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Abstract

Inner Product Free Krylov Methods for Inverse Problems

By Ariana N. Brown

Iterative Krylov projection methods have become widely used for solving large-

scale linear inverse problems. Certain methods that rely on orthogonality require

inner products, which create a bottleneck for parallelization and causes the algorithms

to fail in low precision. As a result, there is a need for more effective iterative

methods to alleviate this computational burden. This study presents new Krylov

projection methods that do not require inner products to solve large-scale linear

inverse problems.

The first iterative solver is known as the Changing Minimal Residual Hessenberg

method (CMRH). The second is a new extension of CMRH to rectangular systems

which we call the least squares LU method (LSLU). We further adapt both approaches

to efficiently incorporate Tikhonov regularization. These methods are labeled as Hy-

brid CMRH and Hybrid LSLU. Each of these techniques are known as quasi-minimal

residual methods rather than minimal residual methods. Still, these methods do not

offer a way to control how closely the quasi-norm approximates the desired norm.

In this work, we also propose a new Krylov method that is both inner product free

and minimizes a functional that is theoretically closer to the residual norm. The new

scheme combines the conventional CMRH method and the newly proposed LSLU

method with a randomized sketch-and-solve technique to solve the strongly overde-

termined projected least-squares problem. Extensive numerical examples illustrate

the effectiveness of all methods in this dissertation.
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Chapter 1

Introduction

Mathematics is found in different areas of study, such as science, medicine, engineer-

ing, and even finance. Within these disciplines, we utilize mathematics to formulate

the problem and model the solution. The field of inverse problems connects the model

and data together by recovering the hidden information from the problem. Inverse

problems arise in a variety of applications, including medical and geophysical imag-

ing, machine learning, and image deblurring [12, 23, 43, 44]. In this dissertation, we

consider a large linear inverse problem of the form:

b = Axtrue + e, (1.1)

where A ∈ Rm×n models the forward problem, xtrue ∈ Rn is the unknown solution

we want to approximate, b ∈ Rm is the vector of observed data, and e ∈ Rm repre-

sents noise and other measurement errors. The linear system arises from the suitable

discretization of linear inverse problems, where the solution may not depend contin-

uously on the data [23]. Given A and b, the goal is to estimate xtrue, but there are

various computational challenges.

In many cases, the number of unknowns n may be very large and the forward

model matrix A (and its adjoint) can only be accessed through matrix-vector mul-
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tiplications. Thus, iterative methods are often used to compute the approximations

of xtrue. Moreover, these inverse problems belong to a class of ill-posed problems, in

the sense that small changes in b can produce large changes in the estimate of xtrue.

This is due to the singular values of A decaying and clustering at zero without any

distinguishable gap between consecutive ones. For this reason, regularization must

be implemented to diminish the instability invoked from the noise and the ill-posed

nature of the problem to recover meaningful approximations of the solution [23].

There are numerous iterative methods to solve inverse problems efficiently. How-

ever, the capacity we have to measure and store data is constantly increasing, pushing

the limits of traditional least-squares solvers in terms of speed and memory require-

ments. Recently, different directions have emerged to tackle more challenging scenar-

ios. For example, new methods are being investigated that can use lower precision

for storage and computation and benefit from distributed memory implementations.

New methods are being developed that can reduce global communication points such

as the computation of inner products. In another line of research, randomized nu-

merical linear algebra has emerged as a powerful framework to drastically reduce

computational costs. Although initial randomized approaches that were based on

obtaining low-rank approximations are not suitable for practical large-scale inverse

problems, iterative methods that can exploit randomization are being widely adopted

and investigated. This motivates the use of inner product free Krylov methods, which

also incorporate randomization techniques to overcome the computational burden.

1.1 Related Work and Contributions

In this dissertation, we introduce new Krylov subspace methods. These methods

can be grouped into two categories: Inner product Free Methods and Sketched Inner

Product Free Methods.
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1.1.1 Inner Product Free Krylov Method

The first technique is known as the Changing Minimal Residual Hessenberg Method

(CMRH). CMRH uses the Hessenberg method to construct linearly independent basis

vectors. Although the Hessenberg method was mentioned in the literature as early

as 1950 (see, e.g.,[15, section 44]) for computing eigenvalues, it was Sadok [38] who

introduced the CMRH method in 1999 as a way to solve linear systems. In 2012,

Sadok and Szyld [39] investigated the relationship between CMRH and the General-

ized Minimum Residual Method (GMRES). This study will investigate the iterative

regularization properties of CMRH and introduce a new hybrid variant called the

Hybrid Changing Minimal Residual Hessenberg Method.

The second approach is an extension of CMRH to rectangular systems and is

referred to as the least squares LU (LSLU) method. It uses a modified Hessen-

berg iterative algorithm to generate linearly independent bases for Krylov subspaces

associated with ATA and AAT . This method has a theoretical connection to LU fac-

torization (with partial pivoting) and exhibits iterative regularization properties that

are similar to LSQR [34, 41]. The main benefit of LSLU is that no inner products

are required during the iterations. This leads to projected quasi-minimum residual

problems that are smaller and easier to solve at each iteration. Similar to CMRH, an

incorporation of Tikhonov regularization is also explored. This technique is known

as Hybrid LSLU.

1.1.2 Sketched Inner Product Free Methods

The remaining methods, sketched CMRH and sketched LSLU, are part of a new fam-

ily of quasi-minimal residual methods that are closer to the residual norm and are

inherently free of inner products. This group is able to preserve the critical informa-

tion found in the residual norms from the observations in the likelihood function. The

proposed approaches combine an inner product free Hessenberg projection for gener-



4

ating a solution subspace with a randomized sketch-and-solve technique. Extensions

for Tikhonov regularization are also examined in this study.

1.2 Overview of Dissertation

The dissertation is organized as follows. In Chapter 2, we present relevant background

information. The review covers regularization, Krylov subspace methods, and ran-

domized methods for least squares problems. In Chapter 3, we motivate the use of

inner product free Krylov subspace methods. We establish CMRH as an iterative

regularization method and include a low-precision arithmetic case study to highlight

the pitfalls of inner products in other Krylov subspace methods. We introduce a

new inner product free method for solving rectangular large-scale linear inverse prob-

lems. We propose two new hybrid methods, Hybrid CMRH (H-CMRH) and Hybrid

LSLU (H-LSLU), which are currently the only existing inner product free hybrid

methods. In Chapter 4, we combine randomized sketching and inner product free

Krylov methods to obtain a more accurate approximation of the objective function

to be minimized. Numerical results will illustrate that the proposed algorithm can

solve large-scale inverse problems efficiently. We provide closing remarks in Chapter

5. Throughout this study, we assume that ∥ · ∥ is the Euclidean norm.



5

Chapter 2

Background

This chapter provides an overview of relevant background information for this dis-

sertation. In Section 2.1, we review regularization techniques and their ability to

combat the perturbations in the solution. We describe Krylov subspace methods in

Section 2.2 and emphasize their ability to circumvent computational bottlenecks for

large-scale inverse problems. Finally, we motivate the need for randomized sketch-

and-solve approaches in Section 2.3.

2.1 Regularization

The field of inverse problems belong to a class of ill-posed problems. An inverse

problem is considered ill-posed if it violates at least one of the following requirements

[23]:

• Existence: The problem must have a solution.

• Uniqueness: There must be only one solution to the problem.

• Stability: The solution must depend continuously on the data.

The existence and uniqueness condition can be fixed by reformulating the inverse

problem. The stability condition is more challenging to “deal with” because a viola-
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tion implies that arbitrarily small perturbations of the data can produce arbitrarily

large perturbations of the solution [23]. To understand this property, we consider the

singular value decomposition of A. We let A = UΣV T , where U and V are orthogonal

matrices and Σ is a diagonal matrix with entries satisfying σ1 ≥ σ2 ≥ . . . σn ≥ 0.

Without loss of generality, the problem is scaled so that σ1 = 1. This implies that:

• The singular values, σi, decay to, and cluster at 0, without a significant gap to

indicate numerical rank.

• The components |uT
i b|, where ui is the ith column of U , decay on average faster

than the singular values σi. This is known as the discrete Picard condition [22].

• The singular vectors vi (i.e. the columns of V ) corresponding to small singular

values tend to have more oscillations than the singular vectors corresponding

to large singular values.

These properties illustrate the impact the error term e has on the inverse solution:

xinv = A−1b

= A−1(Axtrue + e)

= xtrue + A−1e

= xtrue + V Σ−1UT e

= xtrue +
n∑

i=1

uT
i e

σi

vi.

(2.1)

Note that we assume A is invertible.

From (2.1), we see that high frequency components in the error are magnified by

the division of small singular values. The computed inverse solution is dominated by

these high frequency components, and is in general a very poor approximation of the

true solution, xtrue. Thus, the goal is to reformulate the inverse problem so that the

“new problem” is less sensitive to the error term e [23].
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2.1.1 The Need for Regularization

The “new” problem must be stabilized or regularized so that the solution is more

stable or regular. Regularization techniques are implemented to enforce regularity or

smoothness and suppress the unwanted noise components. One class of regularization

methods, called filtering, can be formulated as a modification of the inverse solution

(1.1). Specifically, a filtered SVD solution is

xfilt =
n∑

i=1

Φi
uT
i b

σi

vi (2.2)

where Φi ≈ 1 for large σi, and Φi ≈ 0 for small σi. That is, the large singular value

components of the solution are reconstructed, while the components corresponding

to the small singular values are filtered out. Different choices of filtering factors Φi

lead to different methods; popular choices are truncated SVD, Tikhonov, and Wiener

filters [22, 29, 43]. For the purpose of this study we focus on Tikhonov, a type of

variational regularization, in conjunction with iterative regularization.

2.1.2 Iterative and Variational Regularization

A common approach for approximating xtrue is iterative regularization. This consists

of applying an iterative solver to the least squares problem

min
x∈Rn

∥b− Ax∥, (2.3)

where regularization is achieved through early termination of the iterations [10]. The

stopping iteration acts as a regularization parameter, which is critical in constructing

a solution that is not highly oscillatory or overly smooth.

Alternatively, one can use a variational approach such as Tikhonov regularization,
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where the aim is, for example, to solve an optimization problem of the form

min
x∈Rn

∥b− Ax∥2 + λ2∥x∥2, (2.4)

where λ is the regularization parameter and ∥x∥2 is a regularization term [10]. Similar

to the role of the stopping iteration in iterative regularization, it is important to choose

a good value for λ; if it is chosen too large, the regularized solution is overly smooth

and a choice of λ that is too small produces a highly oscillatory solution. Moreover,

multiple linear solves might be needed to refine the choice of λ, drastically increasing

the computational cost. We also note that the solution of (2.4) can be written in

filtered form (2.2), where the filter factors are Φi =
σ2
i

σ2
i +λ2 . However, computing the

SVD for large scale problems is very expensive. Thus, when dealing with large-scale

problems, it may be necessary to solve (2.4) using an iterative method.

2.1.3 Hybrid Regularization

Hybrid regularization is a particular combination of variational and iterative regular-

ization. This approach consists of iteratively projecting (2.3) onto a small subspace

of increasing dimension and applying variational (e.g., Tikhonov) regularization to

the small projected problem, where SVD filtering can be used. In this framework, we

only require matrix-vector products with A and possibly AT , which allows us to avoid

explicitly constructing or storing A. It also creates a natural environment, namely,

the small projected problems, for estimating a good regularization parameter.

Currently, all existing hybrid regularization algorithms require inner products. In

some cases, this can be a computational burden. For example in distributed memory

implementations with a large number of processors, the inner products (requiring

global communication) can be a limiting factor for efficiency; see, e.g. [2, 35]. More-

over, inner products can also affect the performance of algorithms in low and/or mixed
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precision arithmetic, where norms of large vectors can lead to under- or overflow, and

where the notion of numerical orthogonality depends on the working floating point

arithmetic, which can lead to early stopping of the traditional methods. A few inner

product free iterative regularization methods exist but generally exhibit very slow

convergence properties, or require information that might be difficult to accurately

estimate for large-scale problems. The most popular family of algorithms of this kind

consists of Chebyshev semi-iterative methods (see e.g. [2, 5, 18]), which require spec-

tral knowledge about the system matrix A. Alternatively, two simpler algorithms

that do not require inner products are Landweber [26, Chapter 6.1.1] and Richardson

(first-order) [5, Chapter 7.2.3] methods. Note that the first-order Richardson method

corresponds to applying Landweber to the normal equations. Moreover, this is equiv-

alent to gradient descent with a fixed step length that depends on spectral bounds

for A, requires positive definiteness of ATA to converge, and are generally slow to

converge.

2.2 Krylov Subspace Methods

Krylov iterative methods are a class of very powerful projection methods that make

use of Krylov subspaces. For example, if A ∈ Rn×n is symmetric and positive definite

and b ∈ Rn are given, then we can consider the Krylov subspace of the form:

Kk(A, b) = span{b, Ab,A2b, ..., Ak−1b}.

Optimality conditions are imposed to determine approximate solutions, xk, in these

subspaces. As a result, we can efficiently approximate solutions to large-scale linear

inverse problems by projecting the problem onto a smaller subspace with increasing

dimension. In this section, we review three Krylov subspace methods that will be

used for comparison purposes in this dissertation.
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2.2.1 GMRES

The Generalized Minimum Residual (GMRES) Method [36] is a projection technique

that iteratively approximates the solution to (2.3), where m = n, in a Krylov sub-

space, Kk(A, b), of increasing dimension. This iterative method uses the Arnoldi

algorithm to compute orthornormal basis vectors of Kk(A, b). Moreover, Arnoldi

produces a (k+1)×k Hessenberg matrix HA
k+1,k and forms the following relationship:

AVk = Vk+1H
A
k+1,k,

where the columns of Vk span Kk. At each iteration, GMRES computes

yk = arg min
y∈Rk

∥∥b∥e1 −HA
k+1,ky∥

and projects back onto the original subspace using xk = Vkyk to approximate the

solution. Note that xk = arg min
x∈R(Vk)

∥b − Ax∥, where R(·) is used to denote the

range of the given operator and e1 denotes the 1st column of the identity matrix of

appropriate size. In others words, the approximate solution is such that the norm of

the residual rk = b−Axk is the minimum over all such vectors [39]. An implementation

of GMRES can be found in Algorithm 1.

Algorithm 1: GMRES

Require: A, b, x0, maxiter
1: Define r0 = b− Ax0, β = ∥r0∥2; v1 = r0/β
2: for k = 1, . . . ,maxiter do
3: wk = Avk
4: for j = 1, . . . , k do
5: h(j, k) = (wk, vj); wk = wk − h(j, k)vj
6: end for
7: h(k + 1, k) = ∥wk∥2; If h(k + 1, k) = 0 set maxiter := k and go to 9;

vk+1 = wk/h(k + 1, k)
8: end for
9: Define the (k + 1) × k Hessenberg matrix Hk = {hjk}1≤j≤k+1,1≤k≤maxiter

10: Compute yk the minimizer of ∥βe1 −Hky∥2 and xk = x0 + Vkyk
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2.2.2 QMR

The Quasi-Minimal Residual (QMR) Algorithm [36] is based on Lanczos bi-orthogonalization,

which is an extension to nonsymmetric matrices of the symmetric Lanczos algorithm.

