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Abstract 
 

 

Spatial patterns of extensively drug-resistant tuberculosis and associations with 

sociodemographic factors in Durban, South Africa 

 

By Meaghan Peterson 

 

 

Background: Extensively drug-resistant tuberculosis (XDR-TB) poses profound 

challenges to tuberculosis control because of few remaining treatment options, leading to 

poor outcomes and ongoing transmission. Recent data suggest at least 69% of XDR-TB 

cases are due to transmission of resistant strains in KwaZulu-Natal, South Africa. To 

further clarify factors driving transmission, we aimed to describe where XDR-TB is 

occurring in the urban district of eThekwini, in KwaZulu-Natal province, and 

characterize sociodemographic factors of communities with high XDR-TB case burden. 

 

Methods: We enrolled XDR-TB patients diagnosed from 2011-2014 in KwaZulu-Natal. 

GPS coordinates for participant homes were recorded and those with home location in 

eThekwini (Durban) were included for analysis. ArcGIS was used for spatial data 

analysis and hotspot evaluation (based on population-adjusted incidence) of XDR-TB 

patients’ home locations at the main place level. Sociodemographic features of 

communities identified as hotspots through spatial analysis were examined using data 

from the 2011 census. For a subset of participants, we geocoded and mapped non-home 

congregate locations to compare overall spatial distribution to the distribution of homes 

alone. 

 

Results: Among 132 enrolled participants, 75 (57%) were female and 87 (66%) lived in 

urban or suburban locations. Fifteen main places were identified as hotspots for XDR-TB 

patient homes with > 95% confidence. Four spatial mapping methods supported findings 

of one large cluster northwest of Durban. Communities identified as XDR-TB hotspots 

had lower educational attainment, higher percentage of school-aged children not 

attending school, higher unemployment, and higher percentage of homes without flush 

toilet. We geocoded non-home congregate locations (e.g. workplaces, schools, churches) 

for 43 (33%) participants. Mapping of these congregate settings showed a shift in case 

density towards the Durban metro area, largely driven by locations of workplaces. 

 

Conclusions: Distribution of XDR-TB case homes is clustered in our study area and 

hotspots have more indicators of poverty than non-hotspots. Prevention efforts targeting 

these communities may be effective in reducing XDR-TB incidence. Additionally, 

identifying shared congregate settings of XDR-TB cases may be useful in identifying 

areas to target for efforts to halt community transmission.  
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CHAPTER I: LITERATURE REVIEW 

 

Global Tuberculosis Epidemic  

Tuberculosis (TB) is an ancient disease believed to have killed more people than 

any other infectious agent in the history of mankind [2]. Despite the discovery of medicines 

to cure TB in the mid-20th century, it has persisted as the leading infectious killer 

worldwide and in 2016 was responsible for over 4,000 deaths each day [1]. TB is caused 

by Mycobacterium tuberculosis, which most commonly affects the lungs and is spread via 

airborne transmission [3]. In 2016, the World Health Organization (WHO) estimated that 

10.4 million people became ill with TB. In the same year, approximately 1.3 million deaths 

were attributed to TB with an additional 0.4 million among persons with TB and HIV 

coinfection [1].  It is estimated that one third of the global population is has latent 

tuberculosis infection (LTBI), but only 5-10% will develop active disease in their lifetime 

[4]. The burden of TB is disproportionately high in low- and middle-income countries, and 

five countries (e.g., India, Indonesia, China, the Philippines, and Pakistan) account for over 

50% of new cases. The highest population-based incidence rates of TB are estimated in 

Africa and Southeast Asia, as shown by the WHO map in Figure 1 [1].  
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Figure 1. 

Estimated TB  

Incidence rates, 

2016 

 

Source: WHO, 

Global  

Tuberculosis 

Report. 2017 [1]. 

 

 

 

Worldwide incidence has fallen by an 

average of 1.5% annually since 2000 (Figure 

2); however, this trend has not been observed 

within many high burden countries where high 

prevalence of drug resistance and the HIV 

syndemic impede incidence reduction (Figure 

3). Constant or increasing TB incidence in 

these neglected areas of the world will continue 

to slow progress towards global elimination, 

especially considering increasing levels of 

global connectivity.  

 

TB remains a public health threat because of shortcomings in detection, poor 

initiation of treatment, and difficulty in adhering to long treatment regimens. The WHO 

estimates that only 61% of the estimated incident TB cases were detected in 2016. Of those 

Figure 2. Global trends in estimated TB incidence. TB 

incidence rates are shown in green and incidence rates 

of HIV-positive TB are shown in red. Shaded areas 

represent uncertainty intervals. The black lines show 

notifications of new and relapse cases for comparison 

with estimates of the total incidence rate. 

Source: WHO, Global Tuberculosis Report. 2017 

[1] 
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detected, not all initiated treatment (data from 2015 cohort suggest that 7% of diagnosed 

TB cases did not initiate treatment) [1]. Once treatment is initiated, standard course therapy 

requires 6 months of daily medication that is often associated with adverse drug effects and 

significant financial burdens [5]. These challenges lead to poor adherence or failure to 

complete treatment for many patients, and contribute to a global success rate of 83% [1]. 

Studies have suggested treatment burdens lead to disproportionately higher rates of failure 

in low income individuals and those with low educational attainment, which contributes to 

the continuation of TB as a disease of poverty [6-8].  
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Figure 3. Trends in estimated TB incidence in the 30 high-burden countries, 2000-2016. TB incidence rates 

are shown in green and incidence rates of HIV-positive TB are shown in red. Shaded areas represent 

uncertainty intervals. The black lines show notifications of new and relapse cases for comparison with 
estimates of the total incidence rate. 

 

Source: WHO, Global Tuberculosis Report. 2017 [1] 
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TB epidemics around the world are exacerbated by concurrent HIV epidemics in 

many countries, especially in the African region which accounts for 75% of TB/HIV cases 

as suggested in Figure 4 from the WHO 2017 Global Tuberculosis Report [1]. Data 

suggests HIV-positive patients are at least ten times more likely to develop active 

tuberculosis disease [9] and have worse treatment outcomes when compared to HIV-

negative individuals [10]. As a result, TB incidence and mortality rates are intensified in 

areas with high HIV burden. Global TB mortality data indicate roughly 22% of TB deaths 

are HIV/TB co-infected cases, and it is estimated that 43% of TB deaths in Africa are co-

infected with HIV [1].  

 

 

Figure 4. Estimated HIV 

prevalence in new and 

relapse TB cases, 2016 

 

Source: WHO, Global 

Tuberculosis Report. 2017 

[1] 

 

 

 

Drug Resistant Tuberculosis 

To prevent the emergence of drug resistance, preferred treatment for TB is 

comprised of complex multi-drug regimens [2].  Treatment regimens differ for drug-

resistant cases compared to drug-susceptible (DS) cases, leading to separate classifications 

based on the degree of resistance. The most commonly detected mono-drug resistance is 

to isoniazid, one of the most widely-used TB drugs. Resistance to isoniazid and rifampicin, 
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the two most potent drugs used against drug-susceptible TB, is referred to as multidrug-

resistant (MDR) TB. Extensively drug-resistant (XDR) TB denotes resistance to these two 

drugs plus one fluoroquinolone and at least one of three second-line injectable drugs, the 

most effective second-line drug classes [11]. 

