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Abstract

Flexible and Robust Methods for Evaluating Covariate Effects on

Biomedical Outcomes

In practice, it is often of scientific interest to evaluate covariate effects on biomed-
ical outcomes. This task can be complicated by the presence of dynamic (or varying)
variable effects that often manifest meaningful scientific mechanisms. Appropriately
accounting for possible dynamic effects is crucial to avoid depreciating some impor-
tant variables. Moreover, with technology advancement, modern biomedical studies
often collect a huge number of variables, posing ultra-high dimensional data settings.
Furthermore, important contributors of biomedical outcomes may evolve over time,
posing time-dependent covariates. The overall objective of my dissertation is to de-
velop statistical methods that can provide robust and flexible assessment of covariate
effects that can address the limitations of existing approaches while leading to mean-
ingful scientific discovery.

In the first dissertation project, we adopt the device of globally concerned quantile
regression, and propose a flexible testing framework suited to assess either constant
or dynamic covariate effects on outcomes subject to random censoring. We study the
powerful Kolmogorov-Smirnov (K-S) and Cramér-Von-Mises (C-V) type test statistics
and develop a resampling procedure to tackle their complicated limit distributions.
We provide rigorous theoretical results, including the limit null distributions, con-
sistency under a general class of alternative hypotheses of the proposed tests, and
the justifications for the presented resampling procedure. Extensive numerical stud-
ies demonstrate the utility of the new testing procedures and their advantages over
existing approaches.

In the second dissertation project, we propose a model-free testing and screening
framework by adopting a global view pertaining to the concept of interval quantile
independence. The new framework not only permits robust identification of variables
dynamically associated with an outcome, but also offers the flexibility to evaluate
multiple covariates simultaneously, where the covariates under consideration can be
either continuous or discrete. The key testing strategy naturally evolves into uncon-
ditional and conditional screening procedures for ultra-high dimensional settings that
enjoys the desirable sure screening property. We demonstrate good practical utility
of the proposed methods via extensive simulation studies and a real application to a
microarray data set.

In the third dissertation project, utilizing the interval-quantile index, we pro-
pose a new model-free globally-concerned test statistic for evaluating the impact of
time-dependent covariates on time-to-event outcomes. Additionally, we develop a re-
sampling procedure based on perturbation resampling. We establish the limit null
distributions and consistency under a general class of alternative hypotheses of the
proposed tests and provide justification for the resampling procedure. The proposed
methods are demonstrated through extensive simulation studies, as well as an appli-
cation to the Feeding Infants Right... from the STart (FIRST) study.
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Chapter 1

Introduction



2

1.1 A Brief Overview

A general question arising from many research studies is to determine whether some

covariates are relevant to a study outcome. For instance, in chronic disease studies,

researchers may seek to identify prognostic factors that are predictive for the time-to-

event disease outcome. As another example, in a genetics study, it is often of interest

to identify a group of genes that contribute to the variations of a known disease

marker or symptom (Subramanian et al., 2005; Efron and Tibshirani, 2007; Newton

et al., 2007, for example). Addressing such an interest, however, may be complicated

by the presence of dynamic (or varying) covariate effects.

Moreover, revolutionized with technological advances, genetics studies are experi-

encing a significant shift from studying a few genes of interest to exploring the entire

genome all at once, posing additional challenges due to ultra-high dimensionality.

Firstly, when p > n, there are more likely to have a singular fitting. Secondly, it

becomes harder to eliminate unimportant variables as p gets larger. This is due to

the fact that as p increases, the unimportant variables are more likely to be correlated

with the important variables.

Furthermore, time-dependent covariates are common in biomedical studies where

the outcome of interest evolves over time. For example, in the Feeding Infants Right..

from the STart (FIRST) study, the covariate is the feeding type (e.g. breast milk,

formula) that can change over time, and the outcome is the time to infection. We want

to investigate whether feeding can affect the risk of infection. Ignoring time-dependent

feature of the covariates in statistical analysis can lead to biased and inaccurate

results, reducing the statistical power of the analysis and potentially impacting the

study’s conclusions. Therefore, it is crucial to employ appropriate methods to handle

these time-dependent covariates.

In the next section, we present some literature reviews on existing approaches to

evaluate covariate effects on time-to-event outcome, existing work on variable screen-
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ing for ultra-high dimensional data, as well as the existing methods to assess the effect

of a time-dependent covariates on a survival outcome. Following these, we briefly de-

scribe the proposed methods. At the end of this chapter, we will give an outline of

the rest parts of this dissertation.

1.2 Literature Review

1.2.1 Existing Approaches to Evaluate Covariate Effects on

Time-to-event Outcome

When the disease outcome is captured by a time-to-event, a commonly used ap-

proach is to model the mechanism of a prognostic factor influencing the time-to-event

outcome via a standard survival regression model and then test the corresponding

covariate effects (see a review in Kleinbaum and Klein (2010) and Cox and Oakes

(2018)). These standard survival regression models, such as the Cox proportional

hazard (PH) regression model and the accelerated failure time (AFT) model, im-

pose assumptions like the proportional hazards and the location-shift effects, which

implicitly confine the prognostic factor of interest to be a static portent of disease

progression.

There has been growing awareness that a prognostic factor may follow a dynamic

association with a time-to-event disease outcome. Many reports in literature (Dickson

et al., 1989; Thorogood et al., 1990; Verweij and van Houwelingen, 1995; Bellera

et al., 2010, for example) have suggested that postulating constant covariate effects,

sometimes, is not adequate to reflect underlying physiological disease mechanisms,

leading to distorted assessment of the prognostic factor. For example, an analysis of

a dialysis dataset reported by Peng and Huang (2008) suggested that the severity of

restless leg syndrome (RLS) symptoms may be prognostic of mortality for short-term

dialysis survivors but not for long-term dialysis survivors. The standard tests based
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on the Cox PH model and the AFT model failed to detect such a dynamic effect.

Quantile regression, as a useful alternative, directly formulates covariate effects on

quantile(s) of a response, thus confers a seminal venue to characterize a dynamic effect

of a prognostic factor. Many authors have studied linear quantile regression with a

time-to-event outcome (Powell, 1986; Ying et al., 1995; Portnoy, 2003; Zhou, 2006;

Peng and Huang, 2008; Wang and Fygenson, 2009; Huang, 2010, for example). Most

of the existing methods concern covariate effects on a single or multiple pre-specified

quantile levels (e.g. ∆ is a singleton set {0.5}), and, following the terminology of

Zheng et al. (2015), are locally concerned. As discussed in Zheng et al. (2015), locally

concerned quantile regression cannot inform of the covariate effect on quantiles other

than the specifically targeted ones (e.g. median), and thus may miss important

prognostic factors. Adopting the perspective of globally concerned quantile regression,

one can simultaneously examine covariate effects over a continuum of quantile levels

(e.g. ∆ is an interval [0.1, 0.9]), and thus confer a more comprehensive assessment

of a prognostic factor. However, powerful tests tailored to evaluate covariate effects

under the perspective of globally concerned quantile regression have not been formally

studied, partly owing to the associated inferential complexity.

1.2.2 Existing Work on Variable Screening for Ultra-high Di-

mensional Data

In the context of variable screening, the importance of a covariate was ranked by

marginal correlation (Fan and Lv, 2008), maximum marginal likelihood estimate of

a generalized linear model (Fan et al., 2010) or a generalized marginal utility func-

tion (Fan et al., 2009), and generalized correlation (Hall and Miller, 2009). These

approaches involve an assumed linear or generalized linear relationship between the

outcome and covariates or transformation thereof, which implicitly asserts a location-

shift (or constant) effect for each covariate. Such a restriction was relaxed in model-
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free screening procedures through adopting nonparametric regression modeling (Fan

et al., 2011; He et al., 2013, for example). However, there was a subtle limitation that

the adopted nonparametric modeling only examines the local influence of a covariate

on the mean or a pre-specified quantile of the outcome. A relevant covariate can be

missed if its impact on the outcome is not manifested on the mean or the targeted

quantile level.

Addressing these caveats, a viable option is to measure a covariate’s outcome-

relevance pertaining to the concept of interval quantile independence (Zhu et al.,

2018). Several authors (Zhu et al., 2011; Mai and Zou, 2015, for example) considered

a similar general framework for defining covariate relevance, which utilizes the func-

tional dependence of the conditional cumulative distribution of the outcome upon the

covariate. Compared to this alternative, employing the conditional quantile function

allows one to naturally pinpoint one part of the outcome distribution (for covariate

effect assessment) with a proper choice of ∆ to align with particular scientific inter-

ests, for example, in average or abnormal outcomes. The flexibility in specifying ∆

may also help mitigate potential identifiability concern. For example, when data are

limited, say due to censoring, simply setting ∆ = (0, 1) may necessitate extrapolation

with additional model assumptions.

To examine covariate effects over ∆, one available approach is to utilizing the novel

interval quantile index proposed by Zhu et al. (2018), which is designed to measure

the departure from the interval quantile independence between a pair of continu-

ous variables. Zhu et al. (2018)’s nonparametric index estimator and the associated

asymptotic theory naturally render a testing procedure when all the covariates are

continuous. Zhu et al. (2018) also developed a model-free variable screening proce-

dure that ranks the estimated interval quantile index for the relationship between the

outcome and each continuous covariate. While enjoying desirable theoretical proper-

ties (e.g., sure screening property) and appealing empirical performance, Zhu et al.
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(2018)’s procedures would encounter difficulty when some covariates are discrete. In

addition, as the interval quantile index is oriented to study the relationship between

two variables, it is not straightforward to adapt Zhu et al. (2018)’s procedures to si-

multaneously evaluate multiple covariates in terms of their relevance to the outcome.

This task is often needed in practice in order to sensibly account for inherent data

hierarchy structure due to biological, spatial, or temporal factors.

1.2.3 Existing Methods to Detect Effects for Survival Out-

come with Time Dependent Covariate

To account for time-dependent covariates in time-to-event data, the most widely used

approach is the time dependent Cox proportional hazards model, which serves as the

foundation for handling time-dependent covariates in survival analysis (Therneau

and Grambsch, 2000; Cox and Oakes, 2018). A pivotal contribution was made by

Andersen and Gill (1982), which presents a counting process formulation of the Cox

proportional hazards model, allowing for the incorporation of time-dependent covari-

ates. Among other early works in this area, Robins and Tsiatis (1992) introduces a

semi-parametric estimation approach for accelerated failure time (AFT) model with

time-dependent covariates. However, both methods have limitations, such as the re-

liance on assumption for the proportional hazards and the location-shift effects, which

may not always hold in real-world applications. Other approaches, such as the joint

models for longitudinal and survival data, have also been developed to address time-

dependent covariates (Rizopoulos, 2012). These joint models typically rely on various

strong assumptions, such as the distributional form of random effects, the shape of

the baseline hazard function, and the functional relationship between the longitu-

dinal and survival outcomes. Violation of these assumptions can lead to biased or

inconsistent parameter estimates, affecting the accuracy and reliability of the evalua-

tion. Therefore, non-parametric approaches would be appealing in analyzing survival
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data with time-dependent covariates, as they require fewer assumptions about the

underlying data distribution compared to these model-based approaches.

The landmark approaches also serve as flexible and practical tools for handling

time-dependent covariates. As reviewed in Putter (2013), the basic idea of landmark

analysis is to define a set of landmark times and restrict the analysis to subjects who

are still at risk at each landmark time. Through examining time-dependent covariate

effects on survival outcomes at multiple time points, this approach provide valuable

insights into the complex relationships between covariates and survival outcomes.

While landmark analysis is a useful method for analyzing time-to-event data with

time-dependent covariates, most of the existing works (Andersen and Perme, 2010;

Van Houwelingen, 2007, for example) are based on the assumption that the effect of

the covariate is constant over the specified time period after the landmark time. This

assumption may not hold if there is dynamic association between the covariate and

the time-to-event disease outcome.

1.3 The Proposed Methods

In this dissertation, we propose to assess the effects of covariates on a response variable

by adopting a global view pertaining to the concept of interval quantile independence.

The first topic introduces a flexible and robust method for evaluating the effects of

a univariate covariate on a time-to-event outcome. The second topic develops a

group testing framework to identify variables that are dynamically associated with

the outcome, and introduces a screening framework for excluding irrelevant variables

in the ultra-high dimensional settings with high confidence. The third topic suggests

an index for measuring and testing the departure from interval quantile independence

for time-dependent covariates and time-to-event outcomes across a set of landmark

times.
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The first part of this dissertation focus on the problem to detect the effect of a

univariate covariate across an interval of quantile levels on the time-to-event outcome.

We develop a new framework for evaluating a survival prognostic factor following the

spirit of globally concerned quantile regression. Quantile regression (Koenker and

Bassett Jr, 1978), which directly formulates covariate effects on quantile(s) of a re-

sponse, confers a seminal venue to characterize a dynamic effect of a prognostic factor.

Specifically, given a time-to-event outcome T and a covariate Z̃ (which represents the

prognostic factor of interest), a linear quantile regression model may assume,

QT (τ |Z̃) = exp{ZTθ0(τ)}, τ ∈ ∆, (1.1)

where Z = (1, Z̃)T, QT (τ |Z̃) ≡ inf{t : Pr(T ≤ t|Z̃) ≥ τ} denotes the τ -th conditional

quantile of T given Z̃, θ0(τ) ≡ (β
(0)
0 (τ), β

(1)
0 (τ))T is an unknown coefficient vector,

and ∆ ⊆ (0, 1) is a pre-specified set including the quantile levels of interest. The

coefficient β
(1)
0 (τ) represents the effect of Z̃ on the τ -th conditional quantile of T , and

is allowed to change with τ . This implicates that the prognostic factor is permitted

to have different effects across different segments of the distribution of the time-to

event outcome.

As a proof of concept, we shall confine the scope of this work to the standard

survival setting where the time-to-event outcome T is subject to random censoring.

Specifically, our proposal is to simultaneously assess the influence of the prognostic

factor on a range of quantiles of T , indexed by a τ -interval, [τL, τU ] ⊂ (0, 1). As the

key rationale, a significant prognostic factor is allowed to have a dynamic τ -varying

effect, which may be non-zero throughout the whole τ -interval (i.e. full effect), or

only over a part of the τ -interval (i.e. partial effect). Under this view, when model

(2.1) with ∆ = [τL, τU ] holds, the task of identifying a prognostic factor reduces to
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testing the null hypothesis,

H0 : β
(1)
0 (τ) = 0, τ ∈ [τL, τU ].

Moreover, without assuming any models, we may consider the null hypothesis formu-

lated as,

H∗0 : QT (τ |Z̃) = QT (τ) for τ ∈ [τL, τU ],

where QT (τ) = inf{t : Pr(T ≤ t) ≥ τ}, denoting the τ -th unconditional (or marginal)

quantile of T . The null hypothesis H∗0 corresponds to the setting where Z̃ has no

influence on the conditional quantile of T at any quantile level between τL and τU .

It is remarkable that under mild regularity conditions, H∗0 implies that model (2.1)

holds with ∆ = [τL, τU ] and β
(1)
0 (τ) = 0 for τ ∈ [τL, τU ]; on the other hand, model

(2.1) with ∆ = [τL, τU ] and β
(1)
0 (τ) = 0 for τ ∈ [τL, τU ] implies QT (τ |Z̃) = QT (τ) for

τ ∈ [τL, τU ]; see Lemma A2.1 in Section 2.5.1. This finding sheds an important insight

that a model-based test developed for H0 may be used towards testing the model-free

null hypothesis H∗0 . From an alternative view, this result suggests that the globally

concerned quantile regression model (2.1) with ∆ = [τL, τU ] can be used as a working

model to test H∗0 , which adopts the view that the effect of a prognostic factor can be

assessed through contrasting the conditional versus unconditional quantiles of T .

Regarding H∗0 , we study two “omnibus” test statistics constructed based on the

estimator of θ0(τ) obtained under the working model (2.1) with ∆ = [τL, τU ]. One test

is a Kolmogorov-Smirnov (K-S) type test statistic defined upon the maximum “signal”

strength (i.e. covariate effect) over τ ’s in [τL, τU ]. The other one is a CramérVon-

Mises (C-V) type test statistics based on the average “signal” strength over τ ’s in

[τL, τU ]. These two types of test statistics are known to be very sensitive to detect

any departure from the null hypothesis H0 under model (2.1). However, the analytic

form of their limit null distributions are generally complex and sometimes intractable.
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This challenge is more intense in the quantile regression setting, where coefficient es-

timates do not have a closed form, and the corresponding asymptotic variance matrix

involves unknown density functions (Koenker, 2005). To overcome these difficulties,

we propose to approximate the limit null distributions through a resampling procedure

that perturbs the influence function associated with the adopted coefficient estimator

under the working model (2.1), following similar strategies of Lin et al. (1993) and

Li and Peng (2014). We derive a sample-based procedure to estimate the influence

function without requiring the correct specification of model (2.1), thereby circum-

vents directly evaluating the unknown density function via smoothing. The proposed

resampling procedure is easy to implement and is shown to perform well even with

realistic sample sizes. Moreover, we provide rigorous theoretical justifications for the

proposed resampling procedure.

For the second part of this dissertation, we consider the problem to identify vari-

ables that are dynamically associated with the outcome, and to exclude irrelevant

variables in the ultra-high dimensional settings with high confidence. Let Y denote a

continuous outcome and let X = {X(1), . . . , X(p)}T denote the vector of the observed

covariates. Define

H0,j : QY (τ | X(j)) = QY (τ), a.s. for τ ∈ ∆ ⊆ (0, 1).

Here and hereafter, for a general random vector V , QY (τ | V ) = inf{y : pr(Y ≤

y|V ) ≥ τ} denotes the conditional quantile function of Y given V , and QY (τ) =

inf{y : pr(Y ≤ y) ≥ τ} denotes the unconditional quantile function of Y . When X(j)

is continuous, H0,j refers to the interval quantile independence between Y and X(j)

on quantile level intervals ∆ and [0, 1] respectively for Y and X(j), as termed by Zhu

et al. (2018). The consideration of H0,j confers a flexible view for defining relevant

variables. In the multivariate setting, a covariate X(j) is considered as relevant or
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active if QY (τ |X) functionally depends on X(j) for some τ ∈ ∆ ⊆ (0, 1), where ∆ is

a pre-specified set of quantile levels. Under this view, the set of relevant variables is

defined as M∆ = {1 ≤ r ≤ p : there exists τ ∈ ∆ such that QY (τ | X) depends on

X(r)}. The formulations of H0,j andM∆ take a global perspective to assess covariate

effects throughout the range of the outcome distribution indexed by the quantile level

interval ∆. Covariates inM∆ are permitted to have dynamic and non-additive effects

across different ranges of the outcome.

We propose a new model-free strategy for tackling a generalized version of H0,j

that concerns the outcome relevance of one or multiple covariates, which can be either

continuous or discrete. Specifically, for a index set for J covariates, G = {r1, . . . , rJ} ⊆

{1, . . . , p}, define XG = {X(r1), . . . , X(rJ ))T. A null hypothesis of our interest takes

the form

H0,G : QY (τ |XG) = QY (τ), a.s., for τ ∈ ∆ ⊆ (0, 1).

To address H0,G, we propose to employ a “working” linear quantile regression model,

which can help determine whether H0,G holds or not. We construct an omnibus test

statistic for H0,G from adapting the spirit of the classic Cramér-Von-Mises (C-V) type

test statistics under the “working” linear quantile regression model. We establish the

asymptotic behaviors of the proposed test statistic without assuming the working

model holds.

We further utilize the proposed test statistic as the utility function to develop a

new model-free variable screening procedure for ultra-high dimensional data. Given

the flexibility of our test statistic in handling multiple covariates simultaneously, the

new screening procedure can be performed with covariates pre-grouped by scientific

needs or in a random manner for the benefit of saving computational time. We es-

tablish the desirable sure screening property for the new screening procedure. As

a useful by-product, we can readily transform the new screening procedure to per-

form conditional variable screening given some known relevant covariates under mild
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additional assumptions. We also prove the corresponding conditional sure screening

property.

In the third part of this dissertation, we focus on the problem to evaluate the

association between a univariate time dependent covariate (continuous, discrete, or

a mixture of both) and the time-to-event outcome. Let T be a continuous random

variable representing the survival time. Denote Z̄ = {Z(t), 0 ≤ t < ∞} as a time

dependent covariate process, where Z(t) is a univariate covariate at t ≥ 0. Let C

denote the censoring time. Define X = min(T,C) and δ = I(T ≤ C) as the observed

survival time and the event status, respectively.

To deal with the time dependent covariates, we adopt the idea to assessing the

overall effects over a pre-determined set of landmark times. Specifically, at each

landmark time t0, we assess the effect on individuals who have not yet experienced the

event, and then summarize across all landmark times. Let M(t0) = I(X > t0) denote

the indicator on whether an individual survive up to time t0. Let T r(t0) be the residual

survival time, and V (t0) be a pre-specified functional form of Z̄(t0) = {Z(t), 0 ≤

t ≤ t0}, the covariate process up to t0. Define Cr(t0) = C − t0 as the residual

censoring time. The observed residual survival time is then defined as Xr(t0) =

min(T r(t0), Cr(t0)). We assume (T r(t0), V (t0)) ⊥ C |M(t0) = 1 for any t0 ∈ T . The

observed data at time t0 is then noted as {Xr
i (t0), δi, Vi(t0)}{i;Mi(t0)=1,i=1...,n}.

Denote T as a finite set of the landmark time points of interest, and ∆ = [τL, τU ] as

the interval of quantile levels of interest for T r(t0). Based on the problem of interest,

we may formulate it as a hypothesis testing problem to test for

H0,T : QT r(t0)|V (t0),M(t0)=1(τ1) = QT r(t0)|M(t0)=1(τ1) for τ1 ∈ ∆, t0 ∈ T

versus its alternative. Here QT r(t0)|M(t0)=1(τ1) denotes the τ1th quantile of T r(t0)

conditional on M(t0) = 1, and QT r(t0)|V (t0),M(t0)=1(τ1) denotes the τ1th quantile of
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T r(t0) conditional on V (t0) and M(t0) = 1. To address H0,T , we propose two model-

free indices, which can help determine whether H0,T holds or not. We establish the

asymptotic behaviors of the proposed test statistic. We also propose to approximate

the limit null distributions through a perturbation resampling procedure that perturbs

the influence function.

1.4 Outline

The rest of this proposal is organized as follows. In Chapter 2, we first briefly re-

view some existing results about the estimation of model (2.1), which we use as a

working model for testing H∗0 . We then present the proposed test statistics along

with their theoretical properties. A resampling procedure is developed to carry out

inference regarding H0 or H∗0 based on the proposed test statistics. We also discuss

some computational strategies to help simplify or improve the implementation of the

proposed method. We report extensive simulation studies conducted to evaluate the

finite-sample performance of the proposed testing procedures. Our simulation results

show that the proposed tests have accurate empirical sizes and can be much more

powerful than benchmark methods when assessing a covariate with a dynamic effect.

We further demonstrate the usefulness of the proposed testing procedures with a real

data example. In Chapter 3, we present the proposed testing method for the classic

multivariate setting, and the unconditional and conditional screening procedures for

the ultra-high dimensional setting. We report the results from extensive simulation

studies. In settings with dynamic effects, the proposed global testing and screening

procedures clearly outperform existing approaches that assume constant effects or

locally focus on the covariate effects on the mean or a pre-specified quantile of the

outcome. We also present an application of the proposed methods to a microarray

dataset. In Chapter 4, we present the proposed test statistics along with their the-
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oretical properties. A resampling procedure is developed for conducting inference

based on the proposed test statistics. Our simulation results show that the proposed

tests have accurate empirical sizes and can be much more powerful than benchmark

methods when assessing a covariate with a dynamic effect. We further demonstrate

the usefulness of the proposed testing procedures by an application to the data from

the FIRST study. In Chapter 5, we provide a summary of the completed work and

briefly discuss our plan for future work.
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Chapter 2

Assessing Dynamic Covariate

Effects with Survival Data
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2.1 The Proposed Testing Procedures

2.1.1 Formulation of the Testing Problem

In this part, we focus on the problem to detect the effect of a univariate covariate

across an interval of quantile levels on the time-to-event outcome. We develop a new

framework for evaluating a survival prognostic factor following the spirit of globally

concerned quantile regression. Quantile regression (Koenker and Bassett Jr, 1978),

which directly formulates covariate effects on quantile(s) of a response, confers a

seminal venue to characterize a dynamic effect of a prognostic factor. Specifically,

given a time-to-event outcome T and a covariate Z̃ (which represents the prognostic

factor of interest), a linear quantile regression model may assume,

QT (τ |Z̃) = exp{ZTθ0(τ)}, τ ∈ ∆, (2.1)

where Z = (1, Z̃)T, QT (τ |Z̃) ≡ inf{t : Pr(T ≤ t|Z̃) ≥ τ} denotes the τ -th conditional

quantile of T given Z̃, θ0(τ) ≡ (β
(0)
0 (τ), β

(1)
0 (τ))T is an unknown coefficient vector,

and ∆ ⊆ (0, 1) is a pre-specified set including the quantile levels of interest. The

coefficient β
(1)
0 (τ) represents the effect of Z̃ on the τ -th conditional quantile of T , and

is allowed to change with τ . This implicates that the prognostic factor is permitted

to have different effects across different segments of the distribution of the time-to

event outcome.

As a proof of concept, we shall confine the scope of this work to the standard

survival setting where the time-to-event outcome T is subject to random censoring.

Specifically, our proposal is to simultaneously assess the influence of the prognostic

factor on a range of quantiles of T , indexed by a τ -interval, [τL, τU ] ⊂ (0, 1). As the

key rationale, a significant prognostic factor is allowed to have a dynamic τ -varying

effect, which may be non-zero throughout the whole τ -interval (i.e. full effect), or
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only over a part of the τ -interval (i.e. partial effect). Under this view, when model

(2.1) with ∆ = [τL, τU ] holds, the task of identifying a prognostic factor reduces to

testing the null hypothesis,

H0 : β
(1)
0 (τ) = 0, τ ∈ [τL, τU ].

Moreover, without assuming any models, we may consider the null hypothesis formu-

lated as,

H∗0 : QT (τ |Z̃) = QT (τ) for τ ∈ [τL, τU ],

where QT (τ) = inf{t : Pr(T ≤ t) ≥ τ}, denoting the τ -th unconditional (or marginal)

quantile of T . The null hypothesis H∗0 corresponds to the setting where Z̃ has no

influence on the conditional quantile of T at any quantile level between τL and τU .

It is remarkable that under mild regularity conditions, H∗0 implies that model (2.1)

holds with ∆ = [τL, τU ] and β
(1)
0 (τ) = 0 for τ ∈ [τL, τU ]; on the other hand, model

(2.1) with ∆ = [τL, τU ] and β
(1)
0 (τ) = 0 for τ ∈ [τL, τU ] implies QT (τ |Z̃) = QT (τ) for

τ ∈ [τL, τU ]; see Lemma A2.1 in Section 2.5.1. This finding sheds an important insight

that a model-based test developed for H0 may be used towards testing the model-free

null hypothesis H∗0 . From an alternative view, this result suggests that the globally

concerned quantile regression model (2.1) with ∆ = [τL, τU ] can be used as a working

model to test H∗0 , which adopts the view that the effect of a prognostic factor can be

assessed through contrasting the conditional versus unconditional quantiles of T .

2.1.2 Estimation of the Coefficient Function Under the Cen-

sored Quantile Regression Model

As explained in Section 2.1.1, we propose to use globally concerned quantile regression

as a vehicle to address the testing problem regarding the general null hypothesis H∗0 .

The first step is to obtain an estimator of θ0(τ) (and thus β
(1)
0 (τ)) from fitting the
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working model (2.1) to the observed data. Here and hereafter, we shall set the ∆

in model (2.1) as ∆ = [τL, τU ], which is a pre-specified interval within (0, 1). Let C

denote time to censoring, X = min(T,C), and δ = I(T ≤ C). The observed data

include n i.i.d. replicates of (X, δ,Z), denoted by {(Xi, δi,Zi)}ni=1.

To estimate θ0(τ) under model (2.1), we choose to adapt the existing results of

Peng and Fine (2009) developed for competing risks data to the setting with randomly

censored data. Compared to the other available estimators developed by Portnoy

(2003) and Peng and Huang (2008), which require τL = 0, the estimator derived

from Peng and Fine (2009) is more robust to any realistic violation of the global

linearity assumed by model (2.1) (Peng, 2021). The influence function associated

with Peng and Fine (2009)’s estimator also has a simpler form that can facilitate the

development of the corresponding testing procedures.

The estimator of θ0(τ) adapted from Peng and Fine (2009)’s work, denoted by

θ̂(τ), is obtained as the solution to the following estimating equation:

Sn(b, τ) = n−1/2

n∑
i=1

Zi

[
I(Xi ≤ exp{ZT

i b})I(δi = 1)

Ĝ(Xi|Zi)
− τ

]
= 0, (2.2)

where Ĝ(x|Z) is a reasonable estimator of G(x|Z) ≡ Pr(C ≥ x|Z). For simplicity of

illustration, in sequel, we shall assume C is independent of Z̃ and thus take Ĝ(x|Z)

as the Kaplan-Meier estimator of the marginal survival function of C, Ĝ(x). As noted

by Peng and Fine (2009), solving (2.2) can be formulated as a L1-type minimization

problem of the following convex objective function:

Un(b, τ) =
n∑
i=1

I(δi = 1)

∣∣∣∣∣ log(Xi)

Ĝ(Xi)
− bT

Zi

Ĝ(Xi)

∣∣∣∣∣+

∣∣∣∣∣M − bT

n∑
l=1

−ZlI(δl = 1)

Ĝ(Xi)

∣∣∣∣∣
+

∣∣∣∣∣M − bT

n∑
k=1

(2τZk)

∣∣∣∣∣ .
Here M is a sufficiently large number. This L1-type minimization problem can be
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easily solved using the rq() function in the R package quantreg by Koenker (2022).

By the results of Peng and Fine (2009), the estimator θ̂(τ) enjoys desirable

asymptotic properties. Specifically, under certain regularity conditions, we have

(i) limn→∞ supτ∈[τL,τU ] ||θ̂(τ) − θ0(τ)|| →p 0; and (ii)
√
n{θ̂(τ) − θ0(τ)} converge

weakly to a mean zero Gaussian process for τ ∈ [τL, τU ] with covariance function

Φ(τ ′, τ) = E{ξ1(τ ′)ξ1(τ)T}. Here ξi(τ) (i = 1, . . . , n) are defined as

ξi(τ) ≡ {ξ(0)
i (τ), ξ

(1)
i (τ)}T

= {A(θ0(τ))}−1

{
Zi(

I(log(Xi) ≤ ZT
i θ0(τ), δi = 1)

G(Xi)
− τ)

−
∫ ∞

0

w{θ0(τ), s}y(s)−1dMG
i (s)

}
,

where G(x) = Pr(C > x), A(b) = E[ZZTf(ZTb|Z)] with f(t|Z) denoting the condi-

tional density of X given Z, w(b, t) = E[ZY (t)I(X ≤ exp{ZTb})I(δ = 1)G(X)−1],

and MG
i (t) = NG

i (t) −
∫∞

0
Yi(s)dΛG(t) with NG

i (t) = I(Xi ≤ t, δi = 0), Yi(t) =

I(Xi ≥ t), y(t) = Pr(X ≥ t), λG(t) = lim∆→0 P (C ∈ (t, t + ∆)|C ≥ t)/∆, and

ΛG(t) =
∫ t

0
λG(s)ds. In addition, n1/2{θ̂(τ) − θ0(τ)} ≈ n−1/2

∑n
i=1 ξi(τ), where ≈

indicate asymptotical equivalence uniformly in τ ∈ [τL, τU ]. Consequently, ξi(τ) is

referred to as the influence function of n1/2{θ̂(τ)− θ0(τ)}.

Note that the variance estimation for θ̂(τ) is complicated by the involvement of the

unknown density f(t|Z) in the asymptotic covariance matrix Φ(τ ′, τ). As justified by

Peng and Fine (2009), a sample-based procedure that avoids smoothing-based density

estimation can be used for variance estimation and is outlined below:
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(1.a) Compute an consistent variance estimate for Sn(θ0(τ), τ) given by

Σ̂(τ, τ) =

n−1

n∑
i=1

Z⊗2
i

(
I[log(Xi) ≤ ZT

i θ̂(τ)), δi = 1]

Ĝ(Xi)
− τ

)2

−n−1

n∑
i=1

I(δi = 0)

(
n∑
j=1

ZjI(Xj ≥ Xi)I[log(Xj) ≤ ZT

i θ̂(τ), δj = 1]{Ĝ(Xj)}−1

/
n∑
j=1

I(Xj ≥ Xi)

)⊗2

,

where for a vector a, a⊗2 = aaT.

(1.b) Find a symmetric and nonsingular matrix En(τ) ≡ {en,0(τ), en,1(τ)} such that

{En(τ)}2 = Σ̂(τ, τ).

(1.c) Calculate Dn(τ) = {S−1
n {en,0(τ), τ} − θ̂(τ),S−1

n {en,1(τ), τ} − θ̂(τ)}, where

S−1
n {e(τ), τ} is the solution to the perturbed estimating equation Sn(b, τ) =

e(τ).

(1.d) Obtain an estimate for the asymptotic variance of
√
n{θ̂(τ)−θ0(τ)} as Vn(τ) ≡

nD⊗2
n (τ).

HereEn(τ) can be computed with the eigenvalue eigenvector decomposition of Σ̂(τ, τ)

using the R function eigen(). As another important remark, the above procedure

ensures that the perturbation terms, en,j(τ), j = 1, 2, have the desired asymptotic

order. As a result, this procedure remains valid when en,j(τ) in step (1.c) is replaced

by u ·en,j(τ) for some constant u. Based on our numerical experiences, incorporating

some constant u can help stabilize variance estimation when sample size is small or τ

is close to 0 or 1. Variance estimation based on the above procedure is found to have

satisfactory finite sample performance based on some unreported simulation studies.
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2.1.3 The Proposed Test Statistics and Theoretical Proper-

ties

Express θ̂(τ) ≡ (β̂(0)(τ), β̂(1)(τ))′ and let σ̂
(1)
n (τ) denote the square root of the second

diagonal element of Vn(τ), which corresponds to the variance estimate for
√
nβ̂(1)(τ)

under H∗0 . We propose to construct two “omnibus” test statistics based on β̂(1)(τ)

and σ̂
(1)
n (τ):

T̂ (1)
sup = sup

τ∈[τL,τU ]

∣∣∣∣∣
√
nβ̂(1)(τ)

σ̂
(1)
n (τ)

∣∣∣∣∣ ,
and

T̂
(1)
inte =

∫ τU

τL

∣∣∣∣∣
√
nβ̂(1)(τ)

σ̂
(1)
n (τ)

∣∣∣∣∣
2

dτ.

