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Abstract

Algorithmic Approaches to Classifying Biological Networks

By

Margaret Justice Bray

As technology has become more advanced, the ease with which data can be collected has
improved. This has left researchers with copious amounts of information, so much infor-
mation that previous analytical techniques fall short. This has led to an increase in the
popularity of representing data with networks. However, this data often have errors. This
makes any conclusion gleamed from the analysis of a network unreliable.

One type of network for which the inaccuracies are a particular issue is the protein-
protein interaction (PPI) network. Researchers would like to use these networks to detect
and diagnosis diseases by identifying specific interactions. Unfortunately, the errors in the
networks make this impossible. One way to fix this is classify the empirical network into
a category of model graph. By doing so, we will be able to mathematically predict which
interactions are legitimate, and which are not.

In this dissertation, we begin by testing the classification accuracy of five algorithms:
degree distribution distance (DDD), characteristic curve (CC), relative graphlet frequency
(RGF), graphlet degree distribution using arithmetic mean (GDD (A)) and using geometric
mean (GDD (G)). Overall accuracies were poor, ranging from 68% for the GDD (A) down
to 47% for the DDD. With accuracies this low, it is di�cult to trust the classification results
for an empirical network of unknown origin.

Therefore, we propose two solutions. First, we provide several modifications to
both versions of the GDD. The reformulated GDD is more accurate, classifying 76% of
known graphs correctly, while also performing the analysis with increased speed. Second,
we present a new classification algorithm: cross scoring. This novel method works by com-
paring networks based on a pre-selected group of network measures. Each type of model
graph is ranked by how close its measure value falls to the empirical value compared to
the other model types considered. Points are awarded and the model type with the fewest
points at the end of the comparisons is considered the best fit. Accuracy across twelve
trials was 82.9% (±0.98). These results are an obvious improvement over the five original
algorithms considered.
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Chapter 1

Introduction to Graphs and Graph Theory

With the advent of big data, researchers have been inundated with information. In an

e↵ort to find ways to analyze this data, graph theory and, more specifically, the analysis of

real-world networks, has become a popular and ever-growing field. Examples of real-world

networks whose analysis has been tantalizing to researchers include the Internet (Faloutsos

et al. , 1999), the World-Wide Web (Kumar et al. , 1999; Broder et al. , 2000), scientist

citation networks (Seglen, 1992; Newman, 2001a), as well as various biological and metabolic

networks (Jeong et al. , 2001), The main reason for the study of the structure of these real,

complex networks is that structure always a↵ects function (Strogatz, 2001). Therefore, if

the structure of a network is known, then underlying functions that may previously have

gone unnoticed may be revealed.

The research in this dissertation is motivated by biological networks defined by

protein-protein interactions (PPI). Proteins are essential to cells. They perform a huge

number of functions within every living thing including acting as catalysts, messengers, and

cellular structure. Protein-protein interactions (PPIs) are essential in the orchestration of

such events (Raman, 2010). Due to advances in biotechnology, the accumulation of data

involving PPIs has never been easier (Kuchaiev & Przulj, 2009). Unfortunately, these new

technologies report numerous false-postives, i.e. identification of interactions that do not

actually occur in vivo, which make it di�cult to truly assess protein function.

It is essential that we identify the underlying structure of PPI networks for a number

of reasons. By determining the structure, it will be possible to predict interactions that

were not previously identified. This can give biological researchers areas in which to focus

their e↵orts, when modifying their current methods for determining PPI’s, or creating new

methods. In addition, the discovery of orthologous proteins (i.e., proteins that have the

same or similar functions across evolutionary related species) in simple organisms can ease

the deciphering of the PPI networks for more complex organisms. Ideally, we would like to
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be able to analyze the human PPI network with the goal of identifying interactions whose

presence or absence is associated with a certain disease.

This idea leads to the motivation for the research presented here. In this dissertation,

we delve into the problem of PPI network classification. Network classification is the process

by which a type of model graph (Chapter 3) is determined to best mimic the characteristics

of the real-world network under investigation (Vogelstein et al. , 2013). The chapters can

be split up into three groups. In the first four chapter, all of the necessary terms and ideas

are introduced. We gain an understanding of the PPI network being analyzed, as well as

the types model graphs used for classification, and how the two relate to each other. The

remainder of Chapter 1, provides a review of terms from graph theory that are necessary to

understand the remainder of the work. This is followed by an introduction to the specific

PPI network that is the focus of this research in Chapter 2 and the selection of model

graphs considered for classification categories (Chapter 3). In Chapter 4, we move onto to

a numerical comparison of the real-world network to the model graphs based upon graph

features, or measures, presented in Chapter 1.

The next four chapters introduce and evaluate a selection of classification methods.

These classifiers are o�cially introduced in Chapter 5. Then, their ability to perform

well and accurately classify networks in tested on both random graphs (Chapter 6) and

model graphs (Chapter 7). The methods are all then applied to the PPI network under

investigation and the results analyzed for reliability (Chapter 8).

The final five chapters examine improvements that can be made to the entire clas-

sification process. Chapters 9 and 10 show corrections and improvements made to two of

the classifiers. These changes resulted in increased accuracy without detracting from the

original idea of the algorithm. Finally, we introduce a novel network classification method.

We describe how it was designed in Chapters 11 and 12, then apply it in Chapter 13. We

conclude by comparing the novel classifier to both the updated and original classifiers and

a present a selection of future work (Chapter 14).
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1.1 Review of Essential Graph Theory Elements

Any group of entities that have some sort of connection relationship with one another can

be described by use of a graph. A formal working definition of this concept, as expressed

by Ernesto Estrada, refers to a network as a “diagrammatic representation of a system”

(Definition 1.1).

Definition 1.1. “A network (graph) is a diagrammatic representation of a
system. It consists of node (vertices), which represent the entities of a sys-
tem. Pairs of nodes are joined by links (edges), which represent a particular
kind of interconnection between those entities.” (Estrada, 2011)

In many instances, such as in Definition 1.1, the terms network and graph are used inter-

changeably, along with node and vertex, edge and link. Some groups of researchers, however,

prefer to use the term network to refer to any representation of a real-world system and

graph to refer to any mathematically based model (Winer, 2007). In this dissertation we will

use the latter interpretation. Note that network and graph can still be used interchangeably

when discussing generic features or properties such as in Section 1.2. Node and vertex along

with edge and link will still be used interchangeably throughout the dissertation.

The set of all nodes, or vertices, in a network can be written as V = {v1, v2, . . . , vn},
where n is the total number of nodes in the system. The set V ⌦ V represents all of the

ordered pairs, (v
i

, v
j

), in V, where v
i

and v
j

are not necessarily unique. The subset E ✓ V⌦V
represents the set of all edges in the system. This relation, E = {e1, e2, . . . , em}, contains
m elements. In addition, E is symmetric if (v

i

, v
j

) 2 E implies that (v
j

, v
i

) 2 E . This is

an example of an undirected network. If (v
i

, v
j

) 2 E does not imply (v
j

, v
i

) 2 E , then the

network is directed. It is antireflexive if (v
i

, v
j

) 2 E implies that v
i

6= v
j

(Estrada, 2011).

The total number of nodes or edges in a specific network can also be referenced by |VG | and
|EG |, respectively. Two distinct nodes may be represented by (u, v).

A simple network, by definition, is undirected and does not contain self-loops, i.e.,

an edge that begins and ends at the same node. The written description of such a network

can be expressed by the use of the pair G = (V, E) (Definition 1.2).
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Definition 1.2. “A simple network is the pair G = (V, E), where V is a
finite set of nodes and E is a symmetric and antireflexive relation on V.”
(Estrada, 2011)

In addition, in a simple network there is no pair of vertices, (u, v), with more than one edge

between them. Therefore, e
i

6= e
j

, 8i 6= j. Nodes that do have multiple edges between

them are said to have multi-edges. A network containing either self-loops or multi-edges is

no longer considered simple; it is a multi-graph (Kolaczyk, 2009). In addition to a simple

graph, we also have concepts of null network and complete network. A null network is a

network that does not contain any edges. There are no connections between any nodes. A

complete network is a graph in which every node is connected to every other node.

The concept of adjacency is another important concept in the realm of graph theory.

Two nodes, u and v, are considered adjacent if there is an edge, e 2 E , between u and v.

The set of all of the nodes adjacent to node u is known as the set of neighbors of u,

N(u). Two edges are considered adjacent if they have a common endpoint. One way to

represent a network is through an adjacency matrix. In this matrix, each row, and column,

represents a node. If two nodes are adjacent, i.e. have an edge between them, then the

matrix has a one in the corresponding location. If there is no edge between two nodes,

then the appropriate cell in the matrix has a zero. In some instances, we may see a value

other than a zero or a one in the adjacency matrix. This value indicates that the edge is

weighted. A weighted network is one that acknowledges that edges have di↵erent strengths

(Newman, 2004). Weights can be derived in numerous ways. They can be derived simply

and correspond to the number of edges between two nodes in a multi-graph or be more

complex. Complex weighting schemes based on network measures discussed in Section

1.2 such as closeness centrality (Newman, 2001b), betweenness centrality (Brandes, 2008),

global clustering coe�cient (Opsahl & Panzarasa, 2009), and local clustering coe�cient

(Barrat et al. , 2004; Zhang & Horvath, 2005), have also been proposed.

In simple matrices the diagonal of the adjacent matrix is always composed of zeros

and the only other number seen in the matrix is one. If the network is undirected, then the

matrix is symmetric. An example of this can be seen below:
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2

666666666666664

0 1 0 0 1 1

1 0 1 0 1 1

0 1 0 0 0 0

0 0 0 0 1 0

1 1 0 1 0 0

1 1 0 0 0 0

3

777777777777775

.

In the above matrix cell (1, 2) contains a one. This means that there is an edge

between nodes v1 and v2. The matrix is symmetric, thus the corresponding network is

undirected. Finally, the diagonal is composed of zeros and no other value besides one is

present. This implies that this is the adjacency matrix for a simple network.

A network is connected if it is possible to touch every vertex by traversing the set of

edges. If a network is not connected, then each connected piece is referred to as a component.

The largest connected component, judged by number of nodes, is called the giant connected

component, or giant component, of the network. While the full network is referred to as

G, the giant component is referred to as H. The adjacency matrix can be a useful tool in

determining graph components (Fiedler, 1973).

1.2 Network Measures

Network measures are features of a graph or network that can be used for classification,

characterization, and categorization. This term can be used interchangeably with graph

measures. These measures can either be reference properties of the full network or properties

of individual nodes. These referred to as network-level (graph-level) or node-level (nodal)

properties respectively. We examine nineteen measures in this chapter. Eleven of them are

network-level and the remaining eight are nodal properties. Averages of node-level measures

can be taken to obtain a single, summary value to describe the entire network.

Two of the simplest graph-level measures have already been introduced. These

measures are number of nodes and number of edges. These measures are, obviously, the

basis for all of the other measures, however there are many ways that the edges can be

distributed among the nodes. Thus, these features alone do not tell the whole story of the

network.
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The degree, k, of node v is equal to “the number of edges incident on v”, where the

concept of incidence refers to the number of edges of which v is an endpoint (Kolaczyk,

2009). Degree is usually expressed as the average degree of a network, Equation 1.1. It is

the the sum of all node degrees divided by the total number of nodes:

k̄ =
1

n

nX

i=1

k
i

. (1.1)

In addition to average degree, the average neighbor degree can be calculated. The average

neighbor degree of node v is defined as:

k
n

(v) =
1

|N(v)|
X

u2N(v)

k
u

, (1.2)

where |N(v)| is the number of neighbors of node v and k
u

is the degree of node u.

Network density (Equation 1.3) measures how close a network is to complete (Ko-

laczyk, 2009). It is calculated by the number of edges, m, divided by the total number of

possible edges:

D(G) = m

n(n� 1)/2

=
2m

n(n� 1)
. (1.3)

The range of density falls between zero and one, with the lower limit corresponding to a

null network, a network with no edges, and the upper corresponding to a complete network,

a network where every node is connected to every other. Most real world networks have

low densities that are much closer to zero than to one (Melancon, 2006).

The proportion of nodes in the giant component is related to density. Graphs with

higher densities will tend to have fewer distinct components, thus more nodes will be in

the giant component. This is an important concept in the analysis of networks because it

provides an easily interpretable description of the network shape with just one number:

|VH| / |VG | . (1.4)
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The clustering coe�cient of any vertex, Equation 1.5, uses the concept of a transitive

relation. Such a relation says the if v1 is connected to v2 and v1 is connected to v3, then

v2 is connected to v3 (Leinhardt, 1976). Such a relation clearly represents a triangle. Then

the clustering coe�cient of any node, v, is the number of transitive relations, or number of

triangles, t, that the node, v, takes part in, divided by the total number of triads it takes

part in (Estrada, 2011):

C
v

=
t
v

k
v

(k
v

� 1)/2

=
2t

v

k
v

(k
v

� 1)
. (1.5)

A triad, or triple, is a possible transitive relation. This means that it is a path of length

two where the end nodes are not connected to each other. The lack of connection between

these end nodes is what leads the triad to be a possible transitive relation instead of simply

a transitive relation. In Equation 1.5, t
v

is the number of triangles that node v takes part

in and k
v

is the degree of that same node.

The average clustering coe�cient is achieved by taking the average clustering coef-

ficient over all of the nodes in G:

C̄ =
1

n

X

v2V
C
v

. (1.6)

Clustering can also be looked at as a global property of a network, as opposed to a property

of individual nodes. This measure is called transitivity, or the global clustering coe�cient:

C(G) = 3 |C3|
|P2| . (1.7)

In Equation 1.7, |C3| is the number of cycles of size three and |P2| is the number of paths

of length two. This can also be looked at as the number of triangles in the network divided

by the number of triads (Kolaczyk, 2009; Estrada, 2011). It is very similar to the clustering

coe�cient of individual nodes seen in Equation 1.5.
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The eccentricity, Equation 1.8 of any given vertex, v, is the longest shortest path in

which it serves as an endpoint.

e(v) = max
x2VG

{d(v, x)} (1.8)

The diameter of a network is the maximum eccentricity across all of the nodes.

diam(G) = max
x,y2VG

{d(x, y)} (1.9)

Nodes with eccentricities equal to the diameter are peripheral nodes. The radius of a

network is the minimum eccentricity across all nodes.

rad(G) = min
x,y2VG

{d(x, y)} (1.10)

If a node happens to have eccentricity equal to the radius, then it is referred to as central.

The set of central nodes are collectively referred to as the center of the graph (Estrada,

2011). The previous two properties, diameter and radius, require a connected network in

order to be calculated.

Related to the concept of path length is the average shortest path length (ASPL),

also sometimes referred to as the characteristic path length. It is a global metric that

measures the average distance between any two vertices in a graph (Watts & Strogatz,

1998):

¯̀(G) = 1

n(n� 1)
·
X

i 6=j

d(v
i

, v
j

). (1.11)

The average shortest path length is bounded by:

1  ¯̀(G)  n+ 1

3
, (1.12)

where the lower bound is achieved by a complete network and the upper bound is achieved

by a path of length n (Estrada, 2011).
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1.2.1 Small-World and Scale-Free

In order to understand the next several graph measures, it is necessary to provide some

background into types of model graphs including random, lattice, small-world, and scale-

free. Recall that model graphs are mathematically based models. They do not directly

represent any real-world system.

Random and lattice graphs are two simple graphs. They do not contain complex

topologies. Random graphs are created by connected any node v1 to any other node with

probability p (Gilbert, 1959; Erdős & Rényi, 1960; Bollobás, 1998). Lattice graphs, also

referred to as mesh graphs or grid graphs, are graphs embedded in a Euclidean space that

form regular tilings. A lattice of size n ⇥ n is embedded in space Rn. In a cubic lat-

tice, “vertices are the ordered triplets on n symbols, such that two vertices are adjacent if

and only if they have two coordinates in common” (Figure 1.1) (Aigner, 1969; Laskar, 1969).

Figure 1.1. Example of a cubic lattice.

Small-world graphs, which will be discussed in further detail in Chapter 3.1, are

categorized by two features (or properties), their short average shortest path length (Equa-

tion 1.11) and high global clustering coe�cient (Equation 1.7). These features cannot be

replicated by either random or lattice graphs (Watts & Strogatz, 1998). Scale-free graphs,

also described Chapter 3.1, are considered ultra-small based on their average shortest path

length (Cohen & Havlin, 2003). This is in large part due to the formation of hubs. Hubs are

nodes that have many more connections than other nodes in the same graph (Barabási &

Albert, 1999). Due to the existence of hubs, the graph’s path length grows proportionally

to the number of nodes, n (Cohen & Havlin, 2003).

To determine whether a network has small world features we must compare it to a

random graph with size n nodes and average degree k̄. Conveniently, we do not actually have
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to create a random graph with the desired number of nodes and average degree in order to

calculate the average shortest path length and transitivity needed for the comparison (Watts

& Strogatz, 1998; Cohen & Havlin, 2003). Instead, we can approximate those parameters

by:

¯̀
r

=
log n

log k̄
, (1.13)

and:

C̄
r

=
k̄

n
. (1.14)

Then we can calculate two proportions:

p =
C̄

C̄
r

(1.15)

q =
¯̀

¯̀
r

. (1.16)

If p � 1 and q ⇡ 1 we can determine that the network has small-world properties.

In addition to the small-world property relating to the average shortest path length,

there is also a scale-free property. We can check a network for the scale-free property

similar to how we check for the small-world property, but this time there is no clustering

requirement. Since the average shortest path length grows proportionally to the number of

nodes, n, in the network such that:

¯̀(G) / log log n, (1.17)

we now estimate the average shortest path length of the random graph with size n by:

¯̀
r,ultra

=
log n

log log n
. (1.18)
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Then if s � 1 we can determine that the network has the scale-free property and is ultra-

small, where s is defined as:

s =
¯̀

¯̀
r,ultra

. (1.19)

This property was shown by Cohen and Havlin (Cohen & Havlin, 2003; Cohen et al. , 2003).

The next measure, assortativity, is not directly related to the SMW or SF property,

but it is necessary to understand in order to comprehend another measure, the S-metric,

which is directly related to the SF property. Assortativity, r(G), is defined such that:

r(G) =
P

xy

xy(e
xy

� a
x

b
y

)

�
x

�
y

, (1.20)

where e
ij

is “the fraction of all edges in the network that join together vertices with values

x and y” (Newman, 2003). In other words, it is looking at the portion of high-degree nodes

connected to other high-degree nodes (Newman, 2002). Values are typically node degrees,

but the assortativity formula can be applied to other graphical features. The expressions a
x

and b
y

represent “the fraction of edges that start and end at vertices with values x and y”

(Newman, 2003), respectively. Formulas for these two quantities can be seen in Equation

1.21 and 1.22:

a
x

=
X

y

e
xy

(1.21)

b
y

=
X

x

e
xy

. (1.22)

The denominator of Equation 1.20 is made up of the standard deviations of the distributions

for a
x

and b
y

.

The s-Metric “measures the extent to which the graph G has a “hub-like” core where

a “hub-like” core is defined as a set of nodes that have more connections than other nodes

in the graph and “play a central role in the overall connectivity of the network” (Li et al.

, 2005). The s-metric is maximized when high-degree nodes are connected to other high-

degree nodes” (Li et al. , 2005). In other words, the s-Metric is a measure of the assortativity
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of a network and can “measure the extent to which a graph is scale-free” (Li et al. , 2005).

It typically assumes an undirected, simple, connected graph and is calculated as follows: the

ordered degree sequence of the nodes of a network is given by K = {k1, k2, . . . , kn} where

k
i

is the degree of node i and then:

s(G) =
X

ei,j2E
k
i

k
j

. (1.23)

The s-metric can be normalized through use of the s
max

-graph, which is the graph

with ordered degree sequence K that has the largest s-Metric value. The value seen in

Equation 1.23 is maximized, as previously mentioned, when high degree nodes are connected

to one-another. It is important to note that the construction of an unconstrained s
max

-

graph is nontrivial as long as the network is required to be simple (Waldorp & Schmittmann,

2015).The normalized metric is calculated by:

S(G) = s(G)
s
max

(G) . (1.24)

Normalizing the s-metric, so it becomes the S-metric, allows for the comparison of networks

with di↵erent degree sequences (Beichl & Cloteaux, 2008). For that reason, the normalized

metric is the one utilized in this research. There are numerous advantages of this metric

over others. The main one is its ability to di↵erentiate between networks with identical

degree distributions, but di↵erent topological properties. Additionally, this metric requires

more than a degree distribution that is scaling in order for it to be deemed a scale-free

network, it also requires the network to be self-similar (Li et al. , 2005). Self-similarity in a

network is expressed as self-repeating patterns (Song et al. , 2005). A network that exhibits

a scaling degree distribution without self-similarity results in a low value for S(G) and is

referred to as scale-rich as opposed to scale-free.

Both the S-metric and assortativity measure the connectivity of high-degree nodes

to other high-degree nodes and low-degree to low-degree. In assortativity, if high-degree

nodes are connected to other high-degree nodes (and low-degree to low-degree), then the

network is assortative. If high-degree nodes are not preferentially connected to other high
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degree nodes, then the network is dissasortative. The range for assortativity is [�1, 1], with

the lower bound corresponding to dissasortative mixing and the upper bound to assortative

mixing. If the assortativity coe�cient is 0, then the network has neutral mixing (Estrada,

2011)

The association between S(G) and r(G), is direct since they usually measure essen-

tially the same thing, however this is not always the case. There are numerous instances

where the two conflict. The reasons for the disagreements are the “background sets” used

for normalization (Li et al. , 2005). As previously mentioned, S(G) is normalized against a

simple, connected graph. The normalized assortativity value is not forced under the same

constraints. In fact, in nearly all situations the network with the highest unnormalized as-

sortativity or s-metric would have multiple self-loops and be connected. Thus, both metrics

are useful despite their conceptual similarity.

1.2.2 Centrality

The determination of the most important nodes in a network is very interesting and highy

subjective. A node considered important by one measure may not be considered so by

another. Most measures agree that a node’s importance is related to high degree, however

that is typically where the agreement ends (Freeman, 1979). Measures that test the impor-

tance of any given node are called centrality measures. While there are numerous centrality

measures, only four were considered for this analysis: degree, betweenness, closeness, and

eigenvector (Kolaczyk, 2009; Estrada, 2011).

Due to the undirected nature of the networks under investigation, it was not neces-

sary to separate in-degree from out-degree. Degree centrality of any given node, i, simply

refers to the degree of that node and is normalized by dividing by the maximum possible

degree (Estrada, 2011):

DC
i

=
k
i

n� 1
. (1.25)

Closeness centrality examines the distance from one node to every other node in the

network. Nodes that can reach most other nodes in the fewest number of steps are rewarded
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with high closeness centrality values by taking the inverse of each shortest path distance

from the node in question (Estrada, 2011). Mathematically this is represented by:

CC
i

=
n� 1P

v2V d(i, v)
, (1.26)

where V is the set of all vertices in the network. The average path length is normalized by

the maximum possible path length, n�1, which is where the numerator of Equation 1.26 is

derived. Closeness can be calculated on unconnected networks by calculating the centrality

of each connected component separately.

The betweenness centrality metric examines the relative importance of a node in

communication between other nodes. It measures this by the fraction of shortest paths

from s to t, where u acts as a bridge divided by the total number of shortest path from s

to t:

BC
i

=
X

s,t2V

⇢(s, i, t)

⇢(s, t
, s 6= t 6= i. (1.27)

In Equation 1.27, ⇢(s, u, t) refers to the number of shortest paths from s to t that pass

through i and ⇢(s, t) refers to the total number of shortest paths from s to t (Estrada,

2011). We then normalize this total number by 2/((n � 1)(n � 2)). The normalization

factor allows for more accurate comparisons between networks of drastically di↵erent sizes.

Eigenvector centrality was first proposed by Bonacich in 1987 (Bonacich, 1987). The

idea for this metric was based on actor networks. In such networks, an actor’s centrality

indicated the extent to which a given actor was associate with other central actors (Estrada,

2011). Essentially, this measure looks for the most influential node in the network by

acknowledging that not all connections are equal (Newman, 2008).

The eigenvector centrality is calculated, in this instance, by using the power method,

also known as the power iteration eigenvalue algorithm, to identify the eigenvector associ-

ated with the largest eigenvalue of the adjacency matrix of network G. This is the principal
eigenvector. The ith entry from this principal eigenvector is the eigenvector centrality of

node v
i

,  
i

(i).
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To begin, we define:

x
vi =

1

�

nX

j=1

A
ij

x
vj , (1.28)

where A is the adjacency matrix of the network and A
ij

is the entry in the i-th column

and j-th row indicating whether node v
i

and node v
j

have an edge between them. The

values x
vi and x

vj represent the centralities of nodes v
i

and v
j

. The value � is a constant.

If we define a vector of all the node centralities such that xv = (x
v1 , xv2 , . . . , xvn), then the

equation rewritten in matrix form is:

�x = A · x. (1.29)

The equation in Equation 1.29 is traditional equation for the calculation of eigenvalues �

and eigenvectors x. The eigenvalue is required to be positive, therefore it can be shown

by the Perron-Frobenius theorem (Keener, 1993) that � is the largest eigenvalue of the

adjacency matrix and x is the corresponding eigenvector (Newman, 2008).

1.3 Discussion

In this chapter we presented a brief introduction to some essential elements from graph the-

ory. We then moved onto the discussion of ways to summarize networks. These statistics

take the form of network measures. Network measures can either represent graph-level prop-

erties or node-level properties. Often times averages are taken of the node-level properties to

obtain a single statistics that summarizes the whole network. A total of nineteen measures

were examined. Eleven of these are graph-level and eight are node-level. The graph-level

measures are number of nodes, number of edges, density, proportion of nodes in the gi-

ant component, transitivity, diameter, radius, SMW property, SF property, assortativity,

and S-metric. The node-level measures are degree, neighbor degree, clustering coe�cient,

shortest path length, and the four centrality measure: degree, betweenness, closeness, and

eigenvector. In the next chapter, we present the real-world network that is at the center
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of this dissertation. The network is then evaluated using the measures presented in this

chapter.
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Chapter 2

Introduction to the Structure of Biomolecular Networks

We have mentioned that the main topic of this dissertation concerns the classification of real-

world networks. Nearly any system can be represented by a network. There are computer

networks such as the internet and world wide web, social networks such as friendships, and

biological networks. The latter category contains networks such as food webs, but also

encompasses molecular networks. The focus of this dissertation is on molecular networks,

proten-protein interaction networks in particular. In this chapter, we introduce the concept

of a protein-protein interaction network. We then present the specific network used for the

remainder of the analyses. Finally, we use the graph measure explained in Chapter 1 to

attempt to summarize the network’s features.

2.1 Protein-Protein Interactions

Protein-protein interactions (PPI) are defined as “physical contacts with molecular docking

proteins that occur in a cell or in a living organism in vivo” (De Las Rivas & Fontanillo,

2010). A protein-protein interaction network is built using known protein-protein inter-

actions. Nodes are used to represent proteins, and edges represent interactions. Since

interactions are considered mutual (if A interacts with B, then B interacts with A) the

network is undirected. De Las Rivas believed that interactions used to build the networks

should meet two criteria. First, they should be intentional, “the result of specific selected

bimolecular forces” (De Las Rivas & Fontanillo, 2010). Secondly, the interaction interface

should be non-generic. In other words, it should have evolved for a specific purpose unique

from generic functions such as protein production or degradation.

Currently there are multiple techniques for building protein-protein interaction maps.

High-throughput methods, such as yeast two-hybrid screening, bimolecular fluorescence

complementation (BFC), tandem-a�nity purification (TAP) combined with mass spec-

trometry (MS), and chemical cross linking, give the most accurate results. The former

two methods are in vivo methods while the latter two occur in vitro. Comparing the data

resulting from the di↵erent methods is di�cult since the the data were derived under dif-
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ferent conditions with di↵erent goals. Of approximately 80,000 total interactions available

from di↵erent high-throughput methods only ⇠ 3%, or ⇠ 2, 400, are supported by more

than one method (Von Mering et al. , 2002). There are several possible reasons for this

discrepancy. First, the methods may each detect a significant number of false-positives.

Second, each method may have a predilection for reporting certain types of interactions or

be disinclined to report others. Third, these methods may not have reached a point where

they are detecting all interactions available, thus a large number of false negatives. For

these reasons it is crucial to use as many methods as possible in order to generate the most

accurate set of PPI.

2.2 Sacchraomyces cerevisiae Protein-Protein Interaction Network

Throughout this dissertation, we will examine and analyze the Saccharomyces Cerevisiae

PPI network as described in the Database of Interacting Proteins (DIP) (Xenarios et al.

, 2002). More specifically, this network was described by Gavin et al. in 2002 through

use of tandem-a�nity purification (TAP) and mass spectrometry (MS). In this process,

“individual proteins are tagged and used as hooks to biochemically purify whole protein

complexes” (Von Mering et al. , 2002). One main advantage of the TAP/MS procedure

is that it can detect real complexes in vivo as opposed to potentially artificial complexes

in vitro. Unfortunately, it may not detect PPI that are not present during the specific

physiological settings under which the test is performed. Slightly di↵erent settings may

lead to the discovery of di↵erent protein complexes. In addition, the tagging may disturb

complex formation causing unnatural changes or may not bond closely enough. In the

latter situation, the tag may be washed o↵ and thus the interaction will not be recorded

(Von Mering et al. , 2002).

Saccharomyces Cerevisiae is a species of yeast used in winemaking, baking, and

brewing. This was the first eukaryotic organism whose entire set of proteins and corre-

sponding interactions was analyzed (Mashaghi et al. , 2004). The dataset used here has

1361 proteins (nodes) with 3222 interactions (edges). The corresponding PPI network has

the majority (⇠ 92%) of nodes in one giant (connected) component. Table 2.1 shows the

comparison, when applicable, between measures of the full network and measures of the
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Figure 2.1. Visualization of the S. cerevisiae protein-protein interaction network.

giant component. In general, there is very little change in value between the full network

and the giant component. This is a useful property of network comparisons. The dataset

has no proteins interacting with themselves and no lone nodes. The network has a density

of 0.0035, which is much closer to the lower end of the density range than to the upper.

This is quite common in real world networks (Melancon, 2006). The transitivity (Equation

1.7) of the full network is 0.1934, therefore there are many more unconnected triads than

full triangles found in the network. Finally, the assortativity coe�cients of the yeast data,

both for the giant component and full network, are negative. This implies dissassortative

mixing: high degree nodes are preferentially attached to low degree nodes (Estrada, 2011).

This is very commonly seen in biological networks and thus was to be expected (Barabási

& Oltvai, 2004).

Several other measures provide good insight into the shape and size of the network.

The PPI network has a diameter of 12 and a radius of 6. Its characteristic path length,

or average shortest path length, is 4.8972. By using this measure along with the average
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Table 2.1. Table of graph measures for the S. cerevisiae PPI network.

G H
n 1361 1246
m 3222 3142
k̄ 4.7348 5.0443
|VH|/|VG | 0.9155 -
D(G) 0.0035 0.0041
C(G) 0.1934 0.1939
C̄ 0.217 0.2351
r(G) -0.1176 -0.1441
S(G) 0.5364 0.5375
diam(G) - 12
rad(G) - 6
¯̀ - 4.8972
D̄C 0.0035 0.0041
C̄C 0.1749 0.2085
B̄C 0.0024 0.0031
 ̄ 0.0087 0.0095

G indicates the full network. H is the giant connected component of the network. Not all values be calculated
for both the full network and the giant component because measures examining paths require a connected
network.

clustering coe�cien we can attempt to ascertain whether this network displays signs of

either small-world or scale-free properties. The estimate of average shortest path length for

a random graph of the same size and with the same degree is 4.64. The estimate for average

clustering coe�cient is 0.0034. Using the proportions seen in Equations 1.15 and 1.16, we

can calculate p and q:

p =
C̄

C̄
r

=
0.217

0.0034

= 63.82 (2.1)

q =
¯̀

¯̀
r

=
4.8972

4.6437

= 1.05. (2.2)
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Clearly, p � 1 and q ⇡ 1. Therefore, the S. cerevisiae PPI network has small-world

properties.

We can also check for the presence of scale-free properties. In this situation, the

average shortest path length of the random graph with the same number of nodes calculated

by Equation 1.19 is 6.32. Then we can calculate s:

s =
¯̀

¯̀
r,ultra

=
4.8972

6.3173

= 0.7752. (2.3)

From Equation 2.3 we see that s = 0.7752. This is clearly not approximately equal to one,

thus we can conclude the S. cerevisiae PPI network does not exhibit scale-free features.

This failure to recreate scale-free features is evidence to support the argument that PPI

networks, in general, are not scale-free. The S-metric, S(G), is another metric that aids the

argument. Since the S-metric identifies a hub-like core if there is one present, we would

expect a value closer to one than to zero. However, the S-metric for the full PPI network

is just over 0.5 (Table 2.1). The S-metric for the giant component is essentially the same.

Thus the S. cerevisiae PPI network does not show evidence of a hub-like core, the hallmark

of the scale-free network (Li et al. , 2005). Despite these measures, it is still widely held that

PPI networks are indeed scale-free (Jeong et al. , 2000; Barabási & Oltvai, 2004; Albert,

2005). This question is a main motivator of the following research. The discrepancies in

classifications of PPI networks, as well as diversity in classifying methods, have not yet been

adequately addressed.

2.3 Motivation for Network Classification

There are many reasons why the analysis of PPI, as well as the determination of the best

fitting model graph, is important. One factor is orthologous proteins. Orthologs refer to

“genes that have diverged after a speciation event” (Fulton et al. , 2006). Thus the encoded

proteins of these ortholog genes have similar functions in di↵erent species. The identification

of protein interactions in less complex organisms can then lead to the discovery of their
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orthologs in more complex organisms (Jeong et al. , 2001). In fact, it is believed “that a

significant number of the yeast complexes described [here] will have human equivalents and

these may form the basis for understanding multifactorial disease” (Gavin et al. , 2002).

Another reason that the determination of the most accurate growth mechanism of

PPI networks is important is for use in predicting missed interactions as well as identifying

false-positive interactions. As was previously noted, PPI datasets are thought to have

extremely high numbers of false-positive interactions. Finally, PPI network analysis can

further investigations about evolutionary processes (Emmert-Streib, 2012).

In the next chapter (Chapter 3), we present the nine di↵erent types of model graphs

that will be considered as possibilities to best mimic the S. cerevisiae PPI network. From

there we move onto a numerical comparison of the model graphs to the S. cerevisiae PPI

network based on measure values (Chapter 4). Finally, present five popular classifiers

(Chapter 5) and test their performance capabilities in Chapters 6 and 7.
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Chapter 3

Introduction to Model Graphs

The term model graph refers to any graph that is not specifically designed to model a

real-world network. Nodes in the graph cannot be directly mapped to real-world entities.

Instead, these graphs are built by using a prescribed algorithm, also known as a growth

mechanism. Model graphs can be split into two mutually exclusive groups: static and

growing. When static graphs are created, all of their nodes are present. Thus, there is no

concept of node age. These graphs may begin with a partially connected seed graph along

with numerous lone nodes or with just a collection of lone nodes. Edges are then added

based on the prescribed algorithm.

The second group of graphs can be classified as growing. These models begin with a

small connected seed graph, similar to the start of some of the static graphs, however there

are no long nodes present. Each node is added to the seed graph during its own time step,

with edges being added or removed at the same time. None of the static graphs contain a

mechanism for edge removal while many of the growing ones do. Growing a model typically

leads to di↵erent properties than those found in a static graph (Callaway et al. , 2001). One

such property is node age, which is often important in modeling real-world networks.

In this chapter we introduce the nine model graph types that will be used throughout

this dissertation.We begin with an overview of each algorithm, followed by simulations to

create 1000 model graphs of each of the nine types. The results of the simulation are

compared based on many of the graph measures presented in Chapter 1 in order to determine

the amount of variability within each model type. We conclude with a full examination of

this variability.

3.1 Model Graph Descriptions

A total of nine model graph types are examined in the search for the best fit for the S.

cerevisiae PPI network. The graphs were chosen based on their usage in the methods that

will be examined in the following chapters, as well as their prevalence in the literature.

Su et al (Su et al. , 2011) analyzed the duplication-mutation-complementation (Vázquez
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et al. , 2003), duplication-mutation with random mutation (Sole et al. , 2002), and linear

preferential attachment models (Yule, 1926; Simon, 1955; Barabási & Albert, 1999). Przulj

et al. (Przulj et al. , 2004; Przulj, 2007) used the Erdös-Rényi random graph (Erdős & Rényi,

1960), Erdös-Rényi random graph with specified degree distribution (Molloy & Reed, 1995),

and linear preferential attachment models. The Erdös-Rényi random graph is also called a

random static network. In the earlier paper, Przulj also used 2-dimensional, 3-dimensional,

and 4-dimensional geometric graphs (Przulj et al. , 2004), while in later papers she only

used the 3-dimensional geometric graph because it was found to be the best fit out of the

three types of geometric networks (Pržulj & Higham, 2006; Przulj, 2007). Higham also used

geometric graphs, but found that 2-dimensional geometric graph are “generally as e↵ective

as higher dimensional Euclidean space for explaining the connectivity” (Higham et al. ,

2008). A third paper by Przulj introduced the concept of a stickiness index to design a

graph based on “the abundance and popularity of binding domains on a protein” (Pržulj &

Higham, 2006). Another paper, by Middendorf et al. (Middendorf et al. , 2005) utilized the

most model graphs for comparison, a total of seven. These include aging vertex (Amaral

et al. , 2000), duplication-mutation-complementation, duplication-mutation with random

mutation, linear preferential attachment, random static, random growing, and small-world

(Watts & Strogatz, 1998). Obviously multiple graphs, specifically the duplication models,

linear preferential attachment, and random static, were used in multiple papers. This would

seem to signify that scientists expect these models to have the best fit out of all the graph

choices for the PPI networks.

As previously mentioned, the nine graph types can be split into two mutually exclu-

sive groups. The first group is composed of static graphs, which lack the concept of node

age. Models falling into this category include random static, small-world, and geometric

(Table 3.1). The second group of model graphs can be classified as growing (Krapivsky

et al. , 2000; Dorogovtsev et al. , 2000). Models in this category include random growing,

duplication-mutation with complementation, duplication-mutation with random mutation,

aging vertex, linear preferential attachment, and stickiness index (Table 3.1). These graphs

have the concept of node age, which is often important in modeling real world networks.
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Table 3.1. Model graphs used for network classification.

Model Graphh Abbrev. Type

3D Geometric GEO Static
Random Static RDS Static
Small-World SMW Static
Aging Vertex AGV Growing
Duplication-Mutation-Complementation DMC Growing
Duplication-Mutation with Random Mutation DMR Growing
Linear Preferential Attachment LPA Growing
Random Growing RDG Growing
Stickiness Index STI Growing

This table shows the nine model graph types used as potential best fits for S. cerevisiae PPI network
classification throughout this dissertation. The first column provides the name of the model graph. The
second column is the abbreviation that will be used throughout this work. Finally, the third column indicates
whether the graph is growing or static. Static graphs begin with all of their nodes present and edges are
added based on the algorithm. Growing graphs begin with a seed graph and new nodes and edges are added
at di↵erent time-steps.

3.1.1 Random Static

The first and most basic model type considered is the random static graph (RDS), also re-

ferred to as the Erdös-Rényi random graph. It begins with a completely unconnected graph

of n nodes (Middendorf et al. , 2005). Two vertices are randomly chosen and connected.

This is repeated until the number of edges reaches the desired number. The RDS network

results in a Poisson degree distribution (Callaway et al. , 2001).

3.1.2 Small-World

Another very common graph type that is utilized is the small-world graph. This model was

first discussed by Watts and Strogatz (Watts & Strogatz, 1998) and is characterized by its

short characteristic path length, ¯̀, and high degree of clustering. Neither of these properties

can be captured with traditional approximations based on lattices or random graphs, which

led to the motivation for creating this type of model graph. In short, small-world graphs

have “short cuts” which increase the connectivity, leading to the “six degrees of separation”

phenomena (Barrat & Weigt, 2000). The characteristic path length can be approximated

by ¯̀⇠ log n (Cohen & Havlin, 2003).

The small-world graphs for this analysis begin with a regular ring lattice of 1361

nodes with every node connected to its neighbors at a maximum distance
⇥
m

n

⇤
� = 2 with a
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probability of:

hm
n

i

+
� m

n
= 3� 2.3674

= 0.6326.

In addition, nodes are connected to neighbors at distance of
⇥
m

n

⇤
+

= 3 in order to make

the average total number of edges equal to m, which in this case is 3222. Rewiring of the

graph occurs by randomly selecting a pair of edges (v
i

, v
j

) and choosing another vertex, v
k

that is not connected to v
i

. The rewiring of (v
i

, v
j

) to (v
i

, v
k

) is performed with probability

q
rewire

2 (0, 1) (Middendorf et al. , 2005).

3.1.3 3D-Geometric

A geometric random graph, G(n, r) is a geometric graph containing n nodes and radius,

r (Pach, 1999). The n nodes correspond to n “independently and uniformly randomly

distributed points in a metric space” (Przulj et al. , 2004). Here we consider 3-dimensional

geometric graphs with a corresponding metric space of [0, 1]3 (Penrose, 2003). The 3-

dimensional geometric graph was chosen over other geometric graphs based upon the results

achieved by Przulj et al., who show that it is a better fit to the PPI network examined (Przulj

et al. , 2004).

3.1.4 Linear Preferential Attachment

The linear preferential attachment (LPA) model by Barabasi and Albert (Barabási & Albert,

1999) is based on the idea that when a new vertex attaches to a graph it prefers to attach

to vertices that are already well connected with a probability proportional to k + a, where

a is a constant and k is the degree of the node. Thus a higher level of connectivity leads

a node to obtain more of the new additions than a node with a lower level. This property,

along with the constant expansion of a network due to new additions leads to the scale-free

property. In addition, scale-free graphs are ultra-small. This means that their characteristic

path length can be approximated by ¯̀⇠ log log n (Cohen & Havlin, 2003).
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The LPA model, along with the next several model types, each begin with a seed

RDS graph composed of [2m

n

+1]+ nodes and m

n

[2m

n

+1]+ edges (Middendorf et al. , 2005).

Since all model graphs are based on the S. cerevisiae PPI network with 1361 nodes and 3222

edges, the number of nodes in the seed graph is 6 and the number of edges is approximately

14. The constant a 2 (0, 5), with the upper limit chosen based on prior research and trials

performed by Middendorf et al. From there preferential attachment is used to build edges

between the nodes (Middendorf et al. , 2005).

3.1.5 Random Growing

The random growing graph, RDG, begins with the same RDS seed graph setup of 6 nodes

and 14 edges as the LPA graph (Middendorf et al. , 2005). At each time step, a new vertex

is added to the list of nodes in the graph, but it is not necessarily connected to the graph

immediately. Two nodes are randomly chosen and connected. The process of connecting

nodes is repeated until the total number of edges added at that time step is greater or equal

to:

hm
n

i
= 2.3674. (3.1)

The addition of edges continues until the desired number has been achieved. Despite be-

ginning with an RDS graph, the RDG graph is distinctly di↵erent (Krapivsky & Redner,

2001). The di↵erence likely results from the fact that in a growing graph vertices have

distinct ages, a property not found in the RDS network. The group of older edges has more

time to develop interactions and thus form a tight core that has a higher than average den-

sity of edges. This core leads to the illusion that highly connected nodes are more likely to

be connected to each other, or the illusion of preferential attachment. In addition, despite

the fact that preferential attachment is absent, the growth of a graph, as opposed to its

creation, causes clearly identifiable di↵erences in characteristics (Callaway et al. , 2001).

Thus the growing random graph has di↵erent characteristics than the random static graph.

For example, the resulting degree distribution of the RDG graph is exponential, as opposed

to Poisson for RDS.
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3.1.6 Aging Vertex

The aging vertex graph, or AGV, is based upon graph models of citation networks, the

Internet, and scientist collaboration networks (Klemm & Eguiluz, 2002; Zhu et al. , 2003).

All of these networks display preferential attachment, where the likelihood of a node ob-

taining a new link is directly proportional to the number of links that it already has. These

networks also have an additional property that is seen most clearly in the scientist collab-

oration network (Newman, 2001a; Barabâsi et al. , 2002; Moody, 2004); after a period of

time, a scientist will have no more new collaborations because they will no longer be active.

