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Abstract

Truncated Singular Value Decomposition Approximation for Structured Matrices

via Kronecker Product Summation Decomposition

By Clarissa Catherine Garvey

Singular value decompositions are a particularly attractive matrix factorization for

ill-posed problems because singular value magnitudes reveal information about the

relative importance of data in the matrix. However, computing a singular value de-

composition is typically computationally infeasible for large problems, as the cost for

traditional methods, such as Lanczos bidiagonalization-based approaches and ran-

domized methods, scales linearly with the number of entries in the matrix times the

number of singular values computed. In this work we present two new algorithms

and one new hybrid approach for computing the singular value decomposition of

matrices cheaply approximable as an ordered Kronecker summation decomposition.

Unlike previous work using ordered Kronecker summation decompositions, the fac-

torizations these methods produce are more accurate for certain classes of matrices

and have nonnegative singular values. The three proposed methods are also faster,

with lower computational and spatial complexity, although also lower accuracy, than

traditional methods. Our Kronecker-based methods therefore enable singular value

decomposition approximations on larger matrices than traditional methods, while

providing more accurate results in many cases than previous Kronecker-based singu-

lar value decompositions. We demonstrate the efficacy of these methods on a variety

of image deconvolution problems for which the image is modeled as a regular grid of

data.
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Chapter 1

Introduction

Many interesting problems can be formulated as a linear inverse problem contami-

nated by noise. The motivation for this work is one such problem, namely the image

processing problem of deconvolution. In standard deconvolution, a known blurry

image and a linear operator describing the blurring process are used to recover an

estimate of the true, clear image. Due to the physical realities of imaging, the blurred

image is also contaminated with noise [1, 25].

Consider the mathematical formulation, temporarily ignoring noise (we will dis-

cuss the noisy formulation in detail in Chapter 2). We have a system Kx = d where

K is a known matrix of size N×N , d is a known vector, and the vector x is unknown.

If K is small, this problem is commonly solved by taking a factorization of K and

efficiently solving the linear equation with those factors. If K has special properties,

more efficient factorization can be used; for example, Cholesky factorization can be

used on symmetric positive definite matrices as opposed to QR factorization [21]. For

our problems, K is typically ill-posed [1,2,25], which makes a different factorization,

the singular value decomposition (SVD), desirable.

Singular value decompositions are a useful but costly factorization method. Solv-

ing systems and adding regularization is straightforward once an SVD has been com-
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puted. But obtaining an SVD is not so simple. Computing a full SVD on an unstruc-

tured N ×N matrix takes O(N3) time, with a worse constant than QR and Cholesky

factorization [21]. In real applications, this produces a large effect. In addition, the

SVD at least doubles storage costs compared to the original matrix. For sparse ma-

trices, computing an SVD typically results in a non-sparse factorization. As N gets

large, computing an SVD therefore becomes prohibitive even for sparse matrices.

In image deconvolution, and in many other problems, the system involved is large.

Although scientific images can be small, real images are often at least 1024 pixels in

their smaller dimension. For a blurring problem, this results in a huge blurring

operator matrix of size greater than a million by a million.

Computationally and spatially cheap approximations of singular value decomposi-

tions are desirable to avoid the issues arising from working with massive systems. One

such approximation is the truncated SVD, which also has the effect of combating cor-

ruption by noise as discussed in Section 2.3. In a truncated SVD, the components of

the factorization are constructed up to a certain index k < N . This provides a rank-k

approximation of the original matrix, and naturally reduces storage from O(N2) for

the full SVD to O(kN) for the truncated SVD when a compact representation is used.

There are several existing methods for computing truncated SVDs. One of the

most popular is a Lanczos bidiagonalization approach, described further in Section

7.2. Lanczos methods enjoy high accuracy at the cost of computational time. A

more recent category of methods is the randomized framework described by Halko,

Martinsson, and Tropp [24], also described further in Section 7.3. This approach

uses random initialization to converge fairly quickly to an accurate approximation.

Variants of both Lanczos and randomized methods have been created for certain

matrix structures, such as symmetric matrices. However, they do not fully exploit a

subtle structure arising in image deconvolution.

That structure appears in the matrix blurring operator in image deconvolution
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problems. The blur operator is easily represented as a sum of Kronecker products for

many types of blur [29,49,50] (also see Section 2.5 for details). The main focus of this

work is effectively exploiting the Kronecker summation structure to compute a very

cheap truncated SVD (TSVD). Exploiting that structure is not a new idea. Previous

work on the subject, described in Chapter 3, used a simple approach to construct

a TSVD approximation from a Kronecker product summation [29, 30, 38]. Although

highly effective in certain cases, this approach has severe limitations, including the

possibility of negative approximate singular values. This baseline method is described

in detail in Chapter 3.

Here we propose several alternative approaches, discussing their strengths and

weaknesses. First, in Chapter 4, we discuss a method that discards less information

than the original approach by using early truncation in the approximation. This

method does a worse job than the baseline approach at estimating the smallest com-

puted singular values, which motivates a variant described in Chapter 5. This second

approach is more effective than both the baseline and first new approach. It uses

significant permutation of the data prior to truncating, improving estimation of the

true TSVD. Finally, we describe a hybrid method in Chapter 6 that combines the

baseline method with either proposed approach.

We run experiments in all chapters to showcase the strengths and weaknesses

of each method. We test each method to compute a direct reconstruction solving

the image deconvolution problem, detailed in Section 2.1, with a true, clear satellite

image x shown in Figure 1.1. The resulting reconstruction from each chapter and

on each of the three example blurs is shown in Figure 1.2. Each row corresponds

to a different example, with the blurred image for that example shown in the final

column. Although the most visually appealing image is not always the most accurate

as discussed in Chapters 4-5 and Appendix A, we can see that our proposed methods

are a significant improvement on the baseline method described in Chapter 3. Similar
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summarizations for the other experiments we run can be found in Appendices B and

C.

Figure 1.1: True satellite image. This is the true x used in all examples.

Chapter 3 Chapter 4 Chapter 5 Chapter 6
restored x restored x restored x restored x Blurred d

Figure 1.2: All-way restoration comparison. Each row is a different test example with
a blurred image as shown on the right. The restorations for each method are shown
in the first four columns.

These approaches were designed to work for the image deconvolution problem,

but they can be generalized. Any problem involving matrices with similar structures

(detailed in Section 2.5) can benefit from these methods.

Furthermore, the image deconvolution problem has a variant called blind decon-

volution in which the matrix K is not known exactly. We detail one approach to

extend these methods to a blind deconvolution framework in Chapter 8, although we

conclude that the benefits to using that specific framework are limited.
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The primary strength of our methods is that they enable more compact storage

and cheaper computations. Whereas traditional TSVD methods, as previously men-

tioned, may have storage costs that scale linearly with the size of the matrix for a

fixed truncation index, our methods’ storage scales with the square root of the ma-

trix size. This enables the factorization to be computed for matrices that are much

larger than is possible with methods like Lanczos-based and randomized methods,

which are agnostic to the Kronecker structure. Because of the compact representa-

tion, constructing and applying the proposed factorizations is cheap. A comparison

of the accuracy and computational cost of our method and existing methods is given

in Chapter 7.

The trade-off for our methods’ speed and compression is accuracy. While other

comparable methods can be used to extremely high (and tunable) precision, the

precision of our method is moderate and not tunable to arbitrary accuracy. Our

methods are therefore useful cheap approximations, but not good for applications that

require high precision. Fortunately, there are numerous applications for which cheap

but not highly accurate approximations are sufficient, including: preconditioning,

many image deconvolution problems, and initial guesses for various methods. We

explore these experimental frameworks for each of our proposed methods as well as

the baseline method. We find that our cheap approximations are powerful tools in

these applications.
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Chapter 2

Background

This chapter provides the mathematical background for the methods described in the

remaining chapters of this work. We detail the theoretical and conceptual under-

pinnings of image deconvolution, singular value decompositions, Kronecker products,

the relationship between Kronecker products and SVDs, and conclude with a brief

discussion of how our work relates to comparable work on tensors.

2.1 Image Deconvolution

Image deconvolution, also called restoration and deblurring, is the process of restoring

a clear image from a blurry image. There are many approaches to this problem

[1,2,25]; of them, we focus on a particular model-based approach, where the process

causing the image blur is known exactly or approximately. This works well for a

variety of imaging applications, such as the original motivating deconvolution problem

of astronomical imaging from satellites [2,7,32]. Given the blurry image and a model

of the blur, we seek to restore the clear image.

In our applications, the blurry image is measured directly, but the blur model is

only indirectly measured as a point spread function (PSF). A point spread function

indicates how a single point source of light is spread out due to the blur in the optical
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system. An example of a Gaussian PSF from the RestoreTools package [39] is shown

in Figure 2.1.

→

Point source PSF

Figure 2.1: An example PSF. The original point source, on the left, is blurred so the
light spreads as shown on the right.

This blur may be caused by the atmosphere, for example, when imaging stars

from ground-based telescopes on the earth [3, 25, 48]; in this case, the blur may be

approximately Gaussian [2, p. 28]. Or, the blur could result from motion of a camera

relative to the object in the image [1, 2, 25]. There are many sources of blur and,

as detailed in Chapters 3-6, the properties of the PSF can significantly impact the

restoration.

Images can be thought of as a collection of several point sources of light [25, p. 4].

If we know how a single point source of light would be blurred, we can figure out how

the many point sources of light in a clear image are blurred to create a blurry image.

Mathematically, we formulate the blur as a linear operator acting on the image as

introduced in Chapter 1. With knowledge of the operator, we try to undo the blur.

We will see in Section 2.3 why naively approaching this problem can give poor results,

but for now we focus on how the linear system is constructed.

The structure of the operator depends on two factors, the first of which is how

the PSF applies to the image. It is not always the case that the same PSF applies

to the entire image, as different parts of a picture may be blurred differently. We

focus on the case where the PSF is indeed constant over the image; the PSF is then

called spatially invariant. Spatially invariant PSFs can result in special structures,

depending on a second factor, boundary conditions.
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Boundary conditions prescribe how the PSF is treated at image boundaries. In

image restoration problems, we typically seek to restore an image that is the same

size as the blurred image, but is clear [1, 2, 25]. But a point spread function takes

a clear point of light and spreads it out over a larger area. As a result, the blurred

image depends not only on what is within the scene captured, but on what is nearby

as well. For example, imagine taking a picture of a cat that is sitting next to a chair.

Even if the chair is not within the bounds of the captured image, some of the light

from the chair may be spread and blurred onto the image of the cat. Similarly, some

of the light from the cat is spread outside the boundary of the picture. The blurred

image is therefore missing data necessary to complete the restoration.

To solve this issue, we impose boundary conditions on the deblurring problem.

Boundary conditions tell us the behavior of data at or beyond the boundary of a

system. Typically, we wish to assume that outside our picture, the scene took some

easy-to-use form. For example, we may use zero boundary conditions, which assume

that there was no light outside the observed scene (which may be realistic, for example,

in astronomical imaging). A blurring example with zero boundary conditions is shown

in Figure 2.2. Periodic boundary conditions assume that the scene repeats in a tiling

fashion, and reflective (also called reflexive) boundary conditions assume that the

scene is mirrored at its edges. Choice of boundary condition can significantly impact

the success of the restoration. Together, the PSF, its variance over space, and the

choice of boundary conditions determine the form of the linear operator acting on the

image.
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∗ →

Original image PSF Blurred image

Figure 2.2: An inverted example with a PSF and zero boundary conditions. With
inversion, zero boundaries appear white. The image is blurred by the PSF as though
the image was surrounded by white in the inverted color space.

This brings us to a proper mathematical formulation of the problem. We formulate

the image deblurring problem as

d = Kx+ e (2.1)

where:

• d is an observed, blurred image of size n× n represented as a vector of length

N = n2;

• K is a real-valued blurring operator of size N ×N , perhaps not exactly known;

• x is an unknown true, clear image represented as a vector of length N ; and

• e is an unknown noise (error) in the observed image, represented as a vector of

length N .

We start with the blurred image d and an unnamed point spread function matrix.

The point spread function is used with the chosen boundary conditions to construct

the blurring operator K. In real applications the measurement of the blurry image

and PSF are not exact, which causes unknown noise to contaminate the system.

Nonetheless, this problem is an inverse problem, which we typically solve using the

approximation x ≈K−1d which has error K−1e. In cases where K−1 does not exist,
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we use an approximation instead. An example of one such approximation is detailed

in Section 2.3.

In the formulation (2.1), the blurred and true images are represented as a vector.

The images are transformed from their natural (two-dimensional) matrix form to a

vector (one-dimensional) form for computational purposes. In order to transform

an image matrix into a vector, we can choose many ways of ordering the elements

of the vector. Two natural choices are column-major and row-major ordering. In

column-major ordering, elements are placed in the vector consecutively moving down

a column until the end, then moving to the top of the next column and continuing.

Row-major ordering is similar, but moving left to right along rows until the end and

moving to the next row below. Choosing between row and column major ordering

can significantly affect memory access patterns for large datasets. As a result, care

should be given to this choice. Our work uses column-major ordering.

In the multiplication Kx, each row in K blurs a corresponding pixel in x. That

is, each row in K is the PSF shifted and with boundary conditions applied, reshaped

into a row vector that blurs a pixel in x. Given a PSF and boundary conditions,

we can avoid forming K if we only need to compute matrix-vector multiplications.

Iterative solution techniques exploit the quick computation that this enables [6, p.

613]. We will use this function multiplication form for some experiments in Chapter

7.

Techniques which rely on factorization of the matrix K instead of using im-

plicit multiplication can benefit from the structure that results from spatially in-

variant PSFs with given boundary conditions. For row- and column-major order-

ing, K has a matrix structure that is block-Toeplitz-with-Toeplitz-blocks (BTTB),

block-Toeplitz-plus-Hankel-with-Toeplitz-plus-Hankel-blocks (BTHTHB), or block-

circulant-with-circulant-blocks (BCCB) for zero, reflective, and periodic boundary

conditions respectively [25, pp. 36-38].
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The image deconvolution problem is the main focus of our work because the

aforementioned structures lend themselves to cheap computation in our proposed

algorithm. However, as will become clear in Section 2.5, the techniques described work

well on other problems, too, provided the operator K has an exploitable structure.

2.2 Blind Deconvolution

In addition to the standard deconvolution problem (2.1) in which the clear image x

and the noise e are unknown, we briefly explore a blind deconvolution framework in

Chapter 8. In the blind deconvolution formulation of the linear blur problem (2.1),

the blur operator K is not assumed to be exactly known. Instead, the blur operator

is treated as an unknown quantity with an initial estimate. Restorations seek to

improve the estimation of the blur operator to then improve the restored image.

There are two broad classes of approaches to the blind deconvolution framework.

The first and original techniques [8,44], known as a priori methods, first estimate the

true blur operator and then use that estimate in a traditional, non-blind deconvolution

framework. The focus for these methods is to obtain the best blur operator estimate

possible. The second class simultaneously restores improved estimates of the blur

operator and the true image. Here, the steps are not separated. There are many

approaches to simultaneous blind deconvolution; we refer interested readers to the

survey works [7] and [32]: the 1996 survey by Kundur and Hatzinakos [32] gives

a broad overview of fundamentals and techniques, and Campisi and Egiazarian’s

work [7] provides a recent survey from a Bayesian perspective. We use a specific

framework detailed in Chapter 8, which was proposed by Dykes et al. [14], to improve

our approximate SVD of the blur operator K.
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2.3 Singular Value Decompositions

The problem formulation (2.1) is a linear inverse problem. One method of solving

linear inverse problems is to compute a factorization of the matrix K into a product

of matrices for which solving a linear system is easy. It may not be easy to compute

K−1 directly (if it exists), but computing an explicit or implicit approximate inverse

of the factorization can be much more tractable.

There are many factorization techniques. The particular choice of factorization

can depend on the structure of the matrix K. For example, Cholesky factorization

can only be used on matrices which are symmetric positive definite. The singular

value decomposition (SVD) is an attractive factorization in part because it enables

straightforward solution of linear systems and, as we will see, particularly makes it

easy to adjust the solution via regularization if needed. The singular value decomposi-

tion decomposes a matrix K into a product UΣV T (or V ∗, the conjugate transpose,

for complex K; we assume K is real), where U and V are orthonormal and Σ is a

non-negative diagonal matrix, typically chosen so that the entries are sorted in de-

scending order going down the diagonal. If and only if the diagonal entries of Σ are

nonzero, the matrix K is full rank, and the inverse of K is K−1 = V Σ−1UT [21].

There are several factors that prohibit the SVD from being used commonly on

general problems. The foremost limitation is that computing the singular value de-

composition is costly in storage and computation time. The factorization at least

doubles the amount of data used to store a matrix (and is much worse for sparse

matrices due to loss of sparsity), and the computation takes O(N3) time to compute

for a N × N matrix, with a larger constant than other factorization methods [21].

For very large matrices, this is prohibitively expensive.

An added difficulty that is not unique to the SVD arises if K is not numerically

full rank. The matrix K may be ill-conditioned, being either rank deficient or having

singular values that decay towards zero without a significant gap between values.
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In the former case, K is not invertible. In the latter case, trying to compute Σ−1

results in extremely large values on the diagonal. If the ith diagonal entry of Σ

is σi, then the ith entry on the diagonal of Σ−1 is 1
σi

which is large for small σi.

When then solving the image deconvolution problem (2.1), the restored solution has

amplified noise: using ui to denote the ith column of U (and similarly for V ), the

solution x+V Σ−1UTe = x+
N∑
i=1

uTi e

σi
vi causes the error to be amplified by division

by small σi. This corrupts the result. However, we can modify the singular value

decomposition to fix this.

Using a truncated version of the singular value decomposition can help both with

the cost of the algorithm and the issue of amplifying noise. Instead of computing a full

singular value decomposition to exactly represent K, we can compute only the first

k singular values and vectors, where k ≤ N . This permits a compact representation

where the matrices U and V are size N × k and the matrix Σ is size k × k. The

storage cost is then reduced to O(Nk) entries, and the computation time is reduced

to O(N2k). This factorization does not have an exact inverse, but we can compute

its pseudoinverse K† = V Σ†UT . If K is chosen so that small σi are removed from

the factorization, then the restoration x +
k∑
i=1

uTi e

σi
vi does not severely amplify the

noise e. This technique is one of many ways of providing regularization to constrain

the solution and reduce error.

Other sources of regularization complement truncation. One common choice of

regularization in image processing is Tikhonov regularization [16,28] which penalizes

the norm of the solution x. That is, in the least squares formulation of (2.1)

min
x
‖Kx− d‖22

we add an additional penalty term:

min
x
‖Kx− d‖22 + λ‖x‖22. (2.2)
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Some forms of Tikhonov regularization do not penalize the norm of x directly, but

penalize the norm of a vector Lx for some matrix L; for more details, see [6, p.

346], [21, p. 309], [25, p. 72], [45]. For our discussion, we use L as the identity

matrix. In the SVD framework, this can be viewed as Tikhonov filtering, in which

we weight the ith singular value as
σ2
i +λ

2

σ2
i
σi =

σ2
i +λ

2

σi
[25, p. 90]. When the pseu-

doinverse is taken, the inverse value is then σi
σ2
i +λ

2 , which goes to zero as σi goes to

zero. This prevents small singular values from amplifying noise in the solution, and

can be particularly effective for ill-posed problems. λ is typically chosen to be small

to prevent larger singular values from shifting far enough to smooth the solution ex-

cessively and therefore destroy the details desired in reconstructions. However, the

specific choice of λ that produces the qualitatively “best” results for a problem de-

pends on K. Parameter-choosing methods such as L-curve [26], cross-validation [20],

and discrepancy principle [15,35] can be used to choose a regularization parameter.

We have discussed two filtering methods for the singular value decomposition:

Tikhonov and truncation, which may be used in combination. Here we briefly mention

some alternative regularization methods to provide references to the interested reader.

Broad overviews of filtering methods can be found in [27, pp. 99-131], and a survey

of other regularization methods is available in [43,51].

Alternative methods include iterative regularization methods [27, pp. 135-172],

which in the imaging framework are edge-agnostic. Edge-preserving methods may

have better performance on imaging problems because edges contain important in-

formation images. One popular edge-preserving regularization method is total vari-

ation [41]. For a detailed look into these methods and generalizations of Tikhonov

regularization, see [51]. Tikhonov and truncated singular value decompositions are

not edge-preserving. Despite this, Tikhonov regularization is sufficient for our exper-

iments in Chapters 3-7. We use Tikhonov regularization to overcome limitations of

the algorithms presented herein when we choose not to truncate our SVDs (as is the
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default for the method in Chapter 3) or when truncation does not provide sufficient

regularization.

As the matrix K gets extremely large, a direct solution via factorization methods

such as the SVD becomes infeasible. Instead, iterative methods, such as Krylov sub-

space methods, are used. For these methods often the full matrix K is not needed,

but instead functions for computing matrix-vector and potentially matrix-transpose-

vector products are used. These methods can attain accelerated convergence through

the use of preconditioners which approximate the inverse of the matrix. Good precon-

ditioners are cheap to store and apply, and are good approximations of the original

matrix [21]. When stored cheaply, truncated singular value decomposition (TSVD)

approximations fit these criteria.

2.4 Kronecker Products

We now arrive at the concept which, together with the notion of a singular value

decomposition, provides the foundation for our proposed algorithms. That idea is

the Kronecker product operator and corresponding matrix decomposition [40,49,50].

The Kronecker product C of matrices A ∈ Rj×k and B ∈ R`×m is

C = A⊗B =


a1,1B . . . a1,kB

...
...

aj,1B . . . aj,kB

 (2.3)

which has size j`× km [49, p. 85]. Each block in the product is the matrix B scaled

by an entry of A.

This convenient structure (2.3) arises in many applications either directly as (2.3)

or using the form discussed in Section 2.5. Our motivating example is image de-

convolution, but Kronecker products appear in quantum computing [49] and certain
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partial differential equations, among other applications [23]. In Section 2.7 we discuss

how Kronecker products are a specific type of tensor representation, and how we can

interpret them in the image deconvolution context.