These two test statistics mimic the classic Kolmogorov-Smirnov (K-S) test statistic

and Cramér-Von-Mises (C-V) test statistic for two-sample distribution comparisons

(Darling, 1957). Under model (2.1), T̂
(1)
sup and T̂

(1)
inte capture the maximum and average

magnitude of the covariate effect over τ ∈ [τL, τU ] respectively. By this design, both

test statistics are sensitive to any type of departures from the null hypothesis H0 and

can be used to construct powerful tests for H0.

Without assuming model (2.1), we can also show that T̂
(1)
sup and T̂

(1)
inte provide valid

tests for H∗0 and have power approaching one under a general class of alternative

hypotheses as specified in Theorem 2.2. The key insight is that even when model

(2.1) does not hold, θ̂(τ) may still converge in probability to a deterministic function

θ̃(τ) ≡ (β̃(0)(τ), β̃(1)(τ))′ that is the solution to µ(b, τ) ≡ E[Z{I(log T ≤ ZTb) −

τ}] = 0. It is easy to see that θ̃(τ) = θ0(τ) under model (2.1). By Lemma A2.1,

it follows that under H∗0 , β̃(1)(τ) = 0 for τ ∈ [τL, τU ]. As detailed in Theorems

A2.1 and A2.2 in Section 2.5.1, under certain regularity conditions, we further have

limn→∞ supτ∈[τL,τU ] ||θ̂(τ) − θ̃(τ)|| →p 0, and
√
n{θ̂(τ) − θ̃(τ)} converge weakly to

a mean zero Gaussian process for τ ∈ [τL, τU ] with covariance function Φ̃(τ ′, τ) =



22

E{ξ̃1(τ ′)ξ̃1(τ)T}, where ξ̃i(τ) (i = 1, . . . , n) are defined as

ξ̃i(τ) ≡ {ξ̃(0)
i (τ), ξ̃

(1)
i (τ)}T

= {A(θ̃(τ))}−1

{
Zi(

I(log(Xi) ≤ ZT
i θ̃(τ), δi = 1)

G(Xi)
− τ)−

∫ ∞
0

w{θ̃(τ), s}y(s)−1dMG
i (s)

}
.

A useful by-product from the proof of Theorem A2.2 is that

n1/2{θ̂(τ)− θ̃(τ)} ≈ n−1/2

n∑
i=1

ξ̃i(τ), (2.3)

We can prove these results by adapting the arguments of Peng and Fine (2009) which

utilize model assumption (2.1) only through using its implication µ(θ0, τ) = 0 for

τ ∈ [τL, τU ]. This provides the critical justification for why β̂(1)(τ) can be used to test

H∗0 even when model (2.1) does not hold. The sample-based procedure reviewed in

Section 2.1.2 is still applicable to estimate the asymptotic covariance matrix Φ̃(τ ′, τ).

In Theorems 2.1 and 2.2, we establish useful asymptotic properties of T̂
(1)
sup and

T̂
(1)
inte without assuming model (2.1). Specifically, in Theorem 2.1, we provide the limit

distributions of the proposed test statistics under the null hypothesis H∗0 :

Theorem 2.1. Assuming the regularity conditions 2.1–2.5 in Section 2.5 hold, under

the null hypothesis H0 or H∗0 , we have

T̂ (1)
sup = sup

τ∈[τL,τU ]

∣∣∣∣∣n1/2β̂(1)(τ)

σ̂
(1)
n (τ)

∣∣∣∣∣→d sup{|X (1)(τ)|, τ ∈ [τL, τU ]}

T̂
(1)
inte =

∫ τU

τL

∣∣∣∣∣n1/2β̂(1)(τ)

σ̂
(1)
n (τ)

∣∣∣∣∣
2

dτ →d

∫ τU

τL

{X (1)(τ)}2dτ,

where X (1)(τ) is a mean zero Gaussian process defined in Section 2.5.3.

We also investigate the asymptotic behavior of the proposed test statistics under

a general class of alternative hypotheses. The findings are stated in Theorem 2.2.
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Theorem 2.2. Assuming the regularity conditions 2.1–2.5 in Section 2.5 hold,

(A) T̂
(1)
sup is consistent against the alternative hypothesis

Ha,1 : sup
τ∈[τL,τU ]

∣∣∣β̃(1)(τ)
∣∣∣ > 0.

(B) T̂
(1)
inte is consistent against the alternative hypothesis:

Ha,2 :

∫ τU

τL

{β̃(1)(τ)}2dτ > 0.

The results of Theorem 2.2 indicate that the test statistics have power approaching

to 1 (as n goes to∞) under alternative cases subject to very mild constraints. Given

the smoothness of β̃(1)(·), a general scenario that ensures the consistency of both T̂
(1)
sup

and T̂
(1)
inte can be described as

H̃a: There exists an interval [τ1, τ2] ⊆ [τL, τU ] such that |β̃(1)
0 (τ)| > 0 for τ ∈

[τ1, τ2].

This suggests that the proposed tests are powerful to identify a significant prognos-

tic factor even when it only influences a segment of the outcome distribution, not

necessarily the whole outcome distribution. This feature is conceptually appealing

for handling a dynamic covariate effect, which may not have similar effect strength

across different quantiles. The detailed proofs for Theorems 2.1 and 2.2 can be found

in Section 2.5.3.

2.1.4 The Proposed Resampling Procedure to Obtain p val-

ues

The results in Theorem 2.1 suggest that T̂
(1)
sup and T̂

(1)
inte, like the classic K-S test

statistic and C-V test statistic, have complex, non-standard limit null distributions.
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This motivates us to develop a resampling-based procedure to approximate their limit

null distributions and obtain the corresponding p values for testing H∗0 .

Our key strategy is to approximate the distribution of n1/2{β̂(1)(τ) − β̃
(1)
0 (τ)},

which reduces to n1/2β̂(1)(τ) under H0, through perturbing the influence function

ξ̃
(1)
i (τ), which is the second component of ξ̃i(τ). Similarly ideas were used by other au-

thors, for example, Lin et al. (1993) and Li and Peng (2014). The core justification of

our proposal is provided by equation (2.3), which suggests that n−1/2
∑n

i=1 ξ̃
(1)
i (τ)ιi/σ̂

(1)
n (τ)

may be used to approximate
√
nβ̂(1)(τ)/σ̂

(1)
n (τ), where {ιi}ni=1 are i.i.d. standard nor-

mal variates.

Specifically, we take the following steps:

(2.a) Generate B independent sets of {ιbi}ni=1, where {ιbi}ni=1 are independent random

variables from a standard normal distribution and b = 1, 2, . . . , B.

(2.b) Compute the estimates for the influence function ξ̃
(1)
i (τ) as the second compo-

nent of

ξ̂i(τ) = {Â(θ̂(τ))}−1

{
Zi(

I[log(Xi) ≤ ZT
i θ̂(τ)), δi = 1]

Ĝ(Xi)
− τ)

−I(δi = 0)

∑n
j=1ZjI(Xj ≥ Xi)I[log(Xj) ≤ ZT

j θ̂(τ), δj = 1]{Ĝ(Xj)}−1∑n
j=1 I(Xj ≥ Xi)

}
,

where Â{θ̂(τ)}−1 = n1/2Dn(τ)En(τ)−1.

(2.c) For b = 1, . . . , B, calculate

T̂
(1)
sup,b = sup

τ∈[τL,τU ]

∣∣∣∣∣n−1/2
∑n

i=1 ξ̂
(1)
i (τ)ιbi

σ̂
(1)
n (τ)

∣∣∣∣∣ and T̂
(1)
inte,b =

∫ τU

τL

∣∣∣∣∣n−1/2
∑n

i=1 ξ̂
(1)
i (τ)ιbi

σ̂
(1)
n (τ)

∣∣∣∣∣
2

dτ,

where ξ̂
(1)
i (τ) is the second component of ξ̂i(τ).
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(2.d) The p values based on T̂
(1)
sup and T̂

(1)
inte are calculated respectively as

p(1)
sup =

B∑
b=1

I(T̂
(1)
sup,b > T̂ (1)

sup)/B and p
(1)
inte =

B∑
b=1

I(T̂
(1)
inte,b > T̂

(1)
inte)/B.

The resampling procedure presented above is easy to implement without involving

smoothing. The rigorous theoretical justification for the presented resampling proce-

dure is provided in Section 2.5.4.

2.1.5 Some Computational Considerations

Note that β̂(1)(τ) and σ̂
(1)
n (τ) are piecewise constant; thus an exact calculation of

the supremum or integration involved in T̂
(1)
sup and T̂

(1)
inte is possible. Alternatively, we

may follow the recommendation of Zheng et al. (2015) to compute T̂
(1)
sup and T̂

(1)
inte

based on a simpler piecewise-constant approximation of R̂(τ) ≡ β̂(1)(τ)/σ̂
(1)
n (τ) on a

pre-determined fine τ -grid, G ≡ τL = τ1 < τ2 < . . . < τN∗ = τU , with the grid size

max1≤l≤N∗−1(τl+1 − τl) = o(n−1/2). In this case, the proposed test statistics can be

calculated as

T̂ (1)
sup =

√
nmax{R̂(τl) : 1 ≤ l ≤ N∗}, T̂

(1)
inte =

N∗−1∑
l=1

n{R̂(τl)}2(τl+1 − τl). (2.4)

When n is not large, the sample-based variance estimation (i.e. the computation

of σ̂
(1)
n (τ)) sometimes is not stable. Our remedy is to replace the en,j(τ) in step (1.c)

(see Section 2.1.2) with u · en,j(τ), where u is a pre-specified constant. We develop

the following algorithm to determine a good choice of the adjusting constant u among

a set of candidate values, U = {1, 2, . . . , U}.

(3.a) For each u ∈ U , calculate R̂(τ ;u) ≡ β̂(1)(τ)/σ̂
(1)
n (τ ;u) for τ ∈ G, where σ̂

(1)
n (τ ;u)

is the σ̂
(1)
n (τ) computed with the adjusting constant u.

(3.b) For each u ∈ U , calculate R̂∗(u) = maxτ∈G R̂(τ ;u) and R̂†(u) = medianτ∈GR̂(τ ;u).
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(3.c) For each u ∈ U , calculate R̃(u) = maxτ∈G max{Vn(τ ;u)}−minτ∈G min{Vn(τ ;u)},

where Vn(τ ;u) is Vn(τ) computed with the adjusting constant u. Here, for a

matrixA, max(A) (or min(A)) denotes the largest (or the smallest) component

of the matrix A.

(3.d) Assign a large positive value to A[0] and B[0], say 105. Set k = 1 and u[0] = U+1.

(i) If R̂∗(k)−R̂†(k) < A[k−1] and R̃(k) < B[k−1], then let A[k] = R̂∗(k)−R̂†(k),

B[k] = R̃(k), and u[k] = k. Otherwise, let A[k] = A[k−1], B[k] = B[k−1] and

u[k] = u[k−1].

(ii) Increase k by 1 and go back to (i) until k > U .

(3.e) If u[U ] < U + 1, then choose u as u[U ]. Otherwise, no appropriate u can be

selected from U .

By this algorithm, we provide an empirical strategy to select u based on two esti-

mation instability measures: (A) R̂∗(k)− R̂†(k), which reflects the spread of R̂(τ) ≡

β̂(1)(τ)/σ̂
(1)
n (τ) over τ given u = k; (B) R̃(k), which measures the maximum fluctu-

ation of the estimated variance matrices across τ given u = k. It is clear that both

measures would be large when unstable variance estimation occurs. Our algorithm

first compares them with pre-specified initial values, A[0] and B[0], to rule out the oc-

currence of obviously outlying estimates of R̂(τ) or σ̂
(1)
n (τ). Once these two measures

are found to meet the stability criteria set by the initial values with some u ∈ U , the

algorithm will proceed to check if other u’s can yield smaller values of the instability

measures. The output from this algorithm is either the value of u that produces the

smallest instability measures, or an error message indicating that none of the con-

stants in U can lead to stable estimation required by the proposed testing procedure.

Based on our numerical experiences, setting U = {1, 2, . . . , 6}, which corresponds to

U = 6, works well for small sample sizes such as 200 or 400. In a rare case where

this algorithm fails to identify an appropriate u, we recommend adaptively increasing
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the value of U until an appropriate u can be identified. Our extensive numerical

experiences suggest that incorporating the adjusting constant u selected by this al-

gorithm results in good and stable numerical performance of the proposed tests. The

algorithm can be easily generalized to allow U to include non-integer values.

2.2 Numerical Studies

We conduct extensive simulation studies to investigate the finite-sample performance

of the proposed resampling-based testing procedures. To simulate randomly cen-

sored data, we consider six setups where T and Z̃ follow different relationships. In

all setups, we generate Z̃ from Uniform(0, 1) and generate censoring time C from

Uniform(UL, UU), where UL and UU are properly specified to produce 15% or 30%

censoring. Let Φ(·) denote the cumulative distribution function of the standard nor-

mal distribution. The six simulation set-ups are described as follows.

(I) Setup I: Generate T such that Qτ{log(T )} = Φ−1(τ). Set (UL, UU) = (2, 3.8) to

produce 15% censoring, and set (UL, UU) = (1, 2.5) to produce 30% censoring.

(II) Setup II: Generate T such that Qτ{log(T )} = 0.2X + Φ−1(τ). Set (UL, UU) =

(2.5, 3.9) to produce 15% censoring and set (UL, UU) = (1.2, 2.8) to produce

30% censoring.

(III) Setup III: Generate T such that Qτ{log(T )} = 0.5X + Φ−1(τ). Set (UL, UU) =

(2.7, 4.9) to produce 15% censoring, and set (UL, UU) = (1.5, 3) to produce 30%

censoring.

(IV) Setup IV: Generate T such that Qτ{log(T )} = l4(τ)X + Φ−1(τ), where l4(τ) is

as plotted in Figure 2.1. Set (UL, UU) = (2, 3.9) to produce 15% censoring, and

set (UL, UU) = (1, 2.5) to produce 30% censoring.
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(V) Setup V: Generate T such that Qτ{log(T )} = l5(τ)X + Φ−1(τ), where l5(τ) is

as plotted in Figure 2.1. Set (UL, UU) = (5.2, 6.5) to produce 15% censoring,

and set (UL, UU) = (1.5, 3.5) to produce 30% censoring.

(VI) Setup VI: Generate T such that Qτ{log(T )} = l6(τ)X + Φ−1(τ), where l6(τ) is

as plotted in Figure 2.1. Set (UL, UU) = (3.5, 5.5) to produce 15% censoring,

and set (UL, UU) = (1.1, 3.5) to produce 30% censoring.

Under all setups, model (1) holds for τ ∈ (0, 1) and thus for τ ∈ [0.1, 0.6], a pre-

specified τ -interval of interest [τL, τU ]. In Figure 2.1, we plot the true coefficient

function β
(1)
0 (τ) for each setup. It is easy to see that setup (I) represents a null case,

where Z̃ has no effect on any quantile of T . Setup (II) and (III) are two setups where

Z̃ has nonzero constant effects over all τ ∈ [0.1, 0.6]. The constant effect in setup

(II) has a magnitude of 0.2, which is smaller than that in setup (III), which is 0.5.

In setups (IV), (V), and (VII), Z̃ has a dynamic effect varying across different τ ’s.

More specifically, Z̃ has a partial effect over the τ -interval [0.1, 0.49] in setup (IV).

In setup (V), the magnitude of Z̃’s effect is symmetric around 0.5, while the sign of

the effect is opposite for τ < 0.5 and for τ > 0.5, and the effect equals 0 at τ = 0.5.

In setup (VI), the τ -varying effect pattern of Z̃ is similar to that in setup (V) except

that there is a small interval around 0.5 where Z̃ has no effect in setup(VI).

We compare the proposed method with the Wald test based on the Cox PH model,

denoted by “CPH (Wald)”, as well as the Wald test based on the locally concerned

quantile regression that focuses on τ = 0.4, 0.5, or 0.6, denoted by “CQR (Wald)”. To

implement CQR (Wald), we adopt Peng and Huang (2008)’s estimates with variance

estimated by bootstrapping. The resampling size used for both CQR (Wald) and

the proposed testing procedures is set as 2500. In the sequel, we shall refer the

testing procedures based on T̂
(1)
sup and T̂

(1)
inte respectively to as GST and GIT. For all

the methods, we consider sample sizes 200, 400, and 800. We set U = {1, . . . , 6} when

implementing the algorithm for selecting the constant u.
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In Table 2.1, we report the empirical rejection rates based on 1000 simulations.

The results in setup I show that the proposed GIT, and the existing tests, CQR

(Wald) and CPH (Wald), have empirical sizes quite close to the nominal level 0.05.

The proposed GST yields relatively larger empirical type I errors as compared to the

other tests. The empirical size of GST equals 0.1 when the sample size is 200 but

decreases to 0.077 when the sample size increases to 800. Such an anti-conservative

behavior of GST is not surprising because the K-S type test statistic is defined based

on the largest value of β̂(1)(τ)/σ̂
(1)
n (τ) over τ ∈ [0.1, 0.6], which is more sensitive to a

possible outlying value of σ̂
(1)
n (τ) at some τ .

When the quantile effect of Z̃ is constant over τ (i.e. setups (II) and (III)), we

note that in setup (II) where the effect size (i.e. magnitude of the constant effect) is

relatively small, CPH (Wald) has lower empirical power as compared to the proposed

GIT and GST, and the power improvement associated with the proposed GIT and

GST is more evident with the smaller sample size 200. In setup (III), where the

effect size is larger, CPH (Wald) still generally has lower empirical power compared

to the proposed tests but its empirical power becomes comparable to that of GIT

when the sample size is large (i.e. n = 800). These observations suggest that even

in the trivial constant effect cases, the proposed tests can outperform the traditional

Cox regression based tests in data scenarios with small effect sizes or sample sizes. In

both setups (II) and (III), the locally concerned CQR (Wald) consistently yields lower

empirical power than the proposed globally concerned GIT and GST. This reflects the

power benefit resulted from integrating information on covariate effects on different

quantiles as in GST and GIT, rather than focusing on the covariate effect on a single

quantile as in CQR (Wald).

In setups (IV), (V), and (VI), the effect of Z̃ is τ -varying, reflecting its dynamic

association with T . In these cases, CPH (Wald), which assumes a constant covariate

effect, can have poor power to detect the dynamic effect of Z̃ (e.g. 8.3% empirical
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power in setup (VI) with n = 800 in the presence of 30% censoring), while the

proposed GST and GIT may yield much higher power (e.g. >99% power in setup

(VI) with n = 800 in the presence of 30% censoring). The locally concerned CQR

(Wald) can have higher power than CPH (Wald) when the targeted quantile level is

within the τ -region where β
(1)
0 (τ) is non-zero. When the targeted quantile level is

outside the τ -region with non-zero effect, such as τ = 0.6 in setup (IV) or τ = 0.5

in setups (V) and (VI), the CQR (Wald) has even poorer power compared to CPH

(Wald). This is well expected because these cases may serve as the null cases for

the locally concerned CQR (Wald). This confirms that CQR (Wald) is inadequate to

capture the meaningful effect of Z̃ that is manifested at non-targeted quantiles.

We compare the simulation results across settings that are only differed by the

censoring distribution. For each relationship between Z̃ and T specified by setups

(I)-(VI), we consider three different censoring distributions to yield 0%, 15%, and 30%

censoring. The results for settings with 15% and 30% censoring are presented in Table

2.1 and the results based on uncensored data are presented in Table A2.1 in Section

2.5.5. From our comparisons, we find that quantile regression based tests, including

GST, GIT and CQR (Wald), demonstrate small variations in empirical powers as the

censoring rate (or distribution) changes. In cases with a constant covariate effect, the

Cox regression based test, CPH (Wald), also has similar performance among settings

with different censoring rates. However, in setup (V), where the covariate effect is not

constant over τ , CPH (Wald) has reasonably good power when there is no censoring or

only 15% censoring, but its performance deteriorates considerably when the censoring

rate is increased to 30%. We have a similar observation for CPH (Wald) in setup

(VI). A reasonable interpretation of these observations is that the capacity to detect

a dynamic effect can be weakened by incorrectly assuming a constant proportional

hazard effect and can be further attenuated by the missing data from censoring.

We also investigate whether the proposed tests are sensitive to the choice of U .
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We conduct additional simulation studies with U set as {1, . . . , 3}, {1, . . . , 6}, and

{1, . . . , 12} for the six set-ups with 15% censoring. The results are summarized in

Table A2.2 in Section 2.5. From this table, we note that GIT is quite robust to the

change in U , while GST demonstrates more variations across different choices of U .

Another observation is that GIT becomes less sensitive to the change in U when the

sample size becomes larger. A possible explanation for these results is similar to that

for the observed anti-conservative behavior of GST. That is, GST, by its construction,

is sensitive to any outlying value of σ̂
(1)
n (τ) with τ ∈ [τL, τU ], which is more likely to

occur when the sample size is not large.

Aligning with the definitions of the proposed tests, the simulation results suggest

that GST, as compared to GIT, is more sensitive to detect a departure from the null

hypothesis, yielding higher power. This observation is also consistent with the anti-

conservative behavior of GST observed in the null cases, which is reflected by empirical

sizes notably greater than 0.05. With a smaller sample size, such as n = 200, GST

can produce quite elevated type I errors, while GIT yields more reasonable empirical

sizes. Therefore, in practice, one may need to exercise caution for applying GST to a

small dataset, for which we recommend using GIT instead.

In summary, our simulation results demonstrate the proposed testing procedures

have robust satisfactory performance for detecting a covariate of either a constant or

dynamic effect. The new tests tend to exhibit greater advantages over benchmark ap-

proaches when the covariate presents a dynamic effect, or the covariate has a constant

effect but of a small magnitude.

2.3 Real Example with Dialysis Data

To illustrate the utility of the proposed testing framework, we apply our method to

investigate the prognostic factors for dialysis survival based on a dataset collected



32

Table 2.1: Empirical rejection rate based on 1000 simulations.

Set-up n
Proposed Test CQR (Wald)

CPH (Wald)
GST GIT τ = 0.4 τ = 0.5 τ = 0.6

15% censoring
I 200 0.100 0.073 0.066 0.062 0.057 0.049

400 0.091 0.078 0.072 0.072 0.066 0.051
800 0.077 0.055 0.064 0.063 0.059 0.061

II 200 0.234 0.167 0.117 0.131 0.117 0.115
400 0.275 0.214 0.155 0.153 0.150 0.178
800 0.410 0.362 0.277 0.265 0.247 0.322

III 200 0.566 0.485 0.359 0.401 0.360 0.450
400 0.786 0.772 0.585 0.592 0.576 0.722
800 0.957 0.957 0.873 0.887 0.865 0.960

IV 200 0.377 0.254 0.097 0.060 0.053 0.063
400 0.652 0.478 0.116 0.065 0.063 0.067
800 0.939 0.816 0.148 0.047 0.058 0.090

V 200 0.653 0.464 0.143 0.070 0.118 0.260
400 0.937 0.827 0.208 0.071 0.153 0.458
800 0.999 0.993 0.291 0.053 0.279 0.757

VI 200 0.731 0.552 0.149 0.062 0.086 0.125
400 0.971 0.896 0.198 0.055 0.095 0.201
800 1.000 0.995 0.260 0.033 0.142 0.364

30% censoring
I 200 0.171 0.095 0.062 0.060 0.048 0.047

400 0.110 0.085 0.069 0.074 0.065 0.056
800 0.066 0.052 0.063 0.059 0.050 0.038

II 200 0.302 0.186 0.115 0.122 0.105 0.122
400 0.305 0.221 0.152 0.156 0.138 0.188
800 0.411 0.359 0.277 0.259 0.245 0.298

III 200 0.681 0.539 0.360 0.393 0.322 0.432
400 0.828 0.791 0.585 0.590 0.534 0.703
800 0.959 0.957 0.874 0.877 0.855 0.952

IV 200 0.440 0.271 0.101 0.061 0.044 0.056
400 0.668 0.480 0.115 0.065 0.062 0.085
800 0.947 0.804 0.150 0.048 0.046 0.089

V 200 0.799 0.573 0.135 0.069 0.103 0.092
400 0.960 0.846 0.206 0.068 0.135 0.140
800 1.000 0.993 0.292 0.054 0.282 0.211

VI 200 0.803 0.587 0.148 0.063 0.077 0.053
400 0.978 0.903 0.199 0.052 0.082 0.064
800 1.000 0.995 0.263 0.033 0.141 0.083
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Figure 2.1: The true coefficient function for all simulation set-ups.

from a cohort of 191 incident dialysis patients (Kutner et al., 2002). In this dataset,

time to death is censored in about 35% of dialysis patients due to either renal trans-

plantation or end of the study as of December 31, 2005. In our analysis, we consider

six potential prognostic factors (or covariates), which include age in years (AGE),

indicator of reporting fish consumption over the first year of dialysis (FISHH), the

indicator for baseline HD dialysis modality (BHDPD); whether the patient has severe

symptoms of restless leg syndrome or not (BLEGS); whether or not education level

is equal or higher than college (HIEDU); and the indicator of being in the black race

group (BLACK). In our analyses, we standardize AGE by subtracting the sample

mean and then dividing the resulting quantity by the sample standard deviation.

As a part of exploratory analyses, we check the proportional hazard assumption

for each covariate based on Grambsch and Therneau (1994)’s method, using the R

function cox.zph() in the R package survival. The p-values corresponding to AGE,

FISHH, BHDPD, BLEGS, HIEDU and BLACK are 0.43, 0.63, 0.55, 0.0006, 0.047 and
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0.0004, respectively. These results suggest that the proportional hazard assumption

may be violated for BLEGS, HIEDU and BLACK.

We fit model (2.1) for time to death (i.e. T ) with each covariate separately. We

set [τL, τU ] as [0.1, 0.6] for FISHH, BLGES, HIEDU, and BLACK, but set [τL, τU ]

as [0.1, 0.54] and [0.1, 0.49] respectively for AGE and BHDPD. This is because the

estimation of β
(1)
0 (τ) based on Peng and Fine (2009) does not converge for some

τ ’s larger than 0.54 and 0.49 when Z̃ is AGE or BHDPD. Figure 2.2 presents the

estimated coefficients with the pointwise 95% confidence interval across τ ∈ [τL, τU ].

It is suggested by Figure 2.2 that AGE and BLACK have strong and persistent

effects across all or most quantiles of time to death, implying an apparent survival

advantage for younger or black patients. For each of the rest covariates, FISHH,

BHDPD, BLEGS, or HIEDU, we note a partial effect pattern. For example, FISHH

and BLEGS may only impact some lower quantiles of the survival time. BHDPD

and HIEDU may only have quantile effects in the τ -intervals, [0.15, 0.3] and [0.3, 0.4],

respectively. These observations suggest the presence of dynamic covariate effects as

well as the need to appropriately accommodate such dynamic covariate effects.

To evaluate each potential prognostic factor considered, we apply the proposed

testing procedures, GST and GIT, along with the benchmark methods, CPH (Wald)

and CQR (Wald), as described in Section 2.2. Table 2.2 summarizes the p values

obtained from different methods for evaluating each covariate. We note that all

tests consistently suggest a strong effect of AGE or BLACK on the survival time.

The locally concerned quantile regression tests, CQR (Wald), reveal τ -varying effects

of FISHH, BHDPD, BLEGS, and HIEDU. For example, BLEGS may significantly

influence the 10th and 20th quantiles of the survival time but not the 30th, 40th, 50th,

60th of quantiles. HIEDU may also have a partial effect, influencing some quantiles,

such as the 30th and 40th quantiles, but not the other quantiles. The classic Cox

regression based test, CPH (Wald), however, fails to capture the partial effects of
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Table 2.2: A summary of p-values for each covariates with different methods.

Covariate
Proposed Test CQR (Wald)

CPH (Wald)
GST GIT τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6

AGE <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
FISHH <0.001 0.018 0.037 0.055 0.036 0.214 0.473 0.316 0.026
BHDPD <0.001 0.005 0.090 0.021 0.152 0.228 0.229 0.030 0.008
BLEGS <0.001 0.001 <0.001 0.001 0.062 0.082 0.091 0.507 0.349
HIEDU 0.013 0.093 0.596 0.137 0.003 0.032 0.068 0.241 0.245
BLACK <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

BLEGS and HIEDU. The p values for testing the effect of BLEGS and HIEDU based

on CPH (Wald) are 0.35 and 0.25 respectively. This is possibly caused by imposing a

restrictive static view on how a covariate can influence the survival time. In contrast,

the proposed GIT and GST, through simultaneously examining covariate effects at

quantile levels [τL, τU ], are able to detect the partial effect of BLEGS, with small p

values ≤ 0.001 and to suggest a trend toward the association between HIEDU and

the survival time, with marginal p values 0.01 and 0.09. The proposed GIT and GST

also provide some evidence for the dynamic prognostic value of FISHH and BHDPD

for dialysis survival. For example, as suggested by CQR (Wald), fish consumption

in the first year may benefit dialysis patients with shorter survival time but may

manifest little effect on the long-term survival. In general, our analysis results are

consistent with the analyses of Peng and Huang (2008) based on multivariate censored

quantile regression model. This example demonstrates the good practical utility of

the proposed methods when varying covariate effects are present.

2.4 Remarks

In this chapter we develop a new testing framework for evaluating a survival prog-

nostic factor. The main thrust of the new framework lies in its flexibility of accom-

modating a dynamic covariate effect, which is achieved through adapting the spirit

of globally concerned quantile regression. Our testing procedures are conveniently

developed based on existing results on fitting a working quantile regression model
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Figure 2.2: The estimated coefficient with the 95% confidence interval for the covari-
ates based on the censored quantile regression model on the dialysis data.



37

with randomly censored data. It is important to note that the validity of the testing

procedures does not require that the working model is the true model. Moreover, the

proposed methods can be readily extended to handle more complex survival outcomes,

such as time to event subject to competing risks.

Also, we would like to point out that QT (τ |Z̃) = QT (τ) for τ ∈ (0, 1) implies

the statistical independence between T and Z̃. Nevertheless, in this chapter, we

confine our attention to H∗0 with τU less than 1. This is because right censoring

typically precludes the information on the upper tail of the distribution of T , and

thus QT (τ) or QT (τ |Z̃) can become non-identifiable as τ approaches 1. The null

hypothesis H∗0 entails a weaker version of the independence between T and Z̃ that

can be better assessed with right censored data. Rejecting H∗0 can provide evidence

for the dependence between T and Z̃, while accepting H∗0 may not sufficiently indicate

the independence between T and Z̃.

Another commendable extension is to generalize the current null hypothesis and

testing procedures to permit evaluating multiple prognostic factors simultaneously.

This chapter also lays a key foundation for developing a nonparametric screening

method for helping identify useful prognostic factors among a large number of candi-

dates. These extensions will be reported in the next chapter.

2.5 Appendix

2.5.1 Lemma A2.1 and the Proof

Lemma A2.1. Suppose the conditional distribution function of T given Z̃ = z̃ is

continuous and strictly monotone for all possible values of z̃. Then QT (τ |Z̃) = QT (τ)

for τ ∈ [τL, τU ] is equivalent to model (2.1) holds with ∆ = [τL, τU ] and β
(1)
0 (τ) = 0

for τ ∈ [τL, τU ].

Proof of Lemma A2.1. Suppose we have QT (τ |Z̃) = QT (τ) for τ ∈ [τL, τU ]. It
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is clear that for τ ∈ [τL, τU ], we can write QT (τ |Z̃) = exp{ZTθ0(τ)} with θ0(τ) =

(logQT (τ), 0)T. This means that model (2.1) holds with ∆ = [τL, τU ] and β
(1)
0 (τ) = 0

for τ ∈ [τL, τU ].

Suppose model (2.1) holds with ∆ = [τL, τU ] and β
(1)
0 (τ) = 0 for τ ∈ [τL, τU ].

This means, QT (τ |Z̃) = exp{β(0)
0 (τ)} for τ ∈ [τL, τU ]. Given that the conditional

distribution function of T given Z̃ is continuous and strictly monotone, it follows from

the definition of QT (τ |Z̃) that Pr(T ≤ exp{β(0)
0 (τ)}|Z̃) = τ for τ ∈ [τL, τU ]. Taking

expectation on both sides of this equality with respect to Z̃, we then get Pr(T ≤

exp{β(0)
0 (τ)} = τ for τ ∈ [τL, τU ]. Given the continuity and strict monotonicity of the

distribution function of T , which is implied by the continuity and strict monotonicity

of the conditional distribution function of T given Z̃, this implies that exp{β(0)
0 (τ)} =

QT (τ). Thus, QT (τ |Z̃) = QT (τ) for τ ∈ [τL, τU ]. This completes the proof of Lemma

A2.1.

2.5.2 Asymptotic Properties Without Assuming the Cen-

sored Quantile Regression Model

We assume the following regularity conditions:

Condition 2.1. There exist a constant v such that P (C = v) > 0 and P (C > v) = 0.

Condition 2.2. Z̃ is uniformly bounded, i.e. supi |Z̃i| <∞.

Condition 2.3. (i) θ̃(τ) is Lipschitz continuous for τ ∈ [τL, τU ]; (ii) f(y|z) is

bounded above uniformly in y and z, where f(y|z) denotes the conditional density

of X given Z = z.

Condition 2.4. For some ρ0 > 0 and c0 > 0,infb∈B(ρ0) eigminA(b) ≥ c0, where

B(ρ) = {b ∈ R2 : infτ∈[τL,τU ] ||b − θ̃(τ)|| ≤ ρ} and A(b) = E[ZZTf(ZTb|Z)]. Here

|| · || is the Euclidean norm and eigminA(b) represents the minimal eigenvalue of

A(b).
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Condition 2.1 is adopted to simplify the theoretical arguments to ensure that

Ĝ(·) is consistent for G(·). This condition is usually satisfied in studies subject to

administrative censoring. Condition 2.2 imposes covariate boundedness. Condition

2.3 assumes that the limit coefficient process is smooth and the conditional density

distribution is bounded and smooth. Condition 2.4 requires that the asymptotic limit

of Un(b, τ) is strictly convex in a neighborhood of θ̃(τ) for τ ∈ [τL, τU ], implying the

uniqueness of the solution to µ(b, τ) ≡ E{ZI(log T ≤ ZTb)− τ)} = 0. This plays a

critical role in establishing the uniform convergence of θ̂(τ) to θ̃(τ).

Theorem A2.1. Under regularity conditions 2.1–2.4, we have

lim
n→∞

sup
τ∈[τL,τU ]

||θ̂(τ)− θ̃(τ)|| →p 0.

Theorem A2.2. Under regularity conditions 2.1–2.4, we have
√
n(θ̂(τ)− θ̃(τ)) con-

verge weakly to a mean zero Gaussian process for τ ∈ [τL, τU ] with covariance

Φ̃(τ ′, τ) = E{ξ̃1(τ ′)ξ̃1(τ)T}.

The proofs of Theorems A2.1 and A2.2 closely resemble the proofs in Peng and

Fine (2009) and thus are omitted.

