistic regression  with one exception. Namely, 

in some models the estimated values of  Pr(X|z) for small percentage of z values close to  

the end of its range were out of range [0,1].  We choose to replace predicted probabilities  

less than  1E-6 by 1E-6   and predicted probabilities   greater  then 0.999999  by 

0.999999  similar to the approach used by LOGISTIC procedure in SAS. Even if it 

caused jumps in  *
zα  values at the end of the z  range  and consequently,  small  changes 

in the coefficients estimates in  the linear regression for *
zα , we found that  the main 

conclusion about model choice remained the same as could be made with the alternative 

method, where these values were replaced with predicted probabilities obtained with  

logistic regression.  Figure 1 shows  plots  of  Pr(X|z) obtained by fitting  both logistic 

and LOESS regression overlaid  on the true curve, for the artificial case when Pr(X|z) = 

abs(sin(z)).  Obviously,  polynomial terms were required in the logistic model to provide 
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a good fit to the non-linear curve.   They were added automatically using a model 

selection procedure based on  Shtatland’s paper [2001].   Similar results were observed 

when the original logistic regression had higher order terms. The approximation seems to 

be adequate, so LOESS was the method of choice for all general forms or unknown  

Pr(X|z) considered. In particular,  in our simulation examples involving non-logistic 

regression,  Pr(X|z) was estimated using LOESS regression. 

 After  the estimates of  Pr(X|z) and model (1) parameters have been obtained,  *
zα  

is calculated  and the polynomial approximation to *
zα  is  found by fitting the  *

zα  values 

as  a dependent variable and the set of polynomials of  z as  independent variables  in a 

linear regression model.  The model selection procedure is performed to select the set of  

terms that provides desirable  R2  of the model equal to or exceeding 0.975.    

The  parameters  common to  for all  simulation examples  were  α = 0.1, β =2,   

and a1  = 0.5,  if applicable . We have also investigated the performance of our approach  

in the case of more extreme parameter values in the models.  

We simulated four situations:  

Simulation 1. To confirm the equivalence of β (OR)  estimates in the models with  

linear *
zα ,   1( )g z  and 2( )g z  were modeled  as almost  perfectly linear functions of  z. 

For that, X was simulated  as a  binomial variable  with probability 

1 1( ) 1/(1 exp( ))z x a b zπ = + − − , so that 1( )g z  would be a linear function of z .  The value 

of  b1 = 0.5  implies rather weak dependency of  X on z.  We will discuss below that at 

larger values of  b1  simulation results can be different.  The parameters   γ   and σ  were 

chosen to be small enough,  so that 2 ( )g z  would be almost a linear function of  z (see 
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appendix):  γ = 0.1  and  σ = 1. In rare instances of simulated data set with non-linear *
zα  

(corresponding to R2  <0.975) were excluded from the further  analysis.    

We  observed that the β  estimates  obtained by fitting the initial and flipped 

models without polynomial adjustment agree up to the third decimal point for the 

assumed correct model (1.9989 (SE=0.2406) and 1.9991 (SE=0.2407)). For the “wrong” 

model they were respectively, 1.9991 (SE=0.2406) and 2.0 (SE=0.2408).   The  mean  

difference between ˆ
ciβ  and ˆ

cfβ   over 1000 simulations for  correct model,  Y|X,z,  was 

0.003, while that difference   under  the assumption that, instead, the model  X|Y,z  is 

correct was 0.004. This demonstrates very small difference between the estimates of  

β (OR) yielded by the initial and reversed model under both assumptions, correct and 

incorrect models, and implies  that the equivalence of  OR estimates holds directly.  In 

terms of our method for discerning the correct model from the incorrect one, even in this 

example  it provided some clues on which model is better:  the  model Y|X,z  was chosen 

38.5%  of times, while the model  X|Y,z   was  chosen 29% of times. In the other cases, 

neither  the models was preferred to the other.  The means of estimates,  ˆ
cβ (1.9994)  and 

ˆ
wβ  (1.9991),  were very  close to the true value of β , with a slight edge in favor of the 

correct model.  

The results of this and other simulations are summarized in Table 1 in the 

Appendix.  

Simulation 2.  For the logistic regression for X conditional on z and  nonlinear 

*zα  , we set  a=0.5,   b1 = 1, γ = 2   and  σ = 1. 
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We observed that  β  estimates obtained by fitting the initial and flipped models 

without polynomial adjustment are rather different:  ˆ
cβ =2.0228 (SE=0.2672)  and 1.9512 

(SE=0.2752), respectively. After adding polynomials the estimates have  agreed up to the 

third  decimal point for the model assumed correct ( ˆ
cfβ = 2.096) and they have been  still  

different for the incorrect model  ( ˆ
wiβ = 1.9512 and ˆ

wfβ =2.0228). Note that no 

polynomial terms were needed in the reversed “wrong” model. The mean difference 

between îβ  and ˆ
fβ  over 1000 simulations under the assumption that the initial model is 

correct was 0.021. That difference under the assumption that the flipped model is correct 

was slightly larger  (0.074). The correct model was chosen 89.5% of times,  and the mean 

β̂  = 2.0228 , while the incorrect one was  chosen  only  9.7% of times,  and the mean β̂  

= 1.9512  was farther from the true value.  