The Kronecker product representation is useful and desirable in applications be-

cause it has properties that enable cheap computation. These include ([49, pp. 85-

87]):

1. (A⊗B)T = AT ⊗BT ,

2. (A⊗B)(C ⊗D) = AC ⊗BD (note that standard multiplication has higher

precedence than Kronecker products do), and

3. (A⊗B)x = vec(BXAT ) where vec(X) = x using column-major ordering.

Kronecker products allow for the representation of a dimensionally large matrix

as the result of operation on smaller matrices. In the above definition (2.3), C has

O(jk`m) elements, but can be stored using O(jk + `m) elements, which can be a

tremendous savings. In addition, operations like multiplication can be performed

without explicitly forming the large matrix. The multiplication property 3 above

enables O((` + j)mk) multiplication with a vector instead of the standard O(jk`m)

multiplication cost.

As a result, it is nearly always advantageous when dealing with Kronecker products

to store the relevant matrices A and B rather than storing the full matrix C. To

get the best benefit of compression, ideally j ≈ ` and k ≈ m so that A and B are

roughly the same size.

2.5 Kronecker Product Summation Decomposition

It is rare for an arbitrarily-chosen matrix K ∈ RN×N to be expressible as a Kronecker

product in a compressive manner. Of course, we could write K = [1]1×1 ⊗K, but
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this would provide no savings.

However, thanks to a result by Van Loan and Pitsianis [50], we can express arbi-

trary matrices as a sum of Kronecker products. Given any matrix K of size n2 × n2,

we can express the matrix as a summation of R Kronecker products of matrices of

size n× n:

K =
R∑
i=1

Ai ⊗Bi where Ai,Bi are size n× n. (2.4)

The terms Ai and Bi are computed by taking the SVD of a rearrangement of K.

The steps for this computation are:

1. Partition K into blocks of size n × n. Number the blocks consecutively using

column-major ordering, calling the ith block K(i).

2. Let k(i) = vec(K(i)).

3. Let K̃ =


k(1)T

k(2)T

...


4. Compute the SVD K̃ = U (∗)Σ(∗)V (∗)T with U (∗) =

[
u

(∗)
1 u

(∗)
2 . . .

]
, V (∗) =[

v
(∗)
1 v

(∗)
2 . . .

]
, and the ith diagonal entry of Σ(∗) as σ

(∗)
i .

5. Then vec(Ai) =

√
σ
(∗)
i u

(∗)
i and vec(Bi) =

√
σ
(∗)
i v

(∗)
i

For the blur operator matrix K we use as an example throughout this work, this

decomposition can be intuitively interpreted as a splitting of the blur into a sum of

separable blurs. The Ai terms apply blur horizontally and the Bi terms apply blur

vertically along an image. See Section 2.7 for details.

There are a few points of note here. First, because Ai and Bi stem from the

singular values and vectors in an SVD of K̃, Ai ⊗ Bi is the ith most significant

term in the Kronecker summation (2.4). That is, for a fixed number of terms r in the
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summation, min
Ei,Fi

‖K−
r∑
i=1

Ei⊗Fi‖F is minimized by exactly theAi andBi constructed

by the above procedure [49]. Using this fact, we can use standard TSVD methods

like Golub-Kahan bidiagonalization (see Section 7.2 and the references therein) to

compute a truncated approximate summation and reduce computational cost:

K ≈
r∑
i=1

Ai ⊗Bi; (2.5)

this is explored in more detail in Chapters 3-6.

There are seemingly alarming aspects to this decomposition method. If K̃ does

not have exploitable structure, taking the SVD of K̃ requires O(n6) = O(N3) oper-

ations. This is no cheaper than computing an SVD of K, which is the goal we are

trying to reach. This is the first issue we must address. The second is that this is not

a magical form of compression: R, which we call the Kronecker rank, is limited by

the number of nonzero singular values of the matrix K̃. Therefore R can be as large

as n2, which means have O(n4) = O(N2) elements stored, the same as the original

matrix K.

Both of these problems are remedied if K̃ is of a known, low rank. The rank of

K̃ is R, and if R � n2, then computing the terms Ai and Bi takes O(n4R) time.

Further, storage costs drop to O(n2R), which is much more manageable than the

O(n4) for full-rank K̃.

Image deconvolution is an ideal candidate for Kronecker summation decompo-

sition because the blur operator K has a known, low Kronecker rank. For image

deblurring problems, finding the Kronecker product summation decomposition of the

blur operator (which is taking the SVD of K̃) amounts to taking the singular value

decomposition of the point spread function (PSF) that generates the operator [36].

This reduces the cost of computing (2.4) from O(N3) to O(N
3
2 ). Further, the Kro-

necker rank R of the blur operator is capped at the size in one dimension of the PSF,
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which is typically the size of the blurred image in one dimension, n.

In the preceding discussion, the limitation that K be a square matrix of size

n2 × n2 slipped in. Blur operators are naturally square, but the restriction that each

dimension is of square size is equivalent to restricting the blurred images to square

images. However, the analysis holds for images of nonsquare size n×m; in this case,

the blocks in K during the partitioning step are taken to be size m×n. Nonetheless,

herein we will refer to our image matrices as size n× n and corresponding vectors as

size n2 × 1, and the blur operator as size n2 × n2. For convenience, we call n2 = N .

2.6 SVDs of Kronecker Products

Our goal is to cheaply approximate the TSVD of a matrix. The Kronecker product

decomposition (2.4) and approximation (2.5) help us achieve this goal.

For now, we restrict ourselves back to a single Kronecker product, rather than a

summation, to begin work towards a TSVD approximation based on the summation

decomposition; Chapter 3 begins discussion of an approach based on the summation

decomposition.

We can cheaply take the SVD of matrices with a Kronecker product structure.

Given matrices A with singular value decomposition UAΣAV
T
A and B with singular

value decomposition UBΣBV
T
B ,

A⊗B = (UAΣAV
T
A )⊗ (UBΣBV

T
B )

= (UA ⊗UB)(ΣA ⊗ΣB)(V T
A ⊗ V T

B )

= (UA ⊗UB)(ΣA ⊗ΣB)(VA ⊗ VB)T .

We call these matrices UA ⊗UB = U , ΣA ⊗ΣB = Σ, and VA ⊗ VB = V . Then the

singular value decomposition of A⊗B = UΣV T .
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The benefits in this derivation are masked by its simplicity. Recall that computing

the SVD of a matrix is expensive, taking O(N3) operations for a matrix of size

N × N . By splitting the matrix into the Kronecker product of two n × n matrices

and computing their SVDs independently, we have reduced the time complexity to

O(N
3
2 ). For problems where N is huge, on the order of a million or larger, such as

arises for the image deconvolution problem on a 1024× 1024 image, this is a massive

saving.

Beyond the time complexity benefits, we also have improved the memory usage.

As before, we do not form the results of the Kronecker products explicitly; instead, the

Kronecker product components are stored and used for computations. The matrices

U and V are normally size N ×N , but are now stored as matrices of size n×n. This

takes the memory complexity from O(N2) = O(n4) down to O(n2). Matrices which

are impossible to store in memory normally can be stored using a Kronecker product

format.

Storing Σ using Kronecker products provides an additional, small savings. Be-

cause ΣA and ΣB are diagonal matrices, instead of storing O(n2) zeros, we can store

the nonzero diagonal entries using vectors and not matrices. This reduces the mem-

ory for storing Σ without using Kronecker structure from O(n2) to O(n) when we do

exploit the structure.

Once again, the restriction to a single term Kronecker product is not realistic

for many applications. Chapter 3 begins to explore how we can expand the ease of

computation afforded here into a summation of Kronecker products.

2.7 A Note on Tensors

Readers familiar with tensors may recognize the Kronecker product as a tensor opera-

tion and the Kronecker summation decomposition as a type of tensor decomposition.
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In this work, we focus on a linear operator (matrix-vector oriented) perspective of

the Kronecker product rather than a tensor perspective. Yet, a great deal of work

has been done on tensor SVDs. Here we detail some of the relevant work done from a

tensor perspective, and explain how our work relates to the tensor-based approaches.

Much of the discussion here stems from a report by Kilmer and Martin on a 2004

tensor workshop [31]. Their report uses notation and language that is accessible for

those who are unfamiliar with tensor notation but are comfortable with linear al-

gebraic formulations, and we suggest it as a starting point for those interested in

learning more about tensor representations. Additionally, the survey by Grasedyck

on low-rank tensor approximations [23] provides a more in-depth discussion of tensor

representations.

The SVD of a matrix is a form of tensor decomposition in which we express a

matrix, which is a rank two tensor, as a sum of products of rank one tensors. The

singular value matrix Σ is called a core tensor which determines how the singular

vectors are combined to form the full matrix K [12, 31]. We will use × to denote a

tensor product so as to differentiate it from our matrix-oriented Kronecker product;

in literature, ◦ is often used as well [31]. Using the same notation for the singular

value decomposition as before with K = UΣV , we can write the tensor form of an

SVD of a N ×N matrix K as

Σ×U × V T =
N∑
i=1

N∑
j=1

σij(ui × vj)

=
N∑
i=1

N∑
j=1

σijuiv
T
j

which, because Σ is diagonal,

=
N∑
i=1

σiiuiv
T
i

=
N∑
i=1

σii(ui × vi).
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Here, Σ is a core tensor: it dictates how the rank one basis tensors ui and vi are

combined to form the matrix K [31].

Tensor decompositions, including the Tucker decomposition and higher order

SVD, often seek to represent a rank m tensor K in a similar form as above, but

where tensor products of m rank 1 tensors are used in the decomposition. Let Ni

denote the size of K along the ith index, then the decompositions are of the form

K =

N1∑
i1

N1∑
i1

. . .
Nm∑
im

σi1,i2,...,imu
(1)
i1
× u(2)i2 × ...× u

(m)
im

= Σ×U (1) ×U (2) × ...×U (m).

Here, Σ is the core tensor with the same number of indices as K. The core dictates

how the columns of the matrices U (i) are combined to form the tensor K. For general

tensor decompositions, the matrices U (i) are not restricted to be unitary [13,31]. But

for generalizations of the singular value decomposition, the matrices U (i) are chosen

to be unitary: U (i)∗U (i) = 1 where ∗ denotes conjugate transpose and 1 is the identity

matrix. For m = 2, U (1) is analogous to the left singular vector matrix U , U (2) is

analogous to transpose of the right singular vector matrix V , and Σ is the singular

value matrix Σ [9, 12, 31]. However, it is not guaranteed that Σ is pseudo-diagonal:

Σ may (and for many matrices is guaranteed to) have nonzero elements along indices

other than those for which i1 = i2 = ... = im [9, 12].

How do tensor representations relate to our blur operator K? Recall that we have

the representation (2.4),

K =
R∑
i=1

Ai ⊗Bi.

We have taken our image and flattened it into a vector (rank 1 tensor) representation

from its original two-dimensional (rank 2) format. Similarly, we are representing the

blur operator as a matrix, but we could choose to represent it with three or four
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indices. In the three index case, each row of the matrix K is reshaped into a matrix,

and in the four index case we separate the rank three tensor along the columns (or

analogously rows) of the image they act on. This is subtly evident in the summation

form (2.4).

Recall that one of the properties of Kronecker products is that when multiplied

by a vector x = vec(X),

(A⊗B)x = BXAT = B(AXT )T .

Using the image processing example, the matrix X is our original image. Each entry

of the matrix (AXT )T is a weighted sum of entries along a row of X, where the

weights stem from A; this follows directly from the definition of matrix-matrix multi-

plication. Similarly, the product BX has entries which are weighted sums of entries

along a column of X, with the weights originating from B. Matrix multiplication

is associative, so (BX)AT = B(XAT ). And recall that K is a blur operator, so

its decomposition is a representation of how an image gets blurred. With these facts

together, we can note that the summation decomposition form (2.4) decomposes the

blur operatorK into a summation of separable blur operators acting in the horizontal

and vertical directions along the image. The matrices Ai act along rows, correspond

to horizontal blur, and the matrices Bi likewise correspond to vertical blur. The

separability refers to the fact that we may choose to apply the horizontal and vertical

blur in any order (this is often called a separable filter, see eg. [25]).

To see this work, we can take a Kronecker summation decomposition of a blur

operator, and visualize what happens when all of the Ai matrices or all of the Bi

matrices are replaced with the identity operator (corresponding to no blur). We show

this for a PSF that is used, albeit scaled for a coarser problem, in Chapters 3-6. The

PSF is shown below in Figure 2.3. We also show the clear and blurred image (using
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zero boundary conditions) in Figure 2.4. The PSF, clear image, and blurred image

are size 256× 256.

Figure 2.3: The PSF used to blur our image.

Figure 2.4: Clear and blurred satellite. The true satellite image is shown on the left,
and the blurred image is shown on the right.

We represent our blur operator in summation form (2.4): K =
R∑
i=1

Ai⊗Bi. When

we change this to
R∑
i=1

1n ⊗Bi by setting Ai = 1n for all i, we are left with vertical

blur as expected, shown in Figure 2.5.
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Figure 2.5: Vertical Separable Blur. The vertically blurred image resulting from
setting Ai = 1 in the Kronecker summation representation of the blur operator.

Similarly, if we let our blur operator have the form
R∑
i=1

Ai⊗1n, where we have set

Bi = 1 from the original decomposition, we get an image blurred along the horizontal

direction as shown in Figure 2.6.

Figure 2.6: Horizontal Separable Blur. The horizontally blurred image resulting from
setting Bi = 1 in the Kronecker summation representation of the blur operator.

One benefit of this semantic understanding of the decomposition (2.4) is that it

gives us some intuition into the relationship between our blur operator and the PSF.

If the PSF is well-approximated by a separable blur operator, such as a separable

Gaussian [25], then we expect that K1 ≈ K. We will see that this is a useful

condition for the method described in Chapter 3. When the blur operator is not

roughly separable, we would instead use the methods described in Chapters 4-5. We

detail the performance of each method further in those chapters.
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Now that we understand that our Kronecker decomposition is akin to a factoriza-

tion into separable operators acting on our grid of data, we revisit the connection of

our SVD approximation methods to broader tensor decompositions. Standard tensor

decompositions seek an exact representation of the tensor, including the Tucker de-

composition [47], HOSVD [12], and hierarchical decompositions [22]. The approaches

in this paper take a slightly different perspective. We start with the decomposition

(2.4), which is ordered in the same way that an SVD is chosen to be ordered. Using

the fact that the term A1 ⊗B1 is the best separable representation of the blur K,

we use its singular vectors as the basis for our factorization. Specifically, we factorize

A1 = UAΣAV
T
A and B1 = UBΣBV

T
B , and compute an approximation of the form

(UA⊗UB)T (VA⊗VB)T . In an exact representation, T = (UA⊗UB)TK(VA⊗VB).

We choose to approximate T to yield a factorization with the properties of a singular

value decomposition; namely, T must be diagonal and non-negative or represented as

an SVD-like factorization. This is akin to taking an approximate factorization of a

core tensor. In Chapter 3, the approximation we choose is to take the diagonal of the

matrix T . In Chapter 4, we truncate the terms (UA⊗UB) and (VA⊗VB), compress-

ing T and enabling us to take a full SVD factorization of the compressed version. The

variant in Chapter 5 is similar to the method in Chapter 4, but with permutation

added. As we will see experimentally in Chapters 3-6, these approximations work in

a variety of cases, with varying levels of effectiveness depending on the properties of

the operator K. Further, we focus on the 2D case without generalization to higher

dimensions, in which case the decomposition (2.4) takes the form [37]

K =
R∑
i=1

Ai ⊗Bi ⊗Ci.

More general tensor methods are designed to work in higher dimensional representa-

tions. For the methods we propose, this is a potential area of future work.
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Chapter 3

Baseline Diagonal Method

In this chapter we detail the first method [29] that was proposed for using the Kro-

necker summation decomposition (2.4) and equivalently approximation (2.5) to com-

pute an approximate TSVD. Although this method is simple, it is highly effective in

certain cases, and the resulting accuracy is a high bar to beat considering its speed.

3.1 Derivation

The derivation of this method begins with the Kronecker decomposition (2.4):

K =
R∑
i=1

Ai ⊗Bi.

The first term in this decomposition, A1 ⊗ B1, is the most significant in that it

minimizes min
A,B
‖K −A⊗B‖F ; see Section 2.5 for details. Call the first term K1 =

A1 ⊗B1. Because it is the most significant term in the summation, it has the most

information about K of any single summation term, so we will treat it specially.

Let the singular value decompositions A1 = UAΣAV
T
A and B1 = UBΣBV

T
B .
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Then by the properties of Kronecker products,

K1 = (UA ⊗UB)(ΣA ⊗ΣB)(VA ⊗ VB)T .

Define U1 = UA ⊗UB, Σ1 = ΣA ⊗ΣB, and V1 = VA ⊗ VB. As with all matrices

expressible in Kronecker product form, these large matrices (U1, V1, and Σ1) are

not stored explicitly. Instead, the component matrices in the Kronecker products are

stored. While the fully formed matrices are size N × N = n2 × n2, the matrices in

the Kronecker products are size n× n.

With this SVD of K1, we can rewrite K using the orthonormality of U1 and V1:

K =
R∑
i=1

Ai ⊗Bi

= A1 ⊗B1 +
R∑
i=2

Ai ⊗Bi

= U1Σ1V
T
1 +U1U

T
1

(
R∑
i=2

Ai ⊗Bi

)
V1V

T
1

= U1

(
Σ1 +

R∑
i=2

UT
1 (Ai ⊗Bi)V1

)
V T

1

= U1

(
Σ1 +

R∑
i=2

UT
AAiVA ⊗UT

BBiVB

)
V T

1 .

This is exact, not approximate. The left- and rightmost matrices, U1 and V1
T ,

are orthonormal, which is a step towards the goal of a singular value decomposition

form. But the interior matrix, which we call T = Σ1 +
R∑
i=2

UT
AAiVA ⊗ UT

BBiVB, is

not diagonal nor nonnegative, and we want both of those properties in our singular

value matrix. Further, it is size N ×N , the same size as the original matrix K. We

can no more easily take its SVD than we can take the SVD of K.

Kamm and Nagy [29] proposed constructing an approximate TSVD by taking the
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diagonal entries of T as an approximation of the singular values. That is,

K = U1

(
Σ1 +

R∑
i=2

UT
AAiVA ⊗UT

BBiVB

)
V T

1

K ≈ U1diag

(
Σ1 +

R∑
i=2

UT
AAiVA ⊗UT

BBiVB

)
V T

1

= U1

(
Σ1 +

R∑
i=2

diag(UT
AAiVA)⊗ diag(UT

BBiVB)

)
V T

1 .

Calling Σdiag = Σ1 +
R∑
i=2

diag(UT
AAiVA)⊗diag(UT

BBiVB), the approximated SVD

is then

K ≈ U1ΣdiagV
T
1 , (3.1)

which can be truncated to a desired matrix rank. We may also choose to use approx-

imation (2.5) so that Σdiag = Σ1 +
r∑
i=2

diag(UT
AAiVA)⊗ diag(UT

BBiVB).

3.2 Discussion

At first glance, it may seem absurd to throw away so much information by taking

diag(T ) instead of using a different method that preserves more information. There

are cases where this is indeed a large detriment, as we will see experimentally in

Section 3.4. However, in some cases it proves to not be a significant problem.

When does this work well? Perhaps obviously, when T has a very strong diag-

onal component compared to its off-diagonal. This is not a rigorous mathematical

statement; diagonal dominance is not required. However, if a large amount of the in-

formation in T is contained in the diagonal compared to the off-diagonal, then taking

its diagonal loses a potentially acceptable amount of information.

This situation arises when Σ1 is significant compared to
R∑
i=2

diag(UT
AAiVA) ⊗

diag(UT
BBiVB); in other words, when K1 is an extremely good approximation of K.
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This is not on the whole unusual. In the image deconvolution problem, for example,

this is equivalent to saying that the PSF has a very strongly dominant largest singular

value, with a large ratio of its first to second singular value σ1
σ2

. This happens in

practice regularly. There are numerous examples in the toolkit RestoreTools [39],

two of which we use for several experiments in Section 3.4 and Chapters 4-6.

On the other hand, if K1 is a poor approximation to K, then this approximation

performs poorly. In that case,
R∑
i=2

UT
AAiVA ⊗ UT

BBiVB will tend to have significant

off-diagonal values, which are thrown away in the computation. Examples of the

performance in both cases are demonstrated in Section 3.4.

There is one other issue with this method of approximating a TSVD: the “singu-

lar values” in Σdiag are not guaranteed to be nonnegative. Normally, this is not an

insurmountable problem. If a factorization is highly accurate and maintains all the

other properties of a singular value decomposition but produces some negative sin-

gular values, the signs of the errant singular values and corresponding left- or right-

singular vectors can be changed simultaneously. The product of the factors remains

the same, but now the singular values are all positive. This is not possible when

Kronecker products are used. Because of Kronecker structure, we cannot change the

sign of one single singular vector at a time. If we negate one singular vector of, for

example, either VA or VB, we negate n singular vectors in V1 = VA ⊗ VB. The same

holds for the left singular vectors. We therefore cannot change the sign of individ-

ual singular values. And having negative singular values violates the definition of a

singular value decomposition. When the method performs well, this tends to not be

a problem because Σ1 ≈ Σdiag and Σ1 has nonnegative entries. However, when the

method performs poorly, this is a more significant limitation.
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3.3 Time Complexity

The main strength of the baseline method is its extremely cheap computation cost.

The time complexity of the algorithm is O(n3r) for well-structured K, as derived in

this section.

To begin the derivation, we start by explicitly stating the steps in the algorithm.

These can vary between implementations, but here we discuss what is currently known

to be the most efficient general method for computing the TSVD approximation (3.1).

1. Compute the approximate Kronecker product decomposition K ≈
r∑
i=1

Ai ⊗Bi

(2.5). In the image deconvolution problem, this amounts to taking the SVD of

the PSF matrix.