2.5.3 Proofs of Theorem 2.1 and 2.2

We assume one additional regularity condition:

Condition 2.5. infτ∈[τL,τU ] σ
(1)(τ) > 0, where {σ(1)(τ)}2 is the second diagonal ele-

ment of Φ̃(τ, τ).

Proof of Theorem 2.1

Following the lines of Peng and Fine (2009), we can show that the sample-based

variance estimation procedure presented in Section 2.1.2 provides consistent variance
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estimation, which implies supτ∈(τL,τU ] |σ̂
(1)
n (τ)− σ(1)(τ)| →p 0.

Note that under the null hypothesis H∗0 , we have β̃(1)(τ) = 0 and consequently,

n1/2R̂(τ) =
n1/2{β̂(1)(τ)− β̃(1)(τ)}

σ̂
(1)
n (τ)

=
n1/2{β̂(τ)− β̃(1)(τ)}

σ(1)(τ)

(
σ(1)(τ)

σ̂
(1)
n (τ)

− 1

)
+
n1/2{β̂(1)(τ)− β̃(1)(τ)}

σ(1)(τ)
.(2.5)

By Theorem A2.2, n1/2{β̂(1)(τ)− β̃(1)(τ)}/σ(1)(τ) converges weakly to a mean zero

Gaussian process X (1)(τ) with covariance process

Φ̃(1)(τ, τ ′) =
Φ̃(2,2)(τ, τ ′)

σ(1)(τ)σ(1)(τ ′)
,

where Φ̃(2,2)(τ, τ ′) denotes the element in the second row and the second column of

Φ̃(τ, τ ′). In addition, condition 2.5 and supτ∈(τL,τU ] |σ̂
(1)
n (τ) − σ(1)(τ)| →p 0 imply

supτ∈(τL,τU ]

∣∣∣σ(1)(τ)

σ̂
(1)
n (τ)

− 1
∣∣∣→p 0. Applying the result of Theorem A2.2 and the Slutsky’s

Theorem (line 11 of Example 1.4.7 in Boucheron et al. (2013)) to (2.5), we then get

n1/2R̂(τ)→d X (1)(τ) in l∞(FT ), where l∞(S) is the collection of all bounded functions

f : S 7→ R for any index set S and FT = { ξ̃
(1)
1 (c,τ)

σ(1)(τ)
, c ∈ R2, τ ∈ [τL, τU ]}. Then, by

the extended continuous mapping theorem (Theorem 1.11.1 in van der Vaart et al.

(1996)), we can establish the limiting null distribution for T̂
(1)
sup and T̂

(1)
inte as

T̂ (1)
sup = sup

τ∈[τL,τU ]

∣∣∣∣∣n1/2β̂(1)(τ)

σ̂
(1)
n (τ)

∣∣∣∣∣ = sup
τ∈[τL,τU ]

∣∣∣n1/2R̂(τ)
∣∣∣→d sup{|X (1)(τ)|, τ ∈ [τL, τU ]},

T̂
(1)
inte =

∫ τU

τL

∣∣∣∣∣n1/2β̂(1)(τ)

σ̂
(1)
n (τ)

∣∣∣∣∣
2

dτ =

∫ τU

τL

∣∣∣n1/2R̂(τ)
∣∣∣2 dτ →d

∫ τU

τL

{X (1)(τ)}2dτ.

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2

We first investigate the asymptotic limit of T̂
(1)
sup under the alternative hypothesis
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Ha,1. Simple algebra shows that

T̂ (1)
sup = sup

τ∈[τL,τU ]

∣∣∣∣∣n1/2β̂(1)(τ)

σ̂
(1)
n (τ)

∣∣∣∣∣ = sup
τ∈[τL,τU ]

∣∣∣∣∣n1/2β̃(1)(τ)

σ̂
(1)
n (τ)

+
n1/2(β̂(1)(τ)− β̃(1)(τ))

σ̂
(1)
n (τ)

∣∣∣∣∣
≥ sup

τ∈[τL,τU ]

∣∣∣∣∣n1/2β̃(1)(τ)

σ̂
(1)
n (τ)

∣∣∣∣∣− sup
τ∈[τL,τU ]

∣∣∣∣∣n1/2(β̂(1)(τ)− β̃(1)(τ))

σ̂
(1)
n (τ)

∣∣∣∣∣ ≡ T̂
(1)
sup,1 − T̂

(1)
sup,2.

By the extended continuous mapping theorem, we can show that the T̂
(1)
sup,2 converges

in distribution to supτ∈[τL,τU ] |X (1)(τ)| and thus is Op(1). At the same time, given

supτ∈(τL,τU ] |σ̂
(1)
n (τ) − σ(1)(τ)| →p 0, under condition 2.5, we get n−1/2T̂

(1)
sup,1 →p ν0,

where ν0 = supτ∈[τL,τU ]

∣∣∣ β̃(1)(τ)

σ(1)(τ)

∣∣∣.
Under the alternative hypothesis Ha,1 and condition 2.5, we have ν0 > 0, and

hence P (n−1/2T̂
(1)
sup,1 > ν0/2) → P (ν0 > ν0/2) = 1 as n → ∞. Furthermore, for any

a > 0, we have n−1/2T̂
(1)
sup,2 +a ·n−1/2 = op(1), which implies P (n−1/2T̂

(1)
sup,2 +a ·n−1/2 >

ν0/2)→ 0 as n→∞. Note that

P (T̂
(1)
sup > a) ≥ P (n−1/2T̂

(1)
sup,1 > n−1/2T̂

(1)
sup,2 + a · n−1/2)

≥ P (n−1/2T̂
(1)
sup,1 > ν0/2)− P (n−1/2T̂

(1)
sup,2 + a · n−1/2 > ν0/2).

It then follows that P (T̂
(1)
sup > a) → 1 as n → ∞ under the alternative hypothesis

Ha,1. This immediately implies that T̂
(1)
sup is a consistent test against Ha,1 because

P (T̂
(1)
sup > Csup,α) → 1 as n → ∞ given Ha,1 holds, where Csup,α denotes the α-level

critical value determined upon the limit null distribution of T̂
(1)
sup, which is greater

than 0.
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Next, we consider T̂
(1)
inte under the alternative hypothesis Ha,2. Write T̂

(1)
inte as

T̂
(1)
inte =

∫ τU

τL

∣∣∣∣∣n1/2β̂(1)(τ)

σ̂
(1)
n (τ)

∣∣∣∣∣
2

dτ =

∫ τU

τL

∣∣∣∣∣n1/2β̃(1)(τ)

σ̂
(1)
n (τ)

− n1/2(β̃(1)(τ)− β̂(1)(τ))

σ̂
(1)
n (τ)

∣∣∣∣∣
2

dτ

≥
∫ τU

τL

∣∣∣∣∣n1/2β̃(1)(τ)

σ̂
(1)
n (τ)

∣∣∣∣∣
2

dτ −
∫ τU

τL

2

∣∣∣∣∣n1/2β̃(1)(τ)

σ̂
(1)
n (τ)

∣∣∣∣∣ ·
∣∣∣∣∣n1/2(β̃(1)(τ)− β̂(1)(τ))

σ̂
(1)
n (τ)

∣∣∣∣∣ dτ
≡ T̂

(1)
inte,1 − T̂

(1)
inte,2.

By the continuous mapping theorem, combined with supτ∈(τL,τU ] |σ̂
(1)
n (τ)−σ(1)(τ)| →p

0 and condition 2.5, we get n−1T̂
(1)
inte,1 →p ν

∗
0 , where ν∗0 =

∫ τU
τL

∣∣∣ β̃(1)(τ)

σ(1)(τ)

∣∣∣2 dτ , and

n−1/2T̂
(1)
inte,2 →d

∫ τU

τL

2

∣∣∣∣∣ β̃(1)(τ)

σ(1)(τ)

∣∣∣∣∣ · {X (1)(τ)}dτ

and thus Op(1). By condition 2.5, the alternative hypothesis Ha,2 implies ν∗0 > 0.

Then following the same arguments for showing P (T̂
(1)
sup > a) → 1 for any a > 0

based on the results that n−1/2T̂
(1)
sup,1 →p ν0 > 0 and T̂

(1)
sup,2 = Op(1), we can prove

that P (n−1/2T̂
(1)
inte > a) → 1 as n → ∞ for any a > 0 under Ha,2. This implies that

P (T̂
(1)
inte > a)→ 1 as n→∞ for any a > 0 under Ha,2. Therefore, T̂

(1)
inte is a consistent

test against the alternative hypothesis Ha,2.

2.5.4 Justification for the Proposed Resampling Procedure

Given the observed data denoted by {Oi}ni=1 ≡ {(Xi, δi, Z̃i)}ni=1, since {ιbi}ni=1 are i.i.d.

standard normal random variables, we have

E

{
n−1/2

∑n
i=1 ξ̂

(1)
i (τ)ιbi

σ̂
(1)
n (τ)

· n
−1/2

∑n
i=1 ξ̂

(1)
i (τ ′)ιbi

σ̂
(1)
n (τ ′)

∣∣∣∣{Oi}ni=1

}

= n−1

n∑
i=1

ξ̂
(1)
i (τ)ξ̂

(1)
i (τ ′)

σ̂
(1)
n (τ)σ̂

(1)
n (τ ′)

→p Φ̃(1)(τ, τ ′).
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By the arguments of Lin et al. (1993), the distribution of n−1/2
∑n

i=1 ξ̂
(1)
i (τ)ιbi/σ̂

(1)
n (τ)

converges weakly to X (1)(τ), the same limit as that of n1/2{β̂(1)(τ)− β̃(1)(τ)}/σ̂(1)
n (τ),

for almost all realizations of {Oi}ni=1. Applying the extended continuous mapping

theorem as in the proof of Theorem A2.2, we have that under H∗0 , the conditional

distribution of T̂
(1)
sup,b (or T̂

(1)
inte,b) given the observed data is asymptotically equivalent

to the unconditional distributions of T
(1)
sup (or T

(1)
inte). This justifies using the resampling

procedure in Section 2.1.4 to obtain the p values of the proposed tests.
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2.5.5 Additional simulation results

Table A2.1: Empirical rejection rate for the uncensored case based on 1000 simula-
tions.

Set-up n
Proposed Test CQR (Wald)

CPH (Wald)
GST GIT τ = 0.4 τ = 0.5 τ = 0.6

I 200 0.098 0.070 0.055 0.052 0.056 0.048
400 0.093 0.075 0.069 0.064 0.060 0.047
800 0.076 0.058 0.053 0.053 0.048 0.061

II 200 0.215 0.156 0.104 0.108 0.108 0.121
400 0.275 0.216 0.162 0.156 0.139 0.183
800 0.420 0.372 0.276 0.265 0.238 0.328

III 200 0.541 0.478 0.344 0.374 0.337 0.456
400 0.790 0.771 0.589 0.595 0.590 0.745
800 0.958 0.961 0.883 0.886 0.873 0.963

IV 200 0.378 0.250 0.074 0.045 0.049 0.060
400 0.656 0.476 0.101 0.056 0.055 0.049
800 0.935 0.808 0.118 0.034 0.045 0.085

V 200 0.618 0.452 0.106 0.057 0.121 0.428
400 0.939 0.828 0.169 0.071 0.165 0.737
800 1.000 0.994 0.255 0.041 0.313 0.968

VI 200 0.729 0.543 0.095 0.047 0.088 0.228
400 0.971 0.898 0.154 0.048 0.097 0.446
800 1.000 0.995 0.243 0.020 0.154 0.756
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Table A2.2: Empirical rejection rate for the proposed test with different choices of U
on the six set-ups subject to 15% censoring based on 1000 simulations.

Set-up n
U = {1, . . . , 3} U = {1, . . . , 6} U = {1, . . . , 12}
GST GIT GST GIT GST GIT

I 200 0.128 0.074 0.091 0.067 0.092 0.065
400 0.126 0.079 0.086 0.067 0.081 0.063
800 0.112 0.060 0.080 0.059 0.072 0.058

II 200 0.287 0.178 0.228 0.161 0.225 0.158
400 0.359 0.231 0.283 0.218 0.256 0.206
800 0.472 0.379 0.415 0.369 0.376 0.361

III 200 0.666 0.549 0.593 0.510 0.585 0.513
400 0.841 0.789 0.779 0.773 0.761 0.757
800 0.975 0.964 0.956 0.956 0.940 0.957

IV 200 0.427 0.257 0.364 0.242 0.362 0.243
400 0.702 0.490 0.666 0.470 0.649 0.471
800 0.952 0.808 0.942 0.811 0.936 0.808

V 200 0.695 0.478 0.649 0.452 0.649 0.446
400 0.962 0.850 0.948 0.831 0.944 0.827
800 1.000 0.994 1.000 0.991 1.000 0.993

VI 200 0.768 0.558 0.723 0.534 0.726 0.535
400 0.981 0.902 0.971 0.894 0.970 0.892
800 1.000 0.997 1.000 0.997 1.000 0.998
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Chapter 3

Global Group Testing and

Screening With Dynamic Effects
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3.1 Problem and Motivation

In this part, we consider the problem to identify variables that are dynamically as-

sociated with the outcome, and to exclude irrelevant variables in the ultra-high di-

mensional settings with high confidence. Let Y denote a continuous outcome and let

X = {X(1), . . . , X(p)}T denote the vector of the observed covariates. Define

H0,j : QY (τ | X(j)) = QY (τ), a.s. for τ ∈ ∆ ⊆ (0, 1).

Here and hereafter, for a general random vector V , QY (τ | V ) = inf{y : pr(Y ≤

y|V ) ≥ τ} denotes the conditional quantile function of Y given V , and QY (τ) =

inf{y : pr(Y ≤ y) ≥ τ} denotes the unconditional quantile function of Y . When X(j)

is continuous, H0,j refers to the interval quantile independence between Y and X(j)

on quantile level intervals ∆ and [0, 1] respectively for Y and X(j), as termed by Zhu

et al. (2018). The consideration of H0,j confers a flexible view for defining relevant

variables. In the multivariate setting, a covariate X(j) is considered as relevant or

active if QY (τ |X) functionally depends on X(j) for some τ ∈ ∆ ⊆ (0, 1), where ∆ is

a pre-specified set of quantile levels. Under this view, the set of relevant variables is

defined as M∆ = {1 ≤ r ≤ p : there exists τ ∈ ∆ such that QY (τ | X) depends on

X(r)}. The formulations of H0,j andM∆ take a global perspective to assess covariate

effects throughout the range of the outcome distribution indexed by the quantile level

interval ∆. Covariates inM∆ are permitted to have dynamic and non-additive effects

across different ranges of the outcome.

Motivated from the first topic, we propose a new model-free strategy for tackling

a generalized version of H0,j that concerns the outcome relevance of one or multiple

covariates, which can be either continuous or discrete. Specifically, for a index set for

J covariates, G = {r1, . . . , rJ} ⊆ {1, . . . , p}, define XG = {X(r1), . . . , X(rJ ))T. A null
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hypothesis of our interest takes the form

H0,G : QY (τ |XG) = QY (τ), a.s., for τ ∈ ∆ ⊆ (0, 1).

To address H0,G, we propose to employ a “working” linear quantile regression model,

which can help determine whether H0,G holds or not. We further utilize the proposed

test statistic as the utility function to develop a new model-free variable screening

procedure for ultra-high dimensional data. Given the flexibility of our test statistic

in handling multiple covariates simultaneously, the new screening procedure can be

performed with covariates pre-grouped by scientific needs or in a random manner

for the benefit of saving computational time. As a useful by-product, we can readily

transform the new screening procedure to perform conditional variable screening given

some known relevant covariates under mild additional assumptions.

3.2 The Proposed Global Testing Framework

3.2.1 Formulation of the Proposed Test Statistic

Without loss of generality, let G = {1, . . . , J} and express the quantile interval ∆ as

[τL, τU ] with 0 ≤ τL < τU ≤ 1. Define Z = (1,XT
G)T. As introduced in Section 3.1,

the null hypothesis of interest is

H0,G : QY (τ |XG) = QY (τ), a.s., for τ ∈ [τL, τU ]. (3.1)

The observed data consist of n independently identically distributed (i.i.d.) replicates

of (Y,Z), denoted as {(Yi,Zi), i = 1, . . . , n}. We assume that the conditional distri-

bution of Y given XG is continuous and strictly monotone and E(ZZT) is positive

definite.

To address H0,G, we uncover a useful connection between H0,G and a “working”
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linear quantile regression model:

QY (τ | Z) = ZTθ0(τ), τ ∈ [τL, τU ], (3.2)

where θ0(τ) = {α0(τ), β
(1)
0 (τ), . . . , β

(J)
0 (τ)}T is a vector of unknown coefficients. A key

fact is that H0,G holds if and only if model (3.2) holds with β
(j)
0 (τ) = 0 for τ ∈ [τL, τU ]

for j = 1, . . . , J ; see Lemma A3.1 and its proof in Section 3.7.

To utilize this connection, we consider an estimator of θ0(τ) defined as the solution

to the standard score estimating equation for linear quantile regression,

Sn(b, τ) = n−1/2

n∑
i=1

Zi[I(Yi ≤ ZT

i b)− τ ] = 0, (3.3)

with respect to b (Koenker and Bassett Jr, 1978), denoted by θ̂(τ) = {α̂0(τ), β̂(1), . . . , β̃(J)(τ)}T.

It is important to note that, without assuming the working model (3.2), θ̂(τ) may

uniformly converge to θ̃(τ) = {α̃0(τ), β̃(1), . . . , β̃(J)(τ)}T over τ ∈ [τL, τU ], where θ̃(τ)

is the solution to the equation, µ(b, τ) = E[Z{I(Y ≤ ZTb) − τ}] = 0, with respect

to b ∈ RJ+1; see Theorem A3.1 in Section 3.7. By Lemma A3.2 in Section 3.7, the

solution to µ(b, τ) = 0 uniquely exists and H0,G implies {β̃(1)(τ), . . . , β̃(J)(τ)}T = 0.

Motivated by these results, we propose to test the departure of H0,G by using the

deviation of {β̃(1)(τ), . . . , β̃(J)(τ)}T from 0 ∈ RJ for τ ∈ [τL, τU ].

Employing the connection between H0,G and the working model (3.2) permits

leveraging existing inferential tools and software for quantile regression to facilitate

the task of testing H0,G based on θ̂(·). It also provides an intuitive way to interpret

{β̂(1)(τ), . . . , β̂(J)(τ)}T, which would capture the covariate effects on the τ -th quantile

of the outcome, possibly varying over τ , when the working model holds.

Specifically, we propose to construct the test statistic for H0,G as

T̂UC = max
j∈G={1,...,J}

T̂
(j)
inte,
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where T̂
(j)
inte =

∫ τU
τL

∣∣∣n1/2β̂(j)(τ)/σ̂
(j)
n (τ)

∣∣∣2 dτ and σ̂
(j)2
n (τ) is the variance estimate for

n1/2{β̂(j)(τ)− β̃(j)(τ)} elaborated later. The construction of T̂UC reflects the idea of

first utilizing the squared β̃(j)(τ) to capture the local influence of X(j) at the single τ ,

integrating the local effect over τ ∈ [τL, τU ] to assess the global effect of X(j), and then

taking the maximum global effect across all covariates. Such a test statistic shares

a similar spirit of the Cramér-Von-Mises (C-V) test statistic and is expected to be

sensitive to any departure of (β̃(1)(τ), . . . , β̃(J)(τ))T from the constant zero function.

In Theorem 3.1, we establish the limit null distribution of T̂UC . The proof is provided

in Section 3.7.

Theorem 3.1. Suppose the regularity conditions 3.3 and 3.4 in Section 3.7 hold.

Under the null hypothesis H0,G, we have

T̂UC →d max
j=1,...,J

{∫ τU

τL

[X (j)(τ)]2dτ

}
,

where X (j)(τ) is a mean zero Gaussian process defined in Section 3.7, j = 1, . . . , J .

3.2.2 The Proposed Global Testing Procedure

Given the connection between θ̃(τ) and the working model (3.2), we can readily

obtain β̂(j)(τ) by using the rq() function in the R package quantreg. As detailed in

Theorem A3.2 in Section 3.7, under certain regularity conditions, n1/2(θ̂(τ) − θ̃(τ))

converges weakly to a mean zero Gaussian process for τ ∈ [τL, τU ] with covariance

Φ(τ ′, τ) = E{ξi(τ ′)ξi(τ)T}, where the influence function ξi(τ) is defined in Theorem

A3.2. The asymptotic result allows us to obtain the variance estimate σ̂
(j)
n (τ) from

adapting Peng and Fine (2009)’s sample-based inference procedure as outlined below:

(1.a) Compute Σ̂(τ, τ) = n−1
∑n

i=1ZiZ
T
i {I[Yi ≤ ZT

i θ̂(τ)]− τ}2.

(1.b) Conduct eigenvalue eigenvector decomposition for Σ̂(τ, τ) using eigen() func-
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tion in R to find the matrixEn(τ) = {en,0(τ), . . . , en,J(τ)} such that {En(τ)}2 =

Σ̂(τ, τ).

(1.c) Solve the perturbed estimating equation Sn(c, τ) = en,j(τ) for j = 1, . . . , J and

denote the solution as S−1
n {en,j(τ), τ}.

(1.d) Calculate Dn(τ) = {S−1
n {en,0(τ), τ}− θ̂(τ), . . . ,S−1

n {en,J(τ), τ}− θ̂(τ)}. Com-

pute an estimate for the asymptotic variance of n1/2{θ̂(τ) − θ̃(τ)} as Vn(τ) ≡

nD⊗2
n (τ). Obtain σ̂

(j)2
n (τ) as the j + 1th diagonal component of Vn(τ).

Remark 1: The above procedure remains valid if we replace en,j(τ) with u ·en,j(τ)

for some constant u in step (1.c). Based on our numerical experiences, employing

a properly selected u may help stabilize the variance estimation especially when the

sample size is not large. An empirical strategy to choose u is detailed in Section 3.7.

The result in Theorem 3.1 indicates that the asymptotic null distribution of the

proposed test statistic is non-standard. We develop a perturbation resampling pro-

cedure to obtain the p value from testing H0,G based on the proposed test statistic.

The resampling procedure is outline as follow.

(2.a) Generate B independent sets of {ιbi}ni=1, where {ιbi}ni=1 are independent random

variables from a standard normal distribution for b = 1, . . . , B.

(2.b) Calculate ξ̂i(τ) = {Â(θ̂(τ))}−1Zi[I(Yi ≤ ZT
i θ̃(τ)) − τ ], where {Â(θ̂(τ))}−1 is

obtained from {Â(θ̂(τ))}−1 = n1/2Dn(τ)En(τ)−1.

(2.c) For b = 1, . . . , B, calculate

T̂UC,b = max
j=1,...,J


∫ τU

τL

∣∣∣∣∣n−1/2

n∑
i=1

ξ̂
(j)
i (τ)ιbi/σ̂

(j)
n (τ)

∣∣∣∣∣
2

dτ

 ,

where ξ̂
(j)
i (τ) is the j + 1th component of ξ̂i(τ).

(2.d) The p value is calculated by pUC =
∑B

b=1 I(T̂UC,b > T̂UC)/B.
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Similar resampling procedures were used in other settings, such as Lin et al. (1993),

Li and Peng (2014), and Cui and Peng (2022). The key idea is to approximate the

limit null distribution through perturbing the influence function ξi(τ). The above

resampling procedure is easy to implement without involving smoothing. Justification

for this procedure is provided in Section 3.7.

In Theorem A3.3 in Section 3.7, we further show that the proposed test statistic

T̂UC is consistent against the alternative hypothesis,

Ha,G : For some j1 ∈ {1, . . . , J}, there exists τ ∈ [τL, τU ] such that |β̃(j1)(τ)| > 0.

This result suggests promising power of the proposed procedure for detecting depar-

tures from H0,G.

3.3 Variable Screening in Ultra-high Dimensional

Setting

3.3.1 The Proposed Unconditional Screening Framework

Consider the ultra-high dimensional setting, where p = O(exp(nc)) for a positive

c < 1. Suppose the observed covariates are grouped as (XT
G1
, . . . ,XT

GL
)T, where

G1, . . . , GL are non-overlapping covariate index sets and ∪Ll=1Gl = {1, . . . , p}. While

both p and L may depend on the sample size n, we omit n from their notation for

presentation simplicity. Assume that the sizes of Gl’s (l = 1, . . . , L) are finite and

uniformly bounded; thus p and L are of the same asymptotic order.

In practice, the grouping of covariates may be motivated by scientific needs, for

example, grouping genes according to biological pathways. The special case with

p = L corresponds to the regular scenario where no grouping is imposed to covariates.

Thus, a unified definition of the set of relevant covariates, with or without grouping, is
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M[τL,τU ] = {Gl : 1 ≤ l ≤ L and there exists τ ∈ [τL, τU ] such thatQτ (Y |X) depends onXGl}.

Assume that the cardinality of M[τL,τU ] is smaller than the sample size n. Let b·c and

d·e denote the floor and ceiling operators respectively.

We propose the following variable screening procedure:

(3.a) Normalize X and Y .

(3.b) For each index set Gl, compute T̂UC for H0,Gl and denote it by w1,l, l = 1, . . . , L.

(3.c) Sort {1, . . . , L} according to w1,l in a decreasing order.

(3.d) Keep XGl ’s with w1,l greater than a pre-defined threshold νn or keep a pre-

specified number (e.g., bn/log nc) of covariates on the top of the list obtained

from (3.c).

By the above procedure with some pre-determined threshold value νn, the set of

remaining variables is defined as M̂[τL,τU ] = {Gl : 1 ≤ l ≤ L, w1,l ≥ νn}.

When there is no particular scientific reasons to group covariates, we have the

variable screening problem with L = p. In this case, we may consider an alternative

two-step screening procedure that first filters covariates by randomly formed groups

and then conducts a second-step single covariate screening. Our numerical investi-

gation shows that such a two-step procedure may considerably reduce computational

time while preserving similar screening performance. Specifically, the two-step screen-

ing procedure includes the following steps:

(4.a) Normalize X and Y .

(4.b) Perform the first-step group-level screening:

(i) Shuffle the index set of the covariates {1, . . . , p} to {r1, . . . , rp}.

(ii) With a pre-determined group size SG, compute L = dp/SGe. Divide the

first (L − 1) · SG covariates into L − 1 groups of equal size SG. The Lth
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group includes the last p − SG · (L − 1) elements. Denote the resulting

grouped covariates as {XG1 , . . . ,XGL).

(iii) Apply steps (3.b)–(3.d) to the grouped covariates {XG1 , . . . ,XGL) with a

pre-sepecified threshold νn,1 or a pre-specified number (e.g. [n/log n]) of

groups on the top of the list.

(4.c) Express the set of remaining variables from (4.b) in terms of individual co-

variates, {X(r1), . . . , X(rM )}, and then perform the second-step individual-level

screening:

(i) Obtain T̂UC for H0,{rm}, denoted by w2,m, for m = 1, . . . ,M .

(ii) Sort {X(r1), . . . , X(rM )} according to w2,m in a decreasing order.

(iii) Keep the covariates with w2,m greater than a pre-sepecified threshold νn,2

or keep a pre-specified number (e.g. [n/log n]) of covariates on the top of

the list obtained from (4.c) (ii).

With this two-step screening procedure, the set of remaining variables is defined as

M̂G
[τL,τU ] = {rm : 1 ≤ m ≤M, w2,m ≥ νn,2}.

We establish the sure screening property for the proposed unconditional screening

procedures. Let T̂
(Gl)
UC denote the proposed test statistic T̂UC for H0,Gl and define

T
(Gl)
UC = max

j∈Gl

∫ τU

τL

∣∣∣n1/2β̃(j)(τ)/σ(j)(τ)
∣∣∣2 dτ,

where {σ(j)(τ)}2 is the j + 1th diagonal element of Φ(τ, τ) defined in Theorem A3.2.

In Theorem 3.2, we establish the exponential probability bounds for |n−1T̂
(Gl)
UC −

n−1T
(Gl)
UC |, which serve as the key step to derive the sure screening property.

Theorem 3.2. Given that the regularity conditions 3.1-3.4 in Section 3.7 hold. For
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any c > 0 and 1/4 < ζ ≤ 1/2, there exists positive constant υ and η such that

pr( max
1≤l≤L

|n−1T̂
(Gl)
UC − n

−1T
(Gl)
UC | ≥ cnζ−1/2) ≤ pυ exp[−ηn4ζ−1 − log(nζ−1/2)]

for sufficiently large n.

Next, we introduce Corollary 3.1 and Corollary 3.2 to establish the sure screening

property of both the proposed one-step screening procedure outlined in (3.a)–(3.d)

and the proposed two-step screening procedure outlined in (4.a)–(4.c), respectively.

Corollary 3.1 (Sure screening property for the one-step screening procedures). Sup-

pose that the regularity conditions 3.1-3.5 in Section 3.7 hold. If we take the threshold

value νn = δ∗nζ−1/2 with δ∗ ≤ α0/2, then there exists positive constant a1 and b1, such

that

pr(M[τL,τU ] ⊆ M̂[τL,τU ]) ≥ 1− S[τL,τU ] · a1 exp[−b1n
4ζ−1 − log(nζ−1/2)]

for sufficient large n, where SτL,τU = |M[τL,τU ]| is the cardinality of M[τL,τU ]. In par-

ticular, pr(M[τL,τU ] ⊆ M̂[τL,τU ])→ 1 as n→∞.

Corollary 3.2 (Sure screening property for the two-step screening procedure). Sup-

pose that the regularity conditions 3.1-3.4 and 3.6 in Section 3.7 hold. If we take

the threshold value νn,1 = δ∗nζ−1/2 and νn,2 = δ∗∗nζ−1/2 with 0 < δ∗ ≤ α0/2 and

0 < δ∗∗ ≤ α0/2, respectively, then there exists positive constant a2 and b2, such that

pr(M[τL,τU ] ⊆ M̂G
[τL,τU ]) ≥ 1− S[τL,τU ] · a2 exp[−b2n

4ζ−1 − log(nζ−1/2)]

for sufficient large n, where S[τL,τU ] = |M[τL,τU ]| is the cardinality of M[τL,τU ]. In

particular, pr(M[τL,τU ] ⊆ M̂G
[τL,τU ])→ 1 as n→∞.

The proofs of Theorem 3.2, Corollary 3.1 and Corollary 3.2 are provided in Section

3.7.
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3.3.2 A Generalization to Conditional Screening

In practice, a set of covariates may be known to relate to the outcome by existing

knowledge. In many studies, assessing the relative importance of the other covariates

in the presence of the known relevant covariates is of interest. This confers a condi-

tional screening problem (Barut et al., 2016). By the proposed testing strategy, we

can readily generalize the screening procedures presented in Section 3.3.1 to conduct

conditional variable screening.

Let XC denote the set of relevant covariates known from prior knowledge, and

denote the rest of covariates asX−C. SupposeX−C is grouped as {XGc,1 , . . . ,XGc,Lc
}.

When Lc = q, no grouping is imposed to X−C. Adapting the global perspective taken

in the proposed unconditional screening framework, we considerXGc,l as conditionally

irrelevant to the outcome if QY (τ |XC,X) does not depend on XGc,l for τ ∈ [τL, τU ].

Under this view, screening out conditionally irrelevant covariates is naturally linked to

the problem of testing Hc,Gc,l : QY (τ |XC,XGc,l) = QY (τ |XC) for τ ∈ [τL, τU ]. We

assume that XC has a known type of relationship with the outcome. For simplicity,

we assume that QY (τ | XC) is linearly related to XC for τ ∈ [τL, τU ]. Similar to the

finding in the unconditional setting, Hc,Gc,l holds if and only if the working linear

quantile regression model

QY (τ |XC,XGc,l) = αc(τ) +XC
Tβc,1 +XT

Gc,l
βc,2, τ ∈ [τL, τU ], (3.4)

holds with βc,2 = 0. This fact naturally motivates the following conditional variable

screening procedure:

(5.a) Normalize X and Y .

(5.b) For each index set Gc,l, compute a conditional test statistic T̂C for Hc,Gc,l , which

is obtained in the same manner as that for T̂UC except that the working linear
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quantile regression model includesXC in addition toXGc,l . Denote the resulting

T̂C by wc,l, l = 1, . . . , Lc.

(5.c) Sort {XGc,1 , . . . ,XGc,Lc
} according to wc,l in a decreasing order.

(5.d) Keep Xc,Gl ’s with wc,l greater than a pre-defined threshold νc,n or keep a pre-

specified number (e.g., bn/log nc) of covariates on the top of the list obtained

from (5.c).

By the above procedure with some pre-determined threshold value νc,n, the set of

remaining variables is defined as M̂C
[τL,τU ] = {Gc,l : 1 ≤ l ≤ Lc, wc,l ≥ νc,n}.

We establish the sure screening property for the proposed conditional screening

procedure. Denote the conditional test statistic T̂C for Hc,Gc,l by T̂
(Gc,l)
C . Let T

(Gc,l)
C be

T̂
(Gc,l)
C with the coefficient estimate and variance estimate replaced by their population

analogues. Define the set of conditionally relevant covariates as M
(C)
τL,τU = {Gc,l : 1 ≤

l ≤ Lc, there exists τ ∈ [τL, τU ] such that QY (τ |X) depends on XGc,l}. The results

of the exponential tail probability bound for |n−1T̂
(Gc,l)
C − n−1T

(Gc,l)
C | and the sure

screening property are summarized in Theorem 3.3 and Corollary 3.3, respectively.

Theorem 3.3. Given that the regularity conditions 3.1-3.4 in Section 3.7 hold. As-

sume that the number of variables in X(C), noted as C, is finite. For any c > 0 and

1/4 < ζ ≤ 1/2, there exists positive constant υ∗ and η∗ such that

pr(max
1≤l≤q

|n−1T̂
(Gc,l)
C − n−1T

(Gc,l)
C | ≥ cnζ−1/2) ≤ qυ∗ exp[−η∗n4ζ−1 − log(nζ−1/2)]

for sufficiently large n.

Corollary 3.3 (Sure screening property for the conditional screening procedure).

Given that the regularity conditions 3.1-3.4 and 3.7 in Section 3.7 hold. If we take

the threshold value νc,n = δCnζ−1/2 with δC ≤ α0/2, then there exists positive constant
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Table 3.1: Summary of simulation set-ups for evaluating the proposed testing proce-
dure. Φ−1(·) is the inverse cumulative distribution for standard Normal distribution;
and F−1

Cauchy(·) is the inverse cumulative distribution for standard Cauchy distribution.

