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Abstract

Prediction Approaches for High-dimensional and Complex Neuroimaging Data

By Xin Ma

Neuroimaging studies continue to scale up with more participants, multiple follow-up visits,
and higher scanning resolutions. High-dimensionality, spatial distribution and low signal-
to-noise ratio make neuroimaging data challenging to work with, requiring development of
novel and flexible methodology for prediction and feature selection.

In topic 1, we develop a novel two-stage Bayesian regression framework using functional
connectivity networks as covariates and a scalar continuous outcome variable. The ap-
proach first finds a lower dimensional node-specific representation for the networks, then
embeds these representations in a flexible Gaussian process regression framework with node
selection via spike-and-slab prior. Extensive simulations and a real application show distinct
advantages of the proposed approach regarding prediction, coverage, and node selection. To
our knowledge, the proposed approach is one of the first nonlinear semi-parametric Bayesian
regression models based on high-dimensional functional connectivity features.

In topic 2, we propose a novel joint scalar-on-image regression framework involving wavelet-
based image representations with grouped penalties to pool information across inter-related
images for joint learning. We explicitly account for noise in images via a corrected objective
function. We derive non-asymptotic statistical error bounds under the grouped penalties,
allowing the number of voxels to increase exponentially with sample size. A projected
gradient descent algorithm is used for computation and shown to approximate the opti-
mal solution via non-asymptotic optimization error bounds under noisy images. Extensive
simulations and an application to Alzheimer’s study demonstrate significantly improved
predictability and greater power to detect signals.

In topic 3, we generalize the idea in topic 2 to Lipschitz continuous loss functions, including
logistic loss, hinge loss and quantile regression loss. We propose a unified sparse learning
framework in high-dimensional setting with built-in strategy for measurement errors. Un-
like the approach with corrected objective function for linear models in topic 2, we find a
sparse estimator in a confidence set based on the gradient of empirical loss function. We
derive the non-asymptotic statistical error bounds and sign consistency results for the pro-
posed estimator. We develop a Newton-Raphson type algorithm with linear programming
and conduct extensive numerical experiments to illustrate the superior performance of our
proposed estimator in various settings.
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Chapter 1

Introduction

1.1 Overview

Development of neuroimaging techniques has provided researchers an opportunity to in-

vestigate the function and anatomy of human brain in a safe and non-invasive way. There

has been growing interest using neuroimaging data in pattern recognition, classification and

prediction of psychiatric disorders. However, the high dimensionality and complex structure

of spatial correlation of the neuroimaging data has posed special challenges for statistical

analysis. In this dissertation, we focus on developing novel prediction approaches that ad-

dress these challenges and yield meaningful results in prediction, coefficient estimation as

well as important feature selection.

The dissertation is organized as follows: the rest of Chapter 1 introduces the magnetic res-

onance imaging (MRI) technique, the motivating examples and discusses challenges of pre-

diction modeling using neuroimaging data. Chapter 2 presents a novel two stage Bayesian

framework for prediction and node selection using functional network data. Chapter 3

presents a novel approach for the joint analysis of multiple scalar-on-image regression mod-

els. Chapter 4 presents a unified framework of sparse learning for a class of smooth Lipschitz

loss functions encompassing binary classification and quantile regression.
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1.2 Magnetic Resonance Imaging of Brain

Magnetic Resonance Imaging technique can be used to illustrate the anatomical and phys-

iological characteristics of the human brain. It utilizes the fact that the nuclei of hydrogen

atoms, which are abundant in the fat and water of human brain, are able to absorb radio

frequency (RF) energy and re-emit it when placed in a magnetic field. To obtain a brain

MRI scan, a subject is send into the MRI scanner with a strong magnetic field which aligns

the nuclei of hydrogen atoms in one direction. Then a RF pulse is applied to knock the nu-

clei of hydrogen atoms off the aligned direction. Once the RF pulse is removed, the nuclei of

hydrogen atoms spin gradually back to the original aligned direction and as a consequence

emit RF signal which is captured by receiver coils. These received signals are then pro-

cessed and transformed into readable images. By varying designs of the RF sequence, we

can obtain MRI images with different contrast on tissue types. The two main parameters

are the repetition time (TR) and the echo time (TE).

With a short TR and a short TE, T1-weighted spin-echo sequence provides good contrast

between gray and white matter tissues, while cerebrospinal fluid (CSF) is void of signal.

This type of MRI images is useful for brain segmentation. We can also obtain measurement

such as intracranial volume (ICV), and cortical thickness in downstream analysis.

Functional MRI measures brain activity with blood oxygenation level dependent (BOLD)

contrast. When brain is activated in one area, there is an increase in blood flow to send

in glucose, together with an increase in oxygenated hemoglobin (OxyHb) molecules. The

increase in OxyHb molecules usually outpaces the metabolic needs and results in an increase

in the ratio of OxyHb molecules to deoxygenated hemoglobin (deOxyHb) molecules. As

deOxyHb is paramagnetic while OxyHb is diamagnetic, the increase in ratio between these

two types of molecules changes the magnetic property of blood making the T2* time longer

and MRI signal stronger relative to normal state.

There are task functional MRI and resting-state (task-free) functional MRI sessions. Dur-

ing one session, each voxel within the brain has a BOLD signal time course. Functional

connectivity (FC) measures the temporal correlation of the BOLD time series in different
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regions of interest. Research on resting-state FC has led to the discovery of several resting

state networks, including the default mode network.

1.3 Motivating Examples

There are two motivating studies for our dissertation, each conducted on a specific type of

psychiatric disorder. Depending on the difference in disease pathology, we will use different

types of neuroimaging data in our investigation.

1.3.1 Grady Trauma Project

The Grady Trauma Project (GTP) recruited African American females to study the risk

factors for post-traumatric stress disorder (PTSD) in a low-socioeconomic status (Stevens

et al., 2013). The resting state functional MRI (rs-fMRI) scans were obtained on a 3.0T

Siemens Trio with echo-planar imaging (Siemens, Malvern, PA) and the functional images

were collected in an ascending interleaved sequence with 37 3mm axial slices and no gap

between slices (TR/TE=2000/30ms, FA=90◦, 3mm3 voxel size). The study has also ac-

quired data on demographic factors such as the participants’ age and several clinical scales

relating to PTSD, including the Connor-Davidson Resilience Scale (Connor and Davidson,

2003) for measuring reselience as individual’s ability to thrive in the face of adversity, trau-

matic events inventory (TEI) score (Sprang, 1997) and the childhood trauma questionnaire

(CTQ) total score (Scher et al., 2001).

It is now increasingly believed that mental disorders may not be associated with abnormal-

ities in specific local regions but may result due to disruptions in functional connectivity

as captured by changes in the brain network (Zhan and Yu, 2015). In this respect, there

has been some progress in classifying the disease status in mental disorder studies based on

brain networks (Du et al., 2018). However, such existing classification approaches may not

be fully satisfactory for a heterogeneous mental disorder such as PTSD, where the defini-

tion of disease phenotypes itself has been a stumbling block. Hence instead of focusing on
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classification, it is appealing to develop prediction approaches for continuous measures of

mental disorders based on the brain network and other risk factors. The GTP data has been

investigated in the first topic, utilizing functional connectivity networks estimated from its

rs-fMRI scans and the demographic and clinical data been collected.

1.3.2 Alzheimer’s Disease Neuroimaging Initiative

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) “was launched in 2003 as a public-

private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary

goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of mild cognitive impairment (MCI)

and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.”

The ADNI data can be obtained from its database (adni.loni.usc.edu).

The ADNI study has undertaken three phases (ADNI 1, ADNI GO/2 and ADNI 3) up to

date. The first phase ADNI 1 study was conducted between 2004 and 2009 and aimed to

enroll 400 subjects with early MCI, 200 subjects with early AD and 200 normal control

subjects. T1- and dual echo T2-weighted MRI images were collected on 1.5T scanners at

baseline, 6 month, 12 month and 24 month for all three groups of subjects. The images un-

derwent quality control and its standardized collections are available on the ADNI database.

In our second topic, we plan to use the ADNI 1 T1-weighted imaging data as well as other

biomarkers and assessment to illustrate the performance of our proposed method.

1.4 Prediction Modeling on Neuroimaging Data

There has been growing interest using neuroimaging data in pattern recognition, classifi-

cation and prediction of psychiatric disorders (Zhan and Yu, 2015; Du et al., 2018; Falkai

et al., 2018). However, using neuroimaging data in predictive models encounters several

challenges.
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First is the high dimensionality of the data structure. For structural MRI data such as

T1-weighted images, the data has three dimensions. While for functional MRI data, the

dimension is 4D as it consists of a series of 3D images along the time. This type of predictors

is difficult for conventional regression models to handle. One way to get around is to use

summary metrics or voxel-wise data. However, this results in information loss and potential

false positives from multiple testing. Another challenge comes from the complex structure

of imaging data’s spatial correlation. It is not straightforward in modeling the spatial

correlation and linking it to the response variable. Additionally, the imaging data usually

involves hundreds of thousands of voxels, which is high dimensional in a different sense.

This has posed a high requirement on the efficiency of the computing algorithm. We also

note the importance of interpretability which can lead to desirable implication for research

in disease mechanism and diagnosis. Nevertheless, the recently emerged machine learning

and deep learning methods usually lack clear interpretation and act more like a black box

process.

In order to tackle these challenges, we develop novel prediction approaches that adapt to the

characteristics of the neuroimaging data and yield meaningful prediction and interpretation.
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Chapter 2

Semi-parametric Bayes Regression

with Network-valued Covariates

2.1 Introduction

Recent studies have given rise to a rich variety of network data involving fraud detection

(Akoglu et al., 2015), brain networks (Lukemire et al., 2020), social networks (Liben-Nowell

and Kleinberg, 2007), traffic forecasting (Cui et al., 2019; Li et al., 2017), computer vision

(Monti et al., 2017) and so on, that arise in diverse applications. Networks provide inher-

ently richer insights by delving into relationships between nodes that represent different

entities in different application domains (nodes can represent brain regions in neuroimag-

ing problems, an individual in social networks, sensors in traffic forecasting, and so on).

By using the web of relationships represented by the network, one can obtain more ac-

curate prediction and analysis in neuroimaging applications (Guha and Rodriguez, 2020),

traffic forecasting (Li et al., 2017), synthetic identity dectection (Zhang et al., 2017), finan-

cial fraud detection (Zhou et al., 2017), and other scientific applications. Similar to other

domains, classification and prediction problems based on networks has gained increasing

prominence in our motivating neuroimaging applications involving mental health, where

network differences between disease versus control groups resulting from disruptions in the
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brain functional and structural connectivity are well-established (Higgins et al., 2019; Zhan

and Yu, 2015). Such brain network disruptions are clearly evident in our motivating Grady

Trauma project (GTP) application that shows considerable differences in brain connectivity

between individuals with high and low posttraumatic stress disorder (PTSD) resilience (see

Figure 2.1).

Figure 2.1: Differences in absolute correlations (left panel) and fitted edge probabilities
(right panel) between participants with highest and lowest resilience score. N1 through N10
respectively denote the following functional networks: motor, cingulo-opercular, auditory,
default mode, visual, fronto-parietal, salience, sub-cortical, ventral attention, and dorsal
attention.

While a limited number of classification methods using high-dimensional network-valued

covariates have been proposed (Du et al., 2018; Relión et al., 2019), the literature on pre-

diction models using networks is unfortunately even more sparse and has several crucial

pitfalls. For example, most classification and prediction approaches using network valued

covariates assume linear relationships, and they often do not account for the complex struc-

tures inherent in the networks. Linear models are restrictive in terms of not accommodating

non-linear relationships between the outcome and the network, and they also do not ac-

count for unknown interactions between the network and other supplementary covariates,

and even between different network features. The presence of such non-linear associations

between the clinical outcome and some edge strengths are evident in our motivating mental
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health neuroimaging applications (see Figure 2.2). One possible avenue for bypassing these

constraints involve deep learning approaches such as convolutional neural networks (CNN)

as in Meng and Xiang (2018), which extract deep non-linear embeddings from the network

that is subsequently used to predict the outcome. However, deep learning methods are

data-hungry and require enormous sample sizes that may not always be available especially

for neuroimaging problems of interest in this chapter. Moreover, deep learning techniques

typically do not provide the ability for inference and feature selection, which is desirable in

our applications of interest. Hence, novel flexible and interpretable non-linear approaches

with the added capability to perform inference are required.
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Figure 2.2: Scatter plots from the Grady Trauma Project data. The vertical axis represents
the resilience score. The horizontal axis represents edge probabilities from four selected
edges. The red lines are obtained via Locally Weighted Scatterplot Smoothing (LOWESS)
(Cleveland, 1979).

The second important limitation with current classification and prediction methods that use
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network-valued covariates results from the fact the networks are non-Euclidean objects that

have an inherently complex structure. This feature results in sub-optimal performance for

standard prediction and classification techniques that typically treat network edges/features

as interchangeable. In addition, using the entire edge set for the network results in an overly

inflated model where the number of candidate parameters increases quadratically with the

number of nodes. One potential remedy is to extract lower dimensional embeddings from

the high-dimensional networks with minimal loss of information (see Cui et al. (2018) for a

survey of graph embedding methods), and subsequently use these embeddings for prediction.

However, these graph embedding methods typically result in loss of information and it is not

immediately clear how well these embedding approaches are suited for classification and/or

prediction purposes and their effect on uncertainty quantification. Moreover, projection

of the network onto a lower dimensional manifold leads to loss of interpretability that

may result in difficulties in terms of network feature selection. To our knowledge, there

is very limited literature on Bayesian classification and prediction methods using lower

dimensional projections of high-dimensional networks, which also accommodates network

feature selection. Such an approach clearly warrants further consideration and investigation,

and is the main focus of this chapter.

Our goal in this chapter is to propose a novel two-stage Bayesian methodology to address

the aforementioned gaps in network analysis literature. In particular, we develop a flexible

Gaussian process modeling framework for scalar continuous outcomes based on lower di-

mensional manifold projections of high-dimensional networks. Our two stage method uses a

manifold learning approach in the first stage to project the high-dimensional network onto

lower dimensional latent scale space (Hoff, 2005) in order to address the curse of dimen-

sionality. The first stage projection approach results in interpretability at the node level

and is remarkable in terms of preserving the original network characteristics given small

to moderate number of channels. In the second stage, the projected latent scale features

are used to predict continuous scalar outcomes via a flexible Gaussian process regression,

which naturally accommodates non-linear relationships and incorporates unknown interac-

tions. In addition to being able to provide a systematic way for extracting the dimension of
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the underlying manifold space, the proposed approach is able to perform feature selection

at the network node level via spike and slab priors on the lengthscale parameters of the

Gaussian process, which provides significant advantages over competing network embedding

approaches that typically do not preserve interpretability and hence are not equipped to

explicitly perform network feature selection.

We denote our approach as latent scale Gaussian process regression (ls-GPR) and develop

a fast computational method for implementation. An efficient Expectation-Maximization

(EM) algorithm for estimating the latent scales from the given network data is proposed

for the first stage model, by leveraging the Polya-Gamma data augmentation scheme in

Polson et al. (2013). The Gaussian process regression in the second step is implemented via

Markov chain Monte Carlo (MCMC) tools. We note that while it is tempting to propose

a joint model that simultaneously updates the latent scales and the regression parameters,

such a model runs into computational challenges when updating the latent scales due to the

difficulties in deriving closed form posteriors, which is a well-known problem in literature

(Yang et al., 2016). One can possibly discretize the latent scales to facilitate computational

updates, or alternatively use Metropolis-Hastings based strategies or their more efficient

variants (Robert, 2015) for such a joint analysis. However, both strategies have drawbacks

in high dimensions: the former may lead to shrinkage of prior support, while the latter may

result in inefficient mixing. Hence we adopt a more practical two-stage implementation

that alleviates these computational challenges and is scalable to high dimensional networks.

We perform extensive simulations under a variety of network structures and compared

the performance to existing linear and non-linear approaches. Our results illustrate the

clear advantages of the proposed approach in terms of higher prediction accuracy, superior

predictive uncertainty quantification in terms of coverage intervals for test samples that also

often have much lower interval widths, and power to detect truly significant predictors while

controlling the false positives. Our neuroimaging application involving PTSD resilience

modeling based on brain networks reveals significantly higher prediction accuracy and better

predictive uncertainty quantification under the proposed method, and identifies important

brain regions that are associated with PTSD.
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We would note that this chapter makes several important contributions. To our knowledge,

the proposed approach is one of the first to develop a Bayesian non-parametric regression

approach based on network-valued covariates with the added capability of node level fea-

ture selection. The superior numerical performance of the approach results from successfully

resolving the question of whether accurate lower dimensional manifold representations of

high-dimensional networks can be used for improved prediction in conjunction with flexible

non-linear regression models (in our case, Gaussian process regression), and whether they

can be used to infer important network features. The latent scale representation provides

a desirable balance between two extreme scenarios involving an edge-level analysis that is

not appealing due to the reasons mentioned previously, and alternate dimension reduction

techniques that do not preserve interpretability and hence precludes network feature se-

lection. To our knowledge, given that there is a limited literature on variable selection in

Gaussian process latent variable models (GP-LVMs) and limited or no variable selection

methods for Bayesian non-parametric regression methods using network-valued covariates,

our contribution is of independent interest.

2.2 Related Literature

A common strategy for regression based on network valued covariates is to use summary

network measures as explanatory variables (see, for example, Bullmore and Sporns (2009)

and references therein). However, the success of such an approach depends heavily on the

choice of the network metrics. Moreover, these approaches have reduced exploratory value

and potentially sub-optimal performance due to decreased resolution of the summary statis-

tics. Another alternative is to include all the edges in the network as a vectorized predictor,

and use these high dimensional features for modeling the clinical phenotype (Craddock

et al., 2009). Although penalized regression approaches (Tibshirani, 1996) and Bayesian

shrinkage (Chang et al., 2018) may be used to model the regression coefficients in these

high-dimensional applications, these approaches often treat the edges as interchangeable

and fail to respect the inherent network structure that may show properties such as small-
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worldedness (Bassett and Bullmore, 2006) or other patterns of organization. Disregarding

these inherent structures and the associated correlations may lead to sub-optimal perfor-

mance. Recent developments such as Guha and Rodriguez (2020) address this issue by using

a tensor-based representation for the regression parameters corresponding to the edges in

the network, while (Relión et al., 2019) propose a linear classification model that encourages

sparsity in the number of nodes and edges of the coefficient matrix. However, these linear

approaches still require estimating as many regression coefficients as there are edges, and

hence are challenging to implement for high dimensional networks including hundreds of

regions containing tens of thousands of edges. Going beyond linear approaches, a contem-

porary work by Weaver et al. (2021) presented a regularized single index modeling approach

that links the outcome to a linear combination of covariates using an unspecified smooth

function modeled via splines. Although more flexible than linear regression approaches,

single index models do not mitigate the curse of dimensionality presented by a massive

number of edges corresponding to our high-dimensional networks of interest (involving 264

nodes and 34716 edges), which may potentially lead to overfitting and sub-optimal perfor-

mance. An additional limitation for the approach by Weaver et al. (2021) is that it only

reports point estimates without presenting uncertainty quantification and lacks inferential

capabilities for feature selection that is often critical in neuroimaging studies.

A possible alternative approach to tackle the curse of dimensionality in regression prob-

lems involving high-dimensional networks involves manifold learning, where the network is

first projected onto a lower dimensional manifold, which is subsequently embedded within

a flexible regression framework. Frequentist examples of reducing the dimension of feature

space include principal component analysis and more elaborate methods that accommodate

non-linear subspaces, such as isomap (Tenenbaum et al., 2000) and Laplacian eigenmaps

(Belkin and Niyogi, 2003). Bayesian manifold approaches characterizing predictive uncer-

tainty have also been developed. Page et al. (2013) proposed a Bayesian nonparametric

model for learning of an affine subspace in classification problems, and Kundu and Dunson

(2014) proposed a Gaussian process latent variable model to accommodate non-linear sub-

spaces for prediction with scalar covariates. However, there may be a heavy computational
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price to extricate the number and distribution of the latent variables, and then simultane-

ously learning the mapping functions while keeping identifiability restrictions. These factors

typically restrict such manifold learning based approaches involving Gaussian process mod-

els to a small to moderate number of features, although some limited number of scalable

approaches are available that avoid having to learn the mapping to the lower-dimensional

subspace (Yang et al., 2016). The lack of scalabilty under Gaussian process regression to

more than a few hundred or thousand predictors is not surprising, given that it is not trivial

to sample a large number of lengthscale parameters under an anisotropic Gaussian process

model via Metropolis-Hastings updates in such high-dimensions.

Another important limitation of existing manifold learning approaches is that the features

in the lower dimensional manifold are typically not interpretable in terms of the original

network features. This may be restrictive in neuroimaging applications where it is often

important to identify important brain regions that are associated with mental illnesses via

localized changes in network configurations. Similar limitations apply for non-linear deep

learning approaches for constructing prediction models using network-valued covariates,

which have the added complication of requiring large sample sizes to train the deep layers.

These efforts are further complicated by the fact that the generalization of deep learning

tools such as CNN to irregular or non-Euclidean network data is non-trivial. In fact, there

is very limited literature on this topic (Meng and Xiang, 2018), and advanced tools such

as graph neural networks (Wu et al., 2020) require more testing and validation for brain

network applications of interest. Even then, such existing deep learning approaches are

not applicable to our problems of interest that focus on interpretable Bayesian methods

incorporating network feature selection through inference, and quantification of uncertainty.