The increased challenge to public health associated with drug-resistant TB includes 

substantially longer, more expensive treatment plans combined with low treatment success 

[12]. In contrast to six months for drug-susceptible TB treatment, MDR TB and XDR TB 

usually require treatment lasting at least 24 months (shorter course therapies for MDR are 

becoming accepted as good alternatives). A review of MDR- and DS-TB treatment costs 

worldwide found that the average cost to treat MDR is greater than 20 times greater than 

that of DS-TB [13]. Treatment success also falls from 83% to an average of 54% for MDR 

and 30% for XDR TB [1].  In addition, possible adverse events associated with drug-

resistant treatment are more severe and include hearing loss and renal failure [14].  The 

complex management of drug-resistant TB is resulting in enormous drains on resources for 

low- and middle-income countries and catastrophic costs for individuals affected, and the 

burden of disease is still increasing.  

 

Prevalence and Detection  

Though drug resistance has been reported in all countries with TB, many cases are 

not detected due to limited laboratory capacity and use of drug-susceptibility testing. Only 

33% of new TB cases were tested for resistance to rifampicin in 2016 [1]. It is estimated 

that 5.8% of all TB cases are resistant to at least rifampicin [1]. Data from 2016 estimated 
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490,000 new cases of MDR, with an additional 110,000 new cases resistant to rifampin 

alone. These estimates represent an increase from the previous year.  

Advances in diagnostic techniques such as the expanded use of the rapid test Xpert 

MTB/RIF have helped clarify the extent of the drug-resistant (DR) epidemic by detecting 

resistance during initial diagnosis [15]. Xpert MTB/RIF tests for resistance to rifampicin, 

and aids in identifying cases that may require additional drug susceptibility testing (DST). 

The immediacy of this test, which returns results in about four hours, has allowed for 

progress in tailored treatment and detection and reporting of drug resistance. However, 

additional DST testing beyond just rifampicin is needed to diagnose XDR TB and is often 

complicated due to the dearth of laboratories with testing capacity in resource-limited 

settings. Many physicians report long wait times for DST test results, which can contribute 

to delays in treatment initiation, worsening of patients’ clinical condition, and continued 

transmission of TB in families and communities. 

 

Etiology of Drug Resistance  

Drug resistance can arise in an infected individual due to improper treatment 

execution, whether from incorrect choice of drugs, treatment duration, or dosage. Improper 

treatment can also be the result of other scenarios including provider error, patient non-

adherence, and unavailability of drugs [11, 16]. These situations introduce selective 

pressure leading to the survival of bacteria that have developed resistance to the drugs 

employed. These resistant bacteria strains arise through spontaneous mutations, but only 

emerge as the dominant strain through selective pressure introduced in treatment. Drug-
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resistance in TB is therefore regarded as man-made problem [17]. Resistance resulting 

from the process described is referred to as acquired drug resistance. These resistant strains 

can then be transmitted, resulting in drug-resistant cases that have not been previously 

exposed to TB drugs. Cases arising in this way are referred to as primary or transmitted 

drug-resistant TB cases [16].  

 

TB in South Africa 

The TB epidemic is especially pressing in the African Region (as defined by the 

WHO) where HIV is most prevalent, and rates of drug resistance are increasing [1]. 

Outcomes for TB-infected individuals are poor and annual mortality rates for HIV positive 

as well as HIV negative patients are higher in this region than any other region in the world 

[1]. In Africa and overall globally, the country with the highest incidence rate of TB is 

South Africa with an estimated 781 cases per 100,000 people as of 2016 [1]. This estimate 

translates to 438,000 incident cases in the same year. Although global TB incidence has 

been steadily decreasing since 2000, incidence in South Africa has risen over the same 

period. Treatment coverage remains relatively low, and the WHO estimates that only 54% 

of TB cases are detected and treated.  For new and relapse cases started on treatment in 

2015, the success rate was 81%. Only 3% of TB patients did not know their HIV status in 

2015, and 57% of patients with known status were HIV-positive [1].  85% of this cohort 

was on antiretroviral therapy and success was only slightly lower (80%) [1].  

TB case rates are not uniform across the country, and a disproportionately high 

disease burden is born by the east and southeast regions. South Africa is divided into nine 
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provinces (Figure 5). The highest absolute number of cases are reported in the province of 

KwaZulu-Natal, with the next highest burden province of Eastern Cape reporting close to 

half the number of cases (approximately 90,000 cases vs 50,000 cases in 2014) [18]. 

KwaZulu-Natal has historically also reported the highest incidence rates of TB, but cases 

have been decreasing since 2011 and the less populated province of Eastern Cape now has 

the highest incidence rate as of 2015 (692 cases per 100,000 in Eastern Cape compared to 

685 per 100,000 in KwaZulu-Natal in 2015) [19]. Despite this, KwaZulu-Natal still has a 

higher proportion of deaths due to TB than any other province, with 11.2% of all provincial 

deaths attributable to TB. Treatment success rate in KwaZulu-Natal is 73.8% and the rate 

of treatment default was 4% as of 2014 [19].  

 

 

Figure 5. Provinces of South Africa 

Source: South African Provinces 

Map at http://www.mapsopensource.com/ 

south-africa-provinces-map.html [20] 

 

 

 

Drug-Resistant TB in South Africa  

South Africa also has one of the highest country incidence rates for drug-resistant 

TB, and accounts for almost 20% of all drug-resistant TB cases in Africa despite 

comprising only about 5.4% of the continental population [21]. In 2016, the WHO 

http://www.mapsopensource.com/
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estimated that 3.4% of new cases and 7.1% of retreatment cases were resistant to at least 

rifampicin [1].  

The seriousness of drug-resistant TB came to attention in South Africa and around 

the world following a 2005 outbreak of XDR TB among HIV infected individuals in 

KwaZulu-Natal with almost 100% case mortality [12]. Further epidemiologic research 

conducted in the wake of this incident suggested the strain of TB responsible for the 

outbreak had caused transmitted cases of MDR TB in the region over a decade prior to this 

outbreak. It was found that some isolates of this strain had acquired resistance to up to 

seven TB drugs in the same period, resulting in strains of XDR TB [22]. This and other 

similar findings supported the formulation of drug regiments involving more drugs taken 

concurrently to avoid successively acquired resistances, and drug-susceptibility testing in 

each patient was advocated for.   

Since this time, laboratory capacity for detection of drug resistance has been 

improving in South Africa. However, 12% of diagnosed TB cases are still not tested for 

resistance to rifampicin. Additionally, almost 40% of detected MDR/RR TB cases are not 

further tested for resistance to second-line drugs. This signifies many undetected cases of 

drug resistant TB in the country that may be treated with ineffective regimens that 

encourage further development of resistance to drugs. Treatment success rates for the MDR 

and XDR cohorts in 2014 were 54% and 27%, respectively [1]. These shortcomings in 

addressing drug resistant cases via detection and treatment result in many individuals that 

continue to transmit disease in their communities and fuel the epidemic. 
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Drug-Resistant TB in KwaZulu-Natal 

 KwaZulu-Natal bears a high burden of drug resistance and in 2010 the province 

reported the highest number of MDR and the second highest number of XDR TB cases in 

the country (2,032 and 201, respectively) [19]. A survey of drug resistance in South Africa 

from 2012-2014 undertaken by the country’s National Institute for Communicable Disease 

showed that 6.4% of retreatment and 1.8% of new cases have MDR TB in this province 

[23]. This estimate for MDR TB rate among new cases is the same as the WHO estimate 

for South Africa in 2014, and slightly lower than the WHO estimated retreatment rate of 

6.7% among retreatment cases in the country [1]. The highest rates of MDR TB found by 

the national survey were 4.2% in new cases and 7.6% in retreatment cases, both in the 

province of Mpumalanga [23]. Though these rates are higher, the population in 

Mpumalanga is less than half that of KwaZulu-Natal, where higher absolute case numbers 

persist.  

