
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from
Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis in whole or in part in all
forms of media, now or hereafter known, including display on the World Wide Web. I
understand that I may select some access restrictions as part of the online submission
of this thesis. I retain all ownership rights to the copyright of the thesis. I also retain
the right to use in future works (such as articles or books) all or part of this thesis.

Eric Yixuan Xu 9 April, 2025

Compression of Tensor Train Cores via Tucker Decomposition, and Applications to
the Density Matrix Renormalization Group

By

Eric Yixuan Xu

Elizabeth Newman, Ph.D.
Advisor

Francesco Evangelista, Ph.D.
Co-Advisor

Department of Mathematics

Elizabeth Newman, Ph.D.
Advisor

Francesco Evangelista, Ph.D.
Co-Advisor

Cosmin Pohoata, Ph.D.
Committee Member

2025

Compression of Tensor Train Cores via Tucker Decomposition, and Applications to
the Density Matrix Renormalization Group

By

Eric Yixuan Xu

Elizabeth Newman, Ph.D.
Advisor

Francesco Evangelista, Ph.D.
Co-Advisor

An abstract of
a thesis submitted to the Faculty of

Emory College of Arts and Sciences of Emory University
in partial fulfillment of the requirements for the degree of

Bachelor of Science with Honors

Department of Mathematics

2025

Abstract

Compression of Tensor Train Cores via Tucker Decomposition, and Applications to
the Density Matrix Renormalization Group

By Eric Yixuan Xu

The tensor train (TT), or matrix product state (MPS), is a tensor decomposition
which aims to avoid the curse of dimensionality in high-dimensional problems by
compressing a tensor of arbitrary order into a chain of contractions of order-3 tensors,
which we call the TT cores. In this work, we further compress the TT cores by means
of a Tucker decomposition, or higher-order singular value decomposition (HOSVD).
We perform error analysis for putting a TT into this form, and provide operations
analogous to those for the uncompressed form, and discuss several properties. We
showcase these theoretical results by compressing solutions of the density matrix
renormalization group (DMRG) for the one-dimensional Hubbard model.

Compression of Tensor Train Cores via Tucker Decomposition, and Applications to
the Density Matrix Renormalization Group

By

Eric Yixuan Xu

Elizabeth Newman, Ph.D.
Advisor

Francesco Evangelista, Ph.D.
Co-Advisor

A thesis submitted to the Faculty of
Emory College of Arts and Sciences of Emory University
in partial fulfillment of the requirements for the degree of

Bachelor of Science with Honors

Department of Mathematics

2025

Acknowledgments

This thesis and the extent of my development as a student would not have been

possible without the immense generosity of Dr. Elizabeth Newman and Dr. Francesco

Evangelista, who have supported me far beyond just advising the work contained here.

Thanks to many, many others, including Dr. Cosmin Pohoata, Dr. Suresh Venapally,

Dr. Yiran Wang, Dr. Difeng Cai, Dr. Jose Soria, Dr. Richard Himes, Dr. Peter

Wakefield, and the Evangelista group for enlightening conversations, guidance, and

enabling me to see new joys in math, science, and my other pursuits. Thanks to my

family for their unwavering support in all aspects.

Contents

1 Introduction and Background 1

1.1 Mathematical Background . 2

1.1.1 Matrices and the Singular Value Decomposition 3

1.1.2 Tensor Preliminaries . 5

1.1.3 Tensor Train . 9

1.2 Physical Background . 14

1.2.1 Second Quantization . 14

1.2.2 The Schrödinger Equation and the Hubbard Model 17

1.2.3 The Curse of Dimensionality 18

1.3 Density Matrix Renormalization Group 19

1.3.1 The DMRG Sweep Algorithm 20

1.3.2 Variational Rounding . 23

1.3.3 The Structure of the Hubbard Hamiltonian 25

2 Compression of TT Cores 27

2.1 The Basics . 27

2.1.1 Algebraic Operations . 29

2.1.2 Error Analysis . 30

2.2 Revisiting DMRG . 33

2.2.1 Utilizing Nonuniqueness of the Tucker Decomposition 33

i

2.2.2 Lanczos Iteration on Tucker Decompositions 34

3 Numerical Results 36

3.1 More on the Error Bound . 36

3.2 Compression of DMRG Solutions . 38

4 Concluding Remarks 41

5 Appendix 43

Bibliography 49

List of Figures

1.1 Tensors written in graphical notation 6

1.2 Tensor train canonicalization . 12

3.1 Error of TTSVD with core compression 37

3.2 Compression of the DMRG solutions 38

3.3 Conservation of quantum numbers under core compression 40

iii

List of Algorithms

1 Leading Left Singular Vectors (LLSV) 5

2 Sequentially Truncated Higher-Order SVD (ST-HOSVD) 9

3 Tensor Train SVD (TTSVD) . 11

4 DMRG Sweep Algorithm . 23

5 Variational TT Rounding . 25

6 Tensor Train SVD with Core Compression 28

iv

Chapter 1

Introduction and Background

Among some of the most expensive scientific computing methods are quantum chemical

methods, particularly in molecular electronic structure and condensed matter physics.

Often, these problems are large and high-dimensional such that naive approaches

become quickly intractable. However, it is also often the case that these problems

contain lots of structure, and recognizing and exploiting this structure opens the path

to more efficient algorithms. A prime example of such an algorithm is the density

matrix renormalization group (DMRG), which has become state-of-the-art in solving

the aforementioned electronic problems. The key insight behind this algorithm is how

it represents the wavefunction of a system: it uses what is known in the mathematics

literature as the tensor train (TT), and in the physics/chemistry literature as the

matrix product state.

This representation is compact (in the sense that it takes far less storage than is

needed naively), and achieves this by exploiting physical features of certain systems,

namely locality in low-energy lattice systems. Because of the empirical power of this

representation, the DMRG and its extensions have garnered significant interest. More

recently, this algorithm has been extended beyond lattices to molecular systems with

extremely promising results, such as in [9].

1

2

Despite this success, the DMRG is still an expensive algorithm, and suffers especially

when the system being studied leaves the regime of local interactions. The purpose of

this work is to investigate the tensor train representation upon compressing it further,

and observe how the DMRG is affected.

We first outline the main ideas from linear and multilinear algebra which are

essential to our discussion—we begin with some concepts in matrix theory, then

move to a discussion of tensors and the tensor train. We then proceed to a physical

background in order to acquaint ourselves with some quantum mechanics, since the

tensor train first appeared in that context, and conclude with a more detailed discussion

of the DMRG.

1.1 Mathematical Background

Tensors arise naturally and ubiquitously in physics and chemistry, and have become

essential tools in modern computation, with applications in statistics, machine learning,

and data science. Taking the view of tensors as multi-way arrays or higher-dimensional

matrices, it appears natural to study tensor decompositions in analogy to the more

classical study of matrix decompositions. Keeping with this analogy, one might hope

to reveal many of the same properties: existence and uniqueness, approximation error,

and structure in general. Paired with these naturally also comes the computational

component, i.e., algorithms with which one can compute these decompositions, and

reveal desired properties of a given tensor.

It turns out, rather unsurprisingly, that these generalizations are no trivial task.

While tensors are indeed powerful, they have several key drawbacks. In the theoretical

realm, they fail to generalize many nice results in matrix theory. An archetypal

example of this is tensor rank (in the sense of a linear combination of rank-1 tensors),

which is not only NP-hard to compute, but also depends on the field over which

3

one works, i.e., the tensor rank over the reals is not necessarily the same as over the

complex numbers, while in matrix theory these are always the same. In the practical

realm, the size of a tensor grows fast with the number of dimensions, making it quickly

intractable to store, much less perform operations on, large tensors.

In this section, we outline several ideas from linear and multilinear algebra which

are essential to our discussion. We begin with some concepts in matrix theory, then

move to a discussion of tensors and the tensor train.

1.1.1 Matrices and the Singular Value Decomposition

We first define the matrix rank:

Definition 1.1.1 (Matrix Rank). Let A ∈ Cm×n, with

A =
r∑

i=1

aib
∗
i

where ai ∈ Cm and bi ∈ Cn for i ∈ [r]. If r is minimal, we say that A has rank r. In

particular, r is the minimal number of rank-one matrices needed to sum to A.

Here, we have used the fact that rank-one matrices can be written as the outer

product of vectors. Then, we define the matrix singular value decomposition:

Definition 1.1.2 (Matrix SVD). Let A ∈ Cm×n. The matrix singular value

decomposition is:

A = UΣV ∗

where U ∈ Cm×m and V ∈ Cn×n are orthogonal matrices and Σ ∈ Rm×n is of the form

Σ =

Σr

0

 , Σr = diag(σ1, σ2, . . . , σr)

4

where σi, the singular values, are positive, real numbers s.t. σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

Notice that the SVD is rank-revealing, i.e., the rank of A is given by r, the

number of nonzero entries is Σ. We now state an important result in matrix low-rank

approximation which utilizes the SVD.