To illustrate the performance of our method, the Appendix provides an excerpt of 

SAS output for a single data set in simulation 2.  As we see,  ˆ
ciβ  = 2.213. To adjust for 

non-linear functions in the flipped models, four polynomial terms were selected to meet 

the criterion that  R2 >0.975. This is the most parsimonious model, as can be seen from 

the output on p 36.  After this adjustment, the estimates for the reversed model became 

ˆ
cfβ = 2.206,   which is  very close to ˆ

ciβ .  The estimates provided by fitting the “wrong” 

initial model differed to a greater extent:   ˆ
wiβ  = 2.244  and  ˆ

wfβ  =  2.213.   It is 

noteworthy that based on  the Hosmer-Lemeshow  test  the correct model is not always 

preferred to the wrong one. We observed in several  simulated data sets  that even when 

the correct model was chosen by  our approach,  the  Hosmer-Lemeshow test sometimes  
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indicated worse fit  for the  initial model  than for the wrong  model. In 1000 simulated 

data sets for simulation example 2,  the Hosmer-Lemeshow test indicated better fit for the 

correct model in  only about  43% of times,  while  this model  was chosen  89.5% of 

times.  

We also simulated the logistic model for X conditional on  z  with a large 

coefficient for z, such as 2 and larger. Although at b > 2.5  the  correct model was  chosen 

fewer times then  the  incorrect one,  both models were chosen only a very few times 

(<1%). In other cases,  the mean difference between the initial and flipped estimates was 

the same regardless of which model was taken to be the initial one .  We also observed 

that at b>2.5  the range of 1( )g z , which is a linear function  in this example, becomes 

much larger than the range  of 2 ( )g z . This  resulted in the observation that  *
zα  is   almost 

a linear function in both, “correct” and “wrong” models.  Hence, no polynomials were 

required in either of the flipped models, so that the difference between the estimates was 

nearly or completely identical, as in the case when b=3 and β =1.   This resulted in a 

situation when it was impossible to discern between the correct and the wrong models 

with these parameters.    

Simulation 3.  The independency of  X and  z  can be simulated assuming a  

uniform  distribution:  ~ (0,1)X Uniform . *
zα  was chosen to be  nonlinear, so  the 

parameters  for model (1)   were  the same as   in  the example 2.  The loess regression 

was used to estimate  Pr(X|z)  for the correct model and  Pr(Y|z)  for the wrong model.   

The mean difference between ˆ
ciβ  and ˆ

cfβ  when  the initial model is assumed to 

be the correct  one was 0.04, while  that difference   under  the assumption that the 
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reversed model is correct was 0.169. The correct model was chosen 94% of times and the 

mean β̂  = 2.03 was close enough to the true value, while the “wrong” one was  chosen 

only 6% of times and the mean β̂  = 1.88  was substantially   farther from the true value.  

If  X and Z  are independent,  |ˆ ˆx z xp p=  can also be  obtained directly from the 

data as a ratio of counts of ones and zeros. 

Simulation 4.  For the case of non-logistic regression between X and z  and 

nonlinear *zα ,   we choose the hypothetical from of  probability   Pr(X|z)  =  abs(sin(z)),  

since this is a smooth  function that takes values in  [0,1].  The mean difference between 

ˆ
ciβ  (2.053) and  ˆ

cfβ  (2.086) substantially differs from that  between  ˆ
wiβ (1.355)  and  

ˆ
wfβ (2.057): 0.169 (0.138) and 0.716 (0.274), respectively. This indicates that the 

estimates yielded by the incorrect model in  case of arbitrary relationship between X and 

Z are very different from each other and from the  true value. “Flipping”   again allowed 

us to discern between the “correct” and “wrong” models: the former  was chosen  about 

97% of  times, while the latter about 3 % of times. 

 

Discussion   

The simulation studies demonstrated that the initial and flipped models often yield  

estimates of the  parameter β  that are extremely  close  to each other and close to the 

true value if *
zα  is nearly  a simple linear function of  z.  In particular,  if *

czα  and *
wzα  are 

both approximately  linear,  all four models  yield  similar estimates of the true OR.  It 

always occurs  when  X and Z are independent  or weakly dependent compared to the 
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strength of the association between Y and Z , while ciγ   is  small enough.  This 

corresponds  to the case when Z is not very strongly associated with either Y  or X, so that 

each model can almost be reduced to the one involving only  Y  and X.  In this case it 

does not matter which model to fit,  because  in the absence of a covariate  we cannot 

distinguish between dependent and independent variables in the framework of the logistic 

model. The identity of  the estimates  of β (or  OR) reflects this notion. As expected, if 

*
zα  is  not linear in z, the  estimate of  β  (OR) yielded by the correct initial  and flipped 

models   are similar if the appropriate polynomial adjustment is done.  

 Our simulation study  confirmed   that the estimates of  ln (OR) yielded by the 

initial model  for  Y|X,Z under  the assumption that  Y   is the correct outcome   is closer   

to  the β  estimate obtained by fitting  “flipped” model than those estimates yielded by 

the initial  and flipped models when X is erroneously assumed to be a correct outcome.  

The size of the difference between  the estimates yielded by of the initial and flipped 

models depends on  how much of a polynomial adjustment is required for *
zα  to be well 

approximated by a linear function of z.   If more polynomial  terms are needed for the 

flipped correct model than flipped wrong one, theβ  estimates will be generally closer for 

the correct model.  