In addition to high numbers of case, KwaZulu-Natal also continued to receive 

attention for XDR TB due to the international notoriety of the 2005 outbreak and the studies 

that followed in the province. By the end of 2007, 38% of MDR and 50% of XDR TB 

reported cases in South Africa were coming from this province [24].  One retrospective 

study showed a greater than 10-fold increase in MDR TB cases and a greater than 40-fold 

increase in XDR TB cases from 2001-2007, and also showed that increasing numbers of 

reported cases may have partially been due simply to improved detection (as opposed to 

rising incidence) because testing for drug resistance tripled in the province over the same 

period [24]. Though some findings suggest that increased incidence of XDR TB in 

KwaZulu-Natal may be partially misleading, estimates for overall drug-resistant TB have 
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continued to increase. Additionally, the Drug Resistance Survey found that KwaZulu-Natal 

only screened and confirmed 58.6% of the drug-resistant cases expected in that province; 

the next lowest province of Free State screened and confirmed 70.3% of what was expected 

[23].  This figure suggests that many cases of drug resistance are missed here, and current 

trends of XDR TB in KwaZulu-Natal need to be specifically addressed if the country is to 

make progress in TB control. 

In addition to evidence that many cases are not diagnosed, data also suggests many 

who are diagnosed are not started on treatment. One 2011 study in KwaZulu-Natal found 

that only 34% of all MDR TB cases, including XDR TB, were started on treatment 

following diagnosis [25]. Countrywide data shows higher rates of treatment initiation for 

detected MDR and XDR TB cases, with 59% and 65% starting treatment following 

diagnosis [1]. These findings suggest that the gap between diagnosis and treatment 

initiation is substantial in South Africa, but may be a larger problem in KwaZulu-Natal 

than in other provinces. This shortcoming results in a higher number of active cases 

transmitting drug-resistant TB in KwaZulu-Natal and may be responsible for continually 

high rates of provincial drug-resistance.  

A pivotal study aimed to confirm the role of transmitted resistance (vs acquired 

resistance) in perpetuating the XDR TB epidemic in KwaZulu-Natal by detecting links 

between cases using genetic comparison of TB strains and social network analysis. XDR 

TB patients diagnosed between 2011 and 2014 were enrolled and the study found that at 

least 69% of participants had transmitted XDR TB [16]. This estimate was conservative 

and likely under-represents the proportion of all XDR TB cases that are due to 

transmission. Other studies of DR TB in similar settings have supported this important 
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finding, which has been instrumental in guiding subsequent research in the region. These 

conclusions suggest that prevention efforts focused at curbing transmission in the 

community may have more substantial effects in decreasing drug-resistant cases than 

efforts focusing on improvements to treatment quality or adherence.  

KwaZulu-Natal is further divided into ten district municipalities and one 

metropolitan municipality. The largest city in the province is Durban, located within the 

metropolitan municipality of eThekwini. As of 2016, eThekwini had a population of 

3,702,231 persons and harbored a disproportionately high number of TB cases, though rate 

of disease was higher in the less populated district of Umzinyathi [18]. Drug resistant 

incidence in eThekwini is especially high, and roughly 40% of XDR TB cases in the 

province are found here [26]. Durban is an international city within this high-burden 

province and represents a threat of more widespread transmission beyond the country of 

South Africa.  

 

TB Prevention and Risk Factors 

Given the difficulty in treatment initiation and completion, effective methods for 

the prevention of TB cases are crucial. Vaccines are one option that may benefit high-

burden settings and those at high-risk. Though there are more than a dozen TB vaccines in 

clinical trials, only one is currently approved for use in humans and has not demonstrated 

promising potential for population protection due to variable effectiveness in adults [27]. 

Isoniazid Preventive Therapy (IPT) given as chemoprophylaxis is an option for prevention 

therapy and requires medication daily for 6-9 months. IPT has demonstrated considerable 
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efficacy, and is currently recommended for high-risk groups such as people living with 

HIV, children in contact with TB patients, and people recently infected with TB but without 

signs of active disease [28]. 

Beyond vaccination campaigns, addressing social determinants of disease has also 

been suggested as an alternative programmatic approach that could benefit communities 

with high TB burden.[29]. Understanding these determinants can enable programs to 

address modifiable factors and can also help identify specific populations where targeted 

approaches would be most effective.   

When considering risk factors for TB disease, many intrinsic and extrinsic factors 

identified in previous research are associated with poverty. Intrinsic or biological risk 

factors include malnutrition, infection, and immunodeficiency, all of which can increase 

risk for progression from latent infection to active TB disease [29]. Extrinsic risk factors 

comprise environmental issues like overcrowding, indoor air pollution, smoking, and poor 

ventilation [30]. In one analysis of 22 high-burden countries, population attributable 

fractions (PAFs) were calculated for common risk factors. This analysis suggested the 

highest percentage of cases could be attributed to malnutrition (34.1%), active smoking 

(22.7%), and indoor pollution (26.2%) [31]. These results suggest that taken together, these 

three factors alone account for many cases of TB and targeting them may be a viable public 

health approach for TB prevention. These estimates highlight the importance of modifiable 

risk factors, though the authors also emphasize that the mix and relative importance of 

these risk factors will likely vary depending on geography. Exposure to infected individuals 

is also a necessary component in acquiring disease, and transmission is therefore driven by 

TB prevalence in addition to individual and environmental risks factors.  
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Factors associated with higher risk of developing drug-resistant TB as opposed to 

drug-susceptible TB have also been examined. A number of studies found that positive 

HIV status was an independent risk factor for XDR TB compared to MDR and DS TB [32, 

33]. A review of 27 articles on risk factors for XDR TB also reported findings of 

associations between XDR TB and younger age, previous imprisonment, history of prior 

treatment, and migrant status [33]. Literature on risk factors specific to drug-resistant TB 

is somewhat limited and no papers reviewed attempt to measure poverty in this cohort, 

though it has been inferred that some characteristics like prior imprisonment and migrant 

status may be indicative of lower socioeconomic status. 

In general, high levels of poverty and social deprivation were common factors in 

study areas with high burdens of TB and global data shows over 95% of TB deaths occur 

in low- and middle-income countries [1]. A strong association between low income level 

and high burden of TB is supported by numerous studies within high-income countries as 

well, enforcing the notion that poverty affects risk at the individual and country level [34, 

35].  

 

Measurement of Sociodemographic Factors  

It has been well established that TB disproportionately affects low- and middle-

income countries, but less is known about the spatial and sociodemographic distribution of 

disease within these countries. Several studies in low-income settings have examined the 

association between sociodemographic status and TB incidence with varying methods 

applied to measurement and data collection [36-40]. At an individual level (opposed to 
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population level), associations between TB and sociodemographic status have been studied 

using data from TB surveillance programs, death certificates, and study-specific research 

data [38-40]. Studies at the individual level employ comparisons of TB cases and non-TB-

infected controls, highlighting individual characteristics that may contribute to higher risk 

for TB. Sociodemographic associations are also commonly studied at a population level 

using data from censuses and national or community surveys [36, 37]. These studies use 

pre-determined geographic areas such as census units as the unit of analysis and can 

suggest neighborhood characteristics that increase risk for TB by using aggregate data for 

these units and making comparisons between units to examine sociodemographic 

differences. 