Univariate Case
Set-up Model X

U1 QY (τ | X) = 10 + Φ−1(τ) U(0,10)
U2 QY (τ | X) = 10 + 0.05 ·X + Φ−1(τ) U(0,10)
U3 QY (τ | X) = 10 + qu(τ) ·X + Φ−1(τ) U(0,10)
U4 QY (τ | X) = 10 + 0.5 · Φ−1(τ) ·X + Φ−1(τ) U(0,10)
U5 QY (τ | X) = 10 + 0.5 ·X1/3 + F−1Cauchy(τ) U(0,10)

Multivariate Case
Set-up Model X1 X2

M1 QY (τ | X) = 10 + Φ−1(τ) U(0,10) 10B(0.5)
M2 QY (τ | X) = 10 + 0.1 ·X1 + Φ−1(τ) U(0,10) 10B(0.5)
M3 QY (τ | X) = 10 + 0.05 ·X1 + 0.05 ·X2 + Φ−1(τ) U(0,10) 10B(0.5)
M4 QY (τ | X) = 10 + qm1

(τ) ·X1 + qm2
(τ) ·X2 + Φ−1(τ) U(0,10) 10B(0.5)

M5 QY |X(τ) = 10 + 0.5 ·X1/3
1 I(X1 > 3) + 0.5 ·X1/3

2 I(X1 ≤ 3) + F−1Cauchy(τ) U(0,10) 10B(0.5)

a3 and b3, such that

pr(M
(C)
[τL,τU ] ⊆ M̂

(C)
[τL,τU ]) ≥ 1− S(C)

[τL,τU ] · a3 exp[−b3n
4ζ−1 − log(nζ−1/2)]

for sufficient large n, where S
(C)
[τL,τU ] = |M (C)

[τL,τU ]| is the cardinality of M
(C)
[τL,τU ]. In

particular, pr(M
(C)
[τL,τU ] ⊆ M̂

(C)
[τL,τU ])→ 1 as n→∞.

The proofs for Theorem 3.3 and Corollary 3.3 are provided in Sections S2.2 and

S2.3 of the Appendix.

3.4 Numerical Studies

3.4.1 Simulation Studies for Evaluating the Proposed Test-

ing Procedure

We first evaluate the proposed testing procedure for H0,G in univariate settings where

XG contains one covariate X. The specific models for generating (X, Y ) are presented

in Table 3.1. In set-ups U1-U4, the working model (3.2) holds for τ ∈ [0.2, 0.8], which
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Figure 3.1: True coefficient functions for the simulation set-ups.
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Table 3.2: Empirical rejection rates with 1000 replicates for XG = X. GIT: the
proposed test based on T̂UC ; AQI: Zhu et al. (2018)’s method; QS and QW : rank
score test (Gutenbrunner et al., 1993a) and Wald test (Koenker and Bassett Jr, 1982)
based on quantile regression models; LW : the Wald test based on linear regression.

τ ∈ [0.2, 0.8] τ=0.4 τ=0.5 τ=0.6
Set-up n GIT AQI QS QW QS QW QS QW LW

U1
200 0.053 0.040 0.035 0.055 0.052 0.042 0.044 0.048 0.049
400 0.050 0.057 0.045 0.048 0.040 0.045 0.039 0.033 0.045

U2
200 0.492 0.443 0.357 0.338 0.366 0.343 0.354 0.336 0.524
400 0.788 0.755 0.637 0.623 0.629 0.638 0.636 0.622 0.824

U3
200 0.272 0.231 0.103 0.109 0.050 0.028 0.069 0.066 0.121
400 0.578 0.515 0.171 0.156 0.042 0.029 0.083 0.079 0.207

U4
200 0.948 0.951 0.285 0.221 0.089 0.049 0.277 0.225 0.052
400 1.000 1.000 0.480 0.407 0.064 0.051 0.495 0.389 0.065

U5
200 0.469 0.415 0.379 0.308 0.423 0.344 0.343 0.284 0.041
400 0.742 0.683 0.668 0.596 0.703 0.687 0.635 0.593 0.038

Table 3.3: Empirical rejection rates with 1000 replicates for XG = (X1, X2)T. GIT:

the proposed test based on T̂UC , QS and QW : rank score test (Gutenbrunner et al.,
1993a) and Wald test (Koenker and Bassett Jr, 1982) based on quantile regression
models; ANOVA: the analysis of variance test for overall significance based on linear
regression.

τ ∈ [0.2, 0.8] τ=0.4 τ=0.5 τ=0.6
Set-up n GIT QS QW QS QW QS QW ANOVA

M1
200 0.058 0.050 0.055 0.053 0.048 0.050 0.047 0.044
400 0.045 0.042 0.041 0.041 0.038 0.042 0.047 0.040

M2
200 0.933 0.805 0.791 0.827 0.799 0.823 0.801 0.952
400 1.000 0.987 0.982 0.988 0.986 0.989 0.985 0.998

M3
200 0.900 0.809 0.797 0.831 0.812 0.811 0.802 0.959
400 0.999 0.991 0.987 0.992 0.991 0.988 0.980 0.999

M4
200 0.409 0.169 0.131 0.052 0.036 0.116 0.111 0.051
400 0.821 0.228 0.210 0.040 0.028 0.231 0.203 0.045

M5
200 0.415 0.452 0.325 0.384 0.345 0.268 0.264 0.025
400 0.710 0.758 0.716 0.690 0.698 0.543 0.572 0.039
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is the τ -interval of interest. Set-up U5 gives a scenario where the working linear

quantile regression model does not hold. It is easy to see that U1 is a null case, where

X has no effect on Y . In U2, a standard linear model holds and X has a constant

effect on Y over τ ∈ [0.2, 0.8]. U3 and U4 are two set-ups with dynamic effects varying

across different τ ’s. The true coefficient functions in set-ups U3 and U4 are presented

in Figure 3.1. In set-up U5, X takes a non-linear functional form to influence Y and

thus the working model is not satisfied.

We compare the following testing procedures:

GIT: the proposed test based on T̂UC with [τL, τU ] = [0.2, 0.8];

AQI: the test proposed in Zhu et al. (2018), with the quantile interval set as

[0.2, 0.8] for Y and [0, 1] for X;

QS: rank score test (Gutenbrunner et al., 1993a)

QW : Wald test (Koenker and Bassett Jr, 1982)

LW : Wald test based on linear regression.

In each setting, the significance level is set as 0.05. We consider sample sizes, 200 and

400.

Table 3.2 presents the empirical rejection rates based on 1000 simulations. In

the null case U1, all methods yield empirical sizes close to the nominal level of 0.05.

In set-ups U3–U5, where dynamic covariate effects are present, we observe that the

proposed method and Zhu et al. (2018)’s method, which are designed to capture

global effects throughout τ ∈ [0.2, 0.8], yield much higher power than tests which

target the local effect on a single τ or the mean when dynamic effects are present,

for example set-ups U3 and U4. These demonstrate substantial power gains resulted

from integrating information across quantiles in the presence of dynamic covariate
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effects. In addition, we observe that the proposed method and Zhu et al. (2018)’s

method have comparable performance in the univariate settings.

We also evaluate the proposed testing procedure in multivariate settings, where

XG includes two covariates X1 and X2. To illustrate the utility of our method for

handling both continuous and discrete variables, we generate X1 as a continuous

variable and X2 as a discrete variable. We consider five settings M1–M5 with con-

figuration details shown in Table 3.1. M1 is the null case, where both X1 and X2

have no effects on Y . M2 corresponds to the case where only X1 influences Y and

its effect is constant. In M3, both X1 and X2 have constant covariate effects on Y .

In M4, X1 and X2 have partial effects on Y . The true coefficient functions, qm1(τ)

and qm2(τ), are shown in Figure 3.1. M5 is a set-up where X1 and X2 influence Y in

a non-standard way and the working model (3.2) does not hold. In all multivariate

settings, Zhu et al. (2018) is no longer applicable. We compare the proposed GIT

to QS and QW with τ = 0.4, 0.5, or 0.6 and the analysis of variance test for overall

significance based on linear regression (ANOVA).

Table 3.3 reports the empirical rejection rates of these tests based on 1000 simu-

lations. All methods have empirical sizes close to the nominal level 0.05 in the null

case M1. The empirical power of all tests grows as the sample size increases. When

there are varying covariate effects, such as in set-ups M4–M5, the proposed method

can yield much higher power than tests, QS, QW , and ANOVA, which target local

covariate effects on a single τ or the mean. These results suggest that good utility

of the proposed tests to detect the existence of either constant or dynamic covariate

effects, no matter the covariates are continuous or discrete.
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Table 3.4: Simulation results for unconditional procedures based on 500 replicates.
MMMS: median minimum model size; RSD: the robust standard deviation; pr(X(j)):
probability of selecting X(j); pr(A): probability of selecting all covariates in A; GIT:
the proposed one-step unconditional procedure; GOT: the proposed two-step uncon-
ditional procedure with SG = 2; SIS: Fan and Lv (2008)’s method; QaSIS: He et al.
(2013)’s method; AQI: Zhu et al. (2018)’s method.

MMS pr(X(j))
Set-up Method MMMS RSD X(1) X(2) X(3) X(4) X(5) pr(A)

S1

GIT 6 2 1.000 1.000 1.000 1.000 0.996 0.996
SIS 5 0 1.000 1.000 1.000 1.000 0.998 0.998

QaSIS(0.25) 8 10 0.976 0.990 0.988 0.982 0.910 0.884
QaSIS(0.5) 6 3 0.990 0.998 0.998 0.992 0.972 0.958
QaSIS(0.75) 8 9 0.994 0.992 0.988 0.968 0.912 0.896

AQI 5 0 1.000 1.000 1.000 1.000 1.000 1.000
GOT(SG = 2) 7 2 0.998 0.996 1.000 0.998 0.992 0.990

S2

GIT 5 1 1.000 1.000 1.000 1.000 0.994 0.994
SIS 50 264 0.694 0.694 0.688 0.628 0.554 0.466

QaSIS(0.25) 97 130 0.482 0.544 0.518 0.392 0.268 0.142
QaSIS(0.5) 20 20 0.978 0.988 0.972 0.956 0.854 0.822
QaSIS(0.75) 98 128 0.448 0.536 0.490 0.410 0.286 0.178

AQI 5 1 1.000 1.000 1.000 0.998 0.998 0.996
GOT(SG = 2) 6 1 0.998 0.996 1.000 1.000 0.992 0.990

S3

GIT 12 7 1.000 1.000 1.000 1.000 1.000 1.000
SIS 214 798 0.358 0.402 0.446 1.000 1.000 0.300

QaSIS(0.25) 25 10 0.992 1.000 0.982 1.000 1.000 0.976
QaSIS(0.5) 27 9 0.996 1.000 0.998 1.000 1.000 0.994
QaSIS(0.75) 90 77 0.406 0.562 0.640 1.000 1.000 0.340

AQI 20 6 1.000 1.000 1.000 1.000 1.000 1.000
GOT(SG = 2) 13 7 1.000 1.000 1.000 1.000 1.000 1.000

S4

GIT 5 1 1.000 1.000 1.000 1.000 1.000 1.000
SIS 2194 3860 0.260 0.266 0.256 0.214 0.196 0.140

QaSIS(0.25) 33 37 0.912 0.950 0.992 0.954 0.888 0.794
QaSIS(0.5) 6 2 1.000 1.000 1.000 1.000 1.000 1.000
QaSIS(0.75) 10 9 1.000 1.000 1.000 1.000 1.000 1.000

AQI 5 0 1.000 1.000 1.000 1.000 1.000 1.000
GOT(SG = 2) 6 1 1.000 1.000 1.000 1.000 1.000 1.000

S4*

GIT 5 1 1.000 1.000 1.000 1.000 1.000 1.000
SIS 2180 4139 0.332 0.264 0.376 0.306 0.346 0.186

QaSIS(0.25) 5 0 1.000 1.000 1.000 1.000 1.000 1.000
QaSIS(0.5) 5 0 1.000 1.000 1.000 1.000 1.000 1.000
QaSIS(0.75) 8 4 1.000 0.912 1.000 1.000 1.000 0.912

AQI – – – – – – – –
GOT(SG = 2) 6 1 1.000 1.000 1.000 1.000 1.000 1.000
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3.4.2 Simulation Studies for Evaluating the Proposed Screen-

ing Procedures

We conduct simulation studies to evaluate the performance of the proposed one-

step screening procedure in (3.a)–(3.d), denoted by GIT, and the proposed two-step

procedure in (4.a)–(4.c) with SG = 2, denoted by GOT. For comparisons, we consider

existing approaches, including Fan and Lv (2008)’s method, denoted by SIS, He

et al. (2013)’s method at τ = 0.25, 0.5 or 0.75, denoted by QsSIS(τ), as well as Zhu

et al. (2018)’s method with quantile interval sets, [0.2, 0.8] for Y and [0, 1] for X,

denoted by AQI. When implementing He et al. (2013)’s method, we set the number

of basis as 3. To assess the performance of these screening methods, we use the

median minimum model size of the selected models required for sure screening, and

the robust standard deviation, defined as the interquartile range of minimum model

size, and the probability of selecting each X(j), and the probability of selecting all

covariates in A when top [n/ log(n)] covariates are maintained.

The simulation set-ups are described as follows:

S1 (n = 200, p = 2000): Y = 0.2(X(1) + 0.8X(2) + 0.6X(3) + 0.4X(4) + 0.2X(5)) + ε,

where ε follow the standard normal distribution.

S2 (n = 200, p = 2000): Y = 0.2(X(1) + 0.8X(2) + 0.6X(3) + 0.4X(4) + 0.2X(5)) +

exp(Z) · ε, where Z and ε follow the standard normal distribution.

S3 (n = 400, p = 5000): Y = X(1)I(X(1) > 0) + X(2)I(X(1) ≤ 0) + exp(X(19) +

X(20)) + exp(X(3)) · ε, where ε follows the standard normal distribution.

S4 (n = 400, p = 5000): QY (τ |X) = 3X(1)I(X(1) > 0) + 3X(3)I(X(1) ≤ 0) + lS(τ) ·

X(4) +uS(τ) ·X(5) + (s(X(2)) + 1)2 ·Qε(τ), where s(a) = (a−E(a))/sd(a), lS(τ)

and uS(τ) are plotted in Figure 3.1, and ε follows standard Cauchy distribution.
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In the above set-ups, the covariates X = {X(1), . . . , X(p)}T are generated from multi-

variate normal distribution with mean zero and covariance matrix Σ = (0.9|k−k
′|)p×p.

The error terms Z and ε are independent of X. It is easy to see that the rele-

vant covariate set is A = {X(1), X(2), X(3), X(4), X(5)} for set-ups S1, S2 and S4.

In set-up S3, the relevant/active covariates are more separated from each other

with A = {X(1), X(2), X(3), X(19), X(20)}. We further consider an additional set-

up S4*, which is the same as S4 except that we transform half of the covariates

to discrete covariates. Specifically, in S4*, we first use the same way to generate

{X(1), X(2), . . . , X(p)}T , and then dichotomize {X(2), X(4), . . . , X(2bp/2c)}T at 0 to gen-

erate binary covariates defined as I(X(j) < 0) (j = 2, 4, . . . , 2bp/2c). In this case, Zhu

et al. (2018)’s method can not be applied. To implement He et al. (2013)’s method,

we use the linear option due to singular issues.

In Table 3.4, we summarize the screening results based on 500 simulations. In set-

up S1, where the error term follows the normal distribution and the relevant covariates

are highly correlated with each other, we observe that all the methods perform quite

well. In set-up S2, which differs from S1 only by the error distribution, we notice

that there is substantial deterioration with the performance of SIS. The number of

covariates needed for sure screening along with its variability inflates substantially

from MMMS(RSD)= 5(0) to 50(264), and the probability of retaining all relevant

covariates drops significantly from 1.00 to 0.47. In the other three set-ups, S3, S4

and S4*, we have similar observations regarding the under-performance of Fan and

Lv (2008). Such observations are not surprising and are likely caused by the fact that

the normal error assumption is no longer valid in these settings. Also, we notice that

He et al. (2013) has varying performance for different τ ’s. For example, in set-up S2,

He et al. (2013)’s method with τ = 0.5 may select the relevant covariates over 80%

of times; while by He et al. (2013)’s method with τ = 0.25 or 0.75 the probability of

keeping all relevant variables reduces to be below 20%. Compared to He et al. (2013)’s
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method, which focuses on local effects, the screening procedures that examine global

effects, such as Zhu et al. (2018)’s method and the proposed methods, GIT and GOT,

demonstrate better performance, as reflected by larger selection probabilities, pr(A),

and smaller model sizes measured by MMMS and RSD. A reasonable interpretation

is that the global testing procedures leverage information across different τ ’s, thereby

producing higher detection power.

In set-ups S1, S2, and S4, where relevant covariates are strongly correlated, the

proposed methods, GIT and GOT, and Zhu et al. (2018)’s method, AQI, have similar

performance. In set-up S3, the relevant covariates are separated into two clusters with

one cluster including X(1), X(2), and X(3) and the other including X(19) and X(20).

In addition, X(19) and X(20) have stronger covariate effects than X(1), X(2), and X(3).

In this case, though the proposed methods and Zhu et al. (2018)’s method all have

high probabilities of selecting relevant covariates, Zhu et al. (2018)’s method yields

relatively larger model size as compared to the proposed methods. This is caused by

the tendency of Zhu et al. (2018)’s method to select “neighboring” covariates around

X(19) and X(20), such as X(18) or X(21). Since these covariates are highly corrected

with X(19) and X(20) (which have strong effects on the outcome), Zhu et al. (2018)’s

method may catch the trails of these neighboring covariates by producing interval

quantile independence indices comparable to or even higher than those for X(1), X(2),

and X(3). Despite this discrepancy, we think that the proposed methods and Zhu

et al. (2018)’s method have quite comparable performance in variable screening when

all covariates are continuous, while the proposed methods offer flexibility to naturally

accommodate discrete covariates.
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Table 3.5: The Median Minimum Model Size (MMMS), the sampling variability of
minimum model size (RSD) and the selection probability across 500 simulations.
MMMS: median minimum model size; RSD: the robust standard deviation; pr(A):
probability of selecting all covariates in A; IA: irrelevant variables; SIS: Fan and Lv
(2008)’s method; GIT: the proposed one-step unconditional procedure; CSIS: Barut
et al. (2016)’s method; CGIT, the proposed conditional screening procedure.

MMS
Set-up A Method MMMS RSD pr(A)

CS1(i) X(6)

SIS 1995 0 0.000
GIT 1995 0 0.000

CSIS(X(1)-X(5)) 1 0 1.000
CSIS(X(1)-X(5), 5 IAs) 1 0 1.000

CSIS(5 IAs) 1 0 1.000
CGIT(X(1)-X(5)) 1 0 1.000

CGIT(X(1)-X(5), 5 IAs) 1 0 1.000
CGIT(5 IAs) 1 0 1.000

CS1(ii) X(6)

SIS 1991 240 0.006
GIT 1995 0 0.000

CSIS(X(1)-X(5)) 1 44 0.744
CSIS(X(1)-X(5), 5 IAs) 1 58 0.730

CSIS(5 IAs) 8 303 0.608
CGIT(X(1)-X(5)) 1 0 1.000

CGIT(X(1)-X(5), 5 IAs) 1 0 1.000
CGIT(5 IAs) 1 0 0.998

CS2(i) X(2000)

SIS 1999 0 0.000
GIT 1999 0 0.000

CSIS(X(1)-X(5)) 1 0 1.000
CSIS(X(1)-X(5), 5 IAs) 1 0 1.000

CSIS(5 IAs) 1490 768 0.004
CGIT(X(1)-X(5)) 1 0 1.000

CGIT(X(1)-X(5), 5 IAs) 1 0 1.000
CGIT(5 IAs) 1044 1137 0.048

CS2(ii) X(2000)

SIS 1999 124 0.012
GIT 1999 0 0.000

CSIS(X(1)-X(5)) 751 1208 0.110
CSIS(X(1)-X(5), 5 IAs) 898 1090 0.050

CSIS(5 IAs) 1320 939 0.000
CGIT(X(1)-X(5)) 1 0 1.000

CGIT(X(1)-X(5), 5 IAs) 1 0 1.000
CGIT(5 IAs) 1046 1075 0.044

CS3 X(2000)

SIS 1675 1184 0.058
GIT 1824 698 0.004

CSIS(X(1)-X(5)) 627 1174 0.130
CSIS(X(1)-X(5), 5 IAs) 789 1048 0.046

CSIS(5 IAs) 857 1055 0.042
CGIT(X(1)-X(5)) 1 1 0.988

CGIT(X(1)-X(5), 5 IAs) 1 0 0.998
CGIT(5 IAs) 21 62 0.626
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3.4.3 Simulation Studies for Evaluating the Proposed Con-

ditional Screening Procedure

We conduct simulation studies to investigate the performance of the proposed con-

ditional screening procedure outlined in (5.a)–(5.d) in the main manuscript. In the

simulations, we compare it with the proposed unconditional screening procedures,

Fan and Lv (2008), as well as the conditional screening procedure proposed by Barut

et al. (2016). We consider scenarios, where XC include relevant variables only, some

relevant variables along with some randomly selected irrelevant variables, or irrele-

vant variables only. The same criteria described in Section 3.4.2 are used to evaluate

the performance for these methods.

We consider the following simulation set-ups :

CS1 (n = 200, p = 2000): Y = 3X(1) + 3X(2) + 3X(3) + 3X(4) + 3X(5) − 7.5X(6) +

ε, where each covariate follows the standard normal distribution with equal

correlation 0.5, and the error term ε follows (i) standard normal or (ii) standard

Cauchy distribution.

CS2 (n = 200, p = 2000): Y = 10X(1) + X(2000) + ε, where each covariate follows

the standard normal distribution with equal correlation 0.9 except for X(2000),

which is independent of all the other covariates, and the error term ε follows (i)

standard normal or (ii) standard Cauchy distribution.

CS3 (n = 200, p = 2000): Y = 10X(1) + (3X(2000) + 4)2 · ε, where each covariate

follows the standard normal distribution with equal correlation 0.9 except for

X(2000), which is independent of all the other covariates, and the error term ε

follows the standard normal distribution.

CS1(i) and CS2(i) are the same set-ups considered by Barut et al. (2016). In CS1(i),

X(6) is a hidden variable based on marginal screening procedures. This is due to
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the fact that in this case, the covariance between X(j) and Y is 0 given β∗(j) =

−
∑

k 6=j β
∗(k)Σkj/Σjj, where Σkj denotes the (k, j)th element of Σ = var(X). In

CS2(i), X(2000) has the least priority to be included by marginal screening proce-

dures. This is because in this case, cov(X(1), Y ) = 10, cov(X(2000), Y ) = 1, and

cov(X(j), Y ) = 9 for j = 2. . . . , 1999. This means, the marginal covariance between

each inactive variable and Y is larger than the covariance between the active variable

X(2000) and Y . Set-up CS1(ii) and CS2(ii) differ from CS1(i) and CS2(i) only by

the error distribution. In CS3, which is a set-up adapted from CS2(i), X(2000) has a

non-linear varying effect on the quantiles of Y .

Table 3.5 presents the results based on 500 simulations. Within the parenthese

following the notation “CSIS” or “CGIT”, we indicate the conditioning covariates

XC specified in these conditional screening procedures. We see that the unconditional

screening procedures, SIS and GIT, barely select hidden active variables, for example,

X(6) in set-up CS1(i) and X(2000) in set-up CS2(i). The conditional procedures, CSIS

and CGIT, work well in set-up CS1(i) regardless whether or not the conditioning

covariates are active or not. In set-up CS2(i), the conditional screening procedures

yield lower probabilities of selecting relevant covariates but still perform well when

some of conditioning variables are active. Based on the results for CS1(i) and CS2(i),

we may conclude that the proposed method and Barut et al. (2016) have comparable

performance under standard linear models with normal random errors.

However, when the error term is not normally distributed or there exists a dynamic

covariate effect, such as in settings CS1(ii), CS2(ii) and CS3, we notice that the

performance of Barut et al. (2016) deteriorates significantly. For example, in set-up

CS(ii), the selection probability of X(6) by Barut et al. (2016) decreases to 0.74, 0.73

and 0.61 regardless the choices of the conditioning variables. The deterioration of

Barut et al. (2016)’s performance is much more evident in set-ups CS2(ii) and CS3,

as reflected by low probabilities of selecting the conditionally relevant covariate, which
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are around or below 0.10, and are much smaller than those produced by the proposed

conditional screening procedure CGIT. These results strongly support the advantage

of taking a global view for assessing covariate effects, particularly in the presence of

dynamic covariate effects.

3.5 Real Example with Microarray Data

We apply the proposed methods to a microarray dataset (Scheetz et al., 2006), which

contains the gene expression levels of 31,098 probe sets on 120 12-week old male

offsprings of rats. With this dataset, one interest is to identify the set of genes related

to gene TRIM32, which is a known predictor for genetically heterogeneous diseases

including Muscular Dystrophy, Limb-Girdle, Autosomal Recessive 8 and Bardet-Biedl

Syndrome 11. The probe id corresponding to gene TRIM32 is “1389163 at”.

We first illustrate the utility of the proposed global testing procedure through

evaluating the marginal relevance of six example genes to the expression level of

TRIM32. To test the effect of each of these genes, we apply the proposed global

test, Wald tests for linear quantile regression with τ = 0.25, 0.5 and 0.75, Wald tests

for linear regression with outliers and after the removal of outliers based on Cook’s

Distance, and Wald test based on the robust linear regression (Hampel et al., 1986).

Table 3.6 presents the p values obtained from these different tests. For the genes

with probe id “1367462 at” and “1372996 at”, their effects are captured by linear

regression after removing outliers, robust linear regression, quantile regression based

tests with most choices of τ , as well as the proposed test. The test based on standard

linear regression does not detect the effect of either of these two genes, likely due to

the “diluting” influence from the outliers. We have opposite findings regarding the

effects of the genes with probe id “1367479 at” and “1367525 at”. As hinted by the

scatter plots in Figure 3.2, these discrepant results are likely caused by the presence
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Table 3.6: Summary for the p values of six example genes. GIT: the proposed test
based on T̂UC ; QS and QW : rank score test (Gutenbrunner et al., 1993a) and Wald
test (Koenker and Bassett Jr, 1982) for quantile regression models; LW and LW (rm):
Wald tests for linear regression with outliers and after the removal of outliers based
on Cook’s Distance; RLW : the Wald test based on the robust linear regression.

Probe id GIT QW (0.25) QW (0.5) QW (0.75) LW LW (rm) RLW
1367462 at 0.0004 0.0530 0.0018 0.0007 0.4673 0.0005 0.0005
1372996 at 0.0024 0.0012 0.0257 0.0111 0.9714 0.0049 0.0078
1367479 at 0.7616 0.2396 0.5638 0.6088 0.0176 0.1663 0.4939
1367525 at 0.9640 0.5331 0.9326 0.8139 0.0082 0.9819 0.7016
1379467 at 0.0040 0.1097 0.3106 0.0293 0.4370 0.5645 0.5439
1381314 at 0.0184 0.0951 0.0352 0.7773 0.1069 0.4604 0.1371

of a few outliers, which are not appropriately handled by standard linear regression

and thus leads to spurious effect estimates. These demonstrate the robustness of the

proposed testing procedure against outliers.

As suggested by exploratory marginal linear quantile regression analyses (see the

third column of Figure 3.2), constant location-shift effects may not be adequate for

the genes with probe id, “1379467 at” and “1381314 at”, but are presumed by linear

regression based tests. In this case, the local quantile regression based tests separately

examine the effects of these genes at different quantile levels; thus it is not surprising

that the resulting p values suggest significant effects at some τ ’s but not at the other

τ ’s. All linear regression based tests fail to capture the effects of these two genes. This

may reflect effect attenuation resulted from assuming a varying effect as constant. The

proposed test, by taking a global perspective for assessing effects, sensibly support

the relevance of these two genes to the outcome.

We apply the proposed screening procedures to help identify outcome-relevant

genes out of 31,097 genes. In our analyses, we first perform the proposed uncondi-

tional screening procedures to filter out most irrelevant genes. Specifically, we keep

the genes ranked top [2n/ log n] = 50. With the remaining genes, we perform Zheng

et al. (2015)’s globally adaptive quantile regression method with τ ∈ [0.2, 0.8] for fur-

ther variable selection. We also analyze the same data by alternative combinations
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Figure 3.2: Scatter plots and the coefficient function for six example probes: the
second column show show the scatter plots with the outliers removed based on the
Cook’s distance and the regression lines from linear regression (blue dashed lines); the
first column show the scatter plots with outliers circled red and the regression lines
from linear regression (blue dashed lines). The third column show the linear quantile
regression’s fitted coefficients (black lines) with the region within the 95% confidence
intervals (shaded regions), along with the linear regression’s fitted coefficients (red
solid lines) with the 95% confidence interval (red dashed lines).
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of screening and variable selection approaches, including Fan and Lv (2008) coupled

with adaptive Lasso for linear regression (Zou, 2006), He et al. (2013) coupled with

locally concerned quantile regression with adaptive Lasso penalty (Belloni and Cher-

nozhukov, 2011) for τ = 0.25, 0.5, or 0.75, and Zhu et al. (2018) coupled with Zheng

et al. (2015)’s globally adaptive quantile regression method with τ ∈ [0.2, 0.8]. When

applying each approach, we determine the tuning parameter in the variable selection

step by cross validation.

The heatmap presented in Figure 3.3 informs the sets of genes selected by different

approaches and also displays the Pearson’s correlation in expression level between the

genes selected by the proposed one-step approach and the genes selected by the other

approaches. With the same variable selection procedure, using the proposed global

tests for variable screening leads to more parsimonious selection of genes as compared

to adopting Zhu et al. (2018) which also takes a global view for variable screening. We

observe that the gene with probe id “1393510 at” selected from using the proposed

methods is also selected from using Fan and Lv (2008), He et al. (2013) and Zhu et al.

(2018).All genes selected based on the proposed one-step approach have moderate

or high correlations with at least one gene selected by the other approaches. This

observation may help endorse the sensible gene selection by the proposed approach

based on the results from several benchmark approaches.

For each approach, we further assess the quantile prediction performance. To

compare across different approaches, we adjust the tuning parameter in the variable

selection step so that all approaches select the same number of genes. For a given

number of selected genes, denoted by g, following the approach developed by Li and

Peng (2017), we measure the quantile prediction error as

P̂E
(g)

= n−1

n∑
i=1

∫ τU

τL

ρτ [Yi −XT

S,iθ̂S(τ)]dτ,
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where ρτ (u) = u{τ − I(u < 0)}, XS represents the express levels of the selected

genes, and θ̂S(τ) represents the estimated regression quantiles derived from the final

model fitting at the variable selection step. Under a linear regression model or a local

quantile regression model, the θ̂S(τ) is extrapolated as a constant function over τ

equal to the regression coefficient estimate.

In Table 3.7, we report P̂E
(g)

with g = 1, . . . , 10 resulted from all the approaches

considered. We see that the estimated prediction errors associated with the proposed

methodsare always comparable or smaller than those associated with the other meth-

ods. For example, with g = 5, the estimated prediction errors associated with the

proposed methods are both around 0.11 and smaller than the other approaches.

We also apply conditional screening procedures with the conditioning covariates

representing the two important genes suggested in Scheetz et al. (2006), Abca4 and

Opn1sw with probe ID “1384603 at” and “1388025 at”, respectively. We pair the

proposed method and Barut et al. (2016) respectively with globally adaptive quantile

regression method (Zheng et al., 2015) and linear regression with adaptive LASSO for

variable selection. The heatmap presented in Figure 3.4 indicates that CGIT yields

much more sparse gene selection results as compared to CSIS, and the expression

level of genes selected by CGIT are well correlated with those of the genes selected

CSIS. The results in Table 3.7 show that the estimated prediction error is 0.19 based

on linear regression with only Abca4 and Opn1sw as covariates. The prediction errors

decrease when the conditionally relevant covariate set includes additional covariates

identified from variable screening and variable selection. The prediction errors as-

sociated with CGIT are smaller than those associated with CSIS most times. The

prediction error reduction from using CGIT instead of CSIS, is more apparent when

there are fewer selected genes. This may indirectly imply that CGIT-based approach,

as compared to CSIS-based approach, may give higher priority to genes with more

predictive power and thus leads to large gains in prediction when the “model size” is
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Table 3.7: The estimated prediction error P̂E
(g)

(∆) for different model size. GIT:
the proposed one-step unconditional procedure; GOT: the proposed two-step uncon-
ditional procedure with SG = 2; AQI: Zhu et al. (2018)’s method; SIS: Fan and Lv
(2008)’s method; QaSIS: He et al. (2013)’s method; CGIT: the proposed conditional
screening procedure; CSIS: Barut et al. (2016)’s method.

Method Size:1 Size:2 Size:3 Size:4 Size:5 Size:6 Size:7 Size:8 Size:9 Size:10
A. Unconditional screening

GIT 0.178 0.171 0.118 0.117 0.116 0.115 0.114 0.113 0.109 0.108
GOT 0.177 0.172 0.169 0.127 0.113 0.112 0.111 0.111 0.111 0.111
AQI 0.171 0.157 0.142 0.141 0.140 0.134 0.133 0.124 0.118 0.108
SIS 0.185 0.172 0.159 0.144 0.137 0.123 0.113 0.109 0.109 0.108

QaSIS (τ = 0.25) 0.195 0.179 0.179 0.167 0.166 0.162 0.156 0.155 0.144 0.143
QaSIS (τ = 0.5) 0.150 0.148 0.138 0.129 0.122 0.120 0.119 0.119 0.117 0.116
QaSIS (τ = 0.75) 0.180 0.173 0.158 0.154 0.155 0.135 0.131 0.130 0.125 0.124
B. Conditional screening (Abca4, Opn1sw)

CGIT – – 0.161 0.163 0.163 0.156 0.113 0.104 0.103 0.103
CSIS – – 0.178 0.169 0.142 0.130 0.120 0.117 0.112 0.105

small.

3.6 Remarks

In this work, we develop a new testing and screening framework that can help deter-

mine outcome-relevant covariates in classic univariate and multivariate settings and

ultra-high dimensional settings. The proposed methods sensibly adopt a global per-

spective that examines covariate effects over a continuum of outcome quantiles. Such a

global perspective shares a similar spirit with the concept of globally concerned quan-

tile regression proposed by Zheng et al. (2015). Nevertheless, Zheng et al. (2015)’s

work is hinged upon the assumption of a global linear quantile regression model,

while our testing procedures tackle a non-model-based null hypothesis and the corre-

sponding screening procedure is model-free. Our numerical studies strongly support

the advantages of the proposed methods over existing locally concerned methods,

particularly in data settings with dynamic covariate effects.
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Figure 3.3: Heat map for the correlation between the proposed unconditional screen-
ing procedure and the other methods. GIT: the proposed one-step unconditional
procedure; GOT: the proposed two-step unconditional procedure with SG = 2; AQI:
Zhu et al. (2018)’s method; SIS: Fan and Lv (2008)’s method; QaSIS: He et al. (2013)’s
method.

Figure 3.4: Heat map for the correlation between the proposed conditional screening
method (CSIS) and Barut et al. (2016)’s method (CSIS).
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3.7 Appendix

3.7.1 Theoretical Proofs for The Proposed Global Testing

Framework

3.7.1.1 Some Necessary Notations and Regularity Conditions

Denote µ(b, τ) = E[Z{I(Y ≤ ZTb)−τ}|Z] and let θ̃(τ) be the solution to µ(b, τ) = 0.