Theorem 1.1.1 (Eckart–Young–Mirsky). Let A,B ∈ Cm×n with rank(B) = k ≤

rank(A) = r. Let Ak be the best rank-k approximation of A. Then,

∥A−B∥2F ≥ ∥A− Ak∥2F =
r∑

i=k+1

σ2
i

where ∥ · ∥F is the Frobenius norm and σi is the ith singular value of A.

The theorem stated with proof can be found in [7]. Note that there exists a similar

result for the L2-norm, but we primarily concern ourselves with the Frobenius norm

here because it generalizes easily to tensors. Further, we’d like to work in an inner

product space (and even further, in a Hilbert space), so we also introduce the following

definition:

Definition 1.1.3 (Frobenius Inner Product). Let A,B ∈ Cm×n. The Frobenius

inner product ⟨·, ·⟩F is defined as:

⟨A,B⟩F =
m∑
i=1

n∑
j=1

āijbij = trace (A∗B)

One can show that ⟨·, ·⟩F does indeed satisfy the properties of an inner product and

that it induces the Frobenius norm. One can view this as vectorizing each matrix and

taking the Euclidean norm, but from this perspective the convenient trace property is

not so obvious. Notice that if the field we work over is (the elements of our matrices

are in) R or C, which in this work is assumed, equipping our vector space with the

Frobenius inner product makes our space a Hilbert space.

5

We now introduce an important matrix algorithm which appears as a subroutine

in many of the tensor algorithms to be discussed: the Leading Left Singular Vectors

(LLSV) algorithm. The procedure as defined below is borrowed from [2].

Algorithm 1: Leading Left Singular Vectors (LLSV)

Input: Y ∈ Rm×n, and one of: target rank r ≤ min{m,n} or absolute error
tolerance ε ≥ 0

Output: W ∈ Rm×r where W semiunitary, and err ≡ ∥(I −WW⊤)Y ∥F
where ∥W⊤Y ∥F maximal (if ε provided, r maximal s.t. err ≤ ε)

1 function [W,err] = llsv(Y, r or ε)
2 [U,Σ, V ∗]← svd(Y)
3 if ε given:

4 r ← min
{
r ∈ [m] |

∑m
i=r+1 σ

2
i ≤ ε2

}
5 end if
6 W ← U:,:r

7 err←
∑m

i=r+1 σ
2
i

8 return [W,err]
9 end function

In practice, when implementing LLSV, one does not need to store V ∗, and can

use the reduced form of the SVD, i.e., enforce Σ to be square, and thus potentially

compute fewer columns of U . Additionally, one can choose to keep the singular value

matrix Σ and store it in a vector of length r. The reason one might make this choice

becomes apparent in the discussion of the TTSVD. Notice also that incorporated into

this algorithm is a way to perform low-rank approximation, taking advantage of the

Theorem 1.1.1.

1.1.2 Tensor Preliminaries

The primary source for much of this section, including notational conventions, is [2]

and [9]. One should consult these texts for more details if desired. Though there are

several definitions for a tensor, for the purposes of this work we primarily use the

following:

6

Definition 1.1.4 (Tensor). A tensor X ∈ Fn1×n2×···×nd is a d-way array, where d is

called the order of X .

Notice that with this definition, we can define a matrix to be a tensor of order 2,

and a vector to be a tensor of order 1. In this work, we will assume F = R, but in

general we can have F be other fields, e.g., C.

We now introduce a generalization of the familiar matrix-matrix product and

matrix-vector product: the tensor contraction. As with the lower order cases, two

tensors (of possibly differing order, as in the case of a matrix-vector product) admit

contractions along indices of matching dimension. Since in higher orders we lack

the convenient right- and left-multiplication notation that we have with matrices

and vectors, notation quickly becomes cumbersome. To remedy this fact, it is often

convenient to use a graphical notation, as in Figure 1.1.

α v A X Y · · ·

Figure 1.1: Tensors written in graphical notation. Here, the number of legs denotes
the order of the tensor. That is, α is a scalar, v is a vector, A is a matrix, X is an
order-3 tensor, etc.

When joining tensors to be contracted along some compatible indices, we simply

connect the legs. For instance, if we wish to write the matrix-vector product Ax = b,

we would write:

Ax =

x

A
=

b
= b (1.1)

As another example, if we wish to write out a matrix in SVD form, A = UΣV ∗, we

7

can write:

A = A =

U

Σ

V ∗

= UΣV ∗ (1.2)

In later sections, especially in the discussion of DMRG, most of the operations will be

written entirely in this notation.

As a generalization of the matrix rank and the SVD as a rank-revealing factorization,

we introduce the multilinear rank and the Tucker decomposition. We also introduce the

sequentially truncated higher-order SVD (ST-HOSVD) algorithm, a direct algorithm

which allows us to compute a Tucker decomposition with specified multilinear rank or

error (though iterative methods to do this also exist).

Definition 1.1.5 (Multilinear Rank). Let X be a d-order tensor. The multilinear

rank of X is given by:

multirank(X) = (r1, r2, . . . , rd), rk = rank(X(k))

where k ∈ [d] and X(k) denotes the mode-k unfolding of X .

The mode-k unfolding X(k) of a tensor X , informally, is a particular matricization

of X where X(k) ∈ Rnk×Nk , where Nk is given by the product of all other dimensions.

Note that there exists a natural ordering of the Nk column vectors, and for consistency

we assume in this work that all unfoldings abide by this ordering.

Definition 1.1.6 (Tucker Decomposition). Let X be a d-order tensor with di-

mensions n1, n2, . . . , nd. Given target multilinear rank r = (r1, r2, . . . , rd), the rank-r

8

Tucker decomposition of X is:

X = G ×1 U1 ×2 U2 · · · ×d Ud

where G ∈ Rr1×r2×···×rd, and Ui ∈ Rni×ri are semiunitary matrices. Graphically, we

can write:

X
. . .

≈ GUd

U1 U2

U3

U4

. . .

More directly, we can write:

X (i1, i2, . . . , id) =

r1∑
j1=1

r2∑
j2=1

· · ·
rd∑

jd=1

G(j1, j2, . . . , jd) ·
d∏
l

Ul(jl, il)

The mode-i product ×i denotes what is effectively a matrix-matrix multiplication

using the mode-i unfolding of G, followed by a reshaping back into a tensor which has

the same dimensions, except ri is replaced by ni. Note that the Tucker decomposition

is not in general unique, since we can insert the identity between the core and factor

matrices. Algorithm 2 introduces this procedure.

Notice that by matricizing and using the LLSV subroutine, the way we control the

rank/error is through the SVD and Theorem 1.1.1. Later on, we will use this algorithm

directly in our compression of a TT. There is a more naive HOSVD algorithm which

does not truncate X as factor matrices are computed and instead compresses the full

tensor directly to the core G at the end, but it has worse computational complexity

while giving the same result. Thus, we generally choose to use the ST-HOSVD. Now,

as alluded to before, we can define a Hilbert space in which tensors are our vectors.

9

Algorithm 2: Sequentially Truncated Higher-Order SVD (ST-HOSVD)

Input: X ∈ Rn1×n2×···×nd , and one of: target multirank r = (r1, r2, . . . , rd)
with ri ≤ ni or absolute error tolerance ε ≥ 0

Output: G ×1 U1 ×2 U2 · · · ×d Ud where G ∈ Rr1×r2×···×rd and Ui ∈ Rni×ri (if
ε provided, we compute r satisfying the error bound on the fly)

1 function [G, U1, U2, . . . , Ud] = st-hosvd(X , r or ε)
2 if ε is given:

3 ε̄← ε
√
d∥X∥

4 end if
5 G ← X
6 for i ∈ [d]:
7 Ui ← llsv(G(i), ri or ε̄)
8 G ← G ×i U

⊤
i

9 end for
10 end function

Definition 1.1.7 (Tensor Inner Product). Let X ,Y ∈ Rn1×n2×···×nd. We define

the tensor inner product ⟨·, ·⟩ to be:

⟨X ,Y⟩ =
n1∑
i1

n2∑
i2

· · ·
nd∑
id

xi1i2···id · yi1i2···id

One can see how this inner product generalizes Definition 1.1.3, and similarly, one

can verify that this satisfies the definition of an inner product and that equipping

Rn1×n2×···×nd with it makes it a (finite-dimensional) Hilbert space. We induce the

norm ∥X∥ =
√
⟨X ,X ⟩ (and the metric d(X ,Y) = ∥X − Y∥), which we will make

use of later on. One can view this inner product as a special case of tensor contraction.