2. Compute the SVDA1⊗B1 = U1Σ1V
T
1 indirectly by computingA1 = UAΣAV

T
A

and B1 = UBΣBV
T
B .

3. Compute Σdiag = Σ1 +
r∑
i=2

diag(UT
AAiVA)⊗ diag(UT

BBiVB).

4. Return the resulting SVD approximation U1ΣdiagV
T
1 .

Theorem 1. If computing the Kronecker summation decomposition (2.5) takes O(n3r)

operations and K has size N ×N with N = n2, the method described above for com-

puting (3.1) runs in O(n3r) operations. More generally, if computing (2.5) takes

O(T ) operations, the above method takes O(T + n3r) operations.

Proof. We demonstrate the running times for each step of the algorithm as listed

above are bounded by O(T + n3r), and conclude the whole algorithm is therefore

bounded the same time complexity.

1. For the image deconvolution problem, taking the SVD of the PSF, which has

size bounded by n × n, takes O(n3). For more general K, we call the time

complexity of this step O(T ).



32

2. Computing the full SVDs of A1 and B1, which are size n × n, takes O(n3)

operations.

3. For each i from 2 to r, computing the products UT
AAiVA and UT

BBiVB takes

O(n3) operations. Extracting the diagonal for each matrix into a vector takes

O(n) operations per matrix. Computing the Kronecker product of the resulting

diagonals takesO(n2) for each i. Summing the ith diagonal matrix into a running

summation takes O(n2) operations.

This is a total of O(n3 +n2 +n) = O(n3) per i, for a total of O(n3r) operations.

4. The product returned is not explicitly formed; instead the components U1,

Σdiag, and V T
1 are returned as-is (with U1 and V1 represented as their Kronecker

product components). This takes O(1) operations.

The complexity of the whole algorithm is bounded by the sum complexities of

each step: O(T )+O(n3)+O(n3r)+O(1) = O(T +n3r). The overall time complexity

is therefore O(T + n3r), which is O(n3r) for the image deconvolution problem.

For the baseline algorithm to be most efficient, K should have structure that

enables computing the approximation K ≈
r∑
i=1

Ai⊗Bi in at most O(n3r) operations.

3.4 Performance

As mentioned in Section 3.2, the baseline method performs very well in situations

where K1 ≈ K. This can be particularly seen in Subsection 3.4.1, which visually

compares direct reconstructions for different K using the baseline method. However,

when K is not well approximated by K1, we will see that performance degrades.

Here, we introduce the experimental frameworks that we will use in Chapters

3-6. In each chapter, we run the same experiments using a different approximation

algorithm.
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3.4.1 Direct Reconstruction

The first experimental framework we explore is a direct image reconstruction using

the baseline approximation of a blur operator. We first explain the setup that we will

reuse throughout this work, then show the results for the baseline method.

Using the same image deconvolution framework discussed in Section 2.1, we tested

each SVD approximation method from Chapters 3-6 on three different blur operators.

The first example we refer to as the Satellite Example, the second as the Grain

Example, and the third as the Motion Example. The PSFs for each example are

shown in Figure 3.1. For each example, we show the true image, the restoration

with negative values set to zero (which typically hides noise in the restoration), the

restoration with negative values kept, and the blurred image. We also give the peak

signal-to-noise ratio (PSNR, see [1,2]) compared to the true satellite image shown in

Figure 3.2; a higher PSNR indicates a better reconstruction. Note that the images

are displayed using MATLAB’s imagesc command, so the resulting visualizations

have deep blue as the minimum value and yellow as the largest value in the image,

regardless of the actual intensities. In all cases, the image is a 64× 64 satellite image

available from the RestoreTools package [39], and a full r = 64 is used. These are the

constants among all examples.

“Satellite” PSF “Grain” PSF “Motion” PSF

Figure 3.1: PSFs for restorations. The three PSFs used for our image deconvolution
examples.

We vary a few aspects of the restorations between examples. These changing

parameters are summarized in Table 3.1. Firstly, the PSFs are varied as shown in
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Figure 3.1. The Satellite Example PSF is from satellite.mat in RestoreTools, and

the Grain Example PSF is from Grain.mat from the same package. The Motion

Example PSF is from the upcoming IRTools package by Gazzola, Hansen, and Nagy

[18]. The Satellite Example is intended to be an easy example, showing that all

methods can produce good results on certain problems. The truncation index k is

chosen to be high, at k = 600. The Grain Example is intended to differentiate

the method described in Chapter 4 from the others, specifically by reducing the

truncation index to k = 400. And finally, the Motion Example is used to demonstrate

a failure case of the baseline method. We reduce the noise to 1% here to show that

the method, rather than noise, is the problem. For all the examples, we do not

expect visible ringing artifacts from the choice of boundary conditions because the

test image, shown in Figure 3.2, does not have significant nonzero data at or near the

edges. Nonetheless, we use reflective boundary conditions for the Grain Example as

a proof of concept. For the other examples we use zero boundary conditions, which

are realistic for the satellite image.

Gaussian Boundary
PSF k Noise Conditions

Satellite 600 2% Zero
Grain 400 2% Reflective

Motion 550 1% Zero

Table 3.1: Parameters for deconvolution examples. We wish to see how each method
performs under different conditions, using the parameters here.

Figure 3.2: Satellite image. This image serves as the ground-truth image x that we
seek to restore.
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Notably, we do actually use a truncated SVD approximation for all methods,

including the baseline method. If a method computes all singular values by default,

like the baseline method which computes all N singular values, the singular values

are truncated to the largest k values, regardless of ordering.

Having established the experimental framework, we now proceed to how the base-

line SVD approximation method (3.1) performs on those experiments. The first ex-

ample is the Satellite Example. The PSF in this example is very smooth and round,

with rapidly decaying singular values (notably, σ1
σ2
≈ 6). We therefore expect the

baseline method to approximate the blur operator well and produce a good recon-

struction. Indeed, this is the case as is evident in Figure 3.3. The PSNR for this

example is 46.9 dB.

True x Restored x > 0 Restored x Blurred d

Figure 3.3: Baseline Satellite Example Restoration. The baseline method yields a
good reconstruction, shown in the middle two images, of the blurred image on the
right. The true satellite image is shown on the left.

The second example, called the Grain Example, starts to show degraded perfor-

mance as is evident in Figure 3.4. For this PSF, σ1
σ2
≈ 23, which is very high. We

expect the baseline method to perform well in general, but recall that we have limited

our truncation index to a low k = 400. For the baseline method, the restoration is

borderline acceptable, but does not have high detail, and is not nearly as good as the

Satellite Example. The PSNR for this example is 42.8 dB.
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True x Restored x > 0 Restored x Blurred d

Figure 3.4: Baseline Grain Example Restoration. The baseline method yields a mod-
erately good reconstruction for this example. The blurred image is shown on the
right, and the true satellite image is shown on the left.

In Figure 3.4, we start to see notable differences between the image with negative

values truncated to zero and the image that keeps negative values. There is substantial

noise in this image, as is evident by the third image showing the restoration with

negative values. To see a side-by-side comparison with the Satellite Example results,

see Figure 3.6.

The final example uses a PSF that originates from simulated motion blur. We

refer to this example as the Motion Example. The PSF, shown in Figure 3.1, is

from the upcoming IRTools package by Gazzola, Hansen, and Nagy [18]. This PSF

has a small band of nonzero elements, dominated by values along the diagonal. The

diagonal decays fairly smoothly. The singular values of the PSF therefore decay slowly

compared to the previous two examples, with σ1
σ2
≈ 1.2. Consequentially, K1 is a poor

approximation of K, so we expect the baseline method to give a poor approximation.

We tested this in the Motion Example. The results are shown in Figure 3.5. The

reconstruction is visually not much better than the original blurred image. The PSNR

for this example is 39.0 dB, lower than the PSNRs for the Satellite (46.9 dB) and

Grain (42.8 dB) examples.
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True x Restored x > 0 Restored x Blurred d

Figure 3.5: Baseline Motion Example Restoration. The baseline method yields a poor
reconstruction for the Motion Example. The blurred image is shown on the right,
and the true satellite image is shown on the left. The reconstructions in the middle
are not much better than the original blurred image.

Here, considerable error corrupts the restored solution. This is evident in both

the negative-truncated image and the complete restoration. This type of problem

motivates the need for a method that uses more information to approximate K.

Figure 3.6 visually summarizes the results for the three experiments in this section.

Satellite Grain Motion

Figure 3.6: Baseline Restoration Summary. This summary image shows the restored
images x computed using the baseline method (3.1) for each restoration example.

3.4.2 Approximated Singular Values

One measure of performance for SVD approximations is the relative error in ap-

proximate singular values. Although the singular vectors matter in getting a good

approximation as well, we defer experimentation with the singular vectors because a

proof bounding their error was provided by Chang (not Garvey) in [17]. We check to

see how the baseline method, and each subsequent method in the following chapters,

approximates the singular values of the original matrix. To be clear, a good singular
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value approximation does not mean that the method well-approximates the matrixK;

it is possible to have relatively accurate singular values but incorrect corresponding

singular vectors. For example, singular vectors corresponding to the top 10 singular

values in the true SVD of K may be orthogonal to the top 10 singular vectors in

the approximate TSVD. Nonetheless, good singular value estimates are necessary in

a good approximation, and we can gain insight into the performance of each method

by looking at the error in estimated singular values.

Both of the test problems for singular values use blur operators originating from

32×32 images, so that the blur operator itself is of size 1024×1024. This enables a fast

full SVD. The first example uses a new PSF not from the reconstruction examples.

The PSF represents an atmospheric blur and is available as AtmosphericBlur50.mat

in the RestoreTools package [39]. The rescaled Motion PSF and new Atmospheric

Blur PSF are shown in Figure 3.7. The blur operators are constructed using those

PSFs and zero boundary conditions, and we compute the top k = 100 singular values

for both examples. We will call the first example the Singular Value Atmospheric Blur

Example, and the second example the Singular Value Motion Example. For reference,

the reconstructions for each method are visually comparable for this problem, and

none are excellent.

Atmospheric PSF Motion PSF

Figure 3.7: Singular Value Experiment PSFs. The PSF (left) used in the Singular
Value Atmospheric Blur Example, from RestoreTools, and the PSF used for the
Singular Value Atmospheric Blur Example (right). Both PSFs are 32× 32.

The first k = 100 singular values computed by the baseline method (3.1) for the
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Singular Value Atmospheric Blur operator are shown in the left of Figure 3.8, with

the relative error in the singular values to the right.
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Figure 3.8: Baseline Atmospheric Blur Singular Values. The singular values (left)
and relative error (right) are shown for the baseline method approximation of the
Singular Value Atmospheric Blur Example. The singular values have relative error
which oscillates, but has a relatively stable average despite the oscillation.

As expected, the approximate singular values are moderately good for this exam-

ple. The error is in the range of 10−3 through 10−2 for most of the values, and gets

as high as the order of 10−1 for the smallest values.

For the motion blur PSF, the performance is considerably different. Recall that

this PSF has slowly decaying singular values compared to the other examples, so the

baseline method is expected to poorly approximate the blur operator K. Indeed, this

is the case, and the estimated singular values have high error as shown by the singular

values and relative error in Figure 3.9. The error in this example quickly reaches and

exceeds 10−1. Even for the most accurate singular values, the error starts above 10−3,

which is higher than in the previous example. The baseline method therefore both

gives a poor reconstruction for the motion blur example, as discussed in Subsection

3.4.1, and poorly approximates the singular values of the blur operator.
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Figure 3.9: Baseline Motion Singular Values. The singular values (left) and rela-
tive error (right) are shown for the baseline method approximation of the Singular
Value Motion Example. The singular values have much higher error for this example,
starting below 10−2 relative error and increasing above 10−1 relative error.

For problems where K ≈K1, we expect and indeed see that the baseline method

approximates the singular values of K well. But when K1 is a poor approximation of

K, as in the Singular Value Motion Example, the baseline may give highly inaccurate

estimates of the singular values.

3.4.3 Preconditioning

Cheap approximations of the system matrix are useful for iterative methods that

can be accelerated by preconditioners (for an introduction to preconditioning, we

recommend the books [42, pp. 275-368], [21, pp. 650-666], and [6, pp. 688-709], as

well as the survey [5]). We tested each method as a preconditoner for a preconditioned

conjugate gradient least squares (PCGLS) method applied to a 256 × 256 image

deconvolution problem with the Satellite Example PSF. For this problem, since each

method gave comparable results, we were concerned with how quick the solution

was. In particular, we separated out the time to construct the operator from the

time required to converge iterations. We present the results for each method in their

specific chapter, and summarize the results in Appendix C.
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For each method, we ran 25 timing trials. The blur operator was constructed

using zero boundary conditions. We used k = 1520 and restricted r = 20 from the

maximum of R = 64. The problem used 1% Gaussian noise in the right-hand side.

Calling the preconditoner M and the residual r, iterations stopped when the norm

of M−1Kr was less than 10−10. To ensure that the solutions were smooth, we added

Tikhonov regularization with regularization parameter λ = 0.02.

The baseline method benefited from computing a full SVD approximation for

this problem. As evident in the following chapters, methods that compute a TSVD

approximation require a high enough truncation index so that the significant singular

vectors are captured in computation.

The baseline method converged in 16 iterations compared to 345 iterations without

a preconditioner. The average total time to complete all computation was 0.481

seconds, compared to 6.04 seconds for no preconditoner. It took an average of 0.101

seconds to construct the approximate SVD, and completing the iterations took only

0.380 seconds on average once the preconditioner was constructed. These results are

summarized in table below.

No preconditioner Baseline
Iterations 345 16
Setup time (sec) 0.0 0.101
Calculate time (sec) 6.04 0.380
Total time (sec) 6.04 0.461

Table 3.2: Baseline Preconditioner Timings. A summary of the timing results for the
PCLGS problem, with the baseline method used as a preconditioner, is shown. The
baseline method saves time and takes fewer iterations compared to an unprecondi-
tioned system.

The baseline method significantly increased the rate of convergence, both by de-

creasing the number of iterations required and decreasing the total wall-clock time

required to achieve convergence.
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3.5 Summary

The baseline method proposed by Kamm and Nagy in [29] constructs an SVD which

approximates K using a Kronecker product summation decomposition of a matrix.

The singular vectors are the singular vectors resulting from the most significant term

in the Kronecker summation, and the singular values are the diagonal of a related

matrix. The method is fast, with an O(n3r) running time on the image deconvolution

problem. The baseline method gives good results when K is well-approximated by

the most significant term in the Kronecker decomposition, but works poorly if the ap-

proximation is poor. Furthermore, the singular values computed may be irrecoverably

negative.

In Chapter 4, we begin to explore methods that try to improve upon those limi-

tations. The key goals are to use more information and therefore perform better on

a wider variety of matrices K, to ensure the singular values are nonnegative, and

maintain a feasible running time.
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Chapter 4

Kronecker Truncation Method

In a first attempt to improve upon the baseline, this chapter details a new alterna-

tive approach for computing a TSVD approximation from a Kronecker summation

decomposition (2.4) or approximation (2.5). This method uses early truncation of the

singular vector matrices to cheaply enable a potentially more accurate computation.

4.1 Derivation

The baseline method has two points of approximation. The first is truncating the

Kronecker summation decomposition (2.4) from an exact R terms to the most signifi-

cant r terms in (2.5). This has the same mathematical justification as a TSVD, and is

sound in many cases with r dependent on the singular value decay of K̃. The second

approximation is taking the diagonal of the matrix T , which leads to the issue that

we wish to remedy: inaccurate approximation for certain K and potentially negative

“singular values.”

We start our new approximation by using the same reasoning as the baseline

method, and from there derive a different form of secondary approximation. We have
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K = U1

(
Σ1 +

R∑
i=2

UT
1 (Ai ⊗Bi)V1

)
V T

1 .

Here, this is exact and full. The interior term, T = Σ1 +
R∑
i=2

UT
1 (Ai⊗Bi)V1, is of

size N×N , which prohibits factorization such as an SVD. The question motivating the

truncation method proposed in this chapter is: What if we made T smaller without

throwing away too much information?

We can accomplish this by using a truncated SVD on the term K1. Instead of

K1 = (UA ⊗UB)(ΣA ⊗ΣB)(V T
A ⊗ V T

B )

which is used without truncation to construct the baseline method (3.1), we use

a truncation of each of the terms in the singular value decomposition. Temporarily

denoting the truncation of a generic matrixXY to p columns asXY,p, we approximate

K1 ≈ (UA,` ⊗UB,m)(ΣA,` ⊗ΣB,m)(V T
A,` ⊗ V T

B,m).

That is, we compactly truncate the terms corresponding to the SVD of A1 to `

singular values and vectors, and truncate the terms for B1 to m singular values and

vectors. Defining U1,k = UA,` ⊗UB,m where k = `m, we can write this as

K1 ≈ U1,kΣ1,kV
T
1,k. (4.1)

There is a subtlety worth noting here. Truncation of the individual terms in the

Kronecker product is not the same as truncating the final columns of the fully formed

matrices. Recall the definition of a Kronecker product, (2.3). Kroncker products

have blocks consisting of the second multiplicand scaled by an entry of the first

multiplicand. Using U1 as an example and denoting the entry at row i and column j
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in UA as uA,ij, taking the Kronecker product

U1 = UA ⊗UB

=


uA,11UB . . . uA,1nUB

...
...

uA,n1UB . . . uA,nnUB

 .

Here, truncating the columns of UA removes whole blocks in the resulting matrix.

However, truncating columns of UB removes columns from each block in the resulting

matrix. These columns are not all on the right-hand side of the matrix U1; they are

in every block. So the truncation here is not the standard truncation of the final

columns of the matrices U1 and V1, and similarly not the final diagonal entries in Σ1.

This is an important distinction because the singular values in Σ1 are not sorted in

descending order. Because ΣA and ΣB are sorted, the Kronecker product has blocks

which are internally sorted (because ΣB is sorted), but the whole diagonal is not. For

example, denoting the ith diagonal entry in Σ1 as σ1,i and the singular values in ΣA

and ΣB similarly, σ1,n = σA,1σB,n and σ1,n+1 = σA,2σB,1. σB,n is the smallest singular

value in ΣB, so it is likely that σi,n < σ1,n+1. By truncating the matrices UA, UB,

VA, and so on, we hope to preserve more significant singular values in the truncated

matrix Σ1,k and therefore more accurately approximate U1 with U1,k.

With that detail solidified, we return to the derivation, with the TSVD approxi-

mation of K1 as (4.1). We proceed with the same derivation as the baseline method

but substitute our truncated matrices for the full ones, yielding

K =
R∑
i=1

Ai ⊗Bi

= A1 ⊗B1 +
R∑
i=2

Ai ⊗Bi
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≈ U1,kΣ1,kV
T
1,k +U1,kU

T
1,k

(
R∑
i=2

Ai ⊗Bi

)
V1,kV

T
1,k

= U1,k

(
Σ1,k +

R∑
i=2

UT
1,k(Ai ⊗Bi)V1,k

)
V T

1,k

= U1,k

(
Σ1,k +

R∑
i=2

UT
A,`AiVA,` ⊗UT

B,mBiVB,m

)
V T

1,k.

Here, there is a new interior term Tk = Σ1,k +
R∑
i=2

UT
A,`AiVA,` ⊗ UT

B,mBiVB,m.

Because of truncation, this term is now size k × k instead of the original N × N

for the exact T in (3.1). If we choose k � N , then taking a full SVD of Tk is not

prohibitive. We may also choose to use the Kronecker summation approximation

(2.5) so that Tk = Σ1,k +
r∑
i=2

UT
A,`AiVA,` ⊗UT

B,mBiVB,m.

Let Tk = UtΣtV
T
t be the singular value decomposition of Tk. Then we have

K ≈ U1,kUtΣtV
T
t V

T
1,k (4.2)

This is an approximate TSVD of the matrix K with singular values Σt, left singular

vector matrix U1,kUt, and right singular value matrix V1,kVt.

4.2 Discussion

This algorithm and resulting approximation (4.2) remedies both the issues that arose

with the baseline method, but creates new limitations in the process. The truncation

method preserves more information than the baseline method when K1 is a poor

approximation of K, and it is impossible for the approximated singular values to be

negative because they stem from a singular value decomposition. However, we will

see that subtle error causes the smallest singular values to significantly underestimate

the true singular values.

In Section 4.1, we explored how using Kronecker products affects the ordering of
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singular values and vectors. Σ1.k is formed not by truncating Σ1 to the first k entries,

but by truncating ΣA and ΣB. This helps preserve the singular values and vectors

corresponding to larger singular values. However, this does not guarantee that the

largest k singular values of Σ1 are present in Σ1,k; it is nearly always the case that

we discard some singular values which are greater than the smallest values we keep.

Equivalently, we keep some singular values from Σ1 which are less significant than

singular values which are discarded.

If K = K1, then the true singular values of K are the singular values in Σ1. In

this case the baseline method exactly computes the true singular values for the whole

matrix. A non-compact truncation, in which singular values are zeroed out rather

than removing rows and columns in the factorization, can then be used to truncate

to the exact top k singular values. However, if we use the newly-proposed truncation

method described in Section 4.1, we underestimate the smallest of the top k singular

values because we keep true singular values which are not the k most significant

values. For different K we may have a larger or smaller fraction of the true top k

values depending on the decay of the singular values from ΣA and ΣB; we can check

by comparing the values we keep to all values in Σ1.

This example is pathological because it is unlikely K = K1, but the logic extends

to the case when K 6= K1. Particularly in cases where the singular values of K̃

decay rapidly and therefore the Kronecker summation decomposition (2.5) is heavily

weighted towards the first term, K1 provides a good estimate of K. Then underesti-

mating the singular values of K1 is likely to cause an underestimation of the singular

values of K.

Even in cases where K is not well-approximated by K1 because K̃ has slowly

decaying singular values, K1 is still the best single Kronecker term approximation

of K. Using a less accurate approximation of K1 by incorrectly truncating to the

top k terms should tend to produce a less accurate approximation of K than using
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a proper TSVD approximation of K1. As we will see experimentally in Section 4.4,

there are cases where this is beneficial rather than detrimental, particularly for image

restoration. In general, we aim for the most accurate approximation possible while

maintaining low computational cost.