This technique builds a pair of bi-orthogonal bases for two subspaces

Kk(A, b) = span{b, Ab, ....., Ak−1b}

and

Kk(AT , b) = span{b, AT b, ....., (AT )k−1b},

where A ∈ Rn×n. QMR, detailed in [36], forms this relation

AZk = Zk+1T k, (2.5)

where T k is a (k + 1) × k tridiagonal matrix

Tk =

 Tk

δk+1e
T
k


and δk+1 is a scalar that satisfies δk+1βk+1 = (zk+1, wk+1) (see, e.g., [36, Section 7.1]).

Note that the columns of Zk are not orthonormal. Therefore, at each iteration we are

minimizing

yk = arg min
y∈Rk

∥∥b∥e1 − T ky∥.

The solution, yk, is used to project back onto the original subspace using the following:

xk = Zkyk. Note that

xk = arg min
x∈x0+R(Zk)

∥Z†
k+1(b− Ax)∥. (2.6)
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It is also worth noting that because the columns of Zk+1 are not orthonormal,

∥Z†
k+1(b− Ax)∥ ≠ ∥b− Ax∥.

This means that (2.6) amounts to minimizing a quasi-residual or semi-norm. An

implementation of QMR is presented in Algorithm 7.4 of [36].

2.2.3 LSQR

LSQR [41] uses Golub-Kahan bidiagonalization (GKB) to solve (2.3). GKB, de-

noted in Algorithm 2, computes two orthonormal bases for the Krylov subspaces

Kk(ATA,AT b) and Kk(AAT , b). Similar to other Krylov subspace methods, the GKB

algorithm forms the following relations:

AWk = Zk+1Bk,

ATZk+1 = WkBk + µk+1wk+1e
T
k+1,

where Wk = [w1, ...., wk] ∈ Rm×k, Zk = [z1, ...., zk] ∈ Rm×k, and

Bk =



µ1

ν2 µ2

. . . . . .

νk µk

νk+1


∈ R(k+1)×k.

At each iteration, LSQR computes

yk = arg min
y∈Rk

∥∥b∥e1 −Bky∥
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and projects back onto the original subspace using xk = Wkyk to approximate the

solution [17]. Note that xk = arg min
x∈R(Wk)

∥b− Ax∥.

Algorithm 2: Golub-Kahn bidiagonalization

Require: A, b
1: Initialize: ν1 = ∥b∥, z1 = b/ν1
2: Initialize: w = AT z1, µ1 = ∥w∥, w1 = w/µ1

3: for j = 2, . . . , k + 1 do
4: Compute z = Awj−1 − µj−1zj−1.
5: Set νj = ∥z∥.
6: Take zj = z/νj.
7: Compute w = AT zj − νjwj−1.
8: Set µj = ∥w∥.
9: Take wj = w/µj.
10: end for

2.3 Randomized Methods

We conclude this chapter with a discussion on randomized methods to efficiently solve

strongly overdetermined least square problems. We discuss a popular technique to

reduce the dimensionality of the problem and present information regarding the best

formation of the sketch matrix.

Randomized numerical linear algebra, particularly those approaches involving

sketching, has gained increasing popularity, see e.g. [32]. Sketching is a linear di-

mensionality reduction technique, and there are different ways in which sketching

has been used to solve least squares problems. One of the conceptually simplest ap-

proaches is to sketch-and-solve, which can be used to find approximate solutions of

least-squares problems where the system matrix is tall and skinny. This was originally

proposed in [40] and has gained a lot of attention due its simplicity and probabilistic

guarantees. In particular, we can define a sketching matrix S ∈ Rs×m, such that the

following subspace embedding property is satisfied for any vector a ∈ Rm in a given
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set of vectors

(1 − ϵ)∥a∥ ≤ ∥Sa∥ ≤ (1 + ϵ)∥a∥. (2.7)

For this to be a dimensionality reduction technique, we typically assume that s ≪ m.

Even if this is a very favorable property, it is not trivial to construct such matrices de-

terministically in practice, in the sense that (2.7) is guaranteed for any a ∈ Rm. How-

ever, the analytical properties of random matrices can be used to construct sketching

matrices S ∈ Rs×m that will satisfy (2.7) with high probability. Note that this is a

special case of a random subspace embedding; for a formal definition, see e.g. [32,

Chapter 8.1].

Moreover, there exist different choices of random matrices in the literature that

can be computationally cheap to construct and apply. The easiest class to analyze

and implement is that of Gaussian embeddings, where each entry of S ∈ Rs×m is

an independent draw of a Gaussian distribution with zero mean and variance 1/s.

Note that applying a Gaussian sketch to a vector has an O(sm) cost (the explicit

storage of the sketch matrix is also O(sm)), see [32, Chapter 8.3]. When dealing with

high dimensional problems one can also use structured random embeddings, which

can reduce the storage and application costs. The most well-used sketches in this

case are the subsampled randomized trigonometric transforms (SRTT), subsampled

random Fourier transform (SRFT), and the sparse sign embeddings. However, the

latter sketches require sufficiently efficient implementations to be faster than a simple

Gaussian sketch in practice. For simplicity, we will only use Gaussian embeddings,

but all results can be generalized to the use of other sketching techniques.

One of the most popular uses of sketching is to find approximate solutions of

least-squares problems. Suppose we have a tall and skinny matrix A ∈ Rm×n, where

m ≫ n, then we can define a sketching matrix S ∈ Rs×m, such that s ≪ m and

is assumed to be a small multiple of n. A representation of the sketched matrix

SA ∈ Rs×n, of smaller dimension than A, can be observed in Figure 2.1. The sketch-
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and-solve method for finding an approximate solution to the least-squares problem

(2.3) involves solving the following minimization problem

min
x∈Rn

∥S(Ax− b)∥, (2.8)

where S is a sketch matrix, see, e.g. [32, Chapter 10.3], [40]. Note that, when using

Gaussian sketching, the solution of (2.8) is an unbiased estimator of the solution of

the original least-squares problem (2.3) provided that the matrix A has full column

rank.

S ∈ Rs×m

A ∈ Rm×n

SA ∈ Rs×n

· =s

m

n

n

s

Figure 2.1: Schematic representation of the sketching of a matrix A using a sketch S.

The fact that A needs to be tall and skinny seems to be a restrictive property, since

a lot of applications do not give rise to systems where the matrices are naturally in this

form. However, it has been proposed to use randomized techniques in combination

with Krylov methods, where the projections give rise to such tall and skinny matrices

[20]. Specifically, for inverse problems, we know that a good approximation of the

solution can be found in a Krylov subspace of small dimension involving the right-

hand side b, A, and possibly AT . Thus, as we will describe in Chapter 3, one can

construct a basis for the relevant Krylov subspace(s) and use sketching to solve the

projected least-sqaures problems, since this now involves a tall and skinny matrix

even if A is not.



16

Chapter 3

Inner Product Free Krylov

Subspaces Methods

This chapter, which is based on the collaborative works [6, 7], focuses on inner product

free Krylov methods, where the first step is to build nonorthogonal bases for the

relevant Krylov subspaces. In Section 3.1 we describe CMRH and establish this

method as an iterative regularization method. In Section 3.2 we create an inner

product free quasi-minimum residual method for rectangular systems. We conclude

this chapter with a hybrid extension of CMRH and LSLU in Section 3.3 and numerical

results in Section 3.4.

3.1 The Changing Minimal Residual Hessenberg

Method

The Changing Minimal Residual Hessenberg Method is an algorithm that iteratively

approximates the solution to (2.3) in a Krylov subspace of increasing dimension,

Kk(A, r0) = span{r0, Ar0, A2r0, . . . , A
k−1r0},
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where A ∈ Rn×n, r0 = b− Ax0, and x0 is the initial guess of the solution. We define

the Krylov matrix as

Ṽk = [r0, Ar0, A
2r0, . . . , A

k−1r0] ∈ Rn×k, (3.1)

where Ṽk+1 = [r0, AṼk]. Since Ṽk is an ill-conditioned matrix for even small k, it is

not explicitly constructed but only used to motivate a scheme to compute a linearly

independent basis for Kk(A, r0) called the Hessenberg process [15].

For the Hessenberg process, consider the LU factorization,

Ṽk = L̃kŨk, (3.2)

where L̃k ∈ Rn×k is a unit lower triangular matrix and Ũk ∈ Rk×k is an upper

triangular matrix. The algorithm recursively computes the columns of L̃k but does

not explicitly compute the LU factorization of Ṽk. From the construction of Ṽk+1, we

can write the following relation,

Ṽk+1

01×k

Ik

 = L̃k+1Ũk+1

01×k

Ik

 = AṼk = AL̃kŨk, (3.3)

where 01×k is a row vector of zeros with dimensions 1 × k. Following [39], we define

an upper Hessenberg matrix as

H̃k+1,k = Ũk+1

01×k

Ik

 Ũ−1
k ∈ R(k+1)×k, (3.4)

where k < n. Furthermore, combining (3.3) and (3.4), we get the Hessenberg relation:

AL̃k = L̃k+1H̃k+1,k, (3.5)
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where the columns of L̃k form a linearly independent basis for Kk(A, r0). Algorithm 3

contains a description of the Hessenberg Process for square A [27].

Algorithm 3: Hessenberg Process for Square A

Require: A, b, x0, maxiter
1: r0 = b− Ax0, β = eT1 r0; l̃1 = r0/β
2: for k = 1, . . . ,maxiter do
3: u = Al̃k
4: for j = 1, . . . , k do
5: H̃(j, k) = u(j); u = u− H̃(j, k)l̃j
6: end for
7: H̃(k + 1, k) = u(k + 1); l̃k+1 = u/H̃(k + 1, k)
8: end for

Notice that at each iteration of the Hessenberg process, we require one matrix-

vector multiplication with A and no computations of inner products. From Algo-

rithm 3, we can observe that the Hessenberg process will break down if β = eT1 r0 = 0

or H̃(k + 1, k) = 0. To avoid this and to avoid severe ill-conditioning in the basis

vectors, i.e, the columns of L̃k, [27] introduces the Hessenberg process with pivoting,

which is provided in Algorithm 4.

Building off the Hessenberg process, CMRH is an iterative projection algorithm for

computing an approximate solution to (2.3), where at each iteration k, the following

least-squares problem is solved

min
x∈R(L̃k)

∥L̃†
k+1(b− Ax)∥, (3.6)

where L̃†
k+1 is the pseudoinverse of L̃k+1 and R(·) is used to denote the range of the

given operator. With initial guess x0, r0 = b− Ax0, and using (3.5), we can see that
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the solution is given by xk = x0 + L̃kyk where

∥L̃†
k+1(b− A(x0 + L̃ky))∥ = ∥L̃†

k+1(r0 − AL̃ky)∥

= ∥L̃†
k+1(r0 − L̃k+1H̃k+1,ky)∥

= ∥βe1 − H̃k+1,ky∥

and

yk = arg min
y∈Rk

∥βe1 − H̃k+1,ky∥. (3.7)

Here, β is either the first element of r0 if using Algorithm 3 or the element of r0 with

the largest absolute value if using Algorithm 4.

Algorithm 4: Hessenberg Process with Pivoting

Require: A, b, x0, maxiter
1: Define p = [1, 2, . . . , n]T , and let r0 = b− Ax0

2: Determine i such that |r0(i)| = ∥r0∥∞
3: β = r0(i); l̃1 = r0/β; p(1) ⇔ p(i)
4: for k = 1, . . . ,maxiter do
5: u = Al̃k
6: for j = 1, . . . , k do
7: H̃(j, k) = u(p(j)); u = u− H̃(j, k)l̃j
8: end for
9: if k < n and u ̸= 0 then
10: Determine i ∈ {k + 1, . . . , n} such that |u(p(i))| = ∥u(p(k + 1 : n))∥∞
11: H̃(k + 1, k) = u(p(i)); l̃k+1 = u/H̃(k + 1, k) ; p(k + 1) ⇔ p(i)
12: else
13: H̃(k + 1, k) = 0; Stop
14: end if
15: end for

3.1.1 The relationship between CMRH and GMRES

In this section, we recall the theoretical relationship between the basis vectors pro-

duced by GMRES and CMRH, as well as bounds on the difference between their

relative residual norms. We follow closely the work of Szyld and Sadok [39] and in-
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clude additional details on the derivations for completeness. This will guide the proof

for the hybrid version of the algorithm in Section 3.3. This does not, however, pro-

vide a sufficient explanation regarding the regularization properties of CMRH, which

is explained in Section 3.1.2.

Similar to CMRH, one can derive the GMRES method by considering the QR

factorization of the Krylov matrix defined in (3.1):

Ṽk = QkR̃k (3.8)

where Qk ∈ Rn×k has orthonormal columns and R̃k is an upper triangular matrix.

This algorithm does not explicitly compute the QR factorization, but instead recur-

sively computes the columns of Qk. From [39] we consider the following relationship:

Ṽk+1

01×k

Ik

 = Qk+1R̃k+1

01×k

Ik

 = AṼk = AQkR̃k, (3.9)

where 01×k is a row vector of zeros with dimensions 1 × k. Since R̃k+1, R̃k, and R̃−1
k

are upper triangular matrices, we observe from (3.9) that

HA
k+1,k = QT

k+1AQk = R̃k+1

01×k

Ik

 R̃−1
k ∈ R(k+1)×k, (3.10)

is an upper Hessenberg matrix where k < n. Note that the columns of Qk form an

orthonormal basis of Kk(A, r0). Moreover, combining (3.9) and (3.10) creates the

Arnoldi relation

AQk = Qk+1H
A
k+1. (3.11)

The derivation of (3.11) and (3.5) naturally provides a mapping between the

Arnoldi and Hessenberg bases. Consider the LU and QR factorizations of the Krylov
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matrix Ṽk in (3.2) and (3.8), respectively; then we can define

Ṽk = L̃kŨk = QkR̃k. (3.12)

Now, let Rk = R̃kŨ
−1
k : this is a k × k upper triangular matrix. Using (3.12), the

lower triangular matrix L̃k can be written as a composition of an orthogonal matrix

and an upper right triangular matrix,

L̃k = QkR̃kŨ
−1
k .

This corresponds to a QR factorization of L̃k,

L̃k = QkRk. (3.13)

In addition to (3.13), we can rewrite the Arnoldi relation in (3.11) as

AL̃kR
−1
k = L̃k+1R

−1
k+1H

A
k+1,k. (3.14)

Comparing the Hessenberg (3.5) and Arnoldi (3.14) relations, and following [39], we

provide the following proposition.

Proposition 1. Let H̃k+1,k and HA
k+1,k be the Hessenberg matrices associated to the

Hessenberg and Arnoldi processes, respectively, at iteration k, then

H̃k+1,k = R−1
k+1H

A
k+1,kRk,

or, equivalently, HA
k+1,k = Rk+1H̃k+1,kR

−1
k .

Proposition 1 is used to establish residual bounds for CMRH in the following

sense: the residual norm associated to the approximate solution provided by CMRH
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at each iteration is close to the residual norm associated to the solution provided

by GMRES if the condition number of Rk+1 does not grow too quickly. This can

be observed in the following theorem, originally proved in [39]. Here, we restate it

and provide additional details of the proof in order to set the stage for an analogous

reasoning of Hybrid CMRH in Section 3.3.