1.1.3 Tensor Train

We now begin our discussion of the tensor train (TT), or, in the chemistry and physics

literature, what is known as the matrix product state (MPS). For a more detailed

overview, one can consult [12] or [2]. For more historical background, i.e., its origins

in many-body quantum physics, see [15] and [14].

10

Definition 1.1.8 (Tensor Train Decomposition). Let X be a d-order tensor with

dimensions n1, n2, . . . , nd. Given target tensor train rank r = (r1, r2, . . . , rd−1), the

rank-r Tucker decomposition of X is:

Gnd

n1 n2

n3

n4

. . .

≈
G1 G2 · · · Gd

n1 n2 nd

r1 r2 rd−1

More directly, it can be written:

X (i1, i2, . . . , id) = G1[i1]G2[i2] · · ·Gd[id]

where Gj[ij] are matrices of size rj−1 × rj. For j ∈ {1, d}, these are vectors of size

1× r1 and rd × 1, respectively.

The TT can be viewed as a generalized SVD, though it may be not immediately

apparent why. Observe Algorithm 3, which takes an unfactorized tensor and computes

its TT form. We borrow again from [2]. From this, one can see this interpretation:

for the computation of each core, we are matricizing, computing the LLSV, then

reshaping.

Notice that in the way the algorithm is written, we do not factor out the singular

value matrices at each iteration. However, we generally can choose to do so, outputting:

X = G1 Σ1 G2 Σ2 · · · Gd
(1.3)

where each Σi is square, of size ri × ri. This is also known as the canonical form, or

Vidal gauge, of a TT. Having a TT in this form gives rise to a naive way of rounding,

à la Eckart–Young–Mirsky, i.e., we simply truncate any of the Σi. As we will see later,

this canonical form also allows us many computational conveniences.

11

Algorithm 3: Tensor Train SVD (TTSVD)

Input: X ∈ Rn1×n2×···×nd , and one of: target TT rank r = (r1, r2, . . . , rd) or
absolute error tolerance ε ≥ 0

Output: TT cores G1,G2, . . . ,Gd with TT rank r, and err ≤ ε∥X∥ (if ε
provided, we compute r satisfying the error bound on the fly)

1 function [G1,G2, . . . ,Gd] = ttsvd(X , r or ε)
2 if ε is given:

3 ε̄← ε
√
d− 1∥X∥

4 end if
5 r0 ← 1
6 Y1 ← X
7 for k ∈ [d− 1]:
8 Ȳk ← reshape (Yk, (rk−1nk , nk+1nk+2 · · ·nd))
9 [Gk, εk]← llsv(Ȳk, rk or ε̄)

10 Yk+1 ← G⊤
k Ȳk

11 Gk ← reshape(Gk, (rk−1 , nk , r k))
12 end for
13 Gd ← Yd

14 err←
√∑d−1

k=1 ε
2
k

15 end function

Suppose we wish to put a TT into canonical form. Notice that given a matrix

and its inverse AA−1 = I, we can insert it between two cores (assuming compatible

dimensions) without affecting the overall TT, that is, we have a so-called gauge degree

of freedom. We can factor out the singular value matrices as described in Figure 1.2.

We have stated previously that we are working in a Hilbert space. Thus, we

introduce the Hilbert space operations for TT. The inner product should appear

intuitive: we simply connect two tensor trains by their matching indices, analogously

to Definition 1.1.7. Scalar multiplication is also straightforward: we simply multiply

any of the cores (or singular value matrices, if we are in canonical form) by the scalar.

Vector addition is a slightly more complicated. Let C = A+B, where A and B are

12

G2 G3 · · ·· · · y
G2 X−1 X Y Y −1 G3 · · ·· · · y

G′
2 XY G′

3 · · ·· · · y
G′

2 UΣV ∗ G′
3 · · ·· · · y

G′′
2 Σ G′′

3 · · ·· · ·

Figure 1.2: Graphical description of the TT canonicalization procedure. First, we
insert the identity twice, in the form of I = X−1X = Y Y −1, where X and Y are the
principal square root matrices of the self inner products of the left and right parts of
the TT vector, respectively (noting that these self inner products are always Hermitian
positive semidefinite). We then compute the SVD of XY = UΣV ∗. Multiplying
matrices back into the cores, we are left with only the singular value matrix Σ linking
the two cores. Performing this on each pair of cores yields the TT in canonical form.

13

tensor trains. We can write the cores of C in terms of the cores of A and B as follows:

Cj[ij] =

[
A1[ij] B1[i1]

]
if j = 1Aj[ij] 0

0 Bj[ij]

 if j ∈ {2, 3, ..., d− 1}

Ad[id]

Bd[id]

 if j = d

(1.4)

From this, one might not be so surprised to learn that the sum has generally double

the rank of the summands. Finally, we introduce the matrix analogy for tensor trains

as vectors: the aptly named TT matrix (or matrix product operator). In general, we

consider such a tensor A to of be size n1 × n1 × n2 × n2 × · · · × nd × nd. One might

guess how this matrix appears in TT format:

A =

n1 n2 nd

A1 A2 · · · Ad

n1 n2 nd

(1.5)

Let B be a TT vector of compatible dimension with A, i.e., of size n1 × n2 × · · · × nd.

To apply a TT matrix to a TT vector, we simply do the following, in analogy to

Equation 1.1:

AB =

B1 B2 Bd

A1 A2 · · ·

· · ·

Ad
(1.6)

In general, TT vector addition and TT mat-vecs grow the ranks of the resulting TT

vector. Before, we mentioned a way of rounding by truncating the singular value

14

matrices when a TT is in canonical form. Something nice about that method is that it

is quite straightforward to implement. However, when we round in this way, it is not

immediately obvious how overall error behaves. In particular, when we round locally,

i.e., we truncate only one of our Σi, it is not in general clear how the entire tensor train

changes. Later, in the DMRG section, we will introduce a different, more sophisticated

rounding method which involves solving a nonlinear optimization problem.

1.2 Physical Background

In quantum chemistry and condensed matter, strongly correlated low-dimensional

lattice systems constitute a family of rich but difficult problems. Only in a few

special cases do these systems have analytical solutions, and, when treated numerically,

many of these problems behave badly in the face of single-reference methods, e.g.,

Hartree–Fock, as a result of strong correlation. Hence, multireference algorithms, such

as the density matrix renormalization group (DMRG), become important tools in the

study of these systems.

1.2.1 Second Quantization

When one deals with quantum many-body systems, it can be convenient to use the

language of second quantization, also known as the occupation-number representation.

Here, we introduce some of the basic notation and concepts appearing in this work.

The key insight behind this formalism is the indistinguishability of particles. In

particular, the many-body wavefunction is invariant, up to a phase factor, under

particle exchange. We limit the discussion here to electrons, which are fermions, so

our wavefunctions are antisymmetric, i.e., the phase factor appearing from particle

exchange is −1.

What this indistinguishability implies is that given a multi-particle state, we cannot

15

ascribe a single-particle state to a given particle. Because of this, we can consider

the set of single-particle states, and describe a multi-particle state by occupying the

single-particle states. Let F1 be the Hilbert space of fermionic single-particle states

with basis
{
|ψi⟩

}
. We can construct the Hilbert space of N -fermion states, which we

denote FN . FN has a basis
{
|λ1, λ2, . . . , λN⟩

}
of N -particle wavefunctions (Slater

determinants), i.e.,

|λ1, λ2, . . . , λN⟩ ≡
N∧
i=1

|ψλi
⟩ (1.7)

where the |ψλi
⟩ are elements of the basis of F1, and

∧
denotes the exterior product.

For more details on this, one can consult [1]. The λi denote occupied single-particle

states, of which there are N by the Pauli exclusion principle. That is, since we are

working with fermions, each single-particle state can have occupancy at most 1. To

form the basis of FN , the λi vary over all combinations of N elements in
[
dimF1

]
(though F1 may in general be infinite-dimensional). We will provide a concrete

example later in the next section to make things clearer. Moving forward for now, we

can use this definition to construct the so-called fermionic Fock space, containing all

possible fermionic quantum states:

F ≡
∞⊕
i=0

F i (1.8)

It can be shown that this infinite sum converges (more specifically, that F is the

completion of the Hilbert direct sum), so this is still a Hilbert space, but we do not

prove this in detail here. We can now introduce the creation and annihilation operators.