Studies also differ in their approach to defining sociodemographic status. Many 

researchers have moved beyond the traditional income-based measure of extreme poverty, 

which the World Bank defines as living on less than $1.90 USD per day [41]. The United 

Nations (UN) and other global health leaders have endorsed this shift as a way of capturing 

a more holistic view of deprivation and standards of living that can affect human health 

[42]. For studies using pre-existing data, indicators used are limited by the data previously 

collected. Common variables measured in TB research using pre-existing data include 

basic demographics (age, gender, race), educational level, population density, and a variety 

of household deprivation indicators such as access to water, electricity, sanitation, and asset 

ownership. Well-chosen indicators are especially important in studying poverty, since 

signs of deprivation often differ depending on place. When possible, studies make use of 

various indices composed of sets of indicators that have been developed as measures for 

sociodemographic status and poverty. 
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Poverty Indices 

Different measures used to account for the various factors that play a role in poverty 

include the Socio-Demographic Index, Poverty Gap Index, Human Poverty Index, and the 

Multidimensional Poverty Index (MPI) [43]. The MPI is the index currently favored by the 

UN for holistic measurements of deprivations facing the poor. It was created in 2010 by 

the Oxford Poverty and Human Development Initiative (OPHI) and the UN to be used in 

conjunction with income-based measures for a more comprehensive view of poverty that 

can be disaggregated into individual indicators [42]. Ten individual indicators across three 

categories contribute to the index. The MPI is calculated using the Alkire-Foster method, 

taking the proportion of households that are deprived in 33.3% of the predictors and 

multiplying the result by the average intensity of deprivation among those below the 33.3% 

line [43]. The OPHI graphic in Figure 6 details the indicators and weights used in 

calculating the index. 

Figure 6. Multi-dimensional Poverty Index (MPI), indicators and weights 

Source: Program, U.N.D., Human Development Report 2016. 2016 [42]. 
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Though useful, indices like these are at times difficult to calculate using aggregated data 

as the scores are a product of many factors in an individual household, for which a 

complete set of variables may not be available. Some general components may also be 

less relevant in certain areas of the world, contributing to the lack of data. As a result, 

some studies examining TB associations with poverty use locally developed poverty 

indices tailored either to specific conditions in the area or to reflect information that has 

been historically collected in the area. This is useful in examining more nuanced country 

conditions and for the sake of comparisons over time, though it limits comparisons 

between countries. The MPI has been used as a model to inform which indicators are 

used in some country-specific indices like the Mexican Social Deprivation Index (SDI) and 

the South African Multi-Dimensional Poverty Index (SAMPI) [40, 44].  

 

Findings of Sociodemographic Studies 

Sociodemographic factors associated with TB risk vary depending on geographic 

location. Work done in the United States found that low social capital and higher poverty 

levels were associated with higher TB rates in a state-level analysis [35]. Studies conducted 

in high-burden countries have similar overall findings, however there is some variation in 

findings among different settings. Data support the general conclusion that residing in an 

urban area and having low socioeconomic status are both independently associated with 

higher risk for TB disease [36]. However, studies in developing countries make use of 

different indicators for socioeconomic status, and some findings may challenge common 

assumptions. For example, one recent study in rural Malawi has suggested some predictors 
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that are generally associated with higher socioeconomic status—such as working in the 

cash economy rather than the subsistence economy and having better housing—are 

associated  with higher odds of TB disease [45]. Economic progress may lead to jobs 

performed indoors and homes that may be more crowded and closed off than traditional 

homes with open ventilation. These changes would represent a shift to more shared 

airspace without proper ventilation, thereby increasing the risk for TB transmission and 

initial infection [45]. Environmental effects may also have unknown implications for risk 

of progression from latent to active infection.  Another study in Cameroon examined 14 

indicators of poverty and found level of education, use of modern toilet, and possession of 

a gas cooker to be better predictors of TB incidence than economic status alone [37]. These 

conflicting findings suggest that TB distribution in low-income settings may follow more 

complex trends. Unexpected findings regarding various indicators and their association 

with TB highlight the need to examine predictors apart from income level in studying 

disease distribution in low-income settings.  

 

Gaps in Knowledge 

While some work has been done to characterize MDR and DS TB cases by their 

sociodemographic and neighborhood level characteristics, this type of research on XDR 

has not been well-documented in the literature reviewed. Possible clinical factors 

increasing risk for XDR TB at the individual level have been assessed, however 

community-level characteristics have not been examined and these have the potential to 

influence transmission, which is known to be responsible for a high percentage of XDR 

TB cases.  Additionally, studies conducted in high-burden countries have been able to point 
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to associations but have not gone much further in assessing the mechanisms for these 

associations.  

 

Spatial Analysis in Public Health and TB 

The use of Geographic Information Systems (GIS) in public health research has 

been steadily increasing since the early 1990’s and the number of studies using spatial 

models in the study of disease and socio-economic disparities has more than doubled since 

2005 [46]. GIS systems are used to store, analyze, and display geographical data and can 

inform public health decisions for both communicable and non-communicable diseases 

[47].  Geographic data in public health is primarily available in point or polygon form. 

Point data represents a single set of geographic coordinates and can represent things like 

patient home or hospital. Polygon data represents an area contained by defined boundaries 

and is usually tied to aggregate data of the area contained within these boundaries. Census 

data is commonly associated with polygon data and is often used in spatial studies due to 

its abundance and ease of accessibility [48].  In public health, spatial data is most 

commonly used for distance measurement, spatial aggregation, cluster analysis, spatial 

smoothing for prediction or interpolation, and spatial regressions [46].  The table below 

summarizes details of methods that appear regularly in public health infectious disease 

literature. 
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Method Data type Spatial 

Resolution 

Software Purpose 

Spatial scan 

statistic 

Case-control, 

case-event, 

and continuous 

Point or 

polygon 

R, SatScan, 

ClusterSeer 

Location of 

Clusters 

Kernel intensity 

function 

Case-control, 

case-event 

Point R Smoothed 

Visualization 

Moran’s I Continuous Point or 

polygon 

GeoDa, 

ArcGIS, 

SpaceStat, R 

Assessing Spatial 

Autocorrelation 

Generalized 

additive model 

Continuous Point R, SPSS, S-

PLUS 

 

Assessing Spatial 

Autocorrelation 

Kernel density 

estimation 

Case-event 

and case-

control 

Point Crimestat, 

ArcGIS 

Smoothed 

Visualization 

Getis-Ord Gi* Case-event 

and case-

control 

Point or 

polygon 

ArcGIS Location of 

Clusters 

Local Indicators 

of Spatial 

Association 

(LISA) 

Continuous Point or 

polygon 

GeoDa, 

ArcGIS, R 

Location of 

Cluster 

 

 

Spatial Considerations in Infectious Disease Epidemiology 

The use of spatial techniques in infectious disease often focus not only on where 

the at-risk population is, but where transmission and infection may be occurring. 

Transmission within communities can be extremely difficult to study and the likely hubs 

for transmission are different depending on the disease of interest. For example, societal 

structures may lead to varying time spent at home, in social gathering places, or with other 

people [49].  Home locations were first examined in studies as a logical representation of 

an individual’s sphere of movement. Home location data is easily collected in most areas 

of the world, and it was often assumed that individuals spend a large portion of their time 
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around their place of residence [50].  However, many meaningful contacts occur outside 

of the home and may be more relevant to study. One study of TB in Tokyo attempted to 

address this issue by asking study participants to list multiple locations and the amount of 

waking time spent in each, then using the location where the participant spent the most 

time as their location for analysis. This study suggested transmission may be occurring in 

areas surrounding railway station stops[51]. Another approach taken by researchers in 

Atlanta, Georgia (USA) also collected multiple locations for each participant, and factored 

all reported locations equally to build polygon areas representative of transmission spheres 

[52]. This allowed researchers to perform analyses of overlapping area and infer more 

about where cases may be coming into contact with one another.  