2.3 Proposed Methods

Suppose we have data on n participants. For the ith participant (i = 1, . . . , n), the data

includes a continuous scalar variable yi ∈ ℜ representing the clinical outcome of interest,

an undirected brain network having p nodes represented as a symmetric binary matrix



14

Gi(p × p), with gi(k, l) = 1/0 depending on whether the edge (k, l), k ̸= l, is present or

absent in the network, and supplemental covariates zi representing environmental exposures

and demographic factors. The binary network G can be based on structural or functional

connectivity, while the number of regions depends on the chosen atlas (p = 264 under the

Power atlas for our applications). We denote the vector of elements in the upper triangle

excluding the diagonals for Gi, or edge set, as ei of length p(p − 1)/2. The diagonal

elements are excluded since they do not represent connections between distinct nodes and

are irrelevant to our problem of interest. The method is described in detail below, and

Figure 2.3 provides a diagrammatic illustration of our two-stage model.

Figure 2.3: Schematic Diagram of the Two-stage Model. G represents the given network
that is projected onto a lower dimensional manifold involving latent scales U and intercept
a in the first stage. These parameters are then combined with observed environmental
exposures z to model the outcome via the unknown mean function ϕ(·) that is modeled via
a Gaussian process regression, in the second stage.
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2.3.1 Model formulation

First Stage: Latent Scale Representation of Brain Networks

Our goal is to have a parsimonious probability model for the binary networks represented

by the edge sets ei, i = 1, . . . , n. Clearly there are 2p(p−1)/2 possible models for the graph

space G that grows exponentially with the number of nodes. In order to tackle this curse

of dimensionality, we project the network into a lower dimensional space via a meaningful

mapping that avoids restrictive assumptions and fits the data reasonably well. Motivated

by the above considerations, we represent the edge probabilities in terms of node level latent

scales. In particular, we fit the following latent scale model separately for each sample

P
(
ei
)
=

p∏
k<l,k,l=1

π
ei,kl
i,kl (1− πi,kl)

1−ei,kl , log(
πi,kl

1− πi,kl
) = ai + uTikΛiuil,

ai ∼ N(0, σ2a), uik,r ∼ N(0, σ2u), k = 1, . . . , p, i = 1, . . . , n, (2.3.1)

where uik = (uik,1, · · · , uik,d)T is the vector of latent scale having d channels for node k,

ai denotes the subject-specific intercept common across edges, and Λi represents the d× d

diagonal weight matrix with elements (λi1, . . . , λid) that controls the contribution of the

latent scales to the inner product in (2.3.1) corresponding to the ith participant. The

intercept term controls the overall density of the network and is learnt by pooling data

across all edges. The latent scale ul captures the importance of node l in the network.

If both nodes l and k have activations in the same directions, captured via uk,r and ul,r

having the same signs, then they can be construed as functionally connected. In order to

preserve identifiability with respect to rotation, we fix the first element of all latent scales

(0.5 in our implementations), and the first diagonal element in weight matrix Λi is also fixed

to be one. The remaining diagonal elements in the weight matrix are either pre-specified,

or assigned a Bernoulli prior λir ∼ Ber(π), r = 2, · · · , d, that allows one to adaptively

select the important channels specific to the network for each individual. The unknown

prior inclusion probability π, which controls the number of channels that are expected to

be included when fitting the network, is estimated adaptively under a Beta(aπ,bπ) prior.



16

Model (2.3.1) results in a dramatic reduction in the number of parameters from p(p− 1)/2

to the order of p× d+ 1. In particular, the latent scales Ui = (ui1, . . . ,uip), for participant

i, have dimension d × p where p is the number of brain regions and d is the intrinsic

dimension of the latent scale (or channels) that needs to be determined. In general, finding

the intrinsic dimension of the manifold is a difficult problem (Yang et al., 2016). However,

we are able to systematically choose the manifold dimensions under our approach. The

number of channels d can be chosen from a range of possible values, as one that results

in the smallest BIC score in the subsequent second stage regression model. Such a choice

of d represents a common latent dimension across all samples that results in the best out

of sample prediction performance, although the relative importance of individuals channels

when fitting the network in the first stage model is expected to vary across samples.

Model (2.3.1) is inspired by the latent space modeling of a single network (Hoff, 2005) that

has been shown to provide a more general characterization of interconnection structures and

network properties than stochastic block model (Nowicki and Snijders, 2001) and latent dis-

tance model (Hoff et al., 2002). A similar model for undirected binary networks appeared

in Durante et al. (2017), who used a mixture of latent scale probabilities to model a popu-

lation of networks. For our neuroimaging applications of interest, it may be too simplistic

to assume that groups of participants in the sample share the same latent scales exactly,

due to the well-known inherent heterogeneity in PTSD (Lanius et al., 2006). Moreover, our

primary objective is to predict the clinical outcome based on the network, which requires a

distinct lower dimensional representation for the network corresponding to each participant.

Hence for our application, having individual network specific parameters in (2.3.1) seems

appropriate. In addition, instead of multiplicative gamma priors on the diagonal elements

of Λ in Durante et al. (2017) that are specified for adaptive estimation of the weight matrix,

our prior construction uses Bernoulli priors on the diagonal elements of Λ that is computa-

tionally more straightforward, and allows one to actually select the important channels for

fitting the individual level networks.
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Second Stage: Latent Scale Gaussian Process Regression

Once the high-dimensional network has been projected onto the lower dimensional latent

scale space in the first stage, we embed these latent scales (along with supplementary co-

variates z) into a Gaussian process regression framework for predicting the clinical outcome

as:

yi = ϕ(Λ
1/2
i Ui, ai, zi) + ϵi, ϵi

iid∼ N(0, τ−1), i = 1, · · · , n. (2.3.2)

where ϵi denotes the residual error normally distributed with precision τ ∼ π(τ), ϕ(·)

denotes the unknown mean that is a function of the brain network via the estimated weighted

latent scales Λ
1/2
i Ui and intercept ai derived via model (2.3.1), as well as supplementary

demographics and environmental exposures zi. We note that the parameters (Λ
1/2
i Ui, ai)

capture the entirety of information about the network for the i-th sample, and hence are

collectively included in the Gaussian process regression. The function ϕ(·) is assumed to

have a Gaussian process prior with mean 0 and covariance kernel K that has the following

squared-exponential structure:

K(i, i′) = ψ1exp
{
−ψu

∣∣∣∣Λ1/2
i Ui−Λ

1/2
i′ Ui′

∣∣∣∣2
F
−ψa(ai−ai′)2−ψz

∣∣∣∣zi−zi′
∣∣∣∣2
2

}
, i ̸= i′ (2.3.3)

where || · ||F and || · ||2 denote the Frobenius and L2 norms respectively, ψ1 denotes the scale

parameter controlling the variance of the mean function, and ψu, ψa and ψz respectively

denote the distinct lengthscale parameters corresponding to the latent scales, the intercept

term and the supplementary covariates that control the smoothness of the mean function

under the Gaussian process. The Gaussian process prior for the mean function allows flexible

non-linear relationships between the outcome and the covariates, and can also accommodate

unknown interactions between the network and supplemental covariates that is crucial in

order to achieve good prediction accuracy. We note that the Frobenius norm in the first

term in (2.3.3) represents the distance between matrices, whereas the L2 norm represents

the distance between vectors.
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Node Selection with Respect to Outcome

Given the node-specific latent scales representation of the network, we are also interested in

investigating which nodes in the network contribute to significant differences with respect

to the outcome of interest. To achieve this, we extend the proposed model in (2.3.2) by

using a modified kernel function as

K(i, i′) = ψ1exp

{
−ψu

[ p∑
j=1

βj
∣∣∣∣Λ1/2

i uij−Λ
1/2
i′ ui′j

∣∣∣∣2
2

]
−ψa(ai−ai′)2−ψz

∣∣∣∣zi−zi′
∣∣∣∣2
2

}
, i ̸= i′,

(2.3.4)

where βj represents the overall contribution of node j in the network towards modeling the

outcome. If nodes k and l are both significant related to the outcome (i.e. βk and βl are

non-zero), then it automatically implies that edge (k, l) is significant. However even then, it

is possible for subsets of edges associated with significant nodes {k : βk ̸= 0} to be unrelated

to the outcome, since βk represents the node level contributions corresponding to the k-th

node and is not equipped to directly identify edge-level associations.

Similar to Savitsky et al. (2011), we assume βj = − log(ρj) where ρj ∈ [0, 1] for j = 1, · · · , p.

Further we assume a spike-and-slab prior on ρj ’s as

π(ρj |γj) = γjI{0 < ρj ≤ 1}+ (1− γj)δ1(ρj), γj ∼ Ber(π∗), π∗ ∼ Beta(aπ∗ , bπ∗), (2.3.5)

where δ1(·) denotes a point mass at 1, in which case the corresponding β parameter would

have a point mass at 0. Equation (2.3.5) specifies that with probability 1 − π∗ (that is

unknown), the j-th network node will have no effect on the regression model (i.e. βj = 0),

while it will have a non-negligible influence with probability π∗. The unknown prior inclusion

probability is estimated under a Beta hyperprior. One can perform feature selection at the

node level by including those nodes whose posterior inclusion probabilities lie above a certain

threshold, where the threshold can be chosen as 0.5, or can be determined adaptively using

a post-hoc approach that controls for false discovery rates as in Kundu et al. (2019b). The

spike and slab specification is designed to result in dimension reduction via a node selection

procedure that completely eliminates the contribution of all network edges related to nodes
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that are not significantly associated with the outcome. The feature selection at the node

level (rather than the edge level), is more suitable in high-dimensional network studies (such

as in our neuroimaging applications), and is motivated by the fact that node level summaries

are commonly used to study brain network properties (Higgins et al., 2019), which justifies

this approach. Hence, the proposed approach works best when the association between the

network and the outcome can be primarily characterized via node level network measures.

2.3.2 Computation Framework

The estimation of the first stage model is implemented through an EM algorithm with

data augmentation utilizing Theorem 1 in Polson et al. (2013). The EM algorithm is more

computationally efficient compared to the previous Markov chain Monte Carlo (MCMC)

implementation (Hoff, 2005), and leads to significant speed-ups in applications involving

high-dimensional networks. The details of the EM algorithm can be found below. For

completeness, we have also included details of the MCMC algorithm for the first stage model

in the Appendices, but the MCMC based results for the first stage model are not included

in the report. Conditional on the estimated latent scales in the first stage, we use a MCMC

sampling scheme to estimate the parameters for the second stage regression model. For

the MCMC sampling scheme, the scale parameters τ ∼ Ga(aτ , bτ ) and ψ1 ∼ Ga(aψ1 , bψ1)

are assigned conjugate priors and updated under closed form posteriors. The lengthscale

parameters ψu, ψa and ψz are updated via Metropolis-Hastings steps. For the posterior

computation involving node selection in model (2.3.4), the MCMC proceeds as in model

(2.3.2) with additional steps included to update γ’s, ρ’s, β′s and π∗, as described in the

sequel.
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EM Algorithm for the First Stage Model

Denoting {e} = {e1, . . . , en}, {a} = {a1, . . . , an}, {U} = {U1, . . . , Un}, we can express the

likelihood as follows:

π
(
{e}
∣∣{a}, {U},Λ

)
=

n∏
i=1

p∏
k<l,k,l=1

[
exp
(
ai + uTikΛiuil

)]ei,kl[
1 + exp

(
ai + uTikΛiuil

)] , k < l, k, l = 1, . . . , p.

Using Theorem 1 in Polson et al. (2013), we can introduce edge-specific latent Pólya-Gamma

(PG(0, 1)) variables ωi = {ωi,kl : k < l}, i = 1, · · · , n and denote {ω}={ω1, . . . , ωn}, and

write the augmented likelihood as:

π
(
{e}
∣∣{a}, {U},Λi, {ω}

)
=

n∏
i=1

p∏
k<l,k,l=1

1

2
exp

{
(ei,kl−0.5)

(
ai+uT

ikΛiuil

)
−0.5ωi,kl

(
ai+uT

ikΛiuil

)2}
.

The posterior distribution is proportional to the product of the likelihood and priors π({a}),

π({U}), π(Λi), π({ω}) as specified earlier. The EM algorithm treats the log-posterior as the

objective function and maximizes it to obtain the MAP (maximum a posteriori) estimates

for ai, Ui and Λi via the M-step, while treating {ω} as missing variables that are imputed

via the E-step. The q-th iteration of the EM algorithm is described below.

E step: We calculate the conditional expectation of the Pólya–Gamma variables as

ω
(q)
i,kl =

1

2δ
(q−1)
i,kl

[
eδ

(q−1)
i,kl − 1

eδ
(q−1)
i,kl + 1

]
, δ

(q−1)
i,kl = a

(q−1)
i + u

(q−1)T
ik Λ

(q−1)
i u

(q−1)
il , k < l, k, l = 1, . . . , p.

and also for the diagonal elements in the weight matrix as

λ
(q)
ir =

π(q−1)L1

π(q−1)L1 + (1− π(q−1))L0

where

L1 =

p∏
k<l,k,l=1

1

2
exp

{
(ei,kl−0.5)

(
a
(q−1)
i +u

(q−1)T
ik Λr1

i u
(q−1)
il

)
−0.5ω

(q)
i,kl

(
a
(q−1)
i +u

(q−1)T
ik Λr1

i u
(q−1)
il

)2}



21

and Λr1
i = diag(1, λ

(q)
i2 , · · · , λ

(q)
i(r−1), 1, λ

(q−1)
i(r+1), · · · , λ

(q−1)
id ); also on the other hand,

L0 =

p∏
k<l,k,l=1

1

2
exp

{
(ei,kl−0.5)

(
a
(q−1)
i +u

(q−1)T
ik Λr0

i u
(q−1)
il

)
−0.5ω

(q)
i,kl

(
a
(q−1)
i +u

(q−1)T
ik Λr0

i u
(q−1)
il

)2}

and Λr0i = diag(1, λ
(q)
i2 , · · · , λ

(q)
i(r−1), 0, λ

(q−1)
i(r+1), · · · , λ

(q−1)
id ). The diagonal elements are up-

dated in sequence from index 2 to d.

M step: We plug in {ω(q)
i,kl : k < l} and {λ(q)ir : r = 2, · · · , d} to obtain the values for the

remaining model parameters as those that maximize the augmented log-posterior. We first

find the estimate for ai (i = 1, . . . , n) as:

a
(q)
i =

( p∑
k<l,k,l=1

[
ei,kl − 0.5− ω

(q)
i,klu

(q−1)T
ik Λ

(q)
i u

(q−1)
il

])(
σ−2
a +

p∑
k<l,k,l=1

ω
(q)
i,kl

)−1

As noted earlier, the first element of every latent scale is fixed at a certain pre-specified

value b and does not need to be updated. Thus we denote latent scale for the kth node

omitting the first element as uik(−1). Correspondingly, we fix the first diagonal element of

Λi at 1 and denote the diagonal weight matrix omitting the first row and column of Λi as

Λi0. The latent scales are updated iteratively for k = 1, · · · , p as u
(q)
ik(−1) = A−1

ik Bik where

Aik =
∑

1≤j<k

[
ω
(q)
i,jkΛ

(q)
i0 u

(q)
ij(−1)u

(q)T
ij(−1)Λ

(q)
i0

+ σ−2
u I(d−1)

]
+
∑

k<j≤p

[
ω
(q)
i,jkΛ

(q)
i0 u

(q−1)
ij(−1)u

(q−1)T
ij(−1) Λ

(q)
i0 + σ−2

u I(d−1)

]
Bik =

∑
1≤j<k

[
ei,jk − 0.5− (a

(q)
i + b2)ω

(q)
i,jk

]
Λ
(q)
i0 u

(q)
ij(−1)

+
∑

k<j≤p

[
ei,jk − 0.5− (a

(q)
i + b2)ω

(q)
i,jk

]
Λ
(q)
i0 u

(q−1)
ij(−1)

Finally, the prior inclusion probability π corresponding to the channels is updated as π(q) =

(aπ − 1 +
∑d

r=2 λ
(q)
ir )/(aπ + bπ + d− 3).

Gibbs Sampler for Second Stage Parameters

We denote the Gaussian process atoms as ϕ =
(
ϕ(â1, Λ̂

1/2
1 Û1, z1), · · · , ϕ(ân, Λ̂1/2

n Ûn, zn)
)T

.

The algorithm iterates between the following steps:
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1. Update the noise precision τ from Gamma distribution with parameters (aτ + 0.5n)

and (bτ + 0.5
∣∣∣∣y − ϕ

∣∣∣∣2
2
).

2. Update the global scale parameter ψ1 from inverse Gamma distribution with param-

eters (aψ1 +0.5n) and (bψ1 +0.5ϕTE−1
0 ϕ) where E0 = exp

(
−ψuEu−ψaEa−ψzEz

)
.

Here we define Eu(i, i
′) =

∣∣∣∣Λ̂1/2
i Ûi − Λ̂

1/2
i′ Ûi′

∣∣∣∣2
F
, Ea(i, i

′) = (âi − âi′)
2, Ez(i, i

′) =∣∣∣∣zi − zi′
∣∣∣∣2
2
, i, i′ = 1, · · · , n.

3. Draw a candidate ψ∗
u where logψ∗

u ∼ N(logψu, 0.01
2). Accept the candidate with

probability

min

(
1,

∣∣ψ1E
∗
0 + τ−1In

∣∣−0.5
exp{−0.5yT (ψ1E

∗
0 + τ−1In)

−1y}∣∣ψ1E0 + τ−1In
∣∣−0.5

exp{−0.5yT (ψ1E0 + τ−1In)−1y}

)

where E∗
0 = exp

(
−ψ∗

uEu−ψaEa−ψzEz

)
. Same procedure for updating ψa and ψz.

4. Update the Gaussian process atoms ϕ from multivariate normal distribution with

mean
[
τ−1ψ−1

1 E−1
0 + In

]−1
y and covariance

[
ψ−1
1 E−1

0 + τ In

]−1
.

For our additional node selection analysis using modified kernel function, we need two

more steps in the Gibbs sampler to update γj , ρj and βj for j = 1, · · · , p in sequence,

as well as update the hyperparameter π∗ as illustrated below:

5. Update γj , ρj and βj for j = 1, · · · , p in sequence. While keeping parameters for k ̸= j

fixed, we have two moves to make.

• Between-model move: if currently γj = 1, we propose to have γ
′
j = 0, ρ

′
j = 1 and

β
′
j = 0; otherwise if currently γj = 0, we propose to have γ

′
j = 1, draw ρ

′
j from

Unif(0, 1) and let β
′
j = − log(ρ

′
j). We accept the proposal with probability

min

{
1,
π(γ

′
j)
∣∣ψ1E

′
j + τ−1In

∣∣−0.5
exp{−0.5yT (ψ1E

′
j + τ−1In)

−1y}

π(γj)
∣∣ψ1Ej + τ−1In

∣∣−0.5
exp{−0.5yT (ψ1Ej + τ−1In)−1y}

}

where Ej = exp
(
− ψuE

∗
u − ψaEa − ψzEz

)
, E∗

u(i, i
′) =

∣∣∣∣Λ̂1/2
i ÛiB − Λ̂

1/2
i′ Ûi′B

∣∣∣∣2
F

and B = diag(
√
β1, · · · ,

√
βp) is a diagonal matrix with the j-th diagonal element
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as
√
βj . On the other hand, we have E

′
j = exp

(
− ψuE

∗′
u − ψaEa − ψzEz

)
,

E∗′
u (i, i

′) =
∣∣∣∣Λ̂1/2

i ÛiB
′ − Λ̂

1/2
i′ Ûi′B

′∣∣∣∣2
F
and B

′
= diag(

√
β1, · · · ,

√
βp) where the

j-th diagonal element is
√
β

′
j .

• Within-model move: this move is only triggered when we sample γ′j = 1. Then

we further draw another ρ
′′
j from Unif(0, 1) and β

′′
j = − log(ρ

′′
j ). And we accept

this proposal with probability

min

{
1,

∣∣ψ1E
′′
j + τ−1In

∣∣−0.5
exp{−0.5yT (ψ1E

′′
j + τ−1In)

−1y}∣∣ψ1E
′
j + τ−1In

∣∣−0.5
exp{−0.5yT (ψ1E

′
j + τ−1In)−1y}

}

and here E
′′
j = exp

(
− ψuE

∗′′
u − ψaEa − ψzEz

)
, E∗′′

u (i, i′) =
∣∣∣∣Λ̂1/2

i ÛiB
′′ −

Λ̂
1/2
i′ Ûi′B

′′∣∣∣∣2
F

and B
′′
= diag(

√
β1, · · · ,

√
βp) where the j-th diagonal element

is
√
β

′′
j .

6. Update the prior inclusion probability π∗ from Beta distribution with parameters

(aπ∗ +
∑p

j=1 γj) and (bπ∗ + p−
∑p

j=1 γj).