 If this adjustment can be easily achieved when the “wrong” model   is fitted as an 

initial one, and the flipped correct model does not require  any polynomial terms  to 

provide the equivalent estimates of OR by both initial and flipped models,  then the 

incorrect model can be chosen by our method as a “better” model.    It happens when  X 

and Z are associated more strongly than Y  and Z , so that  ciγ   is larger than  wiγ  and, 



24 
 

 
 
 

consequently,  2 ( )wg z  (and, hence,  *
wzα )  requires  more polynomial terms to be well- 

approximated  by a linear function of z than  2 ( )wg z  (and, hence,  *
wzα ). As a result, in 

these cases  there is a tendency for  the model with X as the dependent and Y  and Z  as 

independent variables (flipped model)  rather than the  model having  Y as the outcome to 

be selected by  our method  as yielding better OR estimates.   

Note that the OR estimates yielded by the initial “correct“  model in all simulation 

examples are closer to the true values than the estimates obtained by fitting  the initial 

“wrong” model. It is important to notice  that although  the Hosmer-Lemeshow test 

results for the correct  and wrong models  are often  consistent  with  the results of  our 

method,  we observed on several occasions   that   the  Hosmer-Lemeshow test indicated 

worse fit  for the  initial model  than for the wrong  one  even when  the correct model 

was chosen by  our approach. Overall, the correct models were chosen  more often based 

on our approach than based on theHosmer-Lemeshow  test.  

 It is worthwhile to note that  when one wishes to choose which model, 

prospective or retrospective, to fit, that  Breslow  and Powers recommended  fitting  the 

model that requires less covariate adjustment. This leads to choosing  the model that may 

have a very strong association between the covariate and the independent variable   and a  

weak association between  the covariate and the dependent variable as the preferred one.  

This  does not invalidate our findings however, because the model in Breslow  and 

Powers’ paper includes  an interaction term  and more generally,  the procedure proposed 

by these authors  is only aimed to obtain the RR estimate.  

 Our simulation study demonstrated that LOESS regression  and logistic regression   

performed equally well when there were higher order terms in the logistic model.  In 
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more general, non-logistic  cases,   LOESS regression outperformed  logistic regression  

in estimating  the predicted probabilities. 

 Unlike Breslow  and Powers,   we did not require the presence of polynomial 

terms in both models to achieve similar  OR estimates. We also showed that the 

invariance can be achieved without  any adjustment for covariate effect in some 

circumstances (including when X and Y on one side, and  Z on another, are  weakly 

associated).   We  did not necessarily assume a  retrospective design. Our suggested 

method is aimed  primary  to cross-sectional studies. In the future its application to case-

control studies can be considered.  

 The Breslow and Powers  approach required the sum of the covariate values to be 

equal to zero. The reason for this restriction  can be found in Zelen [1971]. It does not 

cause  loss of generality; however, often it requires covariate transformations that may  

not be feasible in practice.  Our approach avoids this inconvenience, at least  in the case 

of the simple models considered in our  work.  However, there are several limitations in 

our approach. First,  we assume that one of the initial models is perfectly correct,  which 

is an idealization of situations  commonly seen in practice. Also, little theoretical 

background was developed so far to support the method  of discerning between the 

models, although some efforts have been made.  The theoretical justification of the 

“flipped” model  can be easily done if the covariate is  categorical or can be categorized. 

With  an essentially continuous covariate, theoretical development is somewhat impeded 

by  that fact that the maximum likelihood  approach used to estimate the parameters of  

logistic model does not produce closed-form solutions so  developing new approaches or  

substantial modification of existing ones is required. In other words,  the  background for 
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our criteria of choosing the best model is rather data driven. We also restrict ourselves  

(for simplicity) to the case where the covariate is  a scalar. Although it is still possible to 

extend our approach to handle a few more covariates, managing a large number of 

covariates can be difficult.   

 Another  (unavoidable in our approach) drawback is that the polynomials were 

chosen automatically (Royston and Altman [1997]). Multicollinearity  was  not a serious 

problem in our simulation, but in other  general data sets the inclusion of  polynomials in 

the model  results in multicollinearity problems. When  the values of the covariate are 

equally spaced, orthogonal polynomials would be preferred to  centered ones. In the case 

when the covariate takes only positive values,  fitting fractional polynomials can give 

more flexibility and requires fewer  terms (Royston and Altman [1997]) . 

 Accordingly, for  future improvements we would  suggest further developing the 

theoretical background for the criteria of choosing the best model.  Orthogonal or 

possibly fractional polynomials can be included as an option in the code.   Some other 

suggestions for the interaction terms and form of covariates appropriate for logistic 

regression such as by Kay and Little [1987] can be considered.  The described approach 

can be easily extended for the case when  the initial model is a polytomous regression  

model. Alternatively, one could attempt to work directly with the model for X|Y,Z  that is  

implied by model (1), rather than with the appropriate logistic regression  model in (2).  

 The idea of “flipping” can be useful  in other contexts, such as when the predictor 

(X) is continuous (e.g., Lyles, Guo and Hill [2009]). It may also have potential benefits 

when the predictor (X) and/or the outcome (Y) are measured with error. Another possible 

application is a nonlinear model with a function of the form of *
zα  on the right side. We 
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have not seen the problems with the nonlinear relationship described by the form exactly 

as *
zα , but similar forms are common in  pharmaceutical  and growth data. 

 To summarize, exchanging the dependent variable  with the independent  one in a 

logistic model can be helpful in  discerning  between the correct and incorrect models, 

when one assumes that either logistic regression of Y on (X,Z) or a logistic regression of 

X on (Y,Z) is the true model that generates the data in most data sets.  This approach is 

potentially useful for ensuing a  valid estimate of the adjusted OR that characterizes the 

association between X and Y.  
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Tables and Figures  

 
  
Table 1.  The results of “flipping” simulation study for different distributions and models for X  conditional 

on z  and for various *
zα  degrees of  linearity. True β = 2.  