We state the following necessary regularity conditions.

Condition 3.1. Z is uniformly bounded, i.e., supi‖Zi‖ <∞.

Condition 3.2. (i) θ̃(τ) is Lipschitz continuous for τ ∈ [τL, τU ]; (ii) f(y|z) is

bounded above uniformly in y and z, where f(y|z) = dF (y|z)/dt is Lipschitz con-

tinuous for all y ∈ R.

Condition 3.3. For some ρ0 > 0 and c0 > 0,infb∈B(ρ0) eigminA(b) ≥ c0, where

B(ρ) = {b ∈ RJ+1 : infτ∈[τL,τU ] ||b− θ̃(τ)|| ≤ ρ} and A(b) = E[ZZTf(ZTb|Z)]. Here

|| · || is the Euclidean norm and eigminA(b) represents the minimal eigenvalue of

A(b).

Condition 3.4. For j = 1, . . . , J , infτ∈[τL,τU ] σ
(j)(τ) > 0, where σ(j)(τ) is the j + 1th

diagonal element of the variance matrix Φ(τ, τ)

Condition 3.1 is related to the boundedness of the covariates. Condition 3.2

assumes that the coefficient process is smooth and the conditional probability den-

sity distribution is bounded and smooth. Both Condition 3.1 and Condition 3.2 are

standard assumptions for quantile regression methods and can be satisfied in most

practical cases. Condition 3.3 requires that the asymptotic limit of Un(b, τ) is strictly

convex in a neighborhood of θ̃(τ) for τ ∈ [τL, τU ], from which we can infer that θ̃(τ)

would be the unique solution to µ(b, τ) = E[Z{I(Y ≤ ZTb)− τ}|Z] = 0, as well as

establishing the asymptotic properties. Condition 3.4 states the lower boundedness

of the standard deviation of the coefficient.
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3.7.1.2 Lemma A3.1, Lemma A3.2 and the Proofs

Lemma A3.1. Suppose the conditional distribution function of Y given XG = x is

continuous and strictly monotone for all possible values of x, and E(ZZT) is positive

definite. Then QY (τ |XG) = QY (τ) almost surely for τ ∈ [τL, τU ] is equivalent to

model (2) holds with β
(j)
0 (τ) = 0 for τ ∈ [τL, τU ] for j = 1, . . . , J

Proof. One the one hand, suppose we have QY (τ |XG) = QY (τ) almost surely for

τ ∈ [τL, τU ]. It is clear that we can write QY (τ |XG) = ZTθ0(τ) with θ0(τ) =

(QY (τ), 0, . . . , 0). Then, we show that given that E(ZZT) is positive definite, θ0(τ)

is the only solution to QY (τ |XG) = ZTb by contradiction. Let γ0(τ) denote another

solution to QY (τ |XG) = ZTb with γ0(τ) 6= θ0(τ). This implies

ZT(θ0(τ)− γ0(τ)) = 0,

which leads to

(θ0(τ)− γ0(τ))TZZT(θ0(τ)− γ0(τ)) = 0.

Given that E(ZZT) is positive definite and γ0(τ)− θ0(τ) 6= 0, however, we have

(θ0(τ)− γ0(τ))TZZT(θ0(τ)− γ0(τ)) > 0.

This leads to a contradict. Thus we have shown that θ0(τ) is the unique solution to

QY (τ) = ZTb, i.e. β
(j)
0 (τ) = 0 for τ ∈ [τL, τU ] for j = 1, . . . , J .

On the other hand, suppose model (2) holds with β
(j)
0 (τ) = 0 for τ ∈ [τL, τU ] and

j = 1, . . . , J , we can write

QY (τ |XG) = α0(τ).

Given that the conditional distribution function of Y given XG is continuous and
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strictly monotone, it follows from the definition of QY (τ |XG) that for any τ ∈ [τL, τU ],

pr(Y ≤ α0(τ)|XG) = τ.

Taking expectation on both side with respect to XG, we have

pr(Y ≤ α0(τ)) = τ.

As the conditional distribution function of Y given XG = x is continuous and strictly

monotone, we have the continuity and strictly monotonicity of conditional distribution

function of Y . This implies

α0(τ) = QY (τ).

Thus we have shown that QY (τ |XG) = QY (τ) for τ ∈ [τL, τU ]. This completes the

Proof of Lemma A3.1.

Lemma A3.2. Suppose the conditional distribution function of Y given XG = x is

continuous and strictly monotone for all possible values of x, and E(ZZT) is positive

definite. Then the solution to µ(b, τ)
.
= E[Z{I(Y ≤ ZTb) − τ}] = 0, with respect

to b ∈ RJ+1, uniquely exists and QY (τ |XG) = QY (τ) almost surely for τ ∈ [τL, τU ]

implies (β̃(1)(τ), . . . , β̃(J)(τ))T = 0.

Proof. For µ(b, τ) = E[Z{I(Y ≤ ZTb)− τ}], we can write

µ(b, τ) = E[EY {Z[I(Y ≤ ZTb)− τ ]}|Z] = E[Z{FY |Z(ZTb)− τ}].

As the conditional distribution function of Y given XG = x is continuous and strictly

monotone, we learn that FY |Z(ZTb) is continuous and strictly monotone. This also

suggests that the conditional density distribution function fY |Z(ZTb) > 0. Taking
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derivative on µ(b, τ) with respect to b, we have

∂µ(b, τ)

∂b
= E[ZZTfY |Z(ZTb)].

In the next few steps, we want to show that E[ZZTfY |Z(ZTb)] is positive definite.

First, given that E(ZZT) is positive definite. For any non-zero v ∈ RJ+1, we have

vTE(ZZT)v = E(vTZZTv) > 0,

which means that ZTv is non-zero. Then, since fY |Z(ZTb) > 0, we have

vT{ZZTfY |Z(ZTb)}v = (ZTv)TfY |Z(ZTb)ZTv > 0,

which leads to

vTE[ZZTfY |Z(ZTb)]v = E[vT{ZZTfY |Z(ZTb)}v] > 0,

Thus we can see that E[ZZTfY |Z(ZTb)] is positive definite for any τ ∈ [τL, τU ]. This

leads to the strictly monotonicity of µ(b, τ), which further suggests that an exact

zero-crossing θ̃(τ) = (α̃0(τ), . . . , β̃(J)(τ))T, as long as it exists, is the unique solution

to µ(b, τ) = 0.

As stated in Lemma A3.1, suppose QY (τ |XG) = QY (τ) almost surely for τ ∈

[τL, τU ], we can write QY (τ |XG) = ZTθ0(τ) with θ0(τ) = (QY (τ), 0, . . . , 0). From the

uniqueness of the solution to µ(b, τ) = 0, we have (β̃(1)(τ), . . . , β̃(J)(τ))T = 0.

3.7.1.3 Asymptotic Properties Without Assuming the Linear Quantile

Regression Model

We establish Theorem A3.1 and Theorem A3.2 for the uniform consistency and weak

convergence of θ̂(τ) for τ ∈ [τL, τU ] ⊆ (0, 1):
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Theorem A3.1. Under regularity conditions 3.1-3.3, we have

lim
n→∞

sup
τ∈[τL,τU ]

||θ̂(τ)− θ̃(τ)|| →p 0.

Theorem A3.2. Under regularity conditions 3.1-3.3,
√
n(θ̂(τ) − θ̃(τ)) converge

weakly to a mean zero Gaussian process for τ ∈ [τL, τU ] with covariance

Φ(τ ′, τ) = A{θ̃(τ ′)}−1E{χ(τ ′)χ(τ)T}A{θ̃(τ)}−1.

The proofs of Theorem A3.1 and Theorem A3.2 closely resembles that in Peng

and Fine (2009) and thus are omitted.

3.7.1.4 Proof of Theorem 3.1

Denote R̂(τ) = (R̂(1)(τ), . . . , R̂(J)(τ)) with R̂(j)(τ) = β̂(j)(τ)/σ̂
(j)
n (τ).

Proof. Following similar lines of Peng and Fine (2009), we can justify the uniform

consistency of the estimation for the variance covariance matrix via the sample-based

procedure outlined in Section 2.2, i.e.

sup
τ∈[τL,τU ]

‖Vn(τ)−Φ(τ, τ)‖ →p 0, (3.5)

which implies

sup
τ∈[τL,τU ]

|σ̂(j)
n (τ)− σ(j)(τ)| →p 0. (3.6)

Under the null hypothesis H0,j, we have β̃(j)(τ) = 0 for τ ∈ [τL, τU ]. This leads to

n1/2R̂(j)(τ) =
n1/2{β̂(j)(τ)− β̃(j)(τ)}

σ̂
(j)
n (τ)

=
n1/2{β̂(j)(τ)− β̃(j)(τ)}

σ(j)(τ)

(
σ(j)(τ)

σ̂
(j)
n (τ)

− 1

)
+
n1/2{β̂(j)(τ)− β̃(j)(τ)}

σ(j)(τ)
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By Theorem A3.2, there is weak convergence of n1/2{β̂(j)(τ)−β̃(j)(τ)}
σ̂
(j)
n (τ)

to a mean zero

Gaussian process with covariance process

Φ(j)(τ, τ) =
Φ(j+1,j+1)(τ ′, τ)

σ(j)(τ ′)σ(j)(τ)
,

where Φ(j+1,j+1)(τ ′, τ) denotes the j + 1th diagonal element of Φ(τ ′, τ). Also, we

have from Condition 3.4 and (3.6) that supτ∈[τL,τU ]

∣∣∣σ(j)(τ)

σ̂
(j)
n (τ)

− 1
∣∣∣ →p 1. Applying the

results in Theorem A3.2 and the Slutsky’s Theorem (line 11 of Example 1.4.7 in

Boucheron et al. (2013)), we have n1/2R̂(j)(τ) →d X (j)(τ) in l∞(FT ), where l∞(S)

is the collection of all bounded functions f : S 7→ R for any index set S and FT =

{ξ
(j)
1 (c,τ)

σ(j)(τ)
, c ∈ R2, τ ∈ [τL, τU ]} with ξ1(c, τ) = A(c)−1Z1(I(Y1 ≤ ZT

1c)− τ). Then, by

the extended continuous mapping theorem (Theorem 1.11.1 in van der Vaart et al.

(1996)), we establish the limiting null distribution for T̂
(j)
inte as

T̂
(j)
inte =

∫ τU

τL

∣∣∣∣∣∣n
1/2β̂(j)(τ)√
σ̂

(j)
n (τ)

∣∣∣∣∣∣
2

dτ →d

∫ τU

τL

{X (j)(τ)}2dτ.

Under H0,G, we have β̃(j)(τ) = 0 for τ ∈ [τL, τU ] and j = 1, . . . , J . Given that J is

finite and using the above results, we can directly obtain the limiting null distributions

of the proposed unconditional indices using the continuous mapping theorem:

T̂UC = max
j=1,...,J

{T̂ (j)
inte} →d max

j=1,...,J

{∫ τU

τL

{X (j)(τ)}2dτ

}
.
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3.7.1.5 Theorem A3.3 and the Proof

Theorem A3.3. Suppose the regularity conditions 3.1-3.4 in Section 3.7 hold. Then

T̂UC is consistent against the alternative hypothesis

Ha,G : For some j1 ∈ {1, . . . , J}, there exists τ ∈ [τL, τU ] such that |β̃(j1)(τ)| > 0.

Proof. We first look into the asymptotic limit of T̂UC under the alternative hypothesis

Ha,G. Given Ha,G holds, there exists τ ∈ [τL, τU ] such that |β̃(j1)(τ)| > 0 for some j1.

Using the fact that (a− b)2− 1
2
a2 + b2 = 1

2
(a− 2b)2 ≥ 0 for any a, b ∈ R, we can show

that

T̂UC ≥ T̂
(j1)
inte =

∫ τU

τL

∣∣∣∣∣n1/2β̂(j1)(τ)

σ̂
(j1)
n (τ)

∣∣∣∣∣
2

dτ =

∫ τU

τL

∣∣∣∣∣n1/2β̃(j1)(τ)

σ̂
(j1)
n (τ)

− n1/2(β̃(j1)(τ)− β̂(j1)(τ))

σ̂
(j1)
n (τ)

∣∣∣∣∣
2

dτ

≥ 1

2

∫ τU

τL

∣∣∣∣∣n1/2β̃(j1)(τ)

σ̂
(j1)
n (τ)

∣∣∣∣∣
2

dτ −
∫ τU

τL

∣∣∣∣∣n1/2(β̃(j1)(τ)− β̂(j1)(τ))

σ̂
(j1)
n (τ)

∣∣∣∣∣
2

dτ

≡ T̂
(j1)
inte,1 − T̂

(j1)
inte,2

By the continuous mapping theorem, Condition 3.4, and (3.6), we have n−1T̂
(j1)
inte,1 →p

ν0, where ν0 = 1
2

∫ τU
τL

∣∣∣ β̃(j1)(τ)

σ(j1)(τ)

∣∣∣2 dτ , and

T̂
(j1)
inte,2 →d

∫ τU

τL

{X (j1)(τ)}2dτ

and thus Op(1). For any a > 0, we can write

pr(T̂UC > a) ≥ pr(T̂
(j1)
inte > a) ≥ pr(n−1T̂

(j1)
inte,1 > n−1T̂

(j1)
inte,2 + a · n−1)

≥ pr(n−1T̂
(j1)
inte,1 > ν0/2)− pr(n−1T̂

(j1)
inte,2 + a · n−1 > ν0/2)

Under the alternative hypothesis Ha,G and Condition 3.4, we have ν0 > 0, which

suggests pr(n−1T̂
(j1)
inte,1 > ν0/2) → pr(ν0 > ν0/2) = 1 as n → ∞. Also, for any a > 0,
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we have n−1T̂
(j1)
inte,2 +a ·n−1 = op(1), thus pr(n−1T̂

(j1)
inte,2 +a ·n−1 > ν0/2)→ 0 as n→∞.

It then follows that pr(T̂UC > a) → 1 as n → ∞. Let a = cα,UC , where cα,UC is the

α-level critical value determined upon the limiting null distribution of T̂UC . We have

pr
(∣∣∣T̂UC∣∣∣ > cα,UC

)
→ 1

as n → ∞, which implies that T̂UC is consistent against Ha,G. This completes the

Proof of Theorem A3.3.

3.7.1.6 Justification of the Resampling Procedure

Firstly, as justified in the Proof of Theorem 3.1, for j = 1, . . . , J , there is weak

convergence of n1/2{β̂(j)(τ)−β̃(j)(τ)}
σ̂
(j)
n (τ)

to a mean zero Gaussian process with covariance

process

Φ(j)(τ, τ) =
Φ(j+1,j+1)(τ ′, τ)

σ(j)(τ ′)σ(j)(τ)
,

where Φ(j+1,j+1)(τ ′, τ) denotes the j + 1th diagonal element of Φ(τ ′, τ).

Next, given that {ιbi}ni=1 are i.i.d. random variables following a standard normal

distribution. Conditional on the observed data {(Yi,Zi)}ni=1, we have the asymptotic

covariance matrix of
n−1/2

∑n
i=1 ξ̂

(j)
i (τ)ιbi

σ̂
(j)
n (τ)

for j = 1, . . . , J as

E

{
n−

1
2

∑n
i=1 ξ̂

(j)
i (τ ′)ιbi

σ̂
(j)
n (τ ′)

· n
− 1

2

∑n
i=1 ξ̂

(j)
i (τ)ιbi

σ̂
(j)
n (τ)

∣∣∣∣∣ {(Yi,Zi)}ni=1

}
=
n−1

∑n
i=1 ξ̂

(j)
i (τ ′)ξ̂

(j)
i (τ)

σ̂
(j)
n (τ ′)σ̂

(j)
n (τ)

,

which converges in probability to Φ(j)(τ, τ) due to the uniform consistency of θ̂(·) and

sample-based variance covariance estimation procedure (Peng and Fine, 2009) and by

the law of large numbers.

Following the arguments in Lin et al. (1993), conditional on {(Yi,Zi)}ni=1,
n−1/2

∑n
i=1 ξ̂

(j)
i (τ)ιbi

σ̂
(j)
n (τ)

is zero-mean Gaussian with covariance function converge to the same limit as n1/2{β̂(j)(τ)−β̃(j)(τ)}
σ̂
(j)
n (τ)

for j = 1, . . . , J . Given that J is finite, applying the extended continuous mapping
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theorem as in the Proof of Theorem 3.1, we have T̂UC,b conditional on the observed

data and TUC are asymptotically equal under H0,G. This completes the justifica-

tion for using the resampling procedure in Section 2.2 to obtain the p values of the

proposed tests.

3.7.2 Theoretical Proofs for Screening in Ultra-high Dimen-

sional Setting

3.7.2.1 Some Necessary Notations and Regularity Conditions

For the unconditional screening procedures, we need to impose additional regularity

conditions as follow:

Condition 3.5. For some positive constant α0, minGl∈M[τL,τU ]
n−1T

(Gl)
UC > α0n

ζ−1/2.

Condition 3.6. For some positive constant α0, min{Gl:Gl∩M[τL,τU ] 6=∅} n
−1T

(Gl)
UC > α0n

ζ−1/2

and min{{rm}:rm∈M[τL,τU ]} n
−1T

({rm})
UC > α0n

ζ−1/2.

For the conditional screening procedure, we similarly impose an additional regu-

larity condition:

Condition 3.7. For some positive constant α0, min
Gc,l∈M

(C)
[τL,τU ]

n−1T
(Gc,l)
C > α0n

ζ−1/2.

All these conditions, including 3.5, 3.6 and 3.7, assume that the signal for the

variables in the active set is strong enough, where a larger ζ indicates a stronger

signal.

3.7.2.2 Proofs for Theorem 3.2 and Theorem 3

We first introduce Lemma A3.3, which establish the exponential tail bound of |β̂(j)(τ)−

β̃(j)(τ)| and |σ̂(j)
n (τ)− σ(j)(τ)| for τ ∈ [τL, τU ] and j = 1, . . . , J with fixed J .
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Lemma A3.3. Given that the regularity conditions 3.1-3.4 holds. For any c > 0 and

0 < ζ ≤ 1/2,

(A) there exists positive constant c1 such that

pr(|β̂(j)(τ)− β̃(j)(τ)| ≥ cnζ−1/2) ≤ 3 exp(−c1n
4ζ−1);

(B) there exists positive constant c2 such that

pr(|σ̂(j)
n (τ)− σ(j)(τ)| ≥ cnζ−1/2) ≤ 3(J + 1) exp(−c2n

4ζ−1)

for any τ ∈ [τL, τU ] and r = 1, . . . , p as n is sufficiently large.

Proof. Let Bn(b) = n−1
∑n

i=1 ρτ (Yi − ZT
i b) and B(b) = E[ρτ (Y − ZTb)]. From the

definition, θ̂(τ) = arg minb∈RJ+1 Bn(b) and θ̃(τ) is equivalent to the unique minimizer

of B(b). Applying the Lemma 2 of Hjort and Pollard (2011), we can derive from the

convexity of the objective function B(b) that for any δ > 0,

pr(|β̂(j)(τ)− β̃(j)(τ)| ≥ δ) ≤ pr(‖θ̂(τ)− θ̃(τ)‖ ≥ δ) (3.7)

≤ pr( sup
‖b−θ̃(τ)‖≤δ

|Bn(b)−B(b)| ≥ 1

2
inf

‖b−θ̃(τ)‖=δ
(B(b)−B(θ̃(τ))).

Consider b = (b(0), . . . , b(J)) such that ‖b − θ̃(τ)‖ = b(j) − β̃(j)(τ) = cnζ−1/2 ≡ δ.

Following Knight’s identity (Knight,1998), which takes the form of ρτ (u−v)−ρ(u) =

v[I(u < 0)−τ ]+
∫ v

0
[I(u ≤ s)−I(u ≤ 0)]ds for u, v ∈ R, we have for u∗ = Y −ZTθ̃(τ)
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and v∗ = X(j)cnζ−1/2,

B(b)−B(θ̃(τ))

= E{ρτ (Y −ZTθ̃(τ)−X(j)cnζ−1/2)− ρτ (Y −ZTθ̃(τ))}

= cnζ−1/2E{X(j)[I(Y ≤ ZTθ̃(τ))− τ ]}+ E{
∫ v∗

0

[I(Y ≤ ZTθ̃(τ) + s)− I(Y ≤ ZTθ̃(τ))]ds}

= cnζ−1/2E{X(j)[FY |XGl
(ZTθ̃(τ))− τ ]}+ E{

∫ v∗

0

[FY |XGl
(ZTθ̃(τ) + s)− FY |XGl

(ZTθ̃(τ))]ds}

≡ W1 +W2.

From the definition of θ̃(τ), we have |W1| = cnζ−1/2E{X(j)(τ − τ)} = 0. Also, for

some ξ between ZTθ̃(τ) and ZTθ̃(τ) + s, we can write

|W2| = E{
∫ v∗

0

fY |XGl
(ξ)sds} = 1/2fY |XGl

(ξ)E{(cnζ−1/2X(j))2} = O(n2ζ−1).

This indicates that there exists a positive constant γ1 such that inf‖b−θ̃(τ)‖=δ(B(b)−

B(θ̃(τ)) ≥ γ1n
2ζ−1, which leads to

pr(|β̂(j)(τ)− β̃(j)(τ)| ≥ δ) ≤ pr( sup
‖b−θ̃(τ)‖≤δ

|Bn(b)−B(b)| ≥ γ1

2
n2ζ−1)

≤ pr(|Bn(θ̃(τ))−B(θ̃(τ))| ≥ γ1

4
n2ζ−1)

+pr( sup
‖b−θ̃(τ)‖≤δ

|Bn(b)−Bn(θ̃(τ))−B(b) +B(θ̃(τ))| ≥ γ1

4
n2ζ−1)

≡ D1 +D2.

Let Qi = ρτ (Yi−ZT
i θ̃(τ)). Then Bn(θ̃(τ))−B(θ̃(τ)) = n−1

∑n
i=1(Qi−E{Qi}). From

the conditions 3.1 and Condition 3.2, we learn that Qi is bounded, i.e., supi|Qi| <∞.

Then there exist M , such that |Qi − E{Qi}| is uniformly bounded above by M .
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Applying Bernsterin’s inequality, we have

D1 = pr
(
|Bn(θ̃(τ))−B(θ̃(τ))| ≥ γ1

4
n2ζ−1

)
= pr

(
|

n∑
i=1

(Qi − E{Qi})| ≥
γ1

4
n2ζ

)

≤ 2 exp(− γ2
1n

4ζ−1/32

M2 +Mγ1n2ζ−1/12
) ≤ 2 exp(−c1n

4ζ−1)

for some c1. Then we work on D2 by introducing Lemma A3.4.

Lemma A3.4 (Massart’s concentration theorem, 2000). Let W1, . . . ,Wn be indepen-

dent random variables and let G be a class of functions satisfying ai,g ≤ g(Wi) ≤ bi,g

for some real numbers ai,g and bi,g, and for all 1 ≤ i ≤ n and g ∈ G. Define

L2 = supg∈G
∑n

i=1(bi,g − ai,g)2/n and Z = supg∈G |
∑n

i=1(g(Wi) − E(g(Wi)))|. Then

for any positive t,

pr(Z ≥ EZ + t) ≤ exp[− nt
2

2L2
].

To apply Lemma A3.4, first we check the conditions. Let Hi = ρτ (Yi − ZT
i b) −

ρτ (Yi −ZT
i θ̃(τ)). From Knight’s identity, we have

Hi = ZT

i (b− θ̃(τ))[I(Yi ≤ ZT

i θ̃(τ))− τ ]

+

∫ ZT
i (b−θ̃(τ))

0

[I(Yi −ZT

i θ̃(τ) ≤ s)− I(Yi ≤ ZT

i θ̃(τ))]ds

This leads to |Hi| ≤ 2|ZT
i (b − θ̃(τ))| = 2X

(j)
i cnζ−1/2 ≤ c′nζ−1/2 for some positive

constant c′.

Define D∗ = sup‖b−θ̃(τ)‖≤cnζ−1/2 n−1|
∑n

i=1(Hi − E{Hi})|. Let e1, . . . , en be a

Rademacher sequence, which are i.i.d. taking values of ±1 with probability 1/2

independent of H1, . . . , Hn. We have from the symmetrization theorem (Lemma 2.3.1
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in van der Vaart et al. (1996))

E(D∗) = E

{
sup

‖b−θ̃(τ)‖≤cnζ−1/2

n−1|
n∑
i=1

(Hi − E{Hi})|

}

≤ 2E

{
sup

‖b−θ̃(τ)‖≤cnζ−1/2

n−1|
n∑
i=1

eiHi|

}
.

Applying the contraction theorem in Ledoux and Talagrand (2013), we have

E

{
sup

‖b−θ̃(τ)‖≤cnζ−1/2

n−1|
n∑
i=1

eiHi|

}
≤ 2E

{
sup

‖b−θ̃(τ)‖≤cnζ−1/2

n−1|
n∑
i=1

eiZ
T

i (b− θ̃(τ))|

}
.

(3.8)

From (3.8), Condition 3.3, and e2
i = 1 with probability 1, we may further derive that

there exists some positive constant c′′, such that

E(D∗) ≤ 4E

{
sup

‖b−θ̃(τ)‖≤cnζ−1/2

n−1|
n∑
i=1

eiZ
T

i (b− θ̃(τ))|

}
≤ 4cnζ−1/2E‖n−1

n∑
i=1

eiZi‖

≤ 4cnζ−1/2[E‖n−1

n∑
i=1

eiZi‖2]1/2 = 4cnζ−1/2[n−2E(
n∑
i=1

ZT

i Zi)]
1/2 ≤ c′′nζ−1.

Take t = γ1n
2ζ−1/4− c′′nζ−1 and L2 = 4(c′)2n2ζ−1. Applying Lemma A3.4,

D2 = pr(D∗ ≥ γ1n
2ζ−1/4) = pr(D∗ ≥ E(D∗) + (γ1n

2ζ−1/4− E(D∗)))

≤ pr(D∗ ≥ E(D∗) + (γ1n
2ζ−1/4− c′′nζ−1))

≤ exp

(
−n(γ1n

2ζ−1/4− c′′nζ−1)2

8(c′)2n2ζ−1

)
≤ exp(−c2n

2ζ)

for some positive constant c2 as n is sufficiently large. Given 0 < ζ < 1/2, we have

4ζ − 1 < 2ζ. This indicates that there exists positive constant c1 and c2 such that

pr(|β̂(j)(τ)− β̃(j)(τ)| ≥ cnζ−1/2) ≤ 2 exp(−c1n
4ζ−1) + exp(−c2n

2ζ) ≤ 3 exp(−c1n
4ζ−1)

for any τ ∈ [τL, τU ] and r = 1, . . . , p. This completes the Proof of (A).



90

Let Rn(b) = n−1
∑n

i=1[ρτ (Yi −ZT
i b) + n−1/2u · en,k(τ)Tb], k = 1, . . . , J + 1, where

‖n−1/2u · en,k(τ)‖ = O(n−1/2). From the definition, c̃n,k(τ) = arg minb∈R2 Rn(b).

Using similar arguments as the Proof of (A), we can derive that for any c > 0 and

0 < ζ ≤ 1/2, there exists positive constant m
(k)
1 such that

pr(‖c̃n,k(τ)− θ̃(τ)‖ ≥ cnζ−1/2) ≤ 3 exp(−m(k)
1 n4ζ−1).

for any τ ∈ [τL, τU ] and k = 1, . . . , J + 1 as n is sufficiently large.

Denote dn,k(τ) = {c̃n,k(τ)− θ̂(τ)}. Using similar arguments as in Peng and Fine

(2009), we can derive supτ ‖c̃n,k(τ)− θ̃(τ)‖ → 0, a.s., and

Sn{c̃n,k(τ), τ}−Sn{θ̂(τ), τ} = A{θ∗k(τ)}·n1/2{c̃n,k(τ)−θ̂(τ)} = A{θ∗k(τ)}·n1/2dn,k(τ),

where θ∗k(τ) is between c̃n,k(τ) and θ̂(τ). As Sn(c̃n,k(τ), τ) ≈ uen,k(τ) and Sn{θ̂(τ), τ} ≈

0, we have

n1/2dn,k(τ)−A{θ̃(τ)}−1uen,k(τ) ≈ {A{θ∗k(τ)}−1 −A{θ̃(τ)}−1}uen,k(τ).

As c̃n,k(τ) and θ̂(τ) both belong to B(ρ0) with probability 1 as n is large enough, we

can conclude that θ∗k(τ) belongs to B(ρ0) with probability 1. By Condition 3.2 and

Condition 3.3, we learn thatA(b) is Lipschitz continuous and uniformly bounded both

above and below for any b ∈ B(ρ0). Then there exists positive constant C
(k)
A,1 and C

(k)
A,2,

such that ‖A{θ∗k(τ)}−1 − A{θ̃(τ)}−1‖ ≤ C
(k)
A,1‖θ∗k(τ) − θ̃(τ)‖ and ‖A{θ∗k(τ)}−1‖ ≤

C
(k)
A,2. Then we have for sufficiently large n,

‖n1/2dn,k(τ)−A{θ̃(τ)}−1uen,k(τ)‖ ≤ 2‖{A{θ∗k(τ)}−1 −A{θ̃(τ)}−1}uen,k(τ)‖

≤ 2C
(k)
A,1‖θ

∗
k(τ)− θ̃(τ)‖‖uen,k(τ)‖ ≤ 2C

(k)
A,1‖c̃n,k(τ)− θ̃(τ)‖‖uen,k(τ)‖.
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Using the fact that n−1/2u · en,k(τ) = O(n−1/2), almost surely for k = 1, . . . , J + 1, we

have 2C
(k)
A,1‖c̃n,k(τ) − θ̃(τ)‖‖uen,k(τ)‖ = o(1) and ‖A{θ̃(τ)}−1uen,k(τ)‖ = O(1). All

the above lead to

‖n1/2dn,k(τ) +A{θ̃(τ)}−1uen,k(τ)‖

≤ ‖n1/2dn,k(τ)−A{θ̃(τ)}−1uen,k(τ)‖+ 2‖A{θ̃(τ)}−1uen,k(τ)‖

≤ 3‖A{θ̃(τ)}−1uen,k(τ)‖

as n is large enough. Then we can write

pr(|σ̂(j)
n (τ)− σ(j)(τ)| ≥ cnζ−1/2) ≤ pr(‖Φ̂(τ, τ)−Φ(τ, τ)‖ ≥ cnζ−1/2)

≤ pr(‖nu−2Dn(τ)Dn(τ)T −A{θ̃(τ)}−1En(τ)En(τ)T{A{θ̃(τ)}−1}T‖ ≥ cnζ−1/2)

≤ pr(u−2‖
J+1∑
k=1

ndn,k(τ)dn,k(τ)T − u2A{θ̃(τ)}−1en,k(τ)en,k(τ)T{A{θ̃(τ)}−1}T‖ ≥ cnζ−1/2)

≤ pr(

J+1∑
k=1

u−2‖ndn,k(τ)dn,k(τ)T − u2A{θ̃(τ)}−1en,k(τ)en,k(τ)T{A{θ̃(τ)}−1}T‖ ≥ cnζ−1/2)

≤
J+1∑
k=1

pr(u−2‖ndn,k(τ)dn,k(τ)T − u2A{θ̃(τ)}−1en,k(τ)en,k(τ)T{A{θ̃(τ)}−1}T‖ ≥ cnζ−1/2

J + 1
)

≤
J+1∑
k=1

pr(u−2‖n1/2dn,k(τ) +A{θ̃(τ)}−1uen,k(τ)‖ · ‖{n1/2dn,k(τ)−A{θ̃(τ)}−1uen,k(τ)}T‖ ≥ cnζ−1/2

J + 1
)

≤
J+1∑
k=1

pr(3u−2‖A{θ̃(τ)}−1uen(τ)‖ · ‖n1/2dn,k(τ)−A{θ̃(τ)}−1uen,k(τ)‖ ≥ cnζ−1/2

J + 1
)

≤
J+1∑
k=1

pr(3u−2C
(k)
A,2‖uen,k(τ)‖ · 2C(k)

A,1‖c̃n,k(τ)− θ̃(τ)‖‖uen,k(τ)‖ ≥ cnζ−1/2

J + 1
)

(‖en,k(τ)‖ = 1 as the norm of eigenvectors of real symmetric matrices is always 1.)

≤
J+1∑
k=1

pr(6 max
k=1,...,J+1

{C(k)
A,2} · max

k=1,...,J+1
{C(k)

A,1}‖c̃n,k(τ)− θ̃(τ)‖ ≥ cnζ−1/2

J + 1
)

≤
J+1∑
k=1

pr(‖c̃n,k(τ)− θ̃(τ)‖ ≥ c∗nζ−1/2) (Let c∗ = c/{6(J + 1) max
k
{C(k)

A,2}max
k
{C(k)

A,1}})

≤
J+1∑
k=1

3 exp(−m(k)
1 n4ζ−1) ≤ 3(J + 1) exp(−c2n

4ζ−1)
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for some positive constant c2 = mink=1,...,J+1{m(k)
1 } and sufficiently large n. This

completes the Proof of (B).

We further introduce Lemma A3.5, which establish the exponential bound for

supτ∈[τL,τU ] |β̂(j)(τ)− β̃(j)(τ)| and supτ∈[τL,τU ] |σ̂
(j)
n (τ)− σ(j)(τ)|.

Lemma A3.5. Given that the regularity conditions 3.1-3.4 holds. For any c > 0 and

0 < ζ ≤ 1/2, (i) there exists positive constant c3 and η3 such that

pr

(
sup

τ∈[τL,τU ]

|β̂(j)(τ)− β̃(j)(τ)| > cnζ−1/2

)
≤ c3 exp(−η3n

4ζ−1 − log(nζ−1/2));

(ii) there exists positive constant c4 and η4 such that

pr

(
sup

τ∈[τL,τU ]

|σ̂(j)
n (τ)− σ(j)(τ)| > cnζ−1/2

)
≤ c4 exp(−η4n

4ζ−1 − log(nζ−1/2)).

Proof. We first prove (i). Note that by Condition 3.2, β̃(j)(τ) is uniformly bounded

and Lipschitz continuous. Then there exist w0 ≥ 0, such that |β̃(j)(τa) − β̃(j)(τb)| ≤

w0|τa − τb|. Given 0 < δ < min{1, 3w0

(τU−τL)
}, we can define a grid partition for [τL, τU ]

as τL = τ0 < τ1 < · · · < τNδ = τU with Nδ = b6w0(τU−τL)
δ

c, where bxc denotes the

largest integer smaller than x. With this partition, the grid would be |τk−τk−1| ≤ δ
3w0

.

Then we have |β̃(j)(τk)− β̃(j)(τk−1)| ≤ δ
3
.

We learn from the definition for β̂(j)(τk) and β̃(j)(τk) that they are non-decreasing.