2.3.3 Prediction for Testing Samples

The prediction for additional subjects involves two steps. First step takes the upper trian-

gular vector of binary network matrices e∗1, · · · , e∗m as input of first stage model and obtain

the estimates of intercept and latent scales. These estimates are then used in the second

step, together with other supplementary covariates, as input of second stage model and

eventually obtain the predicted values of the response variable. From the property of Gaus-

sian process, the response of the additional subjects y∗ = (y∗1, · · · , y∗m)T and the response
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of the original n subjects y jointly follow a multivariate normal distribution as

 y

y∗

 ∼ N

(
0(n+m),

K + τ−1In KT
∗

K∗ K∗∗ + τ−1In

),
K∗(q, i) = ψ1exp

{
− ψu

∣∣∣∣Λ1/2
q U∗

q − Λ
1/2
i Ui

∣∣∣∣2
F
− ψa(a

∗
q − ai)

2 − ψz
∣∣∣∣z∗

q − zi
∣∣∣∣2
2

}
,

K∗∗(q, q
′) = ψ1exp

{
− ψu

∣∣∣∣Λ1/2
q U∗

q − Λ
1/2
q′ U

∗
q′
∣∣∣∣2
F
− ψa(a

∗
q − a∗q′)

2 − ψz
∣∣∣∣z∗

q − z∗
q′
∣∣∣∣2
2

}
,

i = 1, · · · , n, q, q′ = 1, · · · ,m

When working with the modified kernel (2.3.4), we need to replace the Λ1/2U in the co-

variance kernel with Λ1/2UB where B is a diagonal matrix of
√
β1, · · · ,

√
βp. Then the

conditional mean can be expressed as:

E(y∗|y) = K∗(K + τ−1In)
−1y

The expression above is based on the marginal distribution of the outcome. We can also

base the prediction expression on the Gaussian process atoms ϕ. Then the computation

would be ϕ

y∗

 ∼ N

(
0(n+m),

K KT
∗

K∗ K∗∗ + τ−1In

), E(y∗|ϕ) = K∗K
−1ϕ

This expression can be used for in-sample prediction with the Gibbs sampler algorithm.

2.3.4 Hyper-parameter Selection

An optimal implementation of our method requires a careful choice of several hyperparam-

eters in order to optimize performance. In the first stage EM algorithm, we set σ2a = σ2u = 2

for the priors on a and elements of U , which worked well across a range of hyper-parameter

combinations and several network structures. We also present (in Appendix) the sensitivity

analysis for different combinations of (σ2a, σ
2
u) in the first stage model, which illustrates the

robustness in performance under reasonable choices of these hyper-parameters as long as
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these values are not extremely large or small. For the weight matrix Λ, we can (i) fix it at

identity matrix or (ii) update it under Bernoulli priors and examine the performance under

two different hyperparameter choices on the prior inclusion probability π that is chosen to

be Beta(1, 10) or Beta(1, 25) in order to facilitate a sensitivity analysis for channel selection.

The prior on the spike and slab probability π∗ set at Beta(1, 1) that translated to a prior

mean inclusion probability of 0.5 and hence it does not favor either inclusion or exclusion

of the nodes.

For simulation studies, we performed sensitivity analysis for different choices of d in the

working model, whereas for the GTP data analysis, we choose the number of channels using

a data adaptive approach via cross-validation, in a manner that minimizes the prediction

error under the second stage regression model in a validation sample. For the second

stage Gibbs sampler, the prior on ψ1 is set to inverse gamma (0.1, 80) that results in

overall good prediction performance and coverage at the risk of wider predictive intervals

in some settings. However in the analysis of GTP data, we also implemented the method

under ψ1 ∼ Inv − Ga(0.1, 10) for sensitivity analysis. The prior on τ is pre-specified as

Gamma (0.1, 80) that mimics a non-informative variance, which enables good prediction

and coverage.

2.4 Empirical Experiments

2.4.1 Simulation Studies

We considered different scenarios corresponding to varying true network structures. Scenar-

ios 1 and 2 correspond to scale-free and small-world networks respectively that are frequently

encountered in real-world neuroimaging applications, whereas Scenario 3 uses the networks

obtained from resting state fMRI data from our GTP application. When generating the

data, a latent scale model (2.3.1) was first fit to the true network in order to obtain esti-

mates of latent scales U , the intercept term a and the weight matrix Λ. Subsequently, the

response was generated as y = 0.5a + exp(b1Λus1) +
∑nact

j=2 bjΛusj + ϵ∗i , ϵ
∗
i ∼ N(0, 0.52),



26

where each vector in the set {b1, . . . ,bnact} had length d and was sparse with non-zero

values as 1 or −1. The set {s1, · · · , snact} contained the indices of the active nodes, where

the number of active nodes were chosen at three levels 10, 30, 50 for the simulations.

The total number of channels d for the true model was chosen as 3, while different values

of d were used in the working model for sensitivity analysis. Moreover, we only present the

simulation results for Λ fixed to identity matrix in the working model, since the performance

with Bernoulli priors on the weight matrix for channel selection resulted in inferior predic-

tion, although we did present a sensitivity analysis with channel selection in the analysis of

GTP data reported in the next section. Supplementary covariates were not included for our

simulation examples in Scenario 1-3, although we did include additional covariates (such as

trauma exposure) in our analysis of GTP data as detailed in the sequel. For Scenarios 1-2,

the training and test sample sizes were 50 each, whereas for Scenario 3, the training and

test sample sizes correspond to 41 and 40 respectively corresponding to the GTP dataset.

True Network Generation

We used 100 nodes for the simulated networks in Scenarios 1 and 2 that is common in

brain connectome literature (Lukemire et al., 2020), while we used 264 nodes from the

Power atlas for Scenario 3. Hence our studies showcase the generalizability of the proposed

method across with varying network sizes. The network generation is described in detail

below.

Scenario 1: Here, scale-free networks were generated by function sample pa in R package

igraph (Csardi et al., 2006). The number of nodes was set to be 100 (p) with size of initial

graph varying between 2 and 10, and number of edges to add in each time step varying

between 4 and 10.

Scenario 2: Here, the network was generated with small-world structure using function

watts.strogatz.game in R package igraph. The size of starting lattice was kept at 1 and

the total size of lattice was set to 100 (p). The rewiring probability was kept at 0.5 while

the neighborhood size varied between 4 and 12.
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Scenario 3: Here, we generated the binary network based on resting state fMRI connectivity

using GTP data. A description of the study can be found in the PTSD Data Application

section. We calculated the resting state network for each participant corresponding to the

Power atlas with 264 nodes using the graphical lasso algorithm (Friedman et al., 2008) under

varying sparsity levels corresponding to regularization parameter values λ = 0.05, 0.10, and

0.15, with a larger λ value corresponding to a sparser network.

We note that the current data generation settings in Scenario 1 yields simulated networks

with density lying between 0.07 and 0.19; while for Scenario 2, the network density varies

between 0.08 and 0.24. For Scenario 3 involving the GTP data, the network density varies

between [0.18, 0.25] corresponding to λ = 0.05 and it decreases for higher values of λ.

These simulated network densities represent acceptable levels of sparsity in brain networks

that are encountered in literature (see Hallquist and Hillary (2018)), which typically vary

between 5% to 25%.

Competing Methods and Performance Metrics

We denote the proposed latent scale Gaussian process regression approach without node

selection as lsGPR, and denote the corresponding version with node selection via spike

and slab priors as sparse lsGPR or sp-lsGPR. Our proposed method was compared to the

linear shrinkage methods including lasso (Tibshirani, 1996), ridge (Hoerl and Kennard,

1970), elastic net (Zou and Hastie, 2005), and Bayesian horseshoe prior (Carvalho et al.,

2010), which all used the full edge set as the predictors. The models were implemented

through R packages glmnet (Friedman et al., 2010) and monomvn (Gramacy, 2018). We

also compared with non-linear approaches that used GPR on the full edge set (edge-GPR),

on the reduced representation from principal component analysis (pca-GPR), and on the

reduced representation from Laplacian Eigenmap (Belkin and Niyogi, 2003) (mf-GPR).

The dimension reduction of the pca-GPR and mf-GPR methods were implemented using

R function prcomp and R package dimRed (Kraemer et al., 2018) respectively. We used

the squared exponential kernel (Rasmussen and Williams, 2006) for all GPR approaches,

with similar priors on the scale parameter of the kernel for fair comparisons. We evaluated
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prediction performance in terms of out of sample predictive MSE, as well as coverage and

95% predictive interval widths for the test samples under all Bayesian approaches. Here the

coverage was defined as the ratio of test samples where the predictive intervals covered the

observed value of these test samples to the total number of test samples. We also evaluated

the node selection performance for our method and compared to Bayesian horseshoe prior

method in terms of the area under the curve (AUC). For computing the AUC, we varied the

threshold for posterior inclusion probabilities in order to detect significant nodes under the

proposed sparse lsGPR method. Similarly for the Bayesian horseshoe that is a continuous

shrinkage approach, we denoted a node as significant if one or more edges associated with

that particular node was significant, where an edge is defined as significant if the estimated

regression coefficient had absolute value greater than some threshold. In addition to AUC,

the ROC curves themselves are also presented for the simulation examples in the Appendix.

The total number of MCMC iterations for the second stage method was 10,000 with a burn

in of 5000 under all Bayesian methods.

We note that the above competing methods are designed to cover a gamut of potential

competitors that are state-of-the art in existing literature. The linear regression approaches

are perhaps most widely used in literature. Moreover, the comparisons with alternate

Gaussian process regression approaches with and without dimension reduction are natural

in the context of the proposed method that involves dimension reduction via latent scales

coupled with a Gaussian process regression framework. Such comparisons are particularly

pertinent in the context of previous literature that suggests that Gaussian process regression

methods which involve overly large number of features without dimension reduction perform

sub-optimally for high-dimensional regression problems (Jiang et al., 2007).

Results

The prediction and coverage results for Scenarios 1-2 are presented in Figure 2.4. The hor-

izontal axis represents the different levels for number of active nodes involved in generating

the response. From the boxplots, it is immediately clear that both the lsGPR and the sparse

lsGPR have superior predictive performance that is significantly improved compared to ex-
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isting methods under Scenarios 1-2. Although the lsGPR including all nodes has greater

predictive accuracy compared to sparse lsGPR for some cases, it is important to note that

the sparse lsGPR method consistently has greater coverage accuracy compared to lsGPR,

that points to a better characterization of predictive uncertainty under node selection via

the spike and slab prior compared to when all nodes are included. The sparse lsGPR consis-

tently has greater coverage compared to different approaches with varying number of active

nodes in almost all settings under Scenarios 1-2. Moreover, the credible interval width is

reasonable and often lower than competing GP regression approaches that use alternate

dimension reduction methods. In contrast, the edge level GPR has extremely narrow pre-

dictive intervals that is impractical and results in very poor coverage. Finally, the sparse

lsGPR method has a significantly higher AUC compared to the Bayesian horseshoe con-

sistently across different number of active nodes, although the node selection performance

becomes less accurate as the number of active nodes increases, which is expected.

Figure 2.5 illustrates the results of Scenario 3 where the horizontal axis represents the

number of active nodes as in Figure 2.4, and the three rows correspond to the three levels

of the regularization parameter λ of the graphical lasso in obtaining the binary networks,

with higher values implying a sparser network. The sparse lsGPR method results in sig-

nificantly improved prediction accuracy compared to all approaches, including the lsGPR

method involving all nodes. Further, the coverage under the sparse lsGPR method is signif-

icantly improved compared to all other methods for the majority of settings, although the

pcaGPR and mfGPR methods have slightly improved coverage in a few cases that results

from extremely wide predictive intervals under these methods, which may not be desirable.

Moreover, both the edgeGPR and the lsGPR involving all nodes have extremely poor pre-

dictive coverage that results from narrow predictive intervals, which is not desirable. In

addition to superior performance in prediction and coverage, our proposed method also

shows a consistent advantage in terms of node selection based on the AUC metric over

the Bayesian horseshoe prior method, as in Scenarios 1-2. Furthermore, the ROC curves

presented in Figure 2.12 in the Appendix also clearly show the superior sensitivity and

specificity for variable selection under the proposed approach across all network sparsity
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Figure 2.4: Boxplots for MSE, coverage, credible interval width and node selection AUC
with varying number of activated nodes, under simulation Scenario 1 (left column) and
Scenario 2 (right column).
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Figure 2.5: Boxplots for MSE, coverage, credible interval width , and AUC under Scenario
3 involving GTP networks with varying sparsity levels and different number of activated
nodes.
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levels in Scenario 3.

In summary, the lsGPR and the sparse lsGPR with node selection has significantly improved

prediction performance compared to all approaches for Scenarios 1-2, but the performance

of lsGPR involving all nodes declines under Scenario 3 involving high-dimensional networks

derived from real fMRI data. Moreover, the sparse lsGPR has a decided advantage over

lsGPR involving all nodes in terms of characterizing predictive uncertainty as reflected by

higher coverage under predictive intervals for test samples that have reasonable width. The

edgeGPR method suffers from an overwhelmingly large number of edges, and the perfor-

mance of the lsGPR method involving all nodes deteriorates when the number of nodes is

increased in Scenario 3 (compared to Scenarios 1-2). Competing dimension reduction tech-

niques relying on PCA or other manifold projections have inferior prediction performance,

as well as inferior coverage for the majority of settings, in spite of having sufficiently wide

predictive intervals, which suggests a poor ability to characterize predictive uncertainty. All

linear methods have inferior predictive performance as expected, and the variable selection

under Bayesian horseshoe results in inaccurate node selection that is potentially due to an

overwhelmingly large number of edges in the high-dimensional networks considered.

We conducted a sensitivity test for the hyper-parameters σ2a and σ
2
u needed in the first stage

EM algorithm. Table 2.5 in the Appendix reports the performance metrics for different

hyper-parameter combinations under simulation scenario 1. From the table we can see that

the suggested hyper-parameter values (σ2a = 2, σ2u = 2) enjoy a generally good performance

in terms of prediction and variable selection. Also in general, the overall prediction and

variable selection are not sensitive to the choice of hyper-parameters in the first stage EM

algorithm, as long as some extreme choices are not used, for example, σ2u = 0.2 or σ2u = 20.

We also compared the performance of the proposed approach using EM algorithm in the first

stage versus using MCMC for fitting the first stage model, under simulation scenario 1. The

scatterplots of Figure 2.10 in the Appendix show high concordance between prediction and

uncertainty quantification results under the latent scales derived from the EM algorithm and

the MCMC approach for fitting the first stage model. Since both methods for estimating

the first stage model leads to a comparable performance under the second stage regression
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model (which is our main focus of interest), we recommend using the EM algorithm in the

first stage since it is computationally scalable for high-dimensional networks.

Finally, a sensitivity analysis with varying number of channels in Figure 2.6 suggests that

the performance of the sparse lsGPR method remains consistently better than competing

approaches even when the value of d used in the working model is different than the number

of true channels used when generating the data. However, the performance of the proposed

approach in terms of node selection (AUC) seems to deteriorate significantly when the

number of channels used in the working model is less than the true number of channels used

for generating the data. Additional numerical examples are included in the Appendices

section in Figure 2.11, which illustrate the effect of mis-specification of the number of

channels. Based on these results, it is clear that the proposed approach performs best when

the value of d used in the working model is at least as large as the true number of channels.

Moreover, Table 2.1 shows the computation time under stage 1 for different methods, cor-

responding to an implementation on a high performance computing (HPC) environment

utilizing Intel Xeon CPU at 2.80GHz. The results in Table 2.1 are averaged over several

simulations and only serve as approximation. The computation time for the Bayesian ap-

proaches are reported for 10,000 iterations. We observe that although the computation

time increases almost linearly with the number of channels, the overall approach is compu-

tationally feasible for up to d = 25 or even d = 50 channels. However we don’t anticipate

requiring so many channels in order to obtain a good prediction performance under our ap-

proach. In our experience, a small to moderate number of channels in the first stage model

is often adequate to deal with prediction involving high dimensional networks. We note

that although the additional computational burden for fitting the first stage latent scale

model results in an increase in the overall computation time that is higher than competing

methods, the proposed approach is still scalable to high-dimensional networks of interest.
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Figure 2.6: Sensitivity analysis on the number of channels under Scenario 1. The left
column is under situation where the data generation uses 3 channels while estimation uses
4 channels. The right column is under situation where data generation uses 4 channels and
estimation with 3 channels.
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Table 2.1: Computation time summary for different number of channels under Scenario 1
with Stage1 and Stage2 referring to the two stages in our lsGPR method.

Method Lasso Ridge Elastic Net Horseshoe

CompTime <1s 4s 10s 4min

Method edgeGPR pcaGPR mfGPR

CompTime 0.5min 0.5min 0.5min

Method Stage1 (d=3) Stage1 (d=5) Stage1 (d=7) Stage1 (d=10)

CompTime 7.5min 9min 10.5min 13min

Method Stage1 (d=25) Stage1 (d=50) Stage2

CompTime 26min 58min 0.5min

2.4.2 PTSD Data Application

Grady Trauma Project and Resilience Scores

The Grady Trauma Project (GTP) recruited African American females to study the risk

factors for PTSD in a low-socioeconomic status (Stevens et al., 2013). The resting state

functional magnetic resonance imaging (rs-fMRI) brain scans for each individual were ob-

tained on a 3.0T Siemens Trio with echo-planar imaging (Siemens, Malvern, PA). T1-

weighted anatomical scans were gathered with 176 contiguous 1mm sagittal slices using 3D

MP-RAGE sequence (TR/TE/TI=2000/3.02/900 MS, 1mm3 voxel size). The functional

images were collected in an ascending interleaved sequence with 37 3mm axial slices and no

gap between slices (TR/TE=2000/30ms, FA=90◦, 3mm3 voxel size).

We used the preprocessing script released from the 1000 Functional Connectomes Project

to preprocess the brain images using standard steps. We first performed skull stripping on

the T1-weighted images. Then we removed the first four volumes of the functional scans

for signal stabilization, with 146 volumes remaining for the downstream preprocessing.

We registered the T1-weighted image and functional images to the MNI standard space

with a 6 mm FWHM Gaussian kernel for registration and smoothing. Motion corrections

and removing of nuisance signals were also performed on the images. Finally, we put the

functional images through band-pass filter to retain frequencies between 0.01 and 0.1 Hz.

After removing data with movement or drowsiness issues, we have 81 participants with

available rs-fMRI data. For our analysis, we use the whole brain parcellation presented
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in Power et al. (2011) for the brain images, involving 264 region of interest (ROIs). These

regions are further organized into ten functional modules including motor, cingulo-opercular

(CON), auditory, default mode (DMN), visual, fronto-parietal (FPN), salience (SAN), sub-

cortical, ventral attention (VAN) and dorsal attention (DAN) (Cole et al., 2013). These

functional modules have been assigned based on resting state fMRI studies (Power et al.,

2011), which is well-suited for our data. Using these 264 regions (nodes), a network was

computed separately for each individual using the graphical lasso algorithm (Friedman

et al., 2008) with regularization parameter λ (higher λ represents networks with greater

sparsity) and subsequently these networks were used for analysis. The GTP study has also

acquired data on the Connor-Davidson Resilience Scale (Connor and Davidson, 2003) for

measuring resilience as individual’s ability to thrive in the face of adversity. Our goal is

to model resilience as a continuous clinical measure of well-being in PTSD using resting

state functional connectivity as well as demographic factors such as the participants’ age,

and environmental exposure including traumatic events inventory (TEI) score (Sprang,

1997) and the childhood trauma questionnaire (CTQ) total score (Scher et al., 2001). The

resilience score of interest is only available for 73 participants, and hence we focus our

analysis on this subset.

For our analysis, we used 10 channels for the latent scales in the first stage model that

was chosen via cross-validation and yielded desirable results for prediction and uncertainty

quantification under the second stage model. We note that the ability of the latent scales

to reconstruct the network can be quantified via the area under the ROC curve (AUC) as

illustrated in Figure 2.7. In particular, one can first fit the latent scale model to the given

network and subsequently reconstruct the edge probabilities under the fitted latent scale

model. These edge probabilities can be thresholded under varying cut-offs to inform whether

an edge was present or absent under the reconstructed edge set as per the latent scales model.

Then, this reconstructed edge set can be compared to the observed network edges and the

sensitivity and specificity are computed for a series of thresholds that can then be used for

computing the AUC. We note that while an increasing number of channels is expected to

lead to greater AUC, it may not necessarily translate to gains in predictive accuracy in the
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second stage model, and instead may result in an inflated number of parameters without

providing any tangible benefits in terms of prediction and feature selection. This is evident

from our GTP analysis, where the predictive accuracy and uncertainty quantification with

10 channels was often superior compared to an alternate analysis with 25 channels in the

first stage model (results not presented due to space constraints).
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method d=10 d=25 d=50

Figure 2.7: Network Recovery Comparisons for the GTP Data under varying number of
channels and network densities

Results

The MCMC in stage 2 of the proposed model converged rapidly as evident from Geweke’s

convergence diagnostic test (Geweke, 1992). Figure 2.8 shows the trace plots for different

model parameters. Moreover, Table 2.2 shows the prediction performance of different meth-

ods when modeling the resilience score. The results are obtained from 50 random splits into

training and testing samples. Both the lsGPR and the sparse lsGPR yield considerable

lower predictive MSE compared to all competing methods across varying network densities

represented via different λ settings (λ = 0.05, 0.1, 0.15). Permutation tests show that both

the lsGPR and the sparse lsGPR method have significant reduction in MSE at 5% level of

significance compared to all competing methods, and across all levels of network sparsity.