Parameter estimates  

β̂ (SE) 

Distribution 

of  X on z and  *
zα  as a 

function of z Model Initial  Flipped 

mean ˆ ˆ
i fβ β−  (SD) 

% of correct 

model choice 

“Chosen” 

β̂ (SE)  

Correct 1.9989(0.2406) 1.9991(0.2407) 0.003(0.003) 38.5 Logit(X) ~ z, 
*
zα  - linear Wrong 1.9991(0.2406)  2.0395(0.2408) 0.004(0.004) 29 

1.9989(0.2406) 

Correct 2.0228(0.2752) 2.0195(0.2757) 0.0218(0.019) 89.5 Logit(X) ~ z, 
*
zα  - non-linear Wrong 1.9512(0.2672) 2.0229(0.2752) 0.0742(0.051) 9.7 

2.0228(0.2752) 

Correct 2.030(0.280) 2.0185(0.277) 0.040(0.033) 93.9 X ~ Uniform(0,1), 
*
zα  - non-linear Wrong 1.881(0.258) 2.049(0.285) 0.169(0.100) 6.1 

2.025(0.278) 

Correct 2.053(0.302) 2.086(0.366) 0.169(0.138) 96.6 Logit(X) ~ abs(sin(z)), 
*
zα  - non-linear Wrong 1.355(0.233) 2.057(0.362) 0.716(0.274) 3.4 

2.053(0.302) 
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 Figure 1. The performance of proc loess  and  

          proc log with polynomial terms in estimating  Pr(X|z). 
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Appendix  

I. The condition for linearity of *
zα  

 We are interested in the cases where  *
zα     is a linear function  of  z , and hence, 

where  the invariance of OR estimates  holds directly .   

First, note that if  0γ >  2
1( ) ln

1
eg z

e

α

α β+

⎛ ⎞+
− > ⎜ ⎟+⎝ ⎠

   as  0z− > ,   and  2 ( )g z β− > −  as 

z− > ∞  and 2( ) 0g z − >  as z− > −∞ .   

If  0γ <  2
1( ) ln

1
eg z

e

α

α β+

⎛ ⎞+
− > ⎜ ⎟+⎝ ⎠

 as  0z− >    and  2 ( ) 0g z − >  as z− > ∞  z− > ∞  and 

2( )g z β− > −   as z− > −∞ .   

Hence, g(z) takes values in the interval ( ),0β−  if   0β >   and in the interval ( )0, β−   if    

0β <  for any γ .  

The expression for 2 ( )g z  as a function of power terms  of  z  can be obtained by 

expanding  2 ( )g z   by a  Taylor series  at z =0: 

2
1 exp( ) exp( )[1 exp( )]( ) ln

1 exp( ) [1 exp( )][1 exp( )]
g z zα α β γ

α β α α β
+ − ′≈ +

+ + + + +
 

2 2
2 2

exp( )[1 exp( )][1 exp(2 )] ( )
2[1 exp( )] [1 exp( )]

n

i i j j
i j

z z zα β α β γ γ γ
α α β >

− − + ′+ +
+ + + ∑  
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exp( )[1 exp( )][1 exp( ) exp( ) 6exp(2 )α β α α β α β+ − − − + − +  

exp(2 )(exp( ) exp( )) exp(4 2 )]α β α α β α β− + + + + +  

2 2 3 3(1/ 3!)[1 exp( )] [1 exp( )] ...,zα α β γ− − ′× + + +  

where  2γ  is a vector with elements 2
iγ  and 2z  is a vector with elements  2

iz , i=1, …,m . 

since  2

exp( ) exp( ))
( )

(1 exp( ))(1 exp( ))i i

z z
g z

z z
α γ α β γ

γ
α γ α βγ

′ ′+ − + +
′ ≈

′ ′+ + + +
  

and 

2 2 2
,

[exp( ) exp( ))][1 exp(2 2 )]
( )

2[1 exp( )] [1 exp( )]

n

i i j
i j

z z z
g z

z z
α γ α β γ α β γ

γ γ
α γ α β γ

′ ′ ′+ − + + − + +
′′ ≈

′ ′+ + + + + ∑ ), 

 

In  case of scalar z  

( ) exp( )[exp( ) exp( )][1 exp( ) exp( )g z z z zi γ α α β α γ α β γ′′′ ′ ′ ′≈ − + − + − + +  

6exp(2 2 ) exp(2 2 )[exp( )z z zα β γ α β γ α γ′ ′ ′− + + − + + + +  

exp( )] exp(4 2 4 )]z zα β γ α β γ′ ′+ + + + +  

2 2 3[1 exp( )] [1 exp( )] ,z z iα γ α β γ γ− −′ ′× + + + + +  

It can be seen that 2 ( )g z  is an approximately linear function of z  if  the quadratic and 

higher  power terms in the expression for 2 ( )g z  are  negligibly small comparing with the 

linear term. Generally it is true when | | 1zγ ′ .  It is easy to see that first and second 

coefficients are always less than 1, so  for the  quadratic term  to be small the requirement 

that  
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2[1 exp( )][1 exp( )]| | *
1 exp(2 )

z cα α βγ
α β

+ + +′ =
− +

  

 is enough. 