We will also see an example in Section 4.4 demonstrating that a skewed choice of

` and m, so that ` 6≈ m, can yield a poor approximation. Recall from Section 2.7 that

in the Kronecker summation decomposition (2.4) the matrices Ai and Bi respectively

correspond to separable blur in the horizontal and vertical directions of the image.

If we poorly approximate A1 by choosing a small truncation index `, we can expect

that we will get a less accurate result in the horizontal direction. Similarly, choosing

a small m will yield a less accurate result in the vertical direction. If we want our

estimation to be equally good in both directions, we should choose ` ≈ m. But if

we know a priori that the blur acts much more strongly in one direction, such as a

mostly-horizontal motion blur (such as shown in [25, p. 26]), we may choose to skew

` and m to increase the accuracy in the horizontal direction (i.e. raise `) and decrease

accuracy in the vertical direction (i.e. lower m). As shown in Section 4.3, the time

complexity depends linearly on (`+m)n2r. Holding n and r constant a skewed choice

of ` and m slightly increases the time complexity, because (` + m) is minimized by

` = m =
√
k for `, n ∈ R, `m = k. However, skewing ` and m is not prohibitively

expensive due to the overall time complexity derived in Section 4.3.

4.3 Time Complexity

In this section we show that the truncation method takes O(n3+(l+m)n2r+k2r+k3)

time to compute for image deconvolution problems. In practice, this is not better than

the baseline, but it is nonetheless fast enough to be feasible for very large matrices.

The steps of the truncation-based Kroncker TSVD approximation algorithm are
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as follows, with the first step the same as the baseline method:

1. Compute the approximate Kronecker product decomposition K ≈
r∑
i=1

Ai⊗Bi.

2. Compute the TSVD A1 ⊗ B1 ≈ U1,kΣ1,kV
T
1,k indirectly by computing A1 ≈

UA,`ΣA,`V
T
A,` and B1 ≈ UB,mΣB,mV

T
B,m.

3. Compute Tk = Σ1,k +
r∑
i=2

UT
A,`AiVA,` ⊗UT

B,mBiVB,m.

4. Compute the SVD Tk = UtΣtV
T
t .

5. Return the resulting SVD approximation U1,kUtΣtV
T
t V

T
1,k.

Theorem 2. If computing the Kronecker summation decomposition (2.5) takes O(T )

operations, the truncation method takes O(T +n3 +(l+m)n2r+k2r+k3) operations.

Proof. The time complexities for each step of the algorithm are:

1. As with the baseline, the time complexity of computing the Kronecker summa-

tion decomposition is called O(T ).

2. Computing the rank ` TSVD of the n×n matrixA1 takes O(n2`) operations and

computing the rank m TSVD of the n×n matrix B1 takes O(n2m) operations.

This step totals O((`+m)n2) operations.

3. Each multiplication UT
A,`AiVA,` is of matrices of size ` × n, n × n, and n × `

respectively. This can be computed in O(n2`) time. Similarly, the multiplica-

tions UT
B,mBiVB,m take O(n2m) operations. Forming the Kronecker product

for each term in the summation and adding it to a running partial sum of Tk

takes O(k2) multiplications and additions (k = `m).

There are r− 1 such computations. Adding in the diagonal entries of Σ1,k does

not increase the time complexity. This step totals O((`+m)n2r + k2r).

4. Taking the full SVD of the k × k matrix Tk takes O(k3) operations.
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5. As with the baseline method, returning the result takes O(1) operation.

The final time complexity is bounded by the sum of the complexities from each

step. The sum of the steps’ complexities is O(T ) + O(n3) + O((l + m)n2r + k2r) +

O(k3) = O(T + n3 + (l + m)n2r + k2r + k3) operations, which is therefore the time

complexity of the whole algorithm.

As a corollary, for image deconvolution problems which have an O(n3) bound on

T , this algorithm takes O(n3 + (l +m)n2r + k2r + k3) operations.

At first glance, this time complexity is difficult to compare to the baseline, which

has time complexity O(n3r). In our experiments, we found that r can typically be

chosen so small as to be considered a constant without degrading performance heavily,

and typically k > n to be effective. In practice, this algorithm is therefore slower than

the baseline method, although not prohibitively so.

4.4 Performance

The truncation method has some benefits and drawbacks in its performance. As with

the baseline method, we look at several examples based on image reconstruction: the

visual results, the singular values, and how the approximation works as a precondi-

tioner. We will see that the results are visually excellent for these examples due to the

inclusion of smaller singular values. The drawback is that this underestimation due

to Kronecker ordering results in error for the singular value approximations. Visual

comparisons between the restorations by the truncation method and the the methods

from Chapters 3 and 5-6 are available in Figure 1.2 and Appendix A.

4.4.1 Direct Reconstruction

We look at the same same reconstruction examples as we did in Subsection 3.4.1,

starting with the Satellite Example. In this example, the baseline method gave a
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good approximation, and this continues to be the case with the truncation method.

For this method, we split the truncation index k = 600 into ` = 25 and m = 24. The

result of the reconstruction is shown in Figure 4.1 below. The PSNR for this example

is 46.9 dB, which matches the PSNR for the baseline method on this example.

True x Restored x > 0 Restored x Blurred d

Figure 4.1: Truncation Satellite Example Restoration. The truncation method yields
a good reconstruction of the blurred image. In particular, the reconstruction with
negative values truncated, the second from the left, is highly accurate, only missing
the fine details of the original.

As with the baseline method, the truncation method performs well for this case.

There is a small amount of noise, discernible in the image that includes negative

values in what should be the darkest regions of the image, but the object is still

clearly visible.

Most of the examples here use a sufficiently high truncation index to get reasonable

reconstruction results. What happens if the truncation index is dropped? We will

look at this question for the Satellite Example in this and the next chapter to contrast

these two proposed methods, and understand how the truncation method performs

with different truncation indices. If we restrict the truncation index to k = 256 with

` = 16 = m, we get the reconstruction shown in Figure 4.2, which includes negative

values to show the noise pattern more clearly.
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Figure 4.2: Balanced Restricted Truncation Restoration. This image shows a restora-
tion using the truncation method on the Satellite Example with the truncation index
decreased from k = 600 to k = 256, with an even splitting ` = m. There is more
noise and fewer details than the original restoration, but the image is still acceptable.

This reconstruction loses some of the fine details, generally appearing blurrier

than a truncation index of k = 600. Still, it is not terrible. We chose a balanced

` = m for this example, and as we expect the reconstruction is not notably worse in

the vertical or horizontal direction. But if we skew the truncation k = 256 so that

` = 8 and m = 32, we expect that the approximation of A1, corresponding to the

most significant horizontal separable blur term, will be poor, therefore making our

reconstruction less accurate horizontally. Indeed, we see this result in the resulting

reconstruction shown in Figure 4.3. This reconstruction is very poor. This highlights

one of the limitations of the truncation method: for blurs with comparable vertical

and horizontal components, the best results tend to arise when ` ≈ m, which restricts

the truncation index k to numbers which are close to squares.

Figure 4.3: Imbalanced Restricted Truncation Restoration. This image shows a
restoration using the truncation method on the Satellite Example with the trun-
cation index decreased to k = 256, with an uneven splitting ` = 8 and m = 32.
With such an imbalanced splitting, the restoration becomes warped and much less
accurate.
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The second recurring example, the Grain Example, has fairly good performance

for the truncation method with ` = m = 20. Compared to the baseline method and

the method proposed in Chapter 5, the truncation method generally includes different

singular vectors. This results in significantly different patterns of error and noise. In

particular, the truncation method tends to include singular vectors associated with

smaller singular values as explained in Section 4.2. In image processing, this often

means including finer details. In Figure 4.4, we see the fairly detailed reconstruction

from the truncation method. There are some ringing effects in the reconstruction,

which we discuss in the next chapter. The PSNR for this example is 46.2 dB, which

is an improvement on the PSNR of 42.8 dB for the baseline method.

True x Restored x > 0 Restored x Blurred d

Figure 4.4: Truncation Grain Example Restoration. The truncation method yields a
good reconstruction of the blurred image in the Grain Example. There is more noise
visible than the Satellite Example, as seen in the second from the right image which
includes negative values, but the reconstruction is still of good quality.

In the Motion Example, we can even more clearly see what sets the truncation

method apart from the baseline method. Whereas the baseline method had a poor

reconstruction with significant error, the truncation method using ` = 22 and m = 25

produces a reconstruction that has a level of detail as high as the Satellite Example.

This is shown in Figure 4.5. The PSNR for this example is 47.6 dB, which is a large

improvement on the baseline method’s PSNR of 39.0 dB for this example.
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True x Restored x > 0 Restored x Blurred d

Figure 4.5: Truncation Motion Example Restoration. The truncation method also
yields a good reconstruction of the blurred image in the Motion Example. Whereas
the baseline method yielded a poor reconstruction, the reconstruction using the trun-
cation method is good enough to include, for example, the thin rod running along
parallel to a set of solar panels.

Provided a high enough truncation index k is used, and the split of k into ` and

m is balanced, the truncation method can produce good restoration results.

Figure 5.6 visually summarizes the results for the three experiments in this section.

Satellite Grain Motion

Figure 4.6: Truncation Method Restoration Summary. This summary image shows
the restored images x computed using the truncation method (4.2) for each restoration
example.

4.4.2 Approximated Singular Values

As with the baseline method, we ask: how well does the truncation method (4.2)

approximate the singular values of the matrix K? There is a pattern evident in

both the Singular Value Atmospheric Blur Example and the Singular Value Motion

Example: the truncation method consistently underestimates the smallest singular

values. Recall that the truncation method keeps singular values of K1 that are less
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significant than some of the singular values it discards. The expected result is an

under-estimate of the smallest singular values kept.

We see this clearly in the Singular Value Atmospheric Blur Example, shown in

Figure 4.7. The error starts out smaller than the baseline method produces, but

then rises to be higher than the baseline for the smallest singular values. To see a

comparison of all methods’ singular value approximations, see Appendix B.
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Figure 4.7: Truncation Atmospheric Blur Singular Values. The singular values (left)
and relative error (right) are shown for the truncation method approximation of the
Singular Value Atmospheric Blur Example. The largest singular values are a good
approximation, with around 10−5 relative error. The error increases significantly as
index increases, with the smallest singular values being a poor estimate.

The underestimation of singular values is even more pronounced in the Singular

Value Motion Example. However, recall that the baseline method also underestimated

all the singular values, including the largest singular values, for this example. We

will see in Chapters 5 and 6 that the pattern of reasonably estimating the largest

singular values while underestimating the smallest singular values is not unique to

the truncation method for this example. Nonetheless, the relative error becomes

extreme for this example, nearing 1.
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Figure 4.8: Truncation Motion Singular Values. The singular values (left) and relative
error (right) are shown for the truncation method approximation of the Singular Value
Motion Example. Like the baseline method, the truncation method tends to give a
poor estimate of the singular values for this example. However, some of the larger
singular values are approximated reasonably well by the truncation method.

For the largest singular values, the truncation method yields a reasonably accurate

estimation. However, it should not be used to estimate the singular values near the

truncation boundary. As discussed in Chapter 6, one way to use the more accurate

singular value computation of the truncation method without suffering from the less-

accurate values near the boundary is to compute a too-large TSVD approximation

and then truncate the result back down to the desired rank. In the Singular Value

Atmospheric Blur Example, Figure 4.7 shows that truncating down to a rank of

k = 60 from the computed rank of 100 would yield excellent results.

4.4.3 Preconditioning

Unlike the baseline method, the truncation method does not construct a full set of

singular vectors and values by default. For preconditioning, this can cause prob-

lems. For example if we use a low-rank preconditioner M to precondition a full

rank system Kx + e = d, we get the system MKx + Me = Md. The product

MK has a lower rank than K, making this problem under-determined. Similarly,
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right-preconditioning causes the restored solution to exist in a smaller subspace than

the original problem. When using a low rank preconditioner, the rank must be high

enough to capture most of the information about the problem.

With this restriction, we used a rank of 1520 for this problem, split into ` = 38

and m = 40. The rest of the parameters for this example are identical to the baseline

method. It took 1.10 seconds on average to construct the truncated preconditioner,

and the iterations took a total of 0.179 seconds to converge, with 7 iterations re-

quired for convergence. So, in total, the PCG method converged in 1.28 seconds for

the truncation method. This total time is slower than the using the baseline as a pre-

conditioner but faster than no preconditioner. The time taken on iterations is faster

for the truncation method than the baseline method, which indicates that the trun-

cation method may be more useful in cases where there are many right-hand sides.

Table 4.1 shows the comparative times for no preconditioner versus the truncation

method. See Appendix C for a full comparison between all methods.

No preconditioner Truncated
Iterations 345 7
Setup time (sec) 0.0 1.10
Calculate time (sec) 6.04 0.179
Total time (sec) 6.04 1.28

Table 4.1: Truncation Preconditioner Timings. A summary of the timing results
for the PCLGS problem, with the truncation method used as a preconditioner, is
shown. The truncation method saves time and takes fewer iterations compared to an
unpreconditioned system.

Despite the added computational cost compared to the baseline method, the trun-

cation method is an effective preconditioner. In particular, it dramatically decreases

the number of iterations required for convergence.
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4.5 Summary

The truncation method proposed in this chapter remedies the limitations of the base-

line method from Chapter 3. The singular values computed by the truncation method

use more information in the original matrix K than the baseline method, and the

singular values are guaranteed to be nonnegative. In addition, the singular vectors

computed depend on more than the first term K1 in the Kronecker summation de-

composition of K. At the same time, the truncation method has new limitations:

it discards information that is more significant than it keeps, causing the smallest

singular values to be significantly underestimated.

In practice, this results in mixed performance. Because the truncation method is

typically slower than the baseline, the benefits to accuracy may be difficult to justify

for applications where accuracy in singular values and vectors is important. In the

next chapter, we explore a method that improves upon the baseline without incurring

the significant limitations from truncation seen here.
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Chapter 5

Reordered Kronecker Method

The baseline TSVD approximation suffers from discarding too much information and

not adhering to the definition of singular values. The truncation method suffers

from the ordering limitations of Kronecker products of sorted diagonal matrices. The

method proposed in this chapter addresses the limitations of both prior methods. We

accomplish this by adjusting the truncation method to reorder the singular values of

the first term in the Kronecker summation decomposition so that they are sorted.

With careful use of data structures, we avoid incurring excess cost in the process.

5.1 Derivation

As with the truncation method, we begin our derivation having separated the first

term in the Kronecker summation decomposition (2.4) from the rest:

K = U1Σ1V
T
1 +U1U

T
1

(
R∑
i=2

Ai ⊗Bi

)
V1V

T
1 .

As noted in Chapter 4.2, the singular values in Σ1 are not sorted in descending order

along the diagonal. Although truncating the terms ΣA and ΣB yields better results

than truncating Σ1 directly, for general matrices K we still discard some singular
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values in Σ1 which are larger than those we keep. Instead, we wish to keep the top

k singular values in Σ1 and discard the remaining values.

Fortunately, sorting is computationally cheap in this context. We can easily rep-

resent Σ1 as a vector σ1 containing the diagonal entries of Σ1. Then, we sort σ1 to

determine a permutation P such that P Tσ1 is sorted. We do not need to store P

explicitly, but can instead store the mapping that reorders σ1 into sorted order, and

the mapping that undoes that sorting so we implicitly have both P and P T .

With this permutation, we can rewrite

K1 = U1Σ1V
T
1

= U1PP
TΣ1PP

TV T
1 .

We now have a permuted Kronecker-based SVD of K1. As before, Kronecker product

form is maintained; the matrices U1, Σ1, and V1 are not formed explicitly, nor is the

permutation explicitly multiplied. However, conceptually we now have new effective

singular vector and value matrices U1P , P TΣ1P , and V1P . We proceed with a

similar derivation to the truncated version of the algorithm:

K = U1PP
TΣ1PP

TV T
1 + (U1P )(P TUT

1 )

(
R∑
i=2

Ai ⊗Bi

)
(V1P )(P TV T

1 )

= U1P

(
P TΣ1P + (P TUT

1 )

(
R∑
i=2

Ai ⊗Bi

)
(V1P )

)
P TV T

1

= U1P

(
P TΣ1P + P T

(
R∑
i=2

UAAiV
T
A ⊗UBBiV

T
B

)
P

)
P TV T

1 .

The mathematical viability of this algorithm hinges upon the last line above. The

Kronecker product summation remains as in the previous algorithms, with permuta-

tion applied to the result of the summation. Because we can cheaply compute the

products UAAiV
T
A and UBBiV

T
B , we can first calculate those products and then ef-
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ficiently compute the permutation. We detail the algorithm for this in Subsection

5.2.1.

But there is one more step before we can permute those values: we must intro-

duce truncation. As with the truncated method in Chapter 4, we seek to truncate the

interior quantity P TΣ1P + P T

(
R∑
i=2

UAAiV
T
A ⊗UBBiV

T
B

)
P to enable SVD com-

putation. Because P TΣ1P is sorted, we can truncate it to the top k values. With

1k as the size k × k, identity matrix, we can write a column truncation operator

S =

 1k

0N−k,k

. Again, this is not formed explicitly as a matrix; instead a function

call version of truncation is performed. To prevent the notation from getting unduly

cumbersome, denote the reordered and truncated matrices Ū = U1PS, V̄ = V1PS,

and Σ̄ = STP TΣ1PS. Then proceeding with the derivation:

K ≈ Ū

(
Σ̄ + STP T

(
R∑
i=2

UAAiV
T
A ⊗UBBiV

T
B

)
PS

)
V̄ T .

Let Tperm = Σ̄ + STP T

(
R∑
i=2

UAAiV
T
A ⊗UBBiV

T
B

)
PS. If we take the SVD

Tperm = UkΣkV
T
k and let Ŭ = ŪUk = U1PSUk, V̆ = V̄ Vk = V1PSVk, then we

arrive at the reordered Kronecker TSVD approximation:

K ≈ ŬΣkV̆
T . (5.1)

5.2 Discussion

Despite the obfuscating notation, this reordering method boils down to a variation on

the truncation method. The two differences are: we permute everything, and we no

longer truncate U1, Σ1, and V1 by truncating their Kronecker product components.

We are first applying a permutation operation and then truncate. As always, we do

not actually perform these multiplications on the singular vector matrices, because
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we want to keep Kronecker structure of U1 and V1. So we instead carry around UA,

UB, and likewise for V1, and multiply with each term in sequence.

For example, say we want to get the pseudoinverse TSVD solution to the image

deconvolution problem (2.1), xTSVD = V̆ Σ−1k Ŭ
Td. (Recall, V̆ = V1PSVk, and Ŭ is

similarly defined.) To compute xTSVD we would:

1. Compute UT
1 d as vec(UT

BDUA) where D is d reshaped column-wise into a

matrix.

2. Permute the result using the row reordering map.

3. Truncate the result to the first k entries.

4. Multiply Vk times the result.

5. Element-wise divide the result by σk, the vector representation of Σk.

6. Multiply UT
k times the result.

7. Pad the result with N − k zeros (so, pad it with zeros to length N).

8. Permute to undo the row reordering. Call the resulting vector xp.

9. Compute vec(VBXpV
T
A ) where vec(Xp) = xp. The result is xTSVD.

Although this requires several steps, each step is computationally cheap. The

most expensive step is either multiplication with Vk (and equally Uk) at O(k2) or

multiplication with V1 (and U1) at O(n3) depending on the relative size of k and n.

(See Section 5.3 for time complexity analysis of the work to construct, rather than

use, the factorization.) And once again, like the truncation method, storage is cheap,

at O(k2 + n2) to represent matrices of size up to O(n2k).
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5.2.1 Algorithm Details

The most challenging part of this algorithm is efficiently computing Tperm and related

data structures, particularly the reordering map. Improper implementation can make

computing Tperm cost O(n4r) operations (if UAAiV
T
A ⊗UBBiV

T
B is explicitly formed

for each i from 2 to r). This would be a serious degradation of the computation time.

To clarify the efficient algorithm, we detail it here.

Recall Tperm = STP TΣ1PS + STP T

(
R∑
i=2

UAAiV
T
A ⊗UBBiV

T
B

)
PS. Here, P

and S are operators which are written as matrices; in implementation they are not

formed. S is a truncation operator; to represent it, we only need to know the sizes

N and k being truncated from and to. Representing P is not difficult, but requires

more attention.

When applied on the left, P T is the row reordering that maps the vector σ1,

representing the diagonal of Σ1, into sorted order. Applied on the right, it is the

column reordering which maps the sorted row vector σT1 P back into the original order

σT1 . Similarly, P applied on the left is the row reordering that maps the sorted vector

P Tσ1 back to the original ordering σ1. When P is applied on the right, it reorders

the columns of σT1 into sorted order. Because Σ1 is square, the mappings for rows

and columns are the same. The upshot is that, for the most efficient computation, we

should pre-compute two mappings: the mapping of the rows of σ1 from their original

order into sorted order, and the inverse of that mapping which returns the sorted

vector to its original order. These mappings are different for different matrices K

because they depend on the relative decay of the singular values in ΣA and ΣB, but

are computed once per K.

The mapping is cheap and easy to compute, and in some programming languages,

it is a built-in function. For example, in MATLAB the sort method has a version

with two output arguments, the second of which is the mapping that, when applied

to the original vector, gives the sorted result. If such a function is not available, a
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parallel sort works. Call i the vector containing the values 1 to N in sorted order.

Then we can do an O(N log(N)) = O(n2 log(n)) sort on σ1 where, for every element

we move in σ1, we move the element at the same index in i. Call ī the resulting

permutation of i. What does ī give us? If to move to sorted order, an entry of σ1

moves from index p in the original vector to index q in the sorted vector, then the

vector ī contains the value p at index q. So the first entry in ī indicates the row at

which the maximum value of σ1 is stored, the second entry in ī indicates where the

second-to-maximum value of σ1 is stored, and so on. So, if we want to know which

rows of σ1 contain the top k values, we can use the top k entries of ī.