Moreover, the prediction under the sparse lsGPR is significantly lower compared to the
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lsGPR involving all nodes for network densities represented by λ = 0.05, 0.1, while the pre-

dictive MSE is similar for both methods when λ = 0.15. However, the coverage of the sparse

lsGPR is significantly higher compared to the lsGPR method involving all nodes as well

as all other competing methods, across all settings. This suggests the superior ability for

characterization of predictive uncertainty using node selection under the proposed sparse

lsGPR method, which results from superior predictive ability combined with sufficiently

wide predictive intervals.

In contrast, approaches that employ the full edge set, including the linear models as well

as the edge-GPR method have extremely inferior prediction performance, illustrating the

perils of regression using high dimensional edge space that does not respect the inherent

dependency structure of the network. Moreover, the edge-GPR method often has poor

prediction performance that is sometime subdued even compared to linear models, which

highlights the drawbacks of using the full edge set in linear or non-linear models. Moreover,

the edge-GPR approach has considerably poor coverage due to tight intervals compared

to other non-linear regression approaches. These results suggest a strong justification for

non-linear regression modeling with dimension reduction using networks that is able to

accommodate unknown interactions with additional exposure variables, and has orders of

magnitudes improvements over linear models. Importantly, among all the dimension re-

duction approaches considered, the advantage of dimension reduction using a latent scale

manifold approach coupled with sparse node selection (i.e. the sparse lsGPR method) is

most prominent that highlights its’ considerable benefits over standard dimension reduction

techniques.

The performance of the lsGPR and the sparse lsGPRmethods were evaluated under different

hyperparameter settings as reported in Table 2.3, which serves as sensitivity analysis of our

proposed methods. We consider the following settings: sp-lsGPR1 refers to updating the

channels with prior on π at Beta(1, 10) and setting the prior on ψ1 at inverse Gamma

(0.1, 80); sp-lsGPR2 refers to updating the channels with prior on π at Beta(1, 25) and

setting the prior on ψ1 at inverse Gamma (0.1, 80); sp-lsGPR3 refers to fixing the values

of the weight matrix to identity while using the prior on ψ1 as inverse Gamma (0.1, 10);
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sp-lsGPR4 refers to updating the channels with prior on π at Beta(1, 10) and specifying

the prior on ψ1 at inverse Gamma (0.1, 10); sp-lsGPR5 refers to updating the channels

with prior on π at Beta(1, 25) and specifying the prior on ψ1 at inverse Gamma (0.1, 10);

lsGPR1 refers to updating the channels with prior on π at Beta(1, 10) and setting the prior

on ψ1 at inverse Gamma (0.1, 80) but without node selection; lsGPR2 refers to updating

the channels with prior on π at Beta(1, 25) and setting the prior on ψ1 at inverse Gamma

(0.1, 80) and without node selection. This sensitivity analysis reveals that although the out

of sample predictive accuracy is less under these hyperparameter settings compared to the

performance reported in Table 2.2, the characterization of predictive uncertainty as reflected

by the coverage of test samples is significantly higher when using channel selection under

different priors on the channel selection probability (see first two columns in Table 2.3). We

also discovered that changing the prior on the scale parameter of the Gaussian process from

ψ1 ∼ InverseGamma(0.1, 80) as in Table 2.2 to ψ1 ∼ InverseGamma(0.1, 10) in Table

2.3 results in a decrease in predictive accuracy as well as coverage of test samples, due to

the tapering of predictive intervals for test samples. These results suggest that overall, the

hyperparameter choices made in Table 2.2 work well for the proposed approaches.

Table 2.2: GTP study analysis results for predictive mean squared error (MSE), coverage
and (interval) width over 50 random splits. The sp-lsGPR and lsGPR methods here have
fixed the weight matrix to identity matrix in first stage and set prior on ψ1 at inverse
Gamma (0.1, 80).

sp-lsGPR lsGPR mfGPR pcaGPR edgeGPR Horseshoe Elastic net Ridge Lasso

λ
=

0.
05 MSE 0.885 0.926 0.973 1.090 1.013 1.092 1.052 1.005 1.046

Coverage 0.986 0.859 0.766 0.774 0.110

Width 5.230 4.001 3.872 4.014 0.323

λ
=

0.
1 MSE 0.864 0.890 0.912 1.067 1.013 1.099 1.107 1.010 1.081

Coverage 0.965 0.882 0.822 0.691 0.099

Width 5.086 3.964 4.273 3.508 0.299

λ
=

0.
15 MSE 0.875 0.873 0.968 1.042 1.014 1.105 1.086 1.024 1.057

Coverage 0.963 0.859 0.752 0.651 0.098

Width 5.053 3.561 3.840 3.284 0.291

We also examined the node selection results from our sparse lsGPR method based on the

posterior inclusion probabilities. Table 2.4 includes the nodes appear in the top ten percent

of the ranked posterior inclusion probabilities from analysis of the binary networks with

shrinkage parameters λ at 0.05, 0.1 and 0.15. A total of 12 nodes were selected including
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Table 2.3: Sensitivity analysis for GTP study analysis results with alternative hyperparam-
eter settings.

sp-lsGPR1 sp-lsGPR2 sp-lsGPR3 sp-lsGPR4 sp-lsGPR5 lsGPR1 lsGPR2

λ
=

0.
0
5 MSE 0.927 0.901 0.933 0.925 0.911 0.963 0.943

Coverage 0.977 0.975 0.723 0.794 0.799 0.691 0.844

Width 5.170 5.188 2.267 2.689 2.645 2.916 3.733

λ
=

0.
1 MSE 0.890 0.924 0.916 0.931 0.937 0.890 0.979

Coverage 0.990 0.978 0.756 0.811 0.758 0.871 0.745

Width 5.295 5.175 2.382 2.749 2.546 3.939 3.744

λ
=

0.
15 MSE 0.911 0.905 0.926 0.943 0.933 1.001 1.008

Coverage 0.991 0.990 0.739 0.790 0.804 0.775 0.552

Width 5.228 5.360 2.363 2.686 2.690 3.340 2.264
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Figure 2.8: Trace plots for gaussian process atom ϕ of one PTSD and one non-PTSD
subjects, and hyperparameters ψ1 and τ .
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one from auditory module, three from default mode, one from visual module, one from

fronto-parietal module, one from salience, one from subcortical, and four from unknown

module. These regions are visually illustrated in the top panel of Figure 2.9, whereas the

bottom panel highlights the largest edge differences among these regions between most

and least resilient participants. We note that the behavioral patterns listed above have

all been shown to be compromised in trauma exposed individuals (Sripada et al., 2013;

Falconer et al., 2008) and hence our analysis has a direct relevance in linking the brain

network with behavior in trauma exposed individuals. These network differences support

our node selection results by highlighting the connectivity differences between individuals

with high and low resilience levels. In contrast, the Bayesian horseshoe method has edge-

level posterior inclusion probabilities no greater than 0.04 thus we choose not to report its

selection results.

Table 2.4: Information on selected nodes in predicting resilience for the GTP study using
sp-lsGPR method. (L) and (R) represent left and right cerebrum respectively.
Power atlas

Functional module ROI location
Average posterior

index inclusion probability

64 Auditory (L) Sub-lobar, insula 0.1139

91 Default mode (L) Limbic lobe, posterior cingulate 0.1138

102 Default mode (R) Frontal lobe, superior frontal gyrus 0.1139

137 Default mode (L) Frontal lobe, inferior frontal gyrus 0.1139

140 Unknown (R) Occipital lobe, lingual gyrus 0.1136

172 Visual (L) Occipital lobe, middle occipital gyrus 0.1137

177 Fronto-parietal (L) Parietal lobe, inferior parietal lobule 0.1137

185 Unknown (R) Cerebellum posterior lobe, tuber 0.1137

210 Salience (R) Frontal lobe, inferior frontal gyrus 0.1143

233 Subcortical (R) Sub-lobar, extra-nuclear 0.1139

243 Unknown (L) Cerebellum posterior lobe, declive 0.1139

248 Unknown (L) Limbic lobe, uncus 0.1142

2.5 Conclusion and Future Direction

In this chapter, we make major contributions in the network analysis literature by propos-

ing one of the first flexible non-linear Bayesian non-parametric methods for regression with

network-valued covariates under a Gaussian process framework, which also has the added

advantage of network node selection via spike and slab priors. The proposed latent scale
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Gaussian process regression approach has the advantage of preserving interpretability at

the node level that also facilitates node level feature selection, while allowing flexible non-

linear relationships between the network and the outcome while accommodating unknown

interactions between the network and supplementary covariates that is simply not feasible

under existing linear approaches. Hence, the proposed method provides a desirable mid-

dle ground between interpretable linear models equipped with feature selection, and highly

flexible non-linear models lacking interpretability and feature selection capabilities, in the

context of regression with high-dimensional networks. Our extensive numerical studies re-

vealed the significant advantages under the proposed approach over competing linear and

non-linear methods. Interestingly, the version of the proposed method incorporating node

selection had better predictive performance as well as higher accuracy in characterising pre-

dictive uncertainty compared to the version of the proposed method without node selection,

which reinforces existing evidence in literature regarding the merits of feature selection and

dimension reduction under a Gaussian process framework (Jiang et al., 2007).

Although we adopt a two stage approach for computational ease and scalability to high-

dimensional networks, we note that it is possible that the two-step approach could lead to

error propagation. However, our primary goal is to regress the clinical outcome on lower

dimensional representations of the brain network, and some inadequacies in the estimation

of the latent scales are tolerated as long as it does not lead to significant decrease in

prediction performance in the second stage. Future research may involve more flexible and

scalable approaches that jointly update the mapping to the manifold as well as the regression

parameters. Given the scarcity of flexible regression approaches involving high-dimensional

covariates in literature, the proposed method is expected to have a significant impact in

network analysis literature.
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2.6 Appendices

A1. MCMC Algorithm for First Stage Model

The Gibbs Sampler for the first stage model iterates between the following steps:

1. Update the Pólya–Gamma variables ωi,kl ∼ PG(1, δi,kl) where PG(·) denotes the

Pólya–Gamma distribution and δi,kl = ai + uTikΛiuil for 1 ≤ k < l ≤ p.

2. Update the diagonal elements in the weight matrix

λir ∼ Bernoulli(
πL1

πL1 + (1− π)L0
)

where for r = 2, · · · , d,

L1 =

p∏
k<l,k,l=1

1

2
exp

{
(ei,kl − 0.5)

(
ai + uTikΛ

r1
i uil

)
− 0.5ωi,kl

(
ai + uikTΛ

r1
i uil

)2}

and Λr1i = diag(1, λi2, · · · , λi(r−1), 1, λi(r+1), · · · , λid), also

L0 =

p∏
k<l,k,l=1

1

2
exp

{
(ei,kl − 0.5)

(
ai + uTikΛ

r0
i uil

)
− 0.5ωi,kl

(
ai + uikTΛ

r0
i uil

)2}

and Λr0i = diag(1, λi2, · · · , λi(r−1), 0, λi(r+1), · · · , λid).

3. Update the intercept term ai ∼ N(µi, σ
2
i ) where σ2i = (σ−2

a +
∑

k<l ωi,kl)
−1 and

µi = σ2i
∑

k<l(ei,kl − 0.5− ωi,klu
T
ikΛiuil).

4. Update the latent scales uik(−1) ∼ N(A−1
ik Bik, A

−1
ik ) where

Aik =
∑

j ̸=k

[
ωi,jkΛi0uij(−1)u

T
ij(−1)Λi0+σ

−2
u I(d−1)

]
and Bik =

∑
j ̸=k

[
ei,jk−0.5−(ai+

b2)ωi,jk

]
Λi0uij(−1).

5. Update π ∼ Beta(aπ +
∑d

r=2 λir, bπ + d− 1−
∑d

r=2 λir).

Figure 2.10 includes the scatterplots between the prediction and uncertainty quantification

results corresponding to the latent scales derived from fitting the EM algorithm and the
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MCMC to the first stage model fitting.

A2. Additional Results for Sensitivity Analysis of Channel Number Selec-

tion

The following Figure 2.11 includes additional results when the difference between the chan-

nel number in the true model and the working model is larger than 1.

A3. Sensitivity Analysis for Hyper-parameters

The following Table 2.5 illustrates the performance of the proposed approach under varying

choices of hyperparameters (σ2a, σ
2
u) in the EM algorithm for fitting the first stage model.

active=10 active=30 active=50
[σ2a,σ

2
u] lsGPR sp-lsGPR sp-lsGPR lsGPR sp-lsGPR sp-lsGPR lsGPR sp-lsGPR sp-lsGPR

PMSE PMSE AUC PMSE PMSE AUC PMSE PMSE AUC

[2, 2] 0.35 0.32 0.92 0.11 0.16 0.79 0.07 0.11 0.76

[0.2, 2] 0.25 0.25 0.90 0.10 0.18 0.80 0.12 0.13 0.74

[0.5, 2] 0.74 0.27 0.91 0.11 0.14 0.82 0.07 0.13 0.77

[1, 2] 0.28 0.25 0.85 0.19 0.22 0.80 0.08 0.13 0.76

[4, 2] 0.42 0.34 0.85 0.12 0.17 0.78 0.09 0.13 0.78

[8, 2] 0.26 0.21 0.87 0.11 0.16 0.81 0.07 0.13 0.79

[20, 2] 0.29 0.22 0.87 0.09 0.13 0.83 0.09 0.12 0.77

[2, 0.2] 0.61 0.66 0.72 0.29 0.37 0.64 0.26 0.29 0.58

[2, 0.5] 0.41 0.39 0.79 0.12 0.16 0.75 0.11 0.17 0.68

[2, 1] 0.26 0.26 0.91 0.10 0.13 0.83 0.15 0.18 0.76

[2, 4] 0.39 0.25 0.86 0.17 0.18 0.79 0.08 0.13 0.76

[2, 8] 0.30 0.32 0.83 0.07 0.16 0.73 0.07 0.14 0.68

[2, 20] 0.35 0.46 0.77 0.14 0.20 0.69 0.13 0.19 0.64

Table 2.5: Sensitivity analysis corresponding to hyperparameters (σ2a, σ
2
u) for the First Stage

EM Algorithm.

A4. ROC Curves in Supporting the Node Selection Results

We present here in Figure 2.12 ROC curves from simulation scenario 3 under different

network sparsity levels and different number of active nodes in generating the response

variable.
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Figure 2.10: Scatterplots comparing the prediction and uncertainty quantification results
corresponding to the latent scales derived from fitting the EM algorithm and the MCMC
to the first stage model fitting.
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Figure 2.11: Additional Results for Channel Number Sensitivity Tests
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Figure 2.12: Selected ROC Curves from Simulation Scenario 3. The Y-axis represents
sensitivity and the X-axis represents 1-specificity.
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Chapter 3

Multi-task Learning with

High-Dimensional Noisy Images

3.1 Introduction

Methods for functional data analysis (Ramsay and Dalzell, 1991) have become ubiquitous

with the growth of recent technologies that are able to generate high-dimensional functional

data. Although, the vast majority of literature has focused on one-dimensional functional

curves (Morris, 2015), recent literature has started investigating models involving more

complex types of functional data such as images. For example, neuroimaging analysis using

entire brain images as covariates (scalar-on-image regression) for prediction of a continuous

outcome have gained in popularity (Feng et al., 2021). Such approaches are able to discover

significantly activated brain voxels and are clearly more attractive compared to methods

that evaluate the association between the outcome and each voxel separately (Lazar, 2008).

Typical scalar-on-image regression approaches need to carefully account for the spatial con-

figuration of hundreds of thousands of voxels, and hence often involve some type of lower

dimensional representation for the images such as principal components, wavelet representa-

tions, or tensors, along with additional sparsity or shrinkage assumptions designed to tackle

the curse of dimensionality. Approaches involving functional principal component analysis
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(FPCA) (Zipunnikov et al., 2011; Feng et al., 2019) often assume that the components driv-

ing variability in the images are related to the outcome that may not always be practical,

and they are computationally burdensome for high-dimensional images. Moreover, they

only use a subset of principal components resulting in information loss that is potentially

exacerbated in the presence of noise in images. A limited number of alternate methods

involving wavelet-based representations have been proposed for scalar-on-image regression

(Wang et al., 2014; Reiss et al., 2015) that provides a desirable avenue to preserve the spatial

properties of the image when modeling regression coefficients. Tensor-based representations

for regression coefficients have also been proposed (Feng et al., 2021), which massively re-

duce the number of parameters needed to be estimated in the model and are shown to

possess desirable asymptotic properties. However, the finite sample properties of the ex-

isting tensor-based approaches are not well understood, particularly for high-dimensional

applications where the tensor decomposition may not provide an adequate characterization.

Unfortunately in spite of the growing practical interest, there is negligible development of

methods for joint learning of multiple scalar-on-image regression models corresponding to

inter-related high-dimensional imaging datasets. Our joint learning goals are motivated by

an increasing interest in data fusion techniques in medical imaging (Lahat et al., 2015),

which may involve data on task and rest experiments, or longitudinal neuroimaging data

collected in mental health studies such as the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) (Weiner and Veitch, 2015), among others. A joint analysis of such inter-related

datasets can leverage common threads of information across experiments or visits that is

expected to lead to greater predictive accuracy and higher power to detect true signals,

and produce reliable estimates that are biologically interpretable (Kundu et al., 2019a).

One can potentially leverage multi-task learning methods in machine learning literature

(Zhang and Yang, 2018; Tang and Song, 2016; Li et al., 2014; Lounici et al., 2011) and

related methods for our purposes. Unfortunately, these existing approaches are not designed

to tackle integrative analysis involving high dimensional images with spatially distributed

voxels, and their theoretical and numerical properties are have not been investigated in

the presence of noisy functional covariates. Our extensive numerical studies and ADNI
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analysis reveal that the presence of noise may potentially mask the common patterns across

inter-related images, which consequently hinders the ability of existing multi-task learning

approaches to learn such patterns and eventually results in poor performance.

The presence of noise in brain images is not surprising, given that measurement errors are

likely to arise due to technological limitations, operator performance, equipment, environ-

ment, and other factors (Vaishali et al., 2015). Although standard pre-processing steps

are applied to neuroimaging data prior to analysis, they are not expected to completely

alleviate the noise in these images. Unfortunately, existing neuroimaging studies do not

account for noise in pre-processed images, which is consistent with the predominant prac-

tices in biomedical studies. Inadequate noise correction can result in estimation bias in the

direction of zero that is known as attenuation to the null (Carroll and Stefanski, 1994).

This phenomenon is also clearly evident for our ADNI analysis (Section 3.5) where stan-

dard approaches without noise-correction discover negligible brain activations. We note

that standard denoising steps in scalar-on-function regression approaches (Ramsay and Sil-

verman, 2005) may not be biologically meaningful for our neuroimaging applications that

already involve a very specific set of pre-processing steps for the images, and they induce

additional computational burden.

Although there is a rich literature on measurement error models with scalar covariates (Car-

roll and Stefanski, 1994), there is (unfortunately) a limited literature on scalar-on-function

regression with noisy functional predictors, which can not be directly adapted to our set-

tings of interest involving multi-task learning with high-dimensional noisy images. Such

approaches often rely on corrected least squares (OLS) estimators that account for bias

due to the presence of noise (Crambes et al., 2009) that may not be applicable to settings

when the model dimensions increase much faster than the sample size without additional

regularization, or add an additional level of hierarchy by assigning a probability model

on the observed functional covariates (James, 2002; Goldsmith et al., 2011). These lim-

ited approaches have not been adapted to applications with high-dimensional noisy images

involving unknown error variances, and their finite sample theoretical properties remain

unclear in such settings. In addition, it is not evident whether these methods for noisy
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functional predictors can be directly applied to multi-task learning problems with an added

goal of ensuring model parsimony. Alternative Monte Carlo simulation based approaches

such as simulation-extrapolation (SIMEX) (Cook and Stefanski, 1994) that were originally

designed for univariate or lower dimensional covariates, also suffer from similar drawbacks.

In this chapter, we develop a fundamentally novel approach for the joint analysis of multiple

scalar-on-image regression models with high-dimensional noisy images that uses wavelet

expansions and grouped penalties for sparse multi-task learning. In particular, we propose

a corrected M-estimation approach that adjusts for the bias arising due to noisy images

by projecting the solution onto a space of admissible solutions. The proposed approach

uses minimal assumptions that involve sub-Gaussian distributions on the true image and

additive noise terms with unstructured covariance structures. In order to tackle the curse of

dimensionality arising due to high-dimensional images and to enable multi-task learning, we

employ grouped penalties such as the non-convex group bridge (Huang et al., 2009) as well as

the convex L1,q penalty, on the functional regression coefficients. The group bridge penalty

promotes differential sparsity patterns across datasets, whereas the group lasso penalty

encourages more similar sparsity patterns designed for robust learning across datasets. Since

a closed form solution under the corrected optimization criteria is challenging, we propose

a computationally efficient projected gradient descent algorithm that approximates the

optimal solution of the model parameters in the presence of noisy images. The proposed

approaches translate to locally sparse brain activations, i.e. functional regression coefficients

that are zero or non-zero over spatially contiguous regions, which adhere to the biological

reality of locally concentrated brain activations in our motivating neuroimaging applications.