Public transportation was also considered in one 2013 study in South Africa. 

Findings here supported the notion that the majority of transmission is occurring outside 

the home and use of public transportation may be associated with a 2-5% annual risk for 

TB, representing an elevated risk in the study area [53]. Similarly, another study analyzing 

DNA fingerprints of TB in the Cape Town area of South Africa found that only 19% of 

cases were related to household transmission [54].  

 Transmission has been studied in a variety of ways including modeling based on 

measured exhaled carbon dioxide as a tracer gas to model respiratory infections. The 2014 

study employing this method found that transmission was occurring outside the home in 

84% (and within the home in 16%) of cases [55]. While these results suggest that the home 

itself may not always capture information the place where transmission is occurring, there 

studies also found significant amounts of transmission do still occur in the home. Though 
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transmission area may not fully be captured, this does not diminish the utility of studying 

household location as a way to study populations with elevated risk for TB.  

 

Cluster Detection 

In public health studies, GIS is commonly used to describe clusters or hotspots of 

disease. Clusters have been defined as “foci of particularly high incidence” [56], and more 

specifically are areas with values that are statistically significantly different enough from 

expected values to be considered nonrandom (not occurring by chance) [46]. Clusters of 

high incidence are typically of primary interest, however clusters of low rates can also be 

meaningful when studying disease [57].  Many different methods have been developed for 

the quantification of disease clustering. Detected clusters often depend heavily on the scale 

of measurement used. For example, large areas with dissimilar distribution of qualities 

within may mask clustering, whereas analysis of small homogenous areas will easily show 

clusters of interest [57].  

Spatial analysis has been used sparsely in TB research, though the last decade has 

shown an increase in publications that make use of these methods in local areas. Clusters 

of individual cases or clusters of high incidence areas are commonly tested for and detected 

[30, 36, 37, 39, 40, 58-61]. The most common statistical tools used in cluster mapping 

within this body of research are SatScan, Getis-Ord Gi*, and LISA. Once clusters are 

detected, several studies have gone on to characterize them by sociodemographic features 

based on census data or surveys [30, 36, 37, 40, 58, 62]. These methods have mostly been 

applied to aggregate TB data, with a few focused on MDR and no reviewed papers focusing 

on XDR TB. Low socio-economic status was found to be associated with clusters of high 
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TB incidence in Madagascar, Malawi and South Africa, however the variables used to 

characterize socio-economic status were inconsistent [30, 45, 59]. A 2003 study in South 

Africa used unemployment as an economic measure and found this to be the strongest 

predictor of TB [59]. In Madagascar, household ownership of tap water was used as the 

indicator measurement [30]. In Malawi, ownership of household assets such as a television 

and radio were used to assess this measure [45]. Variability in measurement is based mainly 

on the availability of data collected in censuses and nationwide surveys. Though this may 

limit the comparability between studies, it may also get at area specific factors that should 

be considered when defining poverty and deprivation.   

 

Practical Limitations in GIS 

GIS research is associated with some challenges such as technical difficulties with 

technology, privacy concerns, and discrepancies between area recorded and the desired 

study area. Human movement studies have highlighted some of the limitations associated 

with producing spatial data associated with one individual [50]. Though people have 

regular patterns of travel, capturing the full range of an individual’s movement is often 

unrealistic for research. These issues are complicated because of the heterogeneity that 

exists among different settings. For example, one study demonstrated people in South 

Africa spent more time outside of the home and had over twice as many close indoor 

contacts per day compared to residents in European studies [49, 53, 63]. For this reason, 

models of movement are often not generalizable to all populations and cultural tendencies 

should be taken into consideration.  
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Spatial Findings in TB 

Most studies that have tested for the presence of statistically significant clustering 

of TB in high-burden countries have found evidence to support a clustered distribution 

pattern for DS TB and MDR TB [30, 36, 39, 61, 64]. Some studies have identified central 

locations common to a high percentage of the study participants and inferred transmission 

here. Two examples are a TB treatment clinic in Peru and a local bar in South Africa [38, 

64].  

 TB work attempting to show “activity space” by capturing more than one location 

for each study participant has produced nuanced results on transmission space suggesting 

this may be a fruitful direction for future studies. In the Atlanta-based study mentioned 

above, 50 of the 198 subjects reported three or more addresses and were therefore included 

in the activity space analysis. From the resulting activity spaces, the researchers were able 

to make statistically significant conclusions that there was more overlap in activity spaces 

for isoniazid (INH)-resistant TB cases and for homeless TB cases than INH-susceptible 

and non-homeless TB cases [52]. They were also able to create kernel density maps based 

on single location and multiple location data for cases (Figure 5) and found that the larger 

areas of high TB case density produced by the multiple location data captured more 

homeless shelters that were believed to be hotspots for transmission [52]. The more 

comprehensive maps of case movement have the potential to better inform contact 

investigations and targeting of public health programs.  
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Figure 6: “Difference in density of tuberculosis (TB) cases when using a single address versus 

multiple address for each case, Fulton County, Georgia, 2008–2014. (A) Density map (cases/square 

mile) of TB cases using a single address versus (B) multiple reported addresses; (C) enlarged area 

of highest TB case density map overlaid with local homeless shelters when using, for each TB case, 

single address versus (D) multiple addresses” [52] 

Source: Worrell, M.C., et al., Use of Activity Space in a Tuberculosis Outbreak: Bringing Homeless 
Persons Into Spatial Analyses. Open Forum Infectious Diseases, 2017. 4(1): p. ofw280 [52]. 

 

Gaps in Knowledge 

 Mapping projects have been undertaken in TB, however there are very few 

examining MDR TB and none examining XDR TB in the literature reviewed. The 

distributions of XDR, MDR, and DS TB have also not been mapped separately in one 

setting, and it is therefore  

unknown if high incidence areas overlap or if each type of TB clusters in distinct settings.  

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=5414060_ofw28001.jpg
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It is also unknown whether the overall spatial distribution (clustered, uniform, random) of 

the different types of TB differ. Further knowledge about hot spots of XDR disease and 

whether they coincide with MDR and DS TB could help incentivize synergistic TB 

programs targeting all types of TB at once and further clarify factors influencing 

transmission of disease within communities.  

 

Conclusion 

In conclusion, the literature is lacking descriptive and spatially analytic information 

on the XDR TB epidemic. Sociodemographic risk factors for this disease are not well 

described at the individual or community levels. Spatial behavior of XDR TB has also not 

been well characterized. There is no evidence to conclude whether XDR TB is clustering 

in the same places as MDR and DS TB, or whether areas of high burden for these three 

occupy distinct geographical areas with possibly differing attributes. Though transmission 

has been identified as a major driver of the XDR TB epidemic in South Africa, more 

information is needed on where this transmission is occurring to inform possible ways 

public health programs can intervene.  

This study was undertaken to further characterize the XDR TB epidemic in a subset 

of cases from 2011-2014 in eThekwini, KwaZulu-Natal, South Africa. Increased XDR 

incidence and poor treatment outcomes in this region have been well documented. 

However, spatial data on where these cases are occurring has not been thoroughly analyzed. 