Consider the so-called vacuum state, the vector |Ω⟩ s.t. span{|Ω⟩} = F0, representing

the state with no particles (it is important to note that this is distinct from the zero

vector—|Ω⟩ is still a state with some nonzero amplitude). The annihilation operator

âi on state i and its adjoint, the creation operator â†i on state i, are defined by the

16

following relations:

âi|Ω⟩ = 0 , â†λN
· · · â†λ2

â†λ1
|Ω⟩ = |λ1, λ2, . . . , λN⟩ (1.9)

Then, in order for these operators not to violate the antisymmetry of the wavefunction,

we impose also the following anticommutation relations:

{
âi, â

†
j

}
= δij ,

{
âi, âj

}
= 0 ,

{
â†i , â

†
j

}
= 0 (1.10)

where the anticommutator bracket is defined as {A,B} = AB +BA . It is often also

convenient to define the so-called number operator n̂i = â†i âi on site i, and one can

see that the name is fitting, since its expectation value given a state is the occupation

of site i. One might view these creation and annihilation operators as mappings

from FN to FN+1 and FN−1, respectively, for some N . One can also view these as

ladder operators for the total particle number operator N̂ =
∑

i n̂i. That is, given

an operator A whose eigenvalues form a totally ordered set (e.g., the eigenvalues are

all real, or all pure imaginary), a ladder operator B of A satisfies the commutation

relation [A,B] = µB where µ is a nonzero constant. Then, given an eigenpair (λ, x)

of A, we can see:

ABx = (BA+ µB)x = (λ+ µ)Bx (1.11)

In particular, (λ+ µ,Bx) is another eigenpair of A.

17

1.2.2 The Schrödinger Equation and the Hubbard Model

At the core of quantum mechanics is the Schrödinger equation, and in its time-

independent form is:

Ĥ|Ψ⟩ = E|Ψ⟩ (1.12)

where Ĥ is the Hamiltonian operator, |Ψ⟩ is the wavefunction, and E is the energy

corresponding to |Ψ⟩. That is, given a Hamiltonian Ĥ, we seek its eigenpairs (E,Ψ).

If one seeks the ground state wavefunction, i.e., the eigenfunction corresponding to the

smallest eigenvalue, one can formulate and solve the following optimization problem:

argmin
|Ψ⟩

⟨Ψ|Ĥ|Ψ⟩ subject to ⟨Ψ|Ψ⟩ = 1 (1.13)

and one obtains the ground state energy by evaulating the Hamiltonian expectation

value in the ground state (i.e., simply evaluate the objective function at the solution).

The Hubbard model is a lattice model for fermions, wherein each lattice site (spatial

orbital) has a four-dimensional Fock space, with a basis of B =
{
|Ω⟩, | ↑ ⟩, | ↓ ⟩, | ↑↓ ⟩

}
.

For the purpose of illustrating the concepts introduced in the previous section using

a concrete example, consider the Hubbard model with two lattice sites. We have a

16-dimensional Fock space with a basis |ψ1⟩ ⊗ |ψ2⟩, where each |ψi⟩ ∈ B. We have

8 annihilation and creation operators (4 each), given by â1↑, â1↓, â2↑, â2↓ and their

Hermitian conjugates â†1↑, â
†
1↓, â

†
2↑, â

†
2↓, respectively.

The relabeling of states to use lattice sites and spin as a generalization of the

notation used before is hopefully clear. The Hubbard Hamiltonian in one dimension

is given as:

Ĥ = −t
∑
i,σ

(
â†i,σâi+1,σ + â†i+1,σâi,σ

)
+ U

∑
i

n̂i↑n̂i↓ (1.14)

18

where the first term describes the kinetic energy of the system (the so-called “hopping

term”), parameterized by the hopping integral t, and the second describes the on-site

interaction parameterized by repulsion/attraction strength U . The sum over i iterates

over the lattice sites, and that over σ iterates over spin.

1.2.3 The Curse of Dimensionality

In attempting to solve the fermionic many-body problem, one quickly runs into the

so-called curse of dimensionality. In the case of the Hubbard model, the size of the

Fock space for the system grows exponentially with the number of lattice sites, i.e.,

the dimension is 4d, where d is the number of lattice sites. Exploring such a space can

be computationally extremely expensive if approached naively. It turns out, however,

that these problems are often highly structured, and we can take advantage of these

physical symmetries to make solving these problems far more efficient. That is, out of

the entire Hilbert space, physically meaningful states constitute only a small subset.

Thus, the form of our solution (the ansatz) need not be so general as to express the

entire Hilbert space, and a clever choice of ansatz often decreases the complexity

of the problem significantly. One can utilize this, for instance, to approximate a

solution with an inexpensive method, then use the approximate solution as a starting

guess for a more expensive method. As an example, in molecular electronic structure,

one often performs a mean-field treatment of the molecule via Hartree–Fock (HF) or

multiconfigurational self-consistent field (MCSCF) before treating the system with

more complex theories. In our case, with the Hubbard Hamiltonian, we have several

advantages, namely the locality of the Hamiltonian and the low dimensionality of

the lattice. In this next section, we will demonstrate how one might exploit these

symmetries.

19

1.3 Density Matrix Renormalization Group

The density matrix renormalization group (DMRG) seeks to solve the following

optimization problem:

min
X
⟨X , ĤX ⟩ subject to ⟨X ,X ⟩ = 1 (1.15)

where Ĥ is the Hamiltonian expressed as a TT matrix, X is a TT vector (the

wavefunction), and each of these cores is associated with the Fock space of a given

orbital. Notice that this just the variational principle of quantum mechanics rewritten

such that instead of minimizing a functional, i.e., over a set of functions, we are

minimizing over TT-vectors. It thus follows that the solution X ∗ is the ground state

wavefunction of the system. In other words, we wish to minimize the Hamiltonian

expectation value with respect to a normalized wavefunction X . The Lagrangian for

this problem is given by:

L(X , λ) = ⟨X , ĤX ⟩ − λ
[
⟨X ,X ⟩ − 1

]
(1.16)

where λ is the Lagrange multiplier corresponding to the equality constraint. We can

also write L diagrammatically as:

L(X , λ) =

G1 G2 · · · Gd

Ĥ1 Ĥ2 · · · Ĥd

G∗
1 G∗

2 · · · G∗
d

− λ

G1 G2 · · · Gd

G∗
1 G∗

2 · · · G∗
d

− λ (1.17)

Here, Ĥi are the TT matrix cores of Ĥ.

20

1.3.1 The DMRG Sweep Algorithm

A natural intuition when attempting to (numerically) solve an optimization problem

like this might be to apply some sort of iterative minimization method. It turns out

that we can compute analytic gradients quite easily, so this is a good intuition. Notice

that our objective function is a bilinear (and further, a quadratic) form. Then, WLOG,

consider the TT core G2 of X . If we wish to compute the gradient with respect to G2

and find a stationary point along that direction, we solve the following linear system:

0 =
∂

∂G2

G1 G2 · · · Gd

Ĥ1 Ĥ2 · · · Ĥd

G∗
1 G∗

2 · · · G∗
d

− λ

G1 G2 · · · Gd

G∗
1 G∗

2 · · · G∗
d

=

G1 · · · Gd

Ĥ1 Ĥ2 · · · Ĥd

G∗
1 G∗

2 · · · G∗
d

− λ

G1 · · · Gd

G∗
1 G∗

2 · · · G∗
d

(1.18)

There are several convenient tricks to simplify these gradient equations. Notice

that Equation 1.8 can be written as a generalized eigenvalue problem, H̄2G2 = λS2G2,

where (by symmetry) we have

H̄2 =

G1 · · · Gd

Ĥ1 Ĥ2 · · · Ĥd

G∗
1 · · · G∗

d

and S2 =

G1 · · · Gd

G∗
1 · · · G∗

d

Recall the canonical form of a TT, as in Equation 1.3. It turns out that if we have

X in canonical form, and rewrite the generalized eigenvalue problem H̄2Ḡ2 = λS̄2Ḡ2

21

such that

Ḡ2 =
Σ1 G2 Σ2

then we have that S̄2 = I, the identity. One sees this by observing the orthogonality

relations of the cores in the inner product, and “closing the zipper” from both sides

of the diagram. Intuitively, one can imagine a “near-sighted” view from a given

singular value matrix, where from each side everything appears orthogonal. This

leaves us with the eigenvalue problem H̄2Ḡ2 = λḠ2, (where historically, H̄i is called

the superblock Hamiltonian for site i) and we can solve for the lowest eigenvalue and

its corresponding eigenvector. That is, we solve for the ground state of the superblock

Hamiltonian. Since we have Hermiticity, the Lanczos iteration algorithm followed by

direct diagonalization of the resulting tridiagonal system (e.g., with a bisection or

divide-and-conquer eigenvalue algorithm) is a natural choice.

We’ll describe the iteration briefly, though more details on the algorithm can

be found in [7]. Let G0 be an initial guess, and H be the superblock Hamiltonian.