We establish attractive theoretical justifications for the proposed methods in high dimen-

sional applications where the number of voxels (p) increases exponentially with sample size

(n) for all the M inter-related imaging datasets. Beginning with the case without measure-

ment error in images, we establish weak oracle properties under the group bridge penalty,

and we justify the choice of the L1,q penalty by appealing to the desirable theoretical

properties that has already been established in literature in the case of covariates without

measurement error (Lounici et al., 2011; Negahban et al., 2012). Moving on to the case with
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images having voxel-specific additive errors, we derive finite sample statistical error bounds

for the optimal solutions explicitly in terms of (n, p,M), for both non-convex and convex

grouped penalty functions, which become vanishingly small with high probability as n grows

to infinity. In addition, we derive finite sample optimization error bounds which illustrate

that the iterations of the projected gradient descent under the convex grouped penalties

converges with high probability to the optimum solution, which ensures the legitimacy of

the computed parameter estimates. Extensive numerical studies conclusively illustrate the

gains under the proposed methods over competing multi-task learning approaches without

noise correction as well as noise corrected scalar-on-image regression without multi-task

learning, in terms of recovery of true signals and predictive performance. We apply the pro-

posed methods to analyze the longitudinal ADNI brain MRI images, which illustrate the

predictive gains under the proposed approach when modeling cognitive outcomes, and pro-

vides clear evidence regarding the ability of the proposed noise corrected multi-task learning

method to detect biologically meaningful brain activations. In contrast, other multi-task

learning methods without noise correction result in poor prediction, and negligible or ab-

sent brain activations that is consistent with the attentuation to the null phenomenon in

literature.

This chapter makes several significantly novel contributions. First, to our knowledge, the

proposed approach is one of the first methods for integrative analysis of multiple scalar-

on-image regressions involving inter-related high-dimensional noisy images that provides

significant practical gains over existing methods. Hence this approach expands the literature

on scalar-on-image regression models without measurement error to scenarios involving

multi-task learning in the presence of noisy images. Second, we derive finite sample error

bounds for the model parameters explicitly in terms of (n, p,M), which is one of the first

such results under grouped non-convex and convex penalties involving noisy functional

covariates. Such results provide non-trivial generalizations of previous results in Loh and

Wainwright (2012) who focused on linear regression under L1 penalties involving noisy

scalar covariates without multi-task learning. We note that deriving such error bounds is

not straightforward due to the inherent non-convexity in the loss function that results from
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the presence of noise (see Section 3.3). Third, we derive optimization error bounds under the

computationally efficient projected gradient descent algorithm to approximate the optimal

solution under the grouped L1,q penalty, which guarantees that the computed parameter

estimates are well-behaved. To our knowledge, this is one of the first such results involving

noisy functional predictors and under grouped penalties, and is motivated by developments

in Agarwal et al. (2012).

Section 3.2 develops the joint scalar-on-image regression approach and theory corresponding

uncorrupted images, while Section 3.3 extends this approach for noisy images. Section 3.4

involves extensive simulation studies, Section 3.5 applies the methods to ADNI data, and

Section 3.6 contains further discussions. Section 3.7 contains additional materials.

3.2 Multi-task learning without Measurement Errors

Our goal is to propose an approach for joint learning for multiple scalar-on-surface regres-

sions. Denote the scalar continuous outcome y ∈ ℜ that is regressed on an image X defined

over a d-dimensional surface and observed at a discrete set of voxels {v1, . . . ,vp}. Here

vl ∈ [0, 1]d without loss of generality, where d = 2 or 3 in practice corresponding to two-

or three-dimensional (2-D or 3-D) images. Moreover, the images for all the subjects and

data sources are registered to a common template that is standard in medical imaging ap-

plications (Avants et al., 2011). For the purposes of exposition and illustration, we will

consider the situation with 2-D images as functional predictors. However, our framework

is naturally applicable to 3-D images (see Section 3.7). Further, it is straightforward to in-

clude additional datasource-specific scalar covariates in the modeling framework, but they

are omitted in the following discussions in order to preserve simplicity of notations. Let ymi

and Xmi denote the outcome and the imaging predictor for subject i (i = 1, · · · , nm) from

data source m (m = 1, · · · ,M), where xmi(vk) denotes the observed MRI image at voxel

vk corresponding to Xmi. We assume that |
∫
Xmi(v)dv| < ∞, which is reasonable when

v ∈ [0, 1]d. The scalar-on-image regression model for the mth data source can be written
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as:

ymi = βm0 +

∫
Xmi(v)βm(v)dv + ϵmi, ϵmi

i.i.d.∼ N(0, σ2m), m = 1, · · · ,M ; i = 1, · · · , nm,

(3.2.1)

where ϵmi denotes the random error term that is assumed to be normally distributed with

data source-specific residual variance, and βm(·) is the functional regression coefficient that

captures the effects of the functional predictor on the outcome corresponding to the mth

data source. These functional regression coefficients are estimated jointly acrossM datasets

under an integrative learning framework, as elaborated in the sequel. We allow the number

of subjects to vary across the data sources, which gives us flexibility in handling missing

data at follow-up visits that is encountered in our motivating ADNI study.

We propose a wavelet-based decomposition for the 2-D images that provides a multiscale

representation to accommodate varying degrees of smoothness (Reiss et al., 2015) as:

xmi(v) =
2j0−1∑
k,l=0

c0mi,j0,{k,l}ϕj0,{k,l}(v) +
J∑

j=j0

2j−1∑
k,l=0

3∑
q=1

cqmi,j,{k,l}ψ
q
j,{k,l}(v) (3.2.2)

where j0 is the primary level of decomposition that controls the number of basis elements

in the multi-scale representation, J denotes the maximum level of decomposition, and

{ϕj0,{k,l}, k, l = 1, . . . , 2j0 − 1} and {ψqj,{k,l}, j = j0, · · · , J, k, l = 0, . . . , 2j − 1, q = 1, · · · , 3}

denote pairwise orthonormal wavelets. The wavelet basis functions in (3.2.2) can also

be expressed as ϕj0,{k,l}(v) = ϕj0,k(v1)ϕj0,l(v2), ψ
1
j,{k,l}(v) = ψj,k(v1)ϕj,l(v2), ψ

2
j,{k,l}(v) =

ϕj,k(v1)ψj,l(v2), ψ
3
j,{k,l}(v) = ψj,k(v1)ψj,l(v2), where v = (v1, v2) and ϕj,·(·), ψj,·(·) are the

one-dimensional father and mother wavelets of level j. Using orthonormality, the wavelet

coefficients in (3.2.2) can be calculated by c0mi,j0,{k,l} = ⟨xmi, ϕj0,{k,l}⟩ and cqmi,j,{k,l} =

⟨xmi, ψqj,{k,l}⟩, where we use ⟨f1, f2⟩ =
∫
f1(v)f2(v)dv to denote the inner product and xmi

denotes the vectorized image. Due to discrete wavelet transform, we usually require the ob-

served number of locations along all dimensions to be the same (power of 2). If the original

functional data does not fulfill this requirement, we can easily pad zero values around it and

increase the dimension to the nearest high power of 2 (Reiss et al., 2015), which we denote

as p0. Then the maximum level J = log2(p0) − 1, and p = p20 is also the total number of
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wavelet coefficients in (3.2.2).

We assume the true functional regression coefficients to have bounded total variation, i.e.

∥β0m(v)∥V =
∫ 1
0

∫ 1
0

∣∣∇β0m(v)∣∣dv <∞, and bounded amplitude, where ∇ denotes the partial

derivative in the general sense of distributions (Ziemer, 2012). This implies that the true

regression coefficients lie in the space of functions T :=
{
β(v) ∈ L2[0, 1]2 : ∥β(v)∥V <

∞,
∥∥β(v)∥∥∞ < ∞

}
. We can express β0m ∈ T as β0m(v) =

∑2j0−1
k,l=0 a

0
m,j0,{k,l}ϕj0,{k,l}(v) +∑∞

j=j0

∑2j−1
k,l=0

∑3
q=1 d

0q
m,j,{k,l}ψ

q
j,{k,l}(v) = BT (v)η0

m + e0m for a separable, compactly sup-

ported and orthonormal wavelet basis of L2[0, 1]2, where {a0m,j0,{k,l}} and {d0qm,j,{k,l}} are

the true scaling and dilation coefficients, the primary decomposition level is assumed to be

known at j0, η
0
m is corresponds to the first p coefficients of the true wavelet coefficient vec-

tor, and e0m(·) is the approximation term such that ∥e0m(·)∥∞ = O(2−J)=O(p−1/2) based on

Theorem 9.18 in Mallat (1999). Similar specifications can be found in Wang et al. (2017).

Since in practice, the functional data are only observed at discrete locations, and given

that e0m(·) rapidly decreases to zero for large p, we will focus on recovering the truncated

coefficient vector η0
m and we will view it as the true wavelet coefficients for our subsequent

discussions.

In the above spirit, we will use a finite basis expansion for model fitting. In particular, we use

βm(v) =
∑2j0−1

k,l=0 am,j0,{k,l}ϕj0,{k,l}(v) +
∑J

j=j0

∑2j−1
k,l=0

∑3
q=1 d

q
m,j,{k,l}ψ

q
j,{k,l}(v), where the

unknown coefficients am,j0,{k,l} = ⟨βm, ϕj0,{k,l}⟩ and d
q
m,j,{k,l} = ⟨βm, ψqj,{k,l}⟩ can be directly

computed from the images for a given choice of basis functions. The wavelet representation

is flexible enough to allow the functional regression coefficient to be estimated at different

levels of smoothness via different levels of j0. One can rewrite the model (3.2.1) as:

ymi = βm0 + cTmiηm + ϵmi, ϵmi
i.i.d.∼ N(0, σ2m), i = 1, . . . , nm, m = 1, . . . ,M, (3.2.3)

where cTmiηm =
∑2j0−1

k,l=0 c
0
mi,j0,{k,l}am,j0,{k,l} +

∑J
j=j0

∑2j−1
k,l=0

∑3
q=1 c

q
mi,j,{k,l}d

q
m,j,{k,l} is the

linear mean term, ηm = (ηm1, . . . , ηmp)
′ denotes the vector of unknown wavelet coefficients

corresponding to βm(v), and cmi(p× 1) denotes the collection of coefficients corresponding

to the decomposition of Xmi in (3.2.2) that can be computed explicitly. Model (3.2.3) is
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now a standard linear regression model with known design matrix Cm = (cm1, · · · , cmnm)
T

and unknown wavelet coefficients ηm,m = 1, · · · ,M , corresponding to the mth data source,

which are jointly estimated across datasets (as elaborated in the sequel) and can be used to

reconstruct the functional regression coefficients. We note that by location transformation,

we can assume βm0 = 0,m = 1, · · · ,M , without loss of generality, and hence we will ignore

the intercept terms in the following discussions. Model (3.2.3) represents a discretized

version of the original functional linear model in (3.2.1) that will be used throughout this

chapter. We note that in contrast to the working model (3.2.3), the true model is given

as ymi =
∫
Xmi(v)β

0
m(v)dv + ϵmi = cTmiη

0
m +

∫
Xmi(v)e

0
m(v)dv + ϵmi, using the above

discussions.

One can use different types of wavelet bases in (3.2.2)–(3.2.3) - see (Walker, 2008) for more

details on different choices of wavelet basis. One possible choice is the Haar wavelets (Wang

et al., 2014, 2017) that results in piecewise constant approximations of the signal due to one

vanishing moment. The Haar wavelets can be generalized to accommodate higher number of

vanishing moments via the Daubechies wavelets (Reiss et al., 2015), which is able to capture

diverse types of signals while preserving model parsimony. The choice of the wavelet bases

can be tuned to the particular application, as needed.

In order to ensure sparsity in the estimated coefficients that reflects the biological real-

ity of a small subset of activated brain locations driving the outcome, suitable grouped

penalty functions ρ(·) are imposed that facilitate joint learning. In particular, we propose

to solve the optimization problem: maxη
{
− 1

2

∑M
m=1

∑nm
i=1

(
ymi − ⟨cmi,ηm⟩

)2
− λρ(η)

}
,

where ρ(η) may correspond to convex penalty functions such as the L1,q penalty ρ(η) =∑p
j=1

(∑M
m=1 |ηmj |q

)1/q
(q > 1), that includes the group lasso when q = 2, as well as non-

convex penalties such as the group bridge, i.e. ρ(η) =
∑p

j=1

(∑M
m=1 |ηmj |

)1/2
. The convex

and non-convex penalties lead to different modes of joint learning by promoting varying

sparsity patterns. The group lasso penalty is expected to work better in cases with greater

homogeneity across datasets, while the group bridge penalty is recommended for scenarios

with more heterogeneous data sources. The choice of these penalties is motivated by our pri-

mary goal of data fusion and associated theoretical properties that are already established
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in literature for the case without measurement error. For example, consistency properties

under the group lasso penalty (Nardi et al., 2008; Lounici et al., 2011) are well-known,

while the asymptotic properties (Huang et al., 2009) and weak oracle properties for binary

outcomes (Li et al., 2014) of the group bridge penalty have been established in literature.

3.2.1 Weak Oracle Properties under Group Bridge with Uncorrupted

Images

We will establish weak oracle properties (Lv et al., 2009) under group bridge that will extend

the results in Li et al. (2014) corresponding to binary outcomes involving scalar covariates

to the case of scalar-on-image regression with continuous outcomes. For the ease of notation

and without loss of generality, we assume that all M data sources have n samples in the

following discussion. However, the proposed methodology and theoretical developments

are equally applicable for unequal sample sizes across data sources. One can rewrite the

optimization problem as

max
η

{
yTCη − 1

2
ηTCTCη − nλnρ(η)

}
(3.2.4)

where ρ(η) =
∑p

j=1

(∑M
m=1 |ηmj |

)1/2
, and C(Mn×Mp) is a block-diagonal design matrix

whose mth block Cm corresponds to known wavelet coefficients from the mth data source.

Consider the following partition of the index set {1, . . . , p}: I = {(m, j)|η0mj ̸= 0,η0
(j) ̸= 0},

II = {(m, j)|η0mj = 0,η0
(j) ̸= 0} and III = {(m, j)|η0

(j) = 0} where η0
(j) = (η01j , · · · , η0Mj)

T

denotes the true wavelet coefficients corresponding to the j-th wavelet basis function.

Set I denotes the indices for the true nonzero coefficients across all data sources, set

II denotes the indices for those true wavelet coefficients that are zero for some data

sources but not others, while set III denotes the indices for those wavelet coefficients

that are zero across all data sources. It is clear that the three sets are mutually exclu-

sive. Further, let s = |I| be the true sparsity level, let d = 0.5min{|η0mj | : η0mj ∈ I}

with d/ log n ≍ n−αd where αd ≤ γ, γ ∈ (0, 1/2], and denote l = min{j:η0
(j)

̸=0} ∥η0
(j)∥

1/2
1 ,

L = max{j:η0
(j)

̸=0} ∥η0
(j)∥

1/2
1 . Define the neighborhood N0 = {δ ∈ Rs : ∥δ − η0

I∥∞ ≤ d}, and
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the constant κ0 = maxδ∈N0 max{j|δ(j) ̸=0} 4
−1∥δ(j)∥

−3/2
1 , where δ(j) = (δ1j , · · · , δMj)

T with

δmj = 0 for (m, j) /∈ I.

Consider the standardized design matrix C denoted as C̃, such that ∥c̃mj∥2 =
√
n. We

denote ∥·∥∞ as the supremum norm, and denote O and o as the big-O and little-o notations.

Also a ≍ b implies a, b, are on the same order. We will assume the following conditions:

(C1) αp = min(1/2, 2γ − αs), where s ≍ nαs , αs < 1, log p ≍ n1−2αp and γ ∈ (0, 1/2];

(C2) ∥(C̃T
I C̃I)

−1∥∞ = O(bsn
−1), bs = o(n1/2−γ

√
log n);

(C3) ∥C̃T
IIC̃I(C̃

T
I C̃I)

−1∥∞ ≤ l/(2L).

Assumption (C1) places conditions on the rate of growth for the true sparsity level (s) and

allows p to grow much faster than n. (C2) essentially requires 1
nC̃

T
I C̃I to be non-singular

and that the supremum norm of (C̃T
I C̃I)

−1 has a lower bound as in equation (15) in Fan

and Lv (2011), while (C3) is similar to the irrepresentability condition in literature (Zhao

and Yu, 2006). Given (C1)-(C3), Theorem 3.2.1 formalizes the weak oracle property.

Theorem 3.2.1. Suppose the conditions (C1)-(C3) hold. For λn satisfying λn ≍ n−αλ with

αλ < αp, λnbs = o(n−αd/2−γ log n) and λnκ0 = o(τ0), where τ0 = λmin(n
−1C̃T

I C̃I), there

exists a local maximizer η̂ of (3.2.4), such that: (a) η̂II∪III = 0; and (b) ∥η̂I − η0
I∥∞ ≤

n−γ log n, with probability greater than 1− 2{sn−1 + (Mp− s)e−n
1−2αp logn} for sufficiently

large n.

Property (a) indicates that the oracle estimator for the truly zero wavelet coefficients are

estimated correctly with high probability tending to one as n→ ∞. Property (b) indicates

that with high probability tending to one as n increases, the error under the oracle estimator

(in terms of the supremum norm) corresponding to the truly nonzero wavelet coefficients

is bounded by a term that goes to zero. Together properties (a) and (b) in Theorem 3.2.1

imply the weak oracle property, which hold for certain strict local maximizers that satisfies

the KKT conditions as detailed in Lemma 1 in the Supplementary Materials. The results

for the wavelet coefficients in Theorem 3.2.1 can be used to deduce the non-asymptotic

error bounds for the corresponding oracle estimators of the functional regression coefficients

{β̂1(·), . . . , β̂M (·)} and the predicted means, as captured via the following result.
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Corollary 3.2.1. If Theorem 3.2.1 holds, then
∣∣β̂m(v) − β0m(v)

∣∣ ≤ τm(v)sn
−γ log n +

O(p−1/2) and
∣∣∣ ∫ Xmi(v)β̂m(v)dv −

∫
Xmi(v)β

0
m(v)dv

∣∣∣ ≤ ιmsn
−γ log n+O(p−1/2), for all

m ∈ {1, · · · ,M}, where τm(v) and ιm can be calculated from the images.

3.2.2 Computation under Group Bridge with Uncorrupted Images

We can give the wavelet coefficients η a hierarchical representation as ηmj = gjζmj , which

involves a differential wavelet coefficient (ζmj) that is data source-specific, and a shared

wavelet effect (gj) that is common across all the data sources. The hierarchical specification

enables us to borrow information across data sources to learn the shared wavelet effects,

resulting in joint learning. We note that a zero value for gj results in a null effect for the j-th

wavelet corresponding to all the data sources. Clearly, the differential and shared wavelet

effects are not identifiable in the model, but this is tolerated since the goal of the model is

to estimate the functional regression coefficient.

Utilizing Lemma 1 and Theorem 1 in Zhou and Zhu (2010), the optimization problem in

Section 2 under the group bridge penalty has two equivalent expressions in terms of the

hierarchical specification as follows:

max
g,ζ

[
− 1

2

M∑
m=1

nm∑
i=1

{
ymi − ⟨cmi, (g · ζm)⟩

}2
− λg

p∑
j=1

|gj | − λζ

p∑
j=1

M∑
m=1

|ζmj |
]

= max
g,ζ

[
− 1

2

M∑
m=1

nm∑
i=1

{
ymi − ⟨cmi, (g · ζm)⟩

}2
−

p∑
j=1

|gj | − λ

p∑
j=1

M∑
m=1

|ζmj |
]
(3.2.5)

where g = (g1, · · · , gp)T , ζm = (ζm1, · · · , ζmp)T , ζ = (ζT1 , · · · , ζTM )T , ‘·’ denotes the element-

wise product, ⟨a, b⟩ here denotes the inner product between the two vectors a and b,

λ = λgλζ . As seen from the second equivalent expression, we only need one tuning parameter

to control sparsity (λ). Since a sparse set of wavelet coefficients also results in zero or close

to zero estimated values for the functional regression coefficients (Wang et al., 2014), our

model is expected to result in biologically interpretable results by ensuring that only a small

percentage of spatially contiguous voxels are related to the outcome.

Taking the advantage of the hierarchical specification, an efficient optimization algorithm is
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enabled to estimate the wavelet coefficients as detailed in the following Algorithm 1. In our

simulations and real data analysis, we set the stopping threshold ϵ∗ = 10−8 that works well

in practice. We also set a maximum iteration number at 200 so the algorithm would stop

when the iteration rounds reach 200 or the stopping threshold has been reached, whichever

comes first. The tuning parameter can be selected via five fold cross validation procedure

based on the out-of-sample prediction performance. If further the minimum level of wavelet

transform and even the type of wavelet basis functions also need to be selected, one can

conduct the cross validation procedure with a grid search for the optimal combination of

these parameters.