For use in the full factorization, we need to compute the inverse permutation as

well, but this is not necessary to calculate Tperm. Because we left multiply by P T

and right multiply by P , we only need the mapping corresponding to sorting. And

further, we only need the mapping corresponding to sorting for the top k entries of

σ1. As we just saw, this is given by the first k entries of ī. We should keep a separate

copy of ī to be used as P for the full factorization, and can then truncate ī to its

first k entries as k̄.

Tperm is constructed iteratively using partial summations. It is first initialized

using the sorted Σ̄; it is important that the initial value for the partial sum of Tperm

is a matrix, because the full quantity is a matrix. Then each term corresponding to

an index i in the summation STP T

(
R∑
i=2

UAAiV
T
A ⊗UBBiV

T
B

)
PS is added itera-

tively. The products UAAiV
T
A and UBBiV

T
B must be computed explicitly for each

iteration. However, the permutation and truncation mapping to go from those terms

to STP T (UAAiV
T
A ⊗UBBiV

T
B )PS is the same for every index. Using this fact, we

can avoid forming the Kronecker products UAAiV
T
A ⊗UBBiV

T
B explicitly.

The quantity we are trying to compute is a permutation and truncation of a

Kronecker product. To discuss the mappings involved, we need to give names to

several components of the computation. Let UAAiV
T
A = Äi and UBBiV

T
B = B̈i,
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so UAAiV
T
A ⊗ UBBiV

T
B = Äi ⊗ B̈i. Let the entry at row r and column c of an

arbitrary matrix Z be denoted as Z(r, c). To map from the entries of Äi and B̈i to

their Kronecker product, we have

Äi ⊗ B̈i(r, c) = Äi

(⌊
r − 1

n

⌋
+ 1,

⌊
c− 1

n

⌋
+ 1

)
B̈i ([r − 1]%n+ 1, [c− 1]%n+ 1)

where % denotes the modulus operator. In this case, we are assuming r and c are

one-indexed; for a zero-indexed version, the mapping is simply

Äi ⊗ B̈i(r, c) = Äi

(⌊ r
n

⌋
,
⌊ c
n

⌋)
B̈i (r%n, c%n) .

The entries we need in Äi ⊗ B̈i are the entries in the intersection of the rows

and columns with indices equal to entries of k̄. That is, each index (r, c) we need to

compute has both r and c coming from an entry of k̄. Further, the set of rows and

columns are equal. We can therefore compute the indices ā =
⌊
k̄/n

⌋
and b̄ = k̄%n,

where both division / and modulus % are applied to each element of k̄. The vectors

ā and b̄ contain the rows (and columns) of Äi and B̈i that remain in the permuted

and truncated STP T
(
UAAiV

T
A ⊗UBBiV

T
B

)
PS. So instead of forming the full

Kronecker products Äi⊗ B̈i, we can compute the k2 elements that are not truncated

out by multiplying specific entries of Äi and B̈i. Denote the entries at index j of ā

as ā(j) and likewise for b̄. To compute the entry of STP T (UAAiV
T
A ⊗UBBiV

T
B )PS

at row r column c, we multiply the entry of Äi at row ā(r) and column ā(c) with

the entry of B̈i at b̄(r) and column b̄(c). Explicitly,

STP T
(
Äi ⊗ B̈i

)
PS(r, c) = Äi(ā(r), ā(c))B̈i(b̄(r), b̄(c)).

The permutation-and-truncation-Kronecker mappings ā and b̄ only need to be

computed once for all indices i from 2 to r in the Kronecker summation to compute
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Tperm. Once computed for the first time, the mappings can be used for all of the

iterations to compute partial summations. The work for each iteration is then limited

to computing the products.

However, the implementation details of the mapping can have a significant impact

on computation time. This approach gives a considerable time complexity savings,

at O(n2 log(n) + k2r) as detailed in Section 5.3, but the complexity masks memory

retrieval concerns. Äi and B̈i have n2 entries each. If n is large and the whole

matrices cannot fit in cache, then sequential accesses to rows and columns of the

matrices may cause cache misses. It is important to be careful about the ordering of

the indexes accessed while computing each partial summation.

There are many steps required to compute Tperm, making the reordering method

the most complicated of the methods discussed so far. However, the increased cost in

time necessary to implement the algorithm is worth it due to the improved accuracy.

The reordering method is the most broadly accurate of the methods up to this point.

5.2.2 Efficacy

The reordering truncation method avoids the pitfalls of the methods from Chapters 3

and 4. The singular values are non-negative and the amount of important information

that gets discarded in K1 is minimized. Section 5.4 shows its actual performance

on test problems. Compared to the baseline and truncation method, it is the best

choice to get good performance for an operator K for which no a priori knowledge

about K1 is known. On matrices K for which K1 is a poor approximation, it vastly

outperforms the baseline. And on matrices for whichK1 is a good approximation, the

reordering method typically yields (with an exception noted shortly) more accurate

reconstruction results compared to the reconstructions from the true TSVD than the

simple truncation method for the same truncation index; this is because the reordering

method includes more significant singular vectors. This is detailed experimentally in
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Appendix A. One pathological case when the reordering method does not give better

results is when all singular values are equal in Σ1, in which case the reordering and

truncation methods produce identical results. Further, with the reordering method

there is no restriction on the truncation index chosen. Unlike the simple truncation

method, the reordering method enables use of prime truncation indexes k. We will

see that the truncation method does produce more fine details in its reconstructions,

which may be preferable for some applications. But this is less accurate compared to

the true TSVD reconstruction, as verified by the truncation method producing less

accurate singular value approximation.

To be clear, this reordering method is not generally highly accurate. The goal is

not to exactly compute a TSVD, but to instead cheaply approximate the TSVD. By

approximating K with r < R terms in the Kronecker summation and truncating the

matrix factorization, information is lost. However, as a cheap approximation, this

gives the best results in general of the methods described.

5.3 Time Complexity

In this section we show that the reordering method is computationally feasible, with

an O(n3r+k2r+k3) running time for the image deconvolution problem. As with the

basic truncation method, this is not as fast as the baseline, but is computationally

feasible. This time complexity masks that care should be taken in certain steps to

optimize performance for modern computer architectures; see Subsection 5.2.1 for

details.

Recall the steps of the reordering Kronecker-based TSVD algorithm:

1. Compute the approximate Kronecker product decomposition K ≈
r∑
i=1

Ai⊗Bi.

2. Compute the SVDA1⊗B1 = U1Σ1V
T
1 indirectly by computingA1 = UAΣAV

T
A

and B1 = UBΣBV
T
B .
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3. Sort the vector σ1 (corresponding to Σ1) to get ī and therefore k̄ as detailed in

Subsection 5.2.1, as well as Σ̄1. Store a copy of ī and its inverse permutation

to represent P .

4. Compute ā and b̄ from k̄ as detailed in Subsection 5.2.1.

5. Compute Tperm by initializing to Σ̄1 and then, for each index i from 2 to r,

(a) compute Äi = UAAiV
T
A and B̈i = UBBiV

T
B and,

(b) using ā and b̄, compute STP T
(
Äi ⊗ B̈i

)
PS as detailed in subsection

5.2.1. Add this to the partial summation of Tperm.

6. Compute the SVD Tperm = UkΣkV
T
k .

7. Create a data structure to represent S; it must store N and k.

8. Return the resulting SVD approximation U1PSUkΣkV
T
k S

TP TV T
1 where P

and S are represented using compact data structures.

Theorem 3. If computing the Kronecker summation decomposition 2.5 takes O(T )

operations, the reordering method takes O(T + n3r + k2r + k3) operations.

Proof. The time complexity of each step is:

1. As with the baseline, the time complexity of computing the Kronecker summa-

tion decomposition is called O(T ).

2. Similarly, computing the full SVD of A1 and B1, which are size n × n, takes

O(n3) operations.

3. The parallel sort of two vectors of length n2 takes O(n2 log(n)) operations.

4. Each index in the length k vector k̄ undergoes a constant number of operations

to compute ā and b̄; this therefore takes O(k) operations.
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5. Initializing Tperm takes O(k2) operations. For each i from 2 to r,

(a) Computing Äi and B̈i takes O(n3) operations.

(b) Computing the products to get the partial sum STP T
(
Äi ⊗ B̈i

)
PS

takes O(k2) operations.

Accounting for each iteration, this step then takes O(n3r + k2r) operations.

6. Taking the SVD of the k × k matrix Tperm takes O(k3) operations.

7. Storing N and k takes O(1) operations.

8. Returning the already-computed quantities takes O(1) time.

The time complexity of the algorithm is the sum of the complexities of each step

in the algorithm. The reordering method therefore has a time complexity of O(T +

O(n3)+O(n2 log(n))+O(k)+O(n3r+k2r)+O(k3)+O(1) = O(T +n3r+k2r+k3).

In theory and practice this is the slowest method to compute. But the actual time

used is not much worse than the standard truncation method (4.2). The increase in

accuracy can justify using the reordering method in some applications.

5.4 Performance

5.4.1 Direct Reconstruction

The first test of the reordering method’s performance is its ability to reconstruct

images when used as a direct method. It performs well, within the limitation that

computing more singular values and vectors incurs larger cost. With a limited set of

singular values and vectors, the reconstructions vary from good to borderline.

In the Satellite Example, the reconstruction is about as good as the reconstruc-

tions created by the baseline method, with slightly less fine detail due to inclusion of
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different singular vectors. This can be seen in Figure 5.1 below. This result is unsur-

prising, as we expect the reordering method to work well for this example. The PSNR

for this example is 45.1 dB, which is just under that of the baseline and truncation

methods which both have a PSNR of 46.9 dB.

True x Restored x > 0 Restored x Blurred d

Figure 5.1: Reordering Satellite Example Restoration. The reordering method yields
a good reconstruction for this example.

Before proceeding to the Grain Example, we revisit the effect of restricting the

Satellite Example to a smaller k = 256 terms. In Figure 5.2, we show enlarged

versions of the reconstructions created using the truncation and reordering method.

Different singular vectors are used in each restoration. The truncation method has

a notable ringing effect, whereas the reordering method has different, more uniform

noise pattern. The truncated method reconstructs a slimmer set of solar panels,

whereas the reordering method gives wider, more uniformly accurate reconstructions

of the solar panels. The truncation method has hints of the thin rod; the reordering

method does not. Overall, the truncation method restoration is likely preferable.
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Truncated True Reordered

Figure 5.2: Truncated versus Reordered Method for Restricted Satellite Example.
This figure shows the truncated method restoration, true image, and reordering
method restoration for the Grain Example. The truncation method has more fine
details, but is less accurate on coarser details. The noise pattern differs between the
restorations as well.

The upshot is that it can be difficult to know ahead of time which method will

give better performance for a specific application. The truncation method naturally

includes singular vectors with lower singular values, so it reconstructs more fine de-

tail. But, this can come at the expense of some of the broader data in the image. The

restoration results depend on the characteristics of the blur operator and PSF (partic-

ularly the decay of singular values of both) and the image being reconstructed. Often,

computing a small example is efficient to generalize to a larger example. Explicitly,

this is process is to downscale the PSF and image, test on a small problem with both

methods, and use whichever works better for the full-sized problem. Down-scaling

too heavily may obfuscate fine details, so we caution against down-scaling excessively.

With that aside, we return to the more general examples discussed in each chap-

ter. The Grain Example reconstruction is visually worse than the reordering method

restoration from the Satellite Example. The Grain Example reconstruction, shown

in Figure 5.3, is the same quality as the reconstruction using baseline method, but

less detailed than the restoration from the truncation method. The PSNR for this

example is 42.7 dB, which is nearly identical to the baseline method PSNR of 42.8

dB and less than the truncation method PSNR of 46.2 dB.
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True x Restored x > 0 Restored x Blurred d

Figure 5.3: Reordering Grain Example Restoration. The reordering method yields a
moderate quality reconstruction for the Grain Example. The restored image is much
more blurred in this reconstruction than the Satellite Example.

The more noteworthy part of this example is how the reconstruction differs from

the truncation method. Figure 5.4 below shows the different reconstructions. In this

example, the truncation method uses significantly different singular values than the

reordering method. The noise pattern is very different among the two reconstruc-

tions. This is a case where the reconstruction from the truncation method is likely

preferable to the reconstruction from the reordering method, despite giving a less

accurate restoration compared to a true rank-400 TSVD as discussed in Appendix A.

Truncated True Reordered

Figure 5.4: Truncated versus Reordered Method for Grain Example. This figure
shows the truncated and reordering method restorations for the full Grain Example.
Because it includes more fine details, the truncation method restoration is preferable
for this case, even though it is less accurate to the true rank 400 TSVD restoration.

The final example is the Motion Example. Recall that the baseline method per-

formed poorly for this example. However, the reordering method gives a good recon-

struction using k = 550 singular values and vectors as shown in Figure 5.5. We do

not compare the result to the truncation method result here because both give high
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quality restorations with little visual difference. The PSNR for this example is 47.7

dB, which almost matches the truncation method’s PSNR of 47.6 dB, and is much

better than the PSNR of 39.0 dB for the baseline method.

True x Restored x > 0 Restored x Blurred d

Figure 5.5: Reordering Motion Example Restoration. The reordering method recon-
struction for the motion example is excellent, with fine details lacking. Unlike the
baseline method, the reordering method yields a successful restoration.

Of the methods in Chapters 3-5, the reordering method is typically the most ac-

curate to a true rank k TSVD restoration. In some cases, this makes it less preferable

than the truncation method for restoring images, especially when the fine details of

the reconstruction are important.

Figure 5.6 visually summarizes the results for the three experiments in this section.

Satellite Grain Motion

Figure 5.6: Reordering Method Restoration Summary. This summary image shows
the restored images x computed using the reordering method (5.1) for each restoration
example.

5.4.2 Approximated Singular Values

The second test of the reordering method (5.1) is its ability to approximate singular

values. Its performance is problem-dependent as seen with the baseline and truncation
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methods.

The first test is the Singular Value Atmospheric Blur Example. For this problem,

the reordering method gives a close approximation of the singular values for most of

the values, but the approximation worsens near the tail. Indeed, the relative error

in the computed singular values increases as the singular value index increases, as

seen in Figure 5.7 below. Notably, compared to the truncation method, the singular

values start to significantly under-estimate the true singular values at a later point.

The inflection here is around index 80, whereas for the truncation method this in-

flection occurs around index 60. Otherwise, their performance is similar, making the

reordering method more accurate overall.

Compared to the baseline method, the reordering method has lower error for the

highest singular values, and higher error for the smallest singular values. Appendix

B compares all methods simultaneously.
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Figure 5.7: Reordering Atmospheric Blur Singular Values. The singular values and
relative error are shown for the reordering method approximation of the Singular
Value Atmospheric Blur Example. The largest singular values are a good approxi-
mation, with around 10−5 relative error. The error increases significantly as index
increases, with the smallest singular values being a poor estimate. Notably, the small-
est singular values become a poor estimate more slowly than the truncation method.

The reordering method gives a much worse estimate of the singular values in

the more-challenging Singular Value Motion Example. The error is very similar to
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the truncation method, with slightly higher error for most of the singular values.

However, the error is smaller than the baseline method, which even more severely

underestimates the singular values. Only for the smallest singular values does the

baseline method give a better estimate than the reordering method.
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Figure 5.8: Reordering Motion Singular Values. The singular values and relative
error are shown for the reordering method approximation of the Singular Value Motion
Example. Like the two prior methods, the reordering method gives a poor estimate of
the singular values, particularly the smallest values. Like the truncation method, some
of the larger singular values are approximated reasonably well, despite the overall poor
estimation.

The reordering method significantly corrects the error in the smallest singular

values computed by the truncation method. However, the reordering method can

still give inaccurate results for problems that are difficult for each method, such as

the Singular Value Motion Example.

5.4.3 Preconditioning

The reordering method performs nearly identically to the truncation method in the

preconditioning test. The setup of the reordering method, which requires computing

the approximate TSVD, took very slightly longer, and both methods took the same

number of iterations to converge. Computing the TSVD took on average 1.22 seconds.

In total, completing the 7 iterations took 0.202 seconds, for a total computation time
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from start to finish of 1.43 seconds. This total time is only .10 second slower than

the truncation method, which is not significant enough to conclude the reordering

method will consistently be slower for this test problem. So, like the truncation

method, the reordering method is considerably faster than not using a preconditioner

but slower than the baseline method, with the most significant difference in the setup

time. As with the truncation method, the reordering method may be preferable over

the baseline in cases when multiple right-hand sides are used, or when K is poorly

approximated by K1. Appendix C details the differences between the performance

of each preconditioner.

No preconditioner Reordering
Iterations 345 7
Setup time (sec) 0.0 1.22
Calculate time (sec) 6.04 0.208
Total time (sec) 6.04 1.43

Table 5.1: Reordering Method Timings for PCGLS. A summary of the timing results
for the PCLGS problem, with the reordering method used as a preconditioner, is
shown. The reordering method saves time and takes fewer iterations compared to an
unpreconditioned system.

The reordering method is an effective preconditioner overall, reducing the number

of iterations and time taken to converge compared to not using a preconditioner.

5.5 Summary

The reordering method solves the issues that arose from the prior two methods: it

does not have negative singular values, it can produce good results when K1 6≈ K,

and it does not severely underestimate the smallest singular values it computes. Con-

sequentially, it is the most accurate method of the three in general. For some cases,

more accurate can be less preferable, such as certain image restoration problems. Re-

gardless, the reordering method is also the most complicated method to implement.
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The reordering method uses several data structures that are unnecessary for the

prior methods. Additionally, the algorithm involves memory accesses which can be

inefficient if caching is not carefully considered. However, when implemented carefully,

the algorithm is close the complexity of the truncation method, making it feasible

for reasonable truncation index choices k. The reordering method is therefore both

effective and efficient.
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Chapter 6

Hybrid Method

The baseline method can give excellent results for problems when K ≈ K1. When

this is not the case, the results are notably worse, although the relative error is

fairly consistent across singular value indices. Additionally, the baseline method is

extremely cheap to compute. The reordering and truncation methods tend to be more

accurate on the largest singular values and less accurate on the smallest singular

values. This leads to the question: can we get the benefits of both, namely, high

accuracy on the largest singular values and reasonable accuracy with low cost on

the lowest singular values? That is the goal of using the hybrid method derived in

this chapter, which combines the strengths of the truncation-based methods with the

baseline method.

6.1 Derivation

The hybrid method can be applied to the reordering or standard truncation method.

Here, we discuss the derivation for the standard truncation method, but the same

procedure yields a hybrid reordering method.

We will start by re-deriving the truncation method from a different perspective

than the original derivation in Section 4.1. From the derivation of the baseline method
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in Section 3.1, we have

K = U1

(
Σ1 +UT

1

(
R∑
i=2

Ai ⊗Bi

)
V1

)
V T

1 . (6.1)

We want to partition the SVD K1 = U1Σ1V
T
1 so we can separate the values

and vectors kept in the truncation method from those that are discarded. Recall,

though, that in the truncation method we do not actually truncate U1 = UA ⊗ UB

and the related matrices; we instead individually truncate UA, UB, and so on. Let

Q be the matrix that reorders U1 so that UA,` ⊗ UB,m (as defined in Section 4.1)

is equal to the first k columns of U1Q. Because Q is a permutation matrix, K1 =

U1QQ
TΣ1QQ

TV T
1 . We can use this permutation to get our desired partitioning,

such that

U1Q =

[
U1,k U1,0

]

QTΣ1Q =

Σ1,k 0

0 Σ1,0


V1Q =

[
V1,k V1,0

]
.

Recall that the truncation method uses matrices U1,k, Σ1,k, and V1,k. Here, we define

U1,0, Σ1,0, and V1,0 to be the matrices containing the permuted vectors discarded by

the truncation method. (We give more detail on this permutation Q in Subsection

6.2.1.)

Then we can rework the above equality (6.1) to use this partitioning. We avoid

using the partitioning of U1Q and V1Q until necessary to reduce visual clutter. Call

W = QTUT
1

(
R∑
i=2

Ai ⊗Bi

)
V1Q. Partitioning W to correspond with the partition-

ing of K1 above, we get
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K = U1Q


Σ1,k 0

0 Σ1,0

+

W1,1 W1,2

W2,1 W2,2


QTV T

1

= U1Q


Σ1,k +W1,1 0

0 Σ1,0

+

 0 W1,2

W2,1 W2,2


QTV T

1 .

Here, Σ1,k + W1,1 = Tk as defined in Section 4.1. Incorporating the SVD Tk =

UtΣtV
T
t and using 1 to denote the identity matrix,

K = U1Q


UtΣtV

T
t 0

0 Σ1,0

+

 0 W1,2

W2,1 W2,2


QTV T

1

= U1Q


Ut 0

0 1


Σt 0

0 Σ1,0


V T

t 0

0 1

+

 0 W1,2

W2,1 W2,2


QTV T

1

= U1Q

Ut 0

0 1



Σt 0

0 Σ1,0

+

 0 UT
t W1,2

VtW2,1 W2,2



V T

t 0

0 1

QTV T
1 . (6.2)

Recall the partitioning U1Q =

[
U1,k U1,0

]
and likewise with V1Q. We can then

re-write the left-hand orthogonal matrix product as

U1Q

Ut 0

0 1

 =

[
U1,k U1,0

]Ut 0

0 1


=

[
U1,kUt U1,0

]
.

Similarly, we have that

V1Q

Vt 0

0 1

 =

[
V1,kVt V1,0

]
.
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Substituting this into (6.2) above yields

K =

[
U1,kUt U1,0

]
Σt 0

0 Σ1,0

+

 0 UT
t W1,2

VtW2,1 W2,2



V T

t V
T
1,k

V T
1,0

 .
We have arrived at the truncation method. If we truncate the left and right

singular vector matrices here to the first k columns (which are U1,kUt and V1,kVt),

and truncate the interior terms accordingly, we exactly have the truncation method

described in Chapter 4. However, instead of truncating, we will continue deriving the

hybrid method by manipulating the interior terms.