Consider the Krylov subspace

Kr (H,G0) = span
(
G0, HG0, H

2G0, . . . , H
rG0

)
(1.19)

We use the Lanczos algorithm to build a tridiagonal approximation to the Hamiltonian

within Kr (H,G0). To get started, the Lanczos iteration requires two orthonormal

vectors in the Krylov subspace K2 (H,G0), i.e., an orthonormal basis, so we assume

G0 normalized and we construct

G′
1 = b1G1 = HG0 − a0G0 (1.20)

where b1 is the normalization constant b1 =
√
⟨G′

1,G′
1⟩ and ai are the Hamiltonian

22

expectation values ai = ⟨Gi, HGi⟩. We have our orthonormal basis {G0,G1}. Observe

that G′
1 is obtained by an iteration of the method of steepest descent. We thus have

the Lanczos iteration

G′
n+1 = bn+1Gn+1 = HGn − anGn − bnGn−1 (1.21)

We can then build the Hamiltonian in the Krylov subspace as follows:

HKr =

a0 b1 0 0 · · · 0

b1 a1 b2 0
. . .

...

0 b2 a3
.

...

0 0
. br−1 0

...
. br−1 ar−1 br

0 · · · · · · 0 br ar

(1.22)

Relatively speaking, this matrix is extremely fast to diagonalize directly, so we can

compute from this our next approximation to the ground-state. One can construct

each next approximation to the solution using the solutions of the previous iterations.

The reference given above gives more details into how, in practice, one may use other

clever tricks to make this subroutine even more efficient.

These observations gives rise to the so-called DMRG sweep algorithm, in which we

optimize one TT core at a time, “sweeping” across the entire TT, until convergence.

It also becomes clear why we expect the DMRG to converge to the ground state of

the overall system, since at each step we have a monotonic decrease of the system

energy, and the only minimum of the functional is the ground state (and every other

stationary point is a saddle point and the set of saddle points has measure 0). One

might see this as quite similar to a sort of alternating direction method of multipliers

(ADMM) algorithm. If one wishes to fill in this analogy, one can consult [3].

23

Algorithm 4: DMRG Sweep Algorithm

Input: the Hamiltonian Ĥ in TT matrix form, and initial guess TT vector
X 0 in canonical form,

Output: Converged solution X , and energy E
1 function [E,X] = DMRG(Ĥ,X 0)
2 X ← X 0

3 while not converged:
4 for i ∈ [d]
5 Ḡi ← diagonalize(H̄i)
6 end for
7 end while

8 E ← ⟨X , ĤX ⟩
9 end function

The diagonalization step is typically the most expensive step by far, so we might

wish to make it less expensive. When our TT is low-rank, the diagonalizations are

cheaper, and we can still capture much of the physics of the system with a low-rank

TT (since we keep the most important singular values). Thus, it often makes sense

to have the first sweeps of the DMRG algorithm keep X at relatively low rank, then

increase it later on to capture the smaller singular values.

We note that there are other algorithms to solve the DMRG problem, for instance

the time-evolving block decimation (TEBD) algorithm, but we limit our discussion in

this work to the sweep algorithm.

1.3.2 Variational Rounding

Recall that performing TT mat-vecs and TT vector addition increases the ranks. As

alluded to before, we introduce a more sophisticated rounding algorithm which takes

advantage of the nice form of the gradients with respect to the cores. We solve the

following minimization problem:

argmin
X

⟨Y −X ,Y −X ⟩ subject to rank(X) = (r1, r2, . . . , rd−1) (1.23)

24

where Y is a given TT vector and X is a TT vector with same order and dimensions,

but smaller TT rank (where smaller is in the sense of a partial order on (d− 1)-tuples

of natural numbers). Notice that this objective function has TT addition written in.

We want to avoid this (since it defeats its own purpose), so we write the following:

argmin
X

⟨Y −X ,Y −X ⟩ = argmin
X

⟨X ,X ⟩ − 2⟨Y ,X ⟩ (1.24)

Then, we can apply the nice properties of gradients with respect to TT cores in

TT inner products, which we outlined above, and apply an analogous sweep algorithm

to find a local minimum. In particular, our gradients come down to solving a linear

system. Again, WLOG, we consider G2:

0 =
∂

∂G2

G1 G2 · · · Gd

G∗
1 G∗

2 · · · G∗
d

− 2

G1 G2 · · · Gd

Y∗
1 Y∗

2 · · · Y∗
d

=

G1 · · · Gd

G∗
1 G∗

2 · · · G∗
d

− 2

G1 · · · Gd

Y∗
1 Y∗

2 · · · Y∗
d

(1.25)

Then, performing the same trick as above using the canonical form, we obtain a

satisfyingly simple expression for the iteration:

Ḡ2 =
Σ1 G2 Σ2

= 2

G1 · · · Gd

Y∗
1 Y∗

2 · · · Y∗
d

= 2Ȳ2 (1.26)

We then have the following algorithm:

A natural initial guess is Y truncated to the target rank.

25

Algorithm 5: Variational TT Rounding

Input: TT vector Y with TT rank rY , and initial guess TT vector X 0 in
canonical form of same dimension with target TT rank r ⪯ rY

Output: Converged solution X
1 function [X] = round(X 0, r)
2 X ← X 0

3 while not converged:
4 for i ∈ [d]
5 Ḡi ← 2Ȳi
6 end for
7 end while
8 end function

1.3.3 The Structure of the Hubbard Hamiltonian

There is an important aspect of this algorithm we haven’t yet discussed: what does

the Hamiltonian in TT matrix form look like? The most natural application of the

TT vector ansatz is to problems on a one-dimensional lattice with open boundary

conditions, especially with local interactions, like the aforementioned Hubbard model

described by Equation 1.14. The way the TT vector reflects this physical structure

is by associating each core to a lattice site, where the core indices maintain the

corresponding physical adjacencies. The distance of interactions are reflected by the

TT rank, where higher ranks generally indicate longer range interactions. Thus, when

the system Hamiltonian has local interactions, we expect that the solution in TT form

will be low-rank.

This locality is also reflected by sparsity in the full Hamiltonian, and we can take

advantage of this in an exactly analogous fashion by expressing it as a TT matrix.

That is, given the full Hamiltonian tensor, one can in principle decompose it using a

(slightly more general) TTSVD. There is another way to construct this. In particular,

we can express the local structure in terms of finite-state machines, and thus directly

compute the form of each local MPO (i.e., each core of the Hamiltonian), as opposed

to forming the full Hamiltonian and compressing it. A detailed explanation of this

26

method can be found in [13]. For systems like the Hubbard model, where each core of

the TT matrix is the same (other than at the boundary), this method is particularly

useful. In practical computations, one only needs to compute the Hamiltonian and

store it once, so to use the more general, more expensive method is sometimes not an

issue. Code to do this can be found in [6]. We are now equipped to run DMRG.

Chapter 2

Compression of TT Cores

Here we delve into the primary theoretical contributions of this work, where we

consider compressing the TT cores. The motivation for doing so is that there are

several issues of barebones TT that we may be able to alleviate. In particular, we may

be able to improve the efficiency of operations, e.g., linear combinations, matrix-vector

multiplication analogs, inner products, and rounding. We naturally also have the

benefit of storing the TT with less memory. In this work, we have chosen to use the

canonical Tucker decomposition, i.e., the Tucker decomposition with orthonormal

factor matrices, for the compression.

2.1 The Basics

What we do in particular is, given a TT core Gi, perform a rank-(m1,m2,m3) Tucker

decomposition of Gi:

Gi

ni

ri−1 ri

≈

ri−1
U

(1)
i

G′
i U

(3)
i

U
(2)
i

ni

m1

m2

m3 ri

(2.1)

27

28

where U
(j)
i has orthonormal columns. The case for when the TT is in canonical form

is exactly analogous, where we simply ignore the singular value matrix between cores.