Algorithm 1 Optimization for model without measurement errors under group
bridge penalty

1. Initialize ζ̂
(0)
mj = 1 (m = 1, · · · ,M ; j = 1, · · · , p).

2. For the kth iteration, let c̃mi,j = cmi,j ζ̂
(k−1)
mj and estimate gj by

ĝ
(k)
j = argmaxgj

[
l(g)−

p∑
j=1

|gj |
]
, j = 1, · · · , p,

using the lasso algorithm with penalty parameter set to one, where

l(g) = −1

2

M∑
m=1

nm∑
i=1

{
ymi −

p∑
j=1

c̃mi,jgj

}2

3. Let c̆mi,j = cmi,j ĝ
(k)
j and estimate ζmj by

ζ̂
(k)
mj = argmaxζmj

[
l(ζ)− λ

p∑
j=1

M∑
m=1

|ζmj |
]
,m = 1, · · · ,M ; j = 1, · · · , p,

using the lasso algorithm with penalty parameter λ where

l(ζ) = −1

2

M∑
m=1

nm∑
i=1

{
ymi −

p∑
j=1

c̆mi,jζmj

}2

4. Compute η̂
(k)
mj = ĝ

(k)
j ζ̂

(k)
mj ,m = 1, · · · ,M ; j = 1, · · · , p.

5. Repeat step 2 through step 4 until the following convergence criteria is met:

max1≤m≤M,0≤j≤p

∣∣∣η̂(k)mj − η̂
(k−1)
mj

∣∣∣ < ϵ∗ where ϵ∗ is a pre-specified threshold.
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3.3 Multi-task learning with Measurement Errors

We now generalize our multi-task learning scalar-on-image regression approach to the case

of images with measurement errors that is the main focus of this chapter. We assume

an additive measurement error model, i.e. zmi(v) = xmi(v) + umi(v), i = 1, · · · ,mn,

m = 1, · · · ,M, where xmi(v) denotes the true unobserved image at voxel v, while zmi(v)

denotes the observed noisy image with the measurement error umi(v). While we still as-

sume the true model to be ymi = βm0 +
∫
Xmi(v)βm(v)dv + ϵmi, we relax the distribution

of the random error ϵmi to be sub-Gaussian with parameter σ2m. Moreover, the working

model used for fitting the data would replace the true image xmi(v) (that is unobserved)

by its noisy counterpart zmi(v) in (3.2.2), which results in a different M-estimation criteria

compared to (3.2.4) (see equation (3.3.1)). We capture the randomness of the noisy images

by assuming that the vectorized true image xmi =
(
xmi(v1), . . . , xmi(vp)

)
and the measure-

ment errors umi =
(
umi(v1), . . . , umi(vp)

)
are independently distributed as sub-Gaussian

random variables (see definition below) with parameters (Σxm, σ
2
x) and (Σu, σ

2
u) respectively,

which ensures bounded tails.

Definition 3.3.1. A random vector s ∈ Rp is sub-Gaussian with parameters (Σ, σ2) if:

(a) s is distributed with zero mean and covariance Σ; and (b) for any unit vector e ∈ Rp,

the random variable eTs is sub-Gaussian with parameter at most σ2, i.e. P(|eTs| > t) ≤

2e−t
2/(2σ2).

Let us denote the matrix of wavelet basis corresponding to the p discrete locations as

B = (b1, · · · , bp) where bj =
(
bj(v1), · · · , bj(vp)

)T
denotes the realizations of the j-th

basis function at all p discrete locations (j = 1, · · · , p), so that BTB = I. We define

wmi = BTzmi = BTxmi + BTumi = cmi + BTumi as the inner product between the

noisy observed image and the wavelet basis functions over all voxels. Hence, wmi can be

considered as an adaptation of the image wavelet coefficients cmi in (3.2.2) to the case of

noisy images. A naive solution that ignores the noise in the images would be to replace cmi

with wmi in the scalar-on-image regression model (3.2.3), but this strategy would result

in inconsistent estimation under the criteria (3.2.4) (Sørensen et al., 2015). A potential
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solution to remedy the problem that is motivated by Loh and Wainwright (2012), is to

use a corrected M-estimator that resembles (3.2.4) but adjusts for the additive noise. In

this context, note that the matrix CT
mCm in (3.2.4) corresponding to the unobserved true

images can be approximated by Γ̂m = 1
nW

T
mWm − BTΣuB, via the relationship wmi =

BTzmi = cmi + BTumi, where Wm = (wm1, · · · ,wmn)
T . We propose the following noise

corrected version of (3.2.4) as

min
ρ(η)≤R

[ M∑
m=1

{
1

2
ηTmΓ̂mηm − ⟨γ̂m,ηm⟩

}
+ λnρ(η)

]
, (3.3.1)

where γ̂m = 1
nW

T
mym, ym = (ym1, · · · , ymn)T , ρ(η) denotes grouped penalty functions

for multi-task learning, and the remaining terms other than ρ(η) in (3.3.1) represents the

loss function L that makes use of a corrected variance term Γ̂m and a cross-product γ̂m.

Lemma 3.3.1 illustrates that (Γ̂m, γ̂m) serve as surrogates for [V ar(cmi)] and [V ar(cmi)]η
0
m

respectively, where approximation error is shown to decrease to zero as n → ∞ even when

p >> n. This property indicates the resemblance between the corrected criteria (3.3.1)

and criteria (3.2.4) corresponding to no measurement error, since the terms CTy and CTC

in (3.2.4) are also unbiased estimators for [V ar(cmi)]η
0
m and V ar(cmi) respectively, in the

absence of noise.

Lemma 3.3.1. (deviation condition) The surrogates (Γ̂m, γ̂m) satisfy

(i)
∥∥∥γ̂m −BTΣx

mBη0
m

∥∥∥
∞

≤ ϕ
√

log p
n ;

(ii)
∥∥∥(Γ̂m −BTΣx

mB
)
η0
m

∥∥∥
∞

≤ ϕ
√

log p
n

with probability at least 1 − c1 exp{−c2 log p}, where σ2 = σ2x + σ2u, ϕ = maxm
{
c0σ(σm +

σ∥η0
m∥1)

}
+ c′0σp

−1/2, and constants c0, c
′
0, c1, c2 > 0.

Another unique feature of (3.3.1) is that it requires the solution to be restricted to the

ball ρ(η) ≤ R, defined in terms of the penalty ρ(·). This restriction is imposed to ensure

the stability of solutions, since Γ̂m’s are generally not positive semi-definite in the presence

of noise, making the loss L in (3.3.1) non-convex. The restricted solution enables one

to tackle a potentially large number of negative eigen values in Γ̂m due to noisy images,
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which could otherwise lead to the objective function L being unbounded from below in an

extreme case. In what follows, we will first use the assumption that the covariance matrix

for the measurement error Σu is known to develop our model and theoretical properties, and

subsequently relax this assumption and generalize the results to unknown noise covariance

matrices that are empirically estimated. Lemma 3.3.1 and the above discussions provide

an intuition regarding the proposed corrected criteria in (3.3.1), which is motivated by Loh

and Wainwright (2012).

3.3.1 Theoretical properties under noisy images

In order to establish theoretical properties corresponding to images with measurement errors

under criteria (3.3.1), it is necessary to characterize the behavior of the matrix Γ̂ (referring

to any of Γ̂1, · · · , Γ̂M ) via some lower restricted eigen value (lower-RE) conditions that

places lower bounds on quadratic terms ηT Γ̂η in (3.3.1). Such conditions prevent the

objective function from being unbounded from below when there are a large number of

negative eigen values for Γ̂ in the presence of noise. Also, the lower-RE condition ensures

that the curvature is not overly flat, since Γ̂ represents the curvature of the loss function

(equivalent to a Hessian matrix in classical literature). Sufficiently curved loss functions are

needed to ensure that optimum solutions are able to converge sufficiently close to the true

parameter values, given that a small loss difference |L(η̂)−L(η0)| will translate to a small

error |η̂ − η0|. To this effect, we define the following lower-RE condition that is similar

to those that have been used extensively in penalized regression literature (Van De Geer

et al., 2009), and can be considered a substitute for global strong convexity that can not be

guaranteed when p >> n.

Definition 3.3.2. (Lower-RE condition). The matrix Γ̂ satisfies a lower restricted eigen-

value condition with curvature α1 > 0 and tolerance τ > 0 if θT Γ̂θ ≥ α1∥θ∥22− τ∥θ∥21,∀θ ∈

Rp.

It turns out that the lower-RE condition holds with high probability in the presence of

noise, given the sub-Gaussian assumptions on the true images and the additive errors. This
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is shown by Lemma 3.3.2 below under certain choices for α1 and τ , which follows from the

results in Loh and Wainwright (2012).

We are now in a position to formally establish the finite sample error bounds corresponding

to the optimal estimators obtained under (3.3.1). We denote η0 = (η0T
1 , · · · ,η0T

M )T as

the true wavelet coefficients concatenated over M data sources. Further denote the index

set for true wavelet coefficients that have at least one non-zero signal across data sources

as S = {j : ∥η0
(j)∥1 ̸= 0} where the cardinality of S represents the group sparsity of

η0 (denoted by k). Similarly, denote the index set of unimportant wavelet coefficients as

SC = {j : ∥η0
(j)∥1 = 0}, let l = minj∈S ∥η0

(j)∥
1/2
1 , h1 = 1 + 3l−1R and h2 = 1 + 3M (q−1)/q.

The following result establishes the statistical (L1 and L2) error bounds corresponding to

the group bridge penalty explicitly in terms of n, p,M,R, and other parameters.

Theorem 3.3.1. (statistical error under group bridge) For any η0 with group sparsity

at most k, the global optimum η̂ of the problem (3.3.1) under the group bridge penalty

ρ(·) satisfies the following error bounds with probability at least 1 − c1 exp{−c2 log p} for

constants c1, c2 > 0, R ≥ ρ(η0), α1/τ ≥ 2h21Mk, and λn ≥ 2ϕ
√

log p
n max{l, R}:

∥η̂ − η0∥2 ≤ 8h1
√
Mk

α1
max

{
ϕ
√

log p
n , λnl

−1

}
, ∥η̂ − η0∥1 ≤

8h21Mk
α1

max

{
ϕ
√

log p
n , λnl

−1

}
Remark 3.1: While Theorem 3.3.1 is stated for a global optimum, we note that the result

also holds for any local optimum that satisfies the constraint L(η̂) ≤ L(η0) for L as in

(3.3.1).

Corollary 3.3.1. The error bounds in Theorem 3.3.1 hold when the space of admissible

solutions in (3.3.1) is restricted to a L1 ball {η : ∥η∥1 ≤ R2} in (3.3.1), provided that

∥η0∥1 ≤ R2 holds.

We note that Theorem 3.3.1 guarantees that the bound on the statistical error under a

non-convex penalty goes to zero even when p >> n and in the presence of measurement

errors. In addition, Remark 3.1 suggests the existence of local optima corresponding to

(3.3.1) that come arbitrarily close to the true parameters in terms of bounded statistical

errors in Theorem 3.3.1. Moreover, Corollary 3.3.1 illustrates that the results in Theorem

3.3.1 are valid when the space of admissible solutions in (3.3.1) is modified in terms of a
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L1 ball, which provides computational benefits when deriving parameter estimates under

a projected gradient descent algorithm. Similar to Theorem 3.3.1, we now establish finite

sample error bounds under the convex L1,q penalty, which includes the group lasso (q = 2) as

a special case. We note that although the L1,q penalty is convex, the issues of non-convexity

arising due to noise in the images that are encountered in Theorem 3.3.1 still persist in this

scenario as well. We note that Theorems 3.3.1-3.3.2 provide novel finite sample error bounds

that go beyond existing results in literature by accommodating non-convexity arising due

to high-dimensional noisy images in the setting of multi-task learning involving non-convex

and convex grouped penalties.

Theorem 3.3.2. (statistical error under L1,q penalty) For any η0 with group sparsity at

most k, the global optimum η̂ of the problem (3.3.1) under the L1,q penalty ρ(·) satisfies the

following error bounds with probability at least 1−c1 exp{−c2 log p} for constants c1, c2 > 0,

R ≥ ρ(η0), α1/τ ≥ 2h22Mk, λn ≥ 2ϕ
√

log p
n M (q−1)/q:

∥η̂ − η0∥2 ≤ 8h2
√
Mk

α1
max

{
ϕ
√

log p
n , λn

}
, ∥η̂ − η0∥1 ≤

8h22Mk
α1

max

{
ϕ
√

log p
n , λn

}

Remark 3.2: Although Theorems 3.3.1-3.3.2 guarantee accurate recovery of the estimated

wavelet coefficients, no such finite sample guarantees are available for prediction error. More

discussions can be found in Sørensen et al. (2015). However, the proposed methods have

good predictive performance as evident from the extensive numerical studies in the sequel.

Remark 3.3: The L2 error bounds can be expressed as 4
τh1

√
Mk

max{ϕ
√
log(p)/n, λnl

−1}

under Theorem 3.1, and as 4
τh2

√
Mk

max{ϕ
√
log(p)/n, λn} under Theorem 3.2, using the fact

that h21Mk/α1 ≤ 1/(2τ) and h22Mk/α1 ≤ 1/(2τ) respectively. This implies a tightening of

the bounds as M increases and directly highlights the benefits of integrative learning.

Although Theorems 3.3.1-3.3.2 establish statistical error bounds for any global optimum of

(3.3.1), it is not immediately clear how to computationally obtain such an optimum. This

is partly due to non-convexity in the loss function, which hinders a closed form solution to

(3.3.1). Hence one needs to resort to some type of projected gradient descent algorithm in

order to approximate the solution, which generates a sequence of iterates via the following



67

recursions:

η(t+1) = argmin
ρ(η)≤R

{
L(η(t) + ⟨Γ̂η − γ̂,η − η(t)⟩) + δ∗

2
∥η − η(t)∥22

}
, (3.3.2)

where δ∗ denotes the step size. However for non-convex problems, the projected gradient

descent may get trapped in local minima. While some local optima may lie close to the global

optimum as per Remark 3.1, not all local optima are guaranteed to converge to optimum

solutions that satisfy the statistical error bounds in Theorems 3.3.1-3.3.2. Fortunately, it

is possible to show that the local optima under the projected gradient descent algorithm

in (3.3.2) involving the L1,q penalty converges (after a suitable number of iterations) to a

solution that is arbitrarily close to the global optimum in Theorem 3.3.2, which ensures the

legitimacy of the approximate solution. We first state an additional upper restricted eigen

value (upper-RE) condition below that holds with high probability for our settings (Lemma

3.3.2) and is needed in order to derive such a result, followed by the Theorem statement.

We note that it is possible to check whether the upper-RE and lower-RE hold in practice

using certain sufficient conditions as described in Section 3.3.3.

Definition 3.3.3. (Upper-RE condition). The matrix Γ̂ satisfies an upper restricted eigen-

value condition with curvature α2 > 0 and tolerance τ > 0 if θT Γ̂θ ≤ α2∥θ∥22+ τ∥θ∥21,∀θ ∈

Rp.

Theorem 3.3.3. (optimization error) Let η̂ denote an optimum solution in Theorem 3.3.2

under L1,q penalty. Then, the estimate η(t) under the projected gradient descent in (3.3.2)

with initial choice η∗ satisfies the error bound ∥η(t) − η̂∥22 ≤ c3
k log p
n ∥η̂ − η0∥22 for all

iterates t ≥ 2[log(1/κ)]−1 log L(η∗)−L(η̂)
δ2

+ log2 log2(
Rλn
δ2

)(1 + log 2
log(1/κ)) with probability at

least 1− c1 exp{−c2 log p}, for positive constants c1, c2, c3 > 0, δ2 = c3
k log p
n ∥η̂ − η0∥22, and

κ ∈ (0, 1).

Theorem 3.3.3 shows that the L2 optimization error under the projected gradient descent

algorithm with L1,q penalty is bounded by the statistical error, which is already shown to

be well behaved and bounded in Theorem 3.3.2. This result essentially guarantees that the

iterate t under the projected gradient descent that is easily computed in polynomial-time
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(especially when q = 2 resulting in group lasso penalty), converges to a global optimum

for the criteria (3.3.1) that may be difficult to compute and may not have a closed form

solution. In other words, Theorem 3.3.3 guarantees that when the gradient descent is run

long enough, the iterations under the projected gradient descent will produce an estimate

that is essentially as good as any global optimum for (3.3.1) in terms of statistical error.

This is indeed a desirable practical feature in our applications of interest. Moreover, the

number of iterations needed to be run before the approximate solution starts to converge

to the optimal solution will depend on the initial choice of the parameters η∗, with a good

choice resulting in faster convergence. This is clear from the fact that a choice of η∗ close to

the global optimum will result in a small difference in L(η∗)−L(η̂), subject to the curvature

of the loss function.

3.3.2 Case with unknown noise covariance

In practical scenarios, Σu is unknown and needs to be estimated. Fortunately, under certain

scenarios involving replicated validation data, it is possible to empirically estimate the

noise covariance in a manner that ensures that the theoretical properties are preserved. In

particular, if we observe n0 i.i.d. noise vectors u, or in the case of repeated observations

from healthy controls, i.e. zmi = xi+umi with umi
i.i.d.∼ N(0,Σu), Theorems 3.3.1-3.3.3 will

hold under empirical estimates of Σu provided that the validation data has a reasonably

large sample size, as stated below.

Corollary 3.3.2. Theorems 3.1-3.3 hold if we replace Σu in (3.3.1) by the estimate

Σ̂u = 1
n0
UT0 U0 as well as Σ̂u = 1

n∗(M−1)

∑n∗

i=1

∑M
m=1(zmi − z̄·i)(zmi − z̄·i)

T where z̄·i =

1
M

∑M
m=1 zmi with zmi = xi+umi for healthy controls and umi

i.i.d.∼ N(0,Σu) for the second

estimator, given that n0 > n and n∗(M − 1) > n.

The proof of the above result (provided in Section 3.7) proceeds by showing that the de-

viation condition in Lemma 3.3.1 as well as the lower- and upper-RE conditions still hold

with high probability under the modified covariance estimator Σ̂u in Corollary 3.3.2. We

use this strategy in our analysis of ADNI data that comprises longitudinal visits for healthy
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controls in addition to individuals with AD, as detailed in Section 3.5.

3.3.3 Lower- and Upper-RE Conditions

Lemma 3.3.2. Lower- and upper-RE conditions hold with probability at least 1−c1 exp
(
−

c2nmin
{ δ2min

σ4 , 1
})

, for parameters δmin = minm∈{1,··· ,M} λmin(B
TΣx

mB), δmax =

maxm∈{1,··· ,M} λmax(B
TΣx

mB), α1 = 1
2δmin, α2 = 3

2δmax, τ = c0max
{

σ4

δmin
, δmin

} log p
n and

universal constants c0, c1, c2 > 0.

From a practical perspective, it is possible to check whether the restricted eigenvalue con-

ditions holds in practice for a given dataset. We use Γ̂ to denote any of Γ̂1, · · · , Γ̂M in

the following discussion. Note that the lower-RE condition on the matrix Γ̂ requires that

θT Γ̂θ ≥ α1∥θ∥22 − τ∥θ∥21, ∀θ ∈ Rp, and the upper-RE condition requires that θT Γ̂θ ≤

α2∥θ∥22 + τ∥θ∥21,∀θ ∈ Rp, with curvatures α1, α2 > 0 and tolerance τ > 0. Given that

θT Γ̂θ ≥ λmin(Γ̂)||θ||22, where λmin(A) denotes the minimum eigen value of the matrix A, it

is clear that the lower-RE condition would be satisfied if λmin(Γ̂)||θ||22 ≥ α1∥θ∥22− τ∥θ∥21 or

equivalently if λmin(Γ̂) ≥ α1−τ∥θ∥21/∥θ∥22 = α1−τ(1+θ∗), where θ∗ = 2
∥θ∥22

∑
k<l |θk||θl| >

0. Clearly, this condition is satisfied when λmin(Γ̂) ≥ α1−τ . However if this condition is not

satisfied, then one can not say with certainty whether the lower-RE condition is satisfied or

not.

In order to check whether the condition λmin(Γ̂) ≥ α1 − τ holds, one can substitute

the parameters in this inequality with their corresponding empirical estimates from the

data. As noted in Lemma 3.3.2, we have that α1 = 0.5minm∈{1,··· ,M} λmin(B
TΣx

mB)

and τ = c0max
{
σ4

2α1
, 2α1

} log p
n where c0 needs to be sufficiently small such that c0 ≤

n
2 log p min{4α2

1
σ4 , 1}. It is possible to estimate σ2 by (1/nM)

∑M
m=1 ∥W T

mWm∥op where ∥ · ∥op

denotes the spectral norm of matrix, and to estimate BTΣx
mB by Γ̂m = (1/n)WT

mWm −

BT Σ̂uB. One can then plug in α̂1, τ̂ , in place of the original parameters to check the condi-

tion λmin(Γ̂) ≥ α1−τ . If this inequality is satisfied, then this would imply that the lower-RE

condition holds. A similar practical check can be implemented for the upper-RE condition

by following the above steps and noting that α2 = 1.5maxm∈{1,··· ,M} λmax(B
TΣx

mB).
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3.3.4 Computational Algorithms

We implement the projected gradient descent approach under the group bridge and the

group lasso penalties, whose convergence can be impacted by the choice of the step size δ∗

in (3.3.2). We utilize the non-monotone spectral projected gradient (SPG) method for the

computation under the group lasso penalty as in Sra (2011) and Duchi et al. (2008), which

adopts a spectral choice of the step size with non-monotone line search technique that is

known to speed up the convergence.

We tackle the optimization problem of model with measurement errors under group lasso

penalty by utilizing the SPG algorithm with projection onto L1,2 ball. Details are listed in

the following three algorithms. The first two algorithms (Algorithms 2, 3) provide details

on projection onto a L1 ball and L1,2 ball respectively, whereas Algorithm 4 outlines the

steps for SPG under the group lasso penalty. In Algorithm 4, the function g(·) denotes the

gradient related to the loss function L as in (3.3.1).