Let Dw = diag(W2,2) and Σdiag,0 = Σ1,0 +Dw (this notation is used intentionally,

as the values in Σdiag,0 are singular values from the baseline method, but reordered).

Then we can re-write

K =

[
U1,kUt U1,0

]
Σt 0

0 Σdiag,0

+

 0 UT
t W1,2

VtW2,1 W2,2 −Dw



V T

t V
T
1,k

V T
1,0

 .
Here, we add approximation by dropping the second term of the parenthetical

interior of this factorization. Specifically, we can approximate

K ≈
[
U1,kUt U1,0

]Σt 0

0 Σdiag,0


V T

t V
T
1,k

V T
1,0


= U1Q

Ut 0

0 1


Σt 0

0 Σdiag,0


V T

t 0

0 1

QTV T
1 . (6.3)

Approximation (6.3) is the hybrid method of approximation using the truncation

method. The first k singular values and corresponding vectors are from the truncation

method, and the last N−k singular values and vectors are from the baseline method.
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6.2 Discussion

6.2.1 Permutation Matrix

On its own, the fact that a permutation matrix Q exists which reorders U1 and V1

so that their columns align with the truncation method is not particularly helpful for

those who wish to implement the actual permutation. Here, we detail the construc-

tion of this permutation matrix and discuss efficient implementation. We derive the

permutation using U1 as an example, but the same arguments apply to V1 and Σ1.

For those seeking only an explicit formula, see Equation (6.4).

The goal of the permutation matrix Q, when applied on the right-hand side of U1,

is to move the columns corresponding to a truncation of the matrices that form U1 to

the leftmost columns, stably, and to move all of the displaced columns to the right of

those, also stably. (A stable sorting retains the original ordering of equivalent values;

in this case, there are three equivalent bins: columns included in the truncation,

columns displaced by the reordering of the first bin, and columns which are unmoved

in the permutation.)

Consider an example in which UA,UB ∈ R10×10 where we want to truncate to the

first 4 columns of UA and the first 3 columns of UB (that is, ` = 4 and m = 3). If we

form the full Kronecker product U1 = UA ⊗UB, the columns that we want to keep

are not adjacently located, as shown in Figure 6.1.
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UA ⊗UB = ⊗ =

Figure 6.1: Standard Kronecker ordering. If we consider only the first 4 columns of
UA and the first 3 columns of UB, the columns appear as 4 non-adjacent bands of 3
columns each in U1.

U1 is composed of blocks, each of which is UB scaled by an entry of UA. The

Kronecker product always is of a consistent structure. If we truncate by zeroing

out the entries we wish to remove, as in Figure 6.1, the resulting sparsity pattern is

banded. With UA truncated to ` columns and UB truncated to m columns, there are

` bands of width m columns each. The start of a band is every n columns. So in this

example, we have ` = 4 bands each of width m = 3, occurring every n = 10 columns.

The permutation matrix Q moves these bands to the left, preserving the relative

ordering of the columns within the bands. Figure 6.2 illustrates this behavior.

∗Q =

Figure 6.2: Permuted Kronecker order. The result of permuting the non-discarded
columns in U1 using Q. The permutation Q moves the non-discarded columns to the
left.

What should Q depend on? Recall, we need to move ` bands of size m occurring

every n columns. So Q depends on `, m, and n. These fully define the truncation

banding pattern as long as both UA and UB are size n× n.
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We can now start to piece together the structure of Q. This discussion uses

one-indexing, and can be converted to zero-indexing by removing the additions and

subtractions of 1 throughout. The first band in U1 is already in place, so Q starts

with m ones along its diagonal. The second band should be moved into place after

the first, and occurs at column indices n + 1 through n + m in U1. The third band

occurs at column indices 2n + 1 through 2n + m in U1. In general, the jth band

occurs at column indices (j − 1)n + 1 through (j − 1)n + m, with j between 1 and

`, inclusive, in the full Kronecker product matrix. Further, the ith band starts at

column (i− 1)m+ 1 in the permuted matrix U1Q. The second band in our example

is reordered into place by columns m + 1 = 4 through 2m = 6 in Q. The first en-

try in the second band needs to be moved from column n + 1 = 11 of U1, so there

is a 1 in column m + 1 = 4 and row n + 1 = 11 of Q. Similarly, the rest of the

band puts a 1 at column 5 row 12 and column 6 row 13. The third band starts with

a 1 at column 2m + 1 = 7 and row 2n + 1 = 21. This pattern continues for the

remaining elements. So we have built up the following structure, where no entry indi-

cates a zero,
... indicates seven rows of zeros, and

... indicates n(n−`) = 60 rows of zeros:

Columns 1 through 12 of Q =



1

1

1

.

.

.

1

1

1

.

.

.

1

1

1

.

.

.

1

1

1

.

.

.

...



.

This moves the bands that are kept by the truncation into place on the left. Next
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is to move the bands that are displaced by truncation to the right. For our truncation

to ` columns in UA and m columns in UB, we have a total of `m columns kept. That

means that the first displaced column, which starts at index m + 1 in U1, should

move to index `m+ 1. The displaced columns come in bands in U1 like the columns

kept by truncation do: for every band of m columns kept by truncation, there are

n−m columns to the right that are not kept. So the first band of removed columns

moves from column indices m+ 1 through n to indices `m+ 1 through `m+ n−m.

In our example, this means columns m + 1 = 4 through n = 10 move to columns

`m+ 1 = 13 through `m+ n−m = 19. The bands in U1 which get displaced are at

indices (j−1)n+m+ 1 through jn for integers j between 1 and `, inclusive. The jth

band is moved to column positions `m+ (j − 1)(n−m) + 1 through `m+ j(n−m)

in U1Q.

For our example, the first two bands displaced inQ have the following form, where

· represents m = 3 rows of zeros and : represents 80 rows of zeros:

Columns 13 through 26 of Q =



·

1

1

1

1

1

1

1

·

1

1

1

1

1

1

1

:



.

There are two more bands in columns 27 through 40 with a similar pattern.

The last n(n− `) = 60 columns have no permutation; the ones in Q are along the

diagonal.

This gives us the full structure of Q for this example. Figure 6.3 shows this full
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structure of Q.

Figure 6.3: The resulting permutation matrix with ` = 4, m = 3, and n = 10. Here,
white represents 1 and black represents 0.

How can we generalize the structure succinctly? In general, for given `, m, and n,

QT =



[
1` 0

]
`×n
⊗
[
1m 0

]
m×n

[
1` 0

]
`×n
⊗
[
0 1n−m

]
(n−m)×n

[
0 (1n ⊗ 1n−`)

]
n(n−`)×n2


(6.4)

We have written QT instead of Q because separating the terms by rows is visually

clearer. The first row block (column block in Q) corresponds to the columns in U1

kept by truncation. The second row block corresponds to the displaced and truncated

columns. The final block corresponds to the truncated but not displaced columns of

U1. As with the previous methods, we maintain an efficient representation of this

matrix rather than multiplying it explicitly while forming the factorization.



87

6.2.2 Efficacy

Now that we have the permutation clarified, we return to assessing the hybrid method

overall. Unsurprisingly, the hybrid method works as well as the methods that are

hybridized to make it. Both the truncation method and reordering method have good

accuracy for the largest singular values, although the reordering method generally has

higher accuracy than the truncation method. For matrices where K1 approximates

K well, the baseline method has consistent and reasonable accuracy throughout. By

combining the high accuracy of the largest singular values with a stable accuracy

for the smallest singular values, we get the strengths of both methods with fewer

drawbacks.

However, if the baseline method is very inaccurate because K1 is a bad approx-

imation of K, then the hybrid method combining, for example, the reordering and

baseline methods will not help much compared to using the reordering method alone.

The hybrid method works primarily on a truncation method (the standard truncation

method in Chapter 4 or the reordered truncation method in Chapter 5) plus the base-

line. Although it is possible to do a hybrid of the reordering and truncation method,

it makes little sense: both are less accurate for the smallest singular values, and both

have significantly higher computational cost than the baseline for computing large

numbers of singular values. The upshot is that the accuracy of the smallest singular

values is limited by the baseline’s accuracy.

One modification to the hybrid method can increase accuracy, especially for the

standard truncation method: we can compute the truncated method portion of the

singular values and vectors, then truncate that factorization down further. For ex-

ample, we may choose to compute to k = 100 with the truncation method. Instead

of using those 100 values, we can truncate down further to an effective k̂ = 67 < k

(which happens to be prime). This cuts off some of the less-accurate “tail” singular

values and vectors computed by the truncation method. Because the baseline already
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computes approximations of all singular values and vectors, this does not incur extra

computation in that regard. And because the interior matrices do not have Kronecker

structure in general, we can really do the truncation. However, truncating the interior

changes the structure of the permutation matrix Q.

Essentially, to create the new permutation matrix we keep the first k̂ columns,

move over the necessary displaced band columns, and the rest is the identity. Using

the previous example, we had n = 10, ` = 4, and m = 3, so k = `m = 12. Suppose

we wish to truncate this to k̂ = 5 entries. In Q, column 5 has a 1 at row 12. In the

new matrix Q̂, the first 5 columns are the same as in Q. Then, columns k + 1 = 13

through k +
(⌈

k̂
m

⌉
− 1
)

(n−m) = 19 of Q are placed in columns k̂ + 1 = 6 through

k̂ +
(⌈

k̂
m

⌉
− 1
)

(n −m) = 12 of Q̂. Here,
⌈
k̂
m

⌉
is the number of partial bands kept

originally. We subtract one to get the number of relevant displaced bands removed by

original truncation, and (n−m) is the size of those displaced bands. The remaining

columns in Q̂ are the identity. This example is shown in Figure 6.4.

Figure 6.4: Structure of Q̂. This figure shows the structure of the permutation matrix
for the extra-truncated hybrid method with n = 10, ` = 3, m = 4, and k̂ = 5. White
represents a 1, and black represents a zero.

Re-adjusting Q into Q̂ is not significantly costly compared to computing the

approximate TSVD. Even more broadly, the steps to combine two methods (typically,

one of the reordering or truncation method with the baseline method) into a hybrid



89

method is not costly compared to computing the separate TSVDs. With careful

implementation, the hybrid method is also efficient to use. The outer singular vector

matrices remain in Kronecker product format, so they are cheap to multiply with.

Efficient implementations of the permutation can require as little as k̂ operations

to apply. Then the multiplications of the remaining interior terms of the hybrid

approximation, when implemented efficiently, incur the cost of the truncated method’s

multiplications plus scaling the remaining elements by a diagonal. The multiplication

cost is therefore not prohibitive.

6.3 Time Complexity

The cost of computing the hybrid method is the sum of the complexities of the baseline

method, chosen truncation-based method, and cost to create the permutation matrix

Q. The permutation matrix is less costly to construct (at O(N) = O(n2) depending

on implementation) than the approximation from the baseline method, so it does not

affect the overall time complexity. For generalK, where computing the decomposition

(2.4) takes O(T ) time, the hybrid using the standard truncation method then has a

cost of O(T ) + O(n3 + (l + m)n2r + k2r + k3) + O(n3r) = O(T + n3r + k2r + k3).

This is the same as the complexity of the hybrid reordering method: O(T )+O(n3r+

k2r + k3) + O(n3r) = O(T + n3r + k2r + k3). The standard truncation method has

a slightly better time complexity, therefore, than its hybrid. On the other hand, the

reordering method has the same time complexity as its hybrid.

6.4 Performance

In this section we explore the performance of the hybrid method in a variety of

experimental settings. Specifically, we look at the performance of a hybrid of the

truncation and baseline methods. Because the hybrid method combines these two
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methods, its performance is expected to be as good as both methods, but it also

suffers from any limitations shared between the two.

6.4.1 Direct Reconstruction

The hybrid method can have varied performance, typically middling between the

performance of the truncation and baseline methods. One methodological detail

significantly impacts all of the reconstructions. Each reconstruction uses a truncated

SVD. To compute the truncated hybrid, the truncation method was computed to the

stated truncation index k for all examples, and the baseline method was computed

completely, with all singular values and vectors. To determine the singular values

and vectors kept in the hybrid method, the largest k singular values were selected

from the hybrid. In cases where the singular values from the truncation method gave

significant underestimates, this typically meant that the baseline method dominated

the reconstruction.

Both the truncation method and baseline method perform well for the Satellite

Example, and combining the two in the hybrid method unsurprisingly gives a good

reconstruction. This is shown in Figure 6.5. The PSNR for the hybrid method is 46.8

dB, which nearly identical to that of the baseline and truncation method with have a

PSNR of 46.9 dB, and very slightly higher than the PSNR of the reordering method

at 45.1 dB.

True x Restored x > 0 Restored x Blurred d

Figure 6.5: Hybrid Satellite Example Restoration. The hybrid method method yields
a good reconstruction for the Satellite Example, following suit of the three methods
discussed previously.
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For the Grain Example, the hybrid result is nearly indistinguishable from the

baseline method reconstruction. Only the noise pattern in the image differs between

the two. Recall that a small truncation index of k = 400, split into ` = m = 20 for the

truncation method, is used. Further, the decay of the singular values for K in this

example is slower than previous methods. The truncation method underestimates

the singular values, and the contribution of the baseline method ends up dominating

the reconstruction as a result. This is shown in Figures 6.6 and 6.7. The PSNR for

this example is 42.6 dB, comparable to that of the baseline (42.8 dB) and reordering

(42.7 dB) methods, but less than the truncation method PSNR of 46.2 dB.

True x Restored x > 0 Restored x Blurred d

Figure 6.6: Hybrid Grain Example Restoration. The singular values computed by
the baseline method dominate those computed by the truncation method, causing
the restoration to appear nearly identical to the baseline restoration.

Baseline Hybrid Truncated

Figure 6.7: Grain Example Hybrid Comparison. The singular values from the baseline
method dominate the hybrid method, causing the restoration to appear much more
like the restoration from the baseline method than the truncation method restoration.
In this case, the hybrid has less fine details than the truncation method.

The final example is the Motion Example. For this example, the baseline gave

a very poor reconstruction, but the truncation method gave a great reconstruction.
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Further, the truncation method gave higher estimates for the largest singular values,

and lower estimates for the smaller singular values. We can then expect the hybrid

reconstruction to be worse than the truncation method, but much better than the

baseline reconstruction. Indeed, this is what we see in the comparison in Figure 6.9.

The reconstruction for just the hybrid method is shown in Figure 6.8. The PSNR of

this reconstruction is 40.1 dB, just above the baseline method PSNR of 39.0 dB, and

significantly below the PSNR for the truncation (47.6 dB) and reordering (47.7 dB)

methods.

True x Restored x > 0 Restored x Blurred d

Figure 6.8: Hybrid Motion Example Restoration. For the motion example, the hybrid
method acts as a true hybrid. The result is a moderate-to-poor reconstruction with
some fine details still appearing.

Baseline Hybrid Truncated

Figure 6.9: Motion Example Hybrid Comparison. The singular values from the trun-
cation method dominate for the largest indices, but singular values from the baseline
method dominate for the smallest indices. The result is a middling restoration that
is better than the baseline method and worse than the truncation method.

These reconstructions, in accordance with the patterns from the previous chapters,

show the performance of the hybrid method when truncated significantly. Its perfor-

mance is more useful when it is not truncated so aggressively, and the corresponding
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reconstructions (provided that they are properly regularized) are more useful. For

these examples, it is hard to give a much better reconstruction than the truncation

method provides.

Figure 6.10 visually summarizes the results for the three restoration experiments

in this section.

Satellite Grain Motion

Figure 6.10: Hybrid Method Restoration Summary. This summary image shows
the restored images x computed using the hybrid method (6.3) for each restoration
example.

6.4.2 Approximated Singular Values

The hybrid method (6.3) enables more accurate singular value computation by ex-

ploiting the benefits of the baseline and truncation methods. The truncation method

tends to accurately estimate the largest singular values, whereas the baseline can ac-

curately estimate lower singular values for certain problems. In these examples, we

use ` = m = 8 to compute the TSVD approximation with the truncation method,

yielding 64 approximate singular values and vectors. The remaining 36 singular values

and vectors come from the baseline method.

In the Singular Value Atmospheric Example, the hybrid method gives a good

estimate of the highest singular values. As the index increases, the singular values

are estimated more poorly, until the final values have an oscillatory but on average

level error varying around 10−2. This is shown in Figure 6.11.



94

0 20 40 60 80 100

Index

0

0.005

0.01

0.015

i

Hybrid singular values

Calculated

True

0 20 40 60 80 100

Index

10
-5

10
-4

10
-3

10
-2

10
-1

A
b
s
o
lu

te
 e

rr
o
r 

in
 

i

Hybrid relative error

Figure 6.11: Hybrid Atmospheric Blur Singular Values. The hybrid method singular
values combine the accurate beginning from the truncation method with the less-
inaccurate tail of the baseline method to produce a better approximation than using
one method alone.

This error is slightly higher than the truncated method with ` = m = 10 for

the highest values, but lower than both the baseline and truncation methods for the

smallest values. A full comparison between all methods for the error in singular value

computation is given in Appendix B.

The more challenging Singular Value Motion Example yields an unsurprisingly

worse result. The error from the hybrid method is close to that of the truncation

method, although it does not get as high for the lowest indices which are computed

using the baseline method. However, since a lower ` and m are used in the truncation

calculation, the error is slightly higher for the hybrid method than the truncation

method on the largest singular values. The computed singular values and error for

the hybrid method is shown in Figure 6.12. As with the Singular Value Atmospheric

Blur Example, a comparison between all methods is given in Appendix B.
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Figure 6.12: Hybrid Motion Singular Values. The hybrid method again combines the
better estimates from the truncation and baseline methods. Although the result is
not excellent, it is better for the largest values than the baseline method and better
for the smallest values than the truncation method.

One of the primary strengths of the hybrid method is that it combines the benefits

of the truncation (or reordering) method with those of the baseline method to pro-

duce more accurately computed singular values. These examples demonstrate that

strength.

6.4.3 Preconditioning

The cost of computing the hybrid method, however, is not a strength. We expect it to

be slower than both the baseline and truncation method to construct. Depending on

how the singular values align between the two methods, it may allow a preconditioned

system to converge faster than the baseline and truncation methods, but it may also

converge in more iterations. Certainly, we expect that it will take longer to complete a

single iteration than the baseline method due to overhead in the extra multiplications

required.

When we tested it as a preconditioner for the conjugate gradient least squares

method (CGLS), we found it to be slower in all regards than the truncation and

baseline methods. It took more iterations (19 as opposed to 16 and 7 for the baseline
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and truncation methods, respectively) and more total time (1.85 seconds). Con-

structing the preconditioner and completing the iterations were not faster than the

two methods it hybridized. The difference between the hybrid and truncation method

setup times was small enough so as to not be conclusive, with a difference of less than

0.10 seconds. Appendix C shows a detailed comparison of the timings of all methods

for reference.

The hybrid preconditioner did, however, beat using no preconditioner. The hybrid

method took a total of 1.85 seconds, split between 1.19 seconds to compute the

factorization and 0.657 seconds to complete iterations, as opposed to the total 6.04

seconds with no preconditioner. Table 6.1 below summarizes the timing results for

the hybrid method compared to not using a preconditioner.

No preconditioner Hybrid
Iterations 345 19
Setup time (sec) 0.0 1.19
Calculate time (sec) 6.04 0.657
Total time (sec) 6.04 1.85

Table 6.1: Hybrid Method Timings for PCGLS. A summary of the timing results for
the PCLGS problem, with the hybrid method used as a preconditioner, is shown. The
hybrid method saves time and takes fewer iterations compared to an unpreconditioned
system.

Because of its comparatively lackluster performance as a preconditioner relative

to the other methods, we cannot recommend the hybrid preconditioner for a first try

at preconditioning. However, it does significantly improve convergence compared to

not using a preconditioner.

6.5 Summary

The hybrid method combines the best aspects of the truncation methods with the best

aspect of the baseline method. It uses the largest singular values and vectors from
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the truncation methods, while still cheaply computing reliably accurate lower singular

values and vectors. Adding extra truncation to the truncation method portion of the

approximate TSVD can further improve accuracy by cutting off the inaccurately-

estimated smallest singular values (and corresponding vectors) of the truncation-

based methods. However, when the baseline method fails because K1 6≈K, it makes

little sense to use the hybrid method. Problem knowledge is therefore required in

deciding when to use the method. But, in the situations where it is applicable, the

hybrid method gives improved accuracy without a significant sacrifice to speed.
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Chapter 7

Comparison to Related Methods

The methods presented thus far are not the only TSVD approximation methods.

There are three particularly popular methods for computing approximate TSVDs

and related factorizations which this chapter focuses on: Fourier transforms, Golub-

Kahan-Lanczos bidiagonalization, and randomized methods. Each method has dif-

ferent strengths, and in some cases they would be a better choice than the methods

discussed here. If computing the Kronecker product decomposition (2.4) or approxi-

mation (2.5) is prohibitive, then the methods proposed in Chapters 3-6 cannot be ap-

plied. If directly tunable accuracy is desired, the matrix is too big to fit into memory,

or parallel architectures are available, randomized methods are a good choice [24].

For situations where high accuracy is needed but speed is less important, Golub-

Kahan-Lanczos bidiagonalization is useful [21, 33]. In cases where the matrix K is

block circulant with circulant blocks, Fourier transforms have minimal storage costs

and are highly accurate (there is a multitude of work on Fourier Transforms, includ-

ing [1, 11, 25]). Sections 7.1-7.3 explain in detail the nuances of when to use these

methods.

However, in some cases the matrix K is extremely large and has structure that

allows a cheap approximate decomposition (2.5), without the need for high accuracy.



99

For example, preconditioners that are cheap and only moderately accurate can ac-

celerate the convergence of iterative methods [21]. And in some imaging applications

that are particularly ill-posed, an exact decomposition provides little visual benefit

over moderately accurate approximations.