For the  third term  in the case of scalar z 

[ ]
[ ]

1/ 2

1/ 2

| | 6[1 exp( )][1 exp( )]

1 exp( ) exp( ) 6exp(2 ) exp(2 )(exp( ) exp( )) exp(4 2 )
**

z

c

γ α α β

α α β α β α β α α β α β −

+ + +

× − − + − + − + + + + +

=

   

Hence, in case of one covariate, for linearity of  *
zα  we need that | | min{ *, **}z c cγ . 

When *
zα   is linear function of z , using  (5)   it easy to derive an approximation for the 

parameters in flipped model  

1
1 exp( )* ln

1 exp( )
a αα

α β
+

≈ +
+ +

   

 and   

1
exp( )[1 exp( )]*

[1 exp( )][1 exp( )]
b α βγ γ

α α β
−′ ′ ′≈ +

+ + +
.  

If , additionally ,  X  and Z are independent, then  

 1 exp( )* ln ln
1 1 exp( )

x

x

p
p

αα
α β

⎡ ⎤ +
≈ +⎢ ⎥− + +⎣ ⎦

  and  exp( )[1 exp( )]*
[1 exp( )][1 exp( )]

α βγ γ
α α β

−′ ′≈
+ + +

. 

The derivations above demonstrate that if  X and Z are related through logistic model, so 

that  1( )g z  is linear in  z , OR estimates in the initial and reversed  models will be 

equivalent  when   | |zγ ′  is small enough.  

 

   



35 
 

 
 
 

   II. Example of SAS output  

Here we presented  trimmed SAS  output for a single data set in the simulation example 

2.  

   INITIAL CORRECT MODEL      

                                              The Logistic procedure                                      

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

Intercept 1 0.1416 0.1961 0.5213 0.4703 
x 1 2.2126 0.2823 61.4123 <.0001 
z1 1 2.0209 0.2233 81.8849 <.0001 

 
 

Odds Ratio Estimates 

Effect 
Point 

Estimate
95% Wald 

Confidence Limits 

x 9.140 5.255 15.896
z1 7.545 4.870 11.688

 
 

Hosmer and Lemeshow 
Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq

3.5459 8 0.8956
                           
     
 
 
 
 
 
 
 
 
 
 
 
 

      LOGISTIC  model  for Px|z                                 
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                                     The Logistic procedure                                      

                                                
Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

Intercept 1 0.4998 0.0994 25.2850 <.0001 
z1 1 0.8510 0.1133 56.3901 <.0001 

 
Hosmer and Lemeshow 

Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq

13.5799 8 0.0934
 
 

  MODEL SELECTION for alpha star z        

                                  The REG  regression procedure        

Obs z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 _RSQ_

1 0.26856 . . . . . . . . . 0.64831

2 0.25483 0.11639 . . . . . . . . 0.86086

3 0.12988 0.11241 0.045851 . . . . . . . 0.94210

4 0.11959 0.22222 0.048984 -0.02119 . . . . . . 0.99131

5 0.12398 0.27577 0.047361 -0.04600 . 0.002390 . . . . 0.99503
                              
                        
   
   FINAL MODEL for alpha star z adj  

     The REG  regression procedure     

 Root MSE 0.03092 R-Square 0.9913

Dependent Mean -0.98239 Adj R-Sq 0.9912

Coeff Var -3.14759  
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Parameter Estimates 

Variable DF 
Parameter

Estimate
Standard

Error t Value Pr > |t| 

Intercept 1 -1.15459 0.00198 -584.29 <.0001 

z1 1 0.11959 0.00232 51.55 <.0001 

z2 1 0.22222 0.00233 95.39 <.0001 

z3 1 0.04898 0.0006768
0

72.38 <.0001 

z4 1 -0.02119 0.0004003
2

-52.93 <.0001 

 
                    

    FLIPPED Correct MODEL   

    The Logistic procedure            

                           

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

Intercept 1 -1.0200 0.2162 22.2629 <.0001 
y 1 2.2439 0.2770 65.6088 <.0001 
z1 1 0.2061 0.1375 2.2452 0.1340 

 
 

Hosmer and Lemeshow 
Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq

8.8011 8 0.3593
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     FLIPPED adjusted Correct MODEL 

     The Logistic procedure                                               

 
Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

Intercept 1 -0.9490 0.2581 13.5219 0.0002 
y 1 2.2057 0.2803 61.9056 <.0001 
z1 1 0.4610 0.2079 4.9170 0.0266 
z2 1 -0.1540 0.1934 0.6342 0.4258 
z3 1 -0.0870 0.0560 2.4131 0.1203 
z4 1 0.0409 0.0343 1.4228 0.2330 

 
Hosmer and Lemeshow 

Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq

14.5336 8 0.0689
                                                                 
                    

    INITIAL Wrong MODEL     

    The Logistic procedure   

                                   Analysis of Maximum Likelihood 
Estimates 

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

Intercept 1 -1.0200 0.2162 22.2629 <.0001 
y 1 2.2439 0.2770 65.6088 <.0001 
z1 1 0.2061 0.1375 2.2452 0.1340 
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Odds Ratio Estimates 

Effect 
Point 

Estimate
95% Wald 

Confidence Limits 

y 9.430 5.479 16.230
z1 1.229 0.938 1.609

 
 

Hosmer and Lemeshow 
Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq

8.8011 8 0.3593
 
                              
     

MODEL SELECTION for alpha star z        

                                    The REG  regression procedure    

        Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

Intercept 1 1.2719 0.1457 76.2489 <.0001 
z1 1 2.1600 0.2042 111.9399 <.0001 

                                
 