This study aims to assess the distribution of XDR for clustering, and to describe the 

sociodemographic characteristics of high-burden areas in eThekwini to shed light on 

possible associations with risk for XDR TB.   
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Introduction 

Tuberculosis (TB) is the leading cause of infectious disease deaths worldwide and is 

responsible for over 4,000 deaths each day [1]. Drug-resistant tuberculosis is an 

increasing concern, with an estimated 600,000 cases in 2016 [1]. Multidrug-resistant 

(MDR) TB is defined as resistance to rifampin and isoniazid, the two most powerful 

drugs used against TB [65]. The most severe category of resistance is extensively drug-

resistant (XDR) TB, which is MDR TB with further resistance to a fluoroquinolone and 

at least one second-line injectable drug [11]. Treatment of XDR TB requires long and 

costly treatment regimens that are difficult to complete, and global success falls from 

83% for drug-susceptible TB patients to 30% for XDR TB patients [1, 66]. Efforts to 

prevent XDR TB from occurring are therefore critical for patients and public health 

programs. 

 

Drug resistance has been known to arise due to improper or incomplete treatment of 

drug-susceptible TB, referred to as “acquired” drug resistance. However, it is 

increasingly recognized that a majority of individuals with drug-resistant TB developed it 
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from person-to-person direct transmission of an already resistant strain, referred to as 

“primary” or “transmitted” drug resistance [67]. This suggests prevention efforts may be 

best targeted towards factors that would halt transmission, leading to an increased need to 

further characterize disease patterns in communities and factors driving transmission at 

an individual and population level.  

 

In countries with a high burden of TB, factors such as smoking, malnutrition, and indoor 

air pollution have been shown to increase individual risk for active disease [31], while 

overcrowding and poor ventilation increase risk of transmission [30]. These factors are 

often associated with poverty, and 95% of TB deaths occur in low- and middle-income 

countries [1]. Studies in high-income countries also support a strong association between 

TB disease and low-socioeconomic status, enforcing the notion that poverty increases 

risk at the individual and country level [34, 35]. Addressing these factors may improve 

TB outcomes; one study suggests 80% of TB cases are attributable to modifiable poverty-

associated factors [31].  

 

Recently, Geographic Information Systems (GIS) tools have been recognized for their 

utility in merging socioeconomic, TB disease burden, and spatial data, allowing for more 

detailed socioeconomic profiles of high-burden TB areas and identification of disease 

“hotspots”. Some studies have also incorporated multiple locations per individual to 

estimate “activity space” and identify areas of high transmission risk [51, 52]. These 

approaches have suggested significant heterogeneity in TB epidemics around the world 
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and in underlying population-level socioeconomic factors. Unanticipated findings of 

associations between TB and measures not traditionally associated with poverty such as 

cash industry jobs (vs sustenance), developed housing, and gas cooker use have been 

suggested in various locations [45]. These findings suggest TB risk in low-income 

settings follow complex trends that may vary depending on setting, highlighting the need 

to tailor targeted efforts by location.  

 

South Africa has among the highest XDR TB incidence in the world and accounts for 

almost 20% of all drug-resistant cases in Africa. Within South Africa, nearly half of all 

XDR TB is found in the province of KwaZulu-Natal [18]. Recent data suggests that 

approximately 69% of XDR TB in KwaZulu-Natal province is caused by direct person-to-

person transmission of XDR TB strains [16]. Since transmission is driving the XDR TB 

epidemic, there is a need to examine where cases are in the community. Further knowledge 

about “hotspots” of disease and whether they are associated with sociodemographic 

indicators could help target TB programs and further clarify factors influencing community 

transmission. Therefore, we studied the spatial distribution of XDR TB in KwaZulu-Natal 

and utilized census data to evaluate sociodemographic characteristics of areas designated 

as “hotspots”. 
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Methods 

Study Population and Setting 

We conducted a cross-sectional study of XDR TB patients diagnosed between 2011 and 

2014 in the district of eThekwini, South Africa, and examined sociodemographic factors 

of communities where they reside. eThekwini is in the province of KwaZulu-Natal, 

which harbors roughly half of all XDR TB cases in South Africa despite the province 

comprising less than 20% of the country population [24]. Though eThekwini is the 

smallest of 11 districts in KwaZulu-Natal, it accounts for 33% of the provincial 

population and approximately 41% of XDR TB cases in the province are found here [26]. 

eThekwini has a population of 3.4 million people and contains the city of Durban, 

characterizing it as a uniquely urban setting in relation to other districts in the generally 

rural province of KwaZulu-Natal.  

 

Study Variables and Data Sources 

We used data from the “Transmission of HIV-Associated XDR TB in South Africa 

(TRAX)” study but restricted our analysis to patients with home GPS in eThekwini 

district to examine hotspots in this high burden urban area. Patients in KwaZulu-Natal 

with newly diagnosed XDR TB between the years 2011 and 2014 were recruited for 

TRAX. Cases were identified from the provincial referral laboratory which conducted all 

diagnostic testing for XDR TB.  

Clinical and sociodemographic information was obtained through structured interviews 

with participants. Information on congregate settings including work, school, and social 
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settings was also obtained during participant interviews. GPS coordinates of home 

location for each participant were recorded through home visits and plotted using ArcGIS 

software. Geospatial data was also obtained for facilities diagnosing XDR TB. Detailed 

methods for this study have been published elsewhere [16]. 

 

The exposure of interest was sociodemographic status at the population level as measured 

by indicators identified in South Africa’s Multidimensional Poverty Index, which is used 

in assessing the presence and severity of poverty in the country-specific context. These 

included household indicators (flush toilet in home, type of dwelling, and fuel used for 

cooking, heating, and lighting), educational indicators (highest level of education, school 

attendance for school-aged children), a health indicator (under five mortality), and an 

economic indicator (unemployment). Basic demographic information such as sex, age, 

and race were also examined at the main place level.  

 

To obtain this population-level information, we used data from the 2011 South Africa 

census. The census was conducted by Statistics South Africa (Stats SA). eThekwini 

district census data were exported by Stats SA and included detail to the census unit of 

“main place” and “sub place”. From smallest to largest, the census units used in South 

Africa are: sub-place, main place, district, and province (Figure 1). eThekwini district 

consists of 197 main places and 394 sub places. Shapefiles defining geographic borders 

in ArcGIS were provided by Stats SA.  
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Data Analysis  

The primary outcome of interest was home location of XDR TB cases and the number of 

TRAX cases reporting their home residence within a particular census unit.  Spatial data 

was analyzed in ArcGIS version 10.5.1 and GeoDa. Raw incidence rates were calculated 

in ArcGIS. Empiric and Spatial Bayes Smoothing [68] were applied in GeoDa to correct 

for inflated rate calculations in census units with small populations. Queen contiguity 

weighting of neighbors was used for spatial smoothing methods. Raw and population-

adjusted kernel density surfaces were created in ArcGIS to visualize incidence and 

incidence rates across the district. Global Moran’s I statistic was calculated to assess for 

the presence and magnitude of spatial autocorrelation in the distribution of cases, and 

Local Indicators of Spatial Autocorrelation (LISA) were used to apply this statistic 

locally for cluster assessment. Getis-Ord Gi* statistics were also used to evaluate the 

significance of case clustering. An α value of 0.05 was used to classify main places as 

hotspots for XDR TB disease.  

 

Additional analyses were performed to estimate activity space [51, 52] for a subset of 

participants who reported non-home locations in which they spent >2 hours per week. 