These and other benefits make our proposed and the baseline methods relevant

in some cases, but not all cases. The methods discussed here are popular for good

reason, and are useful in a variety of situations.

7.1 Fourier Transforms

The first common method of approximating a matrix factorization with similar struc-

ture to a TSVD is Fourier transforms. Fourier transforms are used in many disciplines,

notably including signal processing, due to their very low computation cost and ex-

act accuracy (in exact arithmetic) [1, 25]. Fourier transforms change the basis of a

signal from the spatial domain to the Fourier domain. The Fourier basis builds up a

signal based on its frequency components. This is a natural transformation in image

processing, where images can be intuitively represented as a sum of their frequency

components [1, 25].

The Fourier transformation is defined as follows. Given a circulant or block cir-

culant with circulant block matrix K and using ∗ to denote the conjugate transpose,

the discrete Fourier transform matrix is defined as the matrix F such that

FKF ∗ = Λ

where Λ is a diagonal matrix containing the eigenvalues of K and F ∗F = FF ∗ = 1.
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With φ = e−2πi/N , where i =
√
−1, the entries of F are given by [21]

F =
1√
N



1 1 ... . . . 1

1 φ φ2 . . . φ(N−1)

1 φ2 φ4 . . . φ2(N−1)

...
...

1 φ(N−1) φ2(N−1) . . . φ(N−1)2


.

Matrix-matrix products involving the Fourier matrices take only O(N2 log(N2)) =

O(n4 log(n)) operations to compute by using fast Fourier transforms. This factoriza-

tion therefore takes O(n4 log(n)) operations to compute. Unlike a TSVD, the Fourier

Transformation does not produce components in order of importance, so we cannot

truncate to reduce costs. Once the transform is constructed, matrix-vector multi-

plication take O(n2 log(n)) operations. With our methods, the multiplications take

O(n3 + k2) operations, so a Fourier transform is faster to use once constructed.

This factorization is exact within machine precision. There are two reasons not to

use it for every problem. The first is the time complexity to construct the transform.

Fourier transforms are much cheaper than standard matrix factorization that require

O(N3) = O(n6) computations, but slower than our proposed factorizations for limited

k, which require O(n3r + k2r + k3) operations to construct. This may be offset

by reduced time for matrix-vector multiplications as previously mentioned, but the

initial cost can be prohibitive. In addition, Fourier transforms have an additional

restriction: as described, the factorization works only on circulant (or block circulant

with circulant block) matrices. There is an extension to Toeplitz matrices, but it

increases the already-large matrix size by a factor of 4. Circulant (and block-circulant

with circulant block) matrices in the image deblurring problem correspond to periodic

boundary conditions. For non-periodic matrices, performance degrades.

The complexities we have discussed so far are time complexity, but one of the
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major benefits of our proposed method is the low storage costs. As discussed in

Section 5.1, the storage cost of the reordering method, which has the highest storage

cost of all of the non-hybrid methods, is O(n2 + k2). (For comparison, the baseline

method has storage cost O(n2), the truncation method has cost O(n(`+m)+k2), and

the hybrid method, when implemented efficiently, has O(n2+k2) memory complexity.)

By comparison, decomposition using a Fourier transform does not require forming the

unitary matrices F , so the only values stored are the N eigenvalues in Λ, making

the storage cost O(n2). It is often the case that k > n, so this is often lower than

the storage complexity for our method. And in practice, the Fourier method only

requires storage of one set of n2 elements, whereas our reordering method requires

storage of four matrices of size n2, three matrices of size k2, and a permutation of

length n2. So our storage costs are many times larger.

Fourier transforms are highly accurate, cheap to store, and fast to use. For prob-

lems with circulant matrices, Fourier transforms are a good choice. However, for high

accuracy on non-circulant K, our methods provide an alternative that is faster to

compute but slower to use and which requires slightly more storage.

7.2 Golub-Kahan-Lanczos Bidiagonalization

Golub-Kahan-Lanczos bidiagonalization, herein Lanczos bidiagonalization, is a com-

monly used method for computing the TSVD of a matrix. Lanczos bidiagonalization

is the process of reducing a matrix into a bidiagonal matrix via orthogonal transforma-

tions. The result of a full application of Lanczos bidiagonalization is the factorization

K = UBV T
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where U ,V ∈ RN×N with UTU = 1 and V TV = 1, and B is lower bidiagonal

with [33]

B =



α1

β1 α2

β2 α3

. . . . . .

βn−1 αn


.

Typically, the process is run only to k iterations, which computes U and V to

their first k columns Uk and Vk, and the bidiagonal matrix up to k rows and columns

yielding Bk. Then the SVD of the bidiagonal matrix Bk is computed cheaply to

complete the SVD calculation [19].

During the course of computing the columns of Uk and Vk, orthogonality is lost

due to errors resulting from division by small numbers [21]. To remedy this, the

columns must be reorthogonalized fully or in part. Failure to reorthogonalize the

columns can result in extremly inaccurate results.

In the Lanczos bidiagonalization algorithm without reorthogonalization, the pri-

mary cost is in computing matrix-vector multiplications using K and KT . When the

matrices are fully formed, this has a cost of O(N2) per iteration, or O(N2k) = O(n4k)

total. Costs can be lower per iteration for sparse or structured K. However, with

full reorthogonalization the most recently-computed Lanczos vector must be updated

based on each previously-computed Lanczos vector, which has a cost of O(Nk2) =

O(n2k2) regardless of the structure of K. This can be expensive, and dominates the

cost if the matrix-vector products are especially cheap. The Lanczos bidiaigonaliza-

tion procedure is more expensive than the steps to convert the bidiagonal matrix

to diagonal form and complete an SVD factorization. The cost for the algorithm is

therefore O(n4k + n2k2) for general matrices or, if the cost of a matrix-vector multi-

plication is C, O(Ck + n2k2) [46]. This is higher than our reordering method’s cost
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of O(n3r + k2r + k3) for typical choices of n and k.

Perhaps more crucially, there is a significant difference in storage costs between our

proposed method and the Lanczos bidiagonalization routine. Storing K in Kronecker

product summation decomposition form (2.5) has a baseline cost of O(n2r) compared

to the full matrix storage cost of O(n4). The Lanczos process creates k vectors of

length N = n2, for a cost of O(n2k). Typically k > r, so this increases storage costs

compared to the Kronecker summation approximation of the original matrix. And

compared to the cost of O(n2 + k2) for storing the reordering method, the Lanczos

method’s storage costs can be prohibitive for very large matrices.

However, the Lanczos bidiagonalization routine for computing an SVD is the

clear winner with respect to accuracy. Errors of computed singular values are so low

as to be negligible, although they can be adjusted indirectly by reducing accuracy

of reorthogonalization in many implementations of the algorithm. The following

subsection (7.2.1) details the results of running a standard software for computing a

Lanczos-based TSVD with standard software versus our algorithm.

7.2.1 Experimental Comparison

We compare our implemented methods to a popular Lanczos bidiagonalization method

lansvd implemented in the package PROPACK [33]. The lansvd method allows for

several levels of customization, including reducing the amount of reorthogonalization,

computing truncated SVDs as opposed to full SVDs, and using function calls to com-

pute matrix-vector (and matrix-transpose-vector) products instead of the full form of

the matrix. Because it can be cheaper to use a function call form of a matrix-vector

product, we use that form of the lansvd method to test against, with different levels

of reorthogonalization.

We ran two tests against the lansvd method to determine relative speed and

accuracy compared to our methods. For the speed test, we varied the truncation index
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k for both methods to show how the timing scaled with rank. We used the reordering

method, which tends to be the slowest of our proposed non-hybrid methods. We used

a new, speckled PSF, shown in Figure 7.2, which is available in the upcoming IRTools

package [18] using the test problem PRblurspeckle. For the reordering method, we

used a full r = R = 64 terms in the Kronecker summation decomposition, which

meant the method was slowed as much as possible. For the lansvd method, we

tested both with full reorthogonalization and with reorthogonalization turned off.

Figure 7.1 shows the results of these timing runs.
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Figure 7.1: Lanczos versus Reordering Method Timings. Timings for various trunca-
tion indices k to compute a TSVD using lansvd versus our Kronecker-based reorder-
ing method. The reordering method is faster for all truncation indexes, even when
lansvd has reorthogonalization turned off. The time taken to compute a full SVD
using MATLAB’s svd method is shown for comparison.
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Figure 7.2: Speckled PSF. The PSF used to compare the Lanczos bidiagonalization
SVD method against our Kronecker reordering method.

Clearly, the Kronecker reordering method produces results much more quickly

than the lansvd method. Although lansvd completes significantly faster without

reorthogonalization than with reorthogonalization, it still is never as fast as the re-

ordering method. Both methods eventually become slower than computing a full SVD

with the MATLAB command svd; this is expected, due to overhead in the algorithms.

When it comes to accuracy, though, lansvd easily wins. The singular values con-

structed using lansvd with reorthogonalization were near machine precision (around

10−15 relative error) of the “true” values computed using MATLAB’s svd command,

whereas the relative error of the singular values computed using the reordering method

had around 10−6 relative error. With reorthogonalization turned off, the Lanczos-

based method produced incredibly inaccurate results.

As expected, the primary strength of Lanczos bidiagonalization methods are their

high accuracy. However, our methods are faster at computing a TSVD approximation.

7.2.2 Lanczos with Kronecker Products

The Lanczos bidiagonalization process does not, by default, exploit Kronecker prod-

uct structure in its computations. Here, we discuss one approach to add Kronecker

product structure to the Lanczos process. Bentbib et al. [4] explored this problem

for limited Kronecker structure such that K = A1⊗B1 exactly; we develop the idea

further to incorporate Kronecker summation structure more broadly throughout the

algorithm. The description herein is theoretical only; we have not run experiments,
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as they are outside the scope of this dissertation. This is an area of future work that

we encourage others to explore.

GKB Algorithm given d, K.

1. β1 = ||d||2, u1 = d/β1

2. v1 = KTu1, α1 = ||v1||,v1 = v1/α1

3. for i = 2 : k

4. ui = Kvi−1 − αi−1uik−1

5. #reorthogonalize ui

6. βi = ||ui||2

7. ui = ui/βi

8. vi = KTui − βivi−1

9. #reorthogonalize vi

10. αi = ||vi||2

11. vi = vi/αi

Algorithm 1: Lanczos-Golub-Kahan Bidiagonalization Algorithm. The result of

k iterations of this procedure is a size k×k bidiagonalization of the input matrix, K.

Call the jth column of U uj.

Reorthogonalize Algorithm given U , i:

1. for j = 1 : i− 1

2. ui = ui − (uTj ui)uj

Algorithm 2: Reorthogonalization algorithm for Lanczos-Golub-Kahan bidiago-

nalization. This can be used to reorthogonalize the vectors ui and vi constructed

in Algorithm 1.

There are two layers of Kronecker structure in this proposed Lanczos algorithm

modification. The first layer approximates K as a Kronecker summation decomposi-
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tion (2.4). This minimally impacts the structure of computations in Algorithm 1. In

place of the full matrix-vector multiplications, multiplications use a Kronecker sum-

mation decomposition of K. This reduces the time complexity in the base algorithm

with dense K from O(N2) = O(n4) to O(N
3
2 r) = O(n3r) for each multiplication,

which brings the algorithm from O(n4k + n2k2) to O(n3rk + n2k2). For small r, this

can be a significant savings, depending on k. Unfortunately, this does not improve

the storage complexity, because the computed Lanczos vectors are still dense.

We can attempt to fix the storage problems by use of the second layer of approxi-

mation: keeping the vectors uj and vj in Kronecker form as well. This requires more

attention than only representing K as a Kronecker summation. u1 is set based on

a choice of starting vector such as the right-hand side d (although other choices are

possible). Suppose we start with u1 = ua ⊗ ub. In line 2 of Algorithm 1, we already

run into the first difficulty: multiplying

(
r∑
i=1

Ai ⊗Bi

)
(ua ⊗ ub) =

r∑
i=1

Aiua ⊗Biub

results in v1 that has Kronecker structure, but of Kronecker rank r. This is an in-

crease from the Kronecker rank of u1, which is only 1. In fact, each matrix-vector

multiplication with our approximation ofK (or its transpose) increases the Kronecker

rank of the vector by a multiplicative factor of up to r. Furthermore, if two vectors

with a Kronecker summation form are added, the resulting rank can be up to the sum

of the individual ranks. Together, these result in an exponential increase of Kronecker

rank.

One common method to combat the explosion of Kronecker rank is to truncate

the result to a lower Kronecker rank [34]. This results in approximate ui and vi,

as opposed to the near-exact computations of the original aglorithm. Truncation

is particularly imprecise for reorthogonalization. The reorthogonalization process

requires many additions of vectors in Kronecker form, each of which have to be

truncated back to a reasonable Kronecker rank. This makes the reorthogonalization

process inexact, which is likely to degrade the algorithm’s performance.
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There are various methods for truncating Kronecker products down to a reduced

Kronecker rank. For example, a single term of highest magnitude may be used, or

the vector may be fully formed and re-converted back to Kronecker structure. This

is similar to the problem of expressing tensors with a low-rank decomposition or low-

rank approximation; see, for example, [23, 34]. Different methods vary considerably

in accuracy and cost.

Nonetheless, assume that we do use truncation of Kronecker rank. How does this

affect the time and storage complexity of the algorithm? If truncation takes O(τ)

time and can only be applied after a vector of too-high rank is computed rather

than implicitly during the computation, the time complexity adjusts accordingly.

The algorithm without reorthogonalization has significantly decreased costs. If uj

and vj are kept at Kronecker rank 1 then the multiplications in lines 2, 4, and 8 of

Algorithm 1 now each take O(n2r) time instead of O(n3r). Addition only incurs the

cost of truncation in this scheme, since it requires combining two separate Kronecker

sums into one and truncating. The costs for additions are dwarfed by the costs for

multiplications, and do not change the time complexity. The algorithm’s cost without

reorthogonalization is reduced from O(n3rk) down to O(n2rk + kτ). More generally,

if each uj is kept to Kronecker rank at most ru and vj is kept to Kronecker rank at

most rv, the cost without reorthogonalization is O(n2rk(ru + rv) + kτ).

Including reorthogonalization changes the algorithm’s complexity. The reorthogo-

nalization Algorithm 2 requires subtracting scaled versions of Kronecker vectors. The

resulting vector requires truncation, which has the most obvious impact on complex-

ity. However, there is also an inner product of vectors in the algorithm. Similar to

the norms required in the main Algorithm 1, these can be efficiently computed by

exploiting Kronecker product properties to avoid constructing the full vectors.

We start with the definition of an inner product for vectors x and y of the same

size. Using .∗ to denote element-wise multiplication and zi or (z)i to denote the ith
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entry of a vector z, xTy =
∑
i

(x.∗y)i. For general vectors of length n, (a⊗b).∗ (c⊗

d) = (a. ∗ c)⊗ (b. ∗ d). Recall the structure of the Kronecker product for vectors µ

and ν of length n:

µ⊗ ν =



µ1ν

µ2ν

...

µnν


.

The sum
∑
i

(µ⊗ ν)i =

(∑
i

µi

)(∑
j

νj

)
. This means that we can sum the elements

in the first vector µ, then multiply the result scaled by sum of the elements in the

second vector ν. Then to compute the inner product (a⊗b)T (c⊗d) we first compute

µ = a. ∗ c and ν = b. ∗ d, sum the elements of µ yielding the scalar sum Σµ, then

sum the elements in ν to get the sum Σν , and compute ΣµΣν . This is O(n) compared

to O(n2) for fully forming the vectors of length N .

What if we do not have single-term Kronecker product vectors, but instead sums?

The procedure is similar, but the complexity increases linearly with the Kronecker

rank of each vector. Suppose we have g =
rg∑
i=1

ai ⊗ bi and h =
rh∑
i=1

ci ⊗ di with

ai, bi, ci,di ∈ Rn for all i. Then

gTh =

rg∑
i=1

rh∑
j=1

n∑
k=1

(ai. ∗ cj)⊗ (bi. ∗ dj)k

=

rg∑
i=1

rh∑
j=1

(
n∑
k=1

(ai. ∗ cj)k

)(
n∑
`=1

(bi. ∗ dj)`

)

Letting µ(ij) = ai. ∗ cj and ν(ij) = bi. ∗ dj,

=

rg∑
i=1

rh∑
j=1

(
n∑
k=1

µ
(ij)
k

)(
n∑
`=1

ν
(ij)
`

)

Letting
n∑
k=1

µ
(ij)
k = Σµ,ij and

n∑
`=1

ν
(ij)
` = Σν,ij,
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=

rg∑
i=1

rh∑
j=1

Σµ,ijΣν,ij.

Computing Σµ,ij and Σν,ij takes O(n) for each i and j. This algorithm then takes

O(rgrhn) time. This is cheaper than the O(N) = O(n2) time for computing the inner

product of the full vectors if and only if rgrh < n. In this algorithm, it is crucial to

keep the Kronecker rank of the vectors low.

We can now deduce the overall time complexity. Assume all vectors ui are trun-

cated to a Kronecker rank ru and all vectors vi are similarly truncated to Kronecker

rank rv, with a truncation cost of O(τ). If truncation is done outside the loop at line

1 of Algorithm 2, then this algorithm has cost O(n2rk(ru + rv) + nk2(r2u + r2v) + kτ).

If truncation is done inside the loop, the complexity is instead O(n2rk(ru + rv) +

nk2(r2u + r2v) + k2τ) (the final kτ term becomes k2τ). In summary:

Algorithm Variant Complexity

Original O(n4k + n2k2)

K as Kronecker sum, only O(n3rk + n2k2)

K and vectors as Kronecker sums, O(n2rk(ru + rv) + nk2(r2u + r2v) + kτ)

truncate after reorthogonalization loop

K and vectors as Kronecker sums, O(n2rk(ru + rv) + nk2(r2u + r2v) + k2τ)

truncate in reorthogonalization loop

Table 7.1: Time complexity comparison for variations of the Lanczos-Golub-Kahan
bidiagonalization routine.

One considerable downside to this algorithm is the resulting structure of data. At

the end, the columns of the matrices Uk and Vk are represented as vectors, not ma-

trices, in Kronecker product summation form. This seriously constrains, for example,

multiplications with the matrix. Multiplication with the matrix can proceed using

the “weighted column summation” form of multiplication, where, for example, each



111

column ui in Uk is summed with a weight: Ukx =
k∑
i=1

xiui, and transpose multipli-

cation can proceed naturally. In all cases, the results of multiplication have the same

rank problems with increasing Kronecker rank as appear in the Lanczos algorithm.

Despite the structural issues, there is some storage savings from this method.

Normally, storing the Lanczos vectors takes O(n2k) space, but using the Kronecker

method reduces this to O(nk(ru + rv)). This can enable computations on larger

matrices than the standard method, at the cost of lower accuracy.

Without experimenting, it is unclear whether the storage and time savings are

worth the loss of accuracy in this modification. We reiterate that experiments and

future work are essential to determine the viability of this algorithm in practice.

7.2.3 Summary

Lanczos-Golub-Kahan bidiagonalization is a powerful algorithm that enables compu-

tation of the truncated SVD of a matrix. If high accuracy is essential, it is a good

choice, along with the randomized methods discussed in Section 7.3. However, our

Kronecker-based methods are preferable if accuracy can be reduced for time savings,

or if storing the singular vectors is prohibitively memory-intensive. It may be possi-

ble to modify Lanczos bidiagonalization to incorporate Kronecker structure to reduce

time and space costs.

7.3 Randomized Algorithms

Like Lanczos bidiagonalization, the general class of randomized methods for comput-

ing a truncated SVD detailed by Halko, Martinsson, and Tropp [24] work on a variety

of problems, including cases when the matrix K is only accessible via function call

form to compute matrix vector products. These stable methods use a randomized

starting guess and deterministic algorithms to get their solution. This results in a
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few unique benefits, such as straightforward parallelization and directly tunable error

bounds. However, the time complexity is not necessarily less than Lanczos methods

depending on certain parameter choices; this method still involves a reorthogonal-

ization step. Also, these methods have same issue of storage cost that appears in

Lanczos bidiagonalization due to the dense storage of singular vectors.

The main method proposed by Halko, Martinsson, and Tropp in [24] for computing

an approximate TSVD is as follows. We start by choosing a random set of (slightly

more than) k vectors ωi (for example, Gaussian random vectors) which form the

columns of a matrix Ω. These are used as random samples to the range of K by

computing Y = KΩ or, if the singular values of K decay slowly, Y = (KKT )qKΩ

for a chosen factor q ∈ Z+. Once Y is computed, a thin QR (see [21]) Y = QR is

calculated. Power iteration steps may be interleaved with thin QR steps to prevent

undue error from roundoff. Q gives an orthonormal basis that is expected to span

the first k singular vectors of K. This is used to compute a small matrix B = QTK.

Then, as with the algorithms presented here, an SVD of the small matrix B is used

to approximate the SVD of the full matrix: B = UBΣBV
T
B and therefore K ≈

QUBΣBV
T
B . There are variants on this method using an oversampling parameter p

to choose how many columns of Ω to compute, different choices of the power iteration

count q, optimizations for sparse and function-based K, and more.

In the image deconvolution problem, a compact PSF may enable fast multiplica-

tions with the matrix K. For this reason, we discuss both the base method for full,

dense K and the function call version which does not require explicit storage of K.

Halko, Martinsson, and Tropp provide time complexities for their algorithms. For

dense matrices, the cost is O(n4 log(k) + n2k2). For matrices which do not require

explicit storage of K and have multiplication cost O(Tmult), the cost is O(Tmult(k +

p)(q+1)+n2k2). In image deblurring problems, Tmult is Ω(n2), although typical costs

are Ω(n3) (while “big O” is an asymptotic upper bound, “big Ω” is an asymptotic
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lower bound [10, p. 48]). Cheaper multiplications indicate that less pixels are blurred,

which can correspond to a problem with less severe blur; often, the blur is significant

and widespread. Of the examples used in Chapters 3-6, only the motion blur had a

compact PSF with Θ(n3) multiplication cost (“big Θ” is both “big O” and “big Ω”:

an asymptotically tight bound [10, pp. 45-46]). If the function form of the randomized

algorithm is used, the cost should be no more than O(n3(k+p)(q+1)+n2k2), which,

because p and q are so small as to often be constant, is approximately O(n3k+n2k2).