                                   FINAL MODEL for alph_strz adj  

   The REG  regression procedure        

                                                                                                          

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 _RSQ_ 

2.05619 . . . . . . . . . 1.00000 
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   FLIPPED adjusted Wrong  MODEL                       

       The Logistic procedure                                      

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq 

Intercept 1 0.1416 0.1961 0.5213 0.4703 
x 1 2.2126 0.2823 61.4123 <.0001 
z1 1 2.0209 0.2233 81.8849 <.0001 

 
Hosmer and Lemeshow 

Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq

3.5459 8 0.8956
             
 
                                         Summary table 

Variable Label Mean 
bet_yCorrect 
se_bet_yCorrect 
bet_xCorrect 
se_bet_xCorrect 
bet_adj_xCorrect 
se_bet_adj_xCorrect 
RSQ_alphCorrect 
HLPiCorrect 
true_bet 
bet_xWrong 
se_bet_xWrong 
bet_yWrong 
se_bet_yWrong 
bet_adj_yWrong 
se_bet_adj_yWrong 
RSQ_alphWrong 
HLPiWrong 
trueOR 
dif_betc 
dif_betw 
HLPdiff_count 
HLPdiff_cw 
choose_corY 
bestbeta 
choose_corX 

beta from initial model y~x+z 
Standard Error 
beta from flipped  model x~y+z 
Standard Error 
beta from flipped model x~y+z(+?) 
Standard Error 
alp~z1+ 
H-L p-val for y~x,z 
 
beta from initial x~y+z 
Standard Error 
beta from flipped y~x+z 
Standard Error 
beta from flipped y~x+z(+?) 
Standard Error 
alp~z1+ 
Pr > Chi-Square 
 
abs(bet_ycorrect-bet_adj_xcorrect) 
abs(bet_xwrong-bet_adj_ywrong) 
% times when HLPiCorrect>HLPiWrong
 
 
 
 

2.2126466 
0.2823479 
2.2439072 
0.2770282 
2.2056726 
0.2803342 
0.9913051 
0.8956017 
2.0000000 
2.2439072 
0.2770282 
2.2126466 
0.2823479 
2.2126466 
0.2823479 
0.9999999 
0.3593480 
7.3890561 
0.0069740 
0.0312606 
1.0000000 
0.5362537 
1.0000000 
2.2126466 

0 
 



41 
 

 
 
 

 

    III. SAS partial code 
 
/************************************************************** 
 
   SAS code for flipping logistic regression  
 
**************************************************************/ 
 
%global varlist varlist1 nsim  betT  n; 
%let n=500 ; *sample size; 
%let betT=2; *true beta; 
%let nsim=1000; *number of simulations; 
 
/********      MAIN  macro  ***************/ 
 
%macro sim;  
 
%do q=1 %to &nsim;  
dm 'clear log';      **Try to keep SAS log from getting too large**; 
dm 'clear output';   **Try to keep SAS output from getting too large**; 
 
  %data;*simulating data set; 
  *fitting initial correct model;  
 %init_model (y= y,x=x,m=C);  
 %Pxz_log (x=x);  
 
  /*if need loess; 
 %Pxz_loess (x=x); */ 
 
 %alph_strz(m=C);  
   *fitting flipped correct model ith polyn terms selected in macro 
alph_strz;     
 %flip_model (x=x ,y=y, m=C);   
       
 ***NOW REPEAT CODE, ASSUMING THE WRONG MODEL IN THE ORIGINAL 
FIT***; 
 
 %init_model (y=x,x=y,m=W);  
   %Pxz_log (x=y);  
 *%Pxz_loess (x=y);  
    %alph_strz(m=W); 
 %flip_model (x=y ,y=x, m=W);  
 
%end; 
 
%compar; ***print out summary output;  
 
%mend sim; 
 
/****************************** 
   Macros 
********************************/ 
 
%macro data; 
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data data; 
 a=0.5; b=1.; alphT=0.1; gammT=2; sigma=1.; 
 do i=1 to  &n; 
    z1=0 +  sigma*rannor(0);   
      px=exp(a + b*z1)/(1 + exp(a + b*z1));   
  *px=uniform(0); 
  *px= abs(sin(z1));   
  *px=exp(a + b*z1+ z2)/(1 + exp(a + b*z1+ z2));  
     x=ranbin(0,1,px); 
    py=exp(alphT+&betT*x+gammT*z1)/(1 + 
exp(alphT+&betT*x+gammT*z1)); 
  logity= -log((1-py)/py);  logitx= -log((1-px)/px);  
    y=ranbin(0,1,py); 
      output;  
     end;   
 drop i  a b  alphT gammT sigma; 
 
 proc sort data=data;  
 by z1;  
 
 **centering; 
 proc means data=data  noprint;  
 output out=meanout  mean=meanz;  
 var  z1;  
 run; 
 
 data  data;   
 IF _N_ = 1 then set  meanout (keep= meanz); 
 set  data ;  
 if meanz LE 0.01 then  z1=z1-meanz; *0.001; 
 z2=z1**2; z3=z1**3; z4=z1**4; z5=z1**5; z6=z1**6; z7=z1**7; 
z8=z1**8; z9=z1**9; z10=z1**10; 
  run;   
 
 %mend data;  
 
 /****  fitting   initial  model     ****/ 
 *m= model - correct or wrong; 
 