Theorem 1. Let rGk and rCk be the GMRES and CMRH residuals at the kth iteration

beginning with the same initial residual r0, respectively. Then

∥rGk ∥ ≤ ∥rCk ∥ ≤ κ(Rk+1)∥rGk ∥ (3.15)

where κ(Rk+1) = ∥Rk+1∥∥R−1
k+1∥ is the condition number of Rk+1.

Proof. First, we prove the left inequality in (3.15). Consider the residual as a function

of the solution:

r(x) = b− Ax.

Then, the kth residual norm associated to the approximated solution produced by

GMRES is:

∥rGk ∥ = ∥b− AxG
k ∥ = min

x∈Kk

∥r(x)∥

Since xG
k and xC

k are in the Krylov subspace Kk, then by definition:

min
x∈Kk

∥r(x)∥ ≤ ∥rCk ∥ = ∥r(xC
k )∥.

Hence, ∥rGk ∥ ≤ ∥rCk ∥.

Now we prove the right inequality in (3.15). Since rCk and rGk are in the Kk+1(A, r0)

subspace, we can write rCk and rGk as a linear combination of any basis of Kk+1(A, r0).

Using the Hessenberg relation, the decomposition of the Krylov matrix is:

Ṽk+1 = L̃k+1Ũk+1.
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This implies range(L̃k+1) = range(Ṽk+1) = Kk+1(A, r0). Therefore, and using (3.13),

there exist uC
k and wC

k in Rk+1 such that

rCk = L̃k+1u
C
k = Qk+1Rk+1u

C
k = Qk+1w

C
k

with Rk+1u
C
k = wC

k . Analogously, there exist uG
k and wG

k in Rk+1 such that

rGk = L̃k+1u
G
k = Qk+1Rk+1u

G
k = Qk+1w

G
k (3.16)

with Rk+1u
G
k = wG

k .

Consider the optimality conditions of CMRH. As stated above, rCk = L̃k+1u
C
k .

This implies that L̃†
k+1r

C
k = uC

k . Hence, ∥L̃†
k+1r

C
k ∥ = ∥uC

k ∥ so

∥uC
k ∥ = min

x∈Kk

∥L̃†
k+1(b− Ax)∥ = min

x∈Kk

∥L̃†
k+1r(x)∥. (3.17)

Using (3.17) and the fact that xG
k is in Kk(A, r0) then ∥uC

k ∥ ≤ ∥uG
k ∥. Thus

∥uC
k ∥ ≤ ∥uG

k ∥ = ∥R−1
k+1w

G
k ∥ ≤ ∥R−1

k+1∥∥w
G
k ∥ = ∥R−1

k+1∥∥r
G
k ∥,

where the equalities in the above relation come from (3.16). On the other hand, by

employing (3.16) we have:

∥rCk ∥ = ∥L̃k+1u
C
k ∥ ≤ ∥L̃k+1∥∥uC

k ∥.

Putting the above inequalities together gives the following relation:

∥rCk ∥ = ∥L̃k+1u
C
k ∥

≤ ∥L̃k+1∥∥uC
k ∥

≤ ∥L̃k+1∥∥R−1
k+1∥∥r

G
k ∥.
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Recall that L̃k+1 has a QR decomposition (3.13) of the form L̃k+1 = Qk+1Rk+1, where

Qk+1 has orthonormal columns. Therefore, ∥L̃k+1∥ = ∥Qk+1Rk+1∥ = ∥Rk+1∥. This

results in the following:

∥rCk ∥ ≤ ∥L̃k+1∥∥R−1
k+1∥∥r

G
k ∥ = ∥Rk+1∥∥R−1

k+1∥∥r
G
k ∥ = κ(Rk+1)∥rGk ∥.

Thus, we conclude that ∥rGk ∥ ≤ ∥rCk ∥ ≤ κ(Rk+1)∥rGk ∥.

If we compare the computational cost between GMRES and CMRH, each algo-

rithm requires one matrix-vector product per iteration, which is typically the most

expensive computation in an iterative method. Additional costs related to vector

operations are also similar, except that GMRES requires k + 1 inner products at the

kth iteration, while no inner products need to be computed in CMRH. Note that, in

cases where the number of required iterations is large and matrix-vector products can

be done very efficiently, the growing number of inner products required by GMRES

can be a computational bottleneck. In these cases, CMRH presents a computational

advantage with respect to GMRES.

3.1.2 Regularizing properties of CMRH

This section is devoted to providing a theoretical understanding that underlies the

regularizing mechanisms of CMRH. These theoretical results are supported by tech-

nical numerical examples, which are designed to highlight the behavior of CMRH in

this context rather than its performance. Note that a variety of additional numer-

ical examples on the performance of CMRH for ill-posed problems can be found in

Section 3.4.

As an iterative solver, CMRH produces a sequence of approximate solutions. In

this study we observe that, in early iterations, these approximations begin to converge

toward the true solution, xtrue; however, if the iterations are not stopped early, the
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approximate solutions eventually deviate from xtrue due to the ill-conditioning of A

and the noise, e (see Section 2.1). This is known as semiconvergence [23]. To overcome

semiconvergence, we must stop CMRH at the right time.

An analysis of the SVD of the projected matrix H̃k+1,k from (3.5) provides a basis

for understanding the regularizing properties of CMRH. Moreover, our hypothesis

is that the approximated solutions produced by CMRH mirror regularized (filtered)

solutions, so the spectral filtering properties of CMRH are also studied empirically in

this section.

3.1.2.1 Singular Value Decomposition Analysis

It has been observed that the singular values of the projected matrix HA
k+1,k in (3.11)

for GMRES (and the corresponding projected matrix for QMR [17]) tend to ap-

proximate the large singular components of A. This helps to explain the regularizing

properties of these Krylov methods and the initial decay of the relative residual norms

of QMR and GMRES [17].

In this section, we compare the largest singular values of the matrix A with the

singular values of the upper Hessenberg matrix H̃k+1,k defined in (3.5) and obtained

at each iteration of CMRH. To analyze how well the singular values from H̃k+1,k

approximate those of A, in Figures 3.1 and 3.2 we plot the largest singular values

of the full matrix A using horizontal lines. The dots represent the singular values

of the projected matrices at each iteration k (see top plots of Figures 3.1 and 3.2).

As another way of visualizing this, the bottom plots display the singular values of

the upper Hessenberg matrix at different iterations of CMRH against the singular

values of A. Each figure represents a different 1D inverse problem; the first three

(Deriv2, Heat, and Shaw) are from the Regularization Tools Package [25], and the

fourth example (Spectra) is a 1D signal restoration problem, with a matrix modeling
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a Gaussian blur. Specifically, the entries of A are given by

aij =
1

ς
√

2π
exp

(
−(i− j)2

2ς2

)
, (3.18)

with ς = 2, and xtrue is a simulated x-ray spectrum [42].

Deriv2 Heat
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Figure 3.1: Singular values for Deriv2-example 2 and Heat (see [25] for Deriv2 details).

From Figures 3.1 and 3.2, it seems that the quality of the singular value approx-

imations depends on the conditioning of A. To investigate this, we construct the

following experiment: Consider the matrix A ∈ Rn×n and the vector xtrue generated

from Spectra test problem (3.18). We compute the SVD of A and keep the singular

vectors from the orthogonal matrices U and V . We replace the diagonal matrix con-

taining the singular values of A with a diagonal matrix of S whose diagonal elements

are defined as:

S
(i)
kk = eci∗k for k = 1, ..., n,
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Shaw Spectra
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Figure 3.2: Singular values for Shaw and Spectra.

where ci are entries from the vector c = [−2,−1,−0.5,−0.25]. For these different

matrices S(i), we compare the largest singular values of A(i) = US(i)V T with those

associated with the Hessenberg matrices obtained using the Hessenberg process as-

sociated to A(i) and the right-hand side b(i) = A(i)xtrue. The results are displayed in

Figures 3.3 and 3.4. Indeed, it appears that the more ill-conditioned A is, the better

the singular values of the Hessenberg matrices associated to the Hessenberg process

approximate the largest singular values of A. This result is coherent with what we

observed from the previous experiments, for example, in the test problems Shaw for

Figure 3.2 and Deriv2 for Figure 3.1.
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Figure 3.3: Singular values for modified Spectra.

3.1.2.2 Spectral Filtering Properties

From Section 2.1, we find that an approximate solution to (1.1) is said to be regular-

ized using spectral filtering if it can be written in the form

x =
n∑

i=1

Φi
uT
i b

σi

vi, (3.19)

where ui and vi correspond to left and right singular vectors of A, and σi are its

singular values in nonincreasing order of magnitude. Spectral filtering methods are a

wide class of methods, including, for example, Tikhonov regularization; see, e.g.,[23,

Chapter 4] and Section 2.1.

A natural question arises when studying the regularization properties of CMRH:

Is there an empirical relationship between the approximate solutions computed with

CMRH and a solution with spectral filtering of the form in (3.19)? Using (3.19),
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Figure 3.4: Singular values for modified Spectra.

one can compute the empirical associated filter factors Φi to a given approximated

solution at the kth iteration, xk, as

Φi =
vTi xk

uT
i b

σi, (3.20)

assuming the SVD of A is available.

Consider the 1D signal restoration problem Spectra solved using CMRH and GM-

RES. In Figure 3.5, we observe the relative error norm histories for three different

noise levels. For each noise level, the plots in Figure 3.6 display the empirical filter

factors for some iterations of CMRH and GMRES. These are indicated with a marker

in Figure 3.5 and aim to illustrate three iterations that are common for all noise levels

and the last iteration before the relative error increases.

First, one can observe that for all combinations of noise levels and iterations dis-

played in the plots in Figure 3.6, the empirical filter factors for CMRH and GMRES
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have a very similar behavior. This is also reminiscent of the filter factors correspond-

ing to the TSVD, which present a sharp phase transition between filter factors being

1 and 0. Also note that this phase transition moves to the right (that is, happens at

a higher value of k) as the iterations increase; in other words, fewer iterations corre-

spond to more filtering. This a very positive result, as it indicates that CMRH is an

effective method for filtering highly oscillatory noisy components if the iterations are

stopped early.

We also observe that the different noise levels (in this small regime) do not affect

significantly the filter factors in the first iterations. We reiterate that in order for

CMRH to mimic spectral filtering regularization, the iterative solver must terminate

before the relative error increases.
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Figure 3.5: Relative error norms for the approximate solutions to test problem Spectra
computed using CMRH and GMRES for different noise levels. The empirical filter
factors for both methods at the indicated markers can be observed in the plots in
Figure 3.6.

3.2 Least Squares with LU Factorization

Now, we introduce an extension of CMRH, known as LSLU, to problems where A

is a rectangular matrix. This is a common scenario in the field of inverse problems.

We show that the Hessenberg process for rectangular matrices is directly related

to applying the Hessenberg process to the normal equations. In a similar fashion to

CMRH, we impose a quasi-minimal residual optimality condition. This is comparable
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Figure 3.6: Empirical filter factors Φi for solutions of test problem Spectra computed
using GMRES and CMRH at iterations corresponding to the markers in Figure 3.5.
The top row corresponds to left plot in Figure 3.5 (noise level 0.001), the middle row
corresponds to the middle plot of Figure 3.5 (noise level 0.001), and the bottom row
corresponds to the right plot in Figure 3.5 (noise level 0.01).

to the process found in LSQR [41] where the basis vectors are built using Golub-Kahan

bidiagonalization (or symmetric Lanczos on the normal equations) and the optimality

conditions that are imposed minimize the residual norm.

3.2.1 Extension of the Hessenberg Process

In this section, we describe an extension of the Hessenberg process for rectangular

systems with A ∈ Rm×n, where the main difference is that we require two sets of basis

vectors, one for each of the following Krylov subspaces,

Kk(ATA, v0) = span{v0, ATAv0, (A
TA)2v0, . . . , (A

TA)k−1v0}, (3.21)

Kk(AAT , r0) = span{r0, AAT r0, (AA
T )2r0, . . . , (AA

T )k−1r0}, (3.22)
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where r0 = b − Ax0 and v0 = AT r0, with x0 as an initial guess of the solution. We

introduce an iterative method called LSLU that minimizes an oblique projection of the

residual and exploits components of the Hessenberg process for efficient computation.

Assume that no breakdowns occur in the initialization process. The Hessenberg

method for rectangular systems, detailed in Algorithm 5, generates at the kth iteration

vectors lk+1 and dk+1 such that

ALk = Dk+1Hk+1,k (3.23)

ATDk+1 = Lk+1Wk+1, (3.24)

where Lk ∈ Rn×k is unit lower triangular, Dk ∈ Rm×k is unit lower triangular,

Hk+1,k ∈ R(k+1)×k is upper Hessenberg, and Wk+1 ∈ R(k+1)×(k+1) is upper triangu-

lar.

From (3.23) and (3.24), we obtain the following Hessenberg relationships:

ATALk = ATDk+1Hk+1,k = Lk+1Wk+1Hk+1,k, (3.25)

AATDk+1 = ALk+1Wk+1 = Dk+2Hk+2,k+1Wk+1, (3.26)

where the products Wk+1Hk+1,k and Hk+2,k+1Wk+1 are upper Hessenberg matrices.

Comparing (3.25) with (3.5), we see that the Hessenberg process for rectangular

systems is equivalent to the Hessenberg process for square systems applied to the

normal equations, with system matrix ATA and resulting upper Hessenberg matrix

Wk+1Hk+1,k.
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Algorithm 5: Hessenberg Process for Rectangular Systems

Require: A, b, x0, maxiter
1: Define r0 = b− Ax0, β = eT1 r0; d1 = r0/β
2: for k = 1, . . . ,maxiter do
3: q = ATdk
4: for j = 1, . . . , k − 1 do
5: W (j, k) = q(j); q = q −W (j, k)lj
6: end for
7: W (k, k) = q(k); lk = q/W (k, k)
8: u = Alk
9: for j = 1, . . . , k do
10: H(j, k) = u(j); u = u−H(j, k)dj
11: end for
12: H(k + 1, k) = u(k + 1); dk+1 = u/H(k + 1, k);
13: end for

Similar to the derivation in Section 3.1.1, we can define Krylov matrices,

Pk = [v0, A
TAv0, (A

TA)2v0, . . . , (A
TA)k−1v0] ∈ Rn×k, (3.27)

Ck = [r0, AA
T r0, (AA

T )2r0, . . . , (AA
T )k−1r0] ∈ Rm×k, (3.28)

whose columns span (3.21) and (3.22) respectively. It follows that Pk+1 = [v0, A
TAPk]

and Ck+1 = [r0, AA
TCk].

Note that, by construction, the columns of Pk and Lk span the same space for all

k. In particular, the vector pj can be written as a linear combination of the columns

of Lj, which correspond to the first j columns of the matrix Lk, for all j ≤ k.

This means that there exists an upper triangular matrix Uk such that Pk = LkUk,

and since Lk is unit lower triangular, this corresponds to an LU factorization of

Pk. Note that Algorithm 5 does not explicitly compute this LU factorization, but

recursively generates the columns of Lk. Applying this factorization provides the
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following relation:

Pk+1

01×k

Ik

 = Lk+1Uk+1

01×k

Ik

 = ATAPk = ATALkUk, (3.29)

where 01×k is a row vector of zeros with dimensions 1 × k.