Reported locations for work, school, and other congregate social settings were geocoded 

using ArcGIS version 10.5.1. When necessary, addresses were located using Google 

Earth and plotted in ArcGIS using latitude and longitude coordinates. Shapefiles were 

projected to the UTM 32S projection for analyses.  Kernel density surfaces were created 

incorporating all locations to visualize potential areas of transmission and results were 

compared to density surfaces generated using home locations alone. Among cases with 
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available data, we also calculated distance from home to place of work and other 

congregate locations. 

 

We compared sociodemographic characteristics of XDR TB participants from TRAX and 

the underlying general population using basic descriptive statistics, t-tests, and chi-square 

tests. To evaluate sociodemographic associations at a population level, census data were 

merged with shapefiles in ArcGIS version 10.5.1 and exported to SAS version 9.4. Rates 

for disease incidence and socioeconomic indictors were calculated with population 

estimates from the 2011 census. Indicators were examined within hotspot main places 

identified through spatial analysis and compared to non-hotspot main places using Mann-

Whitney tests. An α value of 0.05 was used to determine statistical significance for all 

tests performed.  

 

Ethical Considerations 

Approval for the TRAX study was provided by the institutional review boards of Emory 

University, Albert Einstein College of Medicine, and the University of KwaZulu-Natal 

and by the Centers for Disease Control and Prevention. All participants provided written 

informed consent or assent, when appropriate. 
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Results 

Participants 

Among 404 participants enrolled in the TRAX study, 132 (33%) resided in eThekwini and 

were included in this analysis. Among these participants, 75 (57%) were female and 87 

(66%) lived in urban or suburban locations (Table 1). Median age at diagnosis was 33 years 

(interquartile range [IQR], 29–44). The spatial distribution of enrolled patients did not 

differ significantly from the distribution of all XDR TB patients in eThekwini based on 

facility of diagnosis. 

 

Spatial Analysis 

The highest number of XDR TB cases were observed in the eastern part of the district, near 

the highly populated Durban central business district (Figure 2a). Global Moran’s I for 

XDR TB incidence rate at the main place level was 0.87, indicating strong positive spatial 

autocorrelation at the main place level. Spatial distribution of XDR TB in eThekwini and 

raw incidence rates as estimated by our study population suggest rates are highest in the 

northeast part of the district (Figure 2a). Empiric and Spatial Bayes Smoothing produced 

similar patterns but suggested main place incidence rates in the far north and south of the 

district may have been artificially inflated by small population sizes. Kernel density 

surfaces based on point locations of cases show high case density to the northwest of 

Durban (Figure 2b). Population-adjusted kernel density smoothing (Figure 2c) found that 

western eThekwini appeared to have a high incidence of cases, though population is sparse 

in this area.  



36 
 

 

Getis-Ord-Gi* analysis classified 15 main places as hotspots with > 95% confidence 

(Figure 2d). The largest identified cluster of contingent main places was located in the 

northeast part of the district, suggesting one large hotspot of XDR TB case homes in this 

area. LISA analysis (Figure 2e) shows high-high clustering (i.e., high case areas 

surrounded by other high case areas) in the northeast region; these findings are consistent 

with findings from the Getis-Ord-Gi* analysis and kernel density visualization of risk. 

Outliers of high incidence surrounded by low incidence were found in the west and 

southwest regions of the district, suggesting these cases may be of interest due to their 

isolation, though they often represent only a single case.  

 

Activity Space Analysis 

We were able to locate non-home congregate locations given for 43 (33%) of the 132 

patients in eThekwini. Locations geocoded included 40 places of work, two school settings, 

and nine other congregate settings. The spatial distribution of homes did not differ among 

this subset of 43 patients compared to all TRAX patients in eThekwini.  Kernel density 

surface creation suggested a higher case concentration is located in the central part of the 

eastern coast of the district (which corresponds to the Durban downtown area) than was 

suggested from analysis of home location alone (Figure 3a-c). This shift was driven by a 

high concentration of work places in the downtown area. Median home-work and home-

facility distances were 10.4 and 10.3 kilometers, respectively.  
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Sociodemographic Factors 

At an individual and a population-level, sociodemographic factors associated with poverty 

were found to be associated with higher burden or risk of XDR TB. Individual case 

characteristics demonstrated that XDR TB cases enrolled in our study were statistically 

significantly older, fewer had a flush toilet in the home, and annual income was lower than 

the eThekwini population (Table 1). Conversely, a significantly higher proportion of study 

participants had a university or higher education and a smaller household size.  

At a population level, persons living in hotspots had statistically significantly lower 

educational attainment and higher unemployment, under-five mortality, and percentage of 

school-aged children not attending school (Table 2). Hotspots also had homes that were 

less likely to have a flush toilet, and a higher percentage of their population was employed 

in domestic servant work (according to census 2011 data).  

 

Discussion 

 

KwaZulu-Natal province bears approximately 50% of South Africa’s XDR TB burden 

[15], and despite substantial advances in diagnosis and treatment of TB over the past 

decade, an ongoing cycle of transmission is perpetuating the epidemic [10]. We sought to 

identify whether XDR TB cases are geographically clustered and what sociodemographic 

factors may be influencing risk in the urban district of eThekwini, which accounts for 

41% of KwaZulu-Natal cases [14]. We found that XDR TB is not uniformly distributed; 

clusters of XDR TB case residences were detected to the northeast part of eThekwini 

district. Compared to other neighborhoods, those with geographic clustering had lower 
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educational attainment, higher unemployment rates, and homes that were less likely to 

have a flush toilet. Public health interventions to halt the XDR TB epidemic may be more 

effective if high incidence neighborhoods are targeted and will require a multisectoral 

response aimed at not only improving XDR TB diagnosis and treatment, but also 

addressing underlying social determinants of health. 

 

Homes of XDR TB cases demonstrated clustering within eThekwini. Detection of 

clustered distribution is consistent with studies of TB and MDR TB using home location 

in similarly high burden settings [30, 36, 39, 61, 64].  This finding suggests that 

neighborhood-level factors are influencing risk in certain areas. One strength of our 

approach was that our conclusions about the spatial distribution of disease were 

reinforced by performing analyses at multiple levels of granularity, using raw and 

spatially smoothed data. Though there was slight variation in detected clusters in more 

rural geographic areas with small populations, the spatial clustering observed northeast of 

the district was consistent regardless of the method applied. Spatial studies are often 

limited by data aggregation, which can mask nuanced trends when areas with distinct 

characteristics are aggregated together [57]. Our study was able to examine trends at 

varying levels of South African census units as data was available at the sub and main 

place levels. For the purposes of data visualization and incidence comparison, data were 

aggregated to main place levels. However, availability of sub place data made it possible 

to more closely examine areas of interest and to focus in on the highly populated areas of 

the Durban metro. 
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We examined neighborhood-level sociodemographic characteristics of XDR TB clustered 

neighborhoods and found that residents in these areas had more indicators of poverty than 

in non-cluster neighborhoods.  This is consistent with other research that has found 

associations between poverty and MDR TB [36, 37, 45]. Previous studies examining risk 

factors for XDR TB have suggested that positive HIV status and failure of previous TB 

treatment may increase risk of XDR- compared to MDR- and drug-susceptible TB [32].  

In addition to examining individual characteristics of our patient population, our study 

took a population-level approach to assessing the communities XDR TB patients are 

living in. We found that on an individual level and on a neighborhood level, poverty is 

associated with XDR TB or being in an XDR TB hotspot. These findings may aid in 

targeting of neighborhoods for increased interventions such as education, screening, and 

clinic outreach. It is important to note that these analyses were based on home location 

and clusters detected may not represent the actual locations where transmission occurred. 