%macro init_model (y= ,x=, m=); 
 
title "run#&q. INITIAL &m MODEL "; 
proc logistic descending data=data;  
 model &y=&x z1; 
    ods output ParameterEstimates = outPE; 
 run; title; 
 
… 
%mend init_model;     
 
/***** Logistic model for Px|z (defined logit(Px) as linear function of 
z1) ****/ 
 
%macro Pxz_log (x=); 
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title "LOGISTIC  model  for P&x|z1"; 
proc logistic descending data=data;  
 model &x=z1 /lackfit;    
  ods output  LackFitChiSq = outfit ; 
  output Out=outlogP PREDICTED=pred_log; 
run; title; 
 
***Based on Hosmer-Lemeshow test P-value, decide whether the logistic 
model is appropriate;  
data  outfit_p(keep=HLP_p); set outfit; 
 if probChiSq<0.05 then Call symput ("CallLogModSelect", "yes"); 
 else  Call symput ("CallLogModSelect", "no"); 
HLP_p =probChiSq;   
run;  
 
/***  Macro to choose polyniomial terms if the model is logistic with 
higher order terms  ***/ 
*will run only if CallLogModSelect=yes; 
%LogModSelect(x=&x);  
   
data merge1_log ; 
 merge tran1  outlogP(drop = _LEVEL_); 
 g1= -log((1-Pred_log)/Pred_log);  
 g2= -log((1+exp(alph_h+bet_h+gamm_h*z1))/(1+exp(alph_h+gamm_h*z1)));  
 alph_strz= g1 + g2; 
run; 
 
…. 
%mend Pxz_log; 
 
***if for logit(x) ~z1  HLP (lackfit)  <.05 then select polynimial for 
it from z1--z10 ;  
 
/****  Model selection (based on the Shtatland paper,but use only SC as 
more restrictive criteria) *********/ 
 
%macro LogModSelect(x=); 
 
 %if &CallLogModSelect = yes %then %do;  
   title "Log Model selection for Logistic  model  for Px|z1"; 
 
 proc logistic descending data=data;  
  model &x=z1 z2--z10/selection=STEPWISE  slentry=1 slstay=1 
 include=1;    
   ods output FitStatistics=FIT;  
  run; title; 
 
  data fit1;set fit;  
     where  Criterion='SC'; 
 run; 
 
 proc means data= fit1 min noprint;   
 output out=minout min=minSC; 
 var  InterceptAndCovariates;  
     run; 
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 data  min_all (drop=_type_ _freq_);  *combine min and orig data 
set;   
  IF _N_ = 1 then set; *  (keep =minSC);  
 set  fit1 (keep=step InterceptAndCovariates); 
 bestset=0;  
     if  InterceptAndCovariates= minSC then bestset=step+1;  
 run; 
 
 ***convert bestset to number to use for best in score selection 
procedure; 
    data min_allbest;  
 set min_all (keep= bestset);  
  if bestset NE 0 then call symput ("bestnum",bestset); 
 run; 
 
 proc logistic descending data=data; * noprint; 
   model &x=z1 z2--z10/selection=SCORE  best=&bestnum 
include=1;  
  ods output BestSubsets = best_subsets;  
    run; title; 
 
 data best_subsets1; set best_subsets (keep= VariablesinModel 
NumberOfVariables); 
   by  NumberOfVariables;  
    if last.NumberOfVariables; *save the last row for each unique 
NumberOfVariables value;  
   where NumberOfVariables=&bestnum ;  
   call symput ("varlist1", VariablesinModel); 
  run; 
 
  title "New logist model"; 
  proc logistic descending data=data;  
   model &x= z1 &varlist1/lackfit;   
  run; title; 
%end; 
title; 
 
%mend LogModSelect; 
 
 
/***********  Estimating Px|z1 (Py|z1) using Loess regression ********/ 
 
***obtain predicted values for Px|z1; 
%macro Pxz_loess (x=); 
 
title "Loess model  for Px|z1";  
proc loess data=data; 
 model &x=z1/select= aicc;   
ods output OutputStatistics=outloessP; 
run; 
 
proc sort data=outloessP; by z1;  
 
*****replace outsiders with .0001 and .9999; 
data out_fin1; 
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merge  outloessP(rename =(Pred=pred_loess) keep= Pred) 
outlogP(keep=Pred_log z1); 
if   pred_loess < 1E-6 then  pred_loess =1E-6;   
if  pred_loess > 0.999999   then pred_loess=0.999999 ; 
run;  
 
options ps=1100 ls=100; *calculate alph_str for loess; 
data merge1_loess1; 
merge tran1  out_fin1 (keep=Pred_loess  Pred_log z1); 
 g1= -log((1-Pred_loess)/Pred_loess);  
 g2= -log((1+exp(alph_h+bet_h+gamm_h*z1))/(1+exp(alph_h+gamm_h*z1)));  
 alph_strz= g1 + g2; 
run; 
 
… 
%mend Pxz_loess;  
 
/***Macro below supplied by Paul Weiss, Nov 3, 2009***/ 
*keep polynomials as a macro var; 
 
%macro keeper; 
 
data polynom; set  finalmodel;  
   var="z1 "; z=z1; power=1; output;  
 var="z2 "; z=z2; power=2; output; 
   var="z3 "; z=z3; power=3; output;  
 var="z4 "; z=z4; power=4; output; 
   var="z5 "; z=z5; power=5; output; 
 var="z6 "; z=z6; power=6; output; 
   var="z7 "; z=z7; power=7; output;  
 var="z8 "; z=z8; power=8; output; 
   var="z9 "; z=z9; power=9; output;   
 var="z10"; z=z10; power=10; output; 
  keep var z power; run;  
 
data variables;set polynom; 
if  z ne . then call symput (var, var); 
 else call symput (var, " "); proc print; run;    
 