From (3.25), we find that ATALk = Lk+1Wk+1Hk+1,k. (3.29) can be written as:

Lk+1Uk+1

01×k

Ik

 = ATALkUk. (3.30)

Since Uk+1, Uk, and U−1
k are upper triangular matrices, we observe from (3.30) that

Lk+1Uk+1

01×k

Ik

U−1
k = ATALk. (3.31)

Thus, by (3.25) and (3.31) we recover the upper Hessenberg matrix:

Wk+1Hk+1,k = Uk+1

01×k

Ik

U−1
k , (3.32)

where k < n.

Following an analogous argument to the one used for Lk, the columns of Ck and

Dk span the same space for all k by construction, and there exists an upper triangular

matrix Gk+1 such that Ck+1 = Dk+1Gk+1 corresponds to an LU factorization of Ck+1.

Applying this factorization to Ck+1 = [r0, AA
TCk] provides the following relation:

Ck+2

01×(k+1)

Ik+1

 = Dk+2Gk+2

01×(k+1)

Ik+1

 = AATCk+1 = AATDk+1Gk+1, (3.33)
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where 01×(k+1) is a row vector of zeros with dimensions 1 × (k + 1).

From (3.26), we find that AATDk+1 = Dk+2Hk+2,k+1Wk+1. (3.33) can be written

as:

Dk+2Gk+2

01×(k+1)

Ik+1

 = AATDk+1Gk+1. (3.34)

Since Gk+2, Gk+1, and G−1
k+1 are upper triangular matrices, we observe from (3.34)

that

Dk+2Gk+2

01×(k+1)

Ik+1

G−1
k+1 = AATDk+1. (3.35)

Thus, by (3.26) and (3.35) we recover the upper Hessenberg matrix:

Hk+2,k+1Wk+1 = Gk+2

01×k+1

Ik+1

G−1
k+1, (3.36)

where k < m.

From Algorithm 5, we find that the process will breakdown if either β = 0,

H(k + 1, k) = 0, or W (k, k) = 0. Moreover in floating point arithmetic, additional

errors can occur if these values are small and not exactly zero. To avoid division by

small numbers, in practice we implement the Hessenberg process with pivoting, which

is given in Algorithm 6. Notice that pivoting is required twice.
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Algorithm 6: Hessenberg Process with Pivoting for Rectangular Systems

Require: A, b, x0, maxiter
1: Define t = [1, 2, . . . ,m]T , g = [1, . . . , n]T .
2: r0 = b− Ax0

3: Determine i such that |r0(i)| = ∥r0∥∞
4: β = r0(i); d1 = r0/β; t(1) ⇔ t(i)
5: for k = 1, . . . ,maxiter do
6: q = ATdk
7: for j = 1, . . . , k − 1 do
8: W (j, k) = q(g(j)); q = q −W (j, k)lj
9: end for
10: if k < n and q ̸= 0 then
11: Determine i ∈ {k, . . . , n} such that |q(g(i))| = ∥q(g(k : n))∥∞
12: W (k, k) = q(g(i)); lk = q/W (k, k); g(k) ⇔ g(i)
13: else
14: break
15: end if
16: u = Alk
17: for j = 1, . . . , k do
18: H(j, k) = u(t(j)); u = u−H(j, k)dj
19: end for
20: if k < m and u ̸= 0 then
21: Determine i ∈ {k + 1, . . . ,m} such that |u(t(i))| = ∥u(t(k + 1 : m))∥∞
22: H(k + 1, k) = u(t(i)); dk+1 = u/H(k + 1, k); t(k + 1) ⇔ t(i)
23: else
24: break
25: end if
26: end for

LSLU is a new iterative projection method. At each iteration k, LSLU finds an

approximate solution for (2.3) by minimizing the following least squares problem:

min
x∈x0+R(Lk)

∥D†
k+1(b− Ax)∥, (3.37)

where D†
k+1 is the pseudoinverse of Dk+1. Note that the functional in (3.37) can be

considered as an approximation to the residual norm of the original problem, which

is similar to the QMR method; see e.g., [36] and Section 2.2.2. More specifically,

considering x = x0 + Lky and r0 = b − Ax0, the objective function in (3.37) can be
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written as

∥D†
k+1(b− A(x0 + Lky))∥ = ∥D†

k+1(r0 − ALky)∥

= ∥D†
k+1(r0 −Dk+1Hk+1,ky)∥

= ∥βe1 −Hk+1,ky∥,

where β is either the first entry of r0 (Algorithm 5) or the entry of r0 with the largest

absolute value (Algorithm 6). Thus, at iteration k we solve the following subproblem,

yk = arg min
y∈Rk

∥βe1 −Hk+1,ky∥,

which is of smaller dimension compared to the original problem. Once yk is computed,

then xk = x0 + Lkyk provides an approximate solution of the original least squares

problem (2.3). The algorithm corresponding to this method can be found as a special

case of the hybrid method described in Section 3.3.

In Algorithm 6, we must find the entry with the largest absolute value of r0 and

two other vectors at each iteration. For any given vector x, this corresponds to finding

i such that |x(i)| = ∥x∥∞, which can be costly as computing ∥x∥∞ requires global

communication. In order to avoid this in LSLU, we propose the following pivoting

alternative: select a small random sample of entries from r0, u, q, and choose the

largest value (in magnitude) in that sample. Provided that the selection is “large

enough”, we achieve a reasonable approximate solution.

As an illustration, we use the the PRtomo example from IR Tools [16] (see Sec-

tion 3.4 for details), and we use 25, 50, and 100 samples to approximate the infinity

norm. Note that the samples are only being used for determining the pivot, and that

the number of samples is tiny compared to the more than 65000 elements in each of

the vectors. We provide relative reconstruction error norms, ∥xtrue−xk∥/∥xtrue∥, per

iteration in Figure 3.7, where the sampled LSLU approach denoted ‘LSLU inf est’
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performs similar to the LSLU approach where the pivots are determined using the

actual infinity norm, denoted ‘LSLU’. Note that sometimes ‘LSLU inf est’ seems to

perform better than ‘LSLU’ in that one can observe a delay in the semi-convergence

phenomenon. However, the minimal attained error norm for ‘LSLU inf est’ is com-

parable or marginally larger than the one corresponding to the version with standard

partial pivoting. The relative reconstruction error norms per iteration of LSQR are

provided to illustrate that the new LSLU method is competitive with existing meth-

ods. Additional numerical results will be provided in Section 3.4.

PRtomo Sample Size 25 PRtomo Sample Size 50 PRtomo Sample Size 100

0 20 40 60 80 100

iteration

0

0.2

0.4

0.6

0.8

1

re
la

ti
v
e

 e
rr

o
r

LSQR

LSLU

LSLU inf est

0 20 40 60 80 100

iteration

0

0.2

0.4

0.6

0.8

1

re
la

ti
v
e

 e
rr

o
r

LSQR

LSLU

LSLU inf est

0 20 40 60 80 100

iteration

0

0.2

0.4

0.6

0.8

1

re
la

ti
v
e

 e
rr

o
r

LSQR

LSLU

LSLU inf est

Figure 3.7: Relative reconstruction error norms per iteration for LSLU with pivoting
using the infinity norm, compared to using the estimated infinity norm as the max-
imum from a set of randomly sampled coefficients (denoted ‘LSLU inf est’). Results
for LSQR are provided for reference.

3.2.2 Theoretical bounds for the residual norm of LSLU

In this section, we derive a bound on the difference between the residual norms of

solutions computed using LSLU and LSQR. Let R̂k+1 be an upper triangular matrix

from the QR decomposition of Dk+1. We show that if the condition number of

R̂k+1 does not grow too quickly, the residual norms associated with the approximate

solutions of LSLU and LSQR at each iteration are close to each other. This is critical

in understanding the regularizing properties of LSLU.

Theorem 2. Let rQR
k and rLUk be the LSQR and LSLU residuals at the kth iteration
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beginning with the same initial guess x0 = 0, respectively. Then

∥rQR
k ∥ ≤ ∥rLUk ∥ ≤ κ(R̂k+1)∥rQR

k ∥ (3.38)

where κ(R̂k+1) = ∥R̂k+1∥∥R̂−1
k+1∥ is the condition number of R̂k+1.

Proof. First, we prove the left inequality in (3.38). Consider the residual as a function

of the solution,

r(x) = b− Ax.

Then, the residual norm associated with the approximate solution at the kth iteration

of LSQR is

∥rQR
k ∥ = ∥b− AxQR

k ∥ = min
x∈Kk(ATA,AT b)

∥r(x)∥.

Since xQR
k and xLU

k are in the Krylov subspace Kk(ATA,AT b), then by definition,

min
x∈Kk(ATA,AT b)

∥r(x)∥ ≤ ∥r(xLU
k )∥ = ∥rLUk ∥.

Hence, ∥rQR
k ∥ ≤ ∥rLUk ∥.

Now we prove the right inequality in (3.38). Since rQR
k and rLUk are in the sub-

space Kk(AAT , b), we can write rQR
k and rLUk as a linear combination of any basis of

Kk(AAT , b). Using the Hessenberg relation, the LU decompositions of Pk+1 and Ck+1

are

Ck+1 = Dk+1Gk+1

Pk+1 = Lk+1Uk+1.

This implies that R(Dk+1) = R(Ck+1) = Kk+1(AA
T , b) and R(Lk+1) = R(Pk+1) =

Kk+1(A
TA,AT b). Therefore, using the QR decomposition of Dk+1 = Ûk+1R̂k+1 and
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Lk+1 = Vk+1R̃k+1, there exist zLUk and sLUk in Rk+1 such that

rLUk = Dk+1z
LU
k = Ûk+1R̂k+1z

LU
k = Ûk+1s

LU
k (3.39)

with sLUk = R̂k+1z
LU
k . Analogously, there exist zQR

k and sQR
k in Rk+1 such that

rQR
k = Dk+1z

QR
k = Ûk+1R̂k+1z

QR
k = Ûk+1s

QR
k (3.40)

with sQR
k = R̂k+1z

QR
k .

Consider the optimality conditions of LSLU. As stated above, rLUk = Dk+1z
LU
k .

This implies that D†
k+1r

LU
k = zLUk . Hence, ∥D†

k+1r
LU
k ∥ = ∥zLUk ∥ so

∥zLUk ∥ = min
x∈R(Lk)

∥D†
k+1(b− Ax)∥ = min

x∈R(Lk)
∥D†

k+1r(x)∥. (3.41)

Using (3.41) and the fact that xQR
k is in Kk(ATA,AT b) then

∥zLUk ∥ = min
x∈Kk(ATA,AT b)

∥D†
k+1r(x)∥ ≤ ∥D†

k+1r(xQR
k )∥ = ∥zQR

k ∥.

Thus

∥zLUk ∥ ≤ ∥zQR
k ∥ = ∥R̂−1

k+1s
QR
k ∥ ≤ ∥R̂−1

k+1∥∥s
QR
k ∥ = ∥R̂−1

k+1∥∥r
QR
k ∥,

where the equalities in the above relation come from (3.40). On the other hand,

applying (3.39) gives:

∥rLUk ∥ = ∥Dk+1z
LU
k ∥ ≤ ∥Dk+1∥∥zLUk ∥.
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Putting the above inequalities together gives the following relation:

∥rLUk ∥ = ∥Dk+1z
LU
k ∥

≤ ∥Dk+1∥∥zLUk ∥

≤ ∥Dk+1∥∥R̂−1
k+1∥∥r

QR
k ∥.

Recall that Dk+1 has a QR decomposition of the form Dk+1 = Ûk+1R̂k+1, where Ûk+1

is an orthogonal matrix. Therefore, ∥Dk+1∥ = ∥Ûk+1R̂k+1∥ = ∥R̂k+1∥. This results in

the following:

∥rLUk ∥ ≤ ∥Dk+1∥∥R̂−1
k+1∥∥r

QR
k ∥ = ∥R̂k+1∥∥R̂−1

k+1∥∥r
QR
k ∥ = κ(R̂k+1)∥rQR

k ∥.

Thus, we conclude that ∥rQR
k ∥ ≤ ∥rLUk ∥ ≤ κ(R̂k+1)∥rQR

k ∥.

3.3 Hybrid CMRH and Hybrid LSLU

In this section, we consider the hybrid variants of CMRH and LSLU for solving

large-scale linear inverse problems. In addition to being inner product free, these

methods can compute regularized solutions efficiently and with automatically selected

regularization parameters. In Section 3.3.1 we provide theoretical bounds for the

residual norms of Hybrid CMRH and Hybrid LSLU and conclude with addressing

some computational considerations in Section 3.3.2.

Consider the standard Tikhonov regularization problem (2.4). Hybrid CMRH

and Hybrid LSLU are iterative methods where the solution at the kth iteration is

computed as the solution to the optimization problem,

min
x∈x0+R(Lk)

∥M †
k+1(b− Ax)∥2 + λ2

k∥N
†
kx∥

2, (3.42)
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where M †
k+1 = L̃†

k+1 and N †
k = L̃†

k for Hybrid CMRH. Likewise, M †
k+1 = D†

k+1 and

N †
k = L†

k for Hybrid LSLU. Similar to the non-hybrid cases, the residual norm is

replaced by a semi-norm and the regularization term also includes a semi-norm. It

can be shown that solving (3.42) is equivalent to solving

yλ,k = arg min
y∈Rk

∥βe1 − Zk+1,ky∥2 + λ2
k∥y∥2, (3.43)

where Z = H̃k+1,k for Hybrid CMRH, Z = Hk+1,k for Hybrid LSLU, and β is the

largest entry in r0 (when considering the Hessenberg method implementation with

pivoting). We project back onto the original subspace using xk = x0 + Nkyλ,k. Note

that Nk = Lk for Hybrid LSLU and Nk = L̃k for Hybrid CMRH. An implementation

of Hybrid CMRH and Hybrid LSLU with pivoting is provided in Algorithm 7 and

Algorithm 8. These algorithms corresponds to CMRH and LSLU when λ = 0. As a

hybrid approach, the regularization parameter, denoted as λk in (3.42) and (3.43), can

be selected at each iteration. Various regularization parameter selection techniques

will be discussed in Section 3.3.2.1.