Notice also that if our TT is in canonical form, G1 and Gd are already orthogonal

matrices, so we do not do anything. Modifying Algorithm 3, we can do this in the

following way:

Algorithm 6: Tensor Train SVD with Core Compression

Input: X ∈ Rn1×n2×···×nd , and one of: target TT rank r = (r1, r2, . . . , rd) and

target multilinear ranks m =
{
(m

(1)
i ,m

(2)
i ,m

(3)
i)

}d−1

i=2
Output: TT cores in Tucker format G1,G2, . . . ,Gd with TT rank r and Gi

with multilinear rank
(
m

(1)
i ,m

(2)
i ,m

(3)
i

)
, and error err

1 function [G1,G2, . . . ,Gd] = ttsvd(X , r and m)
2 r0 ← 1
3 Y1 ← X
4 for k ∈ [d− 1]:
5 Ȳk ← reshape (Yk, (rk−1nk , nk+1nk+2 · · ·nd))
6 [Ḡk, εk]← llsv(Ȳk, rk or ε̄)
7 Yk+1 ← Ḡ⊤

k Ȳk
8 Ḡk ← reshape(Ḡk, (rk−1 , nk , r k))
9 [Gk, δk/∥Ȳk∥F]← hosvd(Ḡk,mk)

10 end for
11 Gd ← Yd

12 err←
√∑d−1

k=1(εk + δk)2

13 end function

Notice that since we are performing two tensor approximations, there is now some

ambiguity when it comes to choosing the source of approximation error, i.e., whether

it comes from the TTSVD step or the HOSVD step. For that reason, and for the sake

of simplicity, in the algorithm above we suppose that ranks, not an absolute error

bound, are given, but in a later section we will describe ways in which one can control

the absolute error. For now, we proceed.

29

2.1.1 Algebraic Operations

Because performing compression does not affect the noncontracted indices of the TT,

operations like tensor inner products and tensor matvecs remain, strictly speaking,

identical, in the same way that those operations are not affected by compressing an

arbitrary tensor into TT vector format. Scalar multiplication is the same: take any

component and scale it. In this form, as not to take break orthonormality of the

columns of any factor matrix, we typically choose to scale the new core (though in

principle one could scale the factor matrices). Vector addition is also analogous (see

Equation 1.4), but since we deal with more components, we have nested expressions for

the entries of the cores. As before, let C = A+B, where A and B are TT vectors, but

now with the cores compressed. We denote the cores as Aj = A′
j×1U

(1)
j ×2U

(2)
j ×3U

(3)
j

and Bj = B′
j ×1 V

(1)
j ×2 V

(2)
j ×3 V

(3)
j . We then have:

C1[i1] =

[
A1[i1] B1[i1]

]

Cj[ij] =

A′
j 0

0 B′
j

×1

U (1)
j 0

0 V
(1)
j

×2

U (2)
j [ij]

V
(2)
j [ij]

×3

U (3)
j 0

0 V
(3)
j

Cd[id] =

Ad[id]

Bd[id]

(2.2)

where j ∈ {2, 3, . . . , d− 1}. Here, the notation for the order-3 cores is block diagonal

in the sense that any order-2 slice gives back a matrix of block diagonal structure.

The orientation of this new tensor is in the natural way, preserving the structure of

the summands. Again, in a similar manner to the general case, the TT rank increases

upon summation. Later, we will revisit TT rounding and see how one can perform

the previously described algorithms on this ansatz.

30

2.1.2 Error Analysis

When we perform the compression, we’d like to know how much error we incur. We

can make use of the already existing results for tensor train error. We first state a

lemma.

Lemma 2.1.1 (TTSVD error recursion). Let X be a tensor of dimension d,

and let X k be the partially formed tensor train at iterate k of the TTSVD algorithm

(Algorithm 3) with cores G1,G2, . . . ,Gk and residual tensor Yk. Then, for k ∈ [d− 1],

∥X k −X d∥2F = ε2k + ∥X k+1 −X d∥2F

where εi is the LLSV error at the i-th iteration.

The full proof of this lemma can be found in [2], but the primary tool we will use is

the subspace error given by

εk = ∥(I −GkG
⊤
k)Ȳk∥F (2.3)

Then, we have the total TTSVD error given by the following result:

Theorem 2.1.1 (Error of the TTSVD). Let X be a tensor of dimension d, and

let X̄ be a TT vector of dimension d with cores G1,G2, . . . ,Gd constructed using the

TTSVD. Then,

∥X − X̄∥2F =
d−1∑
k=1

ε2k

This result follows from a direct application of the error recursion lemma. Notice that

to use this lemma requires the error to be introduced by TTSVD, so for it to apply

to our case, we compress the cores as we perform the TTSVD, not all afterwards.

Nevertheless, we arrive at the following result:

31

Theorem 2.1.2 (Error of TT core compression). Let X be an order-d tensor

with the following TTSVD error:

ε =
d−1∑
k=1

ε2k

where εk is the LLSV error of core k. Upon compressing X by Algorithm 6, the total

error is bounded by

ε̄2 ≤
d−1∑
k=1

(εk + δk)
2 ≤

d−1∑
k=1

ε2k +
d−1∑
k=2

δ2k (2.4)

where δk is the Tucker decomposition error of core k relative to the the residual tensor

norm ∥Ȳk+1∥.

Proof. Recall that the LLSV error εk is incurred upon the construction of the k-th

core, and is not affected by the construction of the proceeding cores. Thus, we can

consider the error incurred on a given core from performing the Tucker decomposition

to be incurred simultaneously with the LLSV error if we compress at each iteration.

Let the recontracted Tucker decomposed cores be written Gi = Ḡi + δGi, where

Ḡi is the core before Tucker decomposition and ∥δGi∥F = δi/∥Ȳi+1∥F for some δi ≥ 0.

Then, we can write the error contribution from a given core by

ε̄k = ∥(I −GkḠ
⊤
k)Ȳk∥F

= ∥(I − (Ḡk + δGk)Ḡ
⊤
k)Ȳk∥F

= ∥(I − ḠkḠ
⊤
k − δGkḠ

⊤
k)Ȳk∥F

≤ ∥(I − ḠkḠ
⊤
k)Ȳk∥F + ∥δGkḠ

⊤
k Ȳk∥F

≤ εk + ∥δGk∥F · ∥Ḡ⊤
k Ȳk∥F

= εk + δk

(2.5)

We attain the intermediate bound for the full error by applying Theorem 2.1.1, and

32

the upper bound is then attained by triangle inequality. Note that δ1 = 0 since the

first core is a matrix, so we do not perform a Tucker decomposition.

We remark that by using an error which is relative to a quantity that needs to be

computed on the fly can be a problem for practical purposes. In particular, in order

to meet a prescribed overall error bound, the allowed HOSVD error at each iteration

must be computed inside of the TTSVD loop by means of evaluating the norm of the

residual tensor ∥Ȳk∥F .

To the end of an error analysis which does not depend on relative terms, there is an

important aspect of the TT decomposition which was alluded to but not discussed in

detail, namely the fact that the mode-3 unfoldings of the TT cores have orthonormal

columns. (This is for the mode-3 foldings in particular because we use the left leading

singular vectors, though in principle one could use the right leading singular vectors,

in which case we would refer to the mode-1 unfolding.) We might like to retain this

property with the compressed TT. However, we have no immediate guarantee that,

upon Tucker decomposing the cores, we keep this orthonormality condition. The

HOSVD subroutine in Algorithm 6 thus may not be identically Algorithm 2—the

problem we solve has additional manifold constraints. What we are pointing out in

particular is the fact that the δGi terms are generic perturbations, so we cannot say

immediately, for instance, whether δGiḠi is diagonal or has some other nontrivial

structure. The main TTSVD error result relies on Eckart–Young–Mirsky (Theorem

1.1.1), and the HOSVD does not necessarily preserve the orthonality relations of the

LLSV. If it were the case, it could allow a stronger error bound. To consider a Tucker

decomposition problem wherein we constrain certain unfoldings to be orthonormal is

thus a natural step to consider in future work.

33

2.2 Revisiting DMRG

We are interested in how compressing the cores affects the DMRG sweep algorithm.

The problem is largely the same, except that we enforce the structure of the decomposed

cores by adding constraints. In particular, we write

min
X
⟨X , ĤX ⟩ subject to

⟨X ,X ⟩ = 1

U
(j)∗
i U

(j)
i = I

(2.6)

where i ∈ {2, 3, . . . , d− 1} and j ∈ [3]. In particular, we are enforcing semiunitarity of

each Tucker factor matrix, or in other words, the constraint set for our factor matrices

are the corresponding Stiefel manifolds. Because the overall, big-picture algorithm

has not changed, we deal only with the specifics of what changes at the level of the

TT cores upon compressing them.

A quick remark before we proceed: we mentioned before that in practice, one may

begin the DMRG algorithm with a TT vector of small rank, and grow the rank as

the algorithm iterates. With the multilinear ranks as a new hyperparameter, one can

now choose to begin in the compressed form with low multilinear ranks and grow

to the exact TT as we iterate. Whether one might choose to do so simultaneously,

sequentially, or alternatively with growing the TT rank is up to empirical results.