%let varlist = &z1 &z2 &z3 &z4 &z5 &z6 &z7  &z8 &z9 &z10 ;  
%mend; 
 
 
/**** linear regression model for g2/alph_strz: model selection *****/ 
   
%macro  alph_strz(m=); 
 
 proc reg data=all outest=estA  noprint; 
  title "Model selection for alph_strz";  
 model alph_strz=z1 z2--z10 / selection = rsquare singular=.01 
include=1;  *include - to keep linear term;  
 run; quit;  
 
**Choosing the most parsimonious model that gives an Rsquare > 0.975 
**;      
data estA1; set estA; 
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  by _IN_; if first._IN_;  *save the first row for each _IN_= # of var 
in the model (w/highest R-sq);   
  keep z1--z10  _IN_  _RSQ_;  
run; 
 
***find max  _RSQ_; 
proc means data= estA1 noprint;  
output out=maxout max=maxRSQ; var  _RSQ_;  
run; 
 
data  estA1_mean;  *combine max of RSQ from proc means and data-set;   
IF _N_ = 1 then set  maxout (keep= maxRSQ);  
set  estA1; 
run; 
 
data estA1_mean_fin; set estA1_mean;  
if maxRSQ > .975 AND  _RSQ_ < .975 then delete;   *?? is .975 not too 
low?; 
else if maxRSQ <= .975 AND _IN_ NE 10  then delete;  
keep z1--z10 _IN_  _RSQ_;  
run; 
 
*Select the model with smallest # of variables.   
*but it has the smallest R-sq; 
data finalmodel; set estA1_mean_fin; if _n_=1;  
if   abs(z2) < 1.e-5 then z2='.';  
if   abs(z3) < 1.e-5 then z3='.'; 
if   abs(z4) < 1.e-5 then z4='.'; 
if   abs(z5) < 1.e-5 then z5='.'; 
if   abs(z6) < 1.e-5 then z6='.'; 
if   abs(z7) < 1.e-5 then z7='.'; 
if   abs(z8) < 1.e-5 then z8='.'; 
if   abs(z9) < 1.e-5 then z9='.'; 
if   abs(z10) < 1.e-5 then z10='.';  
drop _IN_; 
proc print data=finalmodel; run;  
 
%keeper; 
 
data finalmodel; set finalmodel (keep= _RSQ_); 
rename _RSQ_ = RSQ_alph&m; run; 
 
****test alph_str; 
proc reg data=all outest=est_alp0; 
title "Final model for alph_strz vs z";  
model alph_strz=z1/ rsquare;  run ;quit; 
 
…. 
%mend alph_strz; 
 
 
/*****  Fit the flipped model with chosen polynom covariates  ***/ 
 
%macro flip_model (x= ,y=, m=);  
 
 title  "FLIPPED adjusted &m MODEL "; 
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proc logistic descending data=data; 
 model &x=&y &varlist /lackfit;  
  ods output OddsRatios = outOR_adj; 
  ods output ParameterEstimates = outPE_adj; run; 
title; 
 
… 
***save final results; 
title "data log for  model &m"; 
data log&m&q; 
merge outPE_i outPE_f   outPE_f_adj finalmodel est_alp; 
bet_diff&m=bet_y&m-bet_x&m;  
run; title; 
  
%mend flip_model;     
 
 
/***** Results comparison and output ****/  
  
%macro compar;  
 
options ls=100; 
 
/******Combining the simulation results for correct model*****/  
title1 'Results where model with Y is correct and model with Y is the 
unflipped model'; 
data biglogC; 
  set logC1-logC&nsim;  
… 
run; 
 
/******Combining the simulation results for wrong model*****/  
title1 'Results where model with Y is correct and model with X is the 
unflipped model'; 
data biglogW;  
  set logW1-logW&nsim ;   
trueOR=exp(&betT); 
… 
run; 
 
/**********************************************************************  
Criteria for choosing between the unflipped estimate with Y as the 
outcome  vs. the unflipped estimate with X as the outcome; 
*********************************************************************/ 
data  log_all; 
merge  biglogC (keep= bet_xC  bet_adj_xC bet_yC   SE_BET_YC 
SE_BET_ADJ_XC )  
biglogW (keep= bet_xW bet_yW bet_adj_yW  SE_BET_xW SE_BET_ADJ_yW ); 
*dif_betw  dif_betc; 
label   bestbeta = chosen beta 
  choose_corY= % of times correct model was chosen   
  choose_corX= % of times wrong  model was chosen; 
 
dif_betc = abs(bet_yc-bet_adj_xc); 
dif_betw= abs(bet_xw-bet_adj_yw) ;  
choose_corY=0;   bestbeta=bet_xw;  
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   if dif_betw  > dif_betc then do; 
    choose_corY=1; bestbeta=bet_yc; 
 end; 
choose_corX=0;   bestbeta=bet_yc;  
   if dif_betw  < dif_betc then do; 
    choose_corX=1; bestbeta=bet_yw; 
   end; 
run; 
 
title "Diff btw bet in correct model for Y/X and wrong for Y/X"; 
proc means data=log_all mean; * stdDev; 
…. 
run; 
 
%mend; 

 