Algorithm 7: Hybrid CMRH

1: Compute r0 = b− Ax0

2: p = [1, 2, ...., n]T

3: Determine i0 such that |r0(i0)| = ∥r0∥∞
4: β = r0(i0); l̃1 = r0/β ; p1 ⇔ pi0
5: for k = 1, ....,m do
6: u = Al̃k
7: for j = 1, ...., k do
8: h̃(j, k) = u(p(j)); u = u− h̃(j, k)l̃j
9: end for
10: if k < n and u ̸= 0 then
11: Determine i0 ∈ {k + 1, ......., n} such that |u(p(i0))| = ∥u(p(k + 1 : n))∥∞
12: h̃(k + 1, k) = u(p(i0)); l̃k+1 = u/h̃(k + 1, k) ; pk+1 ⇔ pi0
13: else
14: h̃(k + 1, k) = 0; Stop.
15: end if
16: end for
17: Define the (k + 1) × k Hessenberg matrix
18: Implement regularization parameter scheme (λk): optimal or GCV
19: Compute the minimizer of ∥βe1 − H̃k+1,ky∥2 + λ2

k∥y∥2 and xk = x0 + L̃kyλ,k



43

Algorithm 8: Hybrid LSLU

Require: A, b, x0, maxiter, RegParam
1: Define t = [1, 2, . . . ,m]T , g = [1, . . . , n]T .
2: r0 = b− Ax0

3: Determine i such that |r0(i)| = ∥r0∥∞
4: β = r0(i); d1 = r0/β; t(1) ⇔ t(i)
5: for k = 1, . . . ,maxiter do
6: q = ATdk
7: for j = 1, . . . , k − 1 do
8: W (j, k) = q(g(j)); q = q −W (j, k)lj
9: end for
10: if k < n and q ̸= 0 then
11: Determine i ∈ {k, . . . , n} such that |q(g(i))| = ∥q(g(k : n))∥∞
12: W (k, k) = q(g(i)); lk = q/W (k, k); g(k) ⇔ g(i)
13: else
14: break
15: end if
16: u = Alk
17: for j = 1, . . . , k do
18: H(j, k) = u(t(j)); u = u−H(j, k)dj
19: end for
20: if k < m and u ̸= 0 then
21: Determine i ∈ {k + 1, . . . ,m} such that |u(t(i))| = ∥u(t(k + 1 : m))∥∞
22: H(k + 1, k) = u(t(i)); dk+1 = u/H(k + 1, k); t(k + 1) ⇔ t(i)
23: else
24: break
25: end if
26: Find regularization parameter λk according to the RegParam scheme

(using e.g. the methods discussed in section 3.3.2).
27: Compute yλk,k as the minimizer of ∥βe1 −Hk+1,ky∥22 + λ2

k∥y∥22
28: xk = x0 + Lkyλk,k

29: end for

3.3.1 Theoretical bounds for the residual norms of Hybrid

CMRH and Hybrid LSLU

The residual norms of Hybrid CMRH and Hybrid LSLU can be bounded in a similar

fashion to its non-hybrid version. In Section 3.3.1.1 we discuss the difference between

the residual norm of Hybrid CMRH and Hybrid GMRES. The residual norms of

Hybrid LSQR and Hybrid LSLU will be investigated in Section 3.3.1.2.
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3.3.1.1 Residual Norm of Hybrid CMRH

To understand the regularization properties of Hybrid CMRH, we investigate the

residual bounds of Hybrid CMRH and Hybrid GMRES. Please note that A ∈ Rn×n.

Let

Lk+1 =

L̃k+1 0

0 L̃k

 , (3.44)

with L̃k, L̃k+1 defined by the Hessenberg relation (3.5). We assume λ to be fixed and

find that if the condition number of Lk+1 does not grow too quickly, then the residual

norm associated to the solution obtained with Hybrid CMRH is close to the residual

norm of the solution obtained with Hybrid GMRES.

Theorem 3. Let hrGk and hrCk be the Hybrid GMRES and Hybrid CMRH residuals

at the kth iteration beginning with the same initial residual r0, respectively. Then

∥hrGk ∥ ≤ ∥hrCk ∥ ≤ κ(Lk+1)∥hrGk ∥, (3.45)

where κ(Lk+1) = ∥Lk+1∥∥L
†
k+1∥ is the condition number of Lk+1.

Proof. First, we prove the left inequality in (3.45). We can define the hybrid residual

as a function of the solution:

hr(x) =

b
0

−

A

λI

x.

Since xG
k and xC

k are in the Krylov subspace Kk, by the optimality conditions of

Hybrid GMRES:

∥hrGk ∥ = min
x∈Kk

∥hr(x)∥ ≤ ∥hr(xC
k )∥ = ∥hrCk ∥.

Hence ∥hrGk ∥ ≤ ∥hrCk ∥.
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Now we prove the right inequality in (3.45). Since for any x ∈ Kk(A, r0) we

have that Ax−b ∈ Kk+1(A, r0)=range(L̃k+1); and xG
k , x

C
k ∈ Kk(A, r0)= range(L̃k),

we can write hrCk and hrGk as a linear combination of the columns of Lk+1 defined

in (3.44). Let hrCk = Lk+1u
C
k and hrGk = Lk+1u

G
k . This implies that uC

k = L
†
k+1hr

C
k

and uG
k = L

†
k+1hr

G
k . Hence, ∥L†

k+1hr
C
k ∥ = ∥uC

k ∥ and ∥L†
k+1hr

G
k ∥ = ∥uG

k ∥. By the

optimality conditions of Hybrid CMRH:

∥uC
k ∥ = min

x∈Kk

∥∥∥∥∥∥∥
L†

k+1 0

0 L†
k



b

0

−

A

λI

x


∥∥∥∥∥∥∥ = min

x∈Kk

∥L†
k+1hr(x)∥. (3.46)

Using (3.46) and the fact that xG
k is in Kk(A, r0) then ∥uC

k ∥ ≤ ∥uG
k ∥. Thus

∥uC
k ∥ ≤ ∥uG

k ∥ = ∥L†
k+1hr

G
k ∥ ≤ ∥L†

k+1∥∥hrGk ∥.

On the other hand,

∥hrCk ∥ = ∥Lk+1u
C
k ∥ ≤ ∥Lk+1∥∥uC

k ∥.

Putting the above inequalities together gives the following relation:

∥hrCk ∥ = ∥Lk+1u
C
k ∥

≤ ∥Lk+1∥∥uC
k ∥

≤ ∥Lk+1∥∥L
†
k+1∥∥hrGk ∥

= κ(Lk+1)∥hrGk ∥ ,

so we conclude that ∥hrGk ∥ ≤ ∥hrCk ∥ ≤ κ(Lk+1)∥hrGk ∥.

3.3.1.2 Residual Norm of Hybrid LSLU

Now, we will analyze the theoretical bounds of Hybrid LSLU and Hybrid LSQR to

provide insight on the regularizing properties of Hybrid LSLU. Note that A ∈ Rm×n.
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Let λ be fixed and

Dk+1 =

Dk+1 0

0 Lk

 , (3.47)

with Dk+1 and Lk defined by the Hessenberg relations (3.23) and (3.24). We find that

if the condition number of Dk+1 does not grow too quickly, then the residual norm

associated to the solution obtained with Hybrid LSLU is close to the residual norm

of the solution obtained with Hybrid LSQR.

Theorem 4. Let hrQR
k and hrLUk be the Hybrid LSQR and Hybrid LSLU residuals at

the kth iteration beginning with the same initial residual r0, respectively. Then

∥hrQR
k ∥ ≤ ∥hrLUk ∥ ≤ κ(Dk+1)∥hrQR

k ∥ (3.48)

where κ(Dk+1) = ∥Dk+1∥∥D
†
k+1∥ is the condition number of Dk+1.

Proof. First, we prove the left inequality in (3.48). We can define the hybrid residual

as a function of the solution,

hr(x) =

b
0

−

A

λI

x.

Since xQR
k and xLU

k are in the Krylov subspace Kk(ATA,AT b), by the optimality

conditions of Hybrid LSQR,

∥hrQR
k ∥ = min

x∈R(Lk)
∥hr(x)∥ ≤ ∥hr(xLU

k )∥ = ∥hrLUk ∥.

Hence ∥hrQR
k ∥ ≤ ∥hrLUk ∥.

Now we prove the right inequality in (3.48). Since b − Ax ∈ Kk+1(AA
T , b) =

R(Dk+1), then for any x ∈ Kk(ATA,AT b) and xQR
k , xLU

k ∈ Kk(ATA,AT b) = R(Lk)

we can write hrLUk and hrQR
k as a linear combination of the columns of Dk+1 defined
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in (3.47).

Let hrLUk = Dk+1z
LU
k and hrQR

k = Dk+1z
QR
k . This implies that zLUk = D

†
k+1hr

LU
k

and zQR
k = D

†
k+1hr

QR
k . Hence, ∥D†

k+1hr
LU
k ∥ = ∥zLUk ∥ and ∥D†

k+1hr
QR
k ∥ = ∥zQR

k ∥. By

the optimality conditions of Hybrid LSLU,

∥zLUk ∥ = min
x∈R(Lk)

∥∥∥∥∥∥∥
D†

k+1 0

0 L†
k



b

0

−

A

λI


x

∥∥∥∥∥∥∥ = min
x∈R(Lk)

∥D†
k+1hr(x)∥. (3.49)

Using (3.49) and the fact that xQR
k is in Kk(ATA,AT b),

∥zLUk ∥ = min
x∈R(Lk)

∥D†
k+1hr(x)∥ ≤ ∥D†

k+1hr(xQR
k )∥ = ∥zQR

k ∥.

Thus

∥zLUk ∥ ≤ ∥zQR
k ∥ = ∥D†

k+1hr
QR
k ∥ ≤ ∥D†

k+1∥∥hr
QR
k ∥.

Putting the above inequalities together gives the following relation,

∥hrLUk ∥ = ∥Dk+1z
LU
k ∥

≤ ∥Dk+1∥∥zLUk ∥

≤ ∥Dk+1∥∥D
†
k+1∥∥hr

QR
k ∥,

so we conclude that ∥hrQR
k ∥ ≤ ∥hrLUk ∥ ≤ κ(Dk+1)∥hrQR

k ∥.

To illustrate the behavior of the residual norms for Hybrid LSLU and Hybrid

LSQR as well as to investigate the bound in Theorem 4, we plot in Figure 3.8 the

residual norms per iteration for three different test problems: PRtomo, PRspherical,

and PRseismic from the IR Tools package [16]. We fix λ = 0.01 and plot residual

norms for Hybrid LSLU along with the lower and upper bounds from Theorem 4. We

observe that the residual norms for Hybrid LSLU and Hybrid LSQR remain close for
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PRtomo and PRspherical. As expected, the residual norms for solutions computed

using Hybrid LSQR provide a lower bound for residual norms for solutions computed

using Hybrid LSLU. The upper bound from Theorem 4 given by κ(Dk+1)∥hrQR
k ∥

becomes looser with more iterations. For details regarding the test problems, see

Section 3.4.
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Figure 3.8: Residual norms per iteration for Hybrid LSLU, as well as corresponding
bounds from Theorem 4. Note that the lower bound corresponds to Hybrid LSQR
residual norms.

3.3.2 Computational Considerations

In this section we describe some of the computational aspects of Hybrid CMRH and

Hybrid LSLU. In particular, we describe methods for selecting regularization param-

eter λk at each iteration in Section 3.3.2.1 and stopping criterion in Section 3.3.2.2.

3.3.2.1 Selecting Regularization Parameters

Our objective is to find an appropriate regularization parameter λk at each iteration

of Hybrid CMRH and Hybrid LSLU that will not cause the regularized solution xk to

be overly oscillatory or too smooth. There are various approaches for selecting regu-

larization parameters within hybrid projection methods [10]. We consider Tikhonov

regularization for the projected problem (3.43). SVD based approaches can be used to

find a good estimate for the regularization parameter λk, since the projected problem

(3.43) is significantly smaller than (3.42).
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Although not available in practice, we compute the optimal regularization param-

eter for simulated data to demonstrate the potential benefits of Hybrid CMRH and

Hybrid LSLU. The optimal regularization parameter requires knowledge of the true

solution and is obtained by minimizing the following expression:

λk = arg min
λ

∥xλ,k − xtrue∥, (3.50)

where xλ,k is the approximate solution at the kth iteration with the regularization

parameter λ. Assume that xλ,k = x0 + Nkyλ,k. Then (3.50) can be written as:

min
λ

∥xλ,k − xtrue∥ = min
λ

∥x0 + Nkyλ,k − xtrue∥. (3.51)

From (3.51), we replace yλ,k with the solution to the normal equations of (3.43) to

get

min
λ

∥x0 + Nk(ZT
k+1,kZk+1,k + λ2I)−1ZT

k+1,kβe1 − xtrue∥ (3.52)

and use the SVD of Zk+1,k = UkΣkV
T
k , to simplify (3.52)

min
λ

∥x0 + Nk(VkΣT
k ΣkV

T
k + λ2I)−1VkΣT

kU
T
k βe1 − xtrue∥. (3.53)

Thus, (3.53) is equivalent to

min
λ

∥xλ,k − xtrue∥ = min
λ

∥x0 + NkVk(ΣT
k Σk + λ2I)−1ΣT

kU
T
k βe1 − xtrue∥. (3.54)

We again emphasize that this is not a realistic regularization parameter choice cri-

terion since it requires the knowledge of the true solution, but we can use it to

demonstrate the performance of Hybrid CMRH and Hybrid LSLU.

In practice, techniques like the Generalized Cross Validation (GCV) method or

the Discrepancy Principle can be implemented to estimate λk, at each iteration.
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In this dissertation we focus on the GCV method, which is a predictive statistics-

based approach where prior estimates of the error norm are not needed [23, 19].

Here, we assume that the regularization parameter λk should be able to predict any

missing information. Although the GCV method is typically applied for the original

problem, we follow a common approach in hybrid projection methods and use the

GCV function for the projected problem (3.43), with matrix Zk+1,k from (3.43). The

chosen regularization parameter minimizes the GCV function:

GZk+1,βe1(λ) =
k∥(I − Zk+1,kZ

†
λ)βe1∥2

trace(I − Zk+1,kZ
†
λ)2

(3.55)

where Z†
λ = (ZT

k+1,kZk+1,k + λ2I)−1ZT
k+1,k.

Using the SVD of Zk+1,k , (3.55) can be rewritten as:

GZk+1,βe1(λ) =

kβ2

(
k∑

i=1

(
λ2

σ2
i + λ2

[UT
k e1]i

)2

+
([

UT
k e1
]
k+1

)2)
(

1 +
k∑

i=1

λ2

σ2
i + λ2

)2 , (3.56)

with the GCV parameter at the kth iteration being λk = arg min
λ

GZk+1,βe1(λ).

The standard GCV function may not perform well for certain types of problems.

For example, in statistical nonparametric modeling, the GCV function might choose

parameters that are too small and thus produce a highly oscillatory approximate

solution [11]. In our study, we find that the approximate solution is overly-smooth. To

avoid this phenomenon, weighted-GCV (wGCV) is used, where the wGCV function
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for the projected matrix Zk+1,k is defined as:

G(ω, λ) =
k∥(I − Zk+1,kZ

†
λ)βe1∥2

(trace(I − ωZk+1,kZ
†
λ))2

(3.57)

=

kβ2

(
k∑

i=1

(
λ2

σ2
i + λ2

[
UT
k e1
]
i

)2

+
([

UT
k e1
]
k+1

)2)
(

1 +
k∑

i=1

(1 − ω)σ2
i + λ2

σ2
i + λ2

)2 . (3.58)

Here, the denominator depends on a new parameter ω. Similar to the selection of

the regularization parameter, we find that our choice of ω impacts the smoothness of

the approximate solution. Thus, we must be careful in how we select the value for ω.

If ω = 1, then (3.57) becomes the standard GCV function (3.55). If ω > 1, then we

are subtracting a multiple of the filter factors thus producing less smooth solutions.

Likewise if ω < 1, then we are adding a multiple which produces smoother solutions.

Therefore, we want to select the value of ω using the adaptive approach described in

[11].