Thus, after a certain period of time a node receives no more edges, however many it already

has. A similar phenomenon is seen in the citation network (Chen & Redner, 2010), where

papers become less citepd as they become older and outdated. The AGV graph is designed

to represent these occurrences by containing three distinct empirical properties. First, the

degrees follow a power law distribution. Second, preferential attachment is utilized for the

addition of new nodes. Third, there is a negative correlation between age and the addition

of new links (Klemm & Eguiluz, 2002). Beginning with the seed graph, nodes are chosen

randomly and connected based upon properties of other nodes.

3.1.7 Duplication-Mutation-Complementation and Duplication-Mutation using Random
Mutation

The duplication-mutation-complementation graph model (DMC), also known as the duplication-

mutation preserving complementarity graph, and the duplication-mutation using random

mutation graph (DMR) are both biologically based. The DMC model was first described

by Vazquez and Flammini in 2003 (Vázquez et al. , 2003). The graph begins with a path of

length two, two nodes connected by one edge. At each time step a new node is added to the

graph, v
new

. It chooses another node at random, v
old

, and copies all of its neighbors. For

each neighbor of the two nodes (they currently have identical neighbors), the edge connect-

ing it to either v
new

or v
old

is randomly selected. This selected edge is then removed with a

probability q
del

2 [0, 1]. Finally, v
new

is connected to v
old

with probability q
con

2 [0, 1]. The

biological implication of only removing one edge to any given neighbor is that it allows for

the preservation of function. Finally, v
new

is connected to v
old

with probability q
con

2 [0, 1]
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(Su et al. , 2011; Middendorf et al. , 2005). This process continues until the designated

number of nodes has been added.

The DMR graph was first described in 2002 by Solé (Sole et al. , 2002). It begins

similarly to the DMC graph, but the seed graph is a 5-vertex-cycle, |C5| (Middendorf et al.

, 2005). At each time step a new node, v
new

, copies all of the neighbors of a previously

connected node, v
old

. For each of those neighbors, the probability that its edge to v
old

is deleted with probability q
del

2 [0, 1]. A link between the new node and any of these

nodes is created with probability q
new

/(n
t

� 1), where q
new

2 [0, 1] and (n
t

� 1) is the total

number of nodes in the graph, not including v
new

, at time step t. Thus this model allows

for completely new interactions that the DMC model does not (Su et al. , 2011). Once

again, the process continues until the designated number of nodes has been added. Both

biologically based graphs lead to far larger variations in the numbers of nodes and edges

than any other model examined here because of their propensity for lone nodes, which are

removed and not counted in this analysis, as well as a lack of constraint on the number of

desired edges.

3.1.8 Stickiness Model

The final model, the stickiness model (STI), is also biologically based. It was proposed by

Przulj etal. in 2006 (Pržulj & Higham, 2006) and employs a stickiness index. This index

is based upon the normalized degree of a node. The purpose of this model is to mimic the

binding domains found on proteins. The model is motivated by two assumptions. First,

it assumes that a protein (node) with a high degree has many binding domains and/or

its domains are commonly involved in interactions. The second assumption is that two

proteins are more likely to interact (have an edge) if they both have high stickiness indices.

In previous tests this model has been found to be the best fit for 14 PPI networks derived

from di↵erent species at di↵erent levels of confidence with 25 comparison models (Pržulj &

Higham, 2006). The STI graph has also been shown to be the best fit for viral PPI networks

(Kuchaiev et al. , 2011).
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3.2 Methods

For each of the nine model types, 1000 graphs were created. We chose to simulate 1000

graphs because it is the most common number of simulations run across numerous simulation

studies (Burton et al. , 2006). The graphs for AGV, DMC, DMR, LPA, RDS, RDS, and

SMW were created using source code provided by Middendorf et al. Pseudo-code for these

calculations can be seen in the Supplemental Information of their paper (Middendorf et al. ,

2005). The programs building these model graphs were run in MATLAB (MATLAB, 2010).

The remaining graphs were created using GraphCrunch 2 (Kuchaiev et al. , 2011). In the

creation of each type of model graph, either the number of nodes, the number of edges, or

both were required to be specified. For these values, the numbers of nodes and edges of the

S. cerevisiae PPI network were used as input. It should be noted that even though we use

those value as inputs, it does not guarantee that each model graph created will have the

exact criteria desired. Many of the growth mechanisms resulted in lone nodes that were

removed, a feature built into the code used and consistent across the literature (Przulj et al.

, 2004; Middendorf et al. , 2005; Pržulj & Higham, 2006; Przulj, 2007; Su et al. , 2011). In

addition, multiple mechanisms have a randomly sampled probability of edge creation, as

opposed to a specified number of edges, and thus the resulting graphs can di↵er drastically

from the ideal.

The 1000 model graphs of each type were assessed based on fifteen measures: average

shortest path length, assortativity, average clustering coe�cient, average degree, between-

ness centrality, closeness centrality, degree centrality, density, diameter, number of edges,

eigenvector centrality, proportion of nodes in the giant component, number of nodes, ra-

dius, and transitivity. Results for each measure are illustrated with box plots, allowing us

to examine the distribution within each model type as well as to compare against other

types.

3.3 Results

3.3.1 Numbers of Nodes and Edges

We begin by examining the numbers of nodes (Figure 3.1) and edges (Figure 3.2) within

each model. It was previously noted that for the majority of models, both the number
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of nodes and the number of edges were entered into the algorithm building the graph. A

literature review indicated that lone nodes were most commonly dealt with by eliminating

them from the graph, thus leaving the model graph with less nodes that desired. We decided

to continue this trend for two reasons. First, it is necessary to keep as many aspects of the

simulation the same as in the literature so that results can be properly compared. Keeping

lone nodes, or continuing to run the model until the ideal number of nodes are connected

changes the experiment and thus will logically change the results of the classification. This

would prevent us from being able to make a true comparison. Second, all of the classifiers

later examined have the ability to deal with di↵erences in number of nodes, especially when

the largest di↵erence is still less than a 20% reduction. Finally, protein-protein interaction

networks are, obviously, built on interactions. Model types that tend to build graphs with

a huge number of lone nodes are most likely not the best fitting model anyway.

Figure 3.1a, shows a plot of all of the model types. Node that the DMC and DMR

graph types have a huge range in the number of nodes. This indicates two things. First,

they are clearly much more prone to the creation of lone nodes than the other model types

judging from the lower end of the range of values. Second, they do not produce as consistent

of a model graph as the other growth mechanisms based on the absolute size of the range.

Figure 3.1b shows a closeup of Figure 3.1a but with the DMC and DMR graphs

removed. At this closer level, we can see that RDG and STI graphs also tend to produce

more lone nodes and more varied graphs than the remaining five models. Figure 3.1c, shows

a plot of the number of nodes in DMC and DMR graphs alone. DMC graphs have a higher

median number of nodes and a larger range than the DMR graphs.

For number of edges in the model graphs, two model types did not take this number

as input: DMC and DMR. Similar to the issues seen in the number of nodes, we chose

not to modify the algorithms for either of these models at this point largely for the sake of

retaining comparisons to previous works. The DMC and DMR models were both designed

to mimic PPI networks (Sole et al. , 2002; Vázquez et al. , 2003) and several papers have

found them to be the best out of all the models tested (Middendorf et al. , 2005; Su et al.

, 2011). Therefore, we decided to keep these growth mechanisms as is.
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Figure 3.1. Comparison of the number of nodes across model graph types. Each box plot
shows the distribution of the number of nodes for the 1000 graphs a given model type. Results are
displayed such that the red diamond across the middle line is the median distance, the ends of the
box are the first and third quartiles respectively, and the remaining lines and points represent the
outlying distances. (a): Comparison of all model graph types. (b): Comparison of model graph
types excluding DMC and DMR. These models were removed because their variation eclipsed the
variation of the other model types. (c): Comparison of DMC and DMR model graphs.
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Figure 3.2 shows three plots demonstrating the number of edges in each of the model

graphs. It is obvious, once again that DMC and DMR graphs produce a huge range of edges

in each graph (Figure 3.2a). In fact, when all of the models are shown on the same subplot,

it is impossible to obtain any information about the other model types because the DMC

and DMR graphs dominate the image. When these two graphs are removed, Figure 3.2b

shows that STI also demonstrates a significantly large range in number of edges compared

to the other models. When just DMC and DMR are shown, the lower end of the range

for both models is approximately the same, as is the median, however the DMC growth

mechanism produces graphs with a significantly larger number of nodes that DMR.
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Figure 3.2. Comparison of the number of edges across model graph types. Each box plot
shows the distribution of the number of edges for the 1000 graphs a given model type. Results are
displayed such that the red diamond across the middle line is the median distance, the ends of the
box are the first and third quartiles respectively, and the remaining lines and points represent the
outlying distances. (a): Comparison of all model graph types. (b): Comparison of model graph
types excluding DMC and DMR. These models were removed because their variation eclipsed the
variation of the other model types. (c): Comparison of DMC and DMR model graphs.
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3.3.2 Density

The density of a graph is the proportion of edges divided by the proportion of possible

edges (Equation 1.3). The same pattern that we saw for the number of nodes and number

of edges in the model graphs shows itself here as well; graphs produced by the DMC and

DMR growth mechanisms are much more varied than the others. Once again, when the

box plots for all of the model graphs are shown in the same frame, these two model types

dominate the image making it di�cult to obtain any information about the other model

types (Figure 3.3a). When shown alone (Figure 3.3c) DMC has a larger range of values

than DMR though the bottom of both ranges and median values are approximately the

same.

The density of the remaining model graphs plotted without DMC and DMR shows

that RDG and STI graphs have the next two most varied spreads of density. This follows

from the results seen in Figures 3.1b, 3.2b. RDG and STI graphs have greater variations in

their numbers of nodes than the other model types, with the exception of DMC and DMR.

STI also has greater variation in its number of edges. Since density is a function of nodes

and edges, larger variations in those two measures will logically lead to the larger variation

seen in Figure 3.3b.
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Figure 3.3. Comparison of the graph density across model types. Each box plot shows the
distribution of the density for the 1000 graphs a given model type. Results are displayed such that
the red diamond across the middle line is the median distance, the ends of the box are the first
and third quartiles respectively, and the remaining lines and points represent the outlying distances.
(a): Comparison of all model graph types. (b): Comparison of model graph types excluding DMC
and DMR. These models were removed because their variation eclipsed the variation of the other
model types. (c): Comparison of DMC and DMR model graphs.
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3.3.3 Proportion of Nodes in the Giant Component

The giant component of a graph is the largest connected component of the graph. The

proportion of nodes in the giant component is the number of number in the giant component

divided by the total number of nodes. The majority of graphs have proportion greater than

90% (Figure 3.4a. This is even true for DMR graphs. Despite their long tailed distribution,

the median is just under 100% (Figure 3.4c). DMC on the other hand has a median closer

to 75% and its IQR range dwarfs the other model types.

When DMC and DMR are removed from the plot, allowing a more concentrated

view of the remaining model types, the varied nature of the size of the connected com-

ponent for GEO, RDG, and STI becomes more clear. GEO graphs do not contain much

variation in either their numbers of nodes or edges. This indicates that while these graphs

are not prone to producing lone nodes, they are prone to producing smaller components

that do not connect to their larger one. Since they are not prone to producing lone nodes,

we can infer that the size of these components is slightly significant. RDG and STI graphs

are prone to producing lone nodes, so it makes sense to infer than the nodes not in the giant

component are probably clustered in small groups.
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Figure 3.4. Comparison of the proportion of nodes in the giant component across model
graph types. Each box plot shows the distribution of the proportion of nodes in the giant com-
ponent for the 1000 graphs a given model type. Results are displayed such that the red diamond
across the middle line is the median distance, the ends of the box are the first and third quartiles
respectively, and the remaining lines and points represent the outlying distances. (a): Comparison
of all model graph types. (b): Comparison of model graph types excluding DMC and DMR. These
models were removed because their variation eclipsed the variation of the other model types. (c):
Comparison of DMC and DMR model graphs.
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3.3.4 Diameter, Radius, and Average Shortest Path Length

Diameter, radius, and average shortest path length (ASPL) all deal with path lengths and

thus all require a connected network. Therefore, these three measures were all calculated

on the giant component of each model graph. Diameter, or the maximum eccentricity of a

network, is always an integer. This is one of the few measures where the values expressed

by DMR graphs are not greatly varied compared to those expressed by the other model

types (Figure 3.5a). In fact, AGV, DMC, and SMW are graphs with substantially varied

diameters. In Figure 3.5c, we see that the IQR regions are not that substantial, but that

all three of these graphs have a considerable number of graphs with large, outlying values.

In Figure 3.5 we see that GEO has a significantly larger diameter than all of the

other model types. This is clear even when all of the graph types are displayed together in

Figure 3.5a. LPA, RDG, RDS, and STI graphs all have small IQR with just a few larger

outlying diameters. There is not much variation for these model types.

Radius is the minimum eccentricity. Overall, there appears to be less variation in

radius than diameter. Interestingly, the model type with the most variation is not DMC or

DMR for this measure, but SMW (Figure 3.6a). When only SMW is focused on, it is clear

that the IQR is not very large, however there is one graph in particular with an abnormally

high radius (Figure 3.6c).

Examining the remaining model types without SMW in the plot shows that AGV

and DMC have quite a few graphs with larger radii that are outliers, similar to the results

for diameter (Figure 3.6b). DMR graphs do not have many outlying radii, however they

do have a larger IQR than all of the other models except DMC. GEO graphs have a larger

median radius than all of the other models. Finally, LPA, RDG, RDS and STI graphs have

very similar median radii and do not appear to show much variation between graphs of the

same type.

The box plots for ASPL look very similar to those for diameter (Figure 3.7). AGV,

DMC, and SMW have the largest amount of variation. When they are pulled out and placed

into their own subplot, we see more clearly that DMC has the largest IQR, but SMW has

the most variance in its upper quartile (Figure 3.7c). When we look at the remaining six

model types, we continue to see similar patterns. DMR has a larger IQR than the other
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Figure 3.5. Comparison of the graph diameter across model types. Each box plot shows
the distribution of the diameter for the 1000 graphs a given model type. Results are displayed such
that the red diamond across the middle line is the median distance, the ends of the box are the first
and third quartiles respectively, and the remaining lines and points represent the outlying distances.
(a): Comparison of all model graph types. (b): Comparison of model graph types excluding AGV,
DMC, and SMW. These models were removed because their variation eclipsed the variation of the
other model types. (c): Comparison of AGV, DMC, and SMW model graphs.

remaining models and GEO has the largest median of all of the model types including AGV,

DMC, and SMW (Figures 3.7b, 3.7a). There is not much variation in ASPL for LPA, RDG,

RDS, or STI.
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Figure 3.6. Comparison of the graph radius across model types. Each box plot shows the
distribution of the radius for the 1000 graphs a given model type. Results are displayed such that
the red diamond across the middle line is the median distance, the ends of the box are the first
and third quartiles respectively, and the remaining lines and points represent the outlying distances.
(a): Comparison of all model graph types. (b): Comparison of model graph types excluding SMW.
These models were removed because their variation eclipsed the variation of the other model types.
(c): SMW graphs distribution of radii.
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Figure 3.7. Comparison of the graph average shortest path length across model types.
Each box plot shows the distribution of the average shortest path length for the 1000 graphs a
given model type. Results are displayed such that the red diamond across the middle line is the
median distance, the ends of the box are the first and third quartiles respectively, and the remaining
lines and points represent the outlying distances. (a): Comparison of all model graph types. (b):
Comparison of model graph types excluding AGV, DMC, and SMW. These models were removed
because their variation eclipsed the variation of the other model types. (c): Comparison of AGV,
DMC, and SMW model graphs.
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3.3.5 Average Degree and Assortativity

Looking at the box plots of average degree for all of the model graphs it is immediately

obvious that DMC and DMR graphs have much more variation than any other model type.

In fact, from Figure 3.8a it is nearly impossible to determine whether any of the other

models have any variation at all. Removing DMC and DMR graphs from the plots shows

us that RDG and STI graph both have obvious variation in average degree across their 1000

graphs (Figure 3.8b). The remaining model types all have very limited di↵erences between

their graphs. This is particularly true of LPA and SMW. The median average degree of all

of the graphs except DMC and DMR di↵ers by less than 1.5 degrees.

Looking more closely at the average degrees of DMC and DMR, we see that the

DMC values range from near zero to well over 1000 and DMR go from near zero to about

750 (Figure 3.8c). These average degrees seem impossibly large until the distribution of

the number of edges is considered (Figure 3.2c). The number of edges ranged well into the

upper hundred-thousands making average degrees in the upper hundreds far more plausible.

Assortativity is the likelihood that nodes with like degrees are connected. It ranges

from an upper bound of one, where high-degree nodes are only connected to high-degree

nodes and low-degree nodes to other low-degree nodes, down to a lower bound of negative

one, where high-degree nodes are only connected to low-degree nodes. Figure 3.9 shows

that the majority of the model types have an assortaitivity value near zero, which indicates

that there is no preference attachment based on degree. Only two model types do not have

values near zero, GEO and RDG. Both of these values are larger than zero, closer to 0.5.

Of the model types hovering around zero, AGV, DMR, RDS, SMW, and STI are all just

below zero and DMC and LPA are just above zero. DMC and DMR graphs still have much

larger spreads of ranges than the other models. The majority of their outliers are less than

zero.
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Figure 3.8. Comparison of the graph diameter across model graph types. Each box plot
shows the distribution of the average degree for the 1000 graphs a given model type. Results are
displayed such that the red diamond across the middle line is the median distance, the ends of the
box are the first and third quartiles respectively, and the remaining lines and points represent the
outlying distances. (a): Comparison of all model graph types. (b): Comparison of model graph
types excluding DMC and DMR. These models were removed because their variation eclipsed the
variation of the other model types. (c): Comparison of DMC and DMR model graphs.
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Figure 3.9. Comparison of the graph assortativity across model types. Each box plot shows
the distribution of the assortativity for the 1000 graphs a given model type. Results are displayed
such that the red diamond across the middle line is the median distance, the ends of the box are
the first and third quartiles respectively, and the remaining lines and points represent the outlying
distances. (a): Comparison of all model graph types. (b): Comparison of model graph types
excluding AGV, DMC, and SMW. These models were removed because their variation eclipsed the
variation of the other model types. (c): Comparison of AGV, DMC, and SMW model graphs.
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3.3.6 S-metric

The S-metric is a normalized metric that determines the degree to which hub nodes in the

network are connected (Beichl & Cloteaux, 2008). A value nearing one means that the

hubs are connected to each other and indicates a scale-free network. A value closer to zero

means that hubs are not connected and indicates a scale-rich network (Li et al. , 2005). In

Figure 3.10, we see that four model types present with a large range of S-metric values:

AGV, DMC, DMR, and LPA. AGV appears to have the largest IQR and DMC has the

largest overall range. DMC also has the most outliers, all of which fall significantly below

the median. GEO, RDG, and RDS graphs all present very little di↵erence in values across

models. SMW and STI graphs have some variation, but it is substantially smaller than the

variation found for AGV, DMC, DMR, or LPA. GEO and SMW have the highest S-metric

values while LPA and AGV have the lowest.
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Figure 3.10. Comparison of the transitivity across model graph types. Each box plot shows
the distribution of the S-metric for the 1000 graphs a given model type. Results are displayed such
that the red diamond across the middle line is the median distance, the ends of the box are the first
and third quartiles respectively, and the remaining lines and points represent the outlying distances.
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3.3.7 Clustering

There are two forms of clustering measures: average clustering coe�cient and global clus-

tering coe�cient. There are two di↵erent groups of graphs based on average clustering

coe�cient (Figure 3.11a). There are the model types that display a large IQR along with

numerous outliers and those that show very little variation. The graphs in the latter group

are GEO, LPA, RDG, RDS, and STI. All of these model types, except for GEO, are shown

in Figure 3.11b. GEO is not in this figure because its median clustering coe�cient is sig-

nificantly larger than the others in that subplot and thus adding GEO in alters the scale

and provides confusion. Of the model types shown in Figure 3.11b, LPA has the largest

IQR and the most outliers. STI has second largest IQR and the largest median average

clustering coe�cient.

The models in Figure 3.11c all have more spread out distributions of average clus-

tering coe�cient than those seen in Figure 3.11b, with the obvious exception of GEO. Of

these, DMC has the second highest IQR, GEO has the highest, and most larger outliers.

Transitivity is another name for the global clustering coe�cient. There is less varia-

tion across models for the global clustering coe�cient than there is for the average clustering

coe�cient (Figure 3.12). GEO has the highest transitivity just like it had the highest av-

erage clustering coe�cient. In fact Figures 3.11a and 3.12 look almost identical with the

exception of RDG and LPA. LPA has a slightly higher average clustering coe�cient than

RDG, and RDG has a slightly higher transitivity than LPA.



47

●●

●
●●
●
●●

●

●●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●●

●

●

●●

●
●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●●●●●●

0.00

0.25

0.50

0.75

AGV DMC DMR GEO LPA RDG RDS SMW STI
Model

Va
lu
e

(a)

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●
●●●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●●
●●●

●

●●●●

●

●

●

●●●●
●
●

●

●●●

●●

●●●
●

0.00

0.01

0.02

0.03

LPA RDG RDS STI
Model

Va
lu
e

(b)

●●

●
●●
●
●●

●

●●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●●

●

●

●●

●●●
●

0.00

0.25

0.50

0.75

AGV DMC DMR GEO SMW
Model

Va
lu
e

(c)

Figure 3.11. Comparison of the average clustering coe�cient across model graph types.
Each box plot shows the distribution of the average clustering coe�cient for the 1000 graphs a
given model type. Results are displayed such that the red diamond across the middle line is the
median distance, the ends of the box are the first and third quartiles respectively, and the remaining
lines and points represent the outlying distances. (a): Comparison of all model graph types. (b):
Comparison of model graph types excluding AGV, DMC, DMR, GEO, and SMW. These models,
with the exception of GEO, were removed because their variation eclipsed the variation of the other
model types. GEO graphs were excluded because their median is significantly larger than the others.
(c): Comparison of AGV, DMC, DMR, GEO, and SMW model graphs.
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Figure 3.12. Comparison of the transitivity across model graph types. Each box plot shows
the distribution of the transitivity for the 1000 graphs a given model type. Results are displayed
such that the red diamond across the middle line is the median distance, the ends of the box are
the first and third quartiles respectively, and the remaining lines and points represent the outlying
distances.



49

3.3.8 Centralities: Betweenness, Closeness, Degree, and Eigenvector

Centrality measures look at how important, or central, a node is in a graph. There are

numerous ways to do that, but here we simply look at betweenness, closeness, degree, and

eigenvector centrality. All of the values presented here are average centralities since the

measure is a nodal one and we are looking to describe the full graph with only one value.

Betweenness

Betweenness centrality looks at how many shortest paths from one node to any other, go

through the node in question. Figure 3.13a shows that median values do not di↵er much

between model types. DMR has the largest IQR and SMW has the overall maximum cen-

trality value along with the biggest range of values. Separating out SMW into its own

subplot (Figure 3.13c) reduces the plot ranges and reveals a more informative picture (Fig-

ure 3.13b). In the latter picture, we see that the first three models, AGV, DMC, and DMR

have much more variation in their betweenness centralities than the other model types.

There is very little di↵erence across the 1000 graphs for LPA, RDG, RDS, and STI for

betweenness centrality.
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Figure 3.13. Comparison of the average betweenness centrality across model graph types.
Each box plot shows the distribution of the average betweenness centrality for the 1000 graphs a given
model type. Results are displayed such that the red diamond across the middle line is the median
distance, the ends of the box are the first and third quartiles respectively, and the remaining lines and
points represent the outlying distances. (a): Comparison of all model graph types. (b): Comparison
of model graph types excluding SMW. These models were removed because their variation eclipsed
the variation of the other model types. (c): SMW graphs distribution of average betweenness
centrality.

Closeness

Average closeness centrality is the normalized inverse of the average shortest path length

for each node averaged over all of the nodes in the graph (Bavelas, 1950). In Figure 3.14

we see that DMC and DMR have significantly larger interquartile ranges than the other

model types, however they are not so large that they need to be segregated into their own

plot. AGV and SMW both have a significant number of outlying values smaller than their

medians. GEO, LPA, RDG, and RDS do not as much variation across their graphs.
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Figure 3.14. Comparison of the average closeness centrality across model graph types.
Each box plot shows the distribution of the average closeness centrality for the 1000 graphs a given
model type. Results are displayed such that the red diamond across the middle line is the median
distance, the ends of the box are the first and third quartiles respectively, and the remaining lines
and points represent the outlying distances.

Degree

Degree centrality is a normalized measure of individual node degree. For this measure, we

see an image virtually indistinguishable from those presented for average degree (Figure

3.8, Figure 3.15a). In Figure 3.15a, we see that the DMC and DMR model graphs display

significantly more variation than all of the other model types. In fact, when the values for

all of the models are displayed together, no other model type appears to have any substan-

tial variation. Removing DMC and DMR to their own plot reveals that they have very

similar medians and IQR (Figure 3.15c). Figure 3.15b shows the box plots for the remain-

ing model types. Similar to average degree, RDG and STI have significantly higher values

than the other model types. STI graphs, however, appear to have more variation as well

as appearing skewed towards larger values. RDS graphs also have more variation in their

degree centrality than just average degree. This is due to the normalization that occurs for

degree centrality. AGV, GEO, LPA, and SMW graphs display very minimal variation in

degree centrality across their 1000 graphs.
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Figure 3.15. Comparison of the average degree centrality across model graph types. Each
box plot shows the distribution of the average degree centrality for the 1000 graphs a given model
type. Results are displayed such that the red diamond across the middle line is the median distance,
the ends of the box are the first and third quartiles respectively, and the remaining lines and points
represent the outlying distances. (a): Comparison of all model graph types. (b): Comparison of
model graph types excluding DMC and DMR. These models were removed because their variation
eclipsed the variation of the other model types. (c): Comparison of DMC and DMR model graphs.

Eigenvector

Eigenvector centrality, which indicates the influence of a node based on its connections

(Newman, 2006), shows much variation across many of the model types (Figure 3.16).

Once again, DMC and DMR graphs show the greatest variation making it di�cult to infer

anything about the other model types (Figure 3.16a). When they are removed we see SMW

and AGV graphs both show significant variation. SMW graphs have significant variation

in their first quartile. AGV graphs show a similar, but less pronounced, trend. GEO is the

opposite, having numerous outliers in the the fourth quartile. The remaining models do

not display significant variation (Figure 3.16b). Finally, DMC has a larger IQR than DMR,

but DMR has more variation, and more outliers, in its upper quartile (Figure 3.16c).
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Figure 3.16. Comparison of the average eigenvector centrality across model graph types.
Each box plot shows the distribution of the average eigenvector centrality for the 1000 graphs a
given model type. Results are displayed such that the red diamond across the middle line is the
median distance, the ends of the box are the first and third quartiles respectively, and the remaining
lines and points represent the outlying distances. (a): Comparison of all model graph types. (b):
Comparison of model graph types excluding DMC and DMR. These models were removed because
their variation eclipsed the variation of the other model types. (c): Comparison of DMC and DMR
model graphs.

3.4 Discussion

In this chapter we analyzed the variation in graph measures across the 1000 graphs generated

by each growth mechanism. A total of fifteen graph measures were considered. Results

were displayed using box plots that indicate median and IQR, as well as information about

outliers. Median statistics were used due to the variation in measure values presented by

some of the model types. The variations produced distributions of values that were not

normal, thus not adequately summarized by the mean.

It is very clear that two growth mechanism have the ability to produce very di↵erent

graphs with each simulation. These are the DMC and DMR algorithms. Of the fifteen

measures considered, DMC had ten measures where the variation was so large that it

eclipsed the results of all of the other model types, except DMR. DMR did this on eight
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occasions. The large variation occurs because the algorithms’ treatment of edges. Unlike

all of the other model types, DMC and DMR do not take the desired number of edges as an

input when the graph is being created. Instead, they add nodes one at a time to the graph

creating new edges based on a probability between zero and one. In the event that the

probability is high, without any cap to the number of edges, the graphs can grow seemingly

unlimitedly. On the other hand, if the probability of connection is low, the graphs can be

produced with very few edges. Graphs with few edges tend to have copious amounts of lone

nodes, which are removed as directed by the literature (Przulj et al. , 2004; Middendorf

et al. , 2005; Pržulj & Higham, 2006; Przulj, 2007; Su et al. , 2011).

While the DMC and DMR graphs could be moderated by using the desired number

of edges as an input value, similar to RDG, we choose to not follow that path for the

remainder of this dissertation for two reasons. First, the literature used these model graphs

built with the same algorithm (Middendorf et al. , 2005; Su et al. , 2011). In order to present

results that are fully comparable, we must use the exact same model types. Secondly, these

model types were designed in conjunction with biologists to specifically mimic the way in

which protein-protein interaction networks are thought to be built. Causing significant

changes to the structure of their growth mechanisms may result in the loss of the biological

inference that went into their creation.

DMC and DMR graphs were not the only model types to present a significant

amount of variation across their 1000 graphs. AGV and SMW both showed a significant

amount of variation. The variation in AGV graphs occurred largely when paths were

examined, such as in diameter and radius, and in the centrality measures. We speculate

that this variation occurs because AGV graphs are growing and through that process they

have the possibility to evolve scale-free properties. In the instances where these properties

evolve, the distance between any two nodes becomes ultra-small (Watts & Strogatz, 1998).

Since this is not a guaranteed feature, we see lots of variation in related measures.

The variation in the SMW graphs is particularly interesting because it occurs during

many of the same measures as AGV. This is odd because the idea behind SMW graphs is

that every node is available to every other node within a small number of steps, usually

about six (Watts & Strogatz, 1998). The large variation in the radius and diameter of SMW
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graphs indicates that the growth mechanism does not always succeed in making graphs with

the properties that it intends to.

Another instance of the growth mechanism not building models with the intended

features is displayed by LPA graphs. These model graphs are built to display the scale-

free properties defined by Barabasi (Barabási & Albert, 1999; Albert & Barabási, 2002).

Therefore, we expect that they should have a larger S-metric value than all the other model

graph types. Instead, LPA graphs had one of the lowest median values for the S-metric. Low

S-metric values indicate a scale-rich graph, as opposed to a scale-free. The inconsistency

displayed by this growth mechanism can be attributed to variations in the definition of a

scale-free network. This type of network is often defined simply by its power-law degree

distribution, which is most often the result of using linear preferential attachment to build

the graph (Barabási & Albert, 1999; Barabási et al. , 2000; Albert & Barabási, 2002; Li

et al. , 2005). The creators of the S-metric, however, have a more rigorous definition (Li

et al. , 2005). This definition requires features that are often not present when the graph

is built using linear preferential attachment. Such features include a hub-like core and self-

similarity. Therefore, we can infer that the LPA graphs created here do not fit the latter

criteria of the scale-free network, but they may fit the less rigorous definition proposed by

Barabasi (Barabási & Albert, 1999; Albert & Barabási, 2002).

The models with the least variation are LPA and RDS. Neither of these graphs

showed any significant variation across their 1000 model graphs in comparison to the varia-

tion seen by the other model types. This indicates that these model types are very consistent

in the structure of graph that they build. GEO, RDG, and STI all showed minimal varia-

tion. The latter two model types, RDG and STI, both have growth mechanisms that are

prone to the creation of lone nodes (that are then eliminated from the graph), thus most of

their variation occurred in the numbers of nodes and edges.

Graphs created using the GEO growth mechanism showed minimal amounts of varia-

tions for most of the measures. The amounts increased for the diameter, radius, and average

shortest path length. It is interesting to note that for these three measures, GEO reported

higher values than the all other model types.
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Looking across all of the measure, we see that median values for most of them are

very similar across model types. This implies that they are all recreating features seen in

the S. cerevisiae PPI network that was used as the basis for their creation. Results for

those comparisons are seen in Chapter 4.

Finally, purpose of this chapter was to determine the variation in features of graphs

built using the same growth mechanism. The underlying question behind this is whether

two graphs built with the same growth mechanism should automatically be classified as

the same model type. This is an especially important question when considering the great

variation posed by the DMC and DMR graphs. Our answer: not necessarily. For the

remainder of this dissertation, however, we will continue to treat graphs created by the

same growth mechanism as representative of the same model type in order to have an

accurate comparison to the current literature. In Chapter 14, we discuss the steps that can

be taken when working with growth mechanisms that result in graphs with a large amount

of variation.
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Chapter 4

Measure Based Comparison of Model Graphs v Saccharomyces cerevisiae PPI
Network

Researchers have attempted to classify PPI networks in numerous ways, often designing new

metrics in the process. No researcher, however, has compared a real-world PPI network to

multiple model graphs based simply on an all-encompassing array of network measures.

This is the aim of this chapter. A total of eighteen measures are considered; some are

graph-level measures while others report median values of node-level measures.

4.1 Methods

The creation of the model graphs was based on features of the S. cerevisiae PPI network.

Despite this, the di↵erent models gave rise to graphical features that di↵ered drastically

from the empirical network and each other. For the 1000 graphs of each type, the median

value of each metric was calculated. Medians were used, as opposed to means, due to their

robustness to extreme values. This was necessary because the DMC and DMR models

were so varied in several of their feature values that their skewed results made average

values unreliable. The graph measures are evaluated in two ways. The first is for statistical

significance. We are looking for evidence that the median for each measure is equal to the

S. cerevisiae PPI network value. Our hypotheses are as follows:

H0 : model median = empirical value H
A

: model median 6= empirical value (4.1)

Since we know that the majority of our values do not follow the normal distribution (e.g.

Figure 4.3) we are restricted to non-parametric tests. Many of the common non-parametric

tests, such as the Wilcoxon signed-rank test, require symmetry around the median. Since

we can also not make such an assumption, especially since some of our measures such as

number of nodes have caps on their size, we use a slightly less powerful test, the Wilcoxon

Sign test. The Wilcoxon Sign test makes three assumptions.

1. The observations are independent.
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2. The observations come from the same population.

3. The observations are ordered so that comparisons “greater than”, “less than”, and

“equal to” carry meaning.

Since these assumptions are met, we evaluate the statistical significance at the 95% signifi-

cance level with this test. We are looking for model types whose measures accept the null

hypothesis.

The other method of evaluating the model graphs is slightly less rigorous. Since

the problem of network classification exists, we can infer that it is not easy to correctly

match all of the desired features. Therefore, in addition to a lack of statistically significant

di↵erence, we identify measure values that fall within ±5% of the empirical value. Models

with values within this range are considered to have successfully replicated the specific

measure. The total number of successful replications, or matches, is calculated to obtain

an overall impression of each model types’ ability to mimic features. The category of model

graph with the largest number of matches can be considered the best structural fit out of

the considered types.

4.2 Results

The networks measures mentioned in Section 1.2 can be divided into four descriptive cat-

egories: size, distance, centrality, and connection. Results are shown in Tables 4.1 - 4.8.

In these tables, values that are not within ±5% of the empirical value of shown in bold

and statistically significant values are marked with an asterisk (*). Therefore a value that

matches under both analyses has no designations.

4.2.1 Size Measures

The first category, size measures, consists of the number of nodes (n), number of edges (m),

proportion of nodes in the giant component (|VH| / |VG |), and density (D) of the graphs,

Table 4.1.

In Figure 4.1, we can see how the model graphs (in blue) compare to the empirical

network (in red) overall. From this image, it is clear that the many of the model graphs do

a good job recreating desired size features. There are at least two models though, DMC and
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DMR, that are very di↵erent from the others. They di↵er dramatically in size, alternating

between smaller numbers of nodes, larger numbers of edges, and extremely small proportion

of nodes present in the giant component. Two others, RDG and STI, have fewer nodes but

fall back into line with the majority of the models for the other features.

Nodes Edges Prop. GC Density

1100

1400

3000

5000

0.7

1.0

0.00

0.01

AGV
LPA
SMW

DMC

DMR

STI

RDG

GEO
RDS

YEAST

Figure 4.1. Parallel coordinate representation of size measures. Measures included are the
number of nodes (Nodes), number of edges (Edges), proportion of nodes in the giant component
(Prop. GC), and density. All of these measures are graph-level, thus the values represented are the
medians of the 1000 simulated graphs for each of the nine model types.
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Looking more deeply into the size features, we notice several interesting things. De-

spite all of the model graphs being created with the intention of having 1361 nodes just

like the S. cerevisiae PPI network, the majority of the graphs did not produce this as their

median value, Table 4.1. Three model types do not produce any lone nodes: AGV, LPA,

and SMW. In every situation, these graphs have 1361 nodes. Interestingly, these model

types also only build a graph with one component containing all of the nodes. The model

types most inclined to produce lone nodes are RDG and STI. It is known, however, that

DMC and DMR networks produce the smallest graphs of the set with respect to number of

nodes, Table 4.2.

Table 4.1. Median values of simulated model graph size measures.

n m |VH| / |VG | D
Yeast Data 1361 3222 0.92 0.0035

AGV 1361 3221* 1.0* 0.0035
DMC 1324* 4703.5* 0.77* 0.0076*
DMR 1237* 4746* 0.99* 0.0078*
GEO 1341 3222 0.97* 0.0036*
LPA 1361 3222 1.0* 0.0035
RDG 1125* 3222 0.98* 0.005*
RDS 1349* 3222 1.0* 0.0036*
SMW 1361 3222 1.0* 0.0035
STI 1140* 3217* 0.99* 0.005*

Table shows the values of the size measures. The size measures included in the table are the number of
nodes (n), number of edges (m), proportion of nodes in the giant component (|VH| / |VG |), and density (D).
Each value is the median across the 1000 model graphs of the given type. Values written in boldface are not
within ±5% of the empirical value. Values with an asterick (*) are statistically significantly di↵erent than
the empirical value.

The distribution of the number of nodes for each of the models type can be seen

more precisely in Figures 4.2, 4.3. The distribution of AGV, LPA, and SMW is not shown

in either histogram because these model types only produce graphs of one size. In addition,

it is necessary to show DMC and DMR histograms on a di↵erent set of axes because their

range is far more spread out than the range of GEO, RDG, RDS, and STI. In Figure 4.2,

we see that the range of numbers of nodes goes from 1100 to 1361. GEO and RDS are both

clustered toward the top end of the range while the other two networks, RDG and STI are

clustered near the bottom. All of the distributions do appear normal. In Figure, 4.3 the
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Table 4.2. Ranges of model graph size based on numbers of nodes and edges.

# Nodes # Edges
Min IQR Max Min IQR Max

AGV 1361 0 1361 3216 2 3222
DMC 17 276.75 1361 91 34674.25 880237
DMR 31 372 1361 21 35712.75 537036
GEO 1324 6 1353 3222 0 3222
LPA 1361 0 1361 3222 0 3222
RDG 1093 14 1151 3222 0 3222
RDS 1339 4 1358 3222 0 3222
SMW 1361 0 1361 3221 0 3222
STI 1092 17 1187 3057 73.25 3408

Table gives the minimum, maximum, and IQR for the number of nodes and the number of edges. The IQR
is a measure of spread. It give the di↵erence between the first and third quartile values.

distributions are far from normal, instead they display a negative skew with a long left tail.

The peak of the number of nodes is at 1361 for both networks, but in this instance the

range begins just above zero. It is interesting to note that while RDG and STI consistently

produce lone nodes, DMC and DMR only do so occasionally, but their results are far more

drastic when it does happen.
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Figure 4.2. Histograms of number of nodes for GEO, RDG, RDS, STI model graphs.
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Figure 4.3. Histograms of number of nodes for DMC, DMR model graphs.

The majority of graphs constructed had the same number of edges as the real-world

network, with seven model types having median values of 3222. The only two model types

that did not were DMC and DMR, both of which had a median of nearly 1500 more nodes

(Table 4.2). Similar numbers of nodes and edges in the model graphs had similar density

values across the board with the only di↵erences coming from the DMC and DMR.

One of the more challenging attributes for the model graphs to mimic is the pro-

portion of nodes in the giant component. Though the majority of models do peak similarly

to the S. cerevisiae PPI network in Figure 4.1, only one of these values is within 5% of

the proportion of nodes in the PPI network giant component and none of them fail to be

statistically significantly di↵erent, Table 4.1. This model graph is GEO. The graph model

that failed most impressively to mimic this feature was DMC, whose proportion was 0.7713

compared to S. cerevisiae PPI network’s proportion of 0.9155.
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4.2.2 Distance Measures

The next category of measures examines the distance between nodes in a graph. These

distances can be measured in multiple ways (e.g. diameter, radius, and average shortest

path length), but they can only be calculated on the giant component of a graph. If we look

at the big picture in Figure 4.4, only one model graph has truly substantial deviation from

the empirical distance values. It is also interesting to note that there are more occurrences

of matching radius values than either diameter or average shortest path length.

Now looking at the distance measure values in more detail (Table 4.3), it is clear

that no model graph has the same diameter as the yeast data, however RDG is the closest

with 11 v 12. Two network models, RDS and RDG, have the same radius. Five more,

AGV, DMC, DMR, LPA, and STI, are all very close, 5 v 6. Two models, AGV and RDS,

have a similar average shortest path length.

Table 4.3. Median values of simulated model graph distance measures.

diam(G) rad(G) ¯̀ SMW SF

Yeast Data 12 6 4.90 Y N

AGV 8* 5* 4.67* Y N
DMC 9* 5* 3.62* N N
DMR 9* 5* 3.72* N N
GEO 34 19* 13.75* N N
LPA 7* 5* 4.23* Y N
RDG 11* 6 4.27* N N
RDS 10* 6 4.80* N N
SMW 9* 7* 5.15* Y N
STI 9* 5* 3.88* Y N

Table shows the values of the distance measures. The distance measures included in the table are the
diameter (diam(G)), radius (rad(G)), average shortest path length (¯̀), small-world property (SMW), and
scale-free property (SF). Each value is the median across the 1000 model graphs of the given type. Values
written in boldface are not within ±5% of the empirical value. Values with an asterick (*) are statistically
significantly di↵erent than the empirical value. For the SMW and SF columns, a Y indicates that the based
on the most lenient criteria applied to the median value (Table 4.4), the model type has the property. An
N indicates that it does not. The most lenient criteria are: p � 1 if and only if p > 3 and q ⇡ 1 if and only
if q 2 [0.85, 1.15].
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Figure 4.4. Parallel coordinate representation of distance measures. Measures included
are the diamerter, radius, average shortest path length (ASPL), small-world property (SMW), and
scale-free property (SF). The latter two properties are binary where zero means the model type does
not possess the given property and one means that it does. All of these measures are graph-level,
thus the values represented are the medians of the 1000 simulated graphs for each of the nine model
types.
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The last two columns in Table 4.3 refer to the small-world and scale-free properties

from Section 1.2. Recall that, we can say a graph has small-world properties if:

p =
C̄

C̄
r

� 1 (4.2)

q =
¯̀

¯̀
r

⇡ 1, (4.3)

and a graph has scale-free properties if:

s =
¯̀

¯̀
r

⇡ 1. (4.4)

Median calculation for p, q, and s are seen in Table 4.4. Values in bold indicate that the

values obviously do not meet the listed requirement. None of the s were approximately

equal to one, even with a generous definite of approximate, and only one was larger than

one (GEO). Values for p and q more consistently achieve the value required for the property.

In Table 4.3, models with the small-world or scale-free property are designated with a Y,

those without the property have an N. The only model types that do demonstrate the

small-world property found in the S. cerevisiae PPI network are AGV, LPA, SMW, and

STI. None of the models, including the PPI network, display the scale-free property. This

is interesting considering that the LPA was designed with this feature in mind.