Algorithm 2 Projection onto L1 ball with radius R and penalty term λ0
Input: vector v of length p, radius R, penalty term λ0.

if ∥v∥1 ≤ R then
proj(v) = max{|v| − λ0, 0}, stop.

else
set U = {1, · · · , p}, s = 0, ρ = 0.
while U ̸= ∅ do

randomly sample k ∈ U .
partition U as G =

{
j ∈ U

∣∣|vj | ≥ |vk|
}
, and L =

{
j ∈ U

∣∣|vj | < |vk|
}
.

compute ∆ρ = card{G}, ∆s =
∑

j∈G |vj |.
if s+∆s− (ρ+∆ρ)|vk| < R then

s = s+∆s, ρ = ρ+∆ρ, U = L.
else

U = G \ {k}.
end if

end while
set θ = (s−R)/ρ, λ = max{θ, λ0}, and proj(v) = max{|v| − λ, 0}.

end if

Output: projected vector
∏

1(v;R, λ0) = proj(v) ∗ sgn(v).

Moreover under the non-convex group bridge penalty, we develop a novel projected gradient

descent algorithm which restricts the space of admissible solutions to an L1 ball of radius R
2

by leveraging Corollary 3.3.1. Using the data augmentation strategy in Huang et al. (2009),
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Algorithm 3 Projection onto L1,2 ball with radius R and penalty term λ0
Input:
vector η of lengthM (number of groups) by p (number of elements), radius R, penalty term
λ0.
Compute
vector c = (∥η(1)∥2, · · · , ∥η(p)∥2)T , where η(j) = (η1j , · · · , ηMj)

T , j = 1, · · · , p.
Compute
w =

∏
1(c;R, λ0), and η

∗
mj = ηmj

wj

cj
, m = 1, · · · ,M , j = 1, · · · , p.

Output:
projected vector

∏
1,2(η;M,p,R, λ0) = (η∗11, · · · , η∗M1, · · · , η∗1p, · · · , η∗Mp)

T .

Algorithm 4 Spectral Projected Gradient Algorithm for Group Lasso Penalty

Input: starting value η(0), α(0) = 1/∥g1(η(0))∥∞ where

g1(η
(0)) =

∏
1,2

(η(0) − g(η(0));M,p,R, λn)− η(0),

set γ = 10−4, αmin = 10−30, αmax = 1030, and tol = 10−5.

Iterate between the following steps.

Step 1: check if stationary.
if ∥

∏
1,2(η

(k) − g(η(k));M,p,R, λn)− η(k)∥∞ ≤ tol then Stop, output η(k).
end if

Step 2: backtracking.
Step 2.1: compute d(k) =

∏
1,2(η

(k) − α(k)g(η(k));M,p,R, λn)− η(k), set λ = 1.

Step 2.2: set η+ = η(k) + λd(k).
Step 2.3:
if L(η+) ≤ max0≤s≤min{k,9} L(η(k−s)) + γλ⟨d(k), g(η(k))⟩ then

define λ(k) = λ, η(k+1) = η+, s(k) = η(k+1) − η(k), y(k) = g(η(k+1)) − g(η(k)) and go
to Step 3.
else

define λnew ∈ [0.1λ, 0.9λ], set λ = λnew and go to Step 2.2.
end if

Step 3: compute b(k) = ⟨s(k), y(k)⟩.
if b(k) ≤ 0 then set α(k+1) = αmax.
else

compute a(k) = ⟨s(k), s(k)⟩, α(k+1) = min{αmax,max{αmin,
a(k)

b(k)
}}.

end if

Output: η(k) either when the stationary criterion is satisfied in Step 1, or the maximum
iteration number is hit.
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criteria (3.3.1) under group bridge can be expressed as the following equivalent problem :

min
∥η∥1≤R2

[ M∑
m=1

{
1

2
ηTmΓ̂mηm − ⟨γ̂m,ηm⟩

}
+

p∑
j=1

θ−1
j

( M∑
m=1

|ηmj |
)
+ τn

p∑
j=1

θj

]
, τn = λ2n/4,

(3.3.3)

where θj ≥ 0 for j = 1, · · · , p. This can be solved via the SPG method which is detailed in

Algorithm 5 below. The SPG step in Algorithm 5 is very similar to Algorithm 4, with only

minor changes including: (a) the loss function and the corresponding gradient function need

to be replaced according to the formula in step 3 of Algorithm 5; and (b) the projection onto

L1,2 ball in Algorithm 4 needs to be replaced by a projection onto L1 ball with fixed penalty

equal to 1 and a large enough radius, which we set to R = 1030 in our implementation.

Algorithm 5 Projected Gradient Descent with Data Augmentation under Group
Bridge Penalty

1. Initialize the values of the wavelet coefficients at η∗.

2. For the k-th iteration, update θj for j = 1, · · · , p as θ
(k)
j = τ

−1/2
n

(∑M
m=1 |η

(k−1)
mj |

)1/2
.

3. Use SPG method to find the solution for ηθ where ηθmj = θ−1
j ηmj as

η̂θ = argmin
ηθ

[ M∑
m=1

{
1

2
(ηθm)

T
(
I
(k)
θ Γ̂mI

(k)
θ

)
ηθm −

(
I
(k)
θ γ̂m

)T
ηθm

}
+ ∥ηθ∥1

]

where I
(k)
θ = diag{θ(k)1 , · · · , θ(k)p }. Then update η with η

(k)
mj = θ

(k)
j η̂θmj , m = 1, · · · ,M ,

j = 1, · · · , p and project it onto an L1 ball with radius R2.

4. Repeat step 2 through 3 until convergence.

It is evident from the inequality ||η̂ − η0||2 ≤ 4
τh1

√
Mk

max{ϕ
√
log p/n, λnl

−1} in Theo-

rem 3.3.1, that the denominator for the error bound contains h1 = 1 + 3l−1R that in-

creases linearly with R. Moreover when R > l, we have λn > 2ϕ
√

log p
n R > ϕ

√
log p
n

for R > ρ(η0) > 1, and further λnl
−1 > ϕ

√
log p
n Rl−1 > ϕ

√
log p
n . Hence when R > l,

the error bounds reduces to a ratio 4 λnl−1

τ
√
Mk(1+3l−1R)

, which decreases with R when λn is

chosen to be large enough. Hence our theory benefits from a large choice of R and in

general, one can not choose R to be extremely small if we would like our non-asymptotic

results to hold, since Theorems 3.3.1-3.3.2 require R > ρ(η0). Similarly it is not useful
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to choose R as extremely large, since the optimization error bounds in Theorem 3.3.3 are

only applicable to all iterates t in the projected gradient descent algorithm that satisfy

t ≥ 2[log(1/κ)]−1 log L(η∗)−L(η̂)
δ2

+log2 log2(
Rλn
δ2

)(1+ log 2
log(1/κ)), and an extremely large choice

of R would imply slower convergence for this projected gradient descent algorithm. In our

applications, we choose R to be large enough that works well in diverse practical applica-

tions.

In practice, one can get a better sense about the lower bound of the constraints R and R2

from the estimates of the group lasso and group bridge methods without noise correction in

(3.2.4), which can be used to guide the choice of R. Alternatively, the correction proposed

in Datta et al. (2017) avoids tuning on R and the projection step, which may be potentially

interesting to consider in future work. Moreover, the shrinkage parameter λn in the penalty

term can be selected via five fold cross validation. In our implementations, we fix the

primary level of wavelet transform (j0) informed by extensive empirical studies. However,

in the situation when one is uncertain about the choice of j0, a cross validation can be

conducted based on cross-validation or goodness of fit scores.

3.4 Simulations

In this section we conduct extensive simulations involving three data sources (M = 3) with

2-D images of size 64×64 that mimics the 2-D brain slices and evaluate the performance of

the proposed approach with respect to competing methods. The functional image predictors

are generated by first generating wavelet coefficients independently from normal distribution

with mean 0 and variance 1, and followed by an inverse wavelet transform implemented via

the R package wavethresh (Nason, 2008). We choose the Daubechies Least Asymmetric

wavelet with 4 vanishing moments and j0 = 3 as the wavelet basis function in both data

generation and model fitting under all wavelet-based approaches. We generated three types

of true 2-D functional regression coefficients with different shapes including round, square

and triangle, and varying degrees of overlap in the regions with non-zero signals between the

three images across the data sources as shown in Figure 3.1. We also considered two extreme
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Figure 3.1: Partially overlapping true signals used in simulations, where the size of the
signals varying across data sources. Other signals types (homogeneous and minimally over-
lapping) were also considered with these results presented in the Supplementary Materials.

simulation settings with homogeneous and minimally-overlapping signals, but we present

these results in the Supplementary Materials due to space constraints. The scalar outcome

variable is then generated under a scalar-on-image regression model based on the true image

without noise. The ratio of the mean function variance and residual term variance is set

to be 9. For model fitting, we use a working image that is obtained by corrupting the

true image with additive noise, and explore the performance for both known and unknown

error covariances. We simulate data with training and test sample sizes as 200 for all three

groups.

Competing Methods and Evaluation Metrics: We compare the performance of the proposed

projected group lasso (‘p glasso’) and the projected group bridge (‘p gbridge’) methods with

several competing methods that (i) fit the model separately for each data source without

accounting for noise in images, including the WNET method (Reiss et al., 2015) which

first performs wavelet transform and then applies elastic net penalty regression, and the

WPCR method (Reiss et al., 2015) which first performs wavelet transform then applies

principal component regression; (ii) fit the model separately to each data source with noise

correction, as in the method in Loh and Wainwright (2012) that uses a similar projected

gradient descent algorithm as in (3.3.2), but with L1 penalty on the wavelet coefficients that

is not equipped for multi-task learning (‘p lasso’); and (iii) multi-task learning approaches

involving group lasso and group bridge penalties, but without noise correction as in (3.2.4).

The WNET and WPCR methods are implemented in R package refund.wave (Reiss et al.,

2015). We utilize the R package grpreg (Breheny and Huang, 2015) for implementing the

group lasso without noise correction, while we use a hierarchical representation to implement

the group bridge without measurement error, as detailed in the Supplementary Materials.
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We evaluate the performance of different methods using out-of-sample prediction in a testing

sample measured via the prediction mean squared error (PMSE), as well as the accuracy

in recovering the functional regression coefficient in terms of bias and area under the curve

(AUC) that measures the ability to distinguish non-zero and zero signals (results in Table

3.1). The PMSE is calculated for the test set and standardized by the variance of the

training set. Figures 3.2-3.4 illustrate the recovery of the true signals for SNR = 0 and

SNR = 3, while Table 3.1 presents replicate-averaged PMSE, AUC and bias.

3.4.1 Scenario with Known Noise Covariance

The true images are generated independently for each of the data sources, and additive

noise is introduced to the true image to obtain the working image used for model fitting.

The noise is generated by first generating wavelet coefficients independently from normal

distribution with mean 0 and variance at 1/4 (SNR=4) or 1/3 (SNR= 3), and then followed

by an inverse wavelet transform. Results are also reported for an ideal case where the true

image is used to fit the data. We report results averaged over 100 replicates for each setting.

Results: For the scenarios where the true images are observed, the group bridge method

without noise correction shows the best predictive performance. However, the group lasso

approach without noise correction, as well as the projected group lasso methods with noise

correction have comparable performance with respect to the group bridge method, in terms

of coefficient estimation (bias and AUC) that is superior to remaining methods. While it is

expected that methods without noise correction will have improved predictive performance

when in fact the true image is observed, it is impressive to see that the projected group

lasso approach with noise correction performs equally well in terms of signal recovery under

these settings, although it cannot guarantee accurate prediction due to the assumption of

noise in the images when there is in fact none. For settings of greater interest involving

noisy images used for model fitting, the projected group lasso approach has (by far) the best

performance in terms of out of sample prediction, bias and AUC, which are almost always

significantly improved compared to competing methods. While the empirical performance

of the projected group lasso approach in terms of coefficient estimation is supported by
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our theoretical results, the superior predictive performance under the projected group lasso

approach in the presence of noisy images further highlights the utility of this method. In

contrast, the signal recovery accuracy under the projected group bridge is variable and the

prediction performance is not always ideal, which is likely due to the lack of theoretical

guarantees under the projected gradient descent algorithm that used to compute parameter

estimates corresponding to the group bridge penalty. The following Figures 3.2-3.4 illustrate

that while the proposed approaches are able to adequately recover the true signals, some

competing approaches (such as WPCR) have a particularly poor signal recovery.

3.4.2 Scenario with Unknown Noise Covariance

In this scenario, we assume Σu is unknown and needs to be estimated from an external

validation sample, which is assumed to be a valid estimate for the noise covariance in the

training and the test data sets as well, as in our motivating ADNI analysis. This set-up is

designed to mimic the scenario for ADNI data analysis (see Section 3.5 for more details), and

does not use the validation data to inform any other aspect of the modeling or prediction

conducted on the training and test data sets beyond computing the error covariance. Unlike

the set-up with known noise-covariance, the images for each sample were linked across the

three data sources by first generating a true image independently for each sample, and then

corrupting these images with additive noise across the three data sources. This scenario

leads to common patterns in images across the three data sources that are distorted by

noise, and enables one to empirically estimate the noise covariance. We generate the data

with varying signal-to-noise ratios (6, 4, or 3) and for 100 replicates for each simulation

set-up.

Results: The projected group lasso method consistently has the best prediction performance

across all signal shapes and signal-to-noise ratios that is significantly improved compared

to the other approaches. In terms of coefficient estimation, both the projected group bridge

as well as the projected group lasso methods consistently have significantly improved per-

formance in terms of bias and AUC compared to the other methods. Compared to the case

with known noise covariance, the relative performance (bias and AUC) under the projected



77

Noiseless SNR=3

Figure 3.2: Estimated Functional Regression Coefficients with Known Noise Covariance
(Round Type) corresponding to the case with images with no measurement error (noiseless)
and corresponding to noisy images with SNR=3. The different rows in the Figure depict
the true signal, and the estimated signals under WNET, WPCR, projected Lasso, group
lasso without noise correction, group bridge without noise correction, projected group lasso
with noise correction, and projected group bridge with noise correction.
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Noiseless SNR=3

Figure 3.3: Estimated Functional Regression Coefficients with Known Noise Covariance
(Square Type) corresponding to the case with images with no measurement error (noiseless)
and corresponding to noisy images with SNR=3. The different rows in the Figure depict
the true signal, and the estimated signals under WNET, WPCR, projected Lasso, group
lasso without noise correction, group bridge without noise correction, projected group lasso
with noise correction, and projected group bridge with noise correction.
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Noiseless SNR=3

Figure 3.4: Estimated Functional Regression Coefficients with Known Noise Covariance
(Triangle Type) corresponding to the case with images with no measurement error (noise-
less) and corresponding to noisy images with SNR=3. The different rows in the Figure
depict the true signal, and the estimated signals under WNET, WPCR, projected Lasso,
group lasso without noise correction, group bridge without noise correction, projected group
lasso with noise correction, and projected group bridge with noise correction.
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group lasso method slightly deteriorates in the case of unknown noise covariance and be-

comes more at par with the projected group bridge in terms of signal recovery. However in

our experience, the performance of the projected group bridge was occasionally sensitive to

the starting values, whereas the projected group lasso method produces more stable results

that is consistent with the theoretical guarantees under Theorem 3.3.3.

3.4.3 Additional Simulations with Other Signal Patterns

To aim with understanding of the utility of the proposed methods on various signal patterns,

we have included two extreme simulation scenarios. One scenario utilizes a true signal pat-

tern of homogeneous type, while the other utilizes a minimally-overlapping type, as shown

in Figure 3.5. We implemented the same simulation settings as in the main manuscript

for these two additional signal patterns in the cases of known and unknown noise covari-

ance. The results for prediction mean squared errors (PMSE), bias and AUC metrics are

summarized in Table 3.2 and 3.3.

In the scenario with homogeneous signals and in the presence of measurement error, the

projected group lasso has the best performance in the case of unknown and known noise

covariance, with the projected group bridge also performing well in the case of unknown

noise covariance. In the noiseless case, the group bridge and group lasso penalties with-

out noise correction often have the best prediction performance, as expected. The relative

improvements under the projected approaches with noise correction is quite similar, and

sometimes stronger, compared to the results presented in the main manuscript correspond-

ing to partially overlapping signals.

The scenario with minimally-overlapping signals where the non-zero regions barely intersect

across data sources is expected to be more challenging for the group penalty based methods,

due to the largely disjoint signal patterns. In spite of this, the projected group lasso has

the superior or close to optimal prediction performance across all settings involving noisy

images, corresponding to the round and square signal types. For the triangular signals and

in the presence of measurement error, the performance is somewhat mixed with superior or
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Known Noise Covariance Unknown Noise Covariance
Noiseless SNR=4 SNR=3 SNR=6 SNR=4 SNR=3

G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3

P
M
S
E

ro
u
n
d

WNET 0.67 0.58 0.51 0.83 0.77 0.75 0.89 0.82 0.77 0.81 0.73 0.69 0.85 0.77 0.72 0.89 0.82 0.78
WPCR 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
p lasso 0.68 0.60 0.53 0.81 0.74 0.70 0.92 0.83 0.74 0.77 0.68 0.62 0.83 0.72 0.67 0.89 0.79 0.74
glasso 0.42 0.36 0.33 0.65 0.57 0.56 0.71 0.63 0.61 0.73 0.66 0.62 0.80 0.71 0.68 0.84 0.77 0.74
gbridge 0.32 0.34 0.29 0.71 0.67 0.64 0.81 0.74 0.69 0.64 0.63 0.56 0.77 0.72 0.68 0.87 0.79 0.74
p glasso 0.44 0.37 0.35 0.58 0.52 0.50 0.67 0.60 0.58 0.62 0.54 0.49 0.69 0.57 0.55 0.75 0.63 0.61
p gbridge 0.47 0.43 0.37 0.72 0.65 0.65 0.83 0.73 1.00 0.70 0.59 0.55 0.81 0.61 0.63 0.89 0.70 0.71

sq
u
a
re

WNET 0.69 0.59 0.53 0.84 0.77 0.74 0.88 0.81 0.78 0.79 0.73 0.69 0.84 0.78 0.72 0.86 0.82 0.78
WPCR 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
p lasso 0.69 0.61 0.54 0.81 0.73 0.70 0.88 0.79 0.75 0.75 0.68 0.63 0.81 0.73 0.67 0.84 0.79 0.77
glasso 0.45 0.37 0.35 0.67 0.59 0.57 0.71 0.63 0.61 0.72 0.65 0.62 0.79 0.72 0.68 0.83 0.78 0.75
gbridge 0.36 0.35 0.32 0.73 0.67 0.65 0.80 0.73 0.71 0.63 0.60 0.58 0.74 0.71 0.66 0.84 0.78 0.75
p glasso 0.47 0.39 0.36 0.63 0.52 0.52 0.68 0.59 0.60 0.61 0.53 0.50 0.68 0.59 0.55 0.72 0.64 0.64
p gbridge 0.52 0.44 0.40 1.13 0.61 0.66 0.86 0.78 0.81 0.72 0.56 0.56 0.80 0.64 0.64 0.83 0.70 0.71

tr
ia
n
g
le

WNET 0.46 0.54 0.55 0.67 0.72 0.70 0.72 0.75 0.74 0.60 0.66 0.65 0.66 0.71 0.70 0.71 0.75 0.74
WPCR 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.01 1.01
p lasso 0.48 0.56 0.55 0.62 0.70 0.66 0.68 0.73 0.71 0.55 0.61 0.61 0.61 0.66 0.66 0.67 0.70 0.71
glasso 0.36 0.39 0.41 0.57 0.58 0.59 0.62 0.63 0.62 0.56 0.60 0.58 0.64 0.66 0.65 0.69 0.71 0.69
gbridge 0.30 0.35 0.39 0.55 0.58 0.59 0.59 0.62 0.63 0.48 0.54 0.53 0.56 0.60 0.63 0.62 0.65 0.67
p glasso 0.38 0.40 0.42 0.51 0.55 0.56 0.57 0.59 0.61 0.46 0.51 0.51 0.52 0.56 0.57 0.58 0.61 0.63
p gbridge 0.42 0.49 0.50 0.59 0.62 0.66 0.69 0.68 0.72 0.55 0.60 0.64 0.58 0.60 0.67 0.63 0.66 0.70