2.2.1 Utilizing Nonuniqueness of the Tucker Decomposition

It might appear that we have to reformulate the optimization problem with these

manifold constraints, which would make the problem a bit more complicated. However,

it turns out there is a way to avoid this completely at a relatively small computational

cost, and comes as a result of the aforementioned nonuniqueness of the Tucker

decomposition. We can perform QR factorizations of the factor matrices such that

34

the orthogonal part faces outward from the Tucker core and the triangular part faces

inward, and multiply back into the core. That is, given Y ×1 A1 ×2 A2 ×3 A3 with Ai

not semiunitary,

A1 Y A3

A2

=

Q1 R1 Y R3 Q3

R2

Q2

=
Q1 Y ′ Q3

Q2

(2.7)

The fact that we may not need to reform and refactor cores is important: the

HOSVD is quasi-optimal in the sense that the approximation error is within a factor

of
√
d (d = 3 in our case) of the optimal Tucker error. We may be able to avoid this

bit of suboptimality.

2.2.2 Lanczos Iteration on Tucker Decompositions

Since we wish to perform DMRG, we should be equipped to perform the Lanczos

iteration on the compressed cores. Notice that the superblock Hamiltonian is Hermitian,

so the matvecs do not change the size of the Tucker decomposition. In fact, since our

uncontracted superblock Hamiltonian contains the factor matrices of adjacent cores,

we can automatically have the matvec HG be in Tucker form, and with the same

multilinear rank if all the cores have the same multilinear rank.

Since Lanczos requires that we take linear combinations of the cores, we need a

way to add two Tucker decompositions. In general, doing this requires reforming the

full tensor. For physical problems, however, the size n of each dimension of the overall

35

tensor is small, typically smaller than 10. For electrons, this size is n = 4. Thus, it is

reasonable that in this dimenion, we do not factor out anything. That is, the core

multilinear ranks look like (r1, n, r3). Then, notice that if we have no factor matrix

in one of the three dimensions, the core looks itself like a tensor train, and we know

how to take linear combinations of those. This has a caveat: it reintroduces the rank

problem from TT addition. Luckily, these tensor trains are short and small, so we

can expect the nonlinear optimization procedure for low-rank approximation to be

fast and inexpensive. From an implementation standpoint, this can be nice. Rather

than directly adding TT cores when taking linear combinations, we only need to store

additional vectors since the addition of tensor trains is implicit.

Chapter 3

Numerical Results

The implementations are written in Julia, using ITensor. Much of the code to perform

the computations can be found in the appendix. The complete Pluto notebook is

available upon request.

3.1 More on the Error Bound

Because the only quantity which does not have tight bounds is the relative HOSVD

error δk/∥Ȳk+1∥F , we want to characterize the behavior of

∣∣δk − ∥δGkḠ
⊤
k Ȳk∥F

∣∣
∥δGkḠ⊤

k Ȳk∥F

i.e., the looseness of this quantity’s bound in a relative sense. It turns out that

empirically, given some nontrivial iterate, this quantity looks roughly constant with

respect to the multiranks for any nonexact Tucker decomposition (when exact, the

value is 0). This suggests that there may exist a provable quasi-optimality result,

improving on the bound given in Theorem 2.1.2 and giving better characterization.

36

37

Figure 3.1: Error of TTSVD with core compression on a random tensor of order 8
and each index of size 4. As expected, the total error decreases as the maximum
allowed multilinear rank increases, until it becomes exact. Observe that the relative
HOSVD errors for each iteration look roughly constant. Each each line corresponds
to an iteration k, though we have not labeled them explicitly here. The fact that this
quantity appears constant suggests that there exists a tighter error bound.

38

3.2 Compression of DMRG Solutions

We demonstrate a naive application of this compression to DMRG. Given a DMRG

solution, we compress the cores and observe how two quantities vary with the maximum

multirank: the approximation error
(
⟨Ψ| − ⟨Ψ̄|

) (
|Ψ⟩ − |Ψ̄⟩

)
, and the Hamiltonian

expectation value error ⟨Ψ̄|Ĥ|Ψ̄⟩ − ⟨Ψ|Ĥ|Ψ⟩, where |Ψ⟩ is the DMRG solution, |Ψ̄⟩ is

the compressed solution, and Ĥ is the system Hamiltonian as an MPO (TT matrix).

(a) Wavefunction error and energy error for the solution to the half-filled (N = 8), 8-site
Hubbard model with U = 0, t = 1

Figure 3.2: Compression of the DMRG solutions varying over multilinear rank, and
the wavefunction error and energy error of the corresponding compressed tensor trains.
The x-axis in both cases cuts off once the Tucker decomposition is exact.

One might wonder why we have not chosen to vary over U (or U/t). This is

because for a fixed number of electrons (positive U), the on-site interaction term

contribution is just a constant, so we can separate its contribution [5]. One could

observe empirically as well that the wavefunction does not change for differing values

39

(b) Wavefunction error and energy error for the solution to the half-filled with a particle
hole (N = 7), 8-site Hubbard model with U = 0, t = 1

Figure 3.2: Compression of the DMRG solutions varying over multilinear rank, and
the wavefunction error and energy error of the corresponding compressed tensor trains.
The x-axis in both cases cuts off once the Tucker decomposition is exact. (cont.)

of nonnegative U .

One might be curious as to whether this approximation conserves the quantum

numbers of the system, in this case the particle number and Sz. Empirically, one can

see that indeed this is the case. This is rather important, since the approximation might

otherwise not be useful for DMRG applications. Formal proof of this conservation

may be present in future works.

Of course, since we have not optimized the Tucker decompositions, these errors are

only quasi-optimal, i.e., at most a factor of
√
3 from the error given by the optimal

Tucker decomposition, not strictly optimal. We have also not realized any of the

computational benefits of using such a form in the actual DMRG calculation. The

clear next step is to implement, as described in the previous chapter, the new Lanczos

40

Figure 3.3: Evidence for the conservation of quantum numbers under core compression.
The data correspond to the same numerical experiment as in Figure 3.2a, that is, we
can see that the quantum numbers are exactly conserved even upon compressing.

algorithm for the Tucker cores. However, the numerical experiment above is evidence

that doing so would indeed be useful, since even for generous truncations we still

obtain chemical accuracy, and by optimizing in Tucker form, the accuracy can only

improve.

Chapter 4

Concluding Remarks

Tensor-based methods, ranging from electronic structure and condensed matter physics

to data science and machine learning, are among some of the most expensive yet

widely used scientific computing methods. Because of this, it is natural that we study

ways to make these algorithms faster and more efficient. Here, we have taken the key

object of some of these algorithms, i.e., the tensor train, and studied its behavior upon

further compression. We have observed how solutions from the DMRG, an algorithm

which optimizes over a space of tensor trains, behaves upon this compression and seen

that, at least naively, the behavior is desirable.

The compression of TT cores is, in some sense, a quite elementary extension

while being relatively upstream. Because of this, there are many potential further

extensions to this work aside from those already mentioned, many of which are just

natural extensions of the theory of tensor trains but with the new ansatz. This

might include, for instance, the computation of several eigenvectors simultaneously

instead of only a single one (which has applications in quantum chemistry for the

computation of excited states), the extension to the molecular Hamiltonian, or the

decomposition of cores for higher dimensional tensor networks. Another extension

might be to compress cores using different tensor decompositions, for instance, the

41

42

canonical polyadic decomposition (CPD). In the physical and chemical context, another

interesting extension is to interpret the decompositions of the cores, and to determine

whether we can say something further, in the physics context, about the solution set

we constrain to by decomposing the cores.

Here, having developed some of the theory for this compression using the Tucker

decomposition, and demonstrated the basic application of compressing the ground

state for the one-dimensional Hubbard model with open boundary conditions, we show

that this direction has potential.

Chapter 5

Appendix

Here, we provide the essential Julia code needed to reproduce the numerical results in

Chapter 3. As stated, the complete Pluto notebook is available upon request. One

first requires the ITensor packages ITensors.jl and ITensorMPS.jl.