If we examine the exact values for each of the 1000 model graphs, as opposed to

using the median values in Table 4.4, we can see the exact percent of graphs that possess

the SMW and SF properties (Table 4.6). Since we are examining each number individually

it is necessary to make concrete rules that dictate whether a value is much greater than one

and whether a value is approximately equal to one. Therefore we propose three schemes

with varying levels of stringency (Table 4.5). In Scheme A, a value much be larger than 10

in order to be considered much greater than one (Heath et al. , 1956) and a value much be

between 0.95 and 1.05 in order to be considered approximately equal to one. In Scheme B,

the criteria loosens to include values greater than 5 and between 0.90 and 1.10 for the two

criteria respectively. In the final scheme, C, the restrictions loosen even more. Now values
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Table 4.4. Calculations to determine small-world and scale-free properties

p � 1 q ⇡ 1 s ⇡ 1

Yeast Data 62.38 1.05 0.78

AGV 23.11 (57.90) 1.01 (0.18) 0.74 (0.13)

DMC 15.76 (49.03) 1.34 (0.52) 0.58 (0.64)

DMR 0.99 (1.02) 1.15 (0.35) 0.59 (0.53)

GEO 135.2 (3.72) 3.00 (0.15) 2.18 (0.11)

LPA 3.28 (1.94) 0.91 (0.05) 0.67 (0.03)

RDG 2.18 (0.38) 1.06 (0.01) 0.68 (0.008)

RDS 0.91 (0.34) 1.04 (0.003) 0.76 (0.003)

SMW 21.92 (64.52) 1.11 (0.19) 0.82 (0.14)

STI 3.44 (0.63) 0.95 (0.008) 0.62 (0.007)

Table shows the median p, q, and s across the 1000 model graphs of each type. Values in boldface mean
that the value obviously not meet the requirements: p � 1, q ⇡ 1, and s ⇡ 1. The values in parentheses are
the IQR.

greater than 3 are considered much greater than one and values between 0.85 and 1.15 are

approximately equal to one.

Table 4.5. Schemes to determine if the small-world and scale-free properties were met.

p � 1 q ⇡ 1 s ⇡ 1

Scheme A p > 10 q 2 [0.95, 1.05] s 2 [0.95, 1.05]
Scheme B p > 5 q 2 [0.90, 1.10] s 2 [0.9, 1.1]
Scheme C p > 3 q 2 [0.85, 1.15] s 2 [0.85, 1.15]

The definitions to determine whether the small-world and scale-free properties have been met are vague.
This table presents three di↵erent definitions for what being much greater than one or approximately equal
to one means. These di↵erent definitions are presented as schemes A, B, and C.

Under Scheme A, no model graph has the scale free property (Table 4.6). A total

of 28.6% of the AGV graphs have the SMW property as do 3.2% of DMC graphs. Upon

moving to Scheme B, these values increase to 52.1% and 5.7% respectively. In addition,

18.8% of SMW graphs now display the SMW property. Also in Scheme B do we see a few

graph displaying the SF property. Most of these are DMC, with a total of 0.6% of its graphs

showing SF properties. Finally, in the most lenient scheme STI graphs have the highest

percentage displaying SMW property (83.4%). This sudden increase from Scheme B to

Scheme C implies that many of its p and q values must be borderline. We do not see an
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equally impressive jump for SF properties indicating that most s values are not borderline.

Table 4.6. Percent of model graphs that have the small-world or scale-free property stratified by
model type.

Scheme A Scheme B Scheme C
SMW SF SMW SF SMW SF

AGV 28.6 0.0 52.1 0.1 75.9 0.3
DMC 3.2 0.0 5.7 0.6 9.6 2.4
DMR 0.0 0.0 0.0 0.0 0.2 0.0
GEO 0.0 0.0 0.0 0.0 0.0 0.0
LPA 0.0 0.0 0.2 0.0 48.8 0.0
RDG 0.0 0.0 0.0 0.0 0.4 0.0
RDS 0.0 0.0 0.0 0.0 0.0 0.0
SMW 0.0 0.0 18.8 0.4 36.9 1.0
STI 0.0 0.0 0.1 0.0 83.4 0.0

Table shows the exact percent of the 1000 graphs of each model type that display SMW or SF characteristics.
There is some ambiguity regarding whether a value is much greater than one or approximately equal to one.
Therefore, we use three di↵erent schemes with di↵erent levels of rigor. In scheme A, p � 1 if and only if
p > 10 and q ⇡ 1 if and only if q 2 [0.95, 1.05]. In scheme B, p � 1 if and only if p > 5 and q ⇡ 1 if and
only if q 2 [0.9, 1.1]. In scheme C, p � 1 if and only if p > 3 and q ⇡ 1 if and only if q 2 [0.85, 1.15].

4.2.3 Centrality Measures

Centrality measures in this paper were averaged over all the nodes in each network. Aver-

ages of each graph’s centrality values were calculated at this stage, as opposed to median

values, to conform with existing literature. It is more common to see an average centrality

expressed, less common to see a median value. Medians of the 1000 model graphs’ average

values were then calculated. Medians were used over means due to the large variation in

size and shape seen by the models, specifically the biologically motivated DMC and DMR

networks.

Overall, in the centrality measures we see numerous networks mimicking the pat-

tern displayed by the S. cerevisiae PPI network, simply transposed higher on the graph,

Figure 4.5. Only two of the centrality measures, degree (DC) and betweenness (BC), are

replicated with similar values. The replication of the two other centralities, closeness (CC)

and eigenvector ( ), resulted most often in larger values.

As displayed by Figure 4.5, Table 4.7 shows there are not many models whose

centrality values are within 5% of the yeast centrality values. The only model that has
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Figure 4.5. Parallel coordinate representation of centrality measures. Centralities included
are degree, closeness, betweenness, and eigenvector. Values are calculated from the 1000 simulated
graphs for each of the nine model types. Since centrality measures are node-level properties, the
average centrality for each graph is calculated and then the median value is taken from those 1000
averages. This median is the value presented.
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Table 4.7. Median values of simulated model graph centrality measures.

DC CC BC  

Yeast Data 0.004 0.17 0.002 0.009

AGV 0.004 0.22* 0.003* 0.013*
DMC 0.008* 0.13* 0.001* 0.015*
DMR 0.008* 0.25* 0.002 0.018*
GEO 0.004 0.07* 0.009* 0.004*
LPA 0.004 0.24* 0.002 0.014*
RDG 0.005* 0.23* 0.003* 0.014*
RDS 0.004 0.21* 0.003* 0.023*
SMW 0.004 0.19* 0.003* 0.024*
STI 0.005* 0.26* 0.002* 0.018*

Table shows the values of the centrality measures. The centrality measures included in the table are degree
(DC), closeness (CC), betweenness (BC), and eigenvector ( ). Since these are node-level measures, the
average is taken within a graph to obtain a since value. Then the median is taken across the 1000 model
graphs. This is the value presented.Values written in boldface are not within ±5% of the empirical value.
Values with an asterick (*) are statistically significantly di↵erent than the empirical value.

more than one match is LPA, which matches on both degree and betweenness centrality.

There are no matches for eigenvector centrality and only one for closeness centrality implying

that these two features are more di�cult to mimic.

4.2.4 Connection Measures

The final category of measures considered is connection. There are five connection measures

considered: average degree (k̄), S-metric (S(G)), assortativity (r(G)), transitivity or global

clustering coe�cient (C(G)), and average clustering coe�cient (C̄). It is important to

note that just like the centrality measures, the values listed for the average degree and

average clustering coe�cient are the medians of the 1000 averages within each model graph

types. This was done, once again, to preserve consistency across literature. The parallel

coordinate plot for connection measures is significantly di↵erent than the previous plots

in that no underlying order is present, Figure 4.6. Average degree and average clustering

coe�cient are the only measures replicated similarly in the model graphs, the others are all

vastly di↵erent in patternless ways.

An examination of the specific connection measure values supports the ideas ascer-

tained from Figure 4.6. Average degree was the simplest connection measure to replicate.

Five of the model graphs had values within 5% of the empirical value. Only one of the
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Figure 4.6. Parallel coordinate representation of connection measures. Measures included
are the average degree (Avg. Degree), S-metric, assortativity, transitivity, and average clustering
coe�cient (Avg. Clust. Coe↵). Average degree and average clustering coe�cient are node-level
measure, thus the average value for each graph is calculated and then the median value is taken
from those 1000 averages. This median is the value presented. The remaining measures, S-metric,
assortativity, and transitivity are all graph-level, thus the values represented are the medians of the
1000 simulated graphs for each of the nine model types.
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values of the average clustering coe�cient values was a match, DMC. None of the other

measures were replicated with any measure of accuracy (Table 4.8).

Considering the S-Metric, which determines the amount of hub-like behavior in a

network, conflicting results were obtained. The two networks that theoretically should have

high values for the S-Metric, LPA and AGV, exhibit the two lowest values.

As previously mentioned, most biological networks display negative assortativity,

or dissortativity, meaning that low-degree nodes are connected to high degree nodes. The

graph types most often described as the best model for PPI networks (DMC, GEO, LPA,

RDG) are the only ones not showing signs of dissortativity. Their assortativity coe�cients

are all positive. RDS has an assortativity coe�cient that is close to zero and thus it has

neither assortative nor dissasortative characteristics.

Just like the previous two measures, none of the model graphs have a transitivity

value within 5% of the observed value. Only one graph has a larger transitivity, GEO, and

this value is approximately 2.5 times larger than the empirical value. The remaining value

are all smaller, ranging from 27% to 98% less than the empirical value.

Table 4.8. Median values of simulated model graph connection measures.

k̄ S(G) r(G) C(G) C̄

Yeast Data 4.73 0.54 �0.12 0.1934 0.217

AGV 4.73 0.47* -0.05* 0.05* 0.08*
DMC 7.71* 0.78* 0.03* 0.16* 0.214
DMR 7.84* 0.65* -0.03* 0.01* 0.009*
GEO 4.81 0.93 0.49 0.48* 0.47*
LPA 4.73 0.47* 0.03* 0.01* 0.011*
RDG 5.73* 0.81* 0.38* 0.04* 0.11*
RDS 4.78* 0.87* -0.002* 0.003* 0.003*
SMW 4.73 0.92* -0.04* 0.07* 0.076*
STI 5.64* 0.60* -0.01* 0.02* 0.017*

Table shows the values of the connection measures. The connection measures included in the table are
the average degree (k̄), S-metric (S(G)), assortativity (r(G)), transitivity (C(G)), and average clustering
coe�cient (C̄). For the graph-level measures (S-metric, assortativity, and transitivity), each value is the
median across the 1000 model graphs of the given type. The remaining measures are node-level. For these,
the average is taken within a graph to obtain a since value. Then the median is taken across the 1000 model
graphs. This is the value presented. Values written in boldface are not within ±5% of the empirical value.
Values with an asterick (*) are statistically significantly di↵erent than the empirical value.
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4.2.5 Biologically Significant Measures

A final way to consider the model graphs ability to replicate essential features of the S.

cerevisiae PPI network is through a comparison of the biologically significant features with

respect to PPI networks. These features are density, transitive, average degree, and assor-

tativity. From this list it is obvious that how nodes are connected to each other, and how

many of these connections exist, is an essential part of biological networks. In Figure 4.7,

a bit of a reciprocal relationship is evident. Those graphs with high density often have low

transitivity, high average degree, and low assortativity and vice versa. Several model graphs

do follow the same general shape as the empirical network, but these are no close matches

for transitivity or assortativity just as previously mentioned.
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Figure 4.7. Parallel coordinate representation of biologically significant measures. Mea-
sures included are the density, transitivity, average degree (Avg. Degree), and assortativity. Average
degree is a node-level measure, thus the average value for each graph is calculated and then the me-
dian value is taken from those 1000 averages. This median is the value presented. The remaining
measures, density, transitivity, and assortativity are all graph-level, thus the values represented are
the medians of the 1000 simulated graphs for each of the nine model types.
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4.2.6 Summary of Measure Based Comparison Broken Down by Category

The number of model graphs whose median values were not statistically significantly di↵er-

ent at the 95% significance level are shown in the first column of Table 4.9. Values within

±5% of the S. cerevisiae PPI network values is shown in the second column. Three mod-

els are tied as having the highest number of values reproduced within 5% of the median

values, AGV, LPA, and RDS. Interestingly, all of LPA’s values that are within 5% are also

statistically significant. This is not the case for AGV and RDS (6 v 4). Therefore, we can

conclude that the features LPA successfully mimicked it did so almost perfectly. The other

models were close in their recreations, but still not quite as accurate.

Table 4.9. Model graph and S. cerevisiae PPI network matches based on graph measures.

Statistical Matches ±5% Matches

AGV 6 8
DMC 3 4
DMR 2 2
GEO 4 7
LPA 8 8
RDG 4 5
RDS 4 8
SMW 7 7
STI 2 3

This table shows the number of times each model is not statistically significant di↵erent from the empirical
value (Statistical Matches) and the number of times each is within ±5% of the empirical value (±5%
Matches). It is summarized across the four categories discussed in Sections 4.2.5 to 4.2.1.

The model that performed the worst is DMR, which scored only a two under both

methods of analysis. This was the model that Su et al. found to be as their best fit for

the PPI networks (Su et al. , 2011). Przulj found the best fit to be the GEO (Przulj et al.

, 2004; Przulj, 2007) or STI (Pržulj & Higham, 2006) network depending on the method

and model choices utilized. While GEO scored a respectable seven on the second analysis,

only four of its measures were not statistically di↵erent from the ideal value. STI did barely

better than DMR in its ability to match measure values with two values not statistically

di↵erent and three values within 5%. It should be noted that while LPA scored the highest

number of matches, it still matched only 44% of the metrics correctly.
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Table 4.10. Model graph and S. cerevisiae PPI network matches based on graph measures, stratified
by measure category.

Size Distance Centrality Connection
(4) (5) (4) (5)

AGV 3 3 1 1
DMC 1 2 0 1
DMR 0 1 1 0
GEO 4 1 1 1
LPA 3 2 2 1
RDG 1 4 0 0
RDS 3 2 1 1
SMW 3 2 1 1
STI 1 2 0 0

% Matched 53 22 19 13

This table only shows matches based on the number of times each model is within ±5% of the empirical
value. Matches are stratified by measure category. The number is parentheses under the measure category
indicates the number of measures in that category.

Stratifying the results by measure category shows that categories were not all

matched at the same rate. The results in Table 4.10 show the stratification only for values

within 5% of the empirical value because there were significantly more matches in that

category (32% v 25%) . The majority of the matches occurred in size measures with 53%

of values properly replicated. Only 13% of the connection measures matched within the

designated range. Distance and centrality measures were both replicated 22% and 19% of

the time respectively.

4.3 Discussion

In this chapter, the S. cerevisiae PPI network was compared to the nine model graphs

using eighteen di↵erent network measures. Model graphs were considered a match for the

empirical network under two circumstances. First, if the median value for the model graph

was within 5% of the empirical value, it was considered a match. Second, if the median

value for the model graph was not statistically significantly di↵erent than the empirical

value, it was considered a match. The second method utilized the Wilcoxon Sign test to

quantify statistical significance.

The di↵erences in network size, judged either on number of nodes or number of

edges, are direct results of the way the algorithms build the graphs. This is mentioned
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in Chapter 3. The failure to perfectly replicate the desired number of nodes is due to 1)

the allowance of lone nodes in the model building algorithms and their subsequent lack of

inclusion; and 2) the cap on the number of nodes allowed. This cap comes from the use of

the number of nodes as input for model creation. Therefore, it is possible for a model graph

to have fewer nodes than requested, but impossible for it to have more as the number was

capped at 1361. This is important to remember when considering the distribution of the

number of nodes. Model types classified as growing, Table 3.1, are more likely to produce

lone nodes and thus have lower medians than static graphs (1258 v 1350).

We reiterate the we choose to continue using the model graphs that do not have the

desired number of edges. We justify this choice in two ways. First, literature indicates that

eliminating lone nodes is a common way of dealing with them (Su et al. , 2011; Middendorf

et al. , 2005; Przulj et al. , 2004; Pržulj & Higham, 2006; Przulj, 2007; Kuchaiev et al. ,

2011) . Second, in order to assess the reproducibility of the results seen in literature we

need to use the exact same model graphs. Modifying a model graph algorithm to ensure

the number of nodes in the resulting graph directly equals the number inputted is a major

modification to the algorithm. The results would not be directly comparable to previous

ones. There are some ramifications to this decision of course. The main issue being that

some model types may be disadvantaged at classification time. Conveniently, the classifiers

discussed in Chapter 5 all have ways of comparing graphs of grossly di↵erent sizes without

imposing a penalty. Thus, the inclusion of these graphs should be considered a non-issue,

In terms of number of edges, the only two models that did not produce median

values within ±5% of the empirical value were those that did not take number of edges as

an input value. For DMC and DMR, connections are made based on a uniformly random

sampled value p and removed with uniformly random sampled value q.

One of the more interesting features discovered is that the LPA model graphs do

not possess scale-free features. This statement is supported by the s value in Table 4.4 and

by the S-metric in Table 4.8. In both situations, LPA is expected to have a value very close

to one but empirically it produces one of the values farthest from one (0.67, 0.47). There

are several possibilities for this. Since those networks were specifically constructed to have

a hub-like core, it can be inferred that they do not exhibit self-similarity, the presence of a
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self-repeating pattern (Song et al. , 2005). Thus these networks can be considered scale-rich

as opposed to scale-free (Li et al. , 2005). A second explanation for this inconsistency is

that the model growth mechanisms used for this analysis are not large enough to produce

a truly scale-free graph.

Overall, the ability of the nine types of model graphs to accurately replicate a variety

of network measures leaves much to be desired. There is no easy or obvious best answer.

Judging from network measures, or at least the measures examined here, we cannot classify

the S. cerevisiae PPI network. Thus priorities will have to be listed and compromises made

in order to find a best fit, and that best fit may change as priorities change.
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Chapter 5

Introduction to Network Classification Methods

The size and overall complexity of the S. cerevisiae PPI network requires a more analyti-

cal method of comparing networks than a simple analysis based on various metric values.

Numerous methods have been proposed for the classification of large networks. These meth-

ods typically fall into one of two categories: large-scale, focusing on the larger topological

features and graph-level properties; and small-scale, focusing on smaller features and node-

level properties. Many authors reference other methods in their analyses, but never provide

adequate reasoning for the di↵erence in results they obtain (Przulj et al. , 2004; Middendorf

et al. , 2005; Przulj, 2007; Su et al. , 2011). Thus a more in-depth look at each method is

necessary to determine why di↵erent results are being obtained and if one method provides

a better empirical network classification than the others.

In this chapter, we present five network classifiers. Three methods, relative graphlet

frequency, RGF, (Przulj et al. , 2004), graphlet degree distribution using arithmetic mean,

GDD (A), and graphlet degree distribution using geometric mean, GDD (G) (Przulj, 2007)

all compare graphs based on small-scale properties. Characteristic curve (Su et al. , 2011) ,

CC, works with large-scale properties. We also propose a new classifier, degree distribution

distance, which also references large-scale properties. This latter classifier, abbreviated as

DDD, is based on a common network classification idea, however the exact algorithm used

is a novel one.

Each of these methods was designed to classify protein-protein interaction net-

works. Both variations of GDD classified fourteen high-throughput eukaryotic PPI net-

works (Przulj, 2007). This list of PPI networks includes Sacchromyces cerevisiae (baker’s

yeast), Drosophila melanogaster (fruit fly), Caenorhabditis elegans (nematode worm), and

human. Relative graphlet frequency was used to examine both high and low-confidence PPI

networks from both the bakers yeast and the nematode worm. The CC was used to examine

four di↵erent versions of the fruit fly PPI network made with di↵erent confidence levels.
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After presenting the five classification methods, we conclude by discussing the limitations

of the papers that originally presented the four non-novel algorithms.

5.1 Network Classification Methods

5.1.1 Relative Graphlet Frequency and Graphlet Degree Distribution

Przulj created two network classification methods, RGF and GDD. Both rely on the concept

of graphlets, Figure 5.1.Graphlets are defined as ‘small 3-5 node subgraphs’ (Przulj et al. ,

2004). There are two three-node, six four-node, and twenty-one five-node graphlets, giving

a total of 29 graphlets. The term graphlet is used to avoid potential confusion with motif,

which is another special type of subgraph. Motifs must be over represented in the graph

under investigation compared to a random graph (Shen-Orr et al. , 2002).

Figure 5.1. Display of the 29 graphlets (Przulj et al. , 2004) - Figure 1. Graphlets are small
3-5 node subgraphs that can be used to classify networks.

The first method introduced by Przulj is relative graphlet frequency, RGF (Przulj

et al. , 2004). When measuring relative graphlet frequency, the number of times each

graphlet appears is counted. A distance is then determined by:

DRGF (G1,G2) =
29X

i=1

|F
i

(G1)� F
i

(G2)| , (5.1)
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where:

F
i

(G) = �log(N
i

(G)/T (G)). (5.2)

The numerator, N
i

(G), is the number of graphlets of type i, i 2 {1, ..., 29}, in graph G,
and T (G) =

29P
i=1

N
i

(G), the total number of graphlets. The logarithm is used because the

frequency of a given graphlet may di↵er by several orders of magnitude between networks.

The RGF was tested for robustness through random edge additions, deletions, and

rewiring. Three percentages of edges were edited: 10%, 20%, and 30%. The method was

found to be very robust to edge additions, but only fairly robust to deletions and rewirings

at all percentages.

The graphlet degree distribution, GDD, is slightly more complicated than RGF. In

this method, each node position of the 29 di↵erent graphlets is numbered. This produces 72

unique node positions or automorphism orbits (Figure 5.2). The use of the word position is

necessary because in graphlets such as the triangle there is only one unique node position

despite the presence of three nodes. In addition to the 72 node positions, another graphlet,

with n = 2 is added, bringing the total node positions to 73. These node positions are

referred to as automorphism orbits and range from 0 to 72.

FE, FH, WE, WH, HS, and HG are yeast two-hybrid (Y2H), and
HB, HH, and HM are a result of human curation (BIND, HPRD, and
MINT).
The four network models that we compared against the above

14 PPI networks are ER, ER-DD, SF, and 3-dimensional geometric
random graphs (henceforth denoted by ‘GEO-3D’). Model networks
corresponding to a PPI network have the same number of nodes
and the number of edges within 1% of the PPI network’s [details
of the construction of model networks are presented by Pržulj
et al. (2006)]. For each of the 14 PPI networks, we constructed
and analyzed 25 networks belonging to each of these 4 network
models. Thus, we analyzed the total of 14 + (14 · 4 · 25) ¼ 1414
networks. We compared the agreement of each of the
14 PPI networks with each of the corresponding 4 · 25 ¼ 100
model networks described above (our new agreement measure
is described in Section 2.3). The results of this analysis are
presented in Section 3.

2.2 Graphlet degree distribution (GDD)

We generalize the notion of the degree distribution as follows. The
degree distribution measures, for each value of k, the number of
nodes of degree k. In other words, for each value of k, it gives the
number of nodes ‘touching’ k edges. Note that an edge is the
only graphlet with two nodes; henceforth, we call this graphlet
G0 (illustrated in Fig. 1). Thus, the degree distribution measures
the following: how many nodes ‘touch’ one G0, how many nodes
‘touch’ twoG0s, . . . , how many nodes ‘touch’ k G0s. Note that there
is nothing special about graphletG0 and that there is no reason not to
apply the same measurement to other graphlets. Thus, in addition to
applying this measurement to an edge, i.e. graphlet G0, as in the
degree distribution, we apply it to the 29 graphlets G1, G2, . . . ,G29

presented in Figure 1 as well.
When we apply this measurement to graphlets G0, G1, . . . ,G29,

we need to take care of certain topological issues that we first
illustrate in the following example and then define formally. For
graphlet G1, we ask how many nodes touch a G1; however, note

that it is topologically relevant to distinguish between nodes touch-
ing a G1 at an end or at the middle node. This is due to the following
mathematical property ofG1: aG1 admits an automorphism (defined
below) that maps its end nodes to each other and the middle node
to itself. To understand this phenomenon, we need to recall the
following standard mathematical definitions. An isomorphism g
from graph X to graph Y is a bijection of nodes of X to nodes of
Y such that xy is an edge of X if and only if g(x)g(y) is an edge of
Y; an automorphism is an isomorphism from a graph to itself. The
automorphisms of a graph X form a group, called the automorphism
group of X, and is commonly denoted by Aut(X). If x is a node of
graph X, then the automorphism orbit of x is OrbðxÞ ¼
fy 2 VðXÞ j y ¼ gðxÞ for some g 2 AutðXÞg, where V(X) is the set
of nodes of graph X. Thus, end nodes of a G1 belong to one auto-
morphism orbit, whereas the mid-node of a G1 belongs to another.
Note that graphlet G0 (i.e. an edge) has only one automorphism
orbit, as does graphletG2; graphletG3 has two automorphism orbits,
as does graphlet G4, graphlet G5 has one automorphism orbit,
graphlet G6 has three automorphism orbits, etc. (Fig. 1). In
Figure 1, we illustrate the partition of nodes of graphlets G0,

G1 , . . . ,G29 into automorphism orbits (or just orbits for brevity);
henceforth, we number the 73 different orbits of graphlets G0,

G1, . . . ,G29 from 0 to 72, as illustrated in Figure 1. Analogous
to the degree distribution, for each of these 73 automorphism
orbits, we count the number of nodes touching a particular graphlet
at a node belonging to a particular orbit. For example, we count
how many nodes touch one triangle (i.e. graphlet G2), how many
nodes touch two triangles, how many nodes touch three triangles,
etc. We need to separate nodes touching a G1 at an end-node from
those touching it at a mid-node; thus, we count how many nodes
touch one G1 at an end-node (i.e. at orbit 1), how many nodes touch
two G1s at an end-node, how many nodes touch three G1s at an
end-node, etc. and also how many nodes touch oneG1 at a mid-node
(i.e. at orbit 2), how many nodes touch two G1s at a mid-node, how
many nodes touch three G1s at a mid-node, etc. In this way, we
obtain 73 distributions analogous to the degree distribution
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Figure 5.2. Display of the 73 automorphism orbits (Przulj, 2007)-Figure 1. Automorphism
orbits are unique nodes position within each graphlet. They are di↵erentiated by di↵erent color
nodes in the image.
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For any network G, djG(k) represents the j-th graphlet degree distribution, j 2
{0, ..., 72}. Here j is a particular automorphism orbit, k is the number of times a node acts

as the j-th orbit in the network, giving djG(k) as the total number of nodes acting as the

j-th orbit k times. It is scaled such that:

Sj

G(k) =
djG(k)
k

. (5.3)

This is done to decrease the contribution of larger degrees. The distribution is then nor-

malized with respect to its total area:

N j

G(k) =
Sj

G(k)

T j

G
, (5.4)

where T j

G =
1P
k=1

Sj

G(k). Then N j

G(k) can be looked at as “the fraction of the total area under

the curve, over the entire GDD, devoted to degree k” (Przulj, 2007). The distance between

two networks, G1 and G2, at a particular automorphism orbit is defined as:

Dj(G1,G2) =
1p
2

 1X

k=1

h
N j

G1
(k)�N j

G2
(k)
i2
!1/2

. (5.5)

In practice the upper limit of the sum is finite due to the finite size of the network. The

distance calculated in Equation 5.5 will always fall between zero and one, with zero implying

an identical match at the j-th automorphism orbit between the two networks. In the original

2006 paper, the scaling factor of
p
2 was not included despite the same claim of range (Przulj,

2007). This issue was corrected in an erratum in 2010 (Pržulj, 2010). In order to turn this

into an agreement, it is necessary to reverse the values. Thus in order to obtain the GDD

agreement at automorphism orbit j we have:

Aj(G1,G2) = 1�Dj(G1,G2). (5.6)
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The overall agreement between two networks then is either the arithmetic (Equation 5.7)

or geometric (Equation 5.8) mean of Equation 5.6:

A
arith

(G1,G2) =
1

73

72X

j=0

Aj(G1,G2), (5.7)

A
geo

(G1,G2) =

0

@ 1

73

72Y

j=0

Aj(G1,G2)

1

A
1/73

. (5.8)

The arithmetic mean is referred to as GDD (A) and the geometric is GDD (G). For more

information behind the logic of the design of the agreement measure, see (Przulj, 2007).

This method was not evaluated for robustness.

5.1.2 Characteristic Curve

The characteristic curve (CC) by Su et al. (Su et al. , 2011) is a large-scale classification

method. In using the characteristic curve it was necessary to make several assumptions

due to ambiguities in the original paper. A characteristic curve for a network is created by

choosing a random node to start. It is essential to note at this point that there is not a single

characteristic curve for each network, it varies based on the choice of start node. However,

the authors state that the process of choosing the start node does not have a significant

e↵ect on the outcome. Once a start node has been chosen, all of its neighbors are inserted

into a queue at random. The leading node in the queue is then popped (removed) and all of

its neighbors are inserted into the queue. Once a node has been popped from the queue the

first time it is marked as explored. If the popped node has already been explored, then its

neighbors are not added to the queue and the next node is popped. This process continues

until all of the nodes have been explored. A pair of coordinates (X,Y ) are assigned to each

node based on the ratio of its order in the queue to the total number of nodes, X, and the

position of the parent copy, Y . The parent copy is the node that brought the node under

examination into the queue. The characteristic curve requires a connected network, and

thus is only run on the giant component of a network.
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In order to compare two networks, a graph distance DCC(G1,G2) is defined as:

DCC(G1,G2) =
k̄X

X=0

|CC1(X)� CC2(X)| 1

2M
(5.9)

CC
i

(X) =

8
><

>:

Y/k̄, 0  X  T
end

X/k̄, T
end

< X  k̄
, (5.10)

where CC
i

(X) represents the characteristic curve of graph i, i 2 {1, 2}, at point X. Notation

from the original paper has been slightly edited to conform with the standards introduced at

the beginning of this dissertation (Chapter 1). A summary of these standards is available in

the Appendix (Table A.1). The general idea of the graph distance is straight forward; it is

simply a calculation of the area between two curves. However, Su’s notation is ambiguous.

The summation goes from X = 0 up to the average degree. For our purposes, we assume

that the average degree at the top of the summation refers to the maximum average degree

of the two graphs being compared such that:

k̄ = max
�
k̄1, k̄2

�
. (5.11)

The factor M refers to the maximum number of edges between the two graphs:

M = max (m1,m2) , (5.12)

where m
i

is the total number of edges in network i. For each network, G1 and G2, its number

of edges dictates the step size of X by increments of 1
2mi

. Finally, the lower bound of the

summation is more clearly written as X = s
i

where s
i

2 S and S represents the ordered

set of X values of the network with more edges such that s1  s2  . . .. The more edges a

network has, the smaller each step, and the more steps necessary to traverse the network.

The definition for CC(X) could also be more clear than its representation in Equation (5.10).

The definition of CC(X) is written as a step function which allows us to better match and

compare networks with vastly di↵erent sizes of giant components (Equation 5.10). In this



84

equation k̄ does not correspond to the overall maximum average degree across to the two

network (Equation 5.11, but to the average degree of the given network. The value T
end

refers to the proportion of nodes in the giant component of the specific network. It is the

proportion, as opposed to the overall size, due to how nodes are put into the queue. At the

beginning of the distance calculation (Equations 5.9, 5.10) CC
i

(X) = Y/k̄. When the whole

giant component of a network has been explored, the value of CC
i

(X) is now set to X/k̄.

This allows networks with drastically di↵erent sizes of giant components to be compared.

A less ambiguous representation of Equation 5.9 is then:

DCC(G1,G2) =

max(k̄1,k̄2)X

X=si

|CC1(X)� CC2(X)| 1

2 ·max (m1,m2)

(5.13)

CC
i

(X) =

8
><

>:

Y/k̄
i

, 0  X  T
end,i

X/k̄
i

, T
end,i

< X  k̄
i

.

As previously mentioned, the characteristic curve only works on fully connected

networks. If a network is not connected, the authors deem it acceptable to run the method

on the giant component of the network, given that the proportion of nodes in the giant

component is acceptably large (e.g., |VH| / |VG | > 0.1). If the giant component is not large

enough it will not contain enough of the significant structural features of the network to be

considered an accurate representation (Su et al. , 2011).

The authors tested the robustness of this classification method using two types of

graph perturbations. In the first type of perturbation, a percentage of edges in each graph

were randomly replaced. In the second, a percentage of the edges were again rewired, but

the degree distribution of the network was held constant. Classification results for these

perturbed graphs showed robustness to small and intermediary amounts of noise. Results

were optimal for the second type of noise.
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5.1.3 Degree Distribution Distance

We propose a novel method based on large-scale network topology. This method, degree

distribution distance (DDD), begins by calculating the degree distribution of each network.

The degree distribution refers to the number of nodes at each degree in the range from

the minimum degree, �(G), to maximum degree, �(G), of the whole network, G. Di↵erent

networks are compared through the use of a distance metric, defined as:

DD(G1,G2) =
k2X

k=k1

|F
k

(G1)� F
k

(G2)|

(5.14)

k1 = min (�(G1), �(G2))

k2 = max (�(G1),�(G2)) .

Thus k1 is the minimum degree of the two networks being compared and k2 is the maximum.

The value F
k

(G) is equal to:

F
k

(G) =

8
><

>:

�log(N
k

(G)/T (G)), N
k

(G) 6= 0

0, N
k

(G) = 0
,

where N
k

(G) is the total number of nodes in graph G with a degree of k and T (G) is the

total number of nodes in G. This definition is comparable to that given by Przujl (Przulj

et al. , 2004) to describe the distance for her relative graphlet frequency method described

in Section 5.1.1. The logarithm of the ratio N
k

(G)/T (G) is used here, just as in her paper,

since frequencies of degrees can di↵er by several orders of magnitude between networks

(Przulj et al. , 2004).

The idea of using degree distribution is not completely unique (Hadley et al. , 2012;

Wang et al. , 2012; Aliakbary et al. , 2013), it has not been used in this particular distance

metric. None of these formulations tested for classification robustness.
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5.2 Limitations of Previous Work

As mentioned at the beginning of this chapter, the methods presented come from several

di↵erent papers. Since work in this area has already been accomplished, what purpose is

there to repeating it? The purpose of our analysis is to address several of the limitations

found in previous work. First is the number of di↵erent model graphs used. Su et al. (Su

et al. , 2011) only examined three model graphs as potential matches for the empirical

network when testing the characteristic curve. These models were DMC, DMR, and LPA

(Su et al. , 2011). Przulj (Przulj et al. , 2004; Przulj, 2007) only looked at four model

types for each of her three classifiers. RGF considered RDS, RDS with degree distribution

set to match the empirical network, LPA, and GEO (Przulj et al. , 2004). She did use

three di↵erent versions of the GEO model type though, 2-dimension, 3-dimension, and 4-

dimension. Both GDD algorithms used the same first three model types as the RGF, but

only used GEO-3D (referenced by just GEO in this dissertation).

Considering such a small sampling of the available model graphs does two things.

First, it makes it very di�cult to compare answers across classifiers. Clearly, if a network

is not considered by a paper, then it cannot be chosen as the best fit for the PPI network

being classified. Second, with such a small sampling of model graph types, there is a good

chance that the best fitting type is not considered. This potentially renders the results of

the classification less reliable.

All of the papers also fail to address the issue of large or small-scale categorization.

Though the authors do state the category into which their method falls, they do not address

limitations due to not examining the other scale. The main ramification of this is the

possibility of achieving results that only match on one scale and thus falsely mislabeling a

network.

Finally, while Su created 1000 graphs of each model type, Przulj only used 25 in

each of her analyses. Given model variability (Chapter 3), this is not necessarily adequate

(Burton et al. , 2006). In addition, Przulj did not provide evidence of the accuracy of her

classifier, thus providing no proof that it has any ability to classify graphs accurately. In

the next two chapters, we attempt to rectify the limitations identified in the previous works.
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Chapter 6

Random Graph Classification

The first step in the evaluation of any classifier is to determine whether it can perform its

job properly. For any classifier, this means examining its ability to accurately classify items

into their correct categories. As the first step in examining graph classification, we deter-

mine whether any of the five model graphs have the ability to accurately classify random

model graphs built with di↵erent probabilities, p. This classification analysis considers only

accuracy when evaluating each method.

6.1 Methods

The five classification mechanisms were tested on their ability to accurately classify random

graphs created with varying probabilities, p. A total of 100 random graphs were created

using p in [0.05, 0.95], increasing in increments of 0.05. The graphs were all composed of 250

nodes. This size was chosen because it was large enough for the di↵erent probabilities to

promote obviously di↵erent graphs, while still being small enough to allow for time e�cient

running and calculation. If the number of nodes in the graph is too small, we increase the

likelihood of creating graphs that are not di↵erentiated across the levels of p despite the

logical implication that they should be (Kolaczyk & Krivitsky, 2011). This is due to the

limited number of possible edges for graphs with few nodes. Of the 100 graphs at each p, 90

were designated as comparison graphs and the remaining 10 were designated as test graphs.

The test graphs are the ones that need to be classified.

Every test graph was compared to each of the 90 comparison graphs of the nineteen

di↵erent p’s using the five di↵erent classification methods. This led to a total of 1710

comparisons for each test network and a total of 17,100 comparisons per method. A single

test graph T
i,pt , where i = 1, . . . , 10 is the number of the test graph and p

t

is a specific

instance of probability p, is compared to each comparison graph, C
j,pc . The notation, Cj,pc ,

refers to comparison graph where j = 1, . . . , 90 and p
c

in a specific instance of probability

p.
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Figure 6.1. Example of random graph classification procedure: comparison step. Here
we see how the first test graph (Test 1 in black box) created by using p = 0.05 is compared to all
graphs created by using p = 0.10 (purple box). Then the outcomes of each comparison are presented
(blue box). The median of these results is then taken. The whole process must be repeated for test
graphs 2 - 10.

Each comparison results in an outcome value. In Figure 6.1 these outcomes are

labeled such that “Outcome (1v1)” refers to the comparison of test network 1 to comparison

network 1. From these 90 outcome values, the median result is calculated. This process is

repeated with the same test graph being compared to comparison graphs created with the

remaining probabilities. This process results in a list of nineteen median results for test

graph 1 (Figure 6.2).

From the list of median results, the best resulting value is chosen based on the

method used for comparison. If DDD, CC, or RGF is utilized, the best resulting value

is the smallest value since all of these methods calculate a distance. If the method is

either GDD, which use an agreement instead of a distance, the best fit is the largest value.

The probability of the comparison graphs, p
c

, corresponding to the best resulting value is

determined the best fit for test network 1 at p
t

. Once the best fit for test network T1,pt

has been declared, the process is repeated for the remaining test networks, 2 through 10,

created with the same probability, p
t

. If p
t

is equal to the best fit p
c

, then the test network

was properly classified. If the two probabilities are not equal, then the test network was

incorrectly classified. Once the best fit for all T
i,pt , i = 1, . . . , 10, has been calculated, it is
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Figure 6.2. Example of random graph classification procedure: best fit step. Once the
procedure in Figure 6.1 has been repeated for comparison levels of each p, the median results are
accumulated (blue box). The minimum value, or maximum in the event that the classifier is either
GDD, is determined. The p of the graphs resulting in this minimum (maximum) value is deemed
the best fitting random graph for the test graph. If the creation probabilities for both the test graph
and the best fitting comparison graph match, then the test graph was accurately classified. The
procedure is repeated for each test graph of a single probability in order to determine the average
classification accuracy for that random model type.

possible to determine the proportion that were correctly fit. The whole process is repeated

for every test network for every probability.
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6.2 Results

When degree distribution distance was used as the classification mechanism, it classified ev-

ery model graph correctly. The relative graphlet frequency did the same. The characteristic

curve, however, did not perform nearly as well.

Using the median outcome values, 70 graphs (⇠ 37%) were classified incorrectly by

the CC. Random networks built with p  0.60 had a better record of classification than

those with p > 0.60 (Table 6.1). It should be noted that there is a large, unexpected drop

in classification accuracy for p = 0.70, 0.75, 0.85. None of the test graphs in these categories

were classified correctly by CC. This is interesting, because graphs with created with a

5-10% di↵erence in probability of edge connection had high classification accuracies. This

outcome, therefore, appears erroneous. If we examine Table 6.2, however, we can see that

the misclassified graphs are never placed into groups more than 5-10% di↵erent than their

correct one.

Table 6.1. Classification accuracy of random graphs using the characteristic curve.

Model Classification Accuracy
(pt) % Correct

0.05 100
0.10 100
0.15 100
0.20 100
0.25 80
0.30 60
0.35 90
0.40 60
0.45 60
0.50 70
0.55 70
0.60 60
0.65 30
0.70 0
0.75 0
0.80 70
0.85 0
0.90 90
0.95 40

Average 62%

The model column indicates the value of p with which the graphs were designed. The second column provides
the classification accuracy of the ten graphs classified for each of the nineteen model categories.

The two versions of the graphlet degree distribution, based on arithmetic and ge-

ometric mean respectively, did not accurately classify all of the random graphs. Their
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Table 6.2. Full description of classifications of random graphs using the characteristic curve.

Predicted Class

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.8 0.85 0.90 0.95
0.05 100 - - - - - - - - - - - - - - - - - -
0.10 - 100 - - - - - - - - - - - - - - - - -
0.15 - - 100 - - - - - - - - - - - - - - - -
0.20 - - - 100 - - - - - - - - - - - - - - -
0.25 - - - 10 80 10 - - - - - - - - - - - - -
0.30 - - - - - 60 40 - - - - - - - - - - - -
0.35 - - - - - - 90 10 - - - - - - - - - - -
0.40 - - - - - - 20 60 20 - - - - - - - - - -
0.45 - - - - - - - 30 60 10 - - - - - - - - -
0.50 - - - - - - - - 20 70 10 - - - - - - - -
0.55 - - - - - - - - - 30 70 - - - - - - - -
0.60 - - - - - - - - - - 20 60 20 - - - - - -

A
c
t
u
a
l
C
l
a
s
s

0.65 - - - - - - - - - - - 30 30 40 - - - - -
0.70 - - - - - - - - - - - 20 30 - 40 10 - - -
0.75 - - - - - - - - - - - - - 50 - 50 - - -
0.80 - - - - - - - - - - - - - 10 - 70 - 20 -
0.85 - - - - - - - - - - - - - - 30 40 - 30 -
0.90 - - - - - - - - - - - - - - - - - 90 10
0.95 - - - - - - - - - - - - - - - - - 60 40

The values presented are the percent of random graphs classified into each category by the characteristic
curve. Values in bold indicate the percentage of the graphs from each class that were correctly classified.
Note that in the majority of misclassifications, graphs are only misclassified by 5%. Only a few graph types,
p 2 [0.70, 0.85], have graphs misclassified by 10%.

performance was a significant improvement over the CC, however. Both GDD versions

misclassified three graphs made at p = 0.95. Of the three graphs labeled incorrectly, two

were labeled as p = 0.70 and the remaining was p = 0.65. These results were the same for

both GDD (A) and GDD (G), though the actual agreement values di↵ered slightly. This

resulted in an accuracy of 98% for both GDD classifiers.

Figure 6.3 shows a visual of the distances and agreements of the random graph

classification by four of the five classifiers. The plot show results for only one of the ten

test graphs from each of the nineteen types, however di↵erences across the ten tests graphs

are minute. Figure 6.3a and Figure 6.3c, the plots for the DDD and the RGF respectively,

show clearly that the graphs are classified correctly. It is interesting to note that in both

situations, the minimum distances are not directly correlated with the change is p. That is

graphs built with large p are not more (or less) likely to have more extreme minimum agree-

ments than those built with small p. Both visuals appear very symmetric in this respect.

This is in sharp contrast to Figure 6.3d, the plot for the classification of random graphs

using the arithmetic version of the GDD. The geometric version is not shown because it is

redundant.
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Figure 6.3. Visualization of random graph classification. The x-axis is p (multiplied by 100).
The y-axis is the distance (or agreement in the case of GDD). The plots show the classification distances
for one of the ten test graph from each of the nineteen random graph types (p). Each individual line is
for a test graph showing the median classification distance (y-axis) for the test graph compared to the
comparison graph (x-axis). (a): Result for the degree distribution distance. All of the test graphs are
classified correctly. This can be seen because the minimum distance for each test graph, pt, occurs when
pt = pc. Minimum distances, for the best fitting model types, and maximum distances, for the worst fitting,
do not vary much across the di↵erent test graphs. Test graphs created with larger probabilities do not have
correspondingly maximum larger distances. (b): Result for the characteristic curve. With the exception of
the test graphs p = 0.05, 0.10, all of the test graphs display their largest values when compared to graphs
with small pc. Test graphs created with larger pt do have correspondingly larger maximum distances. (c):

Results for relative graphlet frequency. Similar to (a), 100% of the test graphs were classified correctly.
Graphs created with more extreme probabilities display larger fluctuations in distance than those made with
more centered probabilities. Minimum distances do not change significantly across the di↵erent model graph
categories. (d): Result for graphlet degree distribution using arithmetic mean. Results are not shown for
the geometric mean because they are redundant. Agreement values are more extreme for graphs created
with low probabilities. The highest agreement value is also substantially lower for these test graphs. The
di↵erences between agreements of graphs made with probabilities above about 0.25 do not vary significantly.
There is simply a small peak at the best fit. This lack of di↵erence is further show in Table 6.3.
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In this latter figure, graphs created with di↵erent probabilities of edge creation have

di↵erent agreements, and the di↵erences form a pattern. The correct choice is still very

obvious in each case, however the density of the graph appears to have an e↵ect on the

maximum agreement achieved (Table 6.3). All of the graphs were classified accurately in

this situation. The lowest agreements (0.9026, 0.9012) occur at p = 0.05 and p = 0.95

respectively. The highest agreement achieved is 0.9363 at p = 0.65. Another interesting

feature to note is that the same agreement values, up to four significant figures, are seen

multiple times. This is true for 0.9362, which is achieved p = 0.55, 0.60, and 0.70, and for

0.9358, which is achieved at p = 0.40 and 0.75.