Suppose |β̂(j)(τk)− β̃(j)(τk)| ≤ δ
3

and |β̂(j)(τk−1)− β̃(j)(τk−1)| ≤ δ
3
, then for τk−1 ≤ x ≤

τk, we have

β̂(j)(x)− β̃(j)(x) ≤ β̂(j)(τk)− β̃(j)(τk) + β̃(j)(τk)− β̃(j)(x) ≤ 2δ

3
< δ.

The other direction can be shown by the same arguments. Then we have |β̂(j)(x) −

β̃(j)(x)| < δ for any τk−1 ≤ x ≤ τk. Thus if supτ∈[τL,τU ] |β̂(j)(τ) − β̃(j)(τ)| > δ, there
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exist some 0 ≤ k ≤ Nδ such that |β̂(j)(τk)− β̃(j)(τk)| > δ
3
. Let δ = cnζ−1/2. Applying

Lemma A3.3 (A), there exist some positive constant η3 s.t.

pr

(
sup

τ∈[τL,τU ]

|β̂(j)(τ)− β̃(j)(τ)| > cnζ−1/2

)
≤ Nδpr

(
|β̂(j)(τk)− β̃(j)(τk)| >

c

3
nζ−1/2

)
≤ 18w0(τU − τL) exp(−η3n

4ζ−1 − log(cnζ−1/2)) ≡ c3 exp(−η3n
4ζ−1 − log(nζ−1/2)),

where c3 = 18w0(τU − τL)/c. This completes the Proof of (i).

By Condition 3.2, Condition 3.3 and Condition 3.4, we learn that σ(j)(τ) is also

uniformly bounded and Lipschitz continuous. Thus, using similar arguments as those

for (i) and applying Lemma A3.3 (B), we can show that there exist some positive

constant c4 and η4 such that

pr

(
sup

τ∈[τL,τU ]

|σ̂(j)
n (τ)− σ(j)(τ)| > cnζ−1/2

)
≤ c4 exp(−η4n

4ζ−1 − log(nζ−1/2)).

for sufficiently large n. This completes the Proof of (ii).

for Theorem 3.2. From the definition, we can write

|n−1T̂
(Gl)
UC − n

−1T
(Gl)
UC | =

∣∣∣∣∣∣n−1 max
j∈Gl

∫ τU

τL

∣∣∣∣∣
√
nβ̂(j)(τ)

σ̂
(j)
n (τ)

∣∣∣∣∣
2

dτ − n−1 max
j∈Gl

∫ τU

τL

∣∣∣∣∣
√
nβ̃(j)(τ)

σ(j)(τ)

∣∣∣∣∣
2

dτ

∣∣∣∣∣∣
≤ max

j∈Gl

∣∣∣∣∣∣
∫ τU

τL

∣∣∣∣∣ β̂(j)(τ)

σ̂
(j)
n (τ)

∣∣∣∣∣
2

dτ −
∫ τU

τL

∣∣∣∣∣ β̃(j)(τ)

σ(j)(τ)

∣∣∣∣∣
2

dτ

∣∣∣∣∣∣
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We can further write

∫ τU

τL

∣∣∣∣∣ β̂(j)(τ)

σ̂
(j)
n (τ)

∣∣∣∣∣
2

dτ −
∫ τU

τL

∣∣∣∣∣ β̃(j)(τ)

σ(j)(τ)

∣∣∣∣∣
2

dτ

=

∫ τU

τL

∣∣∣∣∣ [β̂(j)(τ)− β̃(j)(τ)]

σ̂
(j)
n (τ)

∣∣∣∣∣
2

dτ + 2

∫ τU

τL

β̃(j)(τ)

σ(j)(τ)

β̂(j)(τ)− β̃(j)(τ)

σ̂
(j)
n (τ)

dτ

+

∫ τU

τL

(
{σ(j)(τ)}2

{σ̂(j)
n (τ)}2

− 1

)∣∣∣∣∣ β̃(j)(τ)

σ(j)(τ)

∣∣∣∣∣
2

dτ

+2

∫ τU

τL

(
σ(j)(τ)

σ̂
(j)
n (τ)

− 1

)
β̃(j)(τ)

σ(j)(τ)

β̂(j)(τ)− β̃(j)(τ)

σ̂
(j)
n (τ)

dτ

≡ Aj,1 + Aj,2 + Aj,3 + Aj,4

From the uniform consistency and weak convergence of β̂(j)(τ), and uniform consis-

tency of σ̂
(j)
n (τ), we have Aj,4 = o(n−1/2) = o(nζ−1/2), which implies Aj,4 ≤ c

2
nζ−1/2 as

n is large enough. Therefore, for sufficiently large n, we have

pr( max
1≤l≤L

|n−1T̂
(Gl)
UC − n

−1T
(Gl)
UC | ≥ cnζ−1/2)

≤ pr

max
1≤l≤L

max
j∈Gl

∣∣∣∣∣∣
∫ τU

τL

∣∣∣∣∣ β̂(j)(τ)

σ̂
(j)
n (τ)

∣∣∣∣∣
2

dτ −
∫ τU

τL

∣∣∣∣∣ β̃(j)(τ)

σ(j)(τ)

∣∣∣∣∣
2

dτ

∣∣∣∣∣∣ ≥ cnζ−1/2


= pr

max
1≤j≤p

∣∣∣∣∣∣
∫ τU

τL

∣∣∣∣∣ β̂(j)(τ)

σ̂
(j)
n (τ)

∣∣∣∣∣
2

dτ −
∫ τU

τL

∣∣∣∣∣ β̃(j)(τ)

σ(j)(τ)

∣∣∣∣∣
2

dτ

∣∣∣∣∣∣ ≥ cnζ−1/2


≤ pr( max

1≤j≤p
(|Aj,1|+ |Aj,2|+ |Aj,3|) ≥

c

2
nζ−1/2)

≤
3∑

k=1

pr( max
1≤j≤p

(|Aj,k|) ≥
c

6
nζ−1/2).

This suggests that in order to obtain the exponential tail bound for pr(max1≤l≤L |n−1T̂
(Gl)
UC −

n−1T
(Gl)
UC | ≥ cnζ−1/2), we need to derive the bound for pr(max1≤j≤p(|Aj,k|) ≥ c

6
nζ−1/2), k =

1, 2, 3.

We then work on pr(max1≤j≤p(|Aj,k|) ≥ c
6
nζ−1/2) for k = 1, 2, 3 applying Lemma

A3.5.
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The exponential tail bound for pr(max1≤j≤p(|Aj,1|) ≥ c
6
nζ−1/2)

By definition, Aj,1 =
∫ τU
τL

∣∣∣ [β̂(j)(τ)−β̃(j)(τ)]

σ̂
(j)
n (τ)

∣∣∣2 dτ . Due to the consistency of β̂(j)(τ)

and by Condition 3.4, we can derive that for sufficient large n, there exists positive

constant π1 and π2, such that |β̂(j)(τ) − β̃(j)(τ)| ≤ 3π1 and σ̂
(j)
n (τ) ≥ π2/2, then we

have

pr( max
1≤j≤p

(|Aj,1|) ≥
c

4
nζ−1/2)

= pr

max
1≤j≤p

∫ τU

τL

∣∣∣∣∣ [β̂(j)(τ)− β̃(j)(τ)]

σ̂
(j)
n (τ)

∣∣∣∣∣
2

dτ

 ≥ c

6
nζ−1/2


≤ pr( max

1≤j≤p
sup

τ∈[τL,τU ]

∣∣∣∣∣ [β̂(j)(τ)− β̃(j)(τ)]

σ̂
(j)
n (τ)

∣∣∣∣∣
2

≥ c

6(τU − τL)
nζ−1/2)

≤ pr( max
1≤j≤p

sup
τ∈[τL,τU ]

|β̂(j)(τ)− β̃(j)(τ)| ≥ cπ2
2

72π1(τU − τL)
nζ−1/2)

≤ p · pr( sup
τ∈[τL,τU ]

|β̂(j)(τ)− β̃(j)(τ)| ≥ c∗nζ−1/2)

with c∗ =
cπ2

2

72π1(τU−τL)
. Applying Lemma A3.5 (A), there exists positive constant c∗3

and η∗3, such that

pr( max
1≤j≤p

(|Aj,1|) ≥
c

6
nζ−1/2) ≤ p · pr( sup

τ∈[τL,τU ]

|β̂(j)(τ)− β̃(j)(τ)| ≥ c∗nζ−1/2)

≤ pc∗3 exp(−η∗3n4ζ−1 − log(nζ−1/2)).

The exponential tail bound for pr(max1≤j≤p(|Aj,2|) ≥ c
6
nζ−1/2)
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Similarly, for Aj,2 = 2
∫ τU
τL

β̃(j)(τ)

σ(j)(τ)

β̂(j)(τ)−β̃(j)(τ)

σ̂
(j)
n (τ)

dτ , we can write

pr( max
1≤j≤p

(|Aj,2|) ≥
c

6
nζ−1/2)

= pr

(
max
1≤j≤p

(
2

∫ τU

τL

β̃(j)(τ)

σ(j)(τ)

β̂(j)(τ)− β̃(j)(τ)

σ̂
(j)
n (τ)

dτ

)
≥ c

6
nζ−1/2

)

≤ pr( max
1≤j≤p

sup
τ∈[τL,τU ]

|β̂(j)(τ)− β̃(j)(τ)| ≥ cπ2
2

24π1(τU − τL)
nζ−1/2)

≤ p · pr( sup
τ∈[τL,τU ]

|β̂(j)(τ)− β̃(j)(τ)| ≥ c∗∗nζ−1/2)

with c∗∗ =
cπ2

2

24π1(τU−τL)
. Applying Lemma A3.5, there exists positive constant c∗∗3 and

η∗∗3 , such that

pr( max
1≤j≤p

(|Aj,2|) ≥
c

6
nζ−1/2) ≤ p · pr( sup

τ∈[τL,τU ]

|β̂(j)(τ)− β̃(j)(τ)| ≥ c∗∗nζ−1/2)

≤ pc∗∗3 exp(−η∗∗3 n4ζ−1 − log(nζ−1/2))

for sufficient large n.

The exponential tail bound for pr(max1≤j≤p(|Aj,3|) ≥ c
6
nζ−1/2)

Then, for Aj,3 =
∫ τU
τL

(
{σ(j)(τ)}2

{σ̂(j)
n (τ)}2

− 1
) ∣∣∣ β̃(j)(τ)

σ(j)(τ)

∣∣∣2 dτ . Due to the consistency of β̂(j)(τ),

there exists π3 such that |β̂(j)(τ) + β̃(j)(τ)| ≤ 3π3 as n is sufficiently large. Then we

can write

pr( max
1≤j≤p

(|Aj,3|) ≥
c

6
nζ−1/2)

= pr

max
1≤j≤p

∫ τU

τL

(
{σ(j)(τ)}2

{σ̂(j)
n (τ)}2

− 1

)∣∣∣∣∣ β̃(j)(τ)

σ(j)(τ)

∣∣∣∣∣
2

dτ

 ≥ c

6
nζ−1/2


≤ pr( max

1≤j≤p
sup

τ∈[τL,τU ]

|σ̂(j)
n (τ)− σ(j)(τ)| ≥ cπ3

2

36π2
1π3(τU − τL)

nζ−1/2)

≤ p · pr( sup
τ∈[τL,τU ]

|σ̂(j)
n (τ)− σ(j)(τ)| ≥ c′nζ−1/2)

with c′ =
cπ3

2

36π2
1π3(τU−τL)

. Applying Lemma A3.5, there exists positive constant c∗4 and
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η∗4, such that

pr( max
1≤j≤p

(|Aj,3|) ≥
c

6
nζ−1/2) ≤ p · pr( sup

τ∈[τL,τU ]

|σ̂(j)
n (τ)− σ(j)(τ)| ≥ c′nζ−1/2)

≤ pc∗4 exp(−η∗4n4ζ−1 − log(nζ−1/2))

for sufficient large n.

As a result, we can show that

pr( max
1≤l≤L

|n−1T̂
(Gl)
UC − n

−1T
(Gl)
UC | ≥ cnζ−1/2)

≤ pr

max
1≤j≤p

∣∣∣∣∣∣
∫ τU

τL

∣∣∣∣∣ β̂(j)(τ)

σ̂
(j)
n (τ)

∣∣∣∣∣
2

dτ −
∫ τU

τL

∣∣∣∣∣ β̃(j)(τ)

σ(j)(τ)

∣∣∣∣∣
2

dτ

∣∣∣∣∣∣ ≥ cnζ−1/2


≤ pc∗3 exp(−η∗3n4ζ−1 − log(nζ−1/2)) + pc∗∗3 exp(−η∗∗3 n4ζ−1 − log(nζ−1/2))

+pc∗4 exp(−η∗4n4ζ−1 − log(nζ−1/2))

≤ pυ exp(−ηn4ζ−1 − log(nζ−1/2))

for sufficiently large n and some positive constant υ and η. This completes the Proof

of Theorem 3.2.

for Theorem 3. This can be shown follow the same arguments as in the Proof of

Theorem 3.2 replacing T̂
(Gl)
UC with T̂

(Gc,l)
C , thus are omitted.
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3.7.2.3 Proofs for Corollary 3.1, Corollary 3.2 and Corollary 3.3

for Corollary 3.1. Given condition 3.5, for pr(M[τL,τU ] ⊆ M̂[τL,τU ]), we can write

pr(M[τL,τU ] ⊆ M̂[τL,τU ]) ≥ pr( min
Gl∈M[τL,τU ]

n−1T̂
(Gl)
UC ≥ νn)

≥ pr( min
Gl∈M[τL,τU ]

n−1T
(Gl)
UC − max

Gl∈M[τL,τU ]

|n−1T̂
(Gl)
UC − n

−1T
(Gl)
UC | ≥ νn)

≥ 1− pr( max
Gl∈M[τL,τU ]

|n−1T̂
(Gl)
UC − n

−1T
(Gl)
UC | ≥ min

Gl∈M[τL,τU ]

n−1T
(Gl)
UC − νn)

≥ 1− pr( max
Gl∈M[τL,τU ]

|n−1T̂
(Gl)
UC − n

−1T
(Gl)
UC | ≥

α0

2
nζ−1/2).

Applying Theorem 3.2, there exists positive constant a1 and b1 such that

pr( max
Gl∈M[τL,τU ]

|n−1T̂
(Gl)
UC −n

−1T
(Gl)
UC | ≥

α0

2
nζ−1/2) ≤ S[τL,τU ]·a1 exp(−b1n

4ζ−1−log(nζ−1/2)).

Under the assumption that S[τL,τU ] = o(n), we have S[τL,τU ] · a1 exp(−b1n
4ζ−1 −

log(nζ−1/2)) converges to zero as n goes to infinity. This completes the Proof of

the sure screening property described in Corollary 3.1.

for Corollary 3.2. Define the set of relevant covariates in two steps as

MG1

[τL,τU ] = {Gl : 1 ≤ l ≤ L and there exists τ ∈ [τL, τU ] such thatQτ (Y |X) depends onXGl}

MG2

[τL,τU ] = {{rm} : 1 ≤ m ≤M and there exists τ ∈ [τL, τU ] such thatQτ (Y |X) depends onX{rm}}.

Remarkably, under the proposed screening procedure, we have MG2

[τL,τU ] = M[τL,τU ] and

|MG2

[τL,τU ]| = SτL,τU . Also, it is easy to see that {Gl : 1 ≤ l ≤ L,Gl ∈MG1

[τL,τU ]} = {Gl :

1 ≤ l ≤ L,Gl ∩M[τL,τU ] 6= ∅}, which suggests |MG1

[τL,τU ]| ≤ SτL,τU . Denote M̂G1

[τL,τU ] =

{Gl : 1 ≤ l ≤ L, w1,l ≥ νn,1} and M̂G2

[τL,τU ] = {rm : 1 ≤ m ≤ M, w2,m ≥ νn,2}. Then

we can write

pr(M[τL,τU ] ⊆ M̂G
[τL,τU ]) = pr(MG1

[τL,τU ] ⊆ M̂G1

[τL,τU ])pr(MG2

[τL,τU ] ⊆ M̂G2

[τL,τU ])
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Using similar lines as in the Proof of Corollary 3.1, under condition 3.6, we have

pr(MG1

[τL,τU ] ⊆ M̂G1

[τL,τU ]) ≥ pr( min
Gl∈M

G1
[τL,τU ]

n−1T̂
(Gl)
UC ≥ νn,1) = pr( min

Gl∩M[τL,τU ] 6=∅
n−1T̂

(Gl)
UC ≥ νn,1)

≥ 1− pr( max
Gl∩M[τL,τU ] 6=∅

|n−1T̂
(Gl)
UC − n

−1T
(Gl)
UC | ≥

α0

2
nζ−1/2)

and

pr(MG2

[τL,τU ] ⊆ M̂G2

[τL,τU ]) ≥ pr( min
rm∈M[τL,τU ]

n−1T̂
({rm})
UC ≥ νn,2)

≥ 1− pr( max
rm∈M[τL,τU ]

|n−1T̂
({rm})
UC − n−1T

({rm})
UC | ≥ α0

2
nζ−1/2).

Applying Theorem 3.2, we can conclude that there exist positive constant a∗2 and b∗2

such that

pr( max
Gl∩M[τL,τU ] 6=∅

|n−1T̂
(Gl)
UC − n

−1T
(Gl)
UC | ≥

α0

2
nζ−1/2)

≤ |MG1

[τL,τU ]| · a
∗
2 exp(−b∗2n4ζ−1 − log(nζ−1/2)) ≤ SτL,τU · a∗2 exp(−b∗2n4ζ−1 − log(nζ−1/2));

and exist positive constant a∗∗2 and b∗∗2 such that

pr( max
rm∈M[τL,τU ]

|n−1T̂
({rm})
UC − n−1T

({rm})
UC | ≥ α0

2
nζ−1/2)

≤ |MG2

[τL,τU ]| · a
∗∗
2 exp(−b∗∗2 n4ζ−1 − log(nζ−1/2)) = SτL,τU · a∗∗2 exp(−b∗∗2 n4ζ−1 − log(nζ−1/2)).

These lead to

pr(M[τL,τU ] ⊆ M̂G
[τL,τU ])

≥ {1− SτL,τU · a∗2 exp(−b∗2n4ζ−1 − log(nζ−1/2))}{1− SτL,τU · a∗∗2 exp(−b∗∗2 n4ζ−1 − log(nζ−1/2))}

≥ 1− SτL,τU · a2 exp(−b2n
4ζ−1 − log(nζ−1/2))

with a2 = a∗2 + a∗∗2 and b2 = min{b∗2, b∗∗2 }. As S[τL,τU ] = o(n), we can show that
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pr(M[τL,τU ] ⊆ M̂G
[τL,τU ]) converges to one as n goes to infinity. This completes the

Proof of Corollary 3.2.

for Corollary 3.3. For pr(M
(C)
[τL,τU ] ⊆ M̂

(C)
[τL,τU ]), using similar lines as in the Proof of

Corollary 3.1 and given condition 3.7, we have

pr(M
(C)
[τL,τU ] ⊆ M̂

(C)
[τL,τU ]) ≥ pr( min

Gc,l∈M
(C)
[τL,τU ]

n−1T̂
(Gc,l)
C ≥ νc,n)

≥ 1− pr( max
Gc,l∈M

(C)
[τL,τU ]

|n−1T̂
(Gc,l)
C − n−1T

(Gc,l)
C | ≥ α0

2
nζ−1/2).

Applying Theorem 3, there exists positive constant a3 and b3 such that

pr( max
Gc,l∈M

(C)
[τL,τU ]

|n−1T̂
(Gc,l)
C −n−1T

(Gc,l)
C | ≥ α0

2
nζ−1/2) ≤ S

(C)
[τL,τU ]·a3 exp(−b3n

4ζ−1−log(nζ−1/2)).

Assume S
(C)
[τL,τU ] = o(n), we have S

(C)
[τL,τU ] · a3 exp(−b3n

4ζ−1 − log(nζ−1/2)) converge to

zero as n goes to infinity. This completes the Proof of for Corollary 3.3.

3.7.3 Some Computational Considerations

To calculate {T̂ (j)
inte, j = 1, . . . , J}, we adopt the grid method as in Cui and Peng

(2022). Specifically, we approximate R̂(j)(τ) = β̂(j)(τ)/σ̂
(j)
n (τ) as a piecewise-constant

function on G ≡ {τl}N
∗

l=0, a finely determined grid with τ0 = τL, τN∗ = τU and grid size

max1≤l≤N∗{τl − τl−1} = o(n−1/2), and then calculate

T̂
(j)
inte = n

N∗∑
l=1

R̂(j)2(τl)(τl − τl−1).

We also extend the empirical strategy in Cui and Peng (2022) to determine the

choice of u for the estimation of Vn(τ). The following describe the algorithm devel-

oped to select u among a set of candidate values, U = {u1, . . . , uU}, for multivariate

setting:
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(S1.a) For each u ∈ U , calculate R̂(j)(τ ;u) ≡ β̂(j)(τ)/σ̂
(j)
n (τ ;u), j = 1, . . . , J for τ ∈ G,

where σ̂
(j)
n (τ ;u) denotes the σ̂

(j)
n (τ) computed with adjust constant u.

(S1.b) Calculate R̂?(u) = maxτ∈G max1≤j≤J R̂
(j)(τ ;u)−medianτ∈G max1≤j≤J R̂

(j)(τ ;u)

for each u ∈ U .

(S1.c) Calculate R̂†(u) = maxτ∈G max{Vn(τ ;u)}−minτ∈G min{Vn(τ ;u)}, where Vn(τ ;u)

is Vn(τ) computed with adjust constant u and max{Vn(τ ;u)} (or min{Vn(τ ;u)}) de-

notes the largest (or smallest) component of the matrix Vn(τ ;u).

(S1.d) Assign a large positive value to A[0] and B[0], say 105. Set k = 1 and

u[0] = max1≤k≤U uk + 1.

(i) If R̂?(k) < A[k−1] and R̂†(k) < B[k−1], then let A[k] = R̂?(k), B[k] = R̂†(k),

and u[k] = k. Otherwise, let A[k] = A[k−1], B[k] = B[k−1], and u[k] = u[k−1].

(ii) Increase k by 1 and go back to (i) until k > U .

(S1.e) If |u[U ]| < |uU |+ 1, then choose u as u[U ]. Otherwise, no appropriate u can be

selected from U .
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Chapter 4

Non-parametric Testing for

Survival Data With

Time-dependent Covariates
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4.1 The Proposed Testing Framework

4.1.1 Formulation of the Testing Problem

In this part, we focus on the problem to evaluate the association between a univariate

time dependent covariate (continuous, discrete, or a mixture of both) and the time-

to-event outcome. Let T be a continuous random variable representing the survival

time. Denote Z̄ = {Z(t), 0 ≤ t < ∞} as a time dependent covariate process, where

Z(t) is a univariate covariate at t ≥ 0. Let C denote the censoring time. Define

X = min(T,C) and δ = I(T ≤ C) as the observed survival time and the event status,

respectively.

To deal with the time dependent covariates, we adopt the idea to assessing the

overall effects over a pre-determined set of landmark times. Specifically, at each land-

mark time t0, we assess the effect on the event-free individuals, and then summarize

across all landmark times. Let M(t0) = I(X > t0) denote the indicator on whether

an individual survive up to time t0. Let T r(t0) be the residual survival time, and

V (t0) be a pre-specified functional form of Z̄(t0) = {Z(t), 0 ≤ t ≤ t0}, the covariate

process up to t0. Define Cr(t0) = C− t0 as the residual censoring time. The observed

residual survival time is then defined as Xr(t0) = min(T r(t0), Cr(t0)). We assume

(T r(t0), V (t0)) ⊥ C |M(t0) = 1 for any t0 ∈ T . The observed data at time t0 is then

noted as {Xr
i (t0), δi, Vi(t0)}{i;Mi(t0)=1,i=1...,n}.

Denote T as a finite set of the landmark time points of interest, and ∆ = [τL, τU ] as

the interval of quantile levels of interest for T r(t0). Based on the problem of interest,

we may formulate it as a hypothesis testing problem to test for

H0,T : QT r(t0)|V (t0),M(t0)=1(τ1) = QT r(t0)|M(t0)=1(τ1) for τ1 ∈ ∆, t0 ∈ T (4.1)

versus its alternative. Here QT r(t0)|M(t0)=1(τ1) denotes the τ1th quantile of T r(t0)



104

conditional on M(t0) = 1, and QT r(t0)|V (t0),M(t0)=1(τ1) denotes the τ1th quantile of

T r(t0) conditional on V (t0) and M(t0) = 1.

4.1.2 The Proposed Test Statistics

Consider the simplest case with τL = τU = τ1 and T = {t1}, i.e. the target is to

test whether QT r(t1)|V (t1),M(t1)=1(τ1) = QT r(t1)|M(t1)=1(τ1). Since T r(t1) is continuous,

we have the uniqueness of QT r(t1)|V (t1)=v,M(t1)=1(τ1) for any v in the support of V (t1),

noted as ΩV (t1). Following simple algebra, we can show that

QT r(t1)|V (t1),M(t1)=1(τ1) = QT r(t1)|M(t1)=1(τ1)

⇔
∫

ΩV (t1)

c2(τ1, v; t1)

τ1(1− τ1)F2(v; t1)(1− F2(v; t1))
dµ2(v) = 0, (4.2)

where c(τ1, v; ·) = Cov{I(F1(T r(·); ·) ≤ τ1), I(V (·) ≤ v)|M(·) = 1}, µ2 is a measure,

and F1(s; ·) = P (T r(·) ≤ s|M(·) = 1) and F2(v; ·) = P (V (·) ≤ v|M(·) = 1) represent

the cumulative distribution function of T r(·) and V (·), respectively, conditional on

M(·) = 1.

Motivated from (4.2), we define two indices to test for H0,T in (4.1):

qmax(T, Z̄; ∆, T ) = max
t0∈T

∫
∆

∫
ΩV (t0)

c2(τ1, v; t0)

τ1(1− τ1)F2(v; t0)(1− F2(v; t0))
dµ1(τ1)dµ2(v);

qsum(T, Z̄; ∆, T ) =
∑
t0∈T

∫
∆

∫
ΩV (t0)

c2(τ1, v; t0)

τ1(1− τ1)F2(v; t0)(1− F2(v; t0))
dµ1(τ1)dµ2(v).

From the definition, we can learn that qmax(T, Z̄; ∆, T ) measures the maximal covari-

ate effect across T and qsum(T, Z̄; ∆, T ) measures the total covariate effect over T . It

is remarkable that with time independent covariate, i.e. Z(t) = Z(t0) for any t, these

indices reduce to

q(T, Z(t0); ∆) =

∫
∆

∫
ΩV (t0)

c2(τ1, v; t0)

τ1(1− τ1)F2(v; t0)(1− F2(v; t0))
dµ1(τ1)dµ2(v).
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When we have continuous covariate, we can show that q(T, Z(t0); ∆) is equivalent to

the index suggested in Zhu et al. (2018). This is discussed with more details later in

Section 4.1.4.

To estimate the indices, the key insight is to obtain the estimator for F1(s; t0),

F2(v; t0) and c(τ1, v; t0), which can be written as

F1(s; t0) =
P (T r(t0) ≤ s,M(t0) = 1)

πt0
, F2(v; t0) =

P (V (t0) ≤ v,M(t0) = 1)

πt0
,

c(τ1, v; t0) =
P (F1(T r(t0); t0) ≤ τ1, V (t0) ≤ v,M(t0) = 1)

πt0
−

P (F1(T r(t0); t0) ≤ τ1,M(t0) = 1)

πt0
· P (V (t0) ≤ v,M(t0) = 1)

πt0

where πt0 = P (M(t0) = 1). When there is no censoring, they can be straight forwardly

estimated based on the empirical distribution:

Fn,1(s; t0) =
1

n

n∑
i=1

I(T ri (t0) ≤ s,Mi(t0) = 1)

π̂t0
,

Fn,2(v; t0) =
1

n

n∑
i=1

I(Vi(t0) ≤ v,Mi(t0) = 1)

π̂t0
,

ĉ(τ1, v; t0) =
1

n

n∑
i=1

{
I(Fn,1(T ri (t0); t0) ≤ τ1, Vi(t0) ≤ v,Mi(t0) = 1)

π̂t0
−

I(Fn,1(T ri (t0); t0) ≤ τ1,Mi(t0) = 1)

π̂t0
· I(Vi(t0) ≤ v,Mi(t0) = 1)

π̂t0

}

where π̂t0 = 1
n

∑n
i=1 I(Mi(t0) = 1).

Under the non-informative censoring assumption, to deal with censoring, we con-

sider to conduct estimation following the idea discussed in Lin et al. (1993). Specifi-

cally, we utilize the fact that

P (T r(t0) > q1,t0(τ1)|M(t0) = 1) =
P (Xr(t0) > q1,t0(τ1),M(t0) = 1)

πt0G
r
C,t0

(q1,t0(τ1))

P (T r(t0) > q1,t0(τ1), V (t0) ≤ v|M(t0) = 1) =
P (Xr(t0) > q1,t0(τ1), V (t0) ≤ v,M(t0) = 1)

πt0G
r
C,t0

(q1,t0(τ1))
,
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where q1,t0(τ1) = QT r(t0)|M(t0)=1(τ1), πt0 = P (M(t0) = 1) and Gr
C,t0

(·) = P (Cr(t0) >

·|M(t0) = 1) is the survival distribution of the residual censoring time Cr conditional

on Mi(t0) = 1. These suggest the estimators

Fn,1(q̂1,t0(τ1)) = 1− 1

n

n∑
i=1

I(Xr
i (t0) > q̂1,t0(τ1),Mi(t0) = 1)

Ĝr
C,t0

(q̂1,t0(τ1))π̂t0
,

Fn,2(v) =
1

n

n∑
i=1

I(Vi(t0) ≤ v,Mi(t0) = 1)

π̂t0
,

Fn,12(q̂1,t0(τ1), v) = Fn,2(v)− 1

n

n∑
i=1

I(Xr
i (t0) > q̂1,t0(τ1), Vi(t0) ≤ v,Mi(t0) = 1)

Ĝr
C,t0

(q̂1,t0(τ1))π̂t0
,

ĉ(τ1, v; t0) = Fn,12(q̂1,t0(τ1), v)− Fn,1(q̂1,t0(τ1)) · Fn,2(v)

where q̂1,t0(τ1) = Q̂T r(t0)|M(t0)=1(τ1), π̂t0 = 1
n

∑n
i=1 I(Mi(t0) = 1) and Ĝr

C,t0
(·) is the

Kaplan-Meier estimator for the survival distribution of the conditional residual cen-

soring time.

Let A2(t0) = {a1 = −∞, a2, . . . , an2(t0)} denote a set with a2, . . . , an2(t0) as the

unique values within the set {Vi(t0)}{i;Mi=1,i=1...,n} in an increasing order with n2(t0) ≤

n. Motivating from the fact that the empirical distributions are step functions, the

general estimators for the proposed test statistics are defined as

q̂max(T, Z̄; ∆, T ) = max
t0∈T

q̂(T r(t0), V (t0); ∆)

= max
t0∈T

n∑
j1=1

n2(t0)−1∑
j2=1

∫
∆∩[

j1−1
n

,
j1
n

)

∫
[aj2 ,aj2+1)

ĉ2(τ1, v; t0)

τ1(1− τ1)Fn,2(v)(1− Fn,2(v))
dµ1(τ1)dµ2(v)

= max
t0∈T

n∑
j1=1

n2(t0)−1∑
j2=1

ĉ2(
j1

n
, aj2 ; t0)

∫
∆∩[

j1−1
n

,
j1
n

)

dµ1(τ1)

τ1(1− τ1)

∫
[aj2 ,aj2+1)

dµ2(v)

Fn,2(v)(1− Fn,2(v))
,
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q̂sum(T, Z̄; ∆, T ) =
∑
t0∈T

q̂(T r(t0), V (t0); ∆)

=
∑
t0∈T

n∑
j1=1

n2(t0)−1∑
j2=1

∫
∆∩[

j1−1
n

,
j1
n

)

∫
[aj2 ,aj2+1)

ĉ2(τ1, v; t0)

τ1(1− τ1)Fn,2(v)(1− Fn,2(v))
dµ1(τ1)dµ2(v)

=
∑
t0∈T

n∑
j1=1

n2(t0)−1∑
j2=1

ĉ2(
j1

n
, aj2 ; t0)

∫
∆∩[

j1−1
n

,
j1
n

)

dµ1(τ1)

τ1(1− τ1)

∫
[aj2 ,aj2+1)

dµ2(v)

Fn,2(v)(1− Fn,2(v))
.

Notably, in the circumstance of interest, we set µ1 as a Lebesgue measure (i.e µ1(τ1) =

τ1), and µ2 as a counting measure (i.e µ2(v) = I(v ≥ aj2) for v ∈ [aj2 , aj2+1), j2 =

1, . . . , n2(t0)− 1). This leads to

∫
[a,b)

1

τ1(1− τ1)
dµ1(τ1) = {log(b)− log(1− b)} − {log(a)− log(1− a)} for any a, b,∫

[aj2 ,aj2+1)

1

Fn,2(v)(1− Fn,2(v))
dµ2(v) =

1

Fn,2(aj2)(1− Fn,2(aj2))
.

In Theorem 4.1, we establish the limit null distribution of the proposed test statistics.

Theorem 4.1. Given that Conditions 4.1 and 4.2 holds. Assume the density function

f1 and its first derivation with respect to τ are bounded away from zero and infinity

on ∆. Under null hypothesis H0,T , we have

nq̂max(T, Z̄; ∆, T )→d max
t0∈T

∫
∆

∫
ΩV (t0)

χ2(τ1, v; t0)dµ1(τ1)dµ2(v),

nq̂sum(T, Z̄; ∆, T )→d

∑
t0∈T

∫
∆

∫
ΩV (t0)

χ2(τ1, v; t0)dµ1(τ1)dµ2(v),

where χ(τ1, v; t0) is as defined in the Appendix Section 4.5.2.

We also investigate the asymptotic behavior of the proposed test statistics under

a general class of alternative hypotheses. The findings are stated in Theorem 4.2.

Theorem 4.2. Given that Conditions 4.1 and 4.2 holds. Assume the density function

f1 and its first derivation with respect to τ are bounded away from zero and infinity
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on ∆.

(A) q̂max(T, Z̄; ∆, T ) is consistent against the alternative hypothesis

Ha,max : qmax(T, Z̄; ∆, T ) > 0.

(B) q̂sum(T, Z̄; ∆, T ) is consistent against the alternative hypothesis

Ha,sum : qsum(T, Z̄; ∆, T ) > 0.

The results of Theorem 4.2 indicate that the test statistics have power approaching

to 1 (as n goes to∞) under alternative cases subject to very mild constraints. Given

the smoothness of q1,t0(τ1), a general scenario that ensures the consistency of both

statistics can be described as

H̃a: There exists an interval [τ1, τ2] ⊆ [τL, τU ] for v ∈ ΩV (t0) and tk ∈ T such

that |c(τ, v; tk)| > 0 for τ ∈ [τ1, τ2].