3.3.2.2 Stopping Criterion

Next we describe an approach to determine a suitable stopping criteria for Hybrid

CMRH and Hybrid LSLU. Similar to the approach described in [11] and inspired by

[4], we assume that λ is fixed and seek a stopping iteration k that minimizes a GCV

function in terms of k,

n∥(I − AA†
k)b∥2

(trace(I − AA†
k))2

≈
n∥M †

k+1(I − AA†
k)b∥2

(trace(I − AA†
k))2

= Ĝ(k), (3.59)

where A†
k is defined by considering the approximate solution produced by Hybrid

CMRH or Hybrid LSLU, where, without loss of generality and to simplify the nota-
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tion, we have considered x0 = 0:

xk = Nkyλ,k = NkZ
†
λM

†
k+1b ≡ A†

kb.

If Mk+1 contains orthonormal columns, the left-hand side of (3.59) can be simplified

and computed exactly, as it is done in [11]. Here, we use the approximation:

n∥(I − AA†
k)b∥ ≈ n∥M †

k+1(I − AA†
k)b∥

= n∥(I − Zk+1,kZ
†
λ)M †

k+1b∥

where M †
k+1ANk = M †

k+1Mk+1Zk+1,k = Zk+1,k and M †
k+1b = βe1. Using the SVD of

Zk+1,k, the previous expression can be rewritten as:

n∥M †
k+1(I − AA†

k)b∥22 = nβ2

( k∑
i=1

λ2

σ2
i + λ2

+
[
UT
k e1
]
i

)2

+
([

UT
k e1
]
k+1

)2 .

The denominator of (3.59) is equivalent to:

(trace(I − AA†
k))2 = (trace(I − ANkZ

†
λM

†
k+1))

2

= (trace(I −Mk+1Zk+1,kZ
†
λM

†
k+1))

2

= (trace(I) − trace(Zk+1,kZ
†
λ))2

=

(
(m− k) +

k∑
i=1

λ2
k

σ2
i + λ2

k

)2

,
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where m = n for Hybrid CMRH. Therefore, the left-hand side of (3.59) can be

approximated by

Ĝ(k) =

nβ2

( k∑
i=1

λ2

σ2
i + λ2

+
[
UT
k e1
]
i

)2

+
([

UT
k e1
]
k+1

)2
(

(m− k) +
k∑

i=1

λ2
k

σ2
i + λ2

k

)2 . (3.60)

Ĝ(k) is used to determine the stopping iteration, k. The algorithm will terminate

when the difference between the values is small:

∣∣∣∣∣Ĝ(k + 1) − Ĝ(k)

Ĝ(1)

∣∣∣∣∣ < tol . (3.61)

or when the minimum of Ĝ(k) continues to increase within a certain window of

iterations.

3.4 Numerical Results

We now illustrate the effectiveness of CMRH, Hybrid CMRH, and Hybrid LSLU.

First, we show a comparison between CMRH and other inner product free meth-

ods for square system matrices A with different properties. Next, we showcase its

potential benefits with respect to other traditional methods in the simulated con-

text of low precision arithmetic. We add a comparison between Hybrid CMRH and

Hybrid GMRES for different image deblurring examples with multiple noise levels,

and a seismic tomography simulated example to illustrate its applicability to large-

scale problems. Finally, we conduct a comparison between Hybrid LSLU and Hybrid

LSQR for different tomography examples. The system matrix, A, is rectangular. In

all examples, white Gaussian noise was added to the measurements, and we define
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the corresponding noise level as

∥e∥
∥Axtrue∥

= nl.

This means that all elements of e ∈ Rm come from the same Gaussian distribu-

tion with zero mean and standard deviation [23, Section 3.5.1]. Computations for

all numerical experiments and illustrations described in this study were done using

MATLAB on an M-series MacBook Pro.

3.4.1 Comparison with other inner product free methods

In this section, we present a comparison between CMRH and other inner product

free regularization methods: Landweber, Richardson (first-order), and Chebyshev

(suitable for any non-singular symmetric or non-symmetric linear system). Note that

in the case of very ill-posed problems, the latter is numerically equivalent to the

second-order Richardson method [5, Section 7.2.5], which uses a fixed step length.

This is due to the fact that the fraction between the summation and the subtraction

of the upper and lower bounds of the eigenvalues is very close to 1 for ill-conditioned

problems containing the system matrix of the normal equations.

In the following experiments, we present the relative error norm histories that

correspond to three examples with different spectral properties. First, we reintroduce

test problem Spectra, where A ∈ R64×64 is an SPD matrix and the smallest eigenvalues

are numerically zero, making it very ill-conditioned. Next, we present an example

where the system matrix is diagonally dominant, ill-conditioned, and tridiagonal.

This is known as a Dorr matrix and it is from the MATLAB gallery. Here, A ∈

R256×256 is a non symmetric matrix with real positive eigenvalues. The chosen solution

corresponds to the previously introduced Heat example from the Regularization Tools

Package [25]. Finally, we examine a symmetric matrix with negative eigenvalues.
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This matrix, where A ∈ R256×256, violates the theoretical convergence conditions of

Landweber, Richardson, and Chebyshev. The example corresponds to Deriv2 and it

is from the Regularization Tools Package. In all scenarios, white Gaussian noise of

appropriate level (e.g. nl = 0.5%, nl = 50% and nl = 0.1%) has been added to

the measurements to achieve challenging but resolvable problems. For all comparison

methods, bounds on either the eigenvalues of A (for symmetric matrices) or ATA are

required.

Assume s1 and sn are the smallest and largest eigenvalues of A. We select the

bounds for the Chebyshev method to be min(s21, s
2
n) and 1.001 min(s21, s

2
n), which

follows the implementation in [5, Section 7.2.5]. Similar to [5, Section 7.7.2], the

step length for Landweber is 0.99/max(s21, s
2
n). Lastly, we select the step length for

Richardson to be 0.99/(s1+s2), which follows the implementation in [5, Section 7.2.3]
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Figure 3.9: Relative error norm histories for problems with different spectral proper-
ties.

In Figure 3.9, it can be easily observed that CMRH is much faster than the other

inner product free methods (particularly in the case of ill-posed problems). More-

over, CMRH does not require previous knowledge about the system matrix spectrum

despite the price of increasing the memory requirements.
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3.4.2 Results on low precision arithmetic

In this section we show a few instances of CMRH overcoming pathological behaviors

arising when using GMRES in low precision arithmetic (low precision computations

are simulated in MATLAB using Higham and Pranesh’s chop function [28]). First,

it should be noted that for large-scale inverse problems, such as those that arise in

three-dimensional imaging applications, measured data contains noise, so one cannot

expect to compute solutions to double-precision accuracy. Single-precision (32-bit)

arithmetic generally provides sufficient accuracy and dynamic range; see, e.g., [1, 30,

31]. However, some challenges might arise when the precision is reduced further; in

the following, we highlight such problems using two examples. For example, inner

products (or norms) can fail in low precision due to under- or overflow when the

length of the vectors increases. This can be observed in Figure 3.10, where relative

error norm histories are presented when using two NVIDIA quarter precision formats

[28]: test problem Deriv2 with n = 4096 using q52, which has 5 exponent and 2

significand bits (here we observe underflow while computing the norm of b), and test

problem Shaw with n = 6144 using q43, which has 4 exponent and 3 significand bits

(here we observe overflow while computing the norm of b). Test problems Deriv2 and

Shaw are part of the Regularization Tools package [25].

Another major issue that can happen when using GMRES in low precision is that

the basis vectors for the Krylov subspace can become orthogonal in the given precision,

causing the algorithm to stop too early. This is illustrated in Figure 3.11, where we

apply CMRH and GMRES to the Deriv2 test problem in half-precision arithmetic.

In the left panel of Figure 3.11 one can observe the relative error norm histories

for CMRH and GMRES, where GMRES stops at iteration 4. An easy explanation

of this phenomenon can be observed in the right panel of Figure 3.11, where the

first 20 diagonal elements of the Hessenberg matrix HA
k+1,k produced by GMRES

(computed in double precision) are presented along with the machine precision (in
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Figure 3.10: Relative error norm histories for Deriv2 and Shaw in precisions ‘q52’
and ‘q43’ (respectively). Early termination of GMRES is due to underflow (left) and
overflow (right) computing vector norms.

half precision) in logarithmic scale. One can easily observe that, regardless of the

particular implementation, the elements in the diagonal of HA
k+1,k quickly fall below

machine precision, which prompts an early termination of the algorithm as previously

observed.

3.4.3 Results on deblurring test problems.

To demonstrate the performance of Hybrid CMRH, we consider three test problems:

PRblur, PRblurshake, and PRblurspeckle. In particular, PRblur represents Gaussian

blur, PRblurshake simulates random motion blur (shaking), and PRblurspeckle mod-

els atmospheric blur. These problems are 2D deblurring problems from the IR Tools

package [16] involving images with 256 × 256 pixels, corresponding to 65536 × 65536

system matrices A, and with added white Gaussian noise with noise levels between

nl = 10−3 and nl = 10−1.

First, we show the blurry noisy images (with nl = 10−2) along with the recon-

structed images that were produced by Hybrid CMRH with the GCV scheme; see

Figure 3.12. The reconstructions from Hybrid GMRES look very similar, as might
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Figure 3.11: Test problem Deriv2. Left panel: relative error norm histories for GM-
RES and CMRH, where early stopping of GMRES is caused by numerical orthogo-
nality of the basis vectors. Right panel: first 20 diagonal elements of the Hessenberg
(Arnoldi) matrix produced by GMRES (computed in double precision) and machine
(half) precision, in logarithmic scale.

be expected from the relative errors shown in Figure 3.13, so we do not include them

here.

Next, we compare the relative error norms for Hybrid CMRH and Hybrid GMRES

with GCV and optimal schemes for choosing the regularization parameter, which can

be observed in Figure 3.13. Note that the star marker represents where the Hybrid

CMRH algorithm stops based on the GCV stopping criteria in (3.60) and (3.61). In

this figure, we observe that Hybrid CMRH and Hybrid GMRES behave in almost an

identical manner for PRblurshake and PRblurspeckle. In PRblur, this is also true for

the iterations before the stopping iteration.

Finally, additional experiments were performed with PRblur, PRblurshake, and

PRblurspeckle using various noise levels. Table 3.1 displays the relative error norms

for the solutions produced using the GCV stopping criteria for Hybrid CMRH and

Hybrid GMRES. As proven in Section 3.3, the test results shown in Figures 3.12 and

3.13 and Table 3.1 illustrate that Hybrid CMRH and Hybrid GMRES have similar

regularizing properties, while Hybrid CMRH is an inherent inner product free method.
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PRblur PRblurshake PRblurspeckle

Figure 3.12: Top: Blurred and noisy measurements with nl = 10−2. Bottom: recon-
structed images using Hybrid CMRH.

3.4.4 Results on seismic test problem

In this section we present an additional large-scale problem from the AIR Tool II pack-

age [24], which can also be accessed via IR Tools as PRseismic. This is a simulated

seismic travel-time tomography test problem. Since PRseismic produces a rectan-

gular system, we apply Hybrid CMRH and Hybrid GMRES to the system matrix

corresponding to the normal equations, so that A ∈ R65536×65536, where the images

have 256 × 256 pixels.

Similarly to the image deblurring test problems in Section 3.4.3, we first show the

measured noisy data, the true solution, and the reconstructed images that were pro-

duced by Hybrid CMRH and Hybrid GMRES with the GCV scheme at the stopping

iteration; see Figure 3.14. Again, the reconstructions obtained using Hybrid GMRES

and Hybrid CMRH have a similar quality. The relative error norm histories are shown
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Figure 3.13: Relative error norm for 2D deblurring problems using Hybrid CMRH
and Hybrid GMRES.

PRblur
Method Noise Level Stopping Iteration Reg Parameter Relative Error

Hybrid
CMRH

10−3 8 5.5042 × 10−5 0.2060
10−2 12 0.0589 0.2550
10−1 6 0.1396 0.3098

Hybrid
GMRES

10−3 14 0.0124 0.2016
10−2 12 0.0561 0.2179
10−1 5 0.1930 0.2493

PRblurshake
Method Noise Level Stopping Iteration Reg Parameter Relative Error

Hybrid
CMRH

10−3 13 0.0051 0.2891
10−2 5 3.7149 × 10−5 0.2631
10−1 5 3.7855 × 10−5 0.3523

Hybrid
GMRES

10−3 4 0.1608 0.2565
10−2 4 0.1631 0.2581
10−1 3 0.2384 0.3310

PRblurspeckle
Method Noise Level Stopping Iteration Reg Parameter Relative Error

Hybrid
CMRH

10−3 5 4.0987 × 10−5 0.3167
10−2 15 0.0051 0.3177
10−1 5 3.5293 × 10−5 0.7842

Hybrid
GMRES

10−3 5 0.0771 0.3153
10−2 5 0.0827 0.3181
10−1 9 0.2073 0.3414

Table 3.1: Numerical results for the three test problems PRblur, PRblurshake, and
PRblurspeckle for various noise levels. Regularization parameters and relative error
norms correspond to values at the stopping iteration.

in Figure 3.15. Although in this particular example, Hybrid CMRH terminates (at

iteration 16) slightly before the optimal stopping iteration, this could be adjusted
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by modifying tolerances used in the GCV criterion. The GCV stopping criteria for

Hybrid GMRES (stopping at iteration 27) performed worse in this example.

PRseismic PRseismic
Measured Noisy Data True Solution

Solution from Hybrid CMRH Solution from Hybrid GMRES

Figure 3.14: Measured noisy data (top left), true solution (top right), and recon-
structed images using Hybrid CMRH and Hybrid GMRES (bottom row).

Additional experiments were conducted with different noise levels. Table 3.2 pro-

vides the relative error norm produced by Hybrid CMRH and Hybrid GMRES using

the GCV stopping criteria. For nl = 0.10%, Hybrid CMRH greatly outperforms Hy-

brid GMRES. Therefore, we find that Hybrid CMRH performs well when the noise

level is increased.

3.4.5 Results on different tomography test problems

We now illustrate the effectiveness of Hybrid LSLU in comparison to Hybrid LSQR

[41]. We use three different test problems: PRtomo, PRspherical, and PRseismic
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Figure 3.15: Relative error norm for seismic problem with nl = 10−1 using Hybrid
CMRH and Hybrid GMRES.

Numerical Results for PRseismic
Method Noise Level Stopping Iteration Reg Parameter Relative Error

Hybrid
CMRH

10−3 39 0.0051 0.0947
10−2 9 6.1839 × 10−5 0.1645
10−1 16 4.0069 × 103 0.2001

Hybrid
GMRES

10−3 17 220.394 0.1175
10−2 18 216.23 0.1196
10−1 27 121.54 0.5822

Table 3.2: Numerical results for PRseismic with various noise levels. Regularization
parameters and relative errors correspond to values at the stopping iteration.

from the IR Tools package [16]. PRtomo generates data for x-ray tomographic re-

construction problems. PRspherical formulates a tomography test problem based on

the spherical Radon transform where data consists of integrals along circles. This

type of problem arises in photoacoustic imaging. PRseismic is the same test problem

found in Section 3.4.4. These problems involve images with 256× 256 pixels and cor-

respond to matrix A that is 65160 × 65536 (PRtomo), 65522 × 65536 (PRspherical),

and 131072×65536 (PRseismic) with nl = 10−2. The noisy observations are provided

in the top row of Figure 3.16.