Further, we note that for GDD there are very small di↵erences between the first and

second highest agreement levels (Figure 6.3 and Table 6.3) . Many of these values do not

di↵erentiate themselves until the third significant digit. The biggest di↵erences are seen on

the high and low end of the edge creation probabilities.

Table 6.3. Graphlet degree distribution using arithmetic mean random graph classification compar-
ison of first and second place results.

Agreement
pt 1st 2nd

pc,2

0.05 0.9026 0.7705 0.45, 0.55, 0.60, 0.65, 0.70
0.10 0.9108 0.8777 0.15
0.15 0.9291 0.9176 0.60
0.20 0.9322 0.9289 0.55, 0.60, 0.65
0.25 0.9344 0.9325 0.60
0.30 0.9350 0.9335 0.35
0.35 0.9353 0.9340 0.40
0.40 0.9358 0.9343 0.45
0.45 0.9359 0.9345 0.50
0.50 0.9360 0.9347 0.55
0.55 0.9362 0.9350 0.60
0.60 0.9362 0.9350 0.65
0.65 0.9363 0.9349 0.60
0.70 0.9362 0.9349 0.65
0.75 0.9358 0.9346 0.70
0.80 0.9352 0.9338 0.75
0.85 0.9342 0.9325 0.55, 0.60, 0.65, 0.80
0.90 0.9299 0.9287 0.60, 0.70
0.95 0.9012 0.8947 0.60, 0.65, 0.70

Table shows a comparison of the best and second best agreement values obtained using GDD (A). The first
column indicate the p with which the model was made. The second column gives the agreement value of
the best matching model type. The third column gives the second best agreement value. The pc,1 of the
best matching model type is not given because these were classified accurately. The pc,2 of the second best
matching model type are given. In some cases multiple pc achieved this second best values. Values are
obtained from only one of the ten test graphs from each of the nineteen types. It is the same set of test
graphs as seen displayed in Figure 6.3d. It is clear that for the non-extreme values of p, the di↵erences
between first and second place agreements are essentially negligible.
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Finally, the plot shown in Figure 6.3b displays the distance results for the CC. Most

of the lines follow a pattern similar to the plot of y = 1
x

, x > 0. The highest distance

calculated occurs at p = 0.05, then there is a sharp drop o↵ before the distances slowly

begin to increase again. In this situation, the di↵erences between the smallest and second

smallest distance are extremely small just like the GDD. Once again, they do not di↵er

until the third significant figure in many cases.

6.3 Discussion

In this chapter, we began the steps to evaluate the capabilities of the five classification

mechanisms. We built 100 random model graphs for each edge creation probability in the

range [0.05, 0.95], increasing by increments of 0.05. Of the 100 graphs of each type, 10

were designated test graphs that needed to be classified. The remaining 90 were designated

comparison graphs. These were used as known examples for comparison with the test

graphs.

Results showed that both RGF and DDD performed with perfect accuracy when

classifying random model graphs. We speculate that this is because certain graphlets,

and certain node degrees, have a minimum amount of connectivity required to exist. For

instance, it is impossible for graphlet 29 to exist if there are not ten edges. Therefore, these

specific features may ease the classification burden.

Both variations of the GDD performed very well. Only three random graphs were

misclassified. Since these were each created with p = 0.95, we speculate that at the highest

level of probability, the distinction between di↵erent graphs is drastically reduced.

The characteristic curve is the only method that performed poorly in classifying

random graphs. The higher classification success rate of the CC on graphs built with

probabilities of edge connection in the range [0.05, 0.60] may imply that the CC works more

accurately with graphs of lower density. This is backed up by the perfect classification

of test graphs built with 0.05  p  0.20 and the far less than perfect classification of

graphs built with p � 0.65. The improved performance for graphs of lower densities may

be an acceptable flaw of the CC because the real world networks for which this method was

designed to classify typically have low densities. The di↵erence in classification accuracies
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can also imply that when the creation probability increases to a certain level, such as

p = 0.65, the di↵erences between random graphs are not as clear and straightforward as

they are for lower probabilities.

Overall, none of the classification methods performed so poorly in their classification

of random graphs that their results are unexplainable nor their failures unforgiveable. This

is true even for the CC because the real world networks we are looking to classify have

low densities. Unfortunately, it is likely that the PPI networks that we are interested in

classifying are not random graphs at all, but rather fall into a more complex category of

model graphs. Therefore, this step is not fully adequate in deciphering the abilities of the

classifiers. We must test the classifiers abilities on non-random model graphs. This step is

performed in the next chapter (Chapter 7).
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Chapter 7

Model Graph Classification

The papers from which the relative graphlet frequency (Przulj et al. , 2004) and both

graphlet degree distribution measures (Przulj, 2007) were introduced neglected to provide

any validation that their methods can accurately classify known model graphs into their

correct categories. This is an essential missing piece because without it, it is impossible

to determine the reliability of the results. Therefore, in this chapter we test the ability

of each classifier to correctly assess a set of known model graphs. We evaluate the results

by accuracy, like in Chapter 6, but add in several other statistics: F-measures, positive

predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity. We

conclude the chapter by o↵ering the next steps in this analysis.

7.1 Methods

Out of the 1000 graphs simulated for each of the nine models, 900 were designated compar-

ison graphs and the remaining 100 were test graphs. The process of comparison was the

same as for the random graphs (Figures 6.1 and 6.2). The DDD is the only classification

algorithm that was able to use all of the DMC and DMR graphs. The other methods used a

sampling of the graphs with less than 50,000 edges. For RGF and GDD, this was necessary

because GraphCrunch 2 does not work on networks above this size (Kuchaiev et al. , 2011).

For CC, while it is technically possible to run this method on large networks, it poses severe

time restrictions. There were 782 DMC networks with less than 50,000 edges and 789 DMR

networks. In both of these situations 100 networks were still designated as test graphs and

the remaining as comparison graphs.

Each method was evaluated in several ways. First, overall accuracy was calculated to

provide a general idea of how many graphs were classified correctly. Then a confusion matrix

was created. A confusion matrix is table layout that allows one to visual the performance

of a classifier (Stehman, 1997). Each confusion matrix can be collapsed into nine separate

2x2 matrices such as Figure 7.1, one for each of the model graph types. From these, the

sensitivity (⇢), specificity, positive predictive value (⇡), negative predictive value, and F-
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measure (Equation 7.5) can be calculated for each model type. The sensitivity, or recall,

of the classifier identifies the algorithms ability to classify a model type correctly (Loong,

2003). It is calculated for the ith model type, i 2 {1, ..., 9}, by:

⇢
i

=
TP

TP + FN
. (7.1)

In other words, this is the proportion of graphs that are classified as Type A that actually

are Type A.

The specificity of a classifier identifies its ability to not misclassify other graphs as

that particular model type, or the proportion of graphs not classified as Type A that really

are type A:

SPC
i

=
TN

TN + FP
. (7.2)

The positive predictive value (PPV), or the precision, is:

⇡
i

=
TP

TP + FP
. (7.3)

This tells the proportion of graphs classified as Type A that actually are Type A. A negative

predictive value (NPV) is the proportion of graphs that are correctly classified as Not Type

A that are actually Not Type A:

NPV
i

=
TN

TN + FN
. (7.4)

Finally, the F-measure (i.e. F1 score or F-score), was calculated for each model

type. The F-measure is a measure of a binary classification test’s accuracy. This was

chosen over other potentially more informative statistics because it can be modified to

assess the accuracy of multi-class classifiers, as opposed to simply binary. Unfortunately,

this measure does not take the true negative into account, which may lead to instances of

miscommunication.



98

True
positive
(TP)

A

A

False
negative
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False
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True
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True
Class
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Figure 7.1. Example binary confusion matrix. A confusion matrix is a visual way of displaying
the results of a classification.

The F-measure for a single model type i is calculated by:

F
i

=
2⇡

i

⇢
i

⇡
i

+ ⇢
i

. (7.5)

This is the harmonic mean of precision and recall. To calculate the e↵ectiveness of the

entire algorithm across all of the model types, the F-measure can be modified to become

the micro-average F-measure and macro-averaged F-measure (Özgür et al. , 2005). In the

micro-averaged F-measure (F-micro) the precision and recall are calculated globally by

summing over the true positive, false positive, and false negative values (Equations 7.6,

7.7).

⇢ =
TP

TP + FN

=

P9
i=1 TPiP9

i=1(TPi

+ FN
i

)
(7.6)

⇡ =
TP

TP + FP

=

P9
i=1 TPiP9

i=1(TPi

+ FP
i

)
(7.7)

Then, F-micro is:

F -micro =
2⇡⇢

⇡ + ⇢
. (7.8)
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Equation 7.8 is considered an average over each model type because they are all given equal

weight. It can be dominated by certain high performing types (Özgür et al. , 2005).

In the macro-averaged F-measure (F-macro), the F-measures computed for each

model type in Equation 7.5 are averaged together. Thus, F-macro is:

F -macro =

P9
i=1 Fi

9
. (7.9)

All of the F-measure statistics fall between zero and one, with larger values indicating better

performance.

For all of the statistics for each classifier, average values of sensitivity, specificity,

PPV, and NPV were calculated. These values were averaged from the specific values derived

for each model type separately. We also examined the global values, obtained by adding all

of the true positives, true negative, false positives, and false negatives for each measure. The

statistics were then calculated on these global values resulting in global summary statistics.

7.2 Results

7.2.1 Filtering Out Large Graphs

As previously mentioned, only the DDD was able to use all of the DMC and DMR graphs

created due to classification algorithm size constraints. The remaining classifiers were un-

able to work e↵ectively on graphs larger than 50k edges (Kuchaiev et al. , 2011; Su et al.

, 2011). In order to determine whether this might have a significant e↵ect on the clas-

sification outcome, a comparison of these two model graph types based on a sampling of

graph measures can be seen in Table 7.1. It should be noted at this point that all of the

classification algorithms have ways of comparing graphs of markedly di↵erent sizes. These

ways ensure that model graphs are not penalized for not being the same size as the network

being classified.

Though the median number of edges decreases drastically when only the smaller

networks are considered, the number of nodes only decreases by about 100 (⇡ 7� 8%) for

both DMC and DMR. The values for most of the other features do not vary greatly when the

larger networks were eliminated. The biggest change is for the assortativity values (r(G)) of
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the DMR graphs. When all 1000 models were considered, there are signs of disassortativity.

However when only graphs with less than 50k edges were considered, signs of assortativity

are shown instead. Since the yeast PPI network shows signs of dissasortativity, this change

may contribute to the DMR being incorrectly not chosen as the best fit. From the results

of the comparison, we can conclude that while the final results of any classification may

be altered due to the di↵erent sampling of graphs, the change in comparison models is un-

avoidable. In addition, it should have minimal e↵ect on the outcome because so few graph

measures displayed any change.

Table 7.1. Comparison of all DMC, DMR graphs to those with less than 50k edges.

DMC DMR
< 50k All < 50k All

Full Network

m 2321 4703.5 2429 4746
n 1270 1324 1132 1237
D 0.0021 0.0038 0.0024 0.0078
C(G) 0.144 0.1607 0.0085 0.0114
|VH| / |VG | 0.5333 0.2624 0.972 0.9936
S(G) 0.7555 0.7754 0.6158 0.6469
r(G) 0.0661 0.0312 0.0266 �0.0343
Giant Component

Diameter 12 9 12 9
Radius 6 5 6 5
¯̀ 4.578 3.6209 4.4923 3.7238
log n 2.8031 2.9901 3.0374 3.0883
log log n 0.4476 0.4757 0.4825 0.4897
S(G) 0.7515 0.7726 0.6137 0.6411
r(G) �0.0461 �0.0685 �0.0345 �0.0689

Table reports results of several network measures for the set of all DMC (DMR) graphs as well as for only
those with less than 50k edges. This gives an idea of the loss of information that occurs due to size constraints
found in CC, RGF, and GDD.

7.2.2 Degree Distribution Distance

In Chapter 6, we noted the degree distribution distance’s impressive ability to correctly

classify random graphs. Unfortunately, it did not prove quite so impressive when attempting

to classify the model graphs (Table 7.2).

DDD was only able to correctly classify one model type, RDG, 100% of the time.

Three other models types were classified correctly more than two-thirds of the time: SMW,
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Table 7.2. Classification accuracy of degree distribution distance.

Predicted Class
AGV DMC DMR GEO LPA RDG RDS SMW STI

AGV 9 - - 9 - 82 - - -
DMC - 1 - 7 - 12 4 46 30
DMR - 2 2 8 - 12 8 30 38
GEO - - - 73 - - 27 - -
LPA - - - - - 100 - - -
RDG - - - - - 100 - - -

T
r
u
e
C
la
ss

RDS - - - 3 - - 97 - -
SMW - - - - - - 1 99 -
STI - - - - - 75 - - 25

The values presented are the percent of model graphs classified into each category by DDD.

RDS, and GEO. The remaining five graph types were classified correctly less than a quarter

of the time. In fact, one graph, LPA, was never correctly classified. All of the LPA graphs

were classified as RDG.

Table 7.2 can also be presented as a visual confusion matrix. An example of a

perfect confusion matrix can be seen in Figure 7.2. The plot shows the ideal red squares on

the diagonal indicating that 100% of all graphs were classified correctly. The results from

Table 7.2 can be seen in Figure 7.3. Perfect classification is obviously not the case for the

results of DDD classification. Most of the model graphs that were classified incorrectly,

were grouped between one or two incorrect choices. For instance, the incorrect AGV graphs

were classified as either GEO and RDG, with most falling in the latter category. The DMC

and DMR graphs, however, were spread out in their incorrect classification. The overall

classification accuracy of the DDD was only 45% (Table 7.13).

Table 7.3 displays a statistical analysis of the DDD’s performance. In an ideal world,

we would desire all of the values in the table to be near one. In actuality, there are often

trade-o↵s. A high sensitivity is sacrificed for a high level of specificity and vice-versa, which

is visualized in Figure 7.4. Most of the values that begin with a low sensitivity, seen on the

third axis, increase significantly to a high specificity as seen on the fourth axis.

The trade-o↵ in specificity and sensitivity is very evident in the classification of LPA.

It has zero sensitivity because it classified none of the model LPA graphs correctly, however

it has very high specificity because it also didn’t incorrectly classify any graphs as LPA,

Table 7.2. In addition, RDS and SMW scored high in every category with the exception of
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Figure 7.2. Example of a confusion matrix displaying perfect classification. The red squares
on the diagonal show that 100% of the graphs were classified into the correct category.

Figure 7.3. Degree distribution distance classification results confusion matrix. Image
shows how all of the the test graphs of each type were classified. A total of 100 graphs of each model
type were used. Red squares indicate higher classification accuracy, blue squares indicate lower.
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Table 7.3. Degree distribution distance statistical analysis of performance.

Model PPV NPV Sensitivity Specificity F-measure

AGV 1.0 0.8979 0.09 1.0 0.1651
DMC 0.333 0.8896 0.01 0.9975 0.0194
DMR 1.0 0.8909 0.02 1.0 0.0392
GEO 0.73 0.9663 0.73 0.9663 0.73
LPA 0.0 0.8889 0.0 1.0 0.0
RDG 0.2625 1.0 1.0 0.6488 0.4158
RDS 0.708 0.9961 0.97 0.95 0.8186
SMW 0.5657 0.9986 0.99 0.9050 0.72
STI 0.2688 0.9071 0.25 0.9150 0.2591

Average 0.5409 0.9373 0.4511 0.9314 0.3519
Global 0.4511 0.9999 0.4511 0.9314 0.4511

Results are calculated based on the classification of the 100 model graphs from each of the nine model types
using the DDD. Statistics used include PPV (positive predictive value), NPV (negative predictive value),
sensitivity, specificity, and F-measure. The average F-measure corresponds to the F-macro while the global
F-measure corresponds to the F-micro.

PPV. This indicates that they are often the choice for incorrectly classified models. They

are not nearly as popular as RDG, which has 57% of the incorrectly classified graphs (281

out of 494). That is also why RDG has extremely low PPV and specificity despite being

the only model graph that was classified 100% correctly. Therefore, the DDD is inadequate

at correctly telling which networks are LPA, as corroborated by the PPV and F-measure,

however it is perfect at telling which graphs are not LPA, as seen by NPV.

We can conclude that DDD is better at telling us what type of model a graph is

not, than what it is. This conclusion is based on the significantly higher NPV than PPV.

While this feature is not ideal, it does have the potential to be useful. The F-macro, the

average of all the individual model graph F-measures, is 0.3519 which indicates that this is

not a reliable method. The F-micro is marginally better at 0.4511.
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Figure 7.4. Parallel coordinate representation of the degree distribution distance perfor-
mance statistics. Statistics used include PPV (positive predictive value), NPV (negative predictive
value), sensitivity, specificity, and F-measure. Values are calculated using the classification results
of the 100 models of each of the nine model graph types.
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7.2.3 Characteristic Curve

The characteristic curve is unique in its requirement of a connected network. In order to get

an idea of how using only the giant component a↵ects features of a graph, the full network

and giant component of the PPI network were compared to each other using the three other

classifiers considered in this chapter (Table 7.4).

Table 7.4. Comparison of S. cerevisiae PPI network full network v giant component.

DDD RGF GDD (A) GDD (G)

Distance or
1.3468 0.0004 0.9917 0.9915

Agreement

Characteristic curve requires a connected component in order to run, thus it is typically run on the giant
component. This table shows the full network of the S. cerevisiae PPI network compared to the giant
component by the four other classifiers. Lower values are better for DDD and RGF. Values closer to one are
better for both forms of GDD.

For DDD and RGF, smaller numbers indicate smaller distances and thus better

matches. For both forms of GDD, the closer a number is to one, the better the agreement.

From Table 7.4 we conclude that based on the other methods, it is valid for the CC to

run its comparisons using only the giant component as it does not appear to lose many of

its features. This is based on the distance and agreement values resulting from comparing

the full network to its giant component using the DDD, RGF, and both GDD. This also

confirms the assertions made by Su, et al., that a large enough giant component retains

significant features of the full network, where large enough is defined as greater than 10%

of the nodes in the full network are present in the giant component (Su et al. , 2011). This

latter criterion is easily met by the model graphs.

It was seen in the previous chapter that the characteristic curve performed poorly at

di↵erentiating between random graphs with di↵erent densities and it did not perform much

better when classifying the nine model graphs (Table 7.5). Three model types were classified

incorrectly 100 percent of the time: AGV, DMC, and DMR. The remaining networks were

all classified correctly at least 50 percent of the time, with four graphs classified correctly

at or above 98 percent. Overall, 58 percent of the model graphs were classified correctly.
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Table 7.5. Classification accuracy of characteristic curve.

Predicted Class
AGV DMC DMR GEO LPA RDG RDS SMW STI

AGV - - - 9 30 - 22 39 -
DMC - - - 3 32 4 - - 61
DMR - - - 7 30 7 1 - 55
GEO - - - 100 - - - - -
LPA - - - - 98 - 2 - -
RDG - - - - - 98 - - 2

T
r
u
e
C
la
ss

RDS - - - - - 100 - -
SMW - - - 10 - - 14 76 -
STI - - - - - 50 - - 50

The values presented are the percent of model graphs classified into each category by CC.

Incorrectly classified graphs were typically spread over two to three di↵erent models

(Figure 7.9). The majority of these misclassifications are into LPA, RDG, SMW, or STI.

Just as no AGV, DMC, or DMR graphs were correctly classified, no models were incorrectly

classified into any of these categories either.

Figure 7.5. Characteristic curve classification results confusion matrix. Image shows how
all of the the test graphs of each type were classified. A total of 100 graphs of each model type were
used. Red squares indicate higher classification accuracy, blue squares indicate lower.

Table 7.6 and Figure 7.6 display the statistical analysis of the CC. There are three

patterns visible in Figure 7.6. The first, in yellow, is the plot of AGV, DMC, and DMR.
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These models have a sensitivity, PPV, and F-measure of zero and then very high specificity

and NPV values, 0.9 and 1.0 respectively. The second pattern, consisting of STI and SMW,

follows a very similar pattern to the first but without the extreme peaks and valleys. They

both have lower values for PPV, sensitivity, and F-measure with higher NPV and specificity.

The third pattern begins towards the top of the figure. Here, GEO, RDS, RDG, and LPA

all have a relatively high PPV that increases to a higher NPV. The values then stay roughly

constant for the sensitivity. They all show a slight drop for specificity, though the decrease

is of varying sizes, and continue the drop for the F-measure. Overall, these four model

types perform well across all statistics and their overall performance is indicated in the

F-measures which range from 0.68 to 0.87.

Overall, the average specificity and NPV are both close to one, however their rel-

evance is brought into question by the low average sensitivity of 0.58 and the even lower

PPV, Table 7.6, Figure 7.6. Global values are higher for PPV (0.58 v 0.3984) and NPV

(0.9999 v 0.9514). The F-macro is 0.4692 and F-micro is 0.58 both confirming than this

model still leaves much to be desired in terms of correct classification.

Table 7.6. Characteristic curve statistical analysis of performance.

Model PPV NPV Sensitivity Specificity F-measure

AGV 0.0 0.8889 0.0 1.0 0.0
DMC 0.0 0.8889 0.0 1.0 0.0
DMR 0.0 0.8889 0.0 1.0 0.0
GEO 0.7752 1.0 1.0 0.9638 0.8734
LPA 0.5158 0.9972 0.98 0.8850 0.6759
RDG 0.6164 0.9973 0.98 0.9238 0.7568
RDS 0.7194 1.0 1.0 0.9513 0.8368
SMW 0.6609 0.9694 0.76 0.9513 0.707
STI 0.2976 0.9317 0.5 0.8525 0.3731

Average 0.3984 0.9514 0.58 0.9475 0.4692
Global 0.58 0.9999 0.58 0.9475 0.58

Results are calculated based on the classification of the 100 model graphs from each of the nine model types
using the CC. Statistics used include PPV (positive predictive value), NPV (negative predictive value),
sensitivity, specificity, and F-measure. The average F-measure corresponds to the F-macro while the global
F-measure corresponds to the F-micro.
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Figure 7.6. Parallel coordinate representation of the characteristic curve performance
statistics. Statistics used include PPV (positive predictive value), NPV (negative predictive value),
sensitivity, specificity, and F-measure. Values are calculated using the classification results of the
100 models of each of the nine model graph types.
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7.2.4 Relative Graphlet Frequency

The RGF classified five model graphs correctly 100% of the time, however it failed on the

remaining four (Table 7.7). Only thirteen AGV and two SMW model graphs were classified

correctly. The misclassified AGV graphs were mostly classified as LPA, though 19 were

RDG (Figure 7.7). SMW graphs were spread out in their misclassification, hitting six of

the nine model categories. They were never classified as DMC, DMR, or STI. None of the

DMC or DMR graphs were correctly classified. DMC was classified as everything except

DMC or DMR with a slight majority of networks (33%) classified as RDG. DMR was less

spread out in its misclassification with 48 classified as RDS and 35 as SMW. The overall

classification accuracy for RGF is 57%.

Table 7.7. Classification accuracy of relative graphlet frequency.

Predicted Class
AGV DMC DMR GEO LPA RDG RDS SMW STI

AGV 13 - - - 68 19 - - -
DMC 4 - - 11 2 33 29 1 20
DMR - - - 1 - 16 48 35 -
GEO - - - 100 - - - - -
LPA - - - - 100 - - - -
RDG - - - - - 100 - - -

T
r
u
e
C
la
ss

RDS - - - - - - 100 - -
SMW 22 - - 14 17 4 41 2 -
STI - - - - - - - 100

The values presented are the percent of model graphs classified into each category by RGF.

Based on the statistical analysis of the relative graphlet frequency, this measure also

does a poor job classifying graphs (Table 7.8). It has approximately equal F-macro and

F-micro, both at about 0.45. High specificity and NPV are once again negated by poor

PPV and sensitivity. All of the model types can be separated into two groups based on

Figure 7.8. The first group contains STI, GEO, RDG, LPA, and RDS. These five models

have higher sensitivity than specificity with both values greater than 0.9. Their PPV are

all above 0.5. The F-measures for these models are between 0.63 and 0.89 indicating that

we can conclude with reasonable certainty that graphs classified into these groups are accu-

rate. The remaining models, AGV, DMC, DMR, and SMW are in the second group. These

graphs all have extremely low sensitivities and PPV. The classification failures represented
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Figure 7.7. Relative graphlet frequency classification results confusion matrix. Image
shows how all of the the test graphs of each type were classified. A total of 100 graphs of each model
type were used. Red squares indicate higher classification accuracy, blue squares indicate lower.

in those values are reflected in F-measures that are barely above zero.

Table 7.8. Relative graphlet frequency statistical analysis of performance.

Model PPV NPV Sensitivity Specificity F-measure

AGV 0.3333 0.899 0.13 0.9675 0.1871
DMC 0.0 0.8889 0.0 1.0 0.0
DMR 0.0 0.8889 0.0 1.0 0.0
GEO 0.7937 1.0 1.0 0.9675 0.8850
LPA 0.5348 1.0 1.0 0.8913 0.6969
RDG 0.5814 1.0 1.0 0.91 0.7353
RDS 0.4587 1.0 1.0 0.8525 0.6289
SMW 0.0526 0.8863 0.02 0.955 0.0290
STI 0.833 1.0 1.0 0.9750 0.9091

Average 0.3986 0.9514 0.5722 0.9465 0.4524
Global 0.5722 0.9999 0.5722 0.9465 0.5722

Results are calculated based on the classification of the 100 model graphs from each of the nine model types
using the RGF. Statistics used include PPV (positive predictive value), NPV (negative predictive value),
sensitivity, specificity, and F-measure. The average F-measure corresponds to the F-macro while the global
F-measure corresponds to the F-micro.
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Figure 7.8. Parallel coordinate representation of the relative graphlet frequency perfor-
mance statistics. Statistics used include PPV (positive predictive value), NPV (negative predictive
value), sensitivity, specificity, and F-measure. Values are calculated using the classification results
of the 100 models of each of the nine model graph types.
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7.2.5 Graphlet Degree Distribution

Two versions of the graphlet degree distribution were considered. One calculated the av-

erage distribution using the arithmetic mean and the other used the geometric mean. The

former method was more accurate, 68% v 60% (Tables 7.9, 7.10). The results across the

two versions are very similar with the main di↵erence in accuracy being found in the clas-

sification of LPA. In GDD (G) only half of the LPA graphs were correctly classified while

they all were in GDD (A) (Tables 7.9, 7.10). When models were incorrectly classified in

this method they were only relegated to two other model types. There is not a large spread

across the incorrect results (Figures 7.9a, 7.9b).

Table 7.9. Classification accuracy of graphlet degree distribution using arithmetic mean.

Predicted Class
AGV DMC DMR GEO LPA RDG RDS SMW STI

AGV 40 - - 40 20 - - - -
DMC - - - 90 - - 10 - -
DMR - - 10 - - 10 70 - 10
GEO - - - 100 - - - - -
LPA - - - - 100 - - - -
RDG - - - - - 100 - - -

T
r
u
e
C
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RDS - - - - - - 100 - -
SMW - - - 30 - - 10 60 -
STI - - - - - - - 100

The values presented are the percent of model graphs classified into each category by GDD (A).

Table 7.10. Classification accuracy of graphlet degree distribution using geometric mean.

Predicted Class
AGV DMC DMR GEO LPA RDG RDS SMW STI

AGV 20 - - 60 10 10 - - -
DMC - 10 - 90 - - - - -
DMR - - - - - 50 50 - -
GEO - - - 100 - - - - -
LPA - - 30 - 50 20 - - -
RDG - - - - - 100 - - -

T
r
u
e
C
la
ss

RDS - - - - - - 100 - -
SMW - - - 30 - - 10 60 -
STI - - - - - - - 100

The values presented are the percent of model graphs classified into each category by GDD (G).

As previously mentioned, the classification results for the two GDDs are extremely

similar. This is largely seen in the performance analyses of the methods, but there are a

few di↵erences worth noting (Tables 7.11, 7.12). The largest, and expected di↵erence, is
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(a) (b)

Figure 7.9. Graphlet degree distribution classification results confusion matrix. Image
shows how all of the the test graphs of each type were classified. A total of 100 graphs of each model
type were used. Red squares indicate higher classification accuracy, blue squares indicate lower.
(a): Graphlet degree distribution using arithmetic mean. (b): Graphlet degree distribution using
geometric mean.

that of the AGV values. All of the values under the arithmetic mean are larger since it

classified more AGV correctly and neither method incorrectly classified any graphs as AGV.

A slightly unexpected di↵erence is seen in the RDG values. Under both methods, 100% of

the RDG graphs were correctly classified. This is directly shown through the perfect NPV

and sensitivity. The values that are very di↵erent are the PPV. The arithmetic version

produced a PPV of 0.9091 for RDG while the geometric mean produced 0.5556. This is

because under the arithmetic mean only 10 graphs were incorrectly classified as RDG. Under

the geometric mean 80 graphs were. Thus the former method more accurately classifies

graphs as RDG. In the latter method, nearly half of its classifications were incorrect. A

similar, though marginally less drastic, result is seen in the F-measure (0.9524 v 0.7143).

The rest of the images (Figures 7.10, 7.11) are nearly identical. The F-macro for GDD (A)

is 0.618 and the F-micro is 0.6778. For GDD (G) those values are 0.5444 and 0.6. Global

values for GDD (A) are also higher than those for GDD (G) with the exception of NPV

where the two are equal.
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Table 7.11. Graphlet degree distribution using arithmetic mean statistical analysis of performance.

Model PPV NPV Sensitivity Specificity F-measure

AGV 1.0 0.9302 0.4 1.0 0.5714
DMC 0.0 0.8889 0.0 1.0 0.0
DMR 1.0 0.8989 0.1 1.0 0.1818
GEO 0.3846 1.0 1.0 0.8 0.5556
LPA 0.8333 1.0 1.0 0.975 0.9091
RDG 0.9091 1.0 1.0 0.9875 0.9524
RDS 0.5263 1.0 1.0 0.8875 0.6897
SMW 1.0 0.9524 0.6 1.0 0.75
STI 0.9091 1.0 1.0 0.9875 0.9524

Average 0.7292 0.9634 0.6778 0.9597 0.618
Global 0.6778 0.9999 0.6778 0.9597 0.6778

Results are calculated based on the classification of the 100 model graphs from each of the nine model types
using the GDD (A). Statistics used include PPV (positive predictive value), NPV (negative predictive value),
sensitivity, specificity, and F-measure. The average F-measure corresponds to the F-macro while the global
F-measure corresponds to the F-micro.

Table 7.12. Graphlet degree distribution using geometric mean statistical analysis of performance.

Model PPV NPV Sensitivity Specificity F-measure

AGV 1.0 0.9091 0.2 1.0 0.3333
DMC 1.0 0.8989 0.1 1.0 0.1818
DMR 0.0 0.8851 0.0 0.9625 0.0
GEO 0.3571 1.0 1.0 0.775 0.5263
LPA 0.8333 0.9405 0.5 0.9875 0.625
RDG 0.5556 1.0 1.0 0.9 0.7143
RDS 0.6250 1.0 1.0 0.925 0.7692
SMW 1.0 0.9524 0.6 1.0 0.75
STI 1.0 1.0 1.0 1.0 1.0

Average 0.7079 0.9540 0.6 0.95 0.5444
Global 0.6 0.9999 0.6 0.95 0.6

Results are calculated based on the classification of the 100 model graphs from each of the nine model
types using the GDD (G). Statistics used include PPV (positive predictive value), NPV (negative predictive
value), sensitivity, specificity, and F-measure. The average F-measure corresponds to the F-macro while the
global F-measure corresponds to the F-micro.
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Figure 7.10. Parallel coordinate representation of the graphlet degree distribution us-
ing arithmetic mean performance statistics. Statistics used include PPV (positive predictive
value), NPV (negative predictive value), sensitivity, specificity, and F-measure. Values are calculated
using the classification results of the 100 models of each of the nine model graph types.
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Figure 7.11. Parallel coordinate representation of the graphlet degree distribution using
geometric mean performance statistics. Statistics used include PPV (positive predictive value),
NPV (negative predictive value), sensitivity, specificity, and F-measure. Values are calculated using
the classification results of the 100 models of each of the nine model graph types.



117

7.2.6 Comparison of Classification Accuracy Broken Down by Model Type and Method

An overview of all of the classification mechanisms’ accuracy reveals disappointing results

(Table 7.13). GDD (A) performed the best with 68% of test graphs classified accurately

while DDD was worst with 45% of the 900 test graphs classified correctly.

Table 7.13. Comparison of the classification accuracy breakdown by model type and method.

Classification Accuracy
(% Correct)

Model DDD CC RGF GDD (A) GDD (G) Average
AGV 9 0 13 40 20 16.4
DMC 1 0 0 0 10 2.2
DMR 2 0 0 10 0 2.4
GEO 73 100 100 100 100 94.6
LPA 0 98 100 100 50 69.6
RDG 100 98 100 100 100 99.6
RDS 97 100 100 100 100 99.4
SMW 99 76 2 60 60 59.4
STI 25 50 100 100 100 75

Average 45 58 57 68 60

The values in the table indicate the percentage of the given model graph that was accurately classified by
the classification method.

Looking at a breakdown of classification results by model type, it is interesting to

note that some model types were clearly very easy, or very di�cult, to classify because

nearly all of them were classified correctly, or incorrectly, by all five of the methods. The

easy to classify model types include GEO (94.6%), RDG (99.6%), and RDS (99.4%) while

the di�cult model types are AGV (16.4%), DMC (2.2%), and DMR (2.4%). The remaining

three model types are a bit of a mixture. LPA graphs were classified correctly 69.6% of

the time, but most of the misclassification came from DDD. This method classified no LPA

graphs correctly. For SMW graphs, these were more easily classified by the methods looking

at large-scale features, DDD and CC, than by those looking at small scale. If we consider

only the large-scale methods, the classification accuracy increases to 87.5% versus 40.67%.

The opposite is true for the STI graphs. These were much more easily classified by the

methods considering small-scale features than large-scale (100% v 37.5%).

There are several additional features that we can use to compare the classification

methods: F-macro, F-micro as well as both average and global sensitivity, specificity, PPV,

and NPV (Figure 7.12). The lines in Figure 7.12 do not cross indicating that a classifier
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Figure 7.12. Parallel coordinate comparison of classification method performance statis-
tics. Statistics used include PPV (positive predictive value), NPV (negative predictive value),
sensitivity, specificity, and both F-measures. Values presented for sensitivity, specificity, PPV and
NPV are the global results of the classification results of the 100 models of each of the nine model
graph types.
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that is better in terms of one feature is better in terms of all of them. The values tend to

group together for specificity and NPV.

There are a few other interesting things to note. The CC has the most model graph

types that were not correctly classified even a single time: AGV, DMC, and DMR, whereas

GDD (A), GDD (G), and DDD each only misclassified one graph type incorrectly every

single time, DMC, DMR, or LPA respectively. The RGF incorrectly classified DMC and

DMR every time. The majority of the misclassified graphs were incorrectly classified as

RDG (21%) with GEO coming in second (18%).

7.2.7 Patterns in Statistical Performance

The results of the classification method validation show an interesting trend in the statistical

analysis of the methods (Figures 7.4 - 7.11). Model graph types can be classified into one

of four groups based on their results, Figure 7.13. In Group 1, the models begin with a

relatively high PPV compared to the others displayed. Their values increase for the NPV

and then stay approximately constant for the sensitivity. A slight decrease of varying sizes

is seen for the specificity followed by a larger increase for the F-measure. The second group,

Group 2, has very low PPV, sensitivity, and F-measure. These low values are punctuated

by high peaks at the NPV and specificity. Groups 3 and 4 are very similar to Group 2.

Group 3 typically has the high PPV seen in Group 1 with the rest of the values following

the same trend in Group 4. The models seen in Group 4 follow the same overall pattern

as Group 2 except transposed to the middle of the plot and with smaller variation between

peaks.

The models that fall into Group 1 are those that are nearly all classified correctly.

Unfortunately, these models also tend to be popular choices for incorrect classifications,

thus the decrease in their PPV and specificity. The more popular a choice a model is as an

incorrect answer, the more the model is penalized in these values.

The reason for the second pattern is that very few, sometimes even zero, of the

model graphs in this group were classified correctly, but at least a few other graphs were

incorrectly placed into their categories. If no models were incorrectly placed into a category

with low accuracy, then the model falls into Group 3. The incorrect classification of all the
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Figure 7.13. Example parallel coordinate representation of model performance statistics
indicating group classifications. It was found that each parallel coordinate plot showed four
patterns. These patterns can be used to easily visually group model graph types. Each group has
a set of features unique to it. Group 1: high accuracy, popular incorrect choice. Group 2: low
accuracy, unpopular, but not negligent, incorrect choice. Group 3: low accuracy, negligibly chosen
incorrectly. Group 4: moderate to high accuracy, moderate to low popular incorrect choice.

graphs in these categories provides the zero for sensitivity. The lack of models incorrectly

placed into these categories leads to a very high, or in Group 3 perfect, but trivial, specificity

and high NPV.

The models that fall into Group 4 tend to have moderate to high correct classification

accuracy. They also have a moderate to low number of incorrect classification in their

category. Overall, the groups can be summarized as follows.

• Group 1 - high accuracy, popular incorrect choice

• Group 2 - low accuracy, unpopular, but not negligent, incorrect choice
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• Group 3 - low accuracy, negligibly chosen incorrectly

• Group 4 - moderate to high accuracy, moderate to low popular incorrect choice

Table 7.14. Model graph groupings by patterns in performance statistics.

Group 1 Group 2 Group 3 Group 4

DDD RDG, RDS, SMW LPA, DMC, STI AGV, DMR GEO
CC LPA, RDG, RDS, SMW - AGV, DMC, DMR GEO, STI
RGF GEO, LPA, RDG, RDS, STI DMC, DMR, SMW - AGV
GDD (A) GEO, LPA, RDG, RDS, STI DMC AGV, DMR, SMW -
GDD (G) GEO, RDG, RDS, STI DMR AGV, DMC, SMW LPA

There are four unique patterns that appear repeatedly in the parallel coordinate plots showing performance
statistics. This table shows how each model graph type is grouped by each classifier. The model types in
bold appear in only one group across all five classifiers. Groups correspond to those seen in Figure 7.13.

In Table 7.14 we can see that models tend to stick to similar categories even across

the di↵erent classification algorithms. Thus despite the di↵erences seen, it is clearly appar-

ent from the implications of the interpretations of the groups, and from Table 7.13, that

some models are easier to classify than others. GEO, RDG, and RDS are by far the easiest.

Their average classification across the schemes is 94.6, 99.6, and 99.4% respectively. These

models appear mostly in Group 1. RDG and RDS appear only in Group 1. DMC and DMR

have very low overall accuracy, 2.2 and 2.4% respectively. Thus, they typically appear in

either Group 2 or Group 3, the groups characterized by low accuracy. Grouping depends on

whether any other models were incorrectly classified as that model. It is possible to be fairly

confident of any the classification of any real-world network in Groups 1 or 4. Naturally,

it does depend on the exact values of all the parameters. Classification into Groups 2 or 3

cannot be counted on for accuracy with any certainty.

7.2.8 Treatment of DMC and DMR Model Graphs

Another interesting trend seen across the five classifiers is the treatment of the DMC and

DMR model graphs. No method classified more than 10 of either correctly and only one

method, DDD, classified a few of both. CC and RGF both classified all of these graphs

incorrectly. In addition, many of these incorrect classifications were not relegated to only

one or two incorrect categories. The average number of classes to which DMC was classified

is 4.2 per method and DMR was 4.4. The next highest were AGV and STI, both with 3.4.
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The overall average number of classes to which a model was classified is 2.4. The median

is 1.6.

Table 7.15. Comparison of the classification accuracy breakdown by model type and method where
DMC, DMR are not included.

Classification Accuracy
(% Correct)

Model DDD CC RGF GDD (A) GDD (G) Average
AGV 9 0 13 60 36 23.6
GEO 73 100 100 100 94 93.4
LPA 0 98 100 100 71 73.8
RDG 100 98 100 100 100 99.6
RDS 97 100 100 100 100 99.4
SMW 99 76 2 47 49 54.6
STI 25 50 100 100 97 74.4

Average 58 75 74 87 78

The values in the table indicate the percentage of the given model graph that was accurately classified by
the classification method. Five classification methods are shown. DMC/DMR were not classified, nor were
they used as potential options for other models to be classified as. This is to show that these model types
were the main failure of all the measures.

If we consider Table 7.15 which contains the accuracies of the classification methods

when DMC and DMR are not considered, we see that these are all substantially larger

values than in Table 7.13. In fact, the GDD (A) is almost at 90% accuracy, a point where

any results of real-world network classification could be trusted. While there is still room

for improvement, it seems that the methods are almost good at classifying the other model

types.

It is concerning that none of the classification methods placed these models with

any semblance of accuracy since these models have repeatedly been found to be the best

fit for PPI networks (Su et al. , 2011; Middendorf et al. , 2005; Ispolatov et al. , 2005;

Pastor-Satorras et al. , 2003), however a subtle point must be raised. Is it the fault of

the classifiers that they cannot predict these models well, or is there something going on

with the models? We conclude that it is a little bit of both. In Chapter 10, we discuss

improvements to one of the classifiers that improves its classification accuracy of DMC and

DMR, then we provide a novel classifier in Chapters 11, 12, and 13 that does an even better

job. Finally, in Chapter 14, we present some theories as to what is going on with these

model types and propose several ways to deal with it.



123

7.3 Discussion

In this chapter we tested the abilities of the five classifiers under investigation by looking

at their ability to accurately classify known model graphs. Of the 1000 simulated model

graphs from each of the nine types, 100 were designated as test graphs. These were the

graphs that the classifiers had to place into their correct groups. The remaining 900 graphs

were the comparison graphs. The test graphs were compared against these during the

classification procedures. We then analyzed the results using accuracy, F-measures, PPV,

NPV, sensitivity, and specificity.

The discrepancy between the results seen in the success of the DDD’s classification

abilities for the random graph analysis and the failure seen in the model graph validation

can be attributed to the fact that this method only utilizes one graph characteristic and

this characteristic is associated with graph density. Random graphs created with di↵erent

probabilities all have noticeably di↵erent densities, leading to noticeable di↵erences in de-

gree distribution. Thus, based on the poor model graph classification, we can infer that

the degree distributions between the types of models are not that di↵erent despite known

topological di↵erences. It was, however, very unexpected that 57% of the 494 incorrectly

classified graphs were classified as RDG.

Su (Su et al. , 2011) was the only author of the considered classifiers that showed

results demonstrating the accuracy of their classifier. In Su’s paper, they tested classification

accuracy on only four model graphs: LPA, DMC, DMR, and RDS. Only the former three

graphs were compared to the PPI network. Classification was found to be near perfect.

There were a few DMC graphs misclassified as DMR and vice versa, but all the LPA

and RDS graphs were correctly classified. When the same process for method validation

was performed here, the results were not duplicated (Table 7.16). None of the DMC or

DMR graphs were correctly classified. All DMC graphs were classified as LPA. Most DMR

networks were also LPA, though a few were RDS. All of the RDS networks were classified

correctly, as were the majority of LPA. Two of the latter model graphs were mistakenly

classified as RDS.

There are several reasons that the discrepancies seen in Table 7.16 may have oc-

curred. This is the table that compares the model graph validation results as performed
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Table 7.16. Attempts at reproducing classification accuracy of the original presentation of the
characteristic curve analysis with four model graphs.