This suggests that the proposed tests are powerful even when it only influences a

segment of the outcome distribution for certain v and t0. This feature is conceptually

appealing for handling a dynamic covariate effect. The detailed proofs for Theorems

4.1 and 4.2 can be found in Appendix Sections 4.5.2 and 4.5.3.

4.1.3 The Proposed Resampling Procedure

Under H0,T , as presented in the Proof of Theorem 4.1, we can show that given t0,

ĉ(τ1, v; t0)√
Fn,2(v)(1− Fn,2(v))

=
Fn,12(q̂1,t0(τ1), v)− Fn,1(q̂1,t0(τ1)) · Fn,2(v)√

Fn,2(v)(1− Fn,2(v))

= − 1

n

n∑
i=1

ξi(τ1, v; t0) + op(n
−1/2)
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holds uniformly for any (τ1, v), where

ξi(τ1, v; t0) =
I(Mi(t0) = 1)

πt0
√
F2(v)(1− F2(v))

×

{I[Xr
i (t0) > q1,t0(τ1)][I(Vi(t0) ≤ v)− F2(v)]/Gr

C,t0
(q1,t0(τ1))

−(1− τ1)[I(Vi(t0) ≤ v)− F2(v)]}.

This motivates us to consider the following resampling procedure:

(a) Generate B independent sets of {ιbi}ni=1, where {ιbi}ni=1 are independent

random variables from a standard normal distribution and b = 1, 2, . . . , B.

(b) Compute the estimates for the influence function as

ξ̂i(τ1, v; t0) =
I(Mi(t0) = 1)

π̂t0
√
Fn,2(v)(1− Fn,2(v))

×

{[I(Xr
i (t0) > q̂1,t0(τ1), Vi(t0) ≤ v)− Fn,2(v)I(Xr

i (t0) > q̂1,t0(τ1))]/

GrC,t0 [q̂1,t0(τ1)]− (1− τ1)I[Vi(t0) ≤ v] + (1− τ1)Fn,2(v)}.

(c) For b = 1, 2, . . . , B, calculate

nq̂max,b(T
r, Z̄; ∆, T ) = max

t0∈T

n∑
j1=1

n2(t0)−1∑
j2=1

{n−1/2
n∑
l=1

ξ̂i(
j1
n
, aj2 ; t0)ιbi}2

×
∫

∆∩[
j1−1
n

,
j1
n

)

1

τ1(1− τ1)
dµ1(τ1),

nq̂sum,b(T
r, Z̄; ∆, T ) =

∑
t0∈T

n∑
j1=1

n2(t0)−1∑
j2=1

{n−1/2
n∑
l=1

ξ̂i(
j1
n
, aj2 ; t0)ιbi}2

×
∫

∆∩[
j1−1
n

,
j1
n

)

1

τ1(1− τ1)
dµ1(τ1).

(d) The p value is calculated as

p· =
1

B

B∑
b=1

I[nq̂·,b(T
r, Z̄; ∆, T ) > nq̂·(T

r, Z̄; ∆, T )].
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The resampling procedure presented above is subject to easy implementation based

on moment estimators. Similarly ideas were used by other authors, for example, Lin

et al. (1993), Li and Peng (2014) and Cui and Peng (2022). The rigorous theoretical

justification for the presented resampling procedure is provided in Section 4.5.4.

4.1.4 Connection with Zhu et al. (2018)’s Index

Remarkably, in the case when we have continuous time independent covariate without

ties, the proposed test statistics reduce to

q̂(T, Z(t0); ∆) =

n∑
j1=1

n2(t0)−1∑
j2=1

∫
∆∩[

j1−1
n

,
j1
n

)

∫
[aj2 ,aj2+1)

ĉ2(τ1, v; t0)

τ1(1− τ1)Fn,2(v)(1− Fn,2(v))
.dµ1(τ1)dµ2(v).

Due to the fact that

∫
ΩV (t0)

cov2{I[T ≤ QT (τ1)], I[Z(t0) ≤ v]}
τ1(1− τ1)F2(v)[1− F2(v)]

dv = 0

⇔
∫

[0,1)

cov2{I[T ≤ QT (τ1)], I[Z(t0) ≤ QZ(t0)(τ2)]}
τ1(1− τ1)τ2(1− τ2)

dτ2 = 0,

we can easily show that the reduced proposed test statistics is equivalent to the index

suggested in Zhu et al. (2018).

Moreover, to obtain the p values, Zhu et al. (2018) suggested a simulation-based

procedure to determine the critical value, which takes the following steps:

(i) Generate Y ∗i,k independently from uniform distribution for i = 1, . . . , n and

k = 1, 2.

(ii) Re-estimate qc(Y1, Y2; ∆, I2) based on {Y ∗i,1, Y ∗i,2}ni=1.

(iii) Repeat this procedure for B times and set cα to be the upper α quantile

of the estimates of qc(Y1, Y2; ∆, I2) obtained from the randomly generated
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samples.

It is easy to see from the definition of the index that given different ∆ and I2, the

critical values are different. Moreover, the critical values are subject to change when

we have discrete covariate or time dependent covariates with different sets of landmark

times. These suggest that we need to simulate the critical value for every single

case, which introduces additional computation thus not desirable. Alternatively, the

proposed resampling procedure is more general, and easy to implement with low

computational cost.

4.2 Numerical Studies

4.2.1 Simulations to Compare the Proposed Method with

Zhu et al. (2018)

We first conduct some simulations to compare the Proposed Method with Zhu et al.

(2018) in the case with continuous outcome without censoring and continuous covari-

ate. As discussed in Section 4.1.4, the proposed test statistics reduce to the equivalent

form of the index suggested in Zhu et al. (2018) in this case. The main difference

is the method used to conduct the inference. Specifically, we propose a resampling

procedure to simulate the limiting null distribution, while Zhu et al. (2018) utilize a

simulation-based procedure.

To compare the two methods, we consider the same simulation settings as the Zhu

et al. (2018)’s paper:

Set-up I: Y1 = A{Y 2
2 I(Y2 > 0) + Ỹ 2

2 I(Y2 ≤ 0)}+ ε.

Set-up II: Y1 = exp(AY 2
2 )ε.

Set-up III: Y1 = AY 2
2 + ε.
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Table 4.1: Empirical rejection rates based on 1000 replicates with continuous outcome
without censoring and continuous covariate. The upper numbers show the results
based on the proposed test, note as IQI; and the numbers in the below brackets show
the results for the test suggested in Zhu et al. (2018), noted as AQI.

Set-up n method A=0 A=1 A=2

100
IQI 0.049 0.929 0.973
AQI (0.050) (0.954) (0.986)

200
IQI 0.043 1.000 1.000
AQI (0.048) (1.000) (1.000)

100
IQI 0.049 0.884 0.976
AQI (0.050) (1.000) (1.000)

200
IQI 0.043 1.000 1.000
AQI (0.048) (1.000) (1.000)

100
IQI 0.049 1.000 1.000
AQI (0.050) (1.000) (1.000)

200
IQI 0.043 1.000 1.000
AQI (0.048) (1.000) (1.000)

Here ε, Y2 and Ỹ1 are generated independently from the standard Cauchy distribution.

A considered include 0,1 and 2. When A = 0, Y1 and Y2 are independent in all three

models. When A 6= 0, there is partial effect on τ1 ∈ (0.5, 1) for Set-up I, partial effect

on τ1 ∈ (0, 0.5) ∪ (0.5, 1) for Set-up II, and constant effect across (0,1) for Set-up III.

The sample size is set as n = 50, 100 or 200, and the significance level is set to be

α = 0.05.

Table 4.1 summarizes the results based on 1000 replicates. From the table, we

notice that both the proposed method and Zhu et al. (2018) reserve the correct size of

0.05 under the null cases even with relative small sample size of 50. When the sample

size is small, say n = 100, there is more difference between the empirical power based

on Zhu et al. (2018) and those obtained with the proposed procedure. Meanwhile, we

notice that the difference become smaller as the sample size increases. This can be

explained by the fact that the estimation of the influence curve tends to have more

variance when the sample size is small, leading to relatively lower power. Overall, we

can conclude that the proposed procedure is comparable to Zhu et al. (2018).
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4.2.2 Simulations Studies for Time-to-event Outcome with

Time Independent Covariate

Next, we conduct extensive simulation studies to investigate the finite-sample perfor-

mance of the proposed resampling-based testing procedures for time-to-event outcome

with time independent covariates. We consider six set-ups where T and Z̃ follow dif-

ferent relationships. In all set-ups, we generate Z̃ from Uniform(0, 1) and generate

censoring time C from Uniform(UL, UU), where UL and UU are properly specified

to produce 0%, 15% or 30% censoring. Let Φ(·) denote the cumulative distribution

function of the standard normal distribution. The six simulation set-ups are described

as follows.

Set-up I: Generate T such that Qτ{log(T )} = Φ−1(τ). Set (UL, UU) = (2, 3.8) to

produce 15% censoring, and set (UL, UU) = (1, 2.5) to produce 30% censoring.

Set-up II: Generate T such that Qτ{log(T )} = 0.2X + Φ−1(τ). Set (UL, UU) =

(2.5, 3.9) to produce 15% censoring and set (UL, UU) = (1.2, 2.8) to produce

30% censoring.

Set-up III: Generate T such that Qτ{log(T )} = 0.5X + Φ−1(τ). Set (UL, UU) =

(2.7, 4.9) to produce 15% censoring, and set (UL, UU) = (1.5, 3) to produce 30%

censoring.

Set-up IV: Generate T such that Qτ{log(T )} = l4(τ)X + Φ−1(τ), where l4(τ) is

as plotted in Figure 2.1. Set (UL, UU) = (2, 3.9) to produce 15% censoring, and

set (UL, UU) = (1, 2.5) to produce 30% censoring.

Set-up V: Generate T such that Qτ{log(T )} = l5(τ)X + Φ−1(τ), where l5(τ) is

as plotted in Figure 2.1. Set (UL, UU) = (5.2, 6.5) to produce 15% censoring,

and set (UL, UU) = (1.5, 3.5) to produce 30% censoring.
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Set-up VI: Generate T such that Qτ{log(T )} = l6(τ)X + Φ−1(τ), where l6(τ)

is as plotted in Figure 2.1. Set (UL, UU) = (3.5, 5.5) to produce 15% censoring,

and set (UL, UU) = (1.1, 3.5) to produce 30% censoring.

In Figure 4.1, we plot the true coefficient function β
(1)
0 (τ) for each set-up. It is

remarkable that these are the same set-ups as Cui and Peng (2022). It is easy to

see that Set-up I represents a null case, where Z̃ has no effect on any quantile of

T . Set-up II and III are two set-ups where Z̃ has nonzero constant effects over all

τ ∈ [0.1, 0.6]. The constant effect in Set-up II has a magnitude of 0.2, which is smaller

than that in Set-up III, which is 0.5. In Set-ups IV, V, and (VII), Z̃ has a dynamic

effect varying across different τ ’s. More specifically, Z̃ has a partial effect over the τ -

interval [0.1, 0.49] in Set-up IV. In Set-up V, the magnitude of Z̃’s effect is symmetric

around 0.5, while the sign of the effect is opposite for τ < 0.5 and for τ > 0.5, and the

effect equals 0 at τ = 0.5. In Set-up VI, the τ -varying effect pattern of Z̃ is similar

to that in Set-up V except that there is a small interval around 0.5 where Z̃ has no

effect in Set-upVI.

We compare the proposed method, noted as “IQI”, with the Wald test based on

the Cox PH model, denoted by “CPH (Wald)”, the Wald test based on the locally

concerned quantile regression that focuses on τ = 0.4, 0.5, or 0.6, denoted by “CQR

(Wald)”, as well as the tests based on working linear quantile regression model in

Cui and Peng (2022), noted as “GST” and “GIT”. To implement CQR (Wald), we

adopt Peng and Huang (2008)’s estimates with variance estimated by bootstrapping.

The resampling size used for both CQR (Wald) and the proposed testing procedures

is set as 2500. For all the methods, we consider sample sizes 200 and 400.

In Table 4.2, we report the empirical rejection rates based on 1000 simulations.

The results in Set-up I show that the proposed IQI, and the existing tests, GST, GIT,

CQR (Wald) and CPH (Wald), have empirical sizes quite close to the nominal level

0.05. The GST yields relatively larger empirical type I errors as compared to the
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Figure 4.1: The true coefficient function for all simulation set-ups.

other tests, especially when the sample size is not large. Comparably, the proposed

IQI is more robust and the empirical size is close to 0.05 with relative small sample

size of 200.

When the quantile effect of Z̃ is constant over τ (i.e. Set-ups II and III), CPH

(Wald) has comparable empirical power as compared to the proposed IQI. These

observations suggest that in the trivial constant effect cases, the proposed test have

comparable power with the traditional Cox regression based tests. In both Set-ups

II and III, the locally concerned CQR (Wald) consistently yields lower empirical

power than the globally concerned methods, IQI, GIT and GST. This reflects the

power benefit resulted from integrating information on covariate effects on different

quantiles, rather than focusing on the covariate effect on a single quantile.

In Set-ups IV, V, and VI, the effect of Z̃ is τ -varying, reflecting its dynamic

association with T . In these cases, CPH (Wald), which assumes a constant covariate

effect, can have poor power to detect the dynamic effect of Z̃ (e.g. 14.0% empirical
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power in Set-up V with n = 400 in the presence of 30% censoring), while the proposed

IQI can yield much higher power (e.g. >75% power in Set-up V with n = 400 in the

presence of 30% censoring). The locally concerned CQR (Wald) can have higher power

than CPH (Wald) when the targeted quantile level is within the τ -region where β
(1)
0 (τ)

is non-zero. When the targeted quantile level is outside the τ -region with non-zero

effect, such as τ = 0.6 in Set-up IV or τ = 0.5 in Set-ups V and VI, the CQR (Wald)

has even poorer power compared to CPH (Wald). This is well expected because

these cases may serve as the null cases for the locally concerned CQR (Wald). This

confirms that CQR (Wald) is inadequate to capture the meaningful effect of Z̃ that

is manifested at non-targeted quantiles.

We compare the simulation results across settings that are only differed by the

censoring distribution. For each relationship between Z̃ and T specified by Set-ups

I-VI, we consider three different censoring distributions to yield 0%, 15%, and 30%

censoring. From our comparisons, we find that quantile based tests, including IQI,

GST, GIT and CQR (Wald), demonstrate small variations in empirical powers as the

censoring rate (or distribution) changes. In cases with a constant covariate effect, the

Cox regression based test, CPH (Wald), also has similar performance among settings

with different censoring rates. However, in Set-up V, where the covariate effect is not

constant over τ , CPH (Wald) has reasonably good power when there is no censoring or

only 15% censoring, but its performance deteriorates considerably when the censoring

rate is increased to 30%. We have a similar observation for CPH (Wald) in Set-up

VI. A reasonable interpretation of these observations is that the capacity to detect

a dynamic effect can be weakened by incorrectly assuming a constant proportional

hazard effect and can be further attenuated by the missing data from censoring.

In summary, our simulation results demonstrate the robust satisfactory perfor-

mance of the proposed method for detecting a time independent covariate of either a

constant or dynamic effect on censored outcome.
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Table 4.2: Empirical rejection rates based on 1000 replicates with censored outcome
and continuous covariate.

Set-up n
IQI GST GIT CQR(Wald)

CPH (Wald)
∆ = (0.1, 0.6) τ = 0.4 τ = 0.5 τ = 0.6

0% censoring
I 200 0.051 0.098 0.070 0.055 0.052 0.056 0.048

400 0.057 0.093 0.075 0.069 0.064 0.060 0.047
II 200 0.100 0.215 0.156 0.104 0.108 0.108 0.121

400 0.178 0.275 0.216 0.162 0.156 0.139 0.183
III 200 0.446 0.541 0.478 0.344 0.374 0.337 0.456

400 0.712 0.790 0.771 0.589 0.595 0.590 0.745
IV 200 0.183 0.378 0.250 0.074 0.045 0.049 0.060

400 0.387 0.656 0.476 0.101 0.056 0.055 0.049
V 200 0.387 0.618 0.452 0.106 0.057 0.121 0.428

400 0.759 0.939 0.828 0.169 0.071 0.165 0.737
VI 200 0.437 0.729 0.543 0.095 0.047 0.088 0.228

400 0.836 0.971 0.898 0.154 0.048 0.097 0.446
15% censoring

I 200 0.051 0.100 0.073 0.066 0.062 0.057 0.049
400 0.061 0.091 0.078 0.072 0.072 0.066 0.051

II 200 0.100 0.234 0.167 0.117 0.131 0.117 0.115
400 0.175 0.275 0.214 0.155 0.153 0.150 0.178

III 200 0.441 0.566 0.485 0.359 0.401 0.360 0.450
400 0.705 0.786 0.772 0.585 0.592 0.576 0.722

IV 200 0.180 0.377 0.254 0.097 0.060 0.053 0.063
400 0.396 0.652 0.478 0.116 0.065 0.063 0.067

V 200 0.383 0.653 0.464 0.143 0.070 0.118 0.260
400 0.756 0.937 0.827 0.208 0.071 0.153 0.458

VI 200 0.438 0.731 0.552 0.149 0.062 0.086 0.125
400 0.836 0.971 0.896 0.198 0.055 0.095 0.201

30% censoring
I 200 0.042 0.171 0.095 0.062 0.060 0.048 0.047

400 0.053 0.110 0.085 0.069 0.074 0.065 0.056
II 200 0.094 0.302 0.186 0.115 0.122 0.105 0.122

400 0.168 0.305 0.221 0.152 0.156 0.138 0.188
III 200 0.427 0.681 0.539 0.360 0.393 0.322 0.432

400 0.697 0.828 0.791 0.585 0.590 0.534 0.703
IV 200 0.156 0.440 0.271 0.101 0.061 0.044 0.056

400 0.370 0.668 0.480 0.115 0.065 0.062 0.085
V 200 0.384 0.799 0.573 0.135 0.069 0.103 0.092

400 0.758 0.960 0.846 0.206 0.068 0.135 0.140
VI 200 0.425 0.803 0.587 0.148 0.063 0.077 0.053

400 0.823 0.978 0.903 0.199 0.052 0.082 0.064
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4.2.3 Simulations Studies for Time-to-event Outcome with

Time Dependent Covariate

4.2.3.1 Data Generation Steps and Simulation Set-ups

It is not direct to generate varying covariate effect based on the time dependent cox

model. We propose to generate the residual survival time sequentially based on the

quantile regression model.

Consider a sequence of time {t1, t2, . . . , tL} = {0, 0.5, . . . , 5}. We first generate

the covariate process Z̄i(t) on tj ∈ {t1, t2, . . . , tJ} from a pre-specified distribution.

Then, to simulate the survival time, the basic idea is that we generate the residual

survival time for each tj given that the T > tj, and then truncate the survival time

with tj+1. Specifically, for each individual, we take the following steps:

(a) Initialize j = 1. Generate the conditional quantile τj ∼ Uniform(0, 1).

(b) Generate the log residual survival time log(Tj − tj) given that there is no event

at tj, from the model with V (tj) = Z(tj):

Qlog(Tj−tj){τj|Z̄(tj)} = V (tj)
Tξj(τj, tj) + Φ−1(τj). (4.3)

(c) If Tj ≤ tj+1 or j = J , then T = Tj and stop; otherwise, set j = j + 1 and go to

step (b).

We then generate the log censoring time C from the Uniform distribution. This leads

to δ = I(T ≤ C) and X = min{T,C}.

Moreover, to more easily generate the varying covariate effects, we consider an

intermediate true coefficient function η(τ) for the covariate effect we set for V (tj).

Specifically, given the time sequence {t1, t2, . . . }, we take the following steps:
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(a) Start from t1 = 0. At the baseline, the model is

Qlog T1{τ1|Z̄(t1)} = V (t1)Tξ1(τ1, t1) + Φ−1(τ1), τ1 ∈ (0, 1), (4.4)

where ξ1(τ1, t1) = η(τ1). From the model (4.4), given V (t1), we can solve the

equation log t2 − V (t1)Tξ1(τ, t1) − Φ−1(τ) = 0 for τ and denote the unique

solution as τ ∗2 . With the data generation procedure, we will truncate the time

with t2 and stop if T1 ≤ t2, i.e., τ1 ≤ τ ∗2 . Define τ
(2)
C = τ ∗2 .

(b) Next we consider t2. Given event free at t2, the model is

Qlog(T2−t2){τ2|Z̄(t2)} = V (t2)Tξ2(τ2, t2) + Φ−1(τ2), τ2 ∈ (0, 1), (4.5)

where ξ2(τ2, t2) = η{τ (2)
C + (1− τ (2)

C )τ2}. Similarly, from the model (4.5), given

V (t2), we can solve the equation log(t3 − t2)−V (t2)Tξ2(τ, t2)−Φ−1(τ) = 0 for

τ and denote the unique solution as τ ∗3 . With the data generation procedure,

we will truncate the time with t3 and stop if T2 ≤ t3, i.e., τ2 ≤ τ ∗3 . Define

τ
(3)
C = τ

(2)
C + (1− τ (2)

C )τ ∗2 . Note that we can directly obtain τ
(3)
C by solving

0 = log(t3 − t2)− V (t2)Tξ0(τ ∗2 , t2)− Φ−1(τ ∗2 )

= log(t3 − t2)− V (t2)Tη{τ (2)
C + (1− τ (2)

C )τ ∗2 } − Φ−1(τ ∗2 )

= log(t3 − t2)− V (t2)Tη{τ (3)
C } − Φ−1

(
τ

(3)
C − τ

(2)
C

1− τ (2)
C

)

(c) Suppose for tj, we can similarly obtain τ
(j+1)
C by solving

log(tj+1 − tj)− V (tj)
Tη{τ (j+1)

C } − Φ−1

(
τ

(j+1)
C − τ (j)

C

1− τ (j)
C

)
= 0.
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Then for tj+1, given event free at tj+1, the model is

Qlog(Tj+1−tj+1){τj+1|Z̄(tj+1)} = V (tj+1)Tξj+1(τj+1, tj+1)+Φ−1(τj+1), τj+1 ∈ (0, 1),

(4.6)

where ξj+1(τj+1, tj+1) = η{τ (j+1)
C +(1−τ (j+1)

C )τj+1}. From the model (4.6), given

V (tj+1), we can solve the equation log(tj+2 − tj+1) − V (tj+1)Tξj+1(τ, tj+1) −

Φ−1(τ) = 0 for τ and denote the unique solution as τ ∗j+2. With the data genera-

tion procedure, we will truncate the time with tj+2 and stop if Tj+1 ≤ tj+2, i.e.,

τj+1 ≤ τ ∗j+2. Define τ
(j+2)
C = τ

(j+1)
C + (1 − τ (j+1)

C )τ ∗j+2. We can directly obtain

τ
(j+2)
C by solving

log(tj+2 − tj+1)− V (tj+1)Tη{τ (j+2)
C } − Φ−1

(
τ

(j+2)
C − τ (j+1)

C

1− τ (j+1)
C

)
= 0.

The simulation set-ups we consider include:

Set-up I: The null case without covariate effects;

Set-up II: The case with constant covariate effects of magnitude 1;

Set-up IV: The case with partial covariate effect with symmetric effects on both

the lower and upper quantile level;

Set-up V: The case with partial covariate effect on both the lower and upper

quantile level with larger effects on the lower quantile level.

In Figure 4.2, we plot the intermediate function η(τ) we used for each set-up. In this

simulation study, the censoring rate is about 30% through choosing parameter for the

Uniform distribution.
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Figure 4.2: The intermediate function η(τ) used for all simulation set-ups.
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4.2.3.2 Simulation Results

We first consider the case with continuous time dependent covariates. Specifically,

we generate the covariate process Z̄i(t) on tj ∈ {t1, t2, . . . , tJ} from the normal

distribution, i.e., Zi(tj) ∼ N(µi, 0.25) with µi ∼ Uniform(−0.5, 0.5). For each

generated data, we compare the proposed methods based on q̂max(T, Z̄; ∆, T ) and

q̂sum(T, Z̄; ∆, T ), noted respectively as “IQI(MAX)” and “IQI(SUM)”, with the Wald

test based on the time dependent Cox PH model, denoted by “CPH (Wald)”. The

sample size we considered is 200. For the set of landmark time points considered, we

consider R1 = {0, 2}, R2 = {0, 1, 2} and R3 = {0, 0.5, 1, 1.5, 2}.

Table 4.3 summarize the empirical rejection rates based on 1000 replicates. The

results in Set-up I show that the proposed IQI(MAX), IQI(SUM) and CPH (Wald),

all have empirical sizes quite close to the nominal level 0.05 with relatively small

sample size of 200. When the quantile effect of Z̄(t) is constant over τ (i.e. Set-

ups II), CPH (Wald) has comparable empirical power as compared to the proposed

IQI(MAX) and IQI(SUM). These observations suggest that in the trivial constant

effect cases, the proposed test have comparable power with the traditional Cox re-

gression based tests. In Set-ups III and IV, the effect of Z̄(t) is τ -varying, reflecting

its dynamic association with T . In these cases, CPH (Wald), which assumes a con-

stant covariate effect, can have poor power to detect the dynamic effect of Z̄(t) (e.g.

5.3% empirical power in Set-up IV), while the proposed IQI(MAX) and IQI(SUM)

can yield much higher power (e.g. >80% power with landmark time set R3 in Set-up

IV). Moreover, we notice that the power tends to increase with more landmark time

points considered. This can be explained by the fact that we are able to utilize more

information from the observed data by considering more landmark time points to

capture the dynamic effect. This results in a gain in statistical power, as more effects

can be detected. Finally, it is worth mentioning that the two proposed methods,

IQI(MAX) and IQI(SUM), have comparable performance with IQI(SUM) tends to
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Table 4.3: Empirical rejection rates based on 1000 replicates for sample size of 200
with censored outcome and continuous time dependent covariate.

Set-up Method
Landmark Time Set
R1 R2 R3

I
IQI(MAX) 0.057 0.057 0.054
IQI(SUM) 0.057 0.055 0.051

CPH(Wald) 0.049 0.049 0.049

II
IQI(MAX) 1.000 1.000 1.000
IQI(SUM) 1.000 1.000 1.000

CPH(Wald) 1.000 1.000 1.000

III
IQI(MAX) 0.302 0.460 0.494
IQI(SUM) 0.357 0.485 0.541

CPH(Wald) 0.097 0.097 0.097

IV
IQI(MAX) 0.616 0.770 0.822
IQI(SUM) 0.691 0.807 0.861

CPH(Wald) 0.053 0.053 0.053

be more powerful in most alternative cases. As a result, these two methods can be

used interchangeably.

Next, we investigate the case with binary time dependent covariates. Specifically,

we generate the covariate process Z̄i(t) on tj ∈ {t1, t2, . . . , tJ} from the binary dis-

tribution, i.e., Zi(tj) ∼ Bernoulli(0.5). For each generated data, we compare the

three methods, the proposed “IQI(MAX)”, “IQI(SUM)” and “CPH (Wald)”. For the

set of landmark time points considered, we consider R1 = {0, 2}, R2 = {0, 1, 2} and

R3 = {0, 0.5, 1, 1.5, 2}. The sample size we considered is 200, 400 and 800.

Table 4.4 summarize the empirical rejection rates based on 1000 replicates. From

the table, we have similar findings as the cases with continuous time dependent co-

variates. Additionally, we look at different sample sizes in this case. From the table,

we can conclude that as the sample size increases, the empirical size is getting closer

to the nominal level of 0.05 under the null case (i.e. Set-up I), and the empirical

power if get closer to 1 under the alternative cases (i.e. Set-up II-IV).

Finally, we investigate the case with factor time dependent covariates. Specifically,

we generate the covariate process Z̄i(t) on tj ∈ {t1, t2, . . . , tJ} from the multinomial
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Table 4.4: Empirical rejection rates based on 1000 replicates with censored outcome
and binary time dependent covariate.

Set-up n Time Set IQI(MAX) IQI(SUM) CPH(Wald)

I

200
R1 0.066 0.066 0.044
R2 0.065 0.066 0.043
R3 0.066 0.072 0.044

400
R1 0.051 0.053 0.062
R2 0.047 0.050 0.062
R3 0.056 0.046 0.062

800
R1 0.049 0.049 0.051
R2 0.045 0.054 0.051
R3 0.051 0.045 0.051

II

200
R1 1.000 1.000 1.000
R2 1.000 1.000 1.000
R3 1.000 1.000 1.000

400
R1 1.000 1.000 1.000
R2 1.000 1.000 1.000
R3 1.000 1.000 1.000

800
R1 1.000 1.000 1.000
R2 1.000 1.000 1.000
R3 1.000 1.000 1.000

III

200
R1 0.233 0.353 0.164
R2 0.218 0.265 0.164
R3 0.211 0.221 0.164

400
R1 0.538 0.728 0.275
R2 0.497 0.586 0.275
R3 0.477 0.475 0.275

800
R1 0.933 0.979 0.488
R2 0.913 0.952 0.488
R3 0.907 0.923 0.488

IV

200
R1 0.299 0.435 0.192
R2 0.274 0.311 0.192
R3 0.252 0.225 0.192

400
R1 0.667 0.817 0.259
R2 0.634 0.698 0.259
R3 0.593 0.520 0.260

800
R1 0.986 0.994 0.472
R2 0.983 0.983 0.472
R3 0.976 0.929 0.472
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distribution, i.e., Zi(tj) ∼ Multinomial(1, (0.25, 0.25, 0.25, 0.25)) with levels “A”,

“B”, “C” and “D”. For each generated data, we apply the proposed “IQI(MAX)”,

“IQI(SUM)” with different inherent orders. Specifically, if the order is specified as

“A” < “B” < “C” < “D”, we will set “A” = 1, “B” = 2, “C” = 3 and “D” = 4. In

this case, under the formulation of the test statistics, “D” is the reference level and

the test statistics capture the overall covariate effects for “A”, “B” and “C”. The

proposed method is then compared with “CPH (Wald)”. For the set of landmark time

points considered, we consider R1 = {0, 2}, R2 = {0, 1, 2} and R3 = {0, 0.5, 1, 1.5, 2}.

The sample size we considered is 200, 400 and 800.

Table 4.5 summarize the empirical rejection rates based on 1000 replicates. From

the table, we have similar findings as the previous cases with either continuous or bi-

nary time dependent covariates. Furthermore, when factor covariates are considered,

we observe that the results can vary depending on the inherent order. For instance,

the empirical power with landmark time set R3 in Set-up IV is 50.4% and 66.8%

respectively for “IQI(MAX)” and “IQI(SUM)” with “D” < “C” < “B” < “A”,

which are larger than the power of 28.9% and 45.9% respectively for “IQI(MAX)”

and “IQI(SUM)” with “A” < “B” < “C” < “D”. This may be due to different

reference levels for the covariates, i.e. the overall covariate effects for “B”, “C” and

“D” may be stronger than that for “A”, “B” and “C”.

All these simulation results suggest that the proposed method can robustly and

effectively detect the dynamic effect of time dependent covariates on censored out-

come.

4.3 Real Example with FIRST Data

To illustrate the proposed testing framework, we applied the proposed method to

140 infants with cystic fibrosis (CF) after diagnosis from newborn screening from the
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Table 4.5: Empirical rejection rates based on 1000 replicates with censored outcome
and binary time dependent covariate.

Set-up n Time Set
“A” < “B” < “C” < “D” “D” < “C” < “B” < “A”
IQI(MAX) IQI(SUM) IQI(MAX) IQI(SUM) CPH(Wald)

I

200
R1 0.054 0.048 0.054 0.048 0.040
R2 0.048 0.042 0.055 0.054 0.040
R3 0.043 0.049 0.050 0.059 0.040

400
R1 0.056 0.054 0.048 0.050 0.042
R2 0.058 0.051 0.057 0.054 0.042
R3 0.057 0.050 0.049 0.052 0.042

800
R1 0.060 0.059 0.055 0.050 0.056
R2 0.057 0.059 0.052 0.049 0.056
R3 0.054 0.055 0.048 0.037 0.056

II

200
R1 1.000 1.000 1.000 1.000 1.000
R2 1.000 1.000 1.000 1.000 1.000
R3 1.000 1.000 1.000 1.000 1.000

400
R1 1.000 1.000 1.000 1.000 1.000
R2 1.000 1.000 1.000 1.000 1.000
R3 1.000 1.000 1.000 1.000 1.000

800
R1 1.000 1.000 1.000 1.000 1.000
R2 1.000 1.000 1.000 1.000 1.000
R3 1.000 1.000 1.000 1.000 1.000

III

200
R1 0.299 0.471 0.438 0.650 0.181
R2 0.424 0.611 0.431 0.701 0.182
R3 0.416 0.599 0.449 0.705 0.182

400
R1 0.604 0.898 0.888 0.975 0.363
R2 0.842 0.975 0.889 0.987 0.362
R3 0.853 0.968 0.902 0.989 0.363

800
R1 0.971 0.999 0.999 1.000 0.621
R2 1.000 1.000 1.000 1.000 0.621
R3 0.999 1.000 1.000 1.000 0.621

IV

200
R1 0.256 0.438 0.574 0.764 0.233
R2 0.319 0.491 0.536 0.750 0.232
R3 0.289 0.459 0.504 0.668 0.232

400
R1 0.555 0.868 0.958 0.994 0.447
R2 0.700 0.936 0.955 0.997 0.447
R3 0.701 0.914 0.942 0.984 0.447

800
R1 0.978 1.000 1.000 1.000 0.810
R2 0.996 1.000 1.000 1.000 0.810
R3 0.996 1.000 1.000 1.000 0.810
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Feeding Infants Right.. from the Start (FIRST) study. A question of interest in the

study is to investigate whether there exists a relationship between feeding patterns

and susceptibility to infection in CF infants. In this dataset, time to infection, noted

as T , is censored in about 4.3% infants due to the end of study time as 12 months

for each infant. The covariate process, noted as Z̄ = {Z(t), 0 ≤ t < ∞}, is the

feeding information (B: breastmilk feeding; P: partial breastmilk feeding; F: formula

feeding) collected about bi-weekly for the first month, monthly from 1 to 6 months,

and bi-monthly from 6 to 12 months.

Motivated from the scientific needs, we considered two ways to elaborate the

feeding information. One method is to consider the feeding variable:

V1({Z(t), 0 < t ≤ t0}) = Z(t0), t0 ≥ 0,

which represents the most recent feeding information. Investigating the relation-

ship between V1({Z(t), 0 < t ≤ t0}) and T can help determine the instant effect

of feeding. For the choice of landmark time, we considered either the visit times

T1 = {0, 0.5, 1, 2, 3, 4, 5} or equally grid T2 = {0, 0.5, . . . , 5}. The other approach is

to consider

V2({Z(t), 0 < t ≤ t0}) =

∫ t0
max(d,t0−tl)

Z(t− d)dt

min(t0 − d, tl)
, t0 ≥ d

where we set d = 1 and tl = 3. In this way, we are interested in the delayed 1 month

cumulative effect with a duration of up to 3 months. The landmark time set was then

either T1 = {2, 3, 4, 5} or T2 = {1.5, 2, . . . , 5}.