We compute the reconstructed images for each problem using the proposed Hybrid

LSLU method with wGCV to select the regularization parameter and GCV for the
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stopping criterion. The reconstructions are provided in the middle row of Figure 3.16

with the true images provided in the bottom row for reference.

PRtomo PRspherical PRseismic

Figure 3.16: Measured noisy data, b (top row), reconstructed images using Hybrid
LSLU (middle row), and true images, xtrue (bottom row). The image proportions are
accurate but, to aid visualization, the relative size between images is not.

Next, in Figure 3.17 we provide the relative reconstruction error norms per iter-

ation of Hybrid LSLU with both the wGCV and optimal regularization parameter.

Results for Hybrid LSQR with wGCV are provided for comparison. Hybrid LSQR

selects ω by an approach described in [11]. From the Hybrid LSLU with optimal

regularization plot, we observe that relative reconstruction error norms decrease and

flatten at a nearly optimal value, which means that if a suitable choice of the regular-

ization parameter is selected, Hybrid LSLU can provide a good regularized solution.

The error is similar to that of Hybrid LSQR, and we remark that the stopping criteria

for Hybrid LSLU performs well. These results demonstrate that Hybrid LSLU can

provide comparable performance to Hybrid LSQR, with the same storage require-
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Figure 3.17: Relative reconstruction error norms per iteration of Hybrid LSLU with
wGCV and the optimal regularization parameter. The automatically selected stop-
ping iteration is highlighted with a star. Results for Hybrid LSQR with wGCV are
provided for reference.

ments, lower computation cost and with the benefit of being inner product free.

The performance of Hybrid LSLU and Hybrid LSQR is similar for various noise

levels. In Table 3.3, we provide the automatically selected stopping iteration, the

computed regularization parameter using wGCV, the relative reconstruction error

norm, for noise levels 10−3, 10−2, and 10−1. We also give the iteration that produces

the lowest value of the relative reconstruction error norm. We remark that the results

for 10−2 are consistent with the results in Figure 3.17. We observe that for all noise

levels, Hybrid LSLU and Hybrid LSQR perform comparably in all three test problems.

This may be attributed to the stopping criteria and selected regularization parameter

that result in similar reconstructions for both Hybrid LSLU and Hybrid LSQR.

Finally, for the PRseismic example, we investigate the images created by the basis

vectors in Figures (3.18) and (3.19). Recall that in Hybrid LSLU, two sets of basis

vectors are being constructed in an inner product free manner, one for each of the

Krylov subspaces (3.21) and (3.22). We display 5 of the columns of the basis vectors

from Lk and Dk reshaped into images of corresponding sizes for Hybrid LSLU, and

provide the corresponding columns of the basis vectors generated via Hybrid LSQR

for comparison. We observe that although the vectors generated via Hybrid LSLU
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PRtomo
Method Noise Stop Iter Reg Param Error Best Iter Best Error

Hybrid
LSLU

10−3 21 0.8043 0.1436 91 0.1195
10−2 38 1.6055 0.1598 28 0.1566
10−1 24 5.6387 0.5271 6 0.3536

Hybrid
LSQR

10−3 38 0.8300 0.1357 100 0.1184
10−2 31 3.0126 0.1561 29 0.1561
10−1 49 9.4351 0.4809 8 0.3426

PRspherical
Method Noise Stop Iter Reg Param Error Best Iter Best Error

Hybrid
LSLU

10−3 18 0.0182 0.0624 55 0.0514
10−2 33 0.0420 0.1012 10 0.0928
10−1 31 0.3175 0.2803 6 0.1916

Hybrid
LSQR

10−3 53 0.0092 0.0515 100 0.0102
10−2 61 0.0347 0.1133 11 0.0877
10−1 11 0.1268 0.2983 4 0.1995

PRseismic
Method Noise Stop Iter Reg Param Error Best Iter Best Error

Hybrid
LSLU

10−3 27 4.4428 0.1013 100 0.0816
10−2 28 3.4699 0.1188 21 0.1176
10−1 52 3.0218 0.5703 19 0.2185

Hybrid
LSQR

10−3 46 2.8851 0.0894 100 0.0839
10−2 22 12.8805 0.1166 56 0.1149
10−1 54 40.9810 0.2180 18 0.2122

Table 3.3: Numerical results for the three test problems PRtomo, PRspherical, and
PRseismic for various noise levels. Regularization parameters and relative errors
correspond to values at the stopping iteration. Noise is referring to noise level, and
Error is referring to relative reconstruction error norm. Best Iter and Best Error
correspond to the reconstruction with smallest relative reconstruction error norm.

at the kth iteration span the same subspace as the vectors generated via Hybrid

LSQR, they have different features. We observe that the columns of Lk retrieve

some characteristics of the true solution in early iterations; hence, we expect this to

be a good basis for the solution. The columns of Dk contain information regarding

the measurement b ∈ Rm or residual space, where the columns are basis vectors for

Kk(AAT , r0). The ability of Lk to contain parts of the regularized solution is beneficial

in helping to produce an accurate approximation of the true solution.

These images help to understand how different methods pick up different infor-
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Figure 3.18: Basis vectors for the Krylov subspace (3.21) generated by LSLU and
LSQR at iterations k = 2, 4, 6, 8, 10 for the PRseismic example.

mation. The LSQR basis vectors picks up the high-frequency information, due to the

orthogonality requirement, and has a nice connection to SVD (frequency analysis).

LSLU seems to pick up high-frequency information but does not project out previous

vectors.
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Figure 3.19: Basis vectors for the Krylov subspace (3.22) generated by LSLU and
LSQR at iterations k = 2, 4, 6, 8, 10 for the PRseismic example.
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Chapter 4

Sketched Inner Product Free

Krylov Methods

This chapter, which is based on the collaborative work in [37], proposes a scheme

that combines the inner product free Hessenberg projection for generating a solution

subspace with a randomized sketch-and-solve approach.

In Chapter 3 we discussed CMRH and LSLU, which are quasi-minimum residual

methods. These methods provided suitable solutions and various relationships be-

tween iterates [36]. However, in the context of inverse problems, the residual norm

provides important information regarding the fit-to-data term, which depends on sta-

tistical assumptions about the measurement noise. In particular, the solution to the

least squares problem (2.3) corresponds to a maximum likelihood estimate, and the

solution to the Tikhonov problem (2.4) corresponds to a maximum posteriori esti-

mate [9]. Thus, we seek inner product free Krylov methods that are also minimum

residual methods. Unfortunately, this means that a tall, skinny least-squares prob-

lem needs to be solved at each iteration. We address this computational challenge by

exploiting recent work on randomized methods, which produces solutions that can ap-

proximate closely the minimal residual norm at each iteration. The numerical results
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will demonstrate that the proposed algorithm can solve large-scale inverse problems

efficiently and without requiring inner products.

4.1 sCMRH and sLSLU

In this section, we propose new methods that use the (non-orthogonal) basis vectors

for the relevant Krylov subspace, generated with the Hessenberg process (for square

or rectangular systems), and approximately compute the solution of the projected

least squares problem using a sketch-and-solve approach.

From Sections 3.1 and 3.2, we describe CMRH and LSLU as quasi-minimal residual

methods that are free of inner products. At each iteration k, CMRH and LSLU are

able to find an approximate solution of (2.3) by minimizing the following least squares

problem:

min
x∈x0+R(Lk)

∥M †
k+1(b− Ax)∥,

which is equivalent to solving

yλ,k = arg min
y∈Rk

∥r0 − ANky∥,

where r0 = b− Ax0 and x0 = 0.

Now, assume S is an appropriate sketching matrix. We combine the projected least

squares problem and the sketch-and-solve approach to form the following sketched

projected problem:

min
y∈Rk

∥S(b− ANky)∥. (4.1)

The solution at the kth iteration is given by x
(S)
k = Nky

(S)
k , where y

(S)
k is the solution of

(4.1). The crux of our approach lies in the assumption that at any given iteration, the

solution x
(S)
k will be close to the minimal residual norm x

(LS)
k with high probability.

Using the subspace embedding property (2.7) on the residual norm, and recalling
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that x(LS) is the minimal norm solution in the given Krylov subspace, i.e.,

∥b− Ax(LS)∥ = min
x∈x0+R(Lk)

∥b− Ax∥,

one can easily see that

∥b− Ax(LS)∥ ≤ ∥b− Ax
(S)
k ∥ ≤ 1 + ϵ

1 − ϵ
∥b− Ax(LS)∥. (4.2)

For example, if S ∈ Rs×m is a Gaussian sketch, (4.2) holds with a small probability of

failure if s ∼ m log(m)/ϵ2 (in practice, this is usually further reduced to s ∼ m/ϵ2).

Moreover, as noted in [33], ϵ is the subspace embedding constant of the matrix [A b ]

(i.e. appending b to the matrix A). This satisfies 1+ϵ
1−ϵ

= κ2(SQ
[Ab]), where Q[Ab] is

the orthogonal matrix obtained from the QR factorization of [A b ], and ϵ is usually of

the order of 0.5. An accurate mathematical description of the relevant theory can be

found in [32, Section 8.7.], and sharper bounds with a different probability of failure

can be found in the seminal paper [40].

This means that, in theory one can pick ϵ to be small enough so that the solu-

tion x
(S)
k produced by either sketched CMRH (sCMRH) or sketched LSLU (sLSLU)

will have a smaller residual norm than that of the solution xk obtained using the

inner product free (but not sketched) counterparts. Although this is a very strong

motivation of this work, it cannot, however, always be guaranteed in practice.

Moreover, we know that if S is a Gaussian sketch, then the sketch and solve solu-

tion to the projected problem is an unbiased estimate for the least-squares solution.

Consider the projected problem and the sketched, projected problem:

min
y∈Rk

∥b− ANky∥ and min
y∈Rk

∥S(b− ANky)∥,
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respectively, where ANk is a full column rank matrix. Then

E[(SANk)†(Sb)] = (ANk)†b

where † denotes the Moore-Penrose pseudoinverse. Since Nk is independent of the

sketch, we have that E[x
(S)
k ] = E[Nk(SANk)†(Sb)] = NkE[(SANk)†(Sb)] = Nk(ANk)†b =

x
(LS)
k . In addition, we can further analyze the expected squared residual norm as

E[∥b− ANky
(S)
k ∥] =

(
1 +

k

s− k − 1

)
min
y

∥b− ANky∥

= (1 + ε) min
y

∥b− ANky∥

when the sketch dimension is s = k
ε

+ k + 1. See [13, 14] and references therein.

Algorithms 9 and 10 provide the details for sCMRH and sLSLU. Note that for

sCMRH and sLSLU, one sketching matrix is needed S ∈ Rs×m; however, to incor-

porate Tikhonov regularization, we will need two sketching matrices, S1 ∈ Rs×n and

S2 ∈ Rs×m.

As can be observed in Algorithm 10, the generalized Hessenberg method with

partial pivoting requires locating the largest absolute value of r0, v0, and two other

vectors at each iteration, which can be costly due to global communications. To

avoid this occurrence, we apply the pivoting alternative described in Section 3.2.1

where only a small subset of elements in those vectors is observed, and the pivot is

taken to be the element with the largest absolute value from this subset. In practice,

this leads to a reduced communication cost and a stable way of building the non-

orthogonal basis for the relevant Krylov Subspace methods: in our experiments, we

never observed the condition number of the basis to grow significantly large. However,

this strategy might still increase the condition number κ(Dk+1) for LSLU or κ(Lk+1)

for CMRH, rendering the solutions from LSLU and CMRH less accurate. Therefore,
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Algorithm 9: sCMRH

Require: A, b, x0, maxiter, S
1: Define p = [1, 2, . . . , n]T ,
2: r0 = b− Ax0

3: Determine i such that |r0(i)| = ∥r0∥∞
4: β = r0(i); l1 = r0/β; p(1) ⇔ p(i)
5: for k = 1, . . . ,maxiter do
6: u = Alk
7: zk = S ∗ u
8: for j = 1, . . . , k do
9: H(j, k) = u(p(j)) ; u = u−H(j, k)lj
10: end for
11: if k < m and u ̸= 0 then
12: Determine i ∈ {k + 1, . . . ,m} such that |u(p(i))| = ∥u(p(k + 1 : m))∥∞
13: H(k + 1, k) = u(p(i)); dk = u/H(k + 1, k); p(k + 1) ⇔ p(i)
14: else
15: H(k + 1, k) = 0;
16: end if
17: Compute yk to be the minimizer of ∥Sr0 − SALky∥22 = ∥Sr0 − Zy∥22
18: xk = x0 + Lkyk
19: end for

this is a particular case of LSLU and CMRH where the sketched methods have a

great potential compared to their non-sketched counterparts. All numerical results

will implement this technique for different sample sizes.

From (3.38), we derived a bound on the difference between the residual norms

of solutions computed using LSLU and LSQR. It was shown that if the condition

number of R̂k+1, the upper triangular matrix from the QR decomposition of Dk+1,

does not grow too quickly, then the residual norms associated with the approximate

solutions of LSLU and LSQR at each iteration are close to each other. In Section 4.3,

we will compare the residual norm of sLSLU with the residual norms from (3.38).