Classification Accuracy (%)1

Original DMC DMR LPA RDS
DMC (99.0) (1.0) 100.0 -
DMR (3.4) (95.7) 97.0 3.0 (0.9)
LPA - - 98.0 (100.0) 2.0
RDS - - - 100.0 (100.0)

Values in parentheses are from the original CC classification seen in Su et al. (Su et al. , 2011). Values
outside of the parentheses are from tests performed in this dissertation. The values presented are the percent
of model graphs classified into each category by the given classifier.

by Su to those performed for this analysis. First, there were fewer model validation com-

parisons performed here. Su et al. used a thousand test networks compared to another

thousand classification networks. This is significantly more than the number used here,

though the 100 test networks and 900 comparisons should be statistically large enough to

achieve convergence to an accurate distance (Burton et al. , 2006).

Another potential reason for the disagreement is the size of the PPI network. This

paper utilized the S. cerevisiae PPI network with 1361 nodes and 3222 edges. Su used three

di↵erent versions of the Drosophila melanogaster PPI network. These versions were based

on a di↵erent confidence threshold, where each interaction is given a confidence score based

upon the likelihood that an interaction will occur in vivo. If a confidence score is greater

than the confidence threshold then the interaction remains in the model. This method is

used to limit the number of false positives. Confidence thresholds of 0.65, 0.50 and 0.0 were

used by Su. The resulting Drosophila melanogaster PPI networks had 3,279/4,508/6,823

nodes and 2,728/ 4,569/19,630 edges respectively. Since all model graphs are based directly

o↵ of the PPI network in question, this results in di↵erent sized model graphs.

A final potential reason for these discrepancies is the ratios of nodes to edges in

the networks. In the Drosophila melanogaster PPI networks have node to edge ratios of

1.20/0.97/0.35 respectively. The S. cerevisiae PPI network has a node to edge ratio of

0.42. This is much closer to the ratio seen when the confidence threshold for the Drosophila

melanogaster PPI network is set to zero. If the results presented in the table are based

upon graphs created to match networks created with confidence thresholds of 0.65 or 0.50,

then these discrepancies could explain the di↵erence in outcomes. In addition, later results
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in Su’s paper imply that the networks based on the first two confidence thresholds have

di↵erent forms than when they are built on a confidence threshold of zero.

The huge drop o↵ in accuracy for the RGF and the GDD between the random

graph analysis and model graph validation is likely due to reasons similar to those for the

DDD. Just like the degree distribution, the formation of certain graphlets requires a certain

number of edges, or a certain density. With the random graphs, the densities are all very

di↵erent across probabilities, thus it can be assumed that the number and type of graphlets

counted is distinctive. The densities across many of the model graphs are very similar,

indicating that there may not be distinctive graphlet fingerprints for each model type.

Final results of the comparisons of the five classifier indicate that while GDD (A)

has the best classification algorithm consider, it is only the best from a bad set of choices.

Average specificities and NPV are high, while average sensitivities and PPV are low. This

is to be expected because when each classifier’s results are broken down by model type into

the nine separate binary classifications, it is more likely for a model to be correctly not

placed into the category than to be correctly placed because there are more graphs that

are not of the model type. That is why the global values for the NPV show higher values.

Unfortunately these values are still not high enough to indicate good classification results.

Within the global values of the statistics we also see that the F-micro is always equal

to the average and global specificities, as well as the global PPV. This is because globally,

there are an equal number of false positive and false negatives.

We discussed that DMC and DMR graphs are treated di↵erently than the other

types of model graphs. They are significantly more likely to be classified incorrectly; just

over 2% of each type were classified correctly across the five classifiers. They are also

more likely to be classified into numerous di↵erent categories while other models typically

are misclassified into only one or two incorrect model types. These observations, along

with the wide variation seen in graph measures, lead us to conclude that these growth

mechanisms do not produce consistent model graphs. The main reason for this is due to

the lack of constraint on the number of edges. As previously mentioned, DMC and DMR

models create and remove edges based upon uniformly random values p and q. While similar

mechanisms are used in other models such as RDG and RDS, the latter methods take the
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desired number of edges as an input. Without a required number, network sizes range from

21 edges to over 880k. This large variation naturally creates variations in graph topology

which make it di�cult to classify the model graphs accurately,

We are particularly interested in the correct classification of DMC and DMR because

these methods were created to model PPIs and thus contain biologically accurate features

that are not present in other models. This large variation raises the question of whether we

can really say that these networks are all the same type.

7.3.1 Strengths and Limitations

Degree Distribution Distance

The four network classification methods all have their strengths and limitations. The degree

distribution distance is the fastest of the four methods. This was also the only method that

did not require any changes to be made to the model graphs. It works well on unconnected

networks and, while logically there is an upper limit in the size of the graph that it can

handle, this limit was never reached in our analyses. Thus, this classification method was

the only one that was able to use all of the DMC and DMR networks, including the largest

ones with 880,237 or 537,036 edges respectively. The number of nodes for any graph was

never larger than 1361. Besides being fast and more functional on larger networks, this

method also correctly classified all of the random graphs. Unfortunately, it did not do well

di↵erentiating between di↵erent types of model graphs (Table 7.2). In fact, it was only

able to classify networks correctly 45 percent of the time when biological networks were

considered (Table 7.13). The graphs most often classified incorrectly were those that were

often picked as the best fit for PPI networks: DMC, DMR, and STI. Therefore any answer

reported using this method could be considered highly suspect. Finally, another limitation

for the degree distribution distance is that the distance is not normalized, thus distances

calculated on di↵erent sets of networks are di�cult to compare.

Characteristic Curve

The characteristic curve had far more limitations than strengths. It was extremely slow

in performing calculations and had an upper limit in size. The authors (Su et al. , 2011)
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did not specifically define an upper limit as the creators of GraphCrunch 2 did, however

comparisons of networks with > 50, 000 edges stalled the program. In addition, distance

calculations for the CC result in far more mathematical operations than any of the other

methods because the step size for the summation is so small. While it is possible that the

authors thought this would improve the accuracy, results seem to indicate that this is not the

case. The computational complexities of this method result in an extremely slow runtime.

The CC performed poorly in its attempts to correctly classify random graphs (Table 6.1)

classifying 62 percent correctly. It did perform better at classifying model graphs, which is

a problem of greater importance and relevance than random network classification. It was

able to correctly classify only 58 percent of the test graphs (Table 7.13). It also correctly

classified no DMC or DMR graphs. Thus, once again a classification method has poor

classification accuracy on the model graphs that are often chosen as the best representation

of PPI networks.

An additional limitation is that this method is not normalized. Thus, it is hard to

determine whether a resulting distance is significant or not. As with degree distribution

distance, the lack of a normalizing factor can make interpretations di�cult as well as prohibit

comparisons of distances from di↵erent sets of graphs.

A last limitation unique to the CC is that the comparison of networks di↵ers de-

pending on the node picked to start building the curve. While Su determined that this

was not a significant factor, as the number of times the S. cerevisiae PPI network giant

component is compared to itself increases, the distance never converges to zero (Table 7.17).

In fact, with the increase in repetitions, there is also an increase in the range of distances

reported. In Table 7.17, results are shown for the giant component of the S. cerevisiae PPI

network compared to itself 1,000, 10,000, and 100,000 times. The start node for the creation

of the characteristic curve is chosen randomly for each network. Ideally, the results would

all be zero since the two networks are exactly the same, however the start node of the char-

acteristic curve does seem to play a part. Unfortunately, due to the lack of normalization,

it is impossible to determine whether these distances reported are large or small.
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Table 7.17. Comparison of the S. cerevisiae PPI network giant component to itself using the char-
actertistic curve.

Repetitions Distance
Median (Min, Max)

1,000 152.51 (0.0, 460.42)
10,000 155.32 (0.0, 518.53)
100,000 154.95 (0.0, 550.55)

Table shows median values, as well as minimum and maximum, for the S. cerevisiae PPI network giant
component compared to itself using the characteristic curve.

Relative Graphlet Frequency

The relative graphlet frequency method has an upper size limit of greater than 50, 000

edges (Kuchaiev et al. , 2011). It ran faster than CC, but was not as e�cient as DDD.

The latter results could be expected because RGF examines smaller details of the networks.

Calculations of the number of each of the 29 graphlets in a given network is nontrivial.

It is far faster to determine the degree distribution, and, since their distance calculations

are essentially the same, DDD is faster. RGF classified 57% of the test graphs correctly

(Table 7.13). This method accurately classified all of the STI models, though still incorrectly

classified all of the DMC and DMR models. Further limitations of this method are discussed

in Chapter 9.

Graphlet Degree Distribution

The graphlet degree distribution has the same upper limit to the number of edges it can

handle as RGF. It is also the slowest of all the methods, as well as the most calculation

intensive. Its results can be reported using the arithmetic mean (Equation 5.7) or the

geometric mean (Equation 5.8). When using the arithmetic mean and not considering

biological networks 68 percent of networks were classified correctly (Table 7.13). Using the

geometric mean, 60 percent of the models were correctly classified. Thus the arithmetic

mean appears to have the highest level of classification accuracy out of all of the classifiers.

The GDD using the arithmetic mean was also the only method that classified over 50 percent

of the AGV model graphs correctly.
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7.3.2 Next Steps

As we have discussed, the results of the classifier validation were not satisfactory. The

majority of the issues stem from the methods’ attempts to correctly classify the DMC and

DMR graphs, though many had significant trouble with AGV and STI graphs as well. Such

di�culties indicate a need to revamp the classifiers. In the next several chapters we explore

this option. In Chapter 9, we explore how a small mathematical error a↵ects the results of

the RGF. In Chapter 10, we propose a faster and more accurate version of the GDD and

in Chapters 11 to 13, we propose a novel graph classification algorithm.
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Chapter 8

Saccharomyces cerevisiae PPI Network Classification

All of the classifiers discussed in this dissertation that were previously seen in papers were

used to classify some organism’s PPI network. As we mentioned, one of the main reasons

for this work is that these papers did not use a significant sampling of model graph types.

Therefore, in this chapter, we examine how the original results of the PPI network classifi-

cation compare to the results found here. Since it is assumed that PPI networks from all

organisms should be classified into the same category, results should be comparable even if

the same organism PPI network is not used in both trials (Przulj, 2007). This will allow

us to determine whether the authors of the classifiers considered in the previous chapters

really did their audiences a disservice by choosing only a limited number of model graph

types to be considered.

Since di↵erent model types were classified with di↵erent levels of accuracy, we begin

with an explanation on how we will interpret the classification results. We then present the

answers and compare them to the answers found in the original papers. We conclude with

a comparison of model graph rankings across all of the classification methods.

8.1 Methods

We classify the S. cerevisiae PPI network by comparing it to each of the 1000 model graphs

of the nine di↵erent types using the five classifiers. This results in a unique list for each

classifier ranking all of the model graphs. Results are interpreted using Bayes theorem:

Pr(A | B) =
Pr(B | A) Pr(A)

Pr(B)
. (8.1)

This theorem describes the probability of an event based on conditions related to the event.

In the situation at hand, Equation 8.1 can be interpreted in two ways. First, we can

determine that probability that the empirical network is classified as model A given that it

is actually model A:

Pr (classified as model A | model A) =
Pr(model A | classified as model A) · Pr(classified as model A)

Pr(model A)
. (8.2)
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We can also determine the probability that the empirical network is classified as model A

given that it is not actually model A:

Pr (classified as model A | NOT model A) =
Pr(NOT model A | classified as Model A) · Pr(classified as model A)

Pr(NOT model A)
.

(8.3)

Probabilities required for the Bayesian analysis are determined from the classification results

in Chapter 7.

After calculating the probabilities that the classification of the S. cerevisiae PPI

network is accurate and determining whether or not the results are reliable, we compare

the similarities of the lists. For this we use Kendall’s W, also known as Kendall’s coe�cient

of concordance. Kendall’s W assesses agreement, but also takes into consideration the

number of ranks by which classifiers disagree. For this statistic, we assume that model

graph i is given rank r
i,j

by classifier j where i 2 {1, . . . , n} and j 2 {1, . . . ,m} (Kendall

& Smith, 1939). Since we have nine model graphs and five classifiers, n = 9 and m = 5.

Then:

R
i

=
5X

j=1

r
i,j

(8.4)

and the mean of R
i

is:

R̄ =
1

n

9X

i=1

R
i

. (8.5)

We then take the sum of squared deviations of the R
i

:

S =
nX

i=1

(R
i

� R̄)2, (8.6)
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so that Kendall’s W is defined as follows:

W =
12S

m2(n3 � n)
(8.7)

=
12S

52(93 � 9)
(8.8)

=
12S

18000
. (8.9)

Kendall’s W falls between [0, 1], with one representing perfect agreement and zero indicating

no trend. If a score of zero is calculated that rankings are essentially random (Li & Schucany,

1975).

8.2 Results

8.2.1 Degree Distribution Distance

The degree distribution distance identifies RDG as the best model for the S. cerevisiae PPI

network. In Figure 8.1 we see two images of the comparisons. The figure on the left, Figure

(8.1a) shows the results of all the comparisons while the figure on the right (Figure 8.1b)

shows the comparisons with the DMC and DMR results not included. Due to the large

spread seen in those two models it can be di�cult to see any information about the others,

thus the second picture provides a closer look.

We can see that AGV, LPA, RDG, and STI have larger spreads than GEO, RDS,

and SMW. DMC and DMR are both very skewed towards higher distances. Since this

method is not normalized it is hard to determine whether the di↵erences in these distances

are significant or not. We could be looking for the best of many bad choices or all the

choices could be very good and di↵er by insignificant amounts.

We can use Bayes theorem to test the probabilities that the S. cerevisiae PPI net-

work was classified as RDG given that it is RDG and given that it is not.

Pr (classified as RDG | RDG) =
Pr(RDG | classified as RDG) · Pr(classified as RDG)

Pr(RDG)

=
100
381

· 381
900

1
9

= 1 (8.10)
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Figure 8.1. S. cerevisiae PPI network classification by the degree distribution distance.
Each figure shows the results of comparing the empirical S. cerevisiae PPI network against the 1000
model graphs of each of the nine types. Results are displayed such that the red diamond across the
middle line is the median distance, the ends of the box are the first and third quartiles respectively,
and the remaining lines and points represent the outlying distances. (a): The full results using the
degree distribution distance. (b): Closeup, not including DMC, DMR.

Using Bayes, the probability that a model is classified as RDG given it is actually RDG is

100%.

Pr (classified as RDG | NOT RDG) =
Pr(NOT RDG | classified as RDG) · Pr(classified as RDG)

Pr(NOT RDG)

=
281
381

· 381
900

8
9

= 0.3513 (8.11)

Note that the probability of being RDG (19) and the probability of not being RDG (89) are

empirically derived from our test comparisons.

We have a 35% chance that a model classified as RDG is actually not RDG, leaving

us with some uncertainty as to whether the S. cerevisiae PPI network is actually RDG or

not. In addition, the F-measure for RDG under DDD is only 0.4158. Therefore, combined,

these values indicate that we can neither accept, nor reject, the choice of RDG for best fit

under DDD; the statistics are inconclusive. Since the DDD is a novel algorithm, there are

no previous results for comparison.
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8.2.2 Characteristic Curve

The results for the characteristic curve look very similar to those of of the DDD (Figure

8.2, 8.1). The spreads of the DMC and DMR are once again very large, requiring a more

zoomed in image. For the CC, GEO was designated as the best fit. It has a small IQR,

and is slightly skewed towards higher values. LPA, RDG, RDS, and STI also all have small

spreads. AGV and SMW are much more spread out with large whiskers towards the higher

values. The method is not normalized so it is di�cult to determine what constitutes a

significant versus insignificant distance.
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Figure 8.2. S. cerevisiae PPI network classification by the characteristic curve. Each
figure shows the results of comparing the empirical S. cerevisiae PPI network against the 1000
model graphs of each of the nine types. Results are displayed such that the red diamond across the
middle line is the median distance, the ends of the box are the first and third quartiles respectively,
and the remaining lines and points represent the outlying distances. (a): The full results using the
characteristic curve. (b): Closeup, not including DMC, DMR.

Once again using Bayes Theorem, we can determine that the probability that the

model is classified as GEO given that it really is GEO is 1 and the probability that it is

classified in such a way given that it is not is 0.0363.

Pr (classified as GEO | GEO) =
Pr(GEO | classified as GEO) · Pr(classified as GEO)

Pr(GEO)

=
100
129

· 129
900

1
9

= 1 (8.12)
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Pr (classified as GEO | NOT GEO) =
Pr(NOT GEO | classified as GEO) · Pr(classified as GEO)

Pr(NOT GEO)

=
29
129

· 129
900

8
9

= 0.0363 (8.13)

In addition, the F-measure for this choice is 0.8734. This is near the maximum value of

one. Between this statistic, and the fact that a graph is incorrectly classified as GEO about

3.6% of time, one can confidently state that according the CC, the best model for the S.

cerevisiae PPI network is the GEO model type.

In the paper introducing the CC, only DMC, DMR, and LPA graphs were compared

to the three version of the Drosophila melanogaster PPI network (Su et al. , 2011). They

were ranked such that DMC was first, DMR second, and LPA third. In this analysis, DMC

was ranked ninth which is last place, DMR was eighth, and LPA was second. From Table

7.5 we cannot use Bayes theorem to calculate posterior classification probabilities because

no graph was correctly, or incorrectly, classified as DMC.

8.2.3 Relative Graphlet Frequency

The final results for the relative graphlet frequency are significantly more condensed than

either the CC or the DDD. DMC and DMR still have a much larger IQR than the other

model types, but in this case the di↵erence is not quite so large, Figure 9.3a. In addition,

the spread of SMW is not much smaller. The remaining models all have the small spread

of values like we have seen in previous plots.

The best fit here is once again RDG, but with GEO less than a tenth of a point

larger in distance. Since this method is also unnormalized, making it di�cult to determine

the significance of a di↵erence in a tenth of a point, we will consider the results for both of

these model types.

Pr (classified as RDG | RDG) =
Pr(RDG | classified as RDG) · Pr(classified as RDG)

Pr(RDG)

=
100
172

· 172
900

1
9

= 1 (8.14)
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Figure 8.3. S. cerevisiae PPI network classification by the relative graphlet frequency.
The figure shows the results of comparing the empirical S. cerevisiae PPI network against the 1000
model graphs of each of the nine types. Results are displayed such that the red diamond across the
middle line is the median distance, the ends of the box are the first and third quartiles respectively,
and the remaining lines and points represent the outlying distances.
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Pr (classified as RDG | NOT RDG) =
Pr(NOT RDG | classified as RDG) · Pr(classified as RDG)

Pr(NOT RDG)

=
72
172

· 172
900

8
9

= 0.09 (8.15)

Pr (classified as GEO | GEO) =
Pr(GEO | classified as GEO) · Pr(classified as GEO)

Pr(GEO)

=
100
127

· 127
900

1
9

= 1 (8.16)

Pr (classified as GEO | NOT GEO) =
Pr(NOT GEO | classified as GEO) · Pr(classified as GEO)

Pr(NOT GEO)

=
27
127

· 127
900

8
9

= 0.0338 (8.17)

For both RDG and GEO, we are 100% sure that if the model is in either class then it

will be classified correctly. For RDG though, the probability that a model is incorrectly

classified as RDG 0.09. This 9% chance of an incorrect model being classified as RDG is

small. The F-measure for RDG is 0.7353. These values allow us to be reasonably confident

in the choice of RDG as the best fit for the S. cerevisiae PPI network. In the case of GEO,

the probability of a graph being incorrectly placed in that group is 0.0338. The F-measure

is 0.885. Similar to the results of the CC, we can be a lot more confident in a result of GEO

than in one of RDG. In the paper introducing relative graphlet frequency, GEO was also

found to be the best fit for all of the PPI network (Przulj et al. , 2004).

8.2.4 Graphlet Degree Distribution

The Graphlet Degree Distribution uses an agreement to determine how alike two graphs

are, as opposed to a distance. For this reason, when considering the images seen in Figures

8.4a, 8.4b it is important to remember that the best fit is the model with the highest score.
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In both figures, we still see the large spread in results for DMC and DMR that was found

for all the other methods. Similar to RGF, the overall di↵erence in median results is small

enough that all of the values can be seen comfortably on the same plot. The overall distance

between the best and worst fit is only 0.1553 for GDD (A) and 0.1589 for GDD (G).
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Figure 8.4. Comparison of S. cerevisiae PPI network classification by the graphlet degree
distribution using arithmetic mean and using geometric mean. Each figure shows the results
of comparing the empirical S. cerevisiae PPI network against the 1000 model graphs of each of the
nine types. Results are displayed such that the red diamond across the middle line is the median
distance, the ends of the box are the first and third quartiles respectively, and the remaining lines
and points represent the outlying distances. (a): Results for graphlet degree distribution using the
arithmetic mean. (b): Results for graphlet degree distribution using the geometric mean.

For GDD (A) and GDD (G), the best fit is GEO. This was also the best fit found

by the original paper (Przulj, 2007) for all of the fourteen PPI networks examined. In

both instances of the GDD, we are 100% sure that if the S. cerevisiae PPI network is truly

GEO, then it will be classified as such. Using the arithmetic mean, we are at a 20% risk of

classifying a graph that is not actually GEO as GEO.

Pr (classified as GEO | GEO) =
Pr(GEO | classified as GEO) · Pr(classified as GEO)

Pr(GEO)

=
100
260

· 260
900

1
9

= 1 (8.18)
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Pr (classified as GEO | NOT GEO) =
Pr(NOT GEO | classified as GEO) · Pr(classified as GEO)

Pr(NOT GEO)

=
160
260

· 260
900

8
9

= 0.2 (8.19)

This risk increases to 22.5% when the geometric mean is used.

Pr (classified as GEO | GEO) =
Pr(GEO | classified as GEO) · Pr(classified as GEO)

Pr(GEO)

=
100
280

· 280
900

1
9

= 1 (8.20)

Pr (classified as GEO | NOT GEO) =
Pr(NOT GEO | classified as GEO) · Pr(classified as GEO)

Pr(NOT GEO)

=
180
280

· 260
900

8
9

= 0.225 (8.21)

In addition to the high probabilities of incorrectly classifying a model as GEO using either

GDD, the corresponding F-measures are 0.5556 and 0.5263 for the method using the arith-

metic or geometric, respectively. These values indicate that the method correctly classifies

models as GEO barely greater than 50% of the time. Therefore, we cannot, accept the

results of the GDD.

8.2.5 Kendall’s W Comparison of Ranking Lists

There are several things to note about the overall rankings provided by the five classifiers.

First, examining the whole list, we have W = 0.575. This statistic is right in the middle of

the range, and thus indicates that while the agreement across the classifiers is not perfect it

is better than random. This is not entirely unexpected given that the classifiers all prioritize

di↵erent model features. However, if we break the lists up into thirds, several similarities

do appear. In the first third, GEO and RDG both appear in the top third in four out of the

five methods. AGV and RDS never appear in the top third. AGV appears in the middle
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third in each method. It is in fourth place for four methods fifth place for one (CC). Finally,

DMR appears in the bottom third under each classifier. SMW appears in the bottom third

in four of the five classifications and in the first third in one (CC). Only two models showed

up in every third: DMC and STI. On the overall scale, there are not many similarities

between the ranking orders of the five methods, however when the lists are separates into

chunks, patterns do emerge.

8.3 Discussion

In this chapter, we determined the classifications of the S. cerevisiae PPI network by each

of the five classifiers. The results were analyzed using Bayes theorem in an attempt to

determine whether the results are reliable. We then compared the classification results

from this dissertation to those found in the original papers, looking for the a↵ect of using

a minimal list of model graphs. Finally, we compared the overall rankings from the five

classifiers to each other using Kendall’s W. So, can we trust results obtained from any of

these five methods? The resounding answer is an anticlimactic maybe.

In the case of DDD and both GDD, the probability that a model was incorrectly

classified into the chosen model type is above 20%. This statistic negates the positive

accuracy seen. It does not matter that the chance that a graph classified as GEO is actually

GEO is 100% (or is RDG in the case of DDD), when there is such a large chance that a

model is incorrectly placed into that category.

The CC and RGF had more reliable results. The chance that a graph was mistakenly

classified as GEO by CC is only 3.6%. This is an acceptable margin of error. The relative

graphlet frequency had two results whose distance only di↵ered by a tenth of a point, RDG

and GEO. The chance of misclassification in both these instances was 9% for RDG and

3.4% for GEO, both acceptable margins of error.

Finally, only two models were chosen to be the best fit for the S. cerevisiae PPI

network. RDG and GEO. RDG was chosen by DDD and RGF. GEO was chosen by CC

and both GDD. It was also a very close second for RGF. There are logical, and biological

arguments for both model types being the best fit. For RDG, this is a growing graph, unlike

GEO. Growing graphs have intrinsic properties, such as node age, that mimic PPI network
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very well. However, in Chapter 4, we saw that RDG only matched 28% of the measures

examined. One was a size measure (number of edges) and the remaining four were distance

measures (diameter, radius, small-world properties, and scale-free property). None of the

more complicated features seen in the centrality measures or connection measures were

matched. This is to be expected because RDG is a random graph and those by definition

lack complex features. RDG was also never chosen by the original classifier analyses to be

the best fit.

GEO, on the other hand, was a popular choice by several of the classification mech-

anism. It was found the best fit by Przulj for both RGF and GDD. GEO also matched

more features that RDG, 39%. It matched all of the size measures and then one each for

distance, centrality and connection measures. The distance measure was scale-free prop-

erty, centrality was degree centrality, and connection was average degree. Overall, it is not

obvious if one of the choices is clearly the best fit for the S. cerevisiae PPI network at

this point. Therefore, we proceed forward by editing two of the classification methods and

presenting a novel one in the hopes that one of these will provide a concrete answer to the

question: what model graph is the best fit for the S. cerevisiae PPI network?
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Chapter 9

Relative Graphlet Frequency Error

Several methods to determine the growth mechanism of PPI networks were introduced in

Chapter 5. Unfortunately, because of the complicated nature of these classifiers, errors

do occur. One particular method that was found to have errors is the relative graphlet

frequency (RGF) (Przulj et al. , 2004). This method uses the small 3- to 5-node subgraphs,

or graphlets, to compare networks.

Due to the nature of the analyses performed and a desire for the output to be

organized in a specific manner, it was easier to rewrite portions of the RGF algorithm. The

original algorithm for the classifier can be found in the software package GraphCrunch 2 -

version 2.1.1 (Kuchaiev et al. , 2011). GraphCrunch was used to calculate the numbers of

graphlets, however distance calculations were rewritten in python code. This allowed for

greater control over the form of the output, reduced redundancies in calculations, and led

to the discovery of the error. In this chapter, we discuss the error and propose a solution

to fix it. We will then present the results of the edited RGF, which will be referred to as

the corrected relative graphlet frequency or RGF (C). These results will be compared to

the results of the original RGF algorithm, presented in Chapters 6 and 7.

9.1 Formula Error

In her paper introducing the relative graphlet frequency, Pruzlj (Przulj et al. , 2004) defined

the distance between graphlet frequencies as:

DRGF (G1,G2) =
29X

i=1

|F
i

(G1)� F
i

(G2)| , (9.1)

where F
i

(G) is defined as:

F
i

(G) = � log

✓
N

i

(G)
T (G)

◆
. (9.2)
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Interestingly, in the examination of the source code, it was discovered that the definition of

F
i

(G) was inappropriately calculated. Instead of using Equation 9.3, F
i

(G) was defined as:

F
i

(G) = � log (N
i

(G))
log (T (G)) . (9.3)

Clearly Equation 9.2 and Equation 9.3 are not equal. The former equation, Equation 9.2,

was given in the paper where the concept was introduced (Przulj et al. , 2004) and is,

presumably, the desired equation. An appropriate equality for Equation 9.2 is given in

Equation 9.4.

F
i

(G) = log (T (G))� log(N
i

(G)) (9.4)

This error most likely stems from the dissertation of the developer of GraphCrunch (Kuchaiev

et al. , 2011). In this document, F
i

(G) was defined using Equation 9.3.

While this is just a basic math error, there is one situation in which the use of

the incorrect formula is truly detrimental. If there is only one graphlet in the network,

then T (G) = 1. This does not cause any mathematical issues if the correct form of F
i

(G)
is used (Equation 9.4), however it results in an undefined value in Equation 9.3 since the

denominator becomes zero:

log (T (G)) = 0. (9.5)

This situation was rare in these contexts, though it did appear in one of the 9000 model

graphs. The graph with only one graphlet is a DMR model graph. The creators of

GraphCrunch rectified this issue by setting F
i

(G) = 0 whenever T (G) = 1. Using the

correct formula, Equation 9.2 eliminates the need for this solution and also properly utilizes

the desired logarithmic properties.

9.2 Methods

We rectify the use of the original, improper RGF algorithm by repeating the simulation

comparisons performed in Chapter 7. Thus, the same 180 random test graphs created with
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di↵erent probabilities were classified along with the 900 model test graphs, 100 from each of

nine types. Results were analyzed using the same metrics: accuracy, F-measures, sensitivity,

specificity, PPV, and NPV. Finally, the classification of the empirical S. cerevisiae PPI

network was performed and the results interpreted using Bayes theorem. The results from

both the original and corrected RGF are compared and contrasted.

It is necessary to show the results obtained using the incorrect formula (Chapter

7) in order to compare the results obtained in this dissertation with those obtained in the

original papers (Przulj et al. , 2004). The purpose of repeating the analyses using the

corrected formula is to determine the a↵ect of the mathematical error on the results.

9.3 Results

9.3.1 Random Graph Classification

Both the original and corrected versions of the relative graphlet frequency classified all of

the random graphs correctly.

9.3.2 Model Graph Classification

The di↵erence in results for model graph classification can be seen in Table 9.1. The value

in parentheses corresponds to the percent correctly classified using the original, incorrect,

formula. The other value is the percent correctly classified by the corrected version of the

RGF. The main di↵erence occurs in the classification of AGV and DMC. The original RGF

classified 13% of the AGV and none of the DMC graphs correctly. The corrected version

classified none of the AGV and 12% of the DMC graphs correctly. The only other di↵erence

between the numbers of models of each type correctly classified is in SMW. The original

RGF classified two correctly, while the corrected version only classified one. These changes

result in the same overall classification accuracy for the two versions, 57%.

Despite the fact that the overall classification accuracies for the original and cor-

rected RGF are the same, the two versions incorrectly classified graphs very di↵erently from

each other. Figure 9.1, shows how the model graphs are misclassified for AGV (a), DMC

(b), DMR (c) and SMW (d). The other five model types were always classified correctly

the the corrected RGF.
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Table 9.1. Classification accuracy of both the original relative graphlet frequency and the corrected
relative graphlet frequency.

Predicted Class
AGV DMC DMR GEO LPA RDG RDS SMW STI

AGV (13) 1 - 2 58 (68) 39 (19) - - -
DMC (4) 12 - 10 (11) (2) 48 (33) 23 (29) 2 (1) 3 (20)
DMR - - - 1 (1) - 9 (16) 42 (48) 1 (35) 48
GEO - - - 100 (100) - - - - -
LPA - - - - 100 (100) - - - -
RDG - - - - - 100 (100) - - -

A
c
tu

a
l
C
la
ss

RDS - - - - - - 100 (100) - -
SMW (22) - - 20 (14) 1 (17) 25 (4) 36 (41) 1 (2) 17
STI - - - - - - - 100 (100)

Values in parentheses are from the original RGF classification where Fi(G) was incorrectly calculated. Values
outside of the parentheses are from the corrected RGF classification. The values presented are the percent
of model graphs classified into each category by the given classifier.

For AGV, both methods misclassified models as LPA and RDG, however only the

corrected version also used both DMC and GEO. Only the original RGF classified any AGV

correctly.

DMC model misclassification is very spread out. Both the original and corrected

RGF incorrectly classified DMC as GEO, RDG, RDS, SMW and STI. The original also

misclassified DMC as AGV and LPA. Only the corrected version correctly classified any

DMC models. The most common misclassification choice for DMC was AGV under the

original RGF classifier and RDG under the corrected classifier.

DMR misclassification is not as widely spread as DMC. The original only misclas-

sified DMR into four incorrect model types, GEO, RDG, RDS, and SMW. RDS was the

most common incorrect choice. The corrected RGF added STI to the list of incorrect DMR

classification choices. RDG was the common choice for this version.

The misclassifications of the SMW graphs is almost as spread out as the DMC clas-

sification. Both versions of RGF incorrectly classified SMW as GEO, LPA, RDG, and RDS,

though only the original RGF misclassified SMW as AGV and only the corrected version

classified it as STI.
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Figure 9.1. Incorrect model graph classification by the original relative graphlet fre-
quency and corrected relative graphlet frequency. Each frame shows a comparison of the
distribution of incorrectly classified model graphs by the original RGF and corrected RGF. The re-
maining five model graphs were never classified incorrectly and thus are not displayed. (a): Results
for AGV. (b): Results for DMC. (c): Results for DMR. (d): Results for SMW.

It is interesting that despite having the same overall classification accuracy, there are

some clear di↵erences in how the models graphs are being assessed and categorized. This

idea is further represented in Figure 9.2. This figure compares the analyses of performance

for both the correct and original version of RGF. The pictures appear very similar, but

based on the groups discussed in Chapter 7 the lines representing two model graphs change

groups.These are AGV and DMC. In the original RGF, AGV can be classified in Group

4 and DMC as Group 2. This means that AGV was classified correctly with moderate

accuracy and very few graphs were incorrectly classified as AGV. DMC, on the other hand,

had low classification accuracy but was also an unpopular incorrect choice. In the corrected

model, AGV is Group 2 and DMC is Group 3. Models in Group 3 have low classification
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accuracy and are almost never chosen incorrectly.
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Figure 9.2. Comparison of original and corrected relative graphlet frequency perfor-
mance Statistics. Statistics used include PPV (positive predictive value), NPV (negative pre-
dictive value), sensitivity, specificity, and F-measure. Values are calculated using the classification
results of the 100 models of each of the nine model graph types. (a): This figure shows the corrected
relative graphlet frequency; the version without the calculation error. (b): This figure shows the
original relative graphlet frequency; the version found in GraphCrunch 2.

Table 9.2 provides a more precise look at the values seen in Figure 9.2. When

compared to the statistical values of the original RGF (reproduced in Table 9.3), the average

values for the corrected version are all larger. The di↵erences, however, are all very small,

with the exception of F-micro. The F-micro for the original RGF is 0.45 and 0.58 for the

correct version (Tables 9.2, 9.3), thus we can conclude the corrected version of RGF is a

better classifier than the original.
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Table 9.2. Corrected relative graphlet frequency statistical analysis of performance.

Model PPV NPV Sensitivity Specificity F-measure

AGV 0.0 0.8889 0.0 1.0 0.0
DMC 0.9231 0.9008 0.12 0.9988 0.2124
DMR 0.0 0.8889 0.0 1.0 0.0
GEO 0.7519 1.0 1.0 0.9588 0.8584
LPA 0.6289 1.0 1.0 0.9263 0.7722
RDG 0.4525 1.0 1.0 0.8488 0.6231
RDS 0.4975 1.0 1.0 0.8738 0.6645
SMW 0.25 0.8895 0.01 0.9963 0.0192
STI 0.5952 1.0 1.0 0.915 0.7463

Average 0.4555 0.952 0.57 0.8353 0.4329
Global 0.5706 0.9999 0.57 0.9464 0.5703

Results are calculated based on the classification of the 100 model graphs from each of the nine model
types using the corrected RGF. (The corrected RGF is the edited version without the calculation error in
Fi(G).) Statistics used include PPV (positive predictive value), NPV (negative predictive value), sensitivity,
specificity, and F-measure. The average F-measure corresponds to the F-macro while the global F-measure
corresponds to the F-micro.

Table 9.3. Original relative graphlet frequency statistical analysis of performance.

Model PPV NPV Sensitivity Specificity F-measure

AGV 0.3333 0.899 0.13 0.9675 0.1871
DMC 0.0 0.8889 0.0 1.0 0.0
DMR 0.0 0.8889 0.0 1.0 0.0
GEO 0.7937 1.0 1.0 0.9675 0.8850
LPA 0.5348 1.0 1.0 0.8913 0.6969
RDG 0.5814 1.0 1.0 0.91 0.7353
RDS 0.4587 1.0 1.0 0.8525 0.6289
SMW 0.0526 0.8863 0.02 0.955 0.0290
STI 0.833 1.0 1.0 0.9750 0.9091

Average 0.3986 0.9514 0.5722 0.9465 0.4524
Global 0.5722 0.9999 0.5722 0.9465 0.5722

Results are calculated based on the classification of the 100 model graphs from each of the nine model types
using the original RGF. (The original RGF is the version contained in GraphCrunch 2 with the calculation
error in Fi(G).) Statistics used include PPV (positive predictive value), NPV (negative predictive value),
sensitivity, specificity, and F-measure. The average F-measure corresponds to the F-macro while the global
F-measure corresponds to the F-micro.

9.3.3 Saccharomyces cerevisiae PPI Network Classification

We previously found that the original RGF chose RDG as the best fit for the S. cerevisiae

PPI network (Chapter 8). There was a 100% chance that if the S. cerevisiae PPI network

really is RDG, then it will be classified as RDG and a 9% chance that it still will be classified

as RDG even if that is not the truth. Figure 9.3 shows a comparison of the S. cerevisiae

PPI network classification between the corrected RGF (Figure 9.3a and the original RGF

(Figure 9.3b). The positioning of the outcomes are very similar, though the scale is dif-

ferent. The figure on the left ranges from zero to one-hundred, while the one on the right
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only goes to twenty. One interesting thing to note is that the corrected RGF is the only

method in which the largest interquartile range is not seen in DMC and DMR, but in SMW.
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Figure 9.3. Comparison of S. cerevisiae PPI network classification by original and cor-
rected relative graphlet frequency. Each figure shows the results of comparing the empirical
S. cerevisiae PPI network against the 1000 model graphs of each of the nine types. Results are
displayed such that the red diamond across the middle line is the median distance, the ends of the
box are the first and third quartiles respectively, and the remaining lines and points represent the
outlying distances. (a): The results using the corrected relative graphlet frequency. DMC is the
best fit followed closely by GEO. (b): The results using the original relative graphlet frequency.
RDG is declared the best fit, also followed closely by GEO.

The corrected RGF selected DMC as its best fit for the S. cerevisiae PPI network.

Using Bayes theorem, we deduce that the probability that the model is DMC and is classified

correctly is only 12% (Equation 9.6), however the probability that model is not DMC, but

is classified as such is only 1% (Equation 9.7).

Pr (classified as DMC | DMC) =
Pr(DMC | classified as DMC) · Pr(classified as DMC)

Pr(DMC)

=
12
13

· 13
900

1
9

= 0.12 (9.6)
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Pr (classified as DMC | not DMC) =
Pr(not DMC | classified as DMC) · Pr(classified as DMC)

Pr(not DMC)

=
1
13

· 13
900

8
9

= 0.01 (9.7)

It is clearly very rare for any model to be classified as DMC, only 1.4% were, and for any

model classified as DMC, it is 8.5 times more likely that that model actually is a DMC

model graph than anything other model.

Table 9.4 shows the rankings of all nine model graphs by both the correct and origi-

nal RGF. The list have a Kendall’s W of 0.908 and are not statistically significantly di↵erent

at a significance level of 0.05. Between the two lists, four of the models appear in the same

position in both lists. The top three model types in both lists are the same. If we continue

to break the list into thirds, we see that only two of the graph switched thirds, STI and

SMW. SMW is in 8th position, or last third, when classified by the original RGF and moved

into the second third when classified by the corrected RGF. STI completed the opposite

trip, moving from 5th position, in the middle third, to the last third.

Table 9.4. Ordered rankings of the model graphs based on fit for S. cerevisiae PPI network using
the corrected and original relative graphlet frequency.

Corrected Original
RGF Formula

1 DMC RDG
2 GEO GEO
3 RDG DMC
4 AGV AGV
5 SMW STI
6 LPA LPA
7 STI DMR
8 DMR SMW
9 RDS RDS

Rankings of model graphs are determined based on the median distance of the S. cerevisiae PPI network to
each model graphs of the given type. The median smallest distance is ranked first. Models in bold show up
in di↵erent places across the two lists. Items not in bold do not change position when the corrected relative
graphlet frequency is used in place of the original.
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9.4 Conclusions

The program created to run the relative graphlet frequency algorithm contained a math-

ematical error in its calculations. This error was discovered when parts of the program

rewritten in order to increase program runtime e↵ficiency. In this chapter, we fixed the

problem and repeated the analyses performed in Chapter 7. We then compared these re-

sults to the results of the original analyses to determine the e↵ect of using an erroneous

formula.

The di↵erences in classification using the original and corrected formulas are mini-

mal. Both performed perfectly on the random graph classification. Slight changes occurred

when the method was tested on its ability to correctly classify the model graphs. The overall

classification accuracy remained the same, but thirteen out of 9000 model graphs changed

from correctly classified to incorrectly classified, or vice versa (Table 9.2). This, however,

corresponds to only 0.1% of the graphs.

The changes in groups for two of the model graphs, AGV and DMC, occurs because

of the way the corrected RGF analyzes graphs. For AGV, none of these model graphs were

classified correctly and no model graphs were incorrectly classified as AGV. This is a change

for thirteen models classified correctly using the original RGF and 26 model graphs being

incorrectly classified as AGV. Essentially the opposite change in classification occurred for

DMC resulting in the change in groups. Using the original RGF, no DMCmodel graphs were

classified correctly and nothing was incorrectly classified as DMC. Under the classification of

the corrected RGF, twelve graphs were correctly classified as DMC and one was incorrectly

classified.

Since the two versions classified graphs slightly di↵erently, based on the fact that

graphs were not classified incorrectly into the exact same categories, we can speculate that

the change in formula is causing di↵erent characteristics within the model graphs themselves

to be picked up on. However, under the circumstances, these di↵erences are not substantial

enough to promote vast di↵erences in the results. This e↵ect could be investigated further

by determining the exact classification of each individual graph and looking to see how

many change, but this investigation is not necessary in this instance be the overall impact

is so minimal.
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A change in classification did occur when the empirical S. cerevisiae PPI network

was classified. In the original relative graphlet frequency, RDG was the best fit. However,

when the corrected relative graphlet frequency was utilized, DMC was the best fit. Even

though this di↵erence occurred, the overall rankings of model graphs between the two

groups is not statistically significantly di↵erent based on Kendall’s W (Table 9.4). This

signifies that the use of the incorrect formula may not have been entirely detrimental to the

classification process.

Overall, the results between the original and corrected RGF did not di↵er drastically

in terms of random graph, model graph, or S. cerevisiae PPI network classification. This

is most likely to due the underlying reason for using the log in the first place. According to

Przulj, the log is used because “frequencies of di↵erent graphlets can di↵er by several orders

of magnitude” and this prevents frequently seen graphlets from dominating the distance

(Przulj et al. , 2004). If none of the graphlets di↵er by several orders of magnitude, then

the transformation whether applied correctly (corrected RGF) or incorrectly (original RGF)

should not have much e↵ect on the calculations. This might not be true in all situations and

with di↵erent graphs used for comparison, results have the potential to be largely varied.

Therefore, we conclude that the correct formula should be used to preserve mathematical

integrity, even though the e↵ect on the overall classification analyses is essentially negligible.
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Chapter 10

Reformulations of the Graphlet Degree Distribution

The graphlet degree distribution classification algorithm is a complicated procedure. Since

its inception, it has been the subject of critiques (Hayes et al. , 2015; Pržulj, 2010). Simi-

lar to the relative graphlet frequency, the computational burden was eased by reproducing

pieces of the algorithm found in GraphCrunch 2 in original python code. Also similar to

the relative graphlet frequency, the rewriting process illuminated several idiosyncracies of

the method. Delving deeper into the source code, as well as reviewing the literature, simply

showed that these idosyncracies were either ignored entirely or patched with bandaids. In

this chapter, we discuss the weaknesses that were identified in the graphlet degree distribu-

tion. We then propose three alternative methods, all of which maintain the same idea as the

original GDD, but do not possess the idiosyncracies discussed, and compare the methods

to determine which is the best reformulation.