We provide the functions and a short script used to generate the data. Below is

the generic HOSVD:

func t i on hosvd (T : : ITensor , maxrank : : Vector{ Int64 })

G = copy (T)

f a c t o r s = Vector{ ITensor } ()

f o r i in 1 :3

U, S ,V = svd (G, inds (T) [i] ; maxdim=maxrank [i])

G = S∗V

push ! (f a c t o r s ,U)

end

e r r = norm(T − G∗ f a c t o r s [1] ∗ f a c t o r s [2] ∗ f a c t o r s [3])

r e turn [G; f a c t o r s] , e r r

end

Below is the function to perform the compression of a full tensor into TT form with

43

44

Tucker-compressed cores:

f unc t i on tucke r t t svd (T : : ITensor , t t rank : : Vector{ Int64 } ,

mult i ranks : : Vector{Vector{ Int64 }})

TT = Vector{Vector{ ITensor }} ()

Y = copy (T)

i n d i c e s = inds (Y)

d = length (inds (Y))

e p s i l o n s = ze ro s (d−1 ,1)

d e l t a s = ze ro s (d−1 ,1)

r e l e r r s= []

f o r k in 1 : d−1

i f k==1

U, S ,V = svd (Y, i n d i c e s [k] ; maxdim=ttrank [k])

e p s i l o n s [k] = norm(Y − U∗S∗V)

push ! (TT, [U])

Y = S∗V

e l s e

idx = 0

f o r i in inds (Y)

i f hastags (i , ‘ ‘ Link ‘ ‘)

idx = i

end

end

U, S ,V = svd (Y, i n d i c e s [k] , idx ; maxdim=ttrank [k])

45

e p s i l o n s [k] = norm(Y − U∗S∗V)

G, de l t a = hosvd (U, mult i ranks [k−1])

e r r = norm ((U − con t ra c t tucke r (G))∗S∗V)

push ! (r e l e r r s , abs (e r r − de l t a ∗norm(S∗V))/ e r r)

Y = S∗V

de l t a s [k] = de l t a ∗norm(S∗V)

push ! (TT, G)

end

end

push ! (TT, [Y])

e r r bd = norm(ep s i l o n s+de l t a s)

re turn TT, err bd , r e l e r r s

end

Below is a short function to contract a Tucker-decomposed tensor back to the full

tensor:

f unc t i on cont ra c t tucke r (T : : Vector{ ITensor })

G = T[1]

f o r U in T[2 : l ength (T)]

G = G∗U

end

return G

end

Below is the subroutine to compress a core of the TT into Tucker form, where we only

46

compress in the direction of the two virtual indices, leaving the physical index alone:

f unc t i on t tcorehosvd (T : : ITensor , maxrank : : Int64)

G = copy (T)

f a c t o r s = Vector{ ITensor } ()

f o r i in 1 :3

i f ! hastags (inds (T) [i] , ‘ ‘ S i t e ’ ’)

U, S ,V = svd (G, inds (T) [i] ; maxdim=maxrank)

G = S∗V

push ! (f a c t o r s ,U)

end

end

return G, f a c t o r s [1] , f a c t o r s [2]

end

Finally, below is the script used to run the DMRG and generate the data for Figures

3.2 and 3.3:

begin

N i s the number o f s i t e s

U i s the r epu l s i on / a t t r a c t i o n parameter

t i s the hopping parameter

N = 8

U=0

t=1

approx e r r data = []

H exp er r data = []

s o l = []

47

f l u x e s = []

f o r k in U

here , we cons t ruc t the Hubbard Hamiltonian

os = OpSum()

f o r j =1:N−1

os += −t , ‘ ‘ Cdagup ’ ’ , j , ‘ ‘ Cup ’ ’ , j+1

os += −t , ‘ ‘ Cdagup ’ ’ , j +1 , ‘ ‘Cup ’ ’ , j

os += −t , ‘ ‘ Cdagdn ’ ’ , j , ‘ ‘ Cdn ’ ’ , j+1

os += −t , ‘ ‘ Cdagdn ’ ’ , j +1 , ‘ ‘Cdn ’ ’ , j

os += k , ‘ ‘ Ntot ’ ’ , j

end

os += k , ‘ ‘ Ntot ’ ’ , N

s i t e s = s i t e i n d s (‘ ‘ Electron ’ ’ ,N; conse rve qns=true)

H = MPO(os , s i t e s)

ps i 0 i s the DMRG i n i t i a l guess

s t a t e = [i sodd (n) ? ‘ ‘Up’ ’ : ‘ ‘Dn’ ’ f o r n in 1 :N]

uncomment below l i n e f o r p a r t i c l e ho l e

s t a t e [N] = ‘ ‘Emp’ ’

p s i 0 = MPS(s i t e s , s t a t e)

DMRG parameters

nsweeps = 5

maxdim = [10 , 20 , 50 , 100 , 200]

c u t o f f = [1E−10]

48

running normal DMRG

energy , p s i = dmrg(H, ps i 0 ; nsweeps ,maxdim , c u t o f f)

compress ing the co r e s

maxmultirank = 4 : maxlinkdim (p s i)

approx er r = ze ro s (maxlinkdim (p s i)−3)

H exp err = ze ro s (maxlinkdim (p s i)−3)

f o r j in maxmultirank

psi comp = deepcopy (p s i)

f o r i in 2 :N−1

o r thogona l i z e ! (psi comp , i)

G,U1 ,U2 = ttcorehosvd (psi comp [i] , j)

psi comp [i] = G∗U1∗U2

end

approx er r [j −3] = norm(psi comp−p s i)

H exp err [j −3] = abs (inne r (psi comp ’ ,H, psi comp)

− energy)

check whether the compress ion p r e s e r v e s QNs

push ! (f l uxe s , f l u x (psi comp))

end

push ! (approx err data , approx er r)

push ! (H exp err data , H exp err)

end

end

Bibliography

[1] Alexander Altland and Ben D. Simons. Condensed Matter Field Theory. Cam-

bridge University Press, 2nd edition, 2010.

[2] Greg Ballard and Tamara G. Kolda. Tensor Decompositions for Data Science.

preliminary draft copy edition, October 2024.

[3] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.

Distributed Optimization and Statistical Learning via the Alternating Direction

Method of Multipliers. Found. Trends Mach. Learn., 3(1):1–122, July 2011. doi:

10.1561/2200000016.

[4] Garnet Kin-Lic Chan. Density matrix renormalisation group Lagrangians. Phys.

Chem. Chem. Phys., 10(23):3454–3459, June 2008. doi: 10.1039/B805292C.

[5] Fabian H. L. Essler, Holger Frahm, Frank Göhmann, Andreas Klümper, and

Vladimir E. Korepin. The One-Dimensional Hubbard Model. Cambridge University

Press, 2005.

[6] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. The ITensor

Software Library for Tensor Network Calculations. SciPost Phys. Codebases,

page 4, August 2022. doi: 10.21468/SciPostPhysCodeb.4.

[7] Gene Howard Golub and Charles F. Van Loan. Matrix Computations. JHU Press,

February 2013. ISBN 978-1-4214-0794-4.

49

50

[8] Trygve Helgaker, Poul Jørgensen, and Jeppe Olsen. Molecular Electronic-Structure

Theory. John Wiley & Sons, August 2014. ISBN 978-1-119-01955-8.

[9] Tamara G. Kolda and Brett W. Bader. Tensor Decompositions and Applications.

SIREV, 51(3):455–500, 2009. doi: 10.1137/07070111X.

[10] Andor Menczer, Maarten van Damme, Alan Rask, Lee Huntington, Jeff Hammond,

Sotiris S. Xantheas, Martin Ganahl, and Örs Legeza. Parallel Implementation

of the Density Matrix Renormalization Group Method Achieving a Quarter

petaFLOPS Performance on a Single DGX-H100 GPU Node. J. Chem. Theory

Comput., 20(19):8397–8404, 2024. doi: 10.1021/acs.jctc.4c00903.

[11] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series

in Operations Research and Financial Engineering. Springer New York, 2006.

ISBN 978-0-387-30303-1. doi: 10.1007/978-0-387-40065-5.

[12] I. V. Oseledets. Tensor-Train Decomposition. SIAM J. Sci. Comput., 33(5):

2295–2317, January 2011. doi: 10.1137/090752286.

[13] Sebastian Paeckel, Thomas Köhler, and Salvatore R. Manmana. Automated con-

struction of U(1)-invariant matrix-product operators from graph representations.

SciPost Phys., 3(5):035, November 2017. doi: 10.21468/SciPostPhys.3.5.035.

[14] Ulrich Schollwöck. The density-matrix renormalization group in the age of

matrix product states. Ann. Phys. (N. Y.), 326(1):96–192, January 2011. doi:

10.1016/j.aop.2010.09.012.

[15] Steven R. White. Density matrix formulation for quantum renormalization groups.

Phys. Rev. Lett., 69(19):2863–2866, November 1992. doi: 10.1103/PhysRevLett.

69.2863.

	Introduction and Background
	Mathematical Background
	Matrices and the Singular Value Decomposition
	Tensor Preliminaries
	Tensor Train

	Physical Background
	Second Quantization
	The Schrödinger Equation and the Hubbard Model
	The Curse of Dimensionality

	Density Matrix Renormalization Group
	The DMRG Sweep Algorithm
	Variational Rounding
	The Structure of the Hubbard Hamiltonian

	Compression of TT Cores
	The Basics
	Algebraic Operations
	Error Analysis

	Revisiting DMRG
	Utilizing Nonuniqueness of the Tucker Decomposition
	Lanczos Iteration on Tucker Decompositions

	Numerical Results
	More on the Error Bound
	Compression of DMRG Solutions

	Concluding Remarks
	Appendix
	Bibliography