However, clustering of home locations may suggest several plausible mechanisms 

including higher biologic susceptibility to active TB infection due to environmental 

living conditions, variable access to quality diagnostic testing, or differing levels of 

motivation to seek care among distinct neighborhood-level groups [69, 70]. 

 

Though these data may aid in case finding and suggest neighborhood-level factors that 

increase risk, the use of home location may overlook transmission hotspots. One study 

analyzing DNA fingerprints of tuberculosis cases in Cape Town suggested that only 19% 

of cases were due to transmission between household members [41]. To examine other 

areas of movement for our participants, we performed an analysis including work and 
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congregate settings on a subset of cases for whom data were available. We found strong 

evidence of a shift in high density clustering towards the Durban downtown area. This 

shift was driven mostly by work place locations, as many eThekwini residents appear to 

travel long distances from their homes in the direction of downtown Durban for work. 

Though the subset for this analysis was small, the findings suggest the need for more 

comprehensive spatial information in examining possible areas where transmission is 

occurring. Previous studies attempting to use movement information to infer transmission 

sphere in TB have been able to implicate community locations such as local drinking 

spots and homeless shelters [40, 52].  

 

Our analysis of XDR TB clustering was limited to cases that were enrolled in the TRAX 

study and may have provided more robust models if geographic and sociodemographic 

information was known for all diagnosed XDR TB cases to eliminate the possibility of 

selection bias.  XDR TB cases may additionally be under-reported countrywide due to 

limited use of second-line drug susceptibility testing; estimates from 2016 suggest that 

40% of MDR TB cases are not tested for further resistance [1]. These undetected cases 

may contribute to differing cluster detection, especially if patients visiting certain 

facilities are systematically untested and unreported. Though data were not available to 

assess the representativeness of our sample in regards to home location and 

sociodemographic characteristics, there was no statistically significant difference in 

spatial distribution for enrolled vs non-enrolled XDR TB patients based on facility of 

diagnosis. 
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Another limitation of this study was the scarcity of geographic movement information 

available for TRAX participants outside the home. While we were able to geocode work 

and congregate setting for a subset of participants, data was not collected with this 

purpose in mind and activity space could not be estimated for the majority of participants.  

Recent data examining human movement have demonstrated that there are often 

numerous hubs for infectious disease transmission outside of the home [50].  A more 

comprehensive log of individual case movement would be useful in further assessing 

where transmission is occurring in eThekwini. This information could help focus efforts 

to break transmission chains, however there are difficulties associated with collecting 

reliable human movement data such as cost, reluctance of participants, and technical 

issues with GPS [50].  Though missing movement data limits study of transmission, our 

ability to draw conclusions based on place of residence was strong due to our study’s 

methodology of exact GPS coordinate collection for home locations as opposed to 

alternative methods such as self-report or area level aggregation.  

 

Transmission is driving the XDR TB epidemic in KwaZulu-Natal, South Africa. 

Knowledge of transmission patterns, areas of high risk, and sociodemographic factors 

associated with risk can help to target prevention efforts within hardest hit communities. 

We have shown that XDR TB case homes demonstrate a clustered distribution and that 

clusters are associated with low education attainment and school attendance, high 

unemployment, and lack of in home flush-toilets at the neighborhood level in eThekwini, 

South Africa. Our data also point to additional congregate areas where cases move, such 

as workplaces outside the home in the downtown Durban area. Further work 
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characterizing more complete range of movement among XDR TB cases is needed to 

determine where transmission is occurring. 
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CHAPTER III: PUBLIC HEALTH IMPLICATIONS 

 

This study indicates that in Durban, South Africa, XDR TB disproportionately affects 

individuals living in neighborhoods where poverty levels are high. With persistently high 

levels of drug resistance in this region and minimal success in treatment efforts, further 

work to clarify the reasons behind increased risk in certain geographic areas may be 

critical in identifying modifiable factors for targeted interventions in the areas indicated. 

 

Through this analysis, we found significant clustering or “hotspots” based on XDR TB 

cases’ homes in Durban, at the main place level. It is important to note that hotspot 

neighborhoods identified in this study do not necessarily correspond to hotspots where 

transmission is occurring, as previous work suggests only a small fraction of TB 

transmission may occur in or near the household [54]. Instead, these hotspots represent 

neighborhoods where residential status appears to confer some additional risk for XDR 

TB. This increase in risk may be viewed as two separate but related risks; one is the 

potential increase in risk due to increased susceptibility for infection and progression to 

active TB infection. This increased risk has been attributed to poverty-related factors 

such as malnutrition, compromised immune status, exposure to air pollutants through 

smoking or indoor air pollution, and HIV infection [29]. The other is increased risk of 

transmission of disease, which may be associated with overcrowding and the use of mass 

transport, such as small buses commonly used in the Durban area.  

 

The risk factors mentioned are not exclusive risk factors for XDR TB (compared to drug-

susceptible [DS] TB) and it is possible that XDR TB hotspots are simply mirroring 
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overall TB distribution trends. However, there is some reason to believe that these 

neighborhoods have higher risk for XDR TB alone. In this study, unemployment was 

higher in hotspots vs non-hotspots, which may lead to many residents experiencing job 

insecurity, more frequent movement, and fear of stigma. These factors may make XDR 

TB treatment adherence and completion difficult to achieve, leading to higher treatment 

failure; previous failure of TB treatment and migrant status are both known risk factors 

for development of drug resistance [32, 33].  

 

Based on current data, is it unclear which mechanism (increased risk of infection, 

progression or transmission) may be most responsible for increased incidence of XDR 

TB disease in identified hotspots; it is also unclear whether these hotspots align with 

hotspots of DS TB or MDR TB. Future studies examining detailed environmental and 

sociodemographic characteristics of individuals with XDR TB may be appropriate to help 

elucidate risk factors responsible for neighborhood-level trends. Additionally, future 

studies should investigate the spatial distributions of DS TB and MDR TB alongside that 

of XDR TB to determine whether different factors may be influencing development of 

each.  

 

Because analysis of home locations may not represent the site of transmission, we 

attempted to identify other potential transmission areas by investigating XDR TB cases’ 

activity space. This sub-analysis indicated that many cases travel to the Durban central 

business district. This may suggest high rates of transmission are occurring here since the 

activity space of some otherwise unrelated-seeming cases appears to overlap most 
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heavily in this location. Identification of likely transmission areas through activity space 

analyses can thus be useful in targeting prevention efforts aimed to halt transmission. 

However, in the case of our study area, movement to the Durban central business district 

is likely not unique to our patient population as the general population also probably 

follows similar movement patterns. Our finding that XDR TB cases tend to come from 

similar communities (homes clustered in “hotspots”) may demonstrate the working of the 

previously mentioned neighborhood-level factors that are increasing susceptibility among 

these individuals. This may suggest that though transmission is driving the current XDR 

TB epidemic, neighborhood-level factors like poverty are ultimately driving risk for 

transmission upstream. 

 

These findings support the need for interventions targeting poverty-associated risk factors 

or further study of transmission areas in this region. Future studies aiming to identify 

transmission hotspots will need to collect more comprehensive data on human movement 

using reliable methods of spatial data collection such as direct GPS measurements or 

identification of named locations on a map (rather than providing business names or 

descriptions of locations that are difficult to map). If programs are able to locate areas 

where realistic interventions are possible, this may be a promising route in decreasing 

XDR TB incidence in KwaZulu-Natal. However, until underlying sociodemographic risk 

factors are addressed, certain groups and neighborhoods will likely still be at increased 

risk.  

 

 