FE, FH, WE, WH, HS, and HG are yeast two-hybrid (Y2H), and
HB, HH, and HM are a result of human curation (BIND, HPRD, and
MINT).
The four network models that we compared against the above

14 PPI networks are ER, ER-DD, SF, and 3-dimensional geometric
random graphs (henceforth denoted by ‘GEO-3D’). Model networks
corresponding to a PPI network have the same number of nodes
and the number of edges within 1% of the PPI network’s [details
of the construction of model networks are presented by Pržulj
et al. (2006)]. For each of the 14 PPI networks, we constructed
and analyzed 25 networks belonging to each of these 4 network
models. Thus, we analyzed the total of 14 + (14 · 4 · 25) ¼ 1414
networks. We compared the agreement of each of the
14 PPI networks with each of the corresponding 4 · 25 ¼ 100
model networks described above (our new agreement measure
is described in Section 2.3). The results of this analysis are
presented in Section 3.

2.2 Graphlet degree distribution (GDD)

We generalize the notion of the degree distribution as follows. The
degree distribution measures, for each value of k, the number of
nodes of degree k. In other words, for each value of k, it gives the
number of nodes ‘touching’ k edges. Note that an edge is the
only graphlet with two nodes; henceforth, we call this graphlet
G0 (illustrated in Fig. 1). Thus, the degree distribution measures
the following: how many nodes ‘touch’ one G0, how many nodes
‘touch’ twoG0s, . . . , how many nodes ‘touch’ k G0s. Note that there
is nothing special about graphletG0 and that there is no reason not to
apply the same measurement to other graphlets. Thus, in addition to
applying this measurement to an edge, i.e. graphlet G0, as in the
degree distribution, we apply it to the 29 graphlets G1, G2, . . . ,G29

presented in Figure 1 as well.
When we apply this measurement to graphlets G0, G1, . . . ,G29,

we need to take care of certain topological issues that we first
illustrate in the following example and then define formally. For
graphlet G1, we ask how many nodes touch a G1; however, note

that it is topologically relevant to distinguish between nodes touch-
ing a G1 at an end or at the middle node. This is due to the following
mathematical property ofG1: aG1 admits an automorphism (defined
below) that maps its end nodes to each other and the middle node
to itself. To understand this phenomenon, we need to recall the
following standard mathematical definitions. An isomorphism g
from graph X to graph Y is a bijection of nodes of X to nodes of
Y such that xy is an edge of X if and only if g(x)g(y) is an edge of
Y; an automorphism is an isomorphism from a graph to itself. The
automorphisms of a graph X form a group, called the automorphism
group of X, and is commonly denoted by Aut(X). If x is a node of
graph X, then the automorphism orbit of x is OrbðxÞ ¼
fy 2 VðXÞ j y ¼ gðxÞ for some g 2 AutðXÞg, where V(X) is the set
of nodes of graph X. Thus, end nodes of a G1 belong to one auto-
morphism orbit, whereas the mid-node of a G1 belongs to another.
Note that graphlet G0 (i.e. an edge) has only one automorphism
orbit, as does graphletG2; graphletG3 has two automorphism orbits,
as does graphlet G4, graphlet G5 has one automorphism orbit,
graphlet G6 has three automorphism orbits, etc. (Fig. 1). In
Figure 1, we illustrate the partition of nodes of graphlets G0,

G1 , . . . ,G29 into automorphism orbits (or just orbits for brevity);
henceforth, we number the 73 different orbits of graphlets G0,

G1, . . . ,G29 from 0 to 72, as illustrated in Figure 1. Analogous
to the degree distribution, for each of these 73 automorphism
orbits, we count the number of nodes touching a particular graphlet
at a node belonging to a particular orbit. For example, we count
how many nodes touch one triangle (i.e. graphlet G2), how many
nodes touch two triangles, how many nodes touch three triangles,
etc. We need to separate nodes touching a G1 at an end-node from
those touching it at a mid-node; thus, we count how many nodes
touch one G1 at an end-node (i.e. at orbit 1), how many nodes touch
two G1s at an end-node, how many nodes touch three G1s at an
end-node, etc. and also how many nodes touch oneG1 at a mid-node
(i.e. at orbit 2), how many nodes touch two G1s at a mid-node, how
many nodes touch three G1s at a mid-node, etc. In this way, we
obtain 73 distributions analogous to the degree distribution
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Figure 10.1. Display of the 73 automorphism orbits (Przulj, 2007)-Figure 1. Automorphism
orbits are unique nodes position within each graphlet. They are di↵erentiated by di↵erent color nodes
in the image.
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10.1 Graphlet Degree Distribution Issues

Before examining the problems found in the GDD algorithm it is useful to get a better idea

of what exactly the algorithm is calculating. Consider the graphlet seen in Fig. 10.2. Based

on Fig. 5.1, this is Graphlet 6 and it contain automorphism orbits 10, 11, and 12 (Fig.

5.2). Graphlet 6 is also referred to as the flower graphlet (Pržulj & Higham, 2006). It is

composed of Graphlet 1 (path of length two) and Graphlet 2 (triangle). These are made

up of automorphism orbits 1 and 2 for the path and 3 for the triangle. This results in the

graphlet degree distribution seen in Table 10.1.

Figure 10.2. Graphlet #6 (flower).

Table 10.1. Graphlet degree distribution for Figure 10.2.

Automorphism k d

j
G(k)

Orbit (j)

1 1 2
1 2 1
2 2 1
3 1 3
9 1 1
10 1 2
11 1 1

This table shows the graphlet degree distribution for the flower graphlet (#6). The first column lists the
automorphism corresponding to Figure 10.1. The second column, k, is the number of times a node acts as
the given automorphism orbit. The third column, djG(k), is the number of nodes that act as automorphism
orbit j a total of k times.

Consider the first two lines of Table 10.1. These both refer to automorphism orbit

j = 1, which is the end of node of the path of length two. The middle column refers to the

number paths in which nodes of automorphism orbit 1 take part. The last column, djG(k),

is the number of nodes that take part k times. A far easier interpretation of the graphlet

degree distribution is that there are two nodes (‘a’ and ‘b’) that participate as the end
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node of a path of length two once. The second line indicates that there is one node that

participates as the end node of a path of length two twice (node ‘d’). The third line now

addresses the center node of a path of length two. There is one node that participates as

the center node twice (node ‘c’). The third line now moves onto automorphism orbit 3, any

corner of a triangle. There are three nodes (‘a’, ‘b’, and ‘c’) that each participate in one

triangle. Finally, the last three lines address the full graphlet. Automorphism orbit 9 is the

end of the path of length two o↵ of the triangle. Only node ‘d’ meets this description and

it does so in only one flower. Automorphism orbit 10 refers to the corners of the triangle

with degree two, the ones not participating in the path. There are two nodes (‘a’ and ‘b’)

that each participate in one flower. Finally, the last line refers to the corner of the triangle

that does participate in the path, thus having a degree of three. There is only one node

(‘c’) that participates in one flower.

Recall, the distance for a specific graphlet degree distribution is given as

Dj(G1,G2) =
1p
2

 1X

k=1

h
N j

G1
(k)�N j

G2
(k)
i2
!1/2

(10.1)

where j is any automorphism orbit, j 2 {1, . . . , 72}. The agreement for the graphlet degree

distribution of j is calculated by

Aj(G1,G2) = 1�Dj(G1,G2) (10.2)

and the average can be represented by either the arithmetic or geometric mean.

10.1.1 Geometric Mean

The most basic issue that we discovered pertaining to the graphlet degree distribution

method arises from the use of the geometric mean, given in Equation 10.3. In this formula

the agreement from each automorphism orbit is multiplied. The closer the overall agreement
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is to one, the better the agreement is between the two networks.

A
geo

(G1,G2) =

0

@ 1

73

72Y

j=0

Aj(G1,G2)

1

A
1/73

(10.3)

The issue with this formula comes into play when we achieve maximum disagreement at

any single automorphism orbit. Maximimum disagreement can also be thought of as having

a distance of one, the maximum distance allowed. If Aj(G1,G2) = 0 for any j 2 {0, . . . , 72},
then the overall agreement calculated using the geometric mean, A

geo

(G1,G2), is also equal

to zero. Thus even if there is perfect agreement at every other automorphism orbit, a single

case of complete disagreement has unjustified influence on the resulting value. Example 1

shows one potential situation.

Example 1 Let there be two networks, G1 and G2, such that for
any automorphism orbit, j0, the graphlet degree distribution is

dj
0
G1
(1) = 0 dj

0
G2
(1) = 2 (10.4)

dj
0
G1
(2) = 1 dj

0
G2
(2) = 0. (10.5)

Then the corresponding scaled values, Sj

G(k) = djG(k)/k, become

Sj

0
G1
(1) = 0 Sj

0
G2
(1) = 2 (10.6)

Sj

0
G1
(2) = 1/2 Sj

0
G2
(2) = 0 (10.7)

with normalized values of

N j

0
G1
(1) = 0 N j

0
G2
(1) = 1 (10.8)

N j

0
G1
(2) = 1 N j

0
G2
(2) = 0. (10.9)
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Using Equation 10.1 to calculate the distance,

Dj

0
(G1,G2) =

1p
2

 1X

k=1

h
N j

0
G1
(k)�N j

0
G2
(k)
i2
!1/2

=
1p
2

✓h
N j

0
G1
(1)�N j

0
G2
(1)
i2

+
h
N j

0
G1
(2)�N j

0
G2
(2)
i2◆1/2

=
1p
2

⇣
[0� 1]2 + [1� 0]2

⌘1/2

=
1p
2
(2)1/2 = 1

Aj

0
(G1,G2) = 0 (10.10)

This results in a GDD agreement value of zero, perfect disagreement, at
automorphism orbit j0. When j 6= j0, j 2 {0, . . . , 72} let G1 and G2 have
identical distributions. This leads to a distance of zero and an agreement of
one. When the geometric mean is calculated in this situation, the maximum
disagreement seen at j0, Line 10.10, overwhelms the perfect agreement seen
at every other automorphism orbit. This results in an overall agreement
value of zero.

Compare this example to one of two networks showing high levels of disagreement at

every automorphism orbit, but never quite reaching maximal disagreement. These networks

would have a higher agreement value than seen in the example when calculated with the

geometric mean. In addition, the results calculated using the geometric mean, as compared

to the arithmetic mean, are not congruent. This can be seen in Table 10.2. The arithmetic

mean correctly classified 68 percent of the networks. The geometric mean only classified 60

percent correctly. Only one network model, SMW, had more networks classified correctly

using the geometric mean as opposed to the arithmetic mean. Therefore, the arithmetic

mean is more accurate in classifying the model graphs than the geometric mean.
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Table 10.2. Comparison of arithmetic and geometric mean graphlet degree distribution classification
results.

Classification Accuracy (% Correct)

Network Type GDD (A) GDD (G)
AGV 60 36
GEO 100 94
DMC 0 10
DMR 10 0
LPA 100 71
RDG 100 100
RDS 100 100
SMW 47 49
STI 100 97

Average 68 60

GDD (A) is the graphlet degree distribution with arithmetic mean. GDD (G) is the graphlet degree distri-
bution with the geometric mean. The value presented in the percentage of graphs classified accurately for
each model type.

10.1.2 Contradictory Outcomes

In addition to the problem with the use of the geometric mean, there are a few additional

situations where the agreement calculated by the GDD does not result in a justifiable

outcome, consider Example 2.

Example 2 Once again, let there be two networks, G1 and G2, such
that for any automorphism orbit, j0, the graphlet degree distribution is

dj
0
G1
(1) = 1 dj

0
G2
(1) = 0. (10.11)

Then the corresponding scaled values become

Sj

0
G1
(1) = 1 Sj

0
G2
(1) = 0 (10.12)

T j

0
G1

= 1 T j

0
G2

= 0 (10.13)

with normalized values of

N j

0
G1
(1) = 1 N j

0
G2
(1) = 0. (10.14)

The normalized value for G2 seen at the end of Line 10.14 results in an
undefined value. This is simply set to zero for ease of calculation. Using
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Equation 10.1 to calculate the distance,

Dj

0
(G1,G2) =

1p
2

 1X

k=1

h
N j

0
G1
(k)�N j

0
G2
(k)
i2
!1/2

=
1p
2

✓h
N j

0
G1
(1)�N j

0
G2
(1)
i2◆1/2

=
1p
2

⇣
[1� 0]2

⌘1/2

=
1p
2
(1)1/2

= 0.7071

Aj

0
(G1,G2) = 1� 0.7071

= 0.2929 (10.15)

This results in a low GDD agreement value of 0.2929 (Line 10.15).

Compare the agreement values for the single automorphism orbit j0 seen in Examples

1 and 2. In Example 1, we see an agreement value of zero, i.e. perfect disagreement. In

Example 2 the level of agreement (0.2929) is still quite low, but it is larger than zero (Line

10.15). This implies that by the GDD metric, the networks seen in Example 1 are more

di↵erent at that single automorphism orbit than the networks seen in Example 2. This view

is neither obvious nor indisputable. In fact it could easily be argued that the exact opposite

is true; the networks from Example 2 are more di↵erent than the networks from Example 1

at j0 because only one of the networks has any nodes at automorphism orbit j0 in the latter

example. This issue points to some deeper inconsistencies within the overall design of the

distance, and corresponding agreement, metric. It also indicates that the logical definition

of distance may not be the same as this metric’s mathematical definition.

A visual example of the aforementioned issue can be seen in Figures 10.3a, 10.3b,

10.3c. The situation depicted in the figures shows the agreement of two networks at a single

automorphism network, j0. The two networks compared begin with the same distribution

as seen in Example 1: G1 has one node participating as automorphism j0 twice and G2 has

two nodes participating as j0 once (Table 10.3).
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Table 10.3. Generic graphlet degree distribution corresponding to Figure 10.3.

k d

j0

G1
(k) d

j0

G2
(k)

1 0 2
2 1 0
3 0 n

This table shows the graphlet degree distribution of two generic graphs at any automorphism orbit. The
first column, k, is the number of times a node acts as the given automorphism orbit. The second and third

columns, dj
0

G1
(k) and dj

0

G2
(k), are the numbers of nodes that act as the given automorphism a total of k times.

These two columns represent distributions for two unique graphs, G1 and G2.

The x-axis in each subplot of Figure 10.3 represents the number of nodes (n) from G2

that participate as j0 three times. The other network, G1, remains at a constant distribution

and has no nodes acting as j0 three times. The three di↵erent figures in Figure 10.3 show

the same situation over di↵erent domains. Figure 10.3a displays the agreement on values of

dj
0
G1
(3) 2 [0, 10], Figure 10.3b goes up to 100, and Figure 10.3c goes up to 250. The di↵erent

ranges are utilized to highlight di↵erent aspects of the plots.

Several interesting things occur as the number of nodes touching j0 three times

increases. First, Figure 10.3a shows that the minimum agreement of zero is achieved when

G2 does not have any nodes that touch j0 three times, as in Example 2. The agreement

quickly increases to its maximum value of 0.1340, which occurs when approximately six

nodes touch j0 three times (Figure 10.3b). From there the agreement begins to decrease

(Figure 10.3c) and as:

dj
0
G2
(3) ! 1, (10.16)

the agreement:

Aj

0
(G1,G2) ! 0. (10.17)

The plots in Figure 10.3 show that the minimum agreement is achieved when nei-

ther network has any nodes touching j0 three times which is counterintuitive. Typically,

one would expect a larger variation in the graphlet degree distribution to imply a larger

distance and thus a smaller agreement. This is not the case with this metric. Another
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(a) (b)

(c)

Figure 10.3. GDD agreement over di↵erent domains at a single automorphism orbit as

dj
0

G2
(3) ! 1. The di↵erent domains each show distinct features of the agreement. The agreement

shown corresponds to the graphlet degree distribution seen in Table 10.3. (a): The x-axis shows
only [0, 9]. The values peak at approximately x = 6. (b): The x-axis shows [0, 100]. There is a
smooth drop-o↵ after the peak. (c): The x-axis shows [0, 250]. The line begins to near zero, however
this is an asymptote. Zero is never reach again, it only happens at x = 0.
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interesting feature is the dramatic increase to the maximum, which once again occurs at

x = 6. In terms of biology or graph theory, there does not appear to be any significance of

this number of nodes touching an automorphism orbit three times. Thus, this must be an

artifact of the metric. Logic would dictate a constant decrease in agreement as dj
0
G2
(3) ! 1.

The increase occurs because the addition of a new degree to the distribution increases T j

0
G2

and decreases the impact of each degree on the overall distance. An example of this can be

seen below in Example 3.

Example 3 Assume that G1 and G2 have the exact same distribu-
tions for automorphism orbit j0 as illustrated in Ex. 1. Then add to G2 one
node that touches j0 three times such that

dj
0
G2
(3) = 1 (10.18)

Sj

0
G2
(3) = 1/3 (10.19)

T j

0
G2

= 7/3 (10.20)

N j

0
G2
(1) =

2

7/3
= 6/7 (10.21)

N j

0
G2
(2) =

0

7/3
= 0 (10.22)

N j

0
G2
(3) =

1/3

7/3
= 1/7. (10.23)

Then the distance can be calculated by
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0
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1p
2
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=
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2
(36/49 + 1 + 1/49)1/2

=
1p
2
(1.76)1/2

= 0.9381

Aj

0
(G1,G2) = 1� 0.9381

= 0.0619 (10.24)
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The agreement value achieved here is greater than the agreement achieved
in Example 1.

As previously stated, in the above example the addition of a new degree to the dis-

tribution increases T j

0
G2

thereby decreasing the impact of each degree on the total singular

automorphism agreement. However, it is not clear that the networks in this scenario are

less di↵erent than those seen in the previous example despite the fact that mathematically

the statement is true. In fact, the more nodes that G2 has that touch j0 three times, the

larger the distance one would expect. Fortunately, this begins to occur after the minimum

value. As dj
0
G1
(3) ! 1 the distance begins to approach its maximum value. The implication

of this is that one of the degree distributions must approach zero while the other must ap-

proach one as the number of nodes increases. This is the only way to achieve the maximum

distance of one (Example 1) using the GDD distance equation.

Example 4 Now consider the situation where networks G1 and G2

have the exact same distributions for automorphism orbit j0 as illustrated in
the previous example, but this time the number of nodes in G2 that touches
j0 three times is n such that

dj
0
G2
(3) = n (10.25)

Sj

0
G2
(3) = n/3 (10.26)

T j

0
G2

= (6 + n)/3 (10.27)

N j

0
G2
(1) =

1/2

(6 + n)/3
=

3

12 + 2n
(10.28)

N j

0
G2
(2) =

0

(6 + n)/3
= 0 (10.29)

N j

0
G2
(3) =

n/3

(6 + n)/3
=

n

6 + n
. (10.30)

If n ! 1, then N j

0
G2
(1) ! 0 while N j

0
G2
(3) ! 1. Thus this scenario ap-

proaches Example 1 resulting in an agreement of zero.

In Example 4, the large number of nodes acting as j0 three times e↵ectively domi-

nates the distance. This is one of the few expected outcomes of this method and the overall

result can definitely be considered logical. Therefore, this method is far more sound when
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when there are large numbers of nodes touching each automorphism orbit and mainly breaks

down when the number of nodes at each graphlet degree is less than six.

10.1.3 Scaling and Normalization

The final statements regarding the GDD algorithm are merely critiques of the method.

They do not represent mathematical issues or anything else that requires changing in order

for the method to be mathematically sound, unlike the previously mentioned issues. The

first of two final critiques involves the scaling step seen in Equation 10.31:

Sj

G(k) =
djG(k)
k

. (10.31)

In this step, the number of nodes acting as automorphism orbit j0 a total of k times is scaled

by k. Thus as k ! 1,

Sj

0
G (k) ! 0. (10.32)

Another way to look at Equation 10.32 is that the more times a node is acting as a particu-

lar automorphism orbit, the less of an impact it will have on the overall result. This results

in a gradual leveling o↵ in the agreement as k increases (Figure 10.4).

Przulj explained the reasoning behind this as an e↵ort to “decrease the contribu-

tion of larger degrees in a GDD” (Przulj, 2007). The desire to decrease this contribution

originates from her work with yeast PPI network and the finding that most counts above

k = 20 were zero. This created a lot of noise in her data. Instead of applying a broad-band

filter, Przulj chose to keep the data as was, but decrease the contribution of higher k. This

approach is a problem-specific solution that reduces the generalizability of the method. It

also negates the e↵ect of high degree distributions that are not noise. Its ability to be

applied to networks with high graphlet degree distributions is compromised.

Lastly, normalization of the GDD makes the juxtaposition of di↵erent graph com-

parisons easier to interpret. However, the chosen normalization allows for the ends of the

range, zero and one, to be actually reachable. In the discussion of agreement, a value of
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Figure 10.4. Agreement at a single automorphism orbit showing the e↵ect of scaling on
contribution to agreement.

one makes sense. It means that the two graphs are identical. What does not make sense

is achieving a value of zero, which we have shown does happen both in the individual orbit

agreement level as well as in overall agreement. The interpretation of this is that these two

graphs are as di↵erent as physically possible and we cannot do anything to make the graphs

more di↵erent. We have discussed that the concept of “more di↵erent” is hard to perfectly

define, especially for graphs. However, logic implies that we should be able to make these

graphs infinitely more di↵erent, even if the di↵erence in calculations is infinitesimally small.

In this chapter, we propose three reformulation of the GDD. We examine their

performance in comparison to the original as well as asses their applicability more generally.

10.2 Methods

Three reformulations of the GDD algorithm were investigated. In all of the reformulated

algorithms, the geometric mean was removed as a possible method to calculate the full graph

agreement. Two features were varied between the algorithms: scaling step and algorithm

structure.
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10.2.1 Version 1

In Version 1, seen in Equation 10.35, the scaling step:

Sj

G(k) =
djG(k)
k

, (10.33)

was removed. This results in:

N j

G(k) =
djG(k)

T j

G
, (10.34)

where T j

G =
1P
k=1

djG(k). The form of the distance equation remains the same as the original

GDD (Equation 10.35). Removing the scaling step a↵ects the resulting range of values,

preventing a normalized outcome and making it impossible to turn the distance into an

agreement.

Dj(G1,G2) =
1p
2

 1X

k=1

h
N j

G1
(k)�N j

G2
(k)
i2
!1/2

. (10.35)

10.2.2 Version 2

In the second method, Equation 10.37, scaling is not removed despite the noted problems,

however the algorithm structure is edited. Thus Sj

G(k) is defined as in Equation 10.33.

Then N j

G(k) is defined such that:

N j

G(k) =
Sj

G(k)

T j

G
, (10.36)

which is the same as the definition of N j

G(k) for the original GDD.

The new distance is structured similar to the distance used in both the RGF and

the DDD. The form of the distance equation was changed to see if the many inconsistencies

are a result of the overall idea or just an unfortunate side e↵ect of the way the equation for



167

the agreement was designed. Thus the distance at any automorphism orbit j is defined as:

Dj(G1,G2) =
k2X

k=k1

|F
k

(G1)� F
k

(G2)| (10.37)

k1 = min (�(G1), �(G2))

k2 = max (�(G1),�(G2))

where

F
k

(G) =

8
><

>:

�log(N j

G(k)), N j

G(k) 6= 0

0, N j

G(k) = 0
. (10.38)

In Equation 10.37, �(G) is the minimum degree of graph G and �(G) is the maximum degree

of that same graph. The equation can be rewritten as

Dj(G1,G2) =
k2X

k=k1

�����log
 
N j

G2
(k)

N j

G1
(k)

!����� . (10.39)

10.2.3 Version 3

The final reformulated equation uses the same distance as in Version 2, but with the removal

of scaling. Thus N j

G(k) has the same definition as in Version 1. Overall, the distance is

defined such that:

Dj(G1,G2) =
k2X

k=k1

�����log
 
N j

G2
(k)

N j

G1
(k)

!����� , (10.40)

where:

N j

G(k) =
djG(k)

T j

G
. (10.41)
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10.2.4 Analysis of Performance

To test the accuracy of the reformulated methods 100 graphs were randomly selected from

the 1000 total graphs for each of the nine model types. Similar to previous sampling

procedures, 10 of these were designated as test graphs and the remaining 90 as comparison

graphs. The median distance for each of the 10 graphs against all of the comparison graphs

of a given type was calculated. The overall smallest median distance was determined to be

the best fit. Only 100 graphs were used as opposed to the full 1000 seen in Section 7 with

the goal of saving time, while still preserving statistical power and significance. Thus, the

results are statistically sound (Burton et al. , 2006).

The reformulated algorithms were evaluated in the same ways as the original version

in Section 7.1. Overall accuracy was calculated along with sensitivity, specificity, PPV,

NPV, and both of the F-measures. Finally, the S. cerevisiae PPI network will be classified

and the results interpreted using Bayes theorem.

10.3 Results

10.3.1 Model Graph Classification

All of the reformulated versions of the graphlet degree distribution work without exhibiting

the idiosycrancies seen in the original version. Two of the versions correctly classified more

than 70% of the model graph correctly. The third version classified only 33% of the model

graphs correctly.

Version 1

The reformulated graphlet degree distribution version 1 removed the scaling step and kept

the same algorithmic structure. This version had an accuracy of 72%. It correctly placed

five model types into the correct category 100% of the time: GEO, LPA, RDG, RDS, and

STI (Table 10.4). SMW was classified correctly 90% of the time. The other remaining

models were classified correctly significantly less. AGV was only accurately classified 50%,

while DMR was 10%. DMC was never classified correctly. Unlike other methods, the DMC

and DMR model graphs were not spread among many di↵erent model types. Instead they

were either DMC, RDG, or SMW. The DMR graphs were incorrectly classified as LPA,
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RDG, or RDS.

Table 10.4. Classification accuracy of reformulated graphlet degree distribution version 1.

Predicted Class
AGV DMC DMR GEO LPA RDG RDS SMW STI

AGV 50 - - 10 40 - - - -
DMC - - 20 - - 60 - 20 -
DMR - - 10 - 10 40 40 - -
GEO - - - 100 - - - - -
LPA - - - - 100 - - - -
RDG - - - - - 100 - - -

A
c
tu

a
l
C
la
ss

RDS - - - - - - 100 - -
SMW - - - 10 - - - 90 -
STI - - - - - - - 100

The values presented are the percent of model graphs classified into each category by GDD-V1. This version
has the same structure as the original GDD, but with the scaling step removed.

If we look at the analysis of performance for Version 1, the F-macro is 0.6597 and

the F-micro is 0.7263 (10.5). Only two models had low scores across the majority of the

statistics: DMR and DMC (Figure 10.5). Both of these had low PPV and sensitivity, but

high NPV and specificity. This is because very few, or none in the case of DMC, models of

the given type were classified correctly. At the same time however, very few model graphs

were incorrectly placed into these categories. The remaining graphs had high values across

all of the statistics considered.

In Figure 10.5, we can see the groups mentioned in Section 7.3. The majority of

the models are classified as Group 1, which are the models that were accurately classified

often, but were also a very popular incorrect choice. Models in this include GEO, LPA,

RDG, and RDS. DMC and DMR fall into Group 2, models that have low accuracy and are

an unpopular incorrect choice. AGV is Group 3, low accuracy and never chosen incorrectly.

Two models do not fall neatly into any category. These are STI and SMW. All of the

STI graphs and nearly all of the SMW graphs were classified correctly and no graphs were

incorrectly classified into either category.
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PPV NPV Sensitivity Specificity F-Measure
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Figure 10.5. Parallel coordinate representation of the graphlet degree distribution version
1 performance statistics. This version has the same structure as the original GDD, but with
the scaling step removed. Statistics used include PPV (positive predictive value), NPV (negative
predictive value), sensitivity, specificity, and F-measure. Values are calculated using the classification
results of the 10 models of each of the nine model graph types.
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Table 10.5. Graphlet degree distribution version 1 analysis of performance.

Model PPV NPV Sensitivity Specificity F-measure

AGV 1.0 0.9412 0.50 1.0 0.6667
DMC 0.0 0.8889 0.0 1.0 0.0
DMR 0.3333 0.8966 0.1 0.975 0.1538
GEO 0.7692 1.0 1.0 0.9625 0.8696
LPA 0.6667 1.0 1.0 0.9375 0.8
RDG 0.5 1.0 1.0 0.875 0.6667
RDS 0.7143 1.0 1.0 0.95 0.8333
SMW 1.0 0.9877 0.9 1.0 0.9474
STI 1.0 1.0 1.0 1.0 1.0

Average 0.6648 0.9683 0.7222 0.9667 0.6597
Global 0.7303 0.9999 0.7222 0.9667 0.7263

Results are calculated based on the classification of the 10 model graphs from each of the nine model
types using the GDD-V1. This version has the same structure as the original GDD, but with the scaling
step removed. Statistics used include PPV (positive predictive value), NPV (negative predictive value),
sensitivity, specificity, and F-measure. The average F-measure corresponds to the F-macro while the global
F-measure corresponds to the F-micro.

Version 2

The reformulated graphlet degree distribution version 2 keeps the scaling step, but has the

edited algorithm structure that resembles the RGF and DDD. This version had an accuracy

of 33%. It correctly placed three model types into the correct category 100% of the time:

GEO, RDS, and SMW (Table 10.6). No other model types were ever classified accurately,

not even a single time. Interesting, the incorrect classification clustered into two model

types: GEO and SMW. All of the LPA, RDG, STI graphs were classified as SMW while

AGV, DMC, and DMR graphs were misclassified into both GEO and SMW.

Table 10.6. Classification accuracy of reformulated graphlet degree distribution version 2.

Predicted Class
AGV DMC DMR GEO LPA RDG RDS SMW STI

AGV - - - 10 - - - 90 -
DMC - - - 30 - - - 70 -
DMR - - - 10 - - - 90 -
GEO - - - 100 - - - - -
LPA - - - - - - - 100 -
RDG - - - - - - - 100 -

A
c
tu

a
l
C
la
ss

RDS - - - - - - 100 - -
SMW - - - - - - - 100 -
STI - - - - - - 100 -

The values presented are the percent of model graphs classified into each category by GDD-V2. This version
has the edited structure, but keeps the scaling step seen in the original GDD.
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The way the incorrect models were classified into only two groups resulted in very

low performance statistics. The F-macro for GDD-V2 is 0.2296 and the F-micro is 0.3333

(Table 10.7). The incorrect classifications also resulted in a very unique looking parallel

coordinate representation where only four distinct lines are shown (Figure 10.6). AGV,

DMC, DMR, LPA, RDG, and STI models all have the same performance statistics values,

thus they are represented by the same line. These models all fall into Group 2. GEO falls

into Group 1, which are models with high classification accuracy while still being a popular

incorrect classification choice. SMW follows a similar pattern as GEO, but its values are

much more extreme than those seen for GEO thus it does not adequately fit the pattern.

The extreme fluctuations are because the majority of the misclassified graphs fall into this

model type. RDS also does not fall neatly into any pattern.

Table 10.7. Graphlet degree distribution version 2 analysis of performance.

Model PPV NPV Sensitivity Specificity F-measure

AGV 0.0 0.8889 0.0 1.0 0.0
DMC 0.0 0.8889 0.0 1.0 0.0
DMR 0.0 0.8889 0.0 1.0 0.0
GEO 0.6667 1.0 1.0 0.9375 0.8
LPA 0.0 0.8889 0.0 1.0 0.0
RDG 0.0 0.8889 0.0 1.0 0.0
RDS 1.0 1.0 1.0 1.0 1.0
SMW 0.1538 1.0 1.0 0.3125 0.2667
STI 0.0 0.8889 0.0 1.0 0.0

Average 0.2023 0.9259 0.3333 0.9167 0.2296
Global 0.3333 0.9999 0.3333 0.9167 0.3333

Results are calculated based on the classification of the 10 model graphs from each of the nine model types
using the GDD-V2. This version has the edited structure, but keeps the scaling step seen in the original
GDD. Statistics used include PPV (positive predictive value), NPV (negative predictive value), sensitivity,
specificity, and F-measure. The average F-measure corresponds to the F-macro while the global F-measure
corresponds to the F-micro.
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Figure 10.6. Parallel coordinate representation of the graphlet degree distribution version
2 performance statistics. This version has the edited structure, but keeps the scaling step seen in
the original GDD. Statistics used include PPV (positive predictive value), NPV (negative predictive
value), sensitivity, specificity, and F-measure. Values are calculated using the classification results
of the 10 models of each of the nine model graph types.
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Version 3

The reformulated graphlet degree version 3 removed the scaling step and also utilized the

edited algorithm structure. It has an accuracy of 76%, the highest of all the reformulated

versions considered (Table 10.8. Only four models were correctly classified 100% of the

time, however, as opposed to Version 1’s five correctly classified methods. These model

types are GEO, RDG, RDS, and STI. Three models were classified correctly at or above

80% of the time: AGV, LPA, and SMW. Only two model types were classified extremely

poorly. These are DMC and DMR. None of the DMC models were classified correctly and

only 20% of the DMR models were.

Table 10.8. Classification accuracy of reformulated graphlet degree distribution version 3.

Predicted Class
AGV DMC DMR GEO LPA RDG RDS SMW STI

AGV 90 - - 10 - - - - -
DMC - - - 70 - - 30 - -
DMR - - 20 - - 10 50 - 20
GEO - - - 100 - - - - -
LPA 10 - - - 90 - - - -
RDG - - - - - 100 - - -

A
c
tu

a
l
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RDS - - - - - - 100 - -
SMW - - - 20 - - - 80 -
STI - - - - - - - 100

The values presented are the percent of model graphs classified into each category by GDD-V3. This version
has the edited algorithm structure and the scaling step was removed.

Version 3 has an F-macro of 0.7013 and F-micro of 0.7556 (Table 10.9). Several

of the model types have high values for every statistical performance measure. These are

AGV, LPA, RDG, SMW, and STI. GEO and RDS have slightly lower PPV than the afore

mentioned models despite having similar statistics for the remaining measures. DMC and

DMR both perform poorly due to extremely inaccurate model classification.

Figure 10.7 shows the parallel coordinate representation of the performance statistics

for Version 3. GEO, RDG, RDS, and STI fall into Group 1. DMC is alone in Group 2 while

DMR is alone in Group 3 and SMW in Group 4. Two models, AGV and LPA, do not fall

into any categories.
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Figure 10.7. Parallel coordinate representation of the graphlet degree distribution version
3 performance statistics. This version has the edited algorithm structure and the scaling step
was removed. Statistics used include PPV (positive predictive value), NPV (negative predictive
value), sensitivity, specificity, and F-measure. Values are calculated using the classification results
of the 10 models of each of the nine model graph types.
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Table 10.9. Graphlet degree distribution version 3 analysis of performance

Model PPV NPV Sensitivity Specificity F-measure

AGV 0.9 0.9875 0.9 0.9875 0.9
DMC 0.0 0.8889 0.0 1.0 0.0
DMR 1.0 0.9091 0.2 1.0 0.3333
GEO 0.5 1.0 1.0 0.875 0.6667
LPA 1.0 0.9877 0.9 1.0 0.9474
RDG 0.9091 1.0 1.0 0.9875 0.9524
RDS 0.5556 1.0 1.0 0.9 0.7143
SMW 1.0 0.9759 0.8 1.0 0.8889
STI 0.8333 1.0 1.0 0.975 0.9091

Average 0.7442 0.9721 0.7556 0.9694 0.7013
Global 0.7556 0.9999 0.7556 0.9694 0.7556

Results are calculated based on the classification of the 10 model graphs from each of the nine model types
using the GDD-V3. This version has the edited algorithm structure and the scaling step was removed. Statis-
tics used include PPV (positive predictive value), NPV (negative predictive value), sensitivity, specificity,
and F-measure. The average F-measure corresponds to the F-macro while the global F-measure corresponds
to the F-micro.

10.3.2 Comparison of the Original Graphlet Degree Distribution to the Reformulated
Versions

Two of the reformulated versions of the graphlet degree distribution performed extremely

well, Table 10.10. In fact, both versions 1 and 3 performed better than the original version

(72%, 76% v 68%). The majority of the improvement came in the classification of AGV and

SMW. Looking at AGV, the original GDD only classified 40% correctly. Version 1 classified

50% and version 3 classified 90% correctly. For SMW, the original GDD classified only

60% of the graphs correctly. Version 1 classified 90% and version 3 classified 80% correctly.

Unfortunately, none of the reformulated versions classified any of the DMC graphs correctly,

which is a common theme among all of the algorithms considered. Version 3 classified 10%

more DMR graphs correctly than both the original and version 1, each of which classified

10% correctly.

Version 2, on the other hand, had an overall classification accuracy of only 33%. This

is the lowest of any method considered previously and simply from this statistic Version 2

can be dismissed as a viable replacement option for the original GDD.

Focusing on the performance statistics for the classification of each individual model

shows that using di↵erent classifiers results in di↵erent group designations for many of the

model graphs (Table 10.11). GEO and DMC are the only model types that remain in the

same group for all versions, Group 1 and Group 2 respectively. In terms of groupings,
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Table 10.10. Comparison of the classification accuracy of the reformulated versions of the graphlet
degree distribution.

Classification Accuracy

Model Original V1 V2 V3
AGV 40 50 0 90
DMC 0 0 0 0
DMR 10 10 0 20
GEO 100 100 100 100
LPA 100 100 0 90
RDG 100 100 0 100
RDS 100 100 100 100
SMW 60 90 100 80
STI 100 100 0 100

Average 68 72 33 76

The values in the table indicate the percentage of the given model graph that was accurately classified by the
classification method. Four classification methods are shown. Original refers to the original graphlet degree
distribution using arithmetic mean. The remaining three classifiers are the three reformulated versions of
the original (e.g. V1 refers to version 1).

version 2 appears to be an anomaly. There are many more similarities in group placement

between the original GDD and versions 1 and 3 than between version 2. If we consider only

version 1 and 3, we can add LPA, RDG, and RDS to the list of models that do not change

groups. Since Group 1 is models with high accuracy this indicates that these models were

all classified with high accuracy no matter the classifier used.

Table 10.11. Model graph groupings based on performance statistics.

Group 1 Group 2 Group 3 Group 4 No Group

Original GEO, LPA, RDG, RDS, STI DMC AGV, DMR, SMW - -
Version 1 GEO, LPA, RDG, RDS DMC, DMR AGV - SMW, STI
Version 2 GEO AGV, DMC, DMR, LPA, RDG, STI - - RDS, SMW
Version 3 GEO, RDG, RDS, STI DMC DMR SMW AGV, LPA

The groups listed correspond to those presented in Figure 7.13. Results are based on the patterns of
performance statistics presented in Figures 10.5, 10.6, and 10.7. Original refers to the original graphlet degree
distribution using arithmetic mean. The remaining three classifiers are the three reformulated versions of
the original GDD.

Finally, if we examine the analyses of performance for the original GDD as well as

version 1 and 3, we see that version 3 has the highest F-macro, 0.7013 compared to 0.6597

for version 1 and 0.5444 for the original (Figure 10.8). It also has the highest F-micro (

0.7556 v 0.7263, 0.6778). In fact, version 3 has higher global statistics than any of the other

versions of GDD including the original. Due to its better classification accuracy, higher
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performance statistics, and lack of inconsistent results, we can conclude that reformulated

graphlet degree distribution reformulation version 3 is the best replacement for the original

GDD.

Accuracy F-macro F-micro Sensitivity Spec. PPV NPV
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Version 1

Version 3

Version 2

Figure 10.8. Parallel coordinate comparison of original and reformulated versions of the
graphlet degree distribution performance statistics. Statistics used include PPV (positive
predictive value), NPV (negative predictive value), sensitivity, specificity, and both F-measures.
Values presented for sensitivity, specificity, PPV and NPV are the global results of the classification
results of the 100 models of each of the nine model graph types.
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10.3.3 Saccharomyces cerevisiae PPI Network Classification

Under the original GDD using the arithmetic mean, the model type declared the best fit

for the S. cerevisiae PPI network was the GEO model graph. There was a 100% chance

that if the S. cerevisiae PPI network really is GEO then it would be classified as such and

a 20% chance that the S. cerevisiae PPI network would be classified as GEO when it really

is a di↵erent model. With such a high probability of incorrect classification, these results

are di�cult to trust.
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Figure 10.9. S. cerevisiae PPI network Classification by reformulated graphlet degree
distribution version 3. The figure shows the results of comparing the empirical S. cerevisiae PPI
network against the 1000 model graphs of each of the nine types. Results are displayed such that
the red diamond across the middle line is the median distance, the ends of the box are the first and
third quartiles respectively, and the remaining lines and points represent the outlying distances.

The best fit for the empirical network under Version 3 of the reformulated GDD is

also GEO, though the results are close (Figure 10.9). Using Bayes theorem, we conclude

that there is a 100% chance that if the S. cerevisiae PPI network really is GEO, then it will

be classified as such. There is a 12.5% chance that even if the S. cerevisiae PPI network is

not really GEO, it will still be classified as GEO. This is lower than the chance of incorrect
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classification given by the original GDD.

Pr (classified as GEO | GEO) =
Pr(GEO | classified as GEO) · Pr(classified as GEO)

Pr(GEO)

=
100
200

· 200
900

1
9

= 1 (10.42)

Pr (classified as RDG | not RDG) =
Pr(not RDG | classified as RDG) · Pr(classified as RDG)

Pr(not RDG)

=
100
200

· 200
900

8
9

= 0.125 (10.43)

Table 10.12 shows the rankings of the nine model graph types when classified by the

original GDD using arithmetic mean and when classified using version 3 of the reformulated

GDD. The lists have a Kendall’s W of 0.425 indicating that they match less than 50% of

the time. In fact, only one of the model graphs appear at the same ranking in both lists:

GEO. Two model types appear only one position o↵: AGV and RDS. Overall, it appears

that the reformulated GDD, while using the same basic premise as the original GDD, does

not share much in common in terms of classification.

Table 10.12. Ordered rankings of the model graphs based on fit for S. cerevisiae PPI network using
the original graphlet degree distribution and reformulated version 3.

Original Version 3

1 GEO GEO
2 RDG SMW
3 RDS DMC
4 AGV RDS
5 LPA AGV
6 DMC DMR
7 STI LPA
8 SMW RDG
9 DMR STI

Rankings of model graphs are determined based on the median distance of the S. cerevisiae PPI network
to each model graphs of the given type. The median smallest distance is ranked first. Models in bold show
up in di↵erent places across the two lists. Items not in bold do not change position when the reformulated
graphlet degree distribution version 3 is used in place of the original.
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10.4 Conclusions

We have shown that there are too many inconsistencies in the graphlet degree distribution

for it to be considered as a classifier for the S. cerevisiae PPI network. We have addressed

these inconsistencies and proposed three reformulated versions of the algorithm. All of

these reformulations keep the same basic premise in mind (i.e. comparing graphs based on

graphlet degree distribution), but they also provide more consistent results. Of the three

versions considered, one performed so poorly, version 2, that it was immediately dismissed

as a possible replacement for the original GDD. Version 2 produced substantially di↵erent

results than were seen in the other two reformulations. One interesting aspect of the results

is that graphs were only classified into one of three categories: GEO, RDS, and SMW.

Incorrectly classified model graphs were only classified as GEO or SMW with SMW taking

approximately 92% of the misclassified graphs. We can only speculate on why version 2

classified graphs so di↵erently than the other versions but we can conclude that clearly some

combination of scaling combined with the structure of the algorithm limited its ability to

discern di↵erences between the model graphs.

The two other reformulations, version 1 and version 3, produced very similar values

for all of the statistics examined. They both reported higher accuracies than the original

GDD (72%, 76% v 68%), as well as higher F-measures. Since version 3 has a slightly

higher value for every statistic considered than version 1, it is deemed the best replacement

for the original GDD. This shows that the method is greatly improved by removing the

scaling step and by editing the structure of the algorithm. The first step is of particular

importance because it will make the graphlet degree distribution more generalizable. The

scaling step was originally created because it was found that graphlets of high degree were

often noise (Przulj, 2007). While this may be true for PPI networks, it is not necessarily

true of networks of other types. By removing this step, we are forcing biologists to clean up

their networks (i.e. eliminating noise) before classifying which should lead to better results.

We are also allowing the method to be applied to other network classification problems.
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Chapter 11

Designing the Cross Scoring Algorithm

One of the main issues with the previously examined network classification algorithms is that

they only look at features of one scale. Characteristic curve and degree distribution distance

both look at large-scale features while relative graphlet frequency and degree distribution

distance look at small-scale. None of these methods use a diverse set of features to classify

the networks nor do they have an easily interpretable structure. Therefore, we propose a

new method that is based on the idea that the best fitting model graph is the one that

averages the highest ranking across a set of criteria, as opposed to highest ranking on only

one criteria. This new classification algorithm is referred to as Cross Scoring (CS).