In the next section we propose a sketch-and-solve approach to project the Tikhonov

problem on a Krylov subspace and approximately compute the solution of the least

squares problem (4.1).
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Algorithm 10: sLSLU

Require: A, b, x0, maxiter, S1, S2

1: Define t = [1, 2, . . . ,m]T , g = [1, . . . , n]T .
2: r0 = b− Ax0

3: Determine i such that |r0(i)| = ∥r0∥∞
4: β = r0(i); d1 = r0/β; t(1) ⇔ t(i)
5: v0 = AT r0
6: Determine i2 such that |v0(i2)| = ∥v0∥∞
7: α = v0(i2); l1 = v0/α; g(1) ⇔ g(i2)
8: r = ATd1; W (1, 1) = r(g(1))
9: for k = 1, . . . ,maxiter do
10: u = ATdk
11: zk = S2 ∗ u
12: for j = 1, . . . , k do
13: H(j, k) = u(t(j)) ; u = u−H(j, k)dj
14: end for
15: if k < m and u ̸= 0 then
16: Determine i ∈ {k + 1, . . . ,m} such that |u(t(i))| = ∥u(t(k + 1 : m))∥∞
17: H(k + 1, k) = u(t(i)); dk = u/H(k + 1, k); t(k + 1) ⇔ t(i)
18: else
19: H(k + 1, k) = 0;
20: end if
21: q = ATdk
22: for j = 1, . . . , k do
23: W (j, k + 1) = q(g(j)); q = q −W (j, k + 1)lj
24: end for
25: if k < n and q ̸= 0 then
26: Determine i2 ∈ {k + 1, . . . , n} such that |q(g(i2))| = ∥q(g(k + 1 : n))∥∞
27: W (k + 1, k + 1) = u(g(i2)); lk+1 = q/W (k + 1, k + 1); g(k + 1) ⇔ g(i2)
28: else
29: break
30: end if
31: Compute yk to be the minimizer of ∥S2r0 − S2ALky∥22 = ∥S2r0 − Zy∥22
32: xk = x0 + Lkyk
33: end for

4.2 Extensions for Tikhonov Regularization

Recall the standard Tikhonov regularization problem (2.4). As stated in Section 3.2,

the Hybrid LSLU method computes a solution at the kth iteration to the following
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optimization problem

min
x∈x0+R(Lk)

∥D†
k+1(b− Ax)∥2 + λ2∥L†

kx∥
2, (4.3)

which is equivalent to solving

yλ,k = arg min
y∈Rk

∥βe1 −Hk+1,ky∥2 + λ2∥y∥2, (4.4)

where β is selected using the sampling strategy. Similarly, one can use a sketch-

and-solve approach to project the Tikhonov problem on a Krylov subspace and ap-

proximately compute the solution of the least squares problem using the following

expression:

min
y∈Rk

∥S2(b− ALky)∥2 + λ2∥S1(Lky)∥2, (4.5)

where S1 and S2 are appropriate sketching matrices. Similar to LSQR and LSLU, we

derived a bound on the difference between the residual norms of solutions computed

using LSLU and LSQR for the Tikhonov problem. It was shown that if the condition

number of D̄k+1 does not grow too quickly, then the residual norms associated to

the solution of LSLU for the Tikhonov problem is close to the residual norm of

the solution obtained with LSQR for the Tikhonov problem (see Theorem 4). To

display behavior of sLSLU with Tikhonov regularization, we will plot the associated

residual norm against the residuals norms denoted in Theorem 4 (see Section 4.3). An

implementation of sLSLU with Tikhonov regularization is provided in Algorithm 12,

which corresponds to Algorithm 10 if λ = 0. Note that for all numerical results,

we select a fixed regularization parameter. The corresponding implementation of

sCMRH with Tikhonov regularization can be seen in Algorithm 11.
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Algorithm 11: sCMRH with Tikhonov Regularization

Require: A, b, x0, maxiter, S1, S2, λ
1: Define p = [1, 2, . . . , n]T ,
2: r0 = b− Ax0

3: Determine i such that |r0(i)| = ∥r0∥∞
4: β = r0(i); l1 = r0/β; p(1) ⇔ p(i)
5: for k = 1, . . . ,maxiter do
6: u = Alk
7: zk = S2 ∗ u
8: for j = 1, . . . , k do
9: H(j, k) = u(p(j)) ; u = u−H(j, k)lj
10: end for
11: if k < m and u ̸= 0 then
12: Determine i ∈ {k + 1, . . . ,m} such that |u(p(i))| = ∥u(p(k + 1 : m))∥∞
13: H(k + 1, k) = u(p(i)); dk = u/H(k + 1, k); p(k + 1) ⇔ p(i)
14: else
15: H(k + 1, k) = 0;
16: end if
17: Compute yλk,k to be the minimizer of ∥S2r0 − S2ALky∥2 + λ2∥S1Lky∥2
18: xk = x0 + Lkyλk,k

19: end for
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Algorithm 12: sLSLU with Tikhonov Regularization

Require: A, b, x0, maxiter, S1, S2, λ
1: Define t = [1, 2, . . . ,m]T , g = [1, . . . , n]T .
2: r0 = b− Ax0

3: Determine i such that |r0(i)| = ∥r0∥∞
4: β = r0(i); d1 = r0/β; t(1) ⇔ t(i)
5: v0 = AT r0
6: Determine i2 such that |v0(i2)| = ∥v0∥∞
7: α = v0(i2); l1 = v0/α; g(1) ⇔ g(i2)
8: r = ATd1; f1 = S1 ∗ r; W (1, 1) = r(g(1))
9: for k = 1, . . . ,maxiter do
10: u = ATdk
11: zk = S2 ∗ u
12: for j = 1, . . . , k do
13: H(j, k) = u(t(j)) ; u = u−H(j, k)dj
14: end for
15: if k < m and u ̸= 0 then
16: Determine i ∈ {k + 1, . . . ,m} such that |u(t(i))| = ∥u(t(k + 1 : m))∥∞
17: H(k + 1, k) = u(t(i)); dk = u/H(k + 1, k); t(k + 1) ⇔ t(i)
18: else
19: H(k + 1, k) = 0;
20: end if
21: q = ATdk
22: fk+1 = S1q
23: for j = 1, . . . , k do
24: W (j, k + 1) = q(g(j)); q = q −W (j, k + 1)lj
25: end for
26: if k < n and q ̸= 0 then
27: Determine i2 ∈ {k + 1, . . . , n} such that |q(g(i2))| = ∥q(g(k + 1 : n))∥∞
28: W (k + 1, k + 1) = u(g(i2)); lk+1 = q/W (k + 1, k + 1); g(k + 1) ⇔ g(i2)
29: else
30: break
31: end if
32: Compute yλk,k to be the minimizer of ∥S2r0 − S2ALky∥2 + λ2∥S1Lky∥2
33: xk = x0 + Lkyλk,k

34: end for

4.3 Numerical Results

In this section, we illustrate the effectiveness of sketched inner product free Krylov

methods: sketched CMRH (sCMRH) and sketched LSLU (sLSLU) in comparison to
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their non-sketched counterparts CMRH and LSLU, and the classical GMRES and

LSQR. We utilize three different test problems: a deblurring problem, a neutron

tomography simulation from the IR Tools package [16], and an example with real

data consisting of two open access datasets from the Finnish Inverse Problems Society

[8, 21]. Moreover, for Tikhonov regularization with fixed λ, we provide numerical

results for sLSLU, LSLU, and LSQR for some of these test problems. Note that

each sketch matrix has the following dimensions: S1 ∈ Rs×n, S2 ∈ Rs×m where

s = 10 ∗ (max iteration + 1).

4.3.1 Deblurring problem

The first experiment consists of a deblurring problem, where the aim is to reconstruct

MATLAB’s test image ‘cameraman’ of size 256 × 256 pixels, which was corrupted by

motion blur and additive Gaussian noise. The forward model was simulated using IR

Tools [16], and noise was added so that the observation contained a 1% noise level.

Since this is a square problem, we compare sCMRH to CMRH and GMRES. The

relative reconstruction error norm and residual norms per iteration are displayed in

Figure 4.1. We observe that the curves corresponding to sCMRH closely resembles

that of GMRES, as dictated by the theory, while the residual norms for CMRH deviate

as the iterations proceed. This can also be observed in the relative error norms. Thus,

sCMRH produces solutions that more closely resemble GMRES solutions, but without

the need for inner product computations. The reconstructed images are shown in

Figure 4.2.

4.3.2 Neutron tomography simulation

Neutron imaging is a tomography technique based on gamma-rays that allows us to

inspect the interior of dense or metallic objects. This is because, contrary to x-ray to-

mography, the absorption of neutrons is higher in ‘light’ elements and lower in metallic
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Figure 4.1: Relative reconstruction error norms (left) and residual norms (right). In
this case, sketched CMRH uses the pivots dictated by the maximum absolute value
from a set of randomly sampled coefficients (5).

elements. See, for example, the interior of a padlock in [3]. Note that, mathematically,

this CT modality has the same mathematical model as x-ray tomography, but using

different absorption coefficients for each material. Since most datasets for this type of

tomography are proprietary, in this example, we use MATLAB’s built-in demo image

‘circuit.tiff’, which has similar structure to neutron tomography examples.

The sketched LSLU (sLSLU) algorithm implements the pivoting alternative de-

scribed in Section 3.2.1. The sample size to approximate the infinity norm contains 25

entries. Note that varying the sample size does not appear to drastically change the

numerical results. In Figure 4.3, we provide the relative reconstruction error norms

per iteration of sLSLU. Results for LSQR and LSLU are provided for comparison. We

Noisy Data GMRES CMRH sCMRH

Figure 4.2: Measured noisy data, and reconstructed images using GMRES, CMRH,
and sCMRH.
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observe that sLSLU performs better than LSLU and similar to LSQR, especially in

the earlier iterations. Provided we implement a “good” stopping criteria, we can com-

pute an approximation that is of comparable quality to that produced with LSQR,

while avoiding inner products.

The residual norms are also plotted for comparison (see right plot in Figure 4.3).

In Figure 4.3, we find that residual norms for sLSLU closely follow the lower bound,

which corresponds to residual norms for LSQR. Similar to the relative error plot, we

find that the behavior of sLSLU aligns with LSQR. The reconstructions where the

relative error is the smallest are provided in Figure 4.4.
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Figure 4.3: Relative reconstruction error norms (left) and residual norms (right). In
this case, sketched LSLU uses the pivots dictated by the maximum absolute value
from a set of randomly sampled coefficients (25).

Next we consider the performance of sLSLU for the Tikhonov problem. We fix

λ = 26, and we plot the residual norm of sLSLU compared to LSLU and LSQR in

Figure 4.5. We also provide the relative reconstruction error norms per iteration. We

observe that the inclusion of the regularization term stabilizes the semi-convergence

for all methods. For the Tikhonov problem, sLSLU mirrors the behavior of LSQR.

An adaptive approach to find a “good” regularization parameter during the iterations

is a topic of future work. Image reconstructions corresponding to 30 iterations are

provided in Figure 4.6.
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Neutron Tomography Simulation
Noisy Data True Solution

LSQR LSLU sLSLU

Figure 4.4: Measured noisy data, true solution, and reconstructed images from LSQR,
LSLU, and sLSLU. The image proportions are accurate but, to aid visualization, the
relative size between images is not.
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Figure 4.5: Relative reconstruction error norms (left) and residual norms (right).
In this case, sketched LSLU with Tik. Reg. uses pivots dictated by the maximum
absolute value from a set of randomly sampled coefficients (25).

4.3.3 Real data examples

The Finnish Inverse Problems Society has provided the following open access datasets:

a tomographic x-ray of carved cheese and a walnut. Both datasets consist of x-ray

sinograms where each sinogram is obtained by fan-beam projection. The observed
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Neutron Tomography Simulation
Noisy Data True Solution

LSQR LSLU sLSLU

Figure 4.6: Measured noisy data, true solution, and reconstructed LSQR, LSLU, and
sLSLU for solving the Tikhonov problem. The image proportions are accurate but,
to aid visualization, the relative size between images is not.

data for the carved cheese dataset containing 360 projections and the walnut dataset

containing 120 projections are provided in Figures 4.8 and 4.9 respectively. For these

problems, there is no true image, so we rely on residual norms per iteration to compare

algorithms.

To illustrate the behavior of the residual norms for sLSLU, LSLU, and LSQR as

well as the bounds in Section 3.2.2, we plot in Figure 4.7 the residual norms per

iteration for the carved cheese and walnut datasets. The samples size to approximate

the infinity norm contains 25 entries. For both datasets, we observe that the residual

norms for sLSLU and LSQR remain close together, with the residual norms for LSLU

being a bit larger. Therefore, we may expect that the approximate solutions from

sLSLU should mirror those from LSQR. This is verified in Figure 4.8 and Figure 4.9,

where the reconstructed images using LSQR, LSLU, and sLSLU are provided. All

reconstructions correspond to iteration 30.

Finally, we consider sLSLU with Tikhonov regularization for these examples,

where we plot the the residual norm of sLSLU with Tikhonov regularization in Fig-
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Figure 4.7: Residual norms per iteration for sLSLU and LSLU, as well as correspond-
ing bounds from Theorem 2.1 of [6]. Note that the lower bound corresponds to LSQR
residual norms.

Carved Cheese
Noisy Data LSQR LSLU sLSLU

Figure 4.8: Measured noisy data, and reconstructed images from LSQR, LSLU, and
sLSLU. The image proportions are accurate but, to aid visualization, the relative size
between images is not.

ure 4.10. We fix λ = 1 for both problems. Similar to the nonregularized problems, the

residual norms for sLSLU closely follow the lower bound, which corresponds to resid-

ual norms for LSQR. Thus, we may expect that provided we have a “good” estimate

for the regularization parameter, sLSLU with Tikhonov regularization will produce a

better approximation of the solution than LSLU on the Tikhonov problem. We also

provide reconstructed images for both datasets in Figure 4.11 and Figure 4.12.
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Walnut
Noisy Data LSQR LSLU sLSLU

Figure 4.9: Measured noisy data, and reconstructed images from LSQR, LSLU, and
sLSLU. The image proportions are accurate but, to aid visualization, the relative size
between images is not.
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Figure 4.10: Residual norms per iteration for the Tikhonov problem correspond to
sLSLU, LSLU, as well as corresponding bounds from Theorem 3.1 of [6]. Note that
the lower bound corresponds to LSQR. The regularization parameter λ = 1.

Carved Cheese
Noisy Data LSQR LSLU sLSLU

Figure 4.11: Measured noisy data, and Tikhonov reconstructions for LSQR, LSLU,
and sLSLU. The image proportions are accurate but, to aid visualization, the relative
size between images is not.
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Walnut
Noisy Data LSQR LSLU sLSLU

Figure 4.12: Measured noisy data, and Tikhonov reconstructions for LSQR, LSLU,
and sLSLU. The image proportions are accurate but, to aid visualization, the relative
size between images is not.
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Chapter 5

Conclusion

In this dissertation we presented several new inner product free Krylov subspace

methods for large-scale linear inverse problems. We began with establishing CMRH

as a robust iterative regularization method, expanding its potential to a diverse range

of applications in large-scale ill-posed problems. Through a detailed study, we offer

both theoretical insights and a deeper understanding of the properties of the pro-

jected problems involved. The regularization characteristics of CMRH are shown

to effectively filter solutions, a conclusion that we support using empirical evidence.

Once this method is proven to be apt for ill-posed problems, we show that CMRH

is able to deliver a solution of similar quality much faster than other inner product

free alternatives, and highlight the advantages of using inner product free methods

in low precision arithmetic scenarios, where CMRH overcomes certain limitations of

GMRES. Moreover, we introduce a novel hybrid version of the CMRH method (Hy-

brid CMRH), the first hybrid method to be inner product free. We again stress that

it was first necessary to demonstrate the regularization capabilities of CMRH before

proposing the hybrid version, Hybrid CMRH. The performance of CMRH and Hybrid

CMRH is validated through its application to various ill-posed problems.

Next, we introduced two new inner product free Krylov methods for rectangular
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large-scale linear ill-posed inverse problems. Based on our numerical observations,

the Hybrid LSLU method is comparable to Hybrid LSQR in its ability to select

regularization parameters during the iterative process and stabilize semiconvergence.

Both LSLU and Hybrid LSLU only require matrix-vector multiplications with A and

its transpose, making them appealing for large-scale problems.

Lastly, we introduced two new inner product free Krylov methods, sCMRH and

sLSLU, that incorporate randomization techniques for solving large-scale linear in-

verse problems. Both methods are based on the Hessenberg method with partial

pivoting for building bases that span Krylov subspaces, and hence do not require

inner product computations (e.g., orthogonalizations). They also exploit randomized

sketching to solve the projected problems, thereby producing solutions with a smaller

residual norm compared to existing inner product free Krylov methods. Numerical

experiments show that the performance of sCMRH is comparable to that of GM-

RES and that the performance of sLSLU is comparable to that of LSQR. Moreover,

sCMRH and sLSLU have smaller residual norm solutions, compared to CMRH and

LSLU respectively. The sketched Krylov methods can be adapted to incorporate

Tikhonov regularization provided that an appropriate regularization parameter is se-

lected. Since sCMRH and sLSLU are all inner product free, they may be useful in

solving problems with mixed-precision and parallel computing, which is a topic of

future work.
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