Compared to the time complexity of O(n3r + k2r + k3) for the reordering method

proposed here, this is expected to be slower for typical k (usually k > n to be effective)

and r (r is at most n, but typically chosen to be very small).

To be clear, this is not to say that the randomized methods are slow. Those

algorithms are much more general than the methods presented here (no Kronecker

structure is required), and they can be tuned to have much higher accuracy than

our methods. Higher accuracy requires larger choices of k + p and potentially q

for matrices K with slow singular value decay. If a less strict accuracy bound is

acceptable, the algorithms can be run quickly, especially because they are so easily

parallelizable. Unlike the Lanczos algorithm and similar methods, the singular vectors

can be computed simultaneously rather than sequentially. But this may not be the

limit to acceleration for the randomized methods. Adjusting the algorithms to use

Kronecker structure, as was discussed for the Lanczos-based methods in Subsection

7.2.2, could improve the complexity so as to be faster than the methods proposed

here. This would require more adjustment than just using a Kronecker summation

decomposition (2.5) of K, which has Tmult = O(n3r), and is not better than the cost

discussed above.

Like the time complexity, the storage complexity of the randomized methods is

higher than the Kronecker methods proposed here. As with the Lanczos-based meth-

ods, the singular vectors are stored densely with the randomized methods. The min-
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imum storage required is then Ω(n2k), whereas the Kronecker-based methods have

storage cost O(n2 + k2). The randomized methods do not require explicitly forming

K, which would increase the cost further, but even without forming K the storage

cost is larger as k gets large. Again, O(n2k) is typical for methods that do not exploit

special structure, but it is larger than our proposed method.

The category where the randomized methods are better than our proposed meth-

ods is accuracy. They can be tuned to be arbitrarily accurate (within the computation

limits of computers), albeit with a considerable speed penalty. Our proposed meth-

ods, in comparison, have a bounded, moderate accuracy. Like the methods discussed

in Section 7.2, our algorithms are worse by a landslide in the accuracy category.

The randomized methods proposed by Halko, Martinsson, and Tropp are powerful,

general methods for computing several factorizations, including the TSVD. Compared

to our methods, they are, in theory, likely to be slower and require a higher storage

cost, but are more accurate. It is possible that adding Kronecker structure to the

computations could improve the speed and storage costs, although the accuracy may

be reduced depending on how the structure was added.

7.4 Conclusion

In this chapter, we looked at three alternative methods to our proposed Kronecker-

based TSVD approximation: fast Fourier transforms; Lanczos-Golub-Kahan bidiag-

onalization; and randomized methods proposed by Halko, Martinsson, and Tropp.

Fourier transforms are easy to store, fast to use, and highly accurate if the matrix

K has a circulant-like (such as block circulant with circulant block) structure. They

are a less accurate approximation for other matrix structures, and slower than our

proposed methods to construct. Lanczos-based methods give very high accuracy, but

have a high cost for reorthogonalization. If only a few singular values and vectors
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need to be computed (k is small), these methods are a good choice. The randomized

methods have a more directly tunable accuracy and can be easily parallelized com-

pared to Lanczos methods, although the time complexity is the same as the Lanczos

methods. These methods work well for situations where high accuracy is desired as

well. In addition, for extremely large matrices these methods can work with very

few passes over the data. But if there is not a block circulant structure, the singular

vectors are too costly to store or the time taken for the these methods is prohibitive,

and some accuracy can be sacrificed to get lower storage and considerable speed, then

our proposed methods are a good choice. Further, because the singular vectors are

stored in Kronecker format, operating with the resulting decomposition is fast. This

can be especially useful in situations where the decomposition is computed once but

used many times, such as for a preconditioner.
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Chapter 8

Blind Deconvolution

In this chapter we apply the methods developed in Chapters 3-6 to the blind deconvo-

lution problem. Taking a somewhat unconventional approach, our aim is to determine

if the blind deconvolution framework can improve the singular value approximations

of our methods. This can enable better reconstructions, but our primary objective

focuses on the factorization, rather than restoration.

8.1 Blind Deconvolution Framework

The blind deconvolution problem, introduced in Chapter 1, is a variant on the stan-

dard image deconvolution problem in which the blur operator is not exactly known.

Instead, typically we have an initial guess of the blur operator K0 along with an

observed blurred image d, and seek to solve

Kx+ e = d

where both x and K are unknown.

To make this problem tractable, we place constraints on K. If we have an initial

guess K0, we often penalize deviation of the reconstructed operator K from K0.
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The same restriction can be imposed on x deviating from x0, the initial reconstruc-

tion. Mathematically, we can impose those constraints using regularization (with

parameters α1 and α2) in a least squares formulation of the problem:

min
K,x
‖Kx− d‖22 + α1‖K −K0‖2F + α2‖x− x0‖22. (8.1)

Here, we elect to use 2-norms for vectors and Frobenius norm for matrices, but dif-

ferent norms can be used in practice.

This formulation (8.1) still is extremely broad. Although we penalize deviations

of K from K0, the optimization space is huge, as K has N2 = n4 entries that

can be changed. Based on the work by Dykes et al. [14], we constrain our blind

deconvolution by assuming that our approximationK0 has the correct singular vector

matrices. That is, our minimization problem gains the additional constraint that

K0 = U0Σ0V
T
0 ⇔K = U0ΣV

T
0 for an unknown Σ. As shown in [14] for the Lanczos

decomposition, this enables us to re-write some of the general blind deconvolution

formulation (8.1):

‖K −K0‖2F = ‖U0Σ0V
T
0 −U0ΣV

T
0 ‖22

= ‖U0(Σ0 −Σ)V T
0 ‖2F

= ‖Σ0 −Σ‖2F

Using σ0 = diag(Σ0) and σ = diag(Σ),

= ‖σ0 − σ‖22.

Similarly,

‖Kx− d‖22 = ‖U0ΣV
T
0 x− d‖22

= ‖ΣV T
0 x−UT

0 d‖22
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and

‖x− x0‖22 = ‖V T
0 x− V T

0 x0‖22.

Calling y = V T
0 x, y0 = V T

0 x0, d̃ = UT
0 d, and using .∗ to denote element-wise

multiplication, we get the greatly simplified problem

min
σ,y
‖σ. ∗ y − d̃‖22 + α1‖σ − σ0‖22 + α2‖y − y0‖22. (8.2)

Let the ith entry of a general vector z be called zi and the ith entry of y0 be called

y0,i. Then, as shown in [14], this problem immediately reduces to the fully separated

problems

min
σi,yi

(σiyi − d̃i)2 + α1(σi − σ0)2 + α2(yi − y0,i)2. (8.3)

The details of how to minimize this polynomial are given by Dykes et. al in [14]. Once

an optimal σ and corresponding y are calculated, we recover our approximation of

the optimal x using x ≈ V0y = V0V
T
0 x. Recall that V0 has truncated columns, so

this is not an exact computation.

Why would we go through all this work, and with a heavily simplifying assumption

that the singular vectors inK0 is exact? The hope is that we can use real observations

to improve our approximation of the blur operator. By incorporating information

about the right-hand side d, we gain more information about the true blur operator

than we do if we only have the matrix K. Especially in situations where we use a

truncated approximation with r < R terms in the Kronecker summation, this may

allow us to improve our estimates of the singular values more than we could otherwise.
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8.2 Discussion

In the preceding derivation, the impact of using truncated U0 and V0 may not have

been clear. Here, we emphasize the heavy limitations that stem from using a truncated

approximation.

From a broad perspective not focused on linear algebra, if we do not truncate our

SVD, then equation (8.2) is equivalent to solving N equations (8.3) for a total of 2N

variables. But when we truncate the SVD to k terms, we solve for only 2k variables.

If we need all N variables in, for example, x to capture the true image, then we

cannot expect to recover a good approximation of the true image with our TSVD of

size k.

In linear algebraic terms, if the rank of our approximation of K has rank k but

the true matrix K has a much higher rank O(N), we cannot expect to recover a good

solution with our approximation.

If we use a bad approximation y0 = V T
0 x0, we also expect significant error. The

goal is to use the right-hand side to inform an update of the blur operator. But if

we have too low of a truncation index k, we use the wrong information to inform our

update. Similarly, if there is a high level of noise ‖e‖22, the singular value update will

be corrupted.

The upshot is that in general we cannot expect that a blind reconstruction from

(8.2) will be significantly better than a reconstruction from a non-blind framework

(2.1). The reconstruction may even be worse.

With these limitations in mind, we expect that low truncation indices will give

poor results, as will problems largely contaminated by noise. In Section 8.3, we

conduct experiments to determine the performance of our method in this blind de-

convolution framework. Our experiments are guided by these limitations, and are

restricted in their generality as a result.
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8.3 Experimental Performance

We ran the blind deconvolution problem with significant and specific constraints and

found that, given those constraints, blind deconvolution improves the estimates of

the smallest singular values for some test problems. As we will discuss, these con-

straints are excessively restrictive for most practical applications. Overwhelmingly,

this framework of blind deconvolution does not improve the estimates of singular val-

ues, nor does it improve the reconstructions produced. We begin by discussing the

case that did work, and follow with a list of cases that did not give positive results.

At the end, we provide a practical guide for using this method.

We tested the blind deconvolution framework (8.2) using the PSF from the Satel-

lite Example introduced in Section 3.4. We used test images of size 32 × 32 and

used zero boundary conditions on the blur operator. Starting with this matrix, we

computed its SVD K = UΣV T using MATLAB’s svd command. To create our true

operator K∗ we perturbed the singular values of the matrix with 1% Gaussian noise

(relative to the magnitude of each individual singular value), yielding K∗ = UΣ∗V
T .

Our right-hand side d was computed as d = K∗xtrue + e, where e is a vector of 1%

(relative to the magnitude of K∗xtrue) Gaussian noise. The matrix K∗ was used to

generate the problem, but the matrix K was used to generate our initial matrix K0.

We generated the initial estimateK0 using the methods in Chapters 3-6 to approx-

imate the matrix K. We computed the initial guess x0 using a Tikhonov regularized

least squares solution with regularization parameter of λ = 10−5. For the regular-

ization of the minimization problem, we used regularization parameters α1 = 105

(greatly penalizing the deviation of y from y0) and α2 = 10−10 (barely penalizing

deviations of σ from σ0).

The methods which yielded positive results were the baseline and hybrid methods.

It is unsurprising that the hybrid method worked when the baseline method worked,

since most of the data in the hybrid method comes from the baseline method. For
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these methods, the blind deconvolution framework improved the estimates of the

smallest singular values once sorted (recall that due to Kronecker product structure,

the singular values are not sorted for the baseline and therefore hybrid methods).

The singular values and a smoothed version of the corresponding relative error are

shown in Figure 8.1 for the hybrid method. The hybrid method is a hybrid of the

truncation and baseline method, with ` = m = 16. The error is smoothed to show

the average of 5 errors, centered around the given index. This is necessary to damp

large fluctuations between indices and therefore actually see plots clearly.
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Figure 8.1: Blind Deconvolution Hybrid Results. The true, initial, and improved
singular values for the hybrid method blind deconvolution problem. The singular
values’ estimates are considerably improved for the smallest singular values, excluding
the last few entries.

For this problem, there is a notable improvement in the error of singular values

with indices 800 and above, excluding the very final few which are over-estimated.

The largest singular values are unaffected, and are comparably accurately estimated

with the initial and restored singular values.

The effect was less pronounced, but still present, for the baseline method. Figure

8.2 shows the computed initial and improved restored singular values for the baseline

method, as well as the error. Because the singular values are difficult to see on the

plot, a zoomed view of some of the smallest (excluding the very last few) singular
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values is shown to the right. We see that for these singular values, the restored

singular values are closer to the true values than the values from the initial TSVD

approximation.
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Figure 8.2: Blind Deconvolution Baseline Results. The true, initial, and improved
singular values for the baseline method blind deconvolution problem. Although the
effect is less pronounced in this example, the last several hundred singular values have
an improved estimate using the blind deconvolution framework, again excluding the
very last few values.

These two situations showed a moderate improvement in the singular values. No-

tably, we deviated here from the original framework proposed by Dykes et al. in a

subtle way: the singular vectors we used were not actually the true singular vectors

in the operator that blurred the image. We used approximate singular vectors which,

while they importantly spanned the same space, may not have corresponded to the

exact singular vectors in the exact same order as the true operator. This is perhaps
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more realistic than assuming singular vectors are exact to the true matrix and in the

same order.

If you did, however, use the same singular vectors to construct the true blur oper-

ator, you may expect the performance to improve. This was not the case. We found

that either the singular values didn’t improve, or rounding errors caused significant

error in the reconstructed singular values.

In fact, most of our tests did not produce positive results. Using the truncation

method or reordering method to test either approach, the one for which we reported

positive results or the one just described with exact singular vectors, did not work.

As mentioned previously, compressing the data caused serious difficulties with these

methods, especially as finite precision arithmetic errors accumulated.

Using a different PSF gave poor results. Recall, the Satellite Example PSF was

the one for which the TSVD approximations were unanimously excellent among all

methods. With a more difficult to approximate operator, such as the Motion Blur

Example’s operator, the results were poor for all methods.

Adding too much noise (here we use a low 1%) yielded poor results because the

right-hand side we used to inform the singular value updates were too far from the

true blurred image.

And finally, not skewing the regularization parameters heavily yields poor results.

Here we used α1 = 105 and α2 = 10−10. This heavily penalizes changes in y from y0,

but enables the singular values to change relatively freely from their initial values.

If we allow α1 and α2 to be even remotely close in magnitude, the singular values

change only negligibly and the reconstruction changes considerably. Unfortunately,

the changes that typically resulted from y deviating from y0 worsened, rather than

improved, the reconstruction. We also tested varying the regularization parameter

α2 per singular value index so that the smallest singular values were less penalized

than the largest; this did not improve the results.
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8.4 Summary

The situations in which this method performs poorly are considerably more frequent

than the situations in which this method performs well for the image deconvolution

problem. Because the blind deconvolution framework is so cheap (both in computa-

tion time and memory), the cost for trying it is low, and does not hurt. If the results

deviate only a slight amount from the original singular values, they may be worth

using. If there are large deviations, then it is likely the solution is corrupt, and not

worth using. In most cases, however, the result is that the singular values do not

change significantly.
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Chapter 9

Conclusion

We have derived three new methods for approximating a truncated singular value

decomposition based on an ordered Kronecker product summation decomposition.

The first method uses a truncation of the singular vectors of the most significant

Kronecker term to enable a computationally feasible singular value decomposition.

The second method is a variant of the first, in which the singular vectors and values

of the first Kronecker term are reordered so that the singular values are sorted in

descending magnitude prior to truncation. The final method is a hybridization scheme

that allows either of these two methods, the standard truncation method or the

reordered truncation method, to be combined with the simple and computationally

cheap baseline method.

When applied to image deconvolution problems, these methods produce decompo-

sitions which approximate the blur operator effectively, enabling useful restorations.

The truncation method tends to underestimate the smallest singular values, but gives

good restorations due to its inclusion of lower significance singular vectors and values.

The reordering method typically gives the most accurate representation of the original

matrix. And the hybrid method enables cheap approximations that have the benefits

of both the baseline method (ease of computing many singular values and vectors)
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and either the truncation or reordering method (which perform better in general on

larger singular values).

Arguably the most significant benefit to all of the Kronecker-based methods de-

scribed, including the baseline method, is that they reduce the memory complexity

of the problem. Storage costs are O(n2 +k2) for all methods, including storage of the

singular vectors. Traditional methods have O(n2k) storage cost for the singular vec-

tors. Our proposed methods and the baseline method enable computations on larger

matrices than possible using traditional methods. This benefit offsets the drawback

of a less accurate solution.

We further explored extending these works to a blind deconvolution setting to

determine whether the singular value estimates could be improved using additional

data, namely the blurred right-hand side. Overwhelmingly, the answer is that no,

the estimates tend to not be improved in this framework, although there are a few

situations in which error may be reduced for the smallest singular values using the

baseline or hybrid methods.

Our methods are fast to use, cheap to compute, and easy to store. Despite their rel-

atively low accuracy compared to commonly used methods for approximating TSVDs

and other factorizations, the methods proposed here are useful in applications with

extremely large ill-posed matrices which can be cheaply decomposed into an ordered

Kronecker summation decomposition. We encourage future work to determine if the

Kronecker framework can be added to more commonly used methods, such as Lanczos

bidiagonalization or randomized methods.
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Appendix A

Comparison of Reconstructions

This appendix shows the results from each different method described in Chapters

3-6 for the image reconstruction examples. By viewing the results simultaneously, we

can more easily see the variations between the different methods. For all figures, we

include negative values to make noise patterns more obvious.

A.1 Satellite Example

The first example we discussed was the satellite example. Recall that all methods

produced good results for this example. Indeed, we see this in Figure A.1.

True Baseline Truncated Reordered Hybrid

Figure A.1: Satellite Example Comparison. For the Satellite Example, all methods
performed well, although the fine details are slightly less prominent for the reordering
method than other methods.

Notably, the fine details on the reordering method reconstruction are slightly less
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pronounced than for the other methods, with the noise pattern obfuscating the thin

rod parallel to the solar panels. Regardless, the reconstruction for all methods is good

enough to be useful.

A.2 Grain Example

The second example is the Grain example, for which some methods started to pro-

duce poor results. Indeed, the truncation method was the only method to produce

significant fine detail in the reconstruction. This can be clearly seen in Figure A.2.

True Baseline Truncated Reordered Hybrid

Figure A.2

The reconstructions besides the truncation method restoration vary primarily in

their noise patterns, but the variation is mild. The truncation method is supposed to

be less accurate than the reordering method, so it may be surprising that the recon-

struction is better. But the accurate reconstruction is less accurate to a true rank-400

reconstruction. The reconstruction using MATLAB’s svds command to compute a

true rank-400 TSVD of the blur operator K is shown in Figure A.3. This restoration

closely resembles all restorations except the truncation method reconstruction.
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Figure A.3: True Grain Example Reconstruction. This figure shows the reconstruc-
tion produced by a true rank 400 TSVD of the Grain Example blur operator.

A.3 Motion Example

The final example we tested is the Motion Example. For this example, the baseline

method gave extremely poor results, but the truncation and reordering method pro-

duced good results with fine details. The hybrid method, being a combination of the

poor baseline estimate and the truncation method reconstruction, produced middling

results.

True Baseline Truncated Reordered Hybrid

Figure A.4: Motion Example Comparison. In the Motion Example, we saw the poor
performance of the baseline method when K1 is a poor approximation of the blur
operator K. The new truncation and reordering methods perform excellently on this
case.
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Appendix B

Comparison of Singular Values

The singular value approximation tests showed the results for each TSVD approxima-

tion method separately. In this appendix, we see error graphs consolidated together,

enabling comparisons between the performance of each method. The errors in these

plots have been smoothed compared to the true error plots shown in Chapters 3-6;

the plots here use an average of the relative errors for indices i − 1 through i + 1 to

determine the error for index i. This dampens the highly oscillatory fluctuations seen

previously, allowing us to see the different errors more clearly.

B.1 Singular Value Atmospheric Blur Example

The first example for singular value approximations was the Singular Value Atmo-

spheric Blur Example. This example showed the strength of the truncation, re-

ordering, and therefore hybrid method for the largest singular values, and the fairly

consistent error for the baseline method on all singular values. The smoothed errors

for all methods are shown in Figure B.1.
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Figure B.1: Singular Value Atmospheric Blur Comparison. This figure shows the
smoothed relative errors for all methods on the first singular value approximation
example. Eventually, most methods reach a fairly high relative error for the smallest
singular values.

This clearly shows the strength of the hybrid method: its error is lower than the

baseline method for the largest singular values and lower than the reordering and

truncation methods for the largest singular values.

B.2 Singular Value Motion Example

The second and significantly more challenging example was the Singular Value Motion

Example. Each method gave less accurate estimates for this example than for the

first. The baseline method gave particularly poor estimates for the largest singular

values, with error above 10−2 for almost all indices. However, consistent to the

expected pattern, the baseline method had lower relative error than the truncation

and reordering method for the smallest singular values. The hybrid method therefore

gave results that combined these strengths. These results are shown in Figure B.2.
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Figure B.2: Singular Value Motion Comparison. This figure shows the smoothed
relative errors for all methods on the second singular value approximation example.
All methods perform worse for this example than the first, with the baseline method
giving a particularly poor estimate of the largest singular values.



133

Appendix C

Comparison of Preconditioners

This appendix summarizes the timing results from the preconditioning example used

to test each of the Kronecker-based methods.

First, we visually represent the timing results in Figure C.1. Clearly, not precon-

ditioning takes the most time and the baseline method takes the least time. However,

we can also see that the reordering and truncation methods take less time to complete

their iterations than the baseline method. Most of the time taken for the reorder-

ing and truncation methods is in constructing the precondtioner. If there are many

right-hand sides to solve for, then the higher initial cost can pay off in faster iterations

to converge to a true solution for the many right-hand sides. Table C.1 shows the

same timing results summarized in Figure C.1, and additionally shows the number of

iterations required to converge for each method.
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Figure C.1: Preconditioner Timing Comparison. The lighter section of each bar
represents the time taken to construct the preconditioner, and the darker portion is
the time taken to complete iterations.

Without Baseline Truncated Reordered Hybrid
Iterations 345 16 7 7 19
Setup time (sec) 0.0 0.101 1.10 1.22 1.19
Calculate time (sec) 6.04 0.380 0.180 0.208 0.657
Total time (sec) 6.04 0.481 1.28 1.43 1.85

Table C.1: Preconditioner Times for All Methods. This table shows the timing
results for all methods, including a split of the computations into setup and iteration
(calculate) times. Additionally, the number of iterations required to reach convergence
is shown.
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