The overall idea for the CS algorithm is simple. First, a set of graphical features

are selected. Average values for these features are calculated across the nine types of model

graphs. These values are then ranked by their distance from the measured value of the test

graph under examination. The test network is either the real world network in which one is

interested in finding a match, or one of the numerous model graphs that were deemed test

networks. From there, the model type with the closest value is awarded one point, second

closest receives two points, and so on. These steps are performed for each network measure

under consideration. When all of the measures have been ranked, the points are added up.

The model graph category with the lowest score is deemed the best fit.

In this chapter, we propose several ways to design the algorithm, discuss the pros

and cons of each, and then declare a final algorithm. In Chapter 12, we further refine

aspects of cross scoring and explain these aspects through a simple example. Finally in

Chapter 13, we will show how the algorithm can be applied to the real-world classification

problem that has previously been discussed: classification of the S. cerevisiae PPI network.

11.1 Methods

Even though the idea behind the Cross Scoring classifier is straightforward, there are many

potential choices to be made when designing the algorithm. The first choice is to decide

which measure of center to use. This can be either mean or median. Another choice is
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whether to round values that are very close to the desired empirical value to that value,

thus resulting in a distance of zero. In other words, should models that produce measure

values within 1% or 5% of the empirical value be rewarded for their near accuracy? Other

factors to consider are whether scoring should be linear and whether measures of spread,

either standard deviation or IQR depending on the measure of center, should be applied.

Further detail for these factors can be seen in the following subsections.

11.1.1 Measures of Center and Spread

Two di↵erent measures of center (mean and median) are tested to see which achieves an

optimal result. In addition to the required measure of center, a measure of spread can be

added. This is either standard deviation if the measure of center is mean or interquartile

region (IQR) if the measure of center is median. These can be used to break ties in a

model. For instance, if Model A and Model B both have the same value for a measure, then

the two model types will receive an equal score, which is not necessarily warranted. If we

consider the measure of spread, a smaller measure indicates that the growth mechanism is

more likely to reproduce the desired value, or at least one close to it, than the model with

a larger measure of spread. Thus if Model A has a smaller measure of spread, it will be

ranked above Model B.

11.1.2 Nonlinear Scoring

In the basic design of CS, one point is earned if the model type has the closest measure

value to the empirical value, two for second closest, and so on. Scoring can be modified in

order to add additional penalties to models that present with values dramatically di↵erent

than the desired value.

Two di↵erent nonlinear scoring schemes were evaluated. For each of the nonlinear

schemes, we broke the scoring into groups (Table 11.1). In both schemes, models in first

and second place are scored normally, given one and two point respectively. Those placing

between third and fifth place are scored with an additional two points. In the first scheme,

models placing sixth and higher are given an additional four points. In the second scheme,

models in fifth through eight place receive an additional five points and the model type
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Table 11.1. Generalized nonlinear scoring schemes 1 and 2 for cross scoring algorithm depicted by
rank ranges.

Score
Rank i Scheme 1 Scheme 2

i <

n
3

i i

n
3
 i <

2n
3

i+ 2 i+ 2
2n
3

 i < n i+ 4 i+ 5
n  i i+ 4 i+ 9

This table displays the number of points prescribed to di↵erent ranges of rankings for two di↵erent nonlinear
scoring systems. Rank i is the location that the model graph is ranked in comparison to other model graphs
based on some graph measure. Score is the number of points awarded to the graph of rank i. The variable
n is the number of model graphs in the comparison. This table is generalized to work for any number of
model graphs.

in ninth place receives an additional nine points. Exact scores for each place in the two

schemes can be seen in Table 11.2. The exact details regarding the divisions and the number

of additional points added is arbitrary. This was done to see if it provided any increase

in accuracy. If an increase in classification accuracy is seen, more precise schemes can be

developed.

Table 11.2. Nonlinear scoring schemes 1 and 2 for cross scoring algorithm.

Score
Rank Scheme 1 Scheme 2

1 1 1
2 2 2
3 5 5
4 6 6
5 7 7
6 10 11
7 11 12
8 12 13
9 13 18

This table displays the number of points prescribed to each rank based on a total of nine model graphs.
Rank is the location that the model graph is ranked in comparison to other model graphs based on some
graph measure. Score is the number of points awarded to the graph. Scheme 1 and scheme 2 are the two
unique scoring systems presented in Table 11.1.

11.1.3 Zeroing

The scoring system can be modified in more subtle ways than moving to nonlinear scoring.

If we use zeroing in the model, than any test graph that achieves the exact same value as

the empirical value is given no points, instead of the standard one point for being in first
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place. If the test graph is in first place, but the distance is not zero, then one point is still

given. This is done to further reward models that exactly reproduce desired values. The

graph with the second closest value is still awarded two points.

11.1.4 Approximations

Many of the features were particularly di�cult for the model graphs to mimic, especially

centrality and other connectivity measures. One way to further reward model graphs that

were able to get close to the empirical value when the majority of other graphs were far

is to allow values within 1% or 5% to be considered mathematically equal to the empirical

value. This artificially increases the number exact matches to the empirical value. When

combined with zeroing, the models that are close get further rewarded.

11.1.5 Tie Breaking

No matter how the algorithm is designed, ties for overall best fitting model are inevitable.

Ties are broken by counting the number of low rankings, those that give a high score, that

the model receives. Example 5 provides a concrete explanation of how this works.

Example 5 Consider three model graph types (A, B, and C) along
with any five measures such that the models receive the rankings:

• A: (1, 1, 2, 3, 1)

• B: (2, 2, 1, 1, 2)

• C: (3, 3, 3, 2, 3)

Model A and Model B both have a score of 8, while Model C has a score of 14.
Since the lowest score is considered the best fit for the test network, Model
C can be eliminated as a possible option. Table 11.3 shows the number of
times each model is classified at each of the three rankings. Model A has one
third place ranking and Model B has zero. Therefore, Model B is considered
the best fit.

Table 11.3. Counts of rankings for Model A and Model B in Example 5.

Count
Rank Model A Model B

1 3 2
2 1 3
3 1 0

This table shows the number of times Model A and Model B are ranked first, second, or third place in
Example 5. Count signifies the number of times each model is ranked a certain way.
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The reason that the number of low rankings is considered detrimental, as opposed to

the number of high rankings being positive, is that we chose to reward models that perform

consistently across all features. We also chose not to consider a model with three first best

finishes significantly better than a model with only two. Looking at the lower rankings gives

a better idea of a model type’s performance on the features considered important.

11.2 Data

Two forms of data are needed to perform cross scoring. First, we need graph data to classify

and graph data to compare. For this, 1000 graphs of each of the nine model types were

used. From each set of 1000 model graphs, 100 were designated as test graphs that need to

be classified and the remaining 900 as comparison graphs.

The second type of data needed is the list of features to use. Two di↵erent lists of

features were used in order to get an idea of how each of the potential algorithms worked

in di↵erent scenarios (Table 11.4). The first measure list is based on the Nicosia criteria

(Nicosia et al. , 2013). Nicosia argues that nodal properties such as degree, average neighbor

degree, and clustering coe�cient are extremely important in revealing the existence of local

and global graph features and thus can be used to distinguish between di↵erent categories

of graphs.

The second measure list is based on biologically significant features. In Section 4.2

the biologically significant features were listed as density, transitivity, average degree, and

assortativity. To that list we add average neighbor degree and average shortest path length

to finish o↵ the biologically significant sequence. We use two lists to confirm that we are

designing the best overall implementation of cross scoring and not designing it to work with

only one list of features.
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Table 11.4. Initial measures used to determine the best cross scoring algorithm implementation.

Nicosia Biologically Significant
(Nic) (Bio)

Average Degree Average Degree
Average Clustering Coe�cient Density
Average Neighbor Degree Average Neighbor Degree

Transitivity
Assortativity
Average Shortest Path Length

Cross scoring requires a list of measures in order to classify networks. In order to find the best classifier
design, two measure lists were used. Nicosia is based on the Nicosia criteria (Nicosia et al. , 2013) and
biologically significant are measures that have simple biological interpretations.

11.3 Results

We analyzed 48 di↵erent algorithm implementations. This is not a full representation of

all possible combination of algorithmic features discussed in Section 11.1, because some

algorithms performed so poorly that it was not necessary to continue down their path.

These formulations were tested on two sequences of features, the Nicosia criteria, Nic, and

the biologically significant measures, Bio (Table 11.4).

Tables 11.6 and 11.7 show the classification results of various combinations of factors

that comprise the CS algorithm. The first factor in each table is measure of center, i.e. mean

or median. This factor is used as the basis to separate the results into two unique tables.

The next is whether a measure of spread is used. In the median table this measure of

spread is the interquartile range, and in the mean table it is the standard deviation. The

Scoring column represents the type of scoring used. This can be either linear or nonlinear.

If it is nonlinear it falls into either scheme 1 or scheme 2, as discussed in the methods

section (Tables 11.1 and 11.2). The approximation (Approx.) column indicates whether

values within 1% or 5% are considered equal to the empirical value. Zeroed corresponds to

whether values equal to the empirical value are rewarded by not receiving any points at all.

The final three columns deal with the classification results. The Measure columns

indicates which measure list was used and the accuracy of the model using that list is

reported in the next column. Finally, the Average Accuracy over the two measure lists

considered is computed in the Average column.
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11.3.1 Mean Results

Table 11.5 shows the results for the twelve algorithms created when the measure of center

used is the arithmetic mean. The first thing to note is that many of the features used do

not have any a↵ect on the results of the model. Nothing changes when measure of spread

is used or when zeroing is applied. This allows the full table to be pared down to the more

manageable Table 11.6. Here is it obvious that when the mean is used, linear scoring results

in the best average accuracy. Approximately 69.5% of the 900 graphs classified were done

so correctly. When nonlinear scoring was applied, both schemes performed with nearly the

same accuracy (53.5% v 53%).

Table 11.5. Results of model graph classification based on variations of the cross scoring algorithm
using mean as the measure of center.

Measure of Measure of Scoring Zeroed Measures Accuracy Average
Center Spread Accuracy

1

Mean

No

Linear
No

Nic 0.72
0.695

2 Bio 0.67
3

Yes
Nic 0.72

0.695
4 Bio 0.67

5

Scheme 1
No

Nic 0.38
0.535

6 Bio 0.69
7

Yes
Nic 0.38

0.535
8 Bio 0.69

9

Scheme 2
No

Nic 0.38
0.53

10 Bio 0.68
11

Yes
Nic 0.38

0.53
12 Bio 0.68

13

Yes

Linear
No

Nic 0.72
0.695

14 Bio 0.67
15

Yes
Nic 0.72

0.695
16 Bio 0.67

17

Scheme 1
No

Nic 0.38
0.535

18 Bio 0.69
19

Yes
Nic 0.38

0.535
20 Bio 0.69

21

Scheme 2
No

Nic 0.38
0.53

22 Bio 0.68
23

Yes
Nic 0.38

0.53
24 Bio 0.68

Table displays the average accuracies for several cross scoring variants. All of the variations described here
use mean as their measure of center. Median results are described in Table 11.7. The first four columns,
not counting the line number column, describe features that may or may not be present in the algorithm.
The fifth column, Measures, indicates which measure list the algorithm is applied to and accuracy is the
classification accuracy. Average accuracy is the average of the accuracy values across the two measure lists.



189

Graphs classified using the Nicosia measure list were classified more accurately when

the scoring was done linearly. This is a di↵erence in accuracy of approximately 5% (72%

v 67%). Those model graphs classified under the biologically significant measure list were

more accurate with nonlinear scoring. Under both scheme 1 and scheme 2, Nicosia clas-

sification only worked correctly 38% of the time while biologically significant classification

worked correctly 69% and 68%, respectively. The overall accuracy for when the mean is

used is 58.7%.

Table 11.6. Summarized accuracies of model graph classification based on variations of the cross
scoring algorithm using mean as the measure of center.

Measure of Average Scoring Average
Center Accuracy Accuracy

Mean 0.587
Linear 0.695

Scheme 1 0.535
Scheme 2 0.53

Table display the average accuracies for several cross scoring variants. All of the variations described here
use mean as their measure of center. Median results are described in Table 11.7. There are two features
described, measure of center and scoring. Each feature column is followed by the average accuracy of all of
the models that have the listed feature. The average accuracies come from the classification accuracies in
Table 11.5.

11.3.2 Median Results

When the measure of center utilized was the median, variations of the algorithm had more

impact on classification accuracy. While zeroing continued to have no impact, changing

scoring, use of approximation, and adding in a measure of spread all had an a↵ect on the

results (Table 11.7).

Looking first at the di↵erent scoring schemes used without adding in IQR, linear

scoring is the most accurate for every level of approximation. Within linear scoring, not

using any approximation resulted in the highest accuracy, 78.5%. When 1% approximation

was applied this values decreased to 77% and further decreased to 70% with 5% approx-

imation. For both nonlinear scoring schemes, 5% approximation was more accurate than

the other choices.
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When measure of spread is applied, linear scoring with no approximation is the

most accurate combination of features with 78.5% of graphs classified correctly. This is the

same accuracy seen for this feature combination as when IQR was not included. Though

the results for linear scoring are very similar, even for the approximated models, the results

are not quite as similar for nonlinear scoring models. Previously nonlinear scoring with

5% approximation was the most accurate. When the measure of spread is added in, this

changes to 1% approximation.

Table 11.8 shows overall averages of each grouping of algorithms. Linear scoring

with or without IQR has a higher average accuracy, correctly classifying 75.2% or 76.2%

of graphs when measure of spread is not used or is used, respectively. Averaging all of

the scoring schemes together, models without measure of spread have an average accuracy

of 68.7% while using measure of spread has an average accuracy of 68.1%. The overall

accuracy of using the median is 68.4%.
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Table 11.7. Results of model graph classification based on variations of the cross scoring algorithm
using median as the measure of center.

Measure of Measure of Scoring Approx. Features Accuracy Average
Center Spread

1

Median

No

Linear

NA
Nic 0.78

0.785
2 Bio 0.67
3

1%
Nic 0.76

0.77
4 Bio 0.78
5

5%
Nic 0.68

0.70
6 Bio 0.72

13

Scheme 1

NA
Nic 0.51

0.595
14 Bio 0.68
15

1%
Nic 0.60

0.625
16 Bio 0.65
17

5%
Nic 0.72

0.75
18 Bio 0.78

25

Scheme 2

NA
Nic 0.51

0.575
26 Bio 0.64
27

1%
Nic 0.60

0.625
28 Bio 0.65
29

5%
Nic 0.73

0.755
30 Bio 0.78

37

Yes

Linear

NA
Nic 0.78

0.785
38 Bio 0.79
39

1%
Nic 0.77

0.78
40 Bio 0.79
41

5%
Nic 0.67

0.72
42 Bio 0.77

49

Scheme 1

NA
Nic 0.51

0.595
50 Bio 0.68
51

1%
Nic 0.64

0.69
52 Bio 0.64
53

5%
Nic 0.61

0.66
54 Bio 0.71

61

Scheme 2

NA
Nic 0.51

0.575
62 Bio 0.64
63

1%
Nic 0.64

0.675
64 Bio 0.71
65

5%
Nic 0.61

0.645
66 Bio 0.68

Table displays the average accuracies for several cross scoring variants. All of the variations described here
use mean as their measure of center. Median results are described in Table 11.5. The first four columns,
not counting the line number column, describe features that may or may not be present in the algorithm.
The fifth column, Measures, indicates which measure list the algorithm is applied to and accuracy is the
classification accuracy. Average accuracy is the average of the accuracy values across the two measure lists.
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11.3.3 Comparison of Mean and Median Results

If we calculate the average value for the median models without including 1% and 5% ap-

proximations in order to compare them to the mean models, the average accuracy is 65.2%,

which is 6.5% higher than the average accuracy across all of the mean models. Thus the

median outperforms the mean. Therefore, approximations were not considered for the mean

models because it was clear from the beginning that the median models were outperforming

them. Therefore, it is straightforward to choose median as the measure of center to use for

the final algorithm implementation. It is important to note, that if the values of the mea-

sures under consideration are roughly normally distributed, then the mean and the median

should be approximately the same.

Table 11.8. Summarized accuracies of model graph classification based on variations of the cross
scoring algorithm using median as the measure of center.

Measure of Avg. Measure of Avg. Scoring Avg.
Center Accuracy Spread Accuracy Accuracy

1

Median 0.684

No 0.687
Linear 75.2

13 Scheme 1 0.657
25 Scheme 2 0.652
37

Yes 0.681
Linear 0.762

49 Scheme 1 0.648
61 Scheme 2 0.632

Table display the average accuracies for several cross scoring variants. All of the variations described here
use mean as their measure of center. Median results are described in Table 11.5. There are three features
described, measure of center, measure of spread, and scoring. Each feature column is followed by the average
accuracy of all of the models that have the listed feature. The average accuracies come from the classification
accuracies in Table 11.7.

The choices of which other algorithm features to include are less straightforward

than the choice for measure of center. The di↵erence between measure of spread is a sixth

of a percent in favor of no IQR (68.7% v 68.1%), however the highest average accuracy using

linear scoring is one percent in favor of including IQR. Since linear scoring always performs

better on average than either approximation, we choose linear scoring. With linear scoring,

average accuracy is always higher without approximations. Thus, the highest accuracy was

achieved with linear scoring and no approximations made with or without IQR. In order to

include as many features into the algorithm, and because including IQR does not appear

detrimental with linear scoring, we choose the model shown in lines 37/38 of Table 11.7
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as the final algorithm for cross scoring. This algorithm makes use of median, IQR, linear

scoring and makes no approximations.

11.4 Discussion

In this chapter, we proposed a novel network classification algorithm based on the idea

that the model type which performs consistently across several graph measures should be

considered a better match than one that performs very well on some features and very

poorly on others. We then proceeded to discuss the design of this new classifier, called the

cross scoring algorithm. When designing the algorithm, several features were considered for

addition into the method, including: measure of center, measure of spread, the structure of

the scoring, zeroing, and approximations.

When the mean was used, there was no di↵erence between using the standard devia-

tion to di↵erentiate between graphs with the same measure values. We speculate that this is

because using the mean on data that are not normally distributed results in skewed values.

Model graphs that produced skewed results also tended to have larger standard deviations.

Note that this fact is particular to the situation at hand due to the way in which the graph

growth mechanisms are structured. Some growth mechanisms resulted in graphs with very

similar values, while others resulted in graphs that di↵ered greatly in terms of structure

and thus in terms of measure values. This

The median is robust to skewed data, which is why medians are often used to

describe non-normal distributions. Therefore, the IQR adds additional information while

the standard deviation used in collaboration with the mean most likely results in redundant

information, thus resulting in a lack of e↵ect for the mean models, but a positive e↵ect on

the median models.

When median scoring was used, the 5% approximations outscored the 1% and no

approximation, when no measure of spread and nonlinear scoring were used. We speculate

that this is because nonlinear scoring punishes model graphs that produce values that are

di↵erent than the empirical measure value. At the same time, 5% approximations reward

model graphs that create values very close to the empirical value. When these two features
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are used together, they essentially amplify each other, resulting in the highest classification

accuracy for nonlinear scoring without IQR.

When nonlinear scoring is used in conjunction with IQR, the 1% approximations

become more accurate than the 5%, which is likely due to the increased information provided

by the IQR. This increased information eliminates ties. Most likely, the use of the 5%

approximations without the ability for graphs to tie results in graphs being falsely ranked

higher than they should be due to the increased range of graphs being declared exact

matches to the empirical value.

It is essential to note that there are limitations with the design of the algorithm.

In particular, it was only applied to one type of problem. Even though the model graphs

produce a variety of measure distributions, a di↵erent scoring scheme may provide better

results for a di↵erent problem. With that stated, we proceed with this algorithm because

it appears to be the best fit for the classification problem at hand and does not seem fitted

to the measure list used. In Chapter 12, we discuss how the measure list is calculated and

then in Chapter 13 we test the cross scoring metric’s ability to accurately classify the model

graphs, before applying it to the S. cerevisiae PPI network.
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Chapter 12

Determining the Cross Scoring Measure List

Once the cross scoring algorithm has been designed, there is another piece that must be

determined before it can be directly applied. This is the determination of the measure list.

The determination of this list takes place in the first of cross scoring’s two stages: the build

stage. The second stage, test stage, is discussed in greater detail in Chapter 13 where the

algorithm is applied to the S. cerevisiae PPI network.

In this chapter, we explain the build stage and present three possible methods for

determining the measure list: macro-scoring, micro-scoring, and importance scoring. Each

method results in di↵erent answers to the classification problem, but all have high levels of

accuracy. The methods are described along with an example that demonstrates how each

works.

12.1 Methods

After determining the structure of the algorithm (Chapter 11), the next step in the process

of building the full cross scoring model is to determine the best set of graph measures or

features to be used in the classification step. We are looking to determine the selection of

graph measures, or features, whose presence leads to the highest level of accuracy. Ideally,

a simpler model with fewer features present is considered better than a more complex

model. This is in part because of the ease of computation, but also because it reduces the

possibilities of overfitting the model as well as including highly correlated predictors.

This process begins by gathering all of the measures that one might want to include

in the model. Once this list, of size n, has been created, then each measure alone is used to

calculate the accuracy of the algorithm. The most accurate measure is added to the final

measure list. Then that single most accurate measure is paired with each of the remaining

measures to create n�1 lists of two measures. Each of the new two-measure lists is used to

calculate the model accuracy and the most accurate is added to the final measure list. This

process is repeated until all of the measures are in one list. In the end, there should be n

most accurate lists ranging in size from one to n. The overall most accurate is determined
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to be the best measure list for that trial. If multiple combinations of features produced

the same accuracy, the combination with the least features is deemed best. Multiple trials

are then completed, determining a best measure list for each trial. The number of trials

completed is designated as tr#. Trial design is discussed further in Section 12.2. Once

measure lists have been created for all of the trials, scoring is performed. Classification

accuracy, and other performance statistics, are averaged across all of the trials.

12.1.1 Macro- v Micro-Scoring

The di↵erence between micro-scoring (m-CS) and macro-scoring (M-CS) occurs after all

the trials have completed the build stage. Thus there are tr# unique measure lists, one for

each trial. Under macro-scoring, each trial uses their unique, customized measure list to

classify the test graphs, resulting in macro-lists.

Under micro-scoring, one measure list is created from the tr# lists. The micro-

scoring list is created in several steps. First, we look to see if any graph measures occur in

all of the macro-lists. If so, these measures are automatically included into the micro-list.

Next, we look for any patterns within the macro-lists. These patterns can be anything

from length of the list to obvious groupings between the number of time measures appear in

macro-lists or combinations of measures that always appear together (or never do). Creation

of the micro-list requires more judgment than for the macro-list, thus there is more room

for potential human error.

12.1.2 Importance-Scoring

The third way to design the measure list does not involve the build stage. Importance-

scoring is run by declaring the measures that are most important to the classification prob-

lem under investigation. Mathematical proof of the accuracy of this method is discussed in

Section 13.3.7.

12.2 Data

The purpose of this chapter is to explain the three ways that the measure list for cross

scoring can be determined. Therefore, we present this explanation through the use of a
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simplified example. Only a fraction of the available data, both in terms of model graphs

and graph measure, are used. The graph measures considered in the example experiment

performed and displayed in the results are the number of nodes in the graph, the number

of edges, graph density, transitivity, and assortativity.

The setup of the model graphs di↵ers from the setups seen in previous chapters. We

still work with the 1000 model graphs of each of the nine types, however these graphs are

randomly split into four groups, each containing 250 graphs of each type. The groups are

then assigned to one of three categories: build, test, and comparison (Figure 12.1). Two

groups at a time make up the comparison category.

Figure 12.1. Trial design description of model graphs for cross scoring. The 1000 model
graphs of each type are split into four groups, each containing 250 graphs of each type. The groups
are then designated as build, test or comparison.

The graphs in the comparison group are used to create the measure values to which

the graph to be classified is compared. The build group consist of the graphs that will be

classified during the creation of the measure list. With four groups of graphs, we have the

potential to run twelve trials. For this example, we only consider four trials (Table 12.1).

The full number of trials is considered in the next chapter. For this example, however, we

only consider four trials.
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Table 12.1. Model Graph Groups for Cross-Validation

Trial Test Build Comparison

1 1 2 3, 4
2 2 1 3, 4
3 1 3 2, 4
4 3 1 2, 4
5 1 4 2, 3
6 4 1 2, 3
7 2 3 1, 4
8 3 2 1, 4
9 2 4 1, 3
10 4 2 1, 3
11 3 4 1, 2
12 4 3 1, 2

The trial column just enumerates through the list. The numbers in the test, build, and comparison columns
indicate the group of graphs that are acting in each category.

12.3 Results

We ran four di↵erent trials allowing each group to take part in the build stage once. As

was mentioned, we began by calculating the classification accuracy of each graph measure

alone. Table 12.2 shows the results for the first trial. Transitivity classified the 2250 test

graphs (250 from each of nine types) most accurately at 61.78%. When transitivity and

the remaining four measures are used together to classify the graphs, the most accurate

combination is density and transitivity (Table 12.3). This combination correctly classified

70.53% of the graphs.

Table 12.2. Trial 1 build stage results at the end of round 1.

Measure Accuracy

# nodes 47.11%
# edges 29.51%
density 43.60%
transitivity 61.78%
assortativity 42.58%

Table shows the classification accuracies of using each of the five measures alone. The highlighted row has
the highest accuracy.

This process continued until all of the measures were used in one single list. Then

it was repeated for the remaining three trials. The most accurate measure list of each size

for each trial is displayed in Table 12.4. Several features can be noticed from the table.

First, transitivity is always the first measure added and its accuracy alone averages 61.92%
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Table 12.3. Trial 1 build stage results at the end of round 2.

Measures Accuracy

# nodes, transitivity 68.49%
# edges, transitivity 53.73%
density, transitivity 70.53%
assortativity, transitivity 60.13%

Table shows the classification accuracies of using each measure in conjunction with the best performing
measure from round 1, Table 12.2. The highlighted row has the highest accuracy.

(±1.55) across the four trials. Density or number of nodes is always the second measure

added. In the trials where it is not second, it is the last measure added. Assortativity is

always the third measure and number of edges is always fourth.

We note also that even when the exact same measure list appears, the accuracy is

not the exact same. In some instances it may be the best measure list for one trial, but not

for another. Take for instance the first trial measure list of size three. This has an accuracy

of 71.73% and is the second best measure list from the trial. The exact same list appears in

the third trial, but here the accuracy is up to 73.56% and it is the best measure list. Finally,

we note that using more measures is not always better. In two instance, the best measure

list contains all of the measures, but in the other two it contains three or four measures.

Going from the best measure list to the one containing all of the measures results in about

a 1-2% loss in accuracy in these instances.

12.3.1 Macro-lists

The highlighted lists in Table 12.4 are the macro-lists for each of the four trials. Two of

the lists are the same and the other two are unique.

12.3.2 Micro-list

The average accuracies and standard deviations for the best measure list of each size are

shown in Table 12.5. In this instance, it appears that the average best length of measure

list is five features, but it is followed closely behind by the list with three features (72.32% v

72.18%). Since these accuracies are nearly indistinguishable, and both have small standard

deviation, it is proposed that two micro lists are considered, one of length three and the
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Table 12.4. Most accurate measure lists from build stage results across all rounds for all trials.

Trial Size Measures Accuracy

1

1 transitivity 61.78%
2 density, transitivity 70.53%
3 assortativity, density, transitivity 71.73%
4 # edges, assortativity, density, transitivity 73.47%
5 # nodes, # edges, assortativity, density, transitivity 71.42%

2

1 transitivity 62.84%
2 # nodes, transitivity 69.56%
3 assortativity, # nodes, transitivity 72.09%
4 # edges, assortativity, # nodes, transitivity 72.67%
5 density, # edges, assortativity, # nodes, transitivity 73.42%

3

1 transitivity 63.24%
2 density, transitivity 68.98%
3 assortativity, density, transitivity 73.56%
4 # edges, assortativity, density, transitivity 70.13%
5 # nodes, # edges, assortativity, density, transitivity 72.67%

4

1 transitivity 59.78%
2 # nodes, transitivity 70.09%
3 assortativity, # nodes, transitivity 71.33%
4 # edges, assortativity, # nodes, transitivity 70.62%
5 density, # edges, assortativity, # nodes, transitivity 71.78%

Table shows the most accurate measure list of each size for all of the trials. Trial number is listed in the fist
column, followed by the number of measures, the names of the measures, and the classification accuracy.
The most accurate measure list in each trial is the best measure list. It is highlighted.

other of length five. The latter list clearly contains all of the metrics considered, but there

are several combinations that can be considered for the list of length three.

Table 12.5. Average classification accuracies by number of measures in most accurate measure list.

# Measures Accuracy (sd)

1 61.91% (1.55)
2 69.79% (0.67)
3 72.18% (0.97)
4 71.72% (1.60)
5 72.32% (0.90)

Table shows the average classification accuracies and standard deviations for each size measure list across
the four trials. Results are derived from the accuracies reported in Table 12.4.

The results in Table 12.4 show two di↵erent combinations of size length three. The

first is assortativity, density, and transitivity. The second replaces density with number of

nodes. Both of these combinations occur twice. The average accuracy of the former list

is 72.65%. The average accuracy of the latter list is 71.71%. Thus, we choose the first

combination of length three to be the micro-list. Thus the two micro-lists can be seen in

Table 12.6.
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Table 12.6. Micro-lists for cross scoring build stage example.

3 assortativity, density, transitivity

5 density, # edges, assortativity, # nodes, transitivity

Table shows the two micro-lists. The first number is the number of measures in the micro-list.

12.3.3 Importance-Scoring

Importance-scoring involves choosing measures not mathematically, but by relevance to the

problem at hand. If we randomly choose four measure, such as betweenness centrality,

closeness centrality, number of nodes, and average clustering coe�cient, we still achieve

an average accuracy of 71.78% (±1.23). Thus, logically picking measures can result in

acceptable accuracies.

12.4 Discussion

In this chapter we expanded upon the cross scoring algorithm discussed in the previous

chapter. In Chapter ??, we designed the structure of the algorithm using two measure

lists that were generated without being mathematically tailored to the algorithm. Here, we

explained the three ways in which we can determine the measure list through an example

problem. We used four trials, each classifying 250 graphs from nine model types, and five

graph measures. Measures were assessed for accuracy and the most accurate lists of lengths

one to five were created. Then the most accurate list of these five was declared the best

measure list for the trial. This procedure was run independently for each trial.

Across the four trials, transitivity was always the first measure added. Going back

to the results from Chapter 4 (Figure 4.6, Table 4.8) it is clear that assortativity is one of

the few measures in which each model graph type has a unique value. This is not true of

density, number of nodes, or number of edges (Figure 4.1, Table 4.1). Assortativity does

not have as many overlaps as the previous three measures, but it has more than transitivity.

We saw two trials using di↵erent groups of graphs for build graphs and comparison

graphs arrive at the same best measure list. Even though they had the same best measure

list, they did not have the same accuracy. Trial 2 recorded an accuracy of 73.42% and trial

4 had 71.78%. This signifies that despite the fact that the same growth mechanism was
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used to build all of the graphs of each type, there are some definite di↵erences between each

model graph, even within a model type.

In addition to the fact that two di↵erent trials arrived at the same best measure

list, many of the measures other than transitivity were also always added in the same order.

This could be due to a number of factors. It could be the small number of trials that were

run, the reduced number of graph measures used for the comparison, or some combination

of both. Due to the setup, it is not surprising that we see so many similarities, though we

would not expect 50% of the graphs to match if a complete set of graph measures were used

or significantly more trials were run.

The three methods for determining the measure list all have di↵erent applications.

Macro-scoring can be useful no matter the number of measures used or trials run. It requires

no human intervention. Micro-scoring, on the other hand, can be di�cult to manage if there

are too many measure lists to consider. This can be exacerbated if numerous graph measures

are considered and if there are not clear favorites across the trials. Micro-scoring, however,

does make it easy to compare results across trials because the graphs are all classified using

the same list. Importance-scoring is most useful when only certain measures are important

to the problem and one is willing to potentially lose a bit of accuracy in exchange for not

losing focus.

Overall, we have shown that multiple di↵erent lists of measures can achieve accept-

able classification accuracies. By showing this, we have also confirmed that the design of

the algorithm was not accidentaly tailored to the lists used to help design it. Thus, we can

safely go forward and apply this classifier to the full classification problem.
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Chapter 13

Applying the Cross Scoring Algorithm

At this point, the structure of the cross scoring algorithm has been tested and the methods

for determining the measure lists for classification have been explained. In this chapter,

we assess the classifier’s ability to di↵erentiate between di↵erent model graph types. In

addition, we apply the method to the S. cerevisiae PPI network. We conclude this chapter

with a comparison of this new classifier to those previously discussed in this dissertation:

DDD, CC, RGF (C), and GDD V3.

13.1 Methods

As previously mentioned, there are two stages to the cross scoring classification process:

the build stage (discussed in Chapter 12) and the test stage. In the build stage, the best

measure lists are determined. In the example used in Chapter 12 only five measures were

considered. Here we look at a total of eighteen measures. Those considered as possible

predictors are: number of edges, number of nodes, number of triangles, ASPL, assorta-

tivity, average clustering coe�cient, average degree, average neighbor degree, betweenness

centrality, closeness centrality, degree centrality, density, diameter, eigenvector centrality,

maximum degree, proportion of nodes in the giant component, radius, and transitivity.

Only 171 of the 262,143 possible combinations of measures were tested because of the ways

the lists are built, one measure at a time. The best measure lists used to determine the

model accuracy are calculated using macro-scoring, micro-scoring, and importance-scoring.

Once the best measure lists have been selected, the cross scoring test stage begins.

In this stage, the test graphs, which were not used to choose the measure lists, are classified.

The results from all of the trials are combined, resulting in a single average accuracy. The

classifier is evaluated by this accuracy, as well as the other performance statistics: PPV,

NPV, sensitivity, specificity, and both F-measures. If adequate accuracy is achieved, the S.

cerevisiae PPI network is classified and the results are interpreted using Bayes theorem.
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13.2 Data

The same 9000 model graphs that have been previously utilized were used for classification

by the CS algorithm. The graphs are randomly split into four groups, each containing 250

graphs of each type. The groups are then assigned to one of three categories: build, test,

and comparison (Figure 12.1). Two groups at a time make up the comparison category.

Each group is given a turn in each position. Two groups at a time make up the

comparison graphs (Table 12.1). This results in twelve trials and 3000 graph tests per model

type for a total of 27,000 graph tests.

13.3 Results

13.3.1 Measure Selection

Eighteen graph measures were considered for insertion into the cross scoring model. Of

these, three appeared in all of the twelve trials’ best measure lists (macro-lists): assorta-

tivity, average degree, and average neighbor degree (Figure 13.1). It is interesting to note

that all of these measures are representations of the way nodes are connected to each other.

Three other measures appeared in a macro-list nine or more times: number of nodes (9),

betweenness centrality (10), and closeness centrality (11). Three features did not appear in

any list: number of triangles, diameter, and radius. The remaining measures all appeared

between one and six times. The median number of appearances a measure made was 4.5

with an IQR of 8.5. The mean number of appearances is 5.33 with a standard deviation of

4.56. The distribution can be seen in Figure 13.2. The histogram has a U-shape, with the

most extreme values seen most often.
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Figure 13.1. Counts for measure appearance in macro-lists.
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Figure 13.2. Histogram of number of macro-lists a measure appears in. The x-axis is the
number of macro-lists a measure appears in. The y-axis is the number of measures that appear x
times.
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13.3.2 Macro-Lists

Twelve trials were run resulting in twelve macro-lists. The majority of measure lists, six

out of the twelve, had nine measures in them. Four out of twelve had six measures. Of the

remaining two trials, one had seven measures and the other ten.

In the previous section it was mentioned that assortativity, average degree, and av-

erage neighbor degree appeared in every model (Figure 13.1). Since these measures are in

all of the models, it might be expected that they are usually among the first added. That is

true for average neighbor degree and average degree. The former measure is the first added

to the list in eleven out of the twelve trials while the latter measure is second in those same

eleven (Figure 13.3). One trial resulted in transitivity being added first, thus pushing the

previously mentioned measures down in sequence. Assortativity does not respond in the

same way as the two other measures. On average, assortativity is the sixth measure to

be added to the measure list. This means that in some instances, it was the last measure

added to the best measure list.
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Figure 13.3. Position each measure is added to the macro-list. The di↵erent colors indicate
the position that the measure was added to the list. Lighter colors indicate that the measure was
added earlier than dark colors.

The choice of the best measure list for each trial was dictated by the percentage of

model graphs accurately classified. This was the only statistic considered in order to at-
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tempt to simplify an already extremely complex problem. Figure 13.4 shows the accuracy

of each of the twelve trials plotted against the number of measures in the model. Measure

lists with only a small number of measures, one or two, performed poorly. By the time

there were five measures in the list, however, changes in accuracy are very small, nearly

negligible. After five measures are in the list, the increase in accuracy is not smooth, nor is

it guaranteed. More measures in the list does not dictate an increase in accuracy. In fact,

after approximately ten measures are in the list, accuracy begins to decrease. Fourteen

measure lists have about the same accuracy as three measure ones.
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Figure 13.4. Cross scoring build stage accuracy by trial and number of features in the
best measure list. The x-axis is the number of measures in the best measure list. The best
measure list is the most accurate list of size x. The y-axis proves the accuracy. Each line represents
one of the twelve trials.

The average accuracy for the best model across the twelve trials in the build stage

is 83% (±1.34). The lowest accuracy is 80.44% and the highest is 84.80%. All of these

trials clearly have the potential to out-perform all of the other classification algorithms

considered.

The measures in each of the twelve macro-lists are displayed in Table 13.1. The

macro-lists for Trials 4 and 5, as well as Trials 7, 8 and 10, are the same. Trials 4 and
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5 share only one of the two groups in the comparison graphs. Trial 4 comparison graphs

are made of group 2 and group 4, while trial 5 has group 3 instead of group 4. Trials 7, 8

and 10 also share one of the two groups making up the comparison graph. Trials 7 and 8

contain the exact same comparison groups, 1 and 4. Trial 10 has comparison graphs from

groups 1 and 3. The features in the measure lists for Trials 4 and 5 are not added in the

exact same order. The measure lists for Trials 7, 8, and 10 are exactly the same in terms

of order added as well as content.

Table 13.1. Macro-lists.
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# Edges x x
# Nodes x x x x x x x x x
# Triangles
ASPL x x x x
Assortativity x x x x x x x x x x x x
Avg. Clustering Coe�cient x x
Avg. Degree x x x x x x x x x x x x
Avg. Neighbor Degree x x x x x x x x x x x x
Betweenness Centrality x x x x x x x x x x
Closeness Centrality x x x x x x x x x x
Degree Centrality x
Density x x x
Diameter
Eigenvector Centrality x x x x x x
Maximum Degree x x x
Prop. GC x x x x x x
Radius
Transitivity x

Table shows which measures appear in each trial’s macro-list. Trials 4 and 5 have the exact same macro-list,
as do Trials 7,8, and 10.

13.3.3 Macro-Scoring Performance

In five of the twelve trials test accuracy actually exceeded build accuracy (Table 13.2).

These trials are written in boldface in the table. In six trials, the di↵erences in accuracies

were within 1% of each other. These trials are annotated with an asterisk in the table.

Only two of these six overlap with the four trials that presented with higher than expected

accuracy. All of the trials had accuracy values within 5% of the anticipated value.

Model classification for all trial results aggregated can be seen in Table 13.3. It is

important to note that this table shows the percent of graphs classified into each category,
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Table 13.2. Comparison of macro-list accuracy from test and build stages.

Accuracy
Trial Test Stage Build Stage

1 83.33 84.44
2 83.87 84.80
3 82.84 83.78
4 81.69 80.44
5* 83.64 83.87
6* 83.87 83.64
7* 82.36 83.87
8 83.87 82.36
9* 83.11 83.42
10* 82.27 81.96
11 83.11 82.09
12* 80.71 81.29

The lines in boldface have higher accuracy in the build stage than in the test stage. The lines indicated with
an asterick (*) have values within 1% of each other.

not the absolute number of graphs. Across the twelve trials, the average accuracy is 82.9%.

Of the nine model types, three were classified accurately 100% of the time: GEO, LPA,

and RDG. Three models were very close to 100% accuracy. RDS was accurately classified

99.93% of the time, SMW was 96% and STI was 99.87%. The remaining three models were

slightly less accurate. AGV was correctly classified 67.3% of the time, while DMC was

30.73% and DMR was 49.2%.

Table 13.3. Classification accuracy of macro-scoring.

Predicted Class
AGV DMC DMR GEO LPA RDG RDS SMW STI

AGV 67.3 - - - 32.47 - 0.03 0.2 -
DMC 14.57 30.73 34.43 6.77 4.27 2.1 4.0 1.47 1.67
DMR 8.73 5.67 49.2 1.67 3.53 9.33 11.7 5.67 4.5
GEO - - - 100 - - - - -
LPA - - - - 100 - - - -
RDG - - - - - 100 - - -

A
c
tu
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RDS 0.03 - - - - - 99.93 0.03 -
SMW 0.03 - - - - - 4 96 -
STI - - 0.13 - - - - 99.87

The values presented are the percent of model graphs classified into each category by macro-scoring. The
percentages are aggregated over the twelve trials.

With the exception of DMC and DMR graphs, misclassified graphs seem to fall

neatly into one category. For instance, the majority of misclassified AGV graphs are classi-

fied as LPA. Significantly less than 1% of those misclassified graph fall in RDS and SMW.
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Misclassified DMC and DMR graphs are placed into every category. A total of 30.73%, or

922, DMC graphs were classified correctly. The most common misclassification category

for DMC is DMR. More DMC graphs were placed into DMR than were correctly classified,

34.42% or 1033 graphs total. The next closest category, AGV, had less than half of the

number of DMC graphs misclassified there than DMR (14.57%). The remaining model

types all represent small fractions of the misclassified graphs.

Nearly half of the DMR graph were classified correctly (49.2%). The incorrectly

classified models were spread out over the other categories with the second most popular

category, RDS, obtaining 11.7% of the graphs.

For the most part, the statistics used to analyze classifier performance show great

promise for this version of cross scoring (Table 13.4). Both average and global PPV, NPV,

sensitivity, and specificity are all above 0.8. The F-macro is 0.8078 and F-micro is 0.8274.

Only three models show values meriting concern when examined closer: AGV, DMC, and

DMR. All three have high NPV and specificity, which is to be expected because only one-

ninth of the graphs to be classified fall into any one of those categories. Thus even if placed

randomly, it is more likely for the classifier to say correctly that a graph is not AGV (or

DMC or DMR) than it is to incorrectly say that it is. Unfortunately, the low PPV and

even lower sensitivity values indicate that the model is also not good at determining which

models fit into any of those three categories.

Table 13.4. Macro-scoring analysis of performance.

Model PPV NPV Sensitivity Specificity F-measure

AGV 0.7423 0.9596 0.673 0.9708 0.706
DMC 0.8442 0.9198 0.3073 0.9929 0.4506
DMR 0.5874 0.9378 0.492 0.957 0.5355
GEO 0.9222 1.0 1.0 0.9895 0.9595
LPA 0.7129 1.0 1.0 0.9497 0.8324
RDG 0.8974 1.0 1.0 0.9857 0.9459
RDS 0.8974 0.9999 0.9993 0.9803 0.9267
SMW 0.9287 0.995 0.96 0.9808 0.9441
STI 0.9418 0.9998 0.9987 0.9923 0.9694

Average 0.8268 0.9791 0.8256 0.9788 0.8078
Global 0.8292 0.9999 0.8256 0.9788 0.8274

Results are calculated based on the classification of the 100 model graphs from each of the nine model types
using the macro-scoring aggregated across the twelve trials. This version has the edited algorithm structure
and the scaling step was removed. Statistics used include PPV (positive predictive value), NPV (negative
predictive value), sensitivity, specificity, and F-measure. The average F-measure corresponds to the F-macro
while the global F-measure corresponds to the F-micro.
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In Figure 13.5, we do not see all of the groups that we have become accustomed to

seeing. Instead, only Groups 1 and 4 are represented. The former group refers to graphs

that are correctly classified most of the time but are also a popular choice for the misclassi-

fication of other graphs. Model types in this group are GEO, LPA, RDG, RDS, SMW, and

STI. Group 4 is graphs that are classified accurately a moderate amount of the time and

used as an incorrect choice some of the time, though they are not as popular as those in

Group 1. Model graphs in this group are: AGV, DMC, and DMR. These group classifica-

tions are very clearly defined and match easily to the classification accuracies seen in Table

13.3.
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Figure 13.5. Parallel coordinate representation of the macro-scoring performance statis-
tics. Statistics used include PPV (positive predictive value), NPV (negative predictive value),
sensitivity, specificity, and F-measure. Values are calculated by aggregating the result from the
twelve trials. Each trial classifies 100 models of each of the nine model graph types.
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13.3.4 Micro-Scoring Performance

In micro-scoring, instead of using the macro-lists directly, we use the number of appearances

that each measure makes to determine generic measures lists, or micro-lists, for use with all

of the cross scoring trials. We chose to try lists of lengths three, six and nine. Length three

was chosen because there are three measures that appeared in all of the lists. List lengths

of size six and nine were chosen because Figure 13.1 shows distinct breaks in the number

of occurrences at these points.