We started from some exploratory analysis. We first conducted the univariate

analysis to fit the censored quantile regression model between the variables of each

feeding type (B,P or F) and the outcome at each landmark time. Figure 4.4 shows

the plots for the predicted distribution of the residual time for the two “sample” case
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Figure 4.3: The feeding information over time for the first 25 infants.

with X = 1 and X = 0, where X represents the indicator of whether the feeding type

observed at the landmark time t0 is B (or P, or F). Figure 4.5 shows the plots for the

predicted distribution of the residual time for the two “sample” case with X = 1 and

X = 0, where X represents the duration of B (or P, or F) up to 3 months at t0−1 for

a landmark time t0. From the figures, we can see some discrepancy between the two

lines in the plots for F at the later landmark time, for example t0 = 3, 4 and 5. We

also conducted the multivariate analysis to fit the censored quantile regression model

with feeding variables treated as factor with B as the reference level and multivariate

covariate (P and F) for the first and second method, respectively. Figure 4.7 shows

the plots for the p values. From the figure, we also notice some significant results for

F at the later landmark time, for example t0 = 3 and 5 in the instant effect case,

and t0 = 2, 3, 4 and 5 for the cumulative delayed effect case. In general, these figures

suggest that formula feeding has a significant protective effect against infection in CF

infants at later time points.
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Next, we applied the proposed method to the data. As a comparison, we also

applied the time dependent Cox model. The p values are reported in Table 4.6. From

the table, it is evident that the proposed method is capable of detecting the significant

effects related to formula feeding, whereas the time dependent Cox model fail to detect

them. To view more details of the effect based on the proposed test statistics, we

further suggest to look at c(τ1,v;t0)√
τ1(1−τ1)F2(v;t0)(1−F2(v;t0))

, which reflects the interval quantile

correlation with positive value suggesting a protective effect. Moreover, we may use

c2(τ1,v;t0)
τ1(1−τ1)F2(v;t0)(1−F2(v;t0))

to gain some insight into the magnitude of the effect. The

plots for these two indices over time are presented as Figure 4.7. The figure suggests

that formula feeding may have a protective effect against infection in later months,

while breastmilk feeding may have some negative effects. This is consistent findings

as Figures 4.4 and 4.5. In order to gain a deeper understanding of the cause of these

effects, we conducted a subgroup analysis on the unfortified and fortified groups in

addition to analyzing the entire population. From the p values in Table 4.6, we can see

that for the delayed cumulative effect case, there are significant effects for breastmilk

feeding in the unfortified groups, while not in the fortified groups. This suggests that

the negative effect of breastmilk feeding could potentially be caused by inadequate

fortification of the feedings.

4.4 Remarks

In this work, we develop a new testing framework that can help determine outcome-

relevant covariates with univariate time dependent covariate. The proposed methods

sensibly adopt a global perspective that examines covariate effects over a continuum

of outcome quantiles across a set of landmark times, and model-free. Our numeri-

cal studies strongly support the advantages of the proposed methods over the time

dependent Cox model, particularly in data settings with dynamic covariate effects.
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Figure 4.4: Univariate Exploratory Analysis: Plots for a “two-sample” case based on
fitting CQR at different landmark time points. In these cases, the feeding variable
represents the instant effect.
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Figure 4.5: Univariate Exploratory Analysis: Plots for a “two-sample” case based on
fitting CQR at different landmark time points. In these cases, the feeding variable
represents the delayed cumulative effect up to 3 months with d = 1 month.
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Figure 4.6: Multivariate Exploratory Analysis: Plots for the p values with censored
quantile regression (CQR) at different landmark time points, and the time dependent
Cox model.



133

(a) Instant Effect

(b) Cumulative Delayed Effect

Figure 4.7: Proposed Method: Plots for the interval quantile correlation and the test
statistics at different time points.
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Table 4.6: The p-values based on the proposed method and the time dependent Cox
model with different T .

Group Variable
IQI(MAX) IQI(SUM)

CPH(Wald)T1 T2 T1 T2
Instant effect: V1({Z̄(t), 0 < t ≤ t0}) = Z(t0)

All
I(PFB=B) 0.473 0.235 0.374 0.216 0.237
I(PFB=F) 0.009 0.018 0.044 0.066 0.819

Factor(Ref:B) 0.040 0.070 0.093 0.090 0.407

Unfortified
I(PFB=B) 0.159 0.068 0.159 0.073 0.462
I(PFB=F) 0.050 0.046 0.065 0.043 0.869

Factor(Ref:B) 0.111 0.028 0.084 0.044 0.602

Fortified
I(PFB=B) 0.471 0.597 0.552 0.678 0.352
I(PFB=F) 0.088 0.107 0.260 0.376 0.790

Factor(Ref:B) 0.240 0.299 0.391 0.551 0.481

Delayed cumulative effect: V2({Z̄(t), 0 < t ≤ t0}) =

∫ t0
max(d,t0−tl)

Z(t−d)dt
min(t0−d,tl) , t0 ≥ d

All
Percentage of B (tl = 3, d = 1) 0.036 0.048 0.039 0.031 0.756
Percentage of F (tl = 3, d = 1) 0.034 0.056 0.012 0.025 0.807
Percentage of P (tl = 3, d = 1) 0.427 0.225 0.334 0.278 0.477

Unfortified
Percentage of B (tl = 3, d = 1) 0.015 0.020 0.018 0.010 0.353
Percentage of F (tl = 3, d = 1) 0.047 0.063 0.053 0.062 0.860
Percentage of P (tl = 3, d = 1) 0.153 0.180 0.059 0.048 0.198

Fortified
Percentage of B (tl = 3, d = 1) 0.763 0.891 0.746 0.840 0.939
Percentage of F (tl = 3, d = 1) 0.076 0.114 0.056 0.081 0.770
Percentage of P (tl = 3, d = 1) 0.375 0.412 0.204 0.296 0.608

Meanwhile, it is worth mentioning that this is a univariate approach that does not

allow for adjusting for imbalances in baseline covariates. The extension to generalize

the proposed method to multivariate setting is not straightforward, which may worth

further exploration.

4.5 Appendix

Denote ≈ as asymptotic equivalence uniformly.

4.5.1 Some Lemmas and the proofs

4.5.1.1 Lemma A4.1 and the proof

We state the following necessary regularity condition.

Condition 4.1. πt0 is bounded below by zero, i.e. mint0∈T πt0 > 0.
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Condition 4.2. Gr
C,t0

(q1,t0(τ)) is uniformly bounded below by zero for τ ∈ ∆, i.e.

infτ∈∆ G
r
C,t0

(q1,t0(τ)) > 0.

Lemma A4.1. Assume the density function f1 and its first derivation with respect

to τ are bounded away from zero and infinity on ∆. Under Conditions 4.1 and 4.2,

we have with probability one

lim sup
n→∞

±
{
q̂1,t0(τ1)− q1,t0(τ1)− [τ1 − Fn,1(q1,t0(τ1))]/f1(q1,t0(τ1))

n−3/4(log log n)3/4

}
=

25/4

33/4

τ
1/2
1 (1− τ1)1/2

f1(q1,t0(τ1))
.

Proof. Given that {Xr
i (t0),Mi(t0), δi}ni=1 are i.i.d. random variables. To show Lemma

A4.1, the key point is to first show that following similar idea of Bahadur represen-

tation (Bahadur, 1966), q̂1,t0(τ1) can be written as

q̂1,t0(τ1) = q1,t0(τ1) +

1
n

∑n
i=1

I[Xr
i (t0)>q1,t0 (τ1),Mi(t0)=1]

ĜrC,t0
(q1,t0 (τ1))π̂t0

− (1− τ1)

f1(q1,t0(τ1))
+Rn(τ1),

where Rn(τ1) = Op[n
−3/4(log n)1/2(log log n)1/4].

Denote

Wn,1(s) = [Fn,1(s)− Fn,1(q1,t0(τ1))]− [F1(s)− F1(q1,t0(τ1))].

Lemma A4.2. Let {an}∞n=1 be a sequence of positive constants such that an =

O(n−1/2(log n)1/2(log log n)1/4). Define Bτ1 = [q1,t0(τ1) − an, q1,t0(τ1) + an]. Then

under the assumptions of Lemma A4.1, we have

sup
s∈Bτ1

|Wn,1(s)| = Op[n
−3/4(log n)1/2(log log n)1/4].

almost surely as n→∞.

Proof of Lemma A4.2. The proof of Lemma A4.2 closely resembles the lines in the

proof of Lemma 1 in Bahadur (1966) with Fn,1 and F1 involved only by utilizing the
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fact that Fn,1 and F1 are non-decreasing in s, thus are omitted.

Let {τknt0 }
∞
nt0=1 denote a positive sequence such that 0 < τknt0

≤ 1 for each

nt0 =
∑n

l=1 I(l ∈ {i;Mi(t0) = 1, δi = 1}) and

τknt0
= τ1 + o(n−1/2(log n)1/2(log log n)1/4))

For each nt0 , let Unt0 ,τ1 , . . . , Unt0 ,τnt0
be the values of {Xr

i (t0}{i;Mi(t0)=1,δi=1} sorted in

ascending order, and let

Vnt0 (τ1) = Unt0 ,τknt0
.

Lemma A4.3. Under the assumptions of Lemma A4.1, we have

Vnt0 (τ1) = q1,t0(τ1)+[τknt0
−Fn,1(q1,t0(τ1))]/f1(q1,t0(τ1))+Op[n

−3/4(log n)1/2(log log n)1/4].

almost surely as n→∞.

Proof. The proof of Lemma A4.3 closely resembles the lines in the proof of Lemma 3

in Bahadur (1966), thus are omitted.

Thus we have shown that

q̂1,t0(τ1) = q1,t0(τ1) +
τ1 − Fn,1(q1,t0(τ1))

f1(q1,t0(τ1))
+Rn(τ1),

where Rn(τ1) = Op[n
−3/4(log n)1/2(log log n)1/4].

Next, since the first derivation of f1 is bounded and f1(q1,t0(τ1)) > 0, following

similar lines as Kiefer (1967), we have

lim sup
n→∞

±
{
q̂1,t0(τ1)− q1,t0(τ1)− [τ1 − Fn,1(q1,t0(τ1))]/f1(q1,t0(τ1))

n−3/4(log log n)3/4

}
=

25/4

33/4

τ
1/2
1 (1− τ1)1/2

f1(q1,t0(τ1))

almost surely for either choice of sign.
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4.5.1.2 Lemma A4.4 and the proof

Define F1 = {q̂1,t0(τ1) : |q̂1,t0(τ1) − q1,t0(τ1)| ≤ c1n
−1/2} and F12 = {(q̂1,t0(τ1), v) :

|q̂1,t0(τ1) − q1,t0(τ1)| ≤ c12n
−1/2}. Let δ ≥ supF1

var{V (t0)I(T r ≤ q) − V (t0)I(T r ≤

q1,t0(τ1))}. Remarkly,

var{V (t0)I(T r ≤ q)− V (t0)I(T r ≤ q1,t0(τ1)) |M(t0) = 1}

≤ c1n
−1/2 sup

A2(t0)

sup
s∈F1

fT r|V (t0),M(t0)=1(s)E{[V (t0)]2}.

Lemma A4.4. Given that Conditions 4.1 and 4.2 holds. For ε > 0 and α ≥ 1, we

have

pr{sup
F12

n1/2 |[Fn,12(q̂1,t0(τ1), v)− Fn,12(q1,t0(τ1), v)]− [F12(q̂1,t0(τ1), v)− F12(q1,t0(τ1), v)]| ≥ 8ε}

≤ 192n2ε−4 exp{−ε2/(128δ2)}+ 256δ−8 exp(−nδ2), (4.7)

and

pr{sup
F1

n1/2 |[Fn,1(q̂1,t0(τ1))− Fn,1(q1,t0(τ1))]− [F1(q̂1,t0(τ1))− F1(q1,t0(τ1))]| ≥ 8ε}

≤ 192n2ε−4 exp{−ε2/(128δ2)}+ 256δ−8 exp(−nδ2), (4.8)

Proof. This lemma can be derived as a refinement version of Theorem 37 in Chapter

II of Pollard (1984), following the similar idea as in the proof of Theorem 3.11 in Zhu

(1993).

4.5.1.3 Lemma A4.5 and the proof

Lemma A4.5. Given that Conditions 4.1 and 4.2 holds. Assume the density function

f1 and its first derivation with respect to τ are bounded away from zero and infinity
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on ∆ = [τL, τU ]. For any c > 0 and 0 < ζ ≤ 1/2, there exists positive constant c1

such that for sufficiently large n,

pr{sup
τ∈∆
|q̂1,t0(τ)− q1,t0(τ)| > cnζ−1/2} ≤ O{exp[−c1n

2ζ − log(nζ−1/2)]}.

Proof. From the condition, we learn that the first derivative of f1 with respect to τ

are bounded away from zero and infinity on ∆. Then there exist w0 ≥ 0, such that

|q1,t0(τa) − q1,t0(τb)| ≤ w0|τa − τb|. Given 0 < δ < min{1, 3w0

(τU−τL)
}, we can define a

grid partition for [τL, τU ] as τL = τ0 < τ1 < · · · < τNδ = τU with Nδ = b6w0(τU−τL)
δ

c,

where bxc denotes the largest integer smaller than x. With this partition, the grid

would be |τk − τk−1| ≤ δ
3w0

. Then we have |q1,t0(τk)− q1,t0(τk−1)| ≤ δ
3
.

We learn from the definition for q̂1,t0(τk) and q1,t0(τk) that they are non-decreasing.

Suppose |q̂1,t0(τk) − q1,t0(τk)| ≤ δ
3

and |q̂1,t0(τk−1) − q1,t0(τk−1)| ≤ δ
3
, then for τk−1 ≤

x ≤ τk, we have

q̂1,t0(x)− q1,t0(x) ≤ q̂1,t0(τk)− q1,t0(τk) + q1,t0(τk)− q1,t0(x) ≤ 2δ

3
< δ.

The other direction can be shown by the same arguments. Then we have |q̂1,t0(x) −

q1,t0(x)| < δ for any τk−1 ≤ x ≤ τk. Thus if supτ∈[τL,τU ] |q̂1,t0(τ) − q1,t0(τ)| > δ, there

exist some 0 ≤ k ≤ Nδ such that |q̂1,t0(τk)− q1,t0(τk)| > δ
3
. Let δ = cnζ−1/2. Then we

have

pr

(
sup

τ∈[τL,τU ]

|q̂1,t0(τ)− q1,t0(τ)| > cnζ−1/2

)
≤ Nδpr

(
|q̂1,t0(τk)− q1,t0(τk)| >

c

3
nζ−1/2

)

From Breslow and Crowley (1974), we have the consistency and weak convergency of

Ĝr
C,t0

(s) to Gr
C,t0

(s). By WLLN and CLT, we have π̂t0 →p πt0 and
√
n(π̂t0 − πt0) =
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Op(1). By CMT, we have
√
n(Ĝr

C,t0
(s)π̂t0 −Gr

C,t0
(s)πt0) = Op(1). Write

Ln(τ) =
1

n

n∑
i=1

{
τ −

{
1− I[Xr

i (t0) > q1,t0(τ),Mi(t0) = 1]

Ĝr
C,t0

(q1,t0(τ))π̂t0

}}

≈ 1

n

n∑
i=1

{
τ −

{
1− I[Xr

i (t0) > q1,t0(τ),Mi(t0) = 1]

Gr
C,t0

(q1,t0(τ))πt0

}}
− 1− τ
Gr
C,t0

(q1,t0(τ))

{
Ĝr
C,t0

(q1,t0(τ))−Gr
C,t0

(q1,t0(τ))
}

+
1− τ
πt0
{π̂t0 − πt0}

+
1

n

n∑
i=1

{
I[Xr

i (t0) > q1,t0(τ),Mi(t0) = 1]

Gr
C,t0

(q1,t0(τ))πt0
− (1− τ)

}{
Gr
C,t0

(q1,t0(τ))πt0

Ĝr
C,t0

(q1,t0(τ))π̂t0
− 1

}
≡ Ln,1(τ) + Ln,2(τ) + Ln,3(τ) + op(n

−1/2)

From Lemma A4.1,

q̂1,t0(τk)− q1,t0(τk) = {f1(q1,t0(τk))}−1Ln(τk) +Rn(τk)

where Rn(τk) = Op[n
−3/4(log n)1/2(log log n)1/4]. Then we have for sufficient large n,

pr
(
|q̂1,t0(τk)− q1,t0(τk)| >

c

3
nζ−1/2

)
≤ pr

(
|Ln(τk)| >

infτ∈[τL,τU ] f1(q1,t0(τ))c

6
nζ−1/2

)
(Let c∗ =

infτ∈[τL,τU ] f1(q1,t0(τ))c

6
)

≤ pr

(
|Ln,1(τk)| >

c∗

6
nζ−1/2

)
+ pr

(
|Ln,2(τk)| >

c∗

6
nζ−1/2

)
+ pr

(
|Ln,3(τk)| >

c∗

6
nζ−1/2

)

Since M(t0) ⊥ Xr(t0), by Hoeffding’s inequality, we have

pr

(
|Ln,1(τk)| >

c∗

6
nζ−1/2

)
= pr

(∣∣∣∣∣
{

1

n

n∑
i=1

I[Xr
i (t0) > q1,t0(τ),Mi(t0) = 1]

Gr
C,t0

(q1,t0(τ))πt0

}
− (1− τk)

∣∣∣∣∣ > c∗

6
nζ−1/2

)
= O[exp(−c1,1n

2ζ)]
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and

pr

(
|Ln,3(τk)| >

c∗

6
nζ−1/2

)
= pr

(∣∣∣∣∣
{

1

n

n∑
i=1

I(Mi(t0) = 1)

}
− πt0

∣∣∣∣∣ > c∗πt0
6(1− τk)

nζ−1/2

)
= O[exp(−c1,3n

2ζ)]

for some positive constant c1,1 and c1,3 as n is sufficiently large.

From Pepe (1991), we have

n1/2|Ĝr
C,t0

(q1,t0(τ))−Gr
C,t0

(q1,t0(τ))| ≈ n−1/2

n∑
i=1

Gr
C,t0

(q1,t0(τ))

∫ q1,t0 (τ)

0

y(s)−1dM
GrC,t0
i (s),

where y(t) = pr(Xr ≥ t) and M
GrC,t0
i (·) is the martingale process. Then we have from

Azuma–Hoeffding inequality

pr

(
|Ln,2(τk)| >

c∗

6
nζ−1/2

)
= pr

(∣∣∣Ĝr
C,t0

(q1,t0(τ))−Gr
C,t0

(q1,t0(τ))
∣∣∣ > c∗Gr

C,t0
(q1,t0(τ))

6(1− τk)
nζ−1/2

)
= pr

(∣∣∣∣∣
n∑
i=1

Gr
C,t0

(q1,t0(τ))

∫ q1,t0 (τ)

0

y(s)−1dM
GrC,t0
i (s)− 0

∣∣∣∣∣ > c∗Gr
C,t0

(q1,t0(τ))

12(1− τk)
nζ−1/2

)
= O[exp(−c1,2n

2ζ)]

for some positive constant c1,2 as n is sufficiently large.

These lead to

pr

(
sup

τ∈[τL,τU ]

|q̂1,t0(τ)− q1,t0(τ)| > cnζ−1/2

)
≤ NδO(exp(−c1n

2ζ)) = O{exp[−c1n
2ζ − log(nζ−1/2)]}.

for a positive constant c1 = min{c1,1, c1,2, c1,3}.
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4.5.2 Proof of Theorem 4.1

We first establish the limit null distribution for n1/2ĉ(τ1,v;t0)√
τ1(1−τ1)Fn,2(v)(1−Fn,2(v))

.

Denote

Wn,12(τ1, v; t0) =
n1/2ĉ(τ1, v; t0)√

τ1(1− τ1)Fn,2(v)(1− Fn,2(v))
= n1/2Fn,12(q̂1,t0(τ1), v)− Fn,1(q̂1,t0(τ1)) · Fn,2(v)√

τ1(1− τ1)Fn,2(v)(1− Fn,2(v))

and

W F
n,12(τ1, v; t0) = n1/2Fn,12(q̂1,t0(τ1), v)− Fn,1(q̂1,t0(τ1)) · Fn,2(v)√

τ1(1− τ1)F2(v)(1− F2(v))
.

We can write

Wn,12(τ1, v; t0)− n1/2 F12(q1,t0(τ1), v)− τ1F2(v)√
τ1(1− τ1)F2(v)(1− F2(v))

= W F
n,12(τ1, v; t0)− n1/2 F12(q1,t0(τ1), v)− τ1F2(v)√

τ1(1− τ1)F2(v)(1− F2(v))

+

[
1−

√
F2(v)(1− F2(v))√
Fn,2(v)(1− Fn,2(v))

]
·

{
W F
n,12(τ1, v; t0)− F12(q1,t0(τ1), v)− τ1F2(v)√

τ1(1− τ1)F2(v)(1− F2(v))

}
.

For W F
n,12(τ1, v; t0)− n1/2 F12(q1,t0 (τ1),v)−τ1F2(v)√

τ1(1−τ1)F2(v)(1−F2(v))
, we can express it as

W F
n,12(τ1, v; t0)− n1/2 F12(q1,t0(τ1), v)− τ1F2(v)√

τ1(1− τ1)F2(v)(1− F2(v))
=

I1 + I2 + I3√
τ1(1− τ1)F2(v)(1− F2(v))

,

where

I1 = n1/2{[Fn,12(q̂1,t0(τ1), v)− Fn,12(q1,t0(τ1), v)]− F2(v)[Fn,1(q̂1,t0(τ1))− Fn,1(q1,t0(τ1))]},

I2 = n1/2{[Fn,1(q̂1,t0(τ1))− Fn,1(q1,t0(τ1))][Fn,2(v)− F2(v)] + [Fn,2(v)− F2(v)][Fn,1(q1,t0(τ1))− τ1]},

I3 = n1/2{[Fn,12(q1,t0(τ1), v)− F2(v)Fn,1(q1,t0(τ1))− τ1Fn,2(v) + τ1F2(v)]

−[F12(q1,t0(τ1), v)− τ1F2(v)]}.
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From the condition, we learn that the derivative of f1(q1,t0(τ1)) is finite and bounded

below by 0. By Taylor expansion, we have

I1 = n1/2{[Fn,12(q̂1,t0(τ1), v)− Fn,12(q1,t0(τ1), v)]− F2(v)[Fn,1(q̂1,t0(τ1))− Fn,1(q1,t0(τ1))]}

= n1/2{{pr[T r ≤ q1,t0(τ1) | V (t0) = v]− τ1}f1(q1,t0(τ1))(q̂1,t0(τ1)− q1,t0(τ1))}

+o(n1/2|q̂1,t0(τ1)− q1,t0(τ1)|).

From Lemma A4.5, we have for sufficient large n,

pr{sup
τ∈∆
|τ − Fn,1(q1,t0(τ))| > cnζ−1/2} ≤ O{exp[−c1n

2ζ − log(nζ−1/2)]}.

By WLLN, we have

Fn,2(v)→p F2(v).

Under the null hypothesis, we have F12(q1,t0(τ1), v) = τ1F2(v) for any τ1 ∈ [τL, τU ],

which implies pr[T r ≤ q̂1,t0(τ1) | V (t0) = v] = τ1. From these results and Lemma

A4.1, Lemma A4.4 and Lemma A4.5, we have I1 = op(n
−1/2) and I2 = op(n

−1/2),
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which leads to

W F
n,12(τ1, v; t0) ≈ n1/2{ [Fn,12(q1,t0(τ1), v)− F2(v)Fn,1(q1,t0(τ1))− τ1Fn,2(v) + τ1F2(v)]√

τ1(1− τ1)F2(v)(1− F2(v))
}

=
n1/2√

τ1(1− τ1)F2(v)(1− F2(v))
·{

− 1

n

n∑
i=1

I(Xr
i (t0) > q1,t0(τ1), Vi(t0) ≤ v,Mi(t0) = 1)

Ĝr
C,t0

(q1,t0(τ1))π̂t0

+F2(v)[
1

n

n∑
i=1

I(Xr
i (t0) > q1,t0(τ1),Mi(t0) = 1)

Ĝr
C,t0

(q1,t0(τ1))π̂t0
]

+ (1− τ1)
1

n

n∑
i=1

I(Vi(t0) ≤ v,Mi(t0) = 1)

π̂t0
− (1− τ1)F2(v)

}

=
n1/2I(Mi(t0) = 1)

π̂t0
√
τ1(1− τ1)F2(v)(1− F2(v))

·{
− 1

Ĝr
C,t0

(q1,t0(τ1))

1

n

n∑
i=1

I[Xr
i (t0) > q1,t0(τ1][I(Vi(t0) ≤ v)− F2(v)]

+ (1− τ1)
1

n

n∑
i=1

[I(Vi(t0) ≤ v)− F2(v)]

}
.

Under the null hypothesis, we can write

Wn,12(τ1, v; t0) ≈ W F
n,12(τ1, v; t0)

≈ n1/2I(Mi(t0) = 1)

πt0
√
τ1(1− τ1)F2(v)(1− F2(v))

·{
− 1

Gr
C,t0

(q1,t0(τ1))

1

n

n∑
i=1

I[Xr
i (t0) > q1,t0(τ1][I(Vi(t0) ≤ v)− F2(v)]

+ (1− τ1)
1

n

n∑
i=1

[I(Vi(t0) ≤ v)− F2(v)]

}
.

≡ −n−1/2

n∑
i=1

ξi(τ1, v; t0)√
τ1(1− τ1)
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holds uniformly for any (τ1, v), where

ξi(τ1, v; t0) =
I(Mi(t0) = 1)

πt0
√
F2(v)(1− F2(v))

×

{I[Xr
i (t0) > q1,t0(τ1)][I(Vi(t0) ≤ v)− F2(v)]/Gr

C,t0
(q1,t0(τ1))

−(1− τ1)[I(Vi(t0) ≤ v)− F2(v)]}.

Define F = { ξi(τ1,v;t0)√
τ1(1−τ1)

, τ1 ∈ ∆, v ∈ ΩV (t0), t0 ∈ T }. The function class F is

Donsker and thus Glivenko-Cantelli (van der Vaart et al., 1996) since the class of

indicator functions is Donsker and τ1, F2(v), 1/πt0 and 1/Gr
C,t0

(q1,t0(τ1)) are uniformly

bounded. As a result of Donsker theorem,

Wn,12(τ1, v; t0)→ χ(τ1, v; t0),

where χ(τ1, v; t0) for any t0 ∈ T is a separable Gaussian process depending on (τ1, v)

for (τ1, v) ∈ ∆⊗ ΩV (t0) with E{χ(τ1, v; t0)} = 0 and covariance matrix

E{χ(τ1, v; t0)χ(τ ′1, v
′; t0)} =

{min(τ1, τ
′
1)− τ1τ

′
1}{min(F2(v), F2(v′))− F2(v)F2(v′)}

τ1(1− τ1)F2(v)[1− F2(v)]τ ′1(1− τ ′1)F2(v′)[1− F2(v′)]
.

Then, by the extended continuous mapping theorem (Theorem 1.11.1 in van der Vaart

et al. (1996)), under the null hypothesis, we have

∫
∆

∫
ΩV (t0)

nc2(τ1, v; t0)

τ1(1− τ1)Fn,2(v; t0)(1− Fn,2(v; t0))
dµ1(τ1)dµ2(v)→d

∫
∆

∫
ΩV (t0)

χ2(τ1, v; t0)dµ1(τ1)dµ2(v).

Since T is a finite set, by continuous mapping theorem, we establish the limiting null

distribution as

nq̂max(T, Z̄; ∆, T )→d max
t0∈T

∫
∆

∫
ΩV (t0)

χ2(τ1, v; t0)dµ1(τ1)dµ2(v);

nq̂sum(T, Z̄; ∆, T )→d

∑
t0∈T

∫
∆

∫
ΩV (t0)

χ2(τ1, v; t0)dµ1(τ1)dµ2(v).
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This completes the proof of Theorem 4.1.

4.5.3 Proof of Theorem 4.2

We first investigate the asymptotic limit of nqmax(T, Z̄; ∆, T ) under the alternative

hypothesis Ha,max. Let γ0 = qmax(T, Z̄; ∆, T ). Under the alternative hypothesis

Ha,max, we have γ0 > 0. Since an−1 = op(1), we have P (an−1 > γ0/2) → 0 as

n→∞. Under the alternative hypothesis Ha,max, we have γ0 > 0 and thus

P (q̂max(T, Z̄; ∆, T ) > γ0/2)→ P (γ0 > γ0/2) = 1.

This suggests that for any a,

P (nq̂max(T, Z̄; ∆, T ) > a) = P (q̂max(T, Z̄; ∆, T ) > an−1)

≥ P (q̂max(T, Z̄; ∆, T ) > γ0/2)− P (an−1 > γ0/2)

It then follows that P (nq̂max(T, Z̄; ∆, T ) > a)→ 1 as n→∞ under Ha,max. Denote

Cmax,α as the α-level critical value determined upon the limit null distribution of

nq̂max(T, Z̄; ∆, T ), which is greater than 0. Then we have

P (nq̂max(T, Z̄; ∆, T ) > Cmax,α)→ 1

as n → ∞ given Ha,max holds. This implies that nq̂max(T, Z̄; ∆, T ) is a consistent

test against Ha,max.

Follow similar lines, we can show that nq̂sum(T, Z̄; ∆, T ) is a consistent test against

Ha,sum. This completes the proof of Theorem 4.2.



146

4.5.4 Justification of the Resampling Procedure

Firstly, as justified in the Proof of Theorem 4.1, there is weak convergence of Wn,12

to a mean zero Gaussian process with covariance process

E{χ(τ1, v; t0)χ(τ ′1, v
′; t0)} =

{min(τ1, τ
′
1)− τ1τ

′
1}{min(F2(v), F2(v′))− F2(v)F2(v′)}

τ1(1− τ1)F2(v)[1− F2(v)]τ ′1(1− τ ′1)F2(v′)[1− F2(v′)]
.

Next, given that {ιbi}ni=1 are i.i.d. random variables following a standard normal

distribution. Conditional on the observed data {(Xr
i (t0), Vi(t0), δi,Mi(t0))}ni=1, we

have the asymptotic covariance matrix of
n−1/2

∑n
l=1 ξ̂i(τ1,v;t0)ιbi√
τ1(1−τ1)

as

E

{
n−1/2

∑n
l=1 ξ̂i(τ

′
1, v
′; t0)ιbi√

τ ′1(1− τ ′1)
· n
−1/2

∑n
l=1 ξ̂i(τ1, v; t0)ιbi√
τ1(1− τ1)

∣∣∣∣∣ {(Xr
i (t0), Vi(t0), δi,Mi(t0))}ni=1

}

=
n−1

∑n
i=1 ξ̂

(j)
i (τ ′)ξ̂

(j)
i (τ)

τ ′1(1− τ ′1)τ1(1− τ1)
,

which converges in probability to E{χ(τ1, v; t0)χ(τ ′1, v
′; t0)}.

Following the arguments in Lin et al. (1993), conditional on {(Xr
i (t0), Vi(t0), δi,Mi(t0))}ni=1,

n−1/2
∑n
l=1 ξ̂i(τ1,v;t0)ιbi√
τ1(1−τ1)

is zero-mean Gaussian with covariance function converge to the

same limit as Wn,12. Applying the extended continuous mapping theorem as in

the proof of Theorem 4.1, we have that under the null hypothesis, the conditional

distribution of nq̂max,b(T, Z̄; ∆, T (or nq̂sum,b(T, Z̄; ∆, T ) given the observed data is

asymptotically equivalent to the unconditional distributions of nqmax(T, Z̄; ∆, T (or

nqsum(T, Z̄; ∆, T ). This completes the justification for using the resampling procedure

in Section 4.1.3.
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Chapter 5

Summary and Future Work
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5.1 Summary

In this dissertation, we propose to assess the covariate effects by adopting a global

view pertaining to the concept of interval quantile independence. In the first topic,

we introduce a flexible and robust method for evaluating the effects of a univariate

covariate on a time-to-event outcome. In the second topic, we develop a group testing

framework to identify variables that are dynamically associated with the outcome,

and introduces a screening framework for excluding irrelevant variables in ultra-high

dimensional settings with high confidence. In the third topic, we suggest an index for

measuring and testing the departure from interval quantile independence for time-

dependent covariates and time-to-event outcomes across a set of landmark times.

In the first project, we develop a new testing framework for evaluating a survival

prognostic factor. The main thrust of the new framework lies in its flexibility of

accommodating a dynamic covariate effect, which is achieved through adapting the

spirit of globally concerned quantile regression. Our testing procedures are conve-

niently developed based on existing results on fitting a working quantile regression

model with randomly censored data. It is important to note that the validity of the

testing procedures does not require that the working model is the true model. More-

over, the proposed methods can be readily extended to handle more complex survival

outcomes, such as time to event subject to competing risks. Another commendable

extension of this work is to generalize the current null hypothesis and testing proce-

dures to permit evaluating multiple prognostic factors simultaneously. This work also

lays a key foundation for developing a nonparametric screening method for helping

identify useful prognostic factors among a large number of candidates.

In the second project, we develop a new testing and screening framework that

can help determine outcome-relevant covariates in classic univariate and multivariate

settings and ultra-high dimensional settings. The proposed methods sensibly adopt

a global perspective that examines covariate effects over a continuum of outcome
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quantiles. Without assuming the correct specification of the working linear quantile

regression model, we establish the theoretical properties the proposed testing and

screening procedures. We demonstrate the favorable performance of the proposed

methods with extensive simulation studies and an application to a microarray data

set.

In the third project, we introduce a new test statistics for evaluating the covari-

ate effect of time dependent covariate on the time-to-event outcome. We develop a

new testing framework, and suggest a resampling procedure accordingly. The pro-

posed method is fully nonparametric and sensibly adopt a global perspective. We

provide rigorous justifications for the limiting null distribution, the consistency of the

proposed testing procedure under a general class of alternative hypotheses and the

proposed resampling procedure. The proposed methods are illustrated with extensive

simulation studies and an application to the data set from the FIRST study.

5.2 Future work

In the third project, we proposed a new global-concerned test statistic that is pow-

erful to assess the dynamic effects of time dependent covariates on the time-to-event

outcome. However, this is a univariate approach that does not allow for adjusting

for potential confounders. When the confounding effect can be captured by a small

number of strata, we can consider evaluating the covariate effect within each stratum.

This is not appealing because the sample size decreases with stratification. Also, it is

preferable to provide an omnibus evaluation for the entire population. In our future

work, we plan to develop a robust strategy to evaluate the effect of a time-dependent

covariate while properly adjusting for the potential confounders. A possible direction

is to adapt the idea of propensity score. We will explore and investigate possible

solutions that can broaden the scope of the work in the third project.
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