Table 13.5. Comparison of macro and micro-scoring classification accuracy.

Trial Macro-List Micro-3 Micro-6 Micro-9

1 83.33 78.12 84.76 83.47
2 83.87 78.93 84.0 83.16
3 82.84 77.82 79.51 82.84
4 81.69 79.69 80.84 83.79
5 83.64 78.13 79.33 83.64
6 83.87 79.2 80.49 83.87
7 82.36 76.89 82.36 80.4
8 83.87 78.8 83.87 81.24
9 83.11 77.73 83.11 81.24
10 82.27 77.82 83.42 81.6
11 83.11 78.22 79.51 81.2
12 80.71 76.53 78.8 80.44

Average 82.9 78.16 81.67 82.27

Micro-3 is the micro-scoring list with three measures. Micro-6 is the list with six measures and micro-9 is
the list with nine measures.

The measure list of length three consists of average degree, average neighbor degree,

and assortativity. The list of length six also includes the number of nodes in the graph as

well as betweenness and closeness centrality. Finally, for the list of length nine, eigenvector

centrality, the proportion of nodes in the giant component, and the maximum degree of the

graph were added.

Table 13.5 shows the classification accuracy for each trial for macro-lists along with

the three micro-lists. Accuracy ranges varied more across the tests using the micro-list

than the macro-lists. For the top three measures model, micro-3, all of the accuracies were

significantly lower than the build accuracies, ranging from 76.53 to 79.69. This is an average

of 4.7% smaller than the macro-list accuracies. The top six measures model, micro-6, ranged

from 78.8 to 84.76% accuracy. This 84.76% accuracy is the highest accuracy achieved across
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all of the trials using any measure list. On average, however, accuracies were 1.2% smaller

than the macro-list accuracies.

Finally, the model based on the top nine measures, micro-9, ranged from 80.4 to

83.87%, almost indistinguishable from the custom model range of 80.71 to 83.87%. The

di↵erence in accuracy compared to the macro-lists is less than 1%. In Figure 13.6, we see a

comparison of how the measure lists are ranked when compared to each other. The model

using the macro-list is the most accurate two-thirds of the time, for a total of eight of the

trials. The micro-3 list is always the least accurate. The micro-9 makes appearances in all

places except fourth. Since this measure list creates a model with just over 82% accuracy,

barely indistinguishable from the custom model, we further evaluate its performance.
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Figure 13.6. Comparison of accuracy for macro-scoring and three version of micro-scoring
across twelve trials. The x-axis, Ranking, indicates where the model ranks in terms of accuracy
compared to the others.

Table 13.6 shows the classification distribution of each model type across all of the

trials. Just like the corresponding table in the previous section (Table 13.3), this table

shows the percentage of graphs that fall into each category, not the raw number. Three

graphs were classified accurately 100% of the time: GEO, RDG, and RDS. Three more were

classified accurately nearly 100% of the time: LPA at 99.87% and both SMW and STI at

99.97%. Using this classification algorithm, misclassified graphs of nearly all model types
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fell into only one category. The exceptions to this are DMC and DMR, both of which were

classified at some point into all nine categories.

Only 21.53% of DMC graphs were classified correctly. The most common choice for

incorreclty classified DMC graphs was DMR (40%). GEO was a slightly less popular choice

with 25% of DMC graphs classified into that categoru. Just over 50% of the DMR graphs

were classified correctly. The main grouping of misclassified DMR graphs were placed into

RDG (23.47%). The remaining graphs were spread evenly between the other categories.

Table 13.6. Classification accuracy of micro-scoring with nine measures.

Predicted Class
AGV DMC DMR GEO LPA RDG RDS SMW STI

AGV 68.33 - - - 31.67 - - - -
DMC 5.07 21.53 40.0 25.07 2.77 2.77 0.9 1.17 0.73
DMR 4.47 5.3 50.73 5.47 2.73 23.47 1.7 1.13 5.0
GEO - - - 100 - - - - -
LPA 0.13 - - - 99.87 - - - -
RDG - - - - - 100 - - -
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RDS - - - - - - 100 - -
SMW 0.03 - - - - - 0.03 99.97 -
STI - - 0.03 - - - - 99.97

The values presented are the percent of model graphs classified into each category by macro-scoring. The
percentages are aggregated over the twelve trials.

The statistics used to analysis the performance of micro-scoring all show great

promise (Table 13.7). Average PPV, NPV, sensitivity, and specificity are all above 0.8

with specificity and NPV being higher than PPV and sensitivity. This indicates that mod-

els are better determining what graphs are not than what they are. The F-macro for this

method is 0.7984 while the F-micro is 0.8231. All of the NPV and specificity values are

very high, however several PPV values and sensitivities are lower than desired. This is

particularly true of the AGV, DMC, and DMR sensitivities (0.68 v 0.22 v 0.51). These

are low because many of these graphs were not classified correctly. In fact, the majority of

DMC graphs were not classified correctly. The only one of the three with a very low PPV

is DMR. This occurs because so many of the DMC graphs were incorrectly identified as

DMR.

Figure 13.7 shows a visual representation of the statistics used to analyze the clas-

sifier’s performance. We see only two groups in this visual, Group 1 and Group 4. AGV,
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Table 13.7. Micro-scoring with nine measures analysis of performance.

Model PPV NPV Sensitivity Specificity F-measure

AGV 0.8757 0.9615 0.6833 0.9879 0.7678
DMC 0.8025 0.9101 0.2153 0.9934 0.3395
DMR 0.5589 0.9391 0.5073 0.95 0.5319
GEO 0.766 1.0 1.0 0.9618 0.8675
LPA 0.7288 0.9998 0.9987 0.9535 0.8426
RDG 0.7921 1.0 1.0 0.9672 0.8840
RDS 0.9744 1.0 1.0 0.9967 0.9870
SMW 0.9872 1.0 0.9997 0.9984 0.9934
STI 0.9458 1.0 0.9997 0.9928 0.972

Average 0.8257 0.9789 0.8227 0.978 0.7984
Global 0.8235 0.9999 0.8227 0.9780 0.8231

Results are calculated based on the classification of the 100 model graphs from each of the nine model types
using the micro-scoring with nine measures aggregated across the twelve trials. This version has the edited
algorithm structure and the scaling step was removed. Statistics used include PPV (positive predictive
value), NPV (negative predictive value), sensitivity, specificity, and F-measure. The average F-measure
corresponds to the F-macro while the global F-measure corresponds to the F-micro.

DMR, and DMC all fall into Group 4. The remaining model types fall into Group 1.
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Figure 13.7. Parallel coordinate representation of the micro-scoring performance statis-
tics. Statistics used include PPV (positive predictive value), NPV (negative predictive value),
sensitivity, specificity, and F-measure. Values are calculated by aggregating the result from the
twelve trials. Each trial classifies 100 models of each of the nine model graph types.
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13.3.5 Macro- v Micro-Scoring Results

Macro and micro-scoring both resulted in classification accuracies above 80%. Their per-

formance on other statistics was also very similar. Figure 13.8 shows two views on these

performance values. In the image on the left (Figure 13.8a) we see that the lines for both

variations almost completely overlap. The macro-scoring procedure does stay just above

the micro-scoring, however. In Figure 13.8b, we see a close-up version of the figure on

the left. Here we see that the values between the two procedures are virtually identical

with the exception of the F-macro and F-micro. For M-CS these values are 0.8078 and

0.8274 respectively. For m-CS they are 0.7984 and 0.8231. The values for macro-scoring are

marginally higher for both statistics than the correspondingly micro-scoring values. These

values are another way to measure a test’s accuracy and thus we can conclude that macro-

scoring is more accurate. The main di↵erence in accuracy comes from the classification of

the DMC graphs. For macro-scoring 30.73% were correctly classified while in micro-scoring

only 21.53% were. This is the only significant di↵erence in classification.

The distributions of the incorrect classifications are very similar between the two

cross scoring versions. Incorrectly classified AGV graphs went primarily to LPA, while

incorrect DMC graphs went to DMR. Incorrect DMR choices did di↵er, however. In m-CS

these went primary to RDG while in M-CS the split was much more even with a slight

majority of graphs were classified as RDS.

It is interesting that both scoring versions produced results allowing graphs to be

classified into only Group 1 or Group 4. In fact, the model graphs types were all placed

into the same groups no matter which version was used. The elimination of Groups 2 and

3 indicate that no model types can be considered to have low classification accuracy. That

is why this is the first time that AGV, DMC, and DMR are classified outside of Group 2

or 3.

Overall, the macro-scoring and micro-scoring with the top nine measures can be used

essentially interchangeably. In fact, looking at the percentage of graphs correctly classified

in Table 13.5, micro-scoring using the top three or top six measures could also be used

without too much loss of information. The choice about which version of micro-scoring

to use depends on several factors, most of them relating to time. Extremely large graphs,
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Figure 13.8. Parallel coordinate comparison of macro-scoring and micro-scoring. Statis-
tics used include PPV (pos- itive predictive value), NPV (negative predictive value), sensitivity,
specificity, and both F- measures. Values presented for sensitivity, specificity, PPV and NPV are
the global results of the classification results of the 100 models of each of the nine model graph types
aggregated across the twelve trials. (a): Full view showing how similar the two variations are. (b):
Close-up view showing the slight variations.
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or a large number of graphs, can make calculations of certain measures, such as centrality

measures, very time consuming. We have shown that even using a fraction of the measures

available and no centrality measures, such as in micro-3, there is only a 4% loss in accuracy.

Under certain circumstances, this loss may be considered negligible when compared to the

benefits.

13.3.6 Classification of the S. cerevisiae PPI network

The classification of the S. cerevisiae PPI network using both macro and micro-scoring

resulted in a classification of AGV. For the macro-scoring, using Bayes theorem, we can

determine that there is 67.3% chance that if the S. cerevisiae PPI network is AGV then it

will be classified as such (Equation 13.1). However, there is a 23.5% chance that even if a

model is not AGV, it will still be classified as AGV.

Pr (classified as AGV | AGV) =
Pr(AGV | classified as AGV) · Pr(classified as AGV)

Pr(AGV)

=
2019
2724

· 2724
27000

3000
27000

= 0.673 (13.1)

Pr (classified as AGV | not AGV) =
Pr(not AGV | classified as AGV) · Pr(classified as AGV)

Pr(not AGV)

=
705
2724

· 2724
27000

3000
27000

= 0.235 (13.2)

Micro-scoring also found AGV to be the best fit for the empirical model under

examination. Once again using Bayes Theorem, the probability that the S. cerevisiae PPI

network is truly a AGV and was classified as such is essentially the same as was found for

macro-scoring (68.3% v 67.3%).

Pr (classified as AGV | AGV) =
Pr(AGV | classified as AGV) · Pr(classified as AGV)

Pr(AGV)

=
2050
2340

· 2340
27000

3000
27000

= 0.683 (13.3)
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Pr (classified as AGV | not AGV) =
Pr(not AGV | classified as AGV) · Pr(classified as AGV)

Pr(not AGV)

=
290
2340

· 2340
27000

3000
27000

= 0.097 (13.4)

However, there is only a 9.7% chance that the model was classified as AGV and is not

actually AGV. Therefore, even though the best fit for the empirical model is the same for

both versions of CS, the results from micro-scoring are more reliable.

Figure 13.9 shows the distribution for median distance for each model type across

the twelve CS trials. It is clear for both M-CS (Figure 13.9a) and m-CS (Figure 13.9b) that

AGV distances are dramatically smaller than any other model type. The second best fit for

both versions is LPA. It is interesting that in macro-scoring, the range of distances achieved

by each model graph type is larger. This is most likely due to the use of di↵erent measures

used in the comparisons across the twelve trials. These di↵erent measures would highlight

di↵erent features, while in micro-scoring the same measures were used in each of the trials.

The fact that the same model type was deemed the best fit for the S. cerevisiae PPI network

by both versions of the CS algorithm lends further credibility to the methodology.

Comparing the overall rankings of the model graph by macro- and micro-scoring

using Kendall’s W results in a value of 15.2 (Table 13.8). This value has a corresponding

p-value greater than 0.05, thus we can say that the di↵erence between these lists is not

statistically significant The lists are identical for the top two and the bottom three model

types. The graphs with middle rankings, SMW, STI, RDS, and RDG, appear in di↵erent

orders between the two lists, however these models never move more than two places in

either direction.
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Figure 13.9. Comparison of S. cerevisiae PPI network classification by macro and micro-
scoring. Each figure shows the results of comparing the empirical S. cerevisiae PPI network against
the 1000 model graphs of each of the nine types. Results are displayed such that the red diamond
across the middle line is the median distance, the ends of the box are the first and third quartiles
respectively, and the remaining lines and points represent the outlying distances. (a): The results
using macro-scoring. AGV is the best fit. (b): The results using micro-scoring. AGV is the best
fit.

Table 13.8. Ordered rankings of the model graphs based on fit for S. cerevisiae PPI network using
the original graphlet degree distribution and reformulated version 3.

Macro Micro-9

1 AGV AGV
2 LPA LPA
3 SMW STI
4 STI RDG
5 RDS SMW
6 RDG RDS
7 DMC DMC
8 DMR DMR
9 GEO GEO

Rankings of model graphs are determined based on the median distance of the S. cerevisiae PPI network
to each model graphs of the given type. The median smallest distance is ranked first. Models in bold show
up in di↵erent places across the two lists. Items not in bold do not change position when the reformulated
graphlet degree distribution version 3 is used in place of the original.
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13.3.7 Importance-Scoring

In Chapter 12 we touched upon the idea of importance-scoring. This means that instead

of mathematically determining the measure list to use when classifying the graphs, we in-

stead determine the measure list by choosing measures that are of great importance to the

problem. In Chapter 12, we gave an example that illustrated how randomly choosing four

measures resulted in an accuracy of 71.78%. Now we show that acceptable accuracy can

be obtained from any combination of graph measures, provided an appropriate number of

them are used.

Table 13.9. Proof of importance-scoring’s ability to accurately classify graphs.

# of Measures % Accuracy (sd)
Best Measure List Partial Best Measure List All Combinations

1 65.86 (1.45) 48.26 (10.08) 48.7 (10.05)
2 77.48 (2.21) 65.69 (7.58) 59.65 (8.81)
3 80.03 (1.09) 75.15 (4.40) 66.15 (6.73)
4 79.10 (1.12) 76.80 (2.52) 69.62 (5.11)
5 80.47 (1.34) 77.48 (2.68) 71.71 (4.06)
6 81.46 (2.19) 78.02 (2.61) 73.13 (3.25)
7 82.30 (1.43) 79.83 (2.03) 74.03 (2.73)
8 82.22 (1.44) 80.00 (1.90) -
9 82.52 (1.42) 80.55 (1.90) -
10 82.14 (1.45) 80.41 (1.90) -
11 81.93 (1.20) 80.51 (1.55) -
12 81.24 (1.30) 80.47 (1.43) -
13 81.00 (1.27) 79.84 (1.51) -
14 80.41 (1.34) 79.47 (1.57) -
15 80.24 (1.60) 79.17 (1.76) -
16 79.64 (1.52) 79.11 (1.53) -
17 78.85 (1.58) 78.61 (1.58) -
18 78.18 (1.63) 78.18 (1.63) -

The best measure list is the most accurate list with n measures. The values are averaged over the twelve
trials. The partial best measure list is the of size n that is composed of the n�1 best measure list combined
with each of the remaining measures. These values are also averaged over twelve trials. The accuracies
presented in the final column are for all lists of each size. These values are not averaged over twelve trials
because of the magnitude of the calculations that would require. The values presented are the average
percents of graphs accurately classified along with the standard deviation in parentheses.

The first column of Table 13.9 (# of Measures) indicates the number of measures

in the measure list. The second column, Best Measure List shows the average classification

accuracy across the twelve trials of the best measure list of each size. This relates back to

the Table 12.5 in Chapter 12. The average classification accuracy, using only one measure

across the twelve trials in 65.86% (±1.45%). In eleven of the twelve trials this measure was

the average neighbor degree. In the remaining trial it was transitivity. Note that using one
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measure, as long as it is the correct one, results in a higher classification accuracy than all

of the originally considered classifiers.

The next column in Table 13.9, Partial Best Measure List, is slightly di↵erent. In the

first row, for one measure, it shows the average accuracy for all of the measures individually

across the twelve trials, not just the measure with the best accuracy. Interestingly, even

choosing one graph measure randomly, the CS algorithm will be more accurate than the

DDD. In the second row, the best singular measure is combined with all of the other

measures individually to create measure lists of size two. Thus, if average neighbor degree

and any other graph measure are combined, they will, on average, have a better classification

accuracy than CC or RGF (C). In order to beat the GDD-V1, one only needs to know the

two most accurate measures, typically average neighbor degree and average degree, because

those two measures combined with any other measure produces an average accuracy of

75.15% (±4.40%).

The final column in Table 13.9, All Combinations, shows the average value for all

combinations of size 2 {1, . . . , 7}. The average is not available for every number of possible

measures in the list because of the sheer number of options that this provides. For instance,

there are 43,758 possible lists of eight measures from the full list of eighteen measures. For

similar reasons, the results presented are only for one trial, not the standard twelve. The

final column shows that even if you pick any seven random measures, you will still have a

more accurate classifier than all of the other ones presented.

These features of the CS algorithm, imply several things. First, knowledge of even

a few of the most accurate features will produce a high level of classification accuracy.

Second, any of the features that may be considered most important to the classification

process can be combined with other features to create an individualized, accurate classifier.

Third, accuracy does decrease as the number of graph measures increases (Table 13.9, Figure

13.4). This happens both for the top measure list and partial top measure list after nine

features have been included in the measure list.
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13.3.8 Robustness

Being able to correctly classify graphs that contain incorrect or missing data is an important

feature of any classification algorithm. Of the original methods considered (DDD, CC, RGF,

and both forms of GDD) only the authors of CC (Su et al. , 2011) and RGF (Przulj et al.

, 2004) showed evidence that their classification method is robustness to noise or missing

data. Based on previous work into the a↵ect of missing data on graph measures, we expect

CS to be essentially una↵ected by the inaccuracies in the S. cerevisiae PPI network.

Methods for dealing with noisy or incomplete network data are still in their in-

fancy, however there have been several explorations into their a↵ect on network measures

(Costenbader & Valente, 2003; Kossinets, 2006; Borgatti et al. , 2006; Stomakhin et al. ,

2011; Bray et al. , 2015). Borgatti found that centrality measures for random graphs decline

“smoothly and predictably with the amount of error” (Borgatti et al. , 2006). Similar re-

sults were found by Costenbader who examined centrality measures on empirical networks

(Costenbader & Valente, 2003). She found eigenvector centrality to be the most robust of

these measures. Results looking at graph-level measures also found a predictable decline

(Bray et al. , 2015). Since the studies found missing and noisy data to a↵ect measures

in a smooth and predictable manner, and since the model graphs used to classify the PPI

network are created with noisy data, we speculate that the a↵ect of these inaccuracies is

negligible. Because CS is based on graph measures, we therefore expect it to be highly

robust to incorrect or missing data.

13.3.9 Comparison of All Classifiers

The cross scoring algorithm was designed because the previously considered classifiers,

DDD, CC, RGF (C), and GDD-V3 were all found to be lacking. They lacked accuracy,

the ability to take multiple features into consideration, and flexibility. In Table 13.10,

the overall classification accuracies for each method are presented along with model specific

classification accuracies. From this table it is immediately obvious how much of an improve-

ment the macro- and micro-scoring algorithms are over the previously presented classifiers.

The main improvement of the CS over the other methods is that every model graph type

has a few graphs classified correctly. Across the four other methods, each has at least one
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model type that they were never able to classify correctly. This model type is typically

either AGV, DMC, DMR, or some combination of the three. In DDD, no LPA graphs were

classified correctly in addition to no DMC. Characteristic curve classified none of the three

listed model types correctly. The RGF (C) classified no AGV or DMR graph correctly, and

only one SMW. Finally, GDD-V3 did not classify any DMC models correctly.

Table 13.10. Comparison of the classification accuracy of all updated, reformulated, and novel
classifiers.

Classification Accuracy

Network Type DDD CC RGF (C) GDDV1 M-CS m-CS Average
AGV 9 0 0 90 67.3 68.33 32.4
DMC 0 0 12 0 30.73 21.53 10.7
DMR 8 0 0 20 49.2 50.73 19.7
GEO 73 100 100 100 100 100 95.5
LPA 0 98 100 90 100 99.87 83.0
RDG 100 98 100 100 100 100 99.7
RDS 97 100 100 100 99.93 100 99.4
SMW 99 76 1 80 96 99.97 77.0
STI 25 50 100 100 99.87 99.97 79.1

Average 45 58 57 72 82.9 82.27

The values in the table indicate the percentage of the given model graph that was accurately classified
by the classification method. Six classification methods are shown: degree distribution distance (DDD),
characteristic curve (CC), corrected relative graphlet frequency (RGF (C)), reformulated graphlet degree
distribution version 3 (GDD V3), macro-scoring (M-CS), and micro-scoring (m-CS).

Looking closer into the results of the CS classifier, we see several other di↵erences

when compared to the four other classifiers. One thing to consider is that the most popular

incorrect choice for both version of CS is DMR. A total of 28% of the incorrectly M-CS

classified graphs and 25% m-CS classified graphs were placed into DMR. This is because the

majority of DMC models fell into this category. The second most popular choice was AGV

for M-CS (19%). In no other model was DMR ever a common choice for misclassifications,

nor was AGV.

In Figure 13.10, the average performance statistics for all of the classifiers are shown.

The shape of each line appears to follow the same pattern. The highest peak for each method

occurs at specificity. There is a large drop into PPV from there and then they shoot back

up to NPV. At no point to the lines cross each other. A classifier with a higher value for
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one statistic will have higher values for all of the statistics.
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Figure 13.10. Parallel coordinate representation for all classifier performance statistics.

13.4 Discussion

The cross scoring algorithm was created to classify networks based on several important fea-

tures. It was designed so that it would be customizable, able to fit numerous circumstances

without a too significant loss of accuracy. When building the measure lists used to classify

the graphs, three measures were never selected into the best model in the build stage. One
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of these was the number of triangles in the graph. This is surprising since the top three

measures, average degree, average neighbor degree and assortativity, all explain how nodes

are connected to each other, just like the number of triangles does. Correspondingly, tran-

sitivity was chosen to be in the best model only one time. This is counterintuitive because

in Section 4.2, it was clearly shown that most models have drastically di↵erent median

transitivity values than others. The values range from 0.003 to 0.16 (Table 4.8). This is a

530% increase from the bottom of the range to the top. A measure with such a wide range

of values should be a good indicator. The reason that it is clearly not is most likely due to

interactions with other measures.

The other two graph measures that were never selected for the best model were

radius and diameter. This is not unexpected because in Section 4.2 it was shown that

di↵erences between diameter and radius values between models were essentially negligible

with the exception of the GEO model graph (Table 4.3). Aside from GEO, diameter values

range from 7 to 11 and radius from 5 to 7. This is only a 57% increase across the range for

diameter and a 40% increase for radius. GEO had a diameter of 34 and a radius of 19.

The order in which measures were added to the best measure list is also interesting.

Assortativity appeared in every model created from the twelve trials, thus this is clearly

an influential measure (Figure 13.1). However, it was added to the model in 6th place

on average (Figure 13.4). Since many of the measure lists contained only six measures

(four models total), this indicates that it was potentially added near last much of the time.

In fact it was the last measure added in three trials. This implies that it only works to

separate out model types in the presence of other measures. We can speculate that these

other measures might be betweenness centrality, number of nodes, or density. In six of

the models, assortativity was added immediately after betweenness centrality. In four it

was added after the number of nodes and in three of those trials the number of nodes was

added immediately after betweenness centrality. In the remaining two trials, assortativity

was added after density.

The last thing to consider about the build stage of the model is that the di↵erences

between the best model and the second best, and often third best as well, in each trial

are extremely small. Often the second best model is less than 0.1% less accurate than the
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model created using the best measure list. In some situations it may be optimal to use a

shorter, and nearly just as accurate list of measures as the best, in the interest of time and

simplicity.

13.4.1 Biological Implications and their E↵ect on the Cross Scoring Design

The cross scoring algorithm was designed to classify PPI networks. Therefore, the ease with

which the results can be interpreted and related to biological events is paramount. The

a↵ect of each measure on the classification can be clearly seen, thus an interpretation easily

made. This desire stopped us from using two common mathematical techniques. The first

technique, singular value decomposition (SVD), is often used to reduce the dimensionality

of the data (Stewart, 1993). This can be useful depending on the number of graph measures

included, however it does make it more di�cult to see the direct a↵ect of each measure on

the classification. It can also make it di�cult to weight the measures properly, if weighting

is applied.

Another analysis technique that was discarded is the use of the support vector

machine. This is a supervised learning classification algorithms (Bennett & Campbell,

2000), just like CS. In fact, it works in essentially the way, classifying by feature similarity,

and can work with the exact same information. However, its processes work in a black box

where the contribution of each measure is less obvious. With CS it is possible to look at the

e↵ect each measure has on classification individually, with no extra calculation required.

The classification of the S. cerevisiae PPI network as AGV has biological implica-

tions. The AGV model was designed to mimic the citation network. The longer a paper

(node) has been around, the more opportunity it has to collect citations (edges) (Chen &

Redner, 2010). However, at some point the knowledge from older papers becomes common

knowledge, or people stop referencing the original source, and the paper stop gaining cita-

tions. It has been hypothesized that a similar occurrence happens in the evolution of PPI

networks. Proteins which evolved first have more time to gain interactions with other pro-

teins, but at some point this ceases to continue due to evolution (Schüler & Bornberg-Bauer,

2011).
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13.4.2 Strengths and Limitations

There are several limitations, or potential points of improvement, for the CS algorithm.

First, not every possible model was considered. Out of the 262,143 measure lists possible

for consideration, only 171 (0.06%) were tested. The reason for this is e�ciency. Testing

262,143 model takes significantly more time. It also has the potential to waste resources. For

instance, none of the best models contained diameter or radius. If we tested every model,

we would have looked at dozens of models containing these features that were shown to be

unimportant. The only downside to this is the possible loss of an important model. We

may be missing evidence of highly correlated measures or measures that interact with each

other in some way.

Another limitation is that the best model was judged only on accuracy. Depending

on the situation it might be beneficial to use a di↵erent statistic, or even a combination of

them. Using sensitivity along with accuracy or one of the F-measures may produce di↵erent

results that could give way to better classifiers.

Despite these limitations, cross scoring still has multiple strengths that make it a

better classifier than the others considered. It is significantly faster due to the reduced

number of graph comparisons that need to be run. In any of the other algorithms, the S.

cerevisiae PPI network must be directly compared to each comparison graph. This results

in 9000 comparisons per test graph. For cross scoring, only 9 comparisons had to be run,

because the S. cerevisiae PPI network is compared to a median model graph of each type.

Note that this median model graph is simply a compilation of the median features of the all

the graphs of the given type.. In addition, since the test graph is compared to the median

model graph, it is less sensitive to di↵erences between graphs of a given model type. This is

why DMC and DMR graphs were classified more accurately; extreme features were averaged

out.

In addition to the smaller number of comparisons, CS also has fewer calculations

in a given comparisons. In the degree distribution distance, there is a calculation for each

degree in the graphs. Depending on the size of the graph, this can results in hundreds, or

even thousands, of calculations per comparison. In CS, the number of comparisons is equal

to the number of measures considered. This feature, combined with the smaller number of
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comparisons, creates a faster algorithm. The final strength of CS is that it is customizable.

Based on Table 13.9, choosing any seven measures will result in a model with approximately

74% (±2.73) accuracy. This means that if researchers are interested in a model’s ability

to mimic only certain real-world features, they can feel confident in their ability to achieve

good accuracy using only the features that are important to their situation.
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Chapter 14

Summary

Determining the best model graph fit for real-world protein-protein interaction (PPI) net-

works is an important problem for researchers. The answer has the potential to lead to

predictions of unidentified interactions between proteins, the discovery of related protein

complexes in di↵erent species, and, most importantly, the potential to determine the un-

derlying causes of certain diseases. Numerous methods to determine the growth mechanism

of PPI networks have been discussed in the literature, however all of them classified these

networks into di↵erent model graph categories. One of the goals of this dissertation has

been to explain these results. In this chapter, we provide an overview of the work performed

as well as highlight the interesting results. We end by presenting several avenues for future

research.

14.1 Overview

Di↵erent classification methods used di↵erent subsets of model graphs when classifying PPI

networks. This obviously resulted in a lack of agreement across methods. Therefore, we

began this dissertation with the goal of determining whether all of the methods could reach

agreement if they used the same subset of model graphs, and, if this agreement was not

possible, explaining why. To answer this question we chose five classifiers and nine model

graphs to explore. The classifiers were selected because of their frequent occurrence in the

literature (Przulj et al. , 2004; Przulj, 2007; Su et al. , 2011). Three of the methods, relative

graphlet frequency, graphlet degree distribution using arithmetic mean, and graphlet degree

distribution using geometric mean, are based on small-scale properties. These methods base

their comparisons on graphlet countr and the distribution of automorphism orbits between

graphs. The other two methods, degree distribution distance and characteristic curve, use

large-scale properties, focusing on the overall structure of the graphs.

The model graphs used for the comparisons were accumulated from numerous PPI

network classification papers (Przulj et al. , 2004; Middendorf et al. , 2005; Pržulj & Higham,

2006). Three of these graphs were specifically designed to mimic the protein interactions
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seen in the real-world networks: DMC, DMR, and STI. The remaining model graphs (AGV,

GEO, LPA, RDG, RDS, and SMW) were chosen because they were repeatedly utilized in

PPI network classification analyses.

The specific PPI network under investigation throughout this dissertation is the

S. cerevisiae PPI network, or baker’s yeast. It is composed of 1361 proteins and 3222

interactions. All of the interactions (edges) were identified through multiple studies making

this a high-confidence dataset (Gavin et al. , 2002). The model graphs were all simulated

based on the features of the S. cerevisiae PPI network. In all, 1000 graphs were simulated

for each of the nine model types.

In Chapter 3, we examined the variation between model graphs created with the

same growth mechanism through the use of fifteen graph measures. We found that DMC

and DMR graphs displayed substantially more variation within their 1000 graphs than any

of the other model types. This is due to them not an requiring an input value for number

of edges in the graph. We also found that not all of the SMW graphs, designed to have

small-world features, display such features, such as small average shortest path length and

high clustering. A similar result is seen in some LPA graphs that do not display the scale-

free features that they were designed to have. The large amount of variability and lack of

expected features arise from the randomness associated with the graph building algorithms.

Instead of choosing to edit the algorithms so that we have the desired graph properties,

we insist on keeping the graphs as they are. The reason for this is to stay consistent with

the literature. If the algorithms for model graphs were edited, we would not be testing

reproducibility of results. In addition, editing the model graph algorithms at this point

would make it impossible to compare our classification results to existing literature. In

Section 14.2.3, we propose two solutions to deal with these nonconforming graphs.

After examining the variation within each model graph category, we tested how well

the growth mechanisms reproduced features of the PPI network under investigation. We

mentioned that the model graphs were all based on the S. cerevisiae PPI network, thus

ideally they will display similar values for many of the measures. Eighteen measures were

considered for this section and they can be separated into four categories: size, distance,

centrality, and connection (Chapter 4). The findings here showed that it was di�cult for
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the models to mimic any features outside of the size measures. The size measures were

easier to match because all of the growth mechanisms take number of nodes as an input,

and most take number of edges as well. LPA graphs matched the most features (50%). This

indicates that no model graph type is an obvious best fit for the S. cerevisiae PPI network,

thus the need for classification algorithms.

Before applying the graph classification algorithms to the S. cerevisiae PPI network,

we first test the classifiers’ abilities to correctly classify known graphs. This step is a key

feature in the analysis of any classification method, however it was often neglected in the

literature (Przulj et al. , 2004; Pržulj & Higham, 2006; Przulj, 2007). We performed two

separate tests of this ability. In the first, random graphs were simulated with di↵erent

probabilities, p, of edge creation (Chapter 6). The classifier had to separate the graphs

into groups based on p. In the second, randomly selected model graphs were used as test

graphs (Chapter 7). The classifier had to accurately name their class when compared to the

remaining model graphs. Results from the first test were optimistic. Only the characteristic

curve was unable to classify all of the graph accurately 100% of the time. The second test,

however, indicated that classifiers are far from reliable. Accuracy ranged from 48% (DDD)

up to only 68% (GDD (A)). These accuracies call into question the results of previous

analyses using the same classifiers.

The RGF and the both versions of the GDD are available in a program called

GraphCrunch. While performing the classifications using the RGF, it was found that there

was a mathematical error in the source code for GraphCrunch version 2 Kuchaiev et al.

(2011) (Chapter 9). This error was corrected, creating RGF (C). This updated classifier

was tested using the same random graph and model graph classification problems. The

corrected RGF had the same accuracy as the original, however overall classification was not

identical (Table 9.1). It was necessary to show the results of the original RGF classification

in order to properly compare the results obtained here to previously obtained results using

GraphCrunch.

With their low accuracies, the utilized classification methods leave much to be de-

sired. Therefore, we took a two-pronged approach. We reformulated the most accurate of

the five classifiers, GDD (A), and also proposed a new classification method.
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Three reformulated versions of the GDD (A) were tested (Chapter 10). Two fea-

tures of the original algorithm were varied across these new algorithms: scaling and overall

structure of the distance. The former feature was included in the original algorithm because

researchers found that automorphism orbits with high degrees were often noise. Thus they

dealt with this noise by decreasing their e↵ect on the distance. Unfortunately, these high

degree nodes are not always noise and scaling simply reduces the reliability of the algorithm.

The overall structure of the algorithm was altered to see if it could improve classification

results. Of the three reformulated algorithms, the method without scaling and with the

altered structure had the best accuracy, 76% (Table 10.10).

The final part of this dissertation discusses or creation of a novel graph classification

method: cross scoring (Chapter 13). Cross scoring works by ranking how well, on average,

model graphs mimic an assortment of empirical graph measures. Median measure values

are calculated from the 1000 model graphs of each type. Then these median values are

compared to the empirical value. The model type with the closest value is awarded one

point, second closest gets two points, and so on. This process is repeated for all of the

measures and the points tallied up. The model type with the lowest score is declared the

best fit for the test graph.

The cross scoring method proved to be superior to the other classifiers considered. It

is faster because each network to be classified is only compared to a one “median graph” per

model type. It also is based on simple mathematical principles, which reduces computation

time. In addition, cross scoring is customizable. The measures used to determine the best

fitting model type can be edited to directly fit the problem. Finally, cross scoring has

substantially better accuracy than the previously considered methods: 82.9% (±0.98%)).

After all of the research has been completed, we are left with two questions. Which

model graph type is the best fit for the S. cerevisiae PPI network (Section 14.1.1); and do

PPI networks exhibit scale-free properties (Section 14.1.2)?

14.1.1 Which Model Type is the Best Fit for the Saccharomyces cerevisiae PPI Network?

We began this dissertation questioning whether di↵erent classification methods would clas-

sify the S. cerevisiae PPI network into the same category if the same subset of graphs



236

was used. Throughout this research, the S. cerevisiae PPI network was classified by each

method and the results analyzed using Bayes theorem. This type of analysis allows us to

calculate the probability that a graph was falsely placed into the given category. This en-

abled us to obtain results despite the overall low classification accuracy of the methods. It

also enables us to evaluate the accuracy of those results.

Looking at the final five methods (DDD, CC, RGF (C), GDD V3, and CS), we

find that the PPI network was classified as RDG, DMC, AGV, and GEO two times. The

Bayesian analysis, which provides us with the probability that the empirical network was

misclassified into the given category, indicates that only DDD fails to provide an acceptable

level of reliability. For this method, the probability that the network was falsely classified

as RDG is 35%. If we remove RDG from the list, we are still left with three di↵erent model

graph types. This leads us to conclude that even if the same subset of model graphs is used,

the methods will still not reach an agreement. This implies that all of the methods use

di↵erent features to make their classification. Since the CS algorithm employs customizable

criteria for classification, along with an acceptably low level probability of misclassification,

we conclude that this method provides the best answer: AGV.

14.1.2 Do PPI Networks Exhibit Scale-Free Properties?

One of the big questions surrounding PPI networks is whether or not they have scale-free

properties. It has been widely accepted that these networks do indeed possess this property

(Jeong et al. , 2001; Barabási & Oltvai, 2004; Przulj et al. , 2004; Joy et al. , 2005; Nacher

et al. , 2009). However, as research into graph theory has expanded and techniques have

become more polished, groups of researchers have begun questioning whether this is really

true, though their reasoning has varied. Tanaka et al. insists that other researchers are

performing incorrect analyses and thus coming to an erroneous conclusion about the PPI

networks (Tanaka et al. , 2005). Others suggest that because the network is not complete,

we do not have enough information to make inferences about the global network (Han et al.

, 2005; Stumpf et al. , 2005; Hakes et al. , 2008).

We fall into the latter camp and state that the S. cerevisiae PPI network is not a

scale-free network based on the results in this dissertation. One of the most common ways
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that researchers determine a graph is scale-free through the linear appearance of the degree

distribution plotted on a log-log scale. We decided not to use this procedure because of

the current controversy about whether this method has a mathematical basis and is being

performed correctly (Bollobás & Riordan, 2004). Instead, we based this decision on the

results described in Chapter 2. In this chapter, we showed the average shortest path length

is not proportional to log log n. This is a hallmark of a scale-free network (Watts & Strogatz,

1998). In addition, the S-metric is not particularly large. It comes in at 0.54 where a score

of one indicates a scale-free network.

14.2 Future Work

The research presented in this dissertation provides several avenues for future work. In this

section, we present three of these avenues. The first discusses ways in which the analyses

performed could be extended. Next, we discuss how some of the more problematic model

graphs might be modified to ease the burden of classification. Finally, we end with a

theoretical proposition about whether a growth mechanism is the same as a model type.

14.2.1 Extension of Analyses

In this dissertation, the analysis of the classification of model graphs focused largely on

overall accuracies. While general trends of misclassification were mentioned, the brevity

with which they were discussed leaves room for expansion. One such expansion involves

looking at each model as an individual, as opposed to just one of many. By doing so, we

might be able to learn whether the same graph was misclassified multiple times by di↵erent

classifiers. If this is true, it could direct us to variations within the model graphs that cause

them to be misclassified.

Another area where the analysis can be extended involves looking at the di↵erences

between the median classification distances. In many instances, examining the di↵erence

between distances may results in small values that are not statistically di↵erent. Thus mod-

ifications to the classification methods might have to be made in order to obtain statistically

significant results. One specific example of this is in the DDD classification of the model

graphs. A huge percentage of were incorrectly classified as RDG. The reason for this is
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unclear. A closer look may reveal that the di↵erences in median distance between the first

and second best fit are actually negligible.

14.2.2 Redesign of DMC and DMR Growth Mechanisms

A common theme among the performance of all the classifiers is their di�culty in classifying

the DMC and DMR graphs correctly. From the five original classifiers (DDD, CC, RGF,

GDD (A), and GDD (G)), only 2.2% and 2.4% of these model graphs were classified correctly

(Table 7.13). The corrected RGF classed 12% of the DMC graphs correctly, an improvement

over the original 0%. GDD V3 classified 20% of DMR graphs correctly and no DMC. This

is an improvement over 10% of DMR graphs. Even the CS algorithm struggled, with about

50% of DMR graphs correctly classified for both M-CS and m-CS. Only 30.73% of DMC

were correctly classified for M-CS and only 21.53%. No other graphs were classified so

poorly.

The DMC and DMR graphs are particularly di�cult to classify due to the extremely

varied graphs that are produced by these two growth mechanisms. The extreme variation

occurs because of two factors. First, the DMC and DMR growth mechanisms do not take

number of edges as an input into their algorithm. Second, all lone nodes are removed from

the graphs based on literary precedence (Przulj et al. , 2004; Middendorf et al. , 2005;

Pržulj & Higham, 2006; Przulj, 2007; Su et al. , 2011). Since the algorithm is not aiming

to have any specific number of edges, and the probability of connection is random, there

are instances where very few edges are created thus resulting in most nodes remaining

unconnected and becoming eliminated. On the other side, there are instances where the

probability of connection is very high, thus most nodes are connected to each other. This

creates graphs with hundreds of thousands of edges, despite having no more nodes than any

other model type.

It is important to not dismiss the DMC and DMR graphs as potential fits for the

S. cerevisiae PPI network because these growth mechanisms were specifically designed to

mimic the actual growth and interaction patterns of proteins (Sole et al. , 2002; Vázquez

et al. , 2003). Thus we propose a solution. We can create modified DMC and DMR growth

mechanism that take the required number of edges as an input value. If such a model could
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retain the biologically specific features, namely duplication and mutation, as well as create

a more consistent set of graphs, then it has the potential to be the best available model. It

should also be easier for the classifiers to work with.

14.2.3 Does the Growth Mechanism Define the Model Graph Type?

In addition to being di�cult to classify, the DMC and DMR graphs were the only ones

misclassified as every model type. Most misclassified graphs of a single type were placed

into one or two categories. This is, once again, due to the large variation between graphs

of these types. In fact, when compared to the variation of other model types, their ranges

are typically several orders of magnitude larger. The large amount of variation combined

with the misclassification into every model type leads us to a proposition: the use of a

defined growth mechanism does not guarantee the creation of graphs with the same features.

Therefore we suggest that a growth mechanism, or algorithm to build the model graph, is

not same as a model graph type. In other words, just because a graph is built by the DMC

algorithm, does not make it a DMC graph. Instead, we propose that each graph be given

a two part classification: growth mechanism followed by model type. For instance, using

macro-scoring, 11.7% of DMR graphs were incorrectly classified as RDS. Thus we might

consider these graphs their own distinct model type: DMR-RDS.

Future work in this area involves expanding on the idea of there being a di↵erence

between model type and growth mechanism. We need to determine a set of criteria to break

up model graphs into more descriptive category based both on creation algorithm as well

as graph features.
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Chapter A

Table A.1. Network symbols and definitions.

Symbol Definition Definition/Equation

G network or graph Def. 1.2
H giant component of G Page 14
V the set of nodes (vertices) of a graph Def. 1.2

VH/VG proportion of nodes in the giant component Equation 1.4
E the set of links (edges) of a graph Def. 1.2
n the number of nodes in a graph, |V| Def. 1.1
m the number of edges in a graph, |E| Def. 1.1

D(G) the density of a graph Equation 1.3
k, k

i

the degree of a node (i) Page 14
k̄ average degree of a network Equation 1.1
t
i

number of triangles that node i participates in Page 15
|C

p

| number of cycles of size p Page 15
|P

p

| number of paths of length p Page 15
C
i

clustering coe�cient Equation 1.5
C̄ average clustering coe�cient Equation 1.6

C(G) global clustering coe�cient (transitivity) Equation 1.7
e(v) eccenticity Equation 1.8
¯̀ characteristic path length Equation 1.11

S(G) S-metric (normalized) Equation 1.24
DC

i

degree centrality Equation 1.25
CC

i

closeness centrality Equation 1.26
BC

i

betweenness centrality Equation 1.27
 
i

(i) eigenvector centrality Equations 1.28, 1.29
r(G) assortativity Equation 1.20
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Pržulj, Nataša. 2010. Erratum to Biological Network Comparison Using Graphlet Degree

Distribution. Bioinformatics, 26(6), 853–854.
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