B
ia
s

ro
u
n
d

WNET 0.25 0.19 0.21 0.27 0.20 0.24 0.27 0.21 0.25 0.27 0.20 0.23 0.27 0.21 0.24 0.27 0.21 0.24
WPCR 0.29 0.24 0.27 0.29 0.23 0.27 0.29 0.23 0.27 0.29 0.23 0.27 0.29 0.23 0.27 0.29 0.23 0.27
p lasso 0.25 0.19 0.21 0.25 0.19 0.22 0.26 0.20 0.22 0.25 0.19 0.21 0.25 0.19 0.22 0.26 0.20 0.22
glasso 0.18 0.13 0.16 0.23 0.17 0.21 0.24 0.18 0.22 0.26 0.20 0.24 0.27 0.21 0.24 0.28 0.22 0.26
gbridge 0.17 0.14 0.17 0.23 0.19 0.23 0.24 0.19 0.23 0.23 0.19 0.23 0.24 0.20 0.24 0.26 0.21 0.24
p glasso 0.18 0.14 0.17 0.19 0.14 0.17 0.20 0.14 0.18 0.21 0.16 0.19 0.21 0.15 0.18 0.22 0.16 0.19
p gbridge 0.20 0.16 0.19 0.19 0.15 0.18 0.21 0.16 0.20 0.21 0.15 0.18 0.21 0.15 0.18 0.22 0.16 0.18

sq
u
ar
e

WNET 0.22 0.16 0.18 0.23 0.18 0.20 0.24 0.18 0.20 0.23 0.17 0.19 0.24 0.18 0.20 0.24 0.18 0.20
WPCR 0.26 0.20 0.23 0.25 0.19 0.23 0.25 0.19 0.22 0.26 0.19 0.22 0.26 0.19 0.23 0.25 0.19 0.22
p lasso 0.22 0.16 0.18 0.22 0.16 0.19 0.23 0.17 0.18 0.22 0.16 0.18 0.22 0.16 0.18 0.22 0.17 0.19
glasso 0.17 0.12 0.15 0.20 0.15 0.18 0.21 0.15 0.18 0.23 0.17 0.20 0.24 0.18 0.21 0.25 0.19 0.22
gbridge 0.17 0.13 0.17 0.22 0.17 0.21 0.22 0.17 0.20 0.21 0.17 0.21 0.22 0.17 0.21 0.23 0.18 0.21
p glasso 0.17 0.12 0.15 0.17 0.12 0.15 0.18 0.13 0.15 0.19 0.14 0.16 0.19 0.14 0.16 0.19 0.14 0.17
p gbridge 0.19 0.15 0.17 0.19 0.13 0.16 0.19 0.14 0.16 0.19 0.13 0.16 0.19 0.13 0.16 0.19 0.13 0.16

tr
ia
n
gl
e

WNET 0.11 0.09 0.10 0.12 0.10 0.10 0.12 0.09 0.10 0.12 0.09 0.10 0.12 0.10 0.10 0.12 0.10 0.10
WPCR 0.14 0.10 0.11 0.14 0.11 0.11 0.14 0.10 0.11 0.14 0.11 0.11 0.14 0.11 0.11 0.14 0.10 0.11
p lasso 0.11 0.09 0.10 0.11 0.09 0.09 0.11 0.09 0.09 0.11 0.09 0.10 0.11 0.09 0.09 0.11 0.09 0.09
glasso 0.09 0.08 0.09 0.11 0.08 0.09 0.11 0.09 0.09 0.12 0.09 0.10 0.13 0.10 0.11 0.13 0.10 0.11
gbridge 0.09 0.08 0.10 0.11 0.08 0.10 0.11 0.08 0.10 0.11 0.09 0.11 0.11 0.09 0.11 0.12 0.09 0.11
p glasso 0.10 0.08 0.09 0.09 0.08 0.09 0.10 0.08 0.09 0.10 0.08 0.09 0.10 0.08 0.09 0.10 0.08 0.09
p gbridge 0.12 0.10 0.12 0.10 0.08 0.10 0.10 0.08 0.09 0.11 0.09 0.11 0.10 0.08 0.10 0.10 0.08 0.09

A
U
C

ro
u
n
d

WNET 0.81 0.81 0.89 0.76 0.77 0.83 0.74 0.76 0.82 0.77 0.78 0.85 0.76 0.76 0.83 0.73 0.75 0.83
WPCR 0.53 0.53 0.54 0.62 0.62 0.61 0.62 0.61 0.61 0.62 0.61 0.60 0.62 0.62 0.61 0.63 0.62 0.61
p lasso 0.79 0.80 0.89 0.77 0.78 0.85 0.74 0.73 0.84 0.79 0.80 0.87 0.78 0.77 0.84 0.74 0.75 0.83
glasso 0.94 0.95 0.97 0.90 0.92 0.93 0.88 0.90 0.92 0.81 0.84 0.87 0.79 0.81 0.85 0.76 0.78 0.83
gbridge 0.95 0.94 0.97 0.86 0.86 0.90 0.85 0.85 0.88 0.85 0.86 0.91 0.84 0.84 0.88 0.82 0.82 0.87
p glasso 0.94 0.95 0.97 0.93 0.94 0.96 0.92 0.93 0.95 0.89 0.90 0.93 0.90 0.91 0.93 0.89 0.89 0.92
p gbridge 0.90 0.91 0.94 0.91 0.91 0.94 0.88 0.87 0.90 0.90 0.91 0.94 0.91 0.91 0.93 0.89 0.89 0.92

sq
u
ar
e

WNET 0.81 0.83 0.90 0.77 0.78 0.84 0.74 0.77 0.85 0.78 0.80 0.87 0.77 0.78 0.86 0.76 0.78 0.84
WPCR 0.53 0.54 0.54 0.66 0.64 0.63 0.64 0.64 0.63 0.65 0.64 0.64 0.65 0.64 0.63 0.65 0.64 0.63
p lasso 0.81 0.82 0.89 0.78 0.79 0.85 0.73 0.77 0.85 0.80 0.81 0.88 0.79 0.79 0.87 0.77 0.77 0.85
glasso 0.94 0.95 0.97 0.90 0.91 0.94 0.89 0.91 0.93 0.82 0.85 0.89 0.79 0.81 0.86 0.77 0.79 0.84
gbridge 0.94 0.95 0.97 0.86 0.88 0.91 0.85 0.86 0.90 0.87 0.88 0.92 0.85 0.86 0.90 0.83 0.85 0.88
p glasso 0.94 0.95 0.97 0.93 0.94 0.95 0.92 0.93 0.95 0.90 0.91 0.94 0.90 0.90 0.93 0.90 0.90 0.92
p gbridge 0.89 0.91 0.94 0.91 0.91 0.93 0.89 0.88 0.91 0.91 0.92 0.94 0.90 0.91 0.94 0.90 0.90 0.93

tr
ia
n
gl
e

WNET 0.92 0.90 0.94 0.89 0.86 0.92 0.87 0.85 0.91 0.90 0.89 0.93 0.88 0.86 0.91 0.87 0.85 0.91
WPCR 0.54 0.55 0.56 0.66 0.65 0.65 0.66 0.65 0.65 0.65 0.64 0.64 0.66 0.64 0.65 0.66 0.65 0.65
p lasso 0.92 0.90 0.94 0.90 0.87 0.93 0.87 0.84 0.91 0.91 0.90 0.94 0.89 0.88 0.92 0.87 0.87 0.92
glasso 0.98 0.98 0.98 0.95 0.96 0.97 0.95 0.96 0.97 0.93 0.94 0.95 0.91 0.91 0.94 0.89 0.90 0.93
gbridge 0.98 0.98 0.98 0.95 0.95 0.97 0.95 0.95 0.96 0.96 0.96 0.97 0.94 0.95 0.96 0.94 0.94 0.95
p glasso 0.98 0.98 0.98 0.97 0.97 0.98 0.96 0.97 0.97 0.96 0.96 0.97 0.96 0.96 0.97 0.95 0.96 0.97
p gbridge 0.95 0.95 0.96 0.95 0.95 0.96 0.95 0.95 0.97 0.96 0.96 0.96 0.95 0.95 0.96 0.95 0.95 0.96

Table 3.1: Summary for simulation results with known and unknown noise covariances
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Figure 3.5: True Regression Coefficient Maps for Additional Signal Patterns. Left: Homo-
geneous Type; Right: Minimally-overlapping Type.

comparable prediction under the projected group lasso compared to other approaches for

the overwhelming majority of cases. In terms of parameter estimation, the projected group

bridge has the lowest bias in the overwhelmingly large number of cases in the presence

of measurement error. However, the projected lasso that performs analysis separately for

each data source also has good estimation performance in several cases, which is somewhat

expected due to the disjoint nature of the non-zero signal regions. The performance with

respect to AUC is more varied, and no particular methods seems to have an edge over other

approaches with respect to feature selection.

We see that overall, the advantages of noise correction under grouped penalties are partially

eroded when the true signal is disjoint across data sources, as expected. However, the

proposed projected group lasso and/or group bridge still have improved or comparable

predictive and estimation performance across a majority of settings, which is encouraging.

We would note that the proposed approaches are best suited for applications involving

some degree of shared patterns across data sources, such as in our motivating neuroimaging

application that involves longitudinal progression of Alzheimer’s disease where one expects

a non-negligible number of brain regions with signals that do not change considerably across

visits.
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Known Noise Covariance Unknown Noise Covariance
Noiseless SNR=4 SNR=3 SNR=6 SNR=4 SNR=3

G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3

P
M
S
E

ro
u
n
d

WNET 0.71 0.65 0.61 0.87 0.84 0.82 0.88 0.87 0.85 0.82 0.79 0.78 0.86 0.81 0.81 0.90 0.85 0.84
WPCR 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.01
p lasso 0.71 0.66 0.62 0.87 0.79 0.79 0.87 0.86 0.86 0.78 0.73 0.74 0.84 0.78 0.76 0.88 0.82 0.81
glasso 0.41 0.37 0.35 0.67 0.61 0.62 0.71 0.66 0.67 0.81 0.76 0.75 0.86 0.80 0.79 0.90 0.83 0.82
gbridge 0.38 0.38 0.28 0.82 0.79 0.71 0.88 0.84 0.81 0.76 0.69 0.63 0.82 0.78 0.75 0.90 0.83 0.83
p glasso 0.44 0.39 0.38 0.60 0.55 0.54 0.68 0.61 0.64 0.72 0.64 0.64 0.77 0.68 0.69 0.81 0.72 0.73
p gbridge 0.46 0.45 0.38 0.73 0.73 0.72 0.82 0.75 0.83 0.86 0.73 0.79 0.92 0.77 0.90 0.97 0.80 0.91

sq
u
a
re

WNET 0.73 0.64 0.57 0.84 0.82 0.82 0.87 0.83 0.83 0.81 0.78 0.75 0.84 0.81 0.78 0.89 0.85 0.84
WPCR 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.00 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01
p lasso 0.74 0.65 0.58 0.83 0.79 0.77 0.86 0.79 0.83 0.79 0.74 0.70 0.81 0.77 0.75 0.88 0.84 0.81
glasso 0.46 0.39 0.37 0.68 0.61 0.62 0.71 0.65 0.66 0.81 0.76 0.74 0.86 0.79 0.77 0.91 0.86 0.85
gbridge 0.40 0.38 0.29 0.78 0.75 0.69 0.85 0.81 0.75 0.74 0.69 0.63 0.80 0.77 0.73 0.91 0.83 0.82
p glasso 0.47 0.41 0.39 0.62 0.56 0.56 0.67 0.60 0.68 0.72 0.64 0.62 0.74 0.66 0.64 0.80 0.71 0.71
p gbridge 0.54 0.47 0.41 0.73 0.67 0.79 0.80 0.69 0.78 0.83 0.71 0.73 0.84 0.72 0.80 0.92 0.79 0.88

tr
ia
n
g
le

WNET 0.51 0.51 0.43 0.69 0.67 0.65 0.73 0.73 0.70 0.64 0.62 0.60 0.69 0.71 0.67 0.73 0.73 0.69
WPCR 1.02 1.01 1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
p lasso 0.53 0.52 0.45 0.64 0.64 0.59 0.69 0.71 0.66 0.58 0.57 0.55 0.64 0.66 0.61 0.73 0.69 0.64
glasso 0.37 0.36 0.31 0.56 0.54 0.53 0.61 0.59 0.58 0.65 0.61 0.59 0.71 0.71 0.68 0.76 0.75 0.72
gbridge 0.34 0.35 0.28 0.56 0.54 0.53 0.59 0.58 0.58 0.57 0.54 0.51 0.62 0.62 0.59 0.66 0.63 0.62
p glasso 0.38 0.37 0.33 0.51 0.49 0.49 0.57 0.56 0.57 0.51 0.49 0.46 0.54 0.56 0.52 0.60 0.57 0.56
p gbridge 0.45 0.43 0.36 0.58 0.54 0.60 0.62 0.61 0.63 0.58 0.57 0.58 0.58 0.58 0.59 0.65 0.62 0.68

B
ia
s

ro
u
n
d

WNET 0.25 0.23 0.31 0.27 0.25 0.36 0.27 0.25 0.36 0.27 0.24 0.35 0.27 0.25 0.35 0.28 0.25 0.36
WPCR 0.29 0.28 0.39 0.29 0.27 0.39 0.29 0.27 0.39 0.29 0.27 0.39 0.29 0.27 0.39 0.29 0.27 0.39
p lasso 0.26 0.23 0.32 0.26 0.23 0.33 0.26 0.24 0.34 0.25 0.23 0.32 0.25 0.23 0.33 0.26 0.24 0.33
glasso 0.18 0.15 0.23 0.23 0.20 0.31 0.24 0.21 0.31 0.28 0.25 0.36 0.29 0.26 0.37 0.30 0.27 0.38
gbridge 0.18 0.17 0.22 0.26 0.24 0.33 0.26 0.24 0.34 0.25 0.23 0.31 0.26 0.24 0.33 0.27 0.24 0.34
p glasso 0.18 0.16 0.24 0.19 0.16 0.24 0.20 0.18 0.26 0.23 0.20 0.29 0.23 0.20 0.29 0.24 0.21 0.30
p gbridge 0.20 0.18 0.25 0.20 0.18 0.26 0.22 0.19 0.28 0.23 0.20 0.30 0.24 0.20 0.30 0.24 0.21 0.31

sq
u
ar
e

WNET 0.22 0.20 0.27 0.24 0.22 0.32 0.24 0.22 0.32 0.24 0.22 0.30 0.24 0.22 0.31 0.24 0.22 0.31
WPCR 0.26 0.24 0.34 0.26 0.24 0.34 0.25 0.24 0.34 0.26 0.24 0.34 0.26 0.24 0.34 0.25 0.24 0.34
p lasso 0.23 0.20 0.28 0.23 0.20 0.29 0.23 0.20 0.30 0.22 0.20 0.28 0.22 0.21 0.28 0.23 0.21 0.29
glasso 0.17 0.15 0.21 0.20 0.18 0.27 0.21 0.19 0.28 0.25 0.23 0.32 0.26 0.24 0.33 0.27 0.24 0.34
gbridge 0.18 0.16 0.21 0.23 0.21 0.29 0.23 0.21 0.30 0.23 0.21 0.29 0.23 0.22 0.30 0.24 0.21 0.30
p glasso 0.17 0.15 0.22 0.17 0.15 0.22 0.18 0.16 0.24 0.21 0.18 0.26 0.20 0.18 0.26 0.21 0.18 0.26
p gbridge 0.20 0.18 0.24 0.18 0.16 0.25 0.19 0.17 0.24 0.21 0.18 0.26 0.20 0.17 0.26 0.21 0.17 0.26

tr
ia
n
gl
e

WNET 0.11 0.11 0.15 0.12 0.12 0.17 0.13 0.12 0.17 0.12 0.12 0.16 0.12 0.12 0.17 0.12 0.12 0.17
WPCR 0.15 0.14 0.20 0.14 0.14 0.19 0.14 0.13 0.19 0.14 0.14 0.19 0.14 0.14 0.19 0.14 0.14 0.19
p lasso 0.11 0.11 0.15 0.11 0.11 0.15 0.11 0.11 0.15 0.11 0.11 0.15 0.11 0.11 0.15 0.12 0.11 0.15
glasso 0.09 0.09 0.13 0.11 0.10 0.15 0.11 0.11 0.15 0.13 0.13 0.18 0.14 0.14 0.19 0.15 0.14 0.20
gbridge 0.10 0.09 0.13 0.10 0.10 0.14 0.10 0.10 0.14 0.12 0.11 0.16 0.12 0.12 0.17 0.11 0.11 0.16
p glasso 0.09 0.09 0.13 0.09 0.09 0.13 0.09 0.09 0.13 0.10 0.10 0.14 0.10 0.10 0.14 0.10 0.09 0.14
p gbridge 0.12 0.11 0.15 0.09 0.09 0.13 0.09 0.09 0.13 0.10 0.10 0.15 0.10 0.09 0.14 0.10 0.09 0.14

A
U
C

ro
u
n
d

WNET 0.79 0.78 0.81 0.76 0.73 0.73 0.74 0.72 0.76 0.76 0.75 0.77 0.77 0.74 0.76 0.74 0.72 0.75
WPCR 0.53 0.53 0.53 0.63 0.62 0.62 0.63 0.63 0.62 0.62 0.61 0.62 0.62 0.62 0.63 0.63 0.62 0.62
p lasso 0.79 0.78 0.81 0.76 0.75 0.76 0.73 0.72 0.74 0.78 0.77 0.80 0.79 0.74 0.78 0.74 0.72 0.77
glasso 0.95 0.95 0.95 0.90 0.89 0.88 0.89 0.88 0.87 0.76 0.76 0.77 0.73 0.73 0.74 0.70 0.70 0.71
gbridge 0.94 0.92 0.95 0.82 0.80 0.83 0.83 0.81 0.82 0.82 0.81 0.85 0.81 0.80 0.81 0.81 0.79 0.80
p glasso 0.95 0.95 0.95 0.93 0.91 0.92 0.92 0.91 0.91 0.86 0.85 0.86 0.86 0.84 0.85 0.85 0.84 0.85
p gbridge 0.91 0.90 0.92 0.91 0.89 0.89 0.86 0.83 0.85 0.87 0.86 0.87 0.88 0.85 0.86 0.86 0.84 0.85

sq
u
ar
e

WNET 0.80 0.78 0.84 0.77 0.75 0.77 0.76 0.75 0.77 0.76 0.76 0.79 0.77 0.72 0.79 0.75 0.75 0.77
WPCR 0.53 0.53 0.53 0.65 0.66 0.66 0.67 0.66 0.66 0.66 0.66 0.66 0.66 0.67 0.66 0.65 0.66 0.66
p lasso 0.77 0.78 0.83 0.78 0.77 0.78 0.76 0.75 0.77 0.80 0.78 0.81 0.78 0.73 0.80 0.76 0.75 0.78
glasso 0.94 0.93 0.94 0.90 0.89 0.88 0.89 0.88 0.87 0.76 0.76 0.78 0.73 0.73 0.75 0.71 0.71 0.72
gbridge 0.94 0.92 0.96 0.84 0.82 0.84 0.84 0.82 0.84 0.83 0.82 0.85 0.83 0.81 0.83 0.81 0.79 0.81
p glasso 0.94 0.93 0.93 0.93 0.92 0.92 0.92 0.91 0.91 0.87 0.86 0.87 0.88 0.86 0.87 0.87 0.86 0.87
p gbridge 0.89 0.88 0.90 0.89 0.88 0.88 0.88 0.84 0.87 0.88 0.88 0.87 0.89 0.86 0.88 0.88 0.85 0.87

tr
ia
n
gl
e

WNET 0.92 0.91 0.94 0.87 0.86 0.89 0.87 0.84 0.87 0.90 0.88 0.91 0.89 0.85 0.89 0.86 0.84 0.88
WPCR 0.54 0.54 0.55 0.65 0.66 0.64 0.66 0.66 0.66 0.65 0.65 0.65 0.66 0.65 0.65 0.66 0.66 0.66
p lasso 0.92 0.90 0.94 0.88 0.86 0.91 0.88 0.84 0.88 0.91 0.89 0.92 0.90 0.86 0.90 0.87 0.85 0.90
glasso 0.98 0.98 0.98 0.97 0.96 0.96 0.96 0.95 0.95 0.90 0.89 0.90 0.87 0.86 0.88 0.85 0.84 0.86
gbridge 0.98 0.97 0.98 0.96 0.94 0.96 0.96 0.94 0.95 0.95 0.94 0.95 0.93 0.92 0.94 0.94 0.93 0.94
p glasso 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.96 0.96 0.95 0.96 0.96 0.95 0.95
p gbridge 0.96 0.95 0.96 0.97 0.95 0.97 0.95 0.94 0.94 0.96 0.95 0.96 0.96 0.95 0.96 0.96 0.94 0.95

Table 3.2: Summary for simulation results for homogeneous signals
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Known Noise Covariance Unknown Noise Covariance
Noiseless SNR=4 SNR=3 SNR=6 SNR=4 SNR=3

G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3

P
M
S
E

ro
u
n
d

WNET 0.69 0.60 0.51 0.84 0.79 0.74 0.88 0.81 0.78 0.83 0.76 0.66 0.85 0.76 0.72 0.89 0.82 0.78
WPCR 1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01
p lasso 0.70 0.61 0.52 0.82 0.77 0.67 0.89 0.77 0.76 0.80 0.69 0.60 0.83 0.73 0.67 0.89 0.80 0.74
glasso 0.57 0.52 0.42 0.78 0.74 0.66 0.82 0.76 0.71 0.76 0.70 0.62 0.81 0.73 0.68 0.85 0.78 0.74
gbridge 0.35 0.41 0.33 0.80 0.84 0.74 0.88 0.86 0.79 0.70 0.69 0.61 0.79 0.79 0.74 0.91 0.87 0.78
p glasso 0.59 0.55 0.44 0.75 0.68 0.57 0.81 0.72 0.66 0.70 0.63 0.53 0.75 0.67 0.60 0.83 0.72 0.65
p gbridge 0.66 0.63 0.47 0.91 0.76 0.70 1.01 0.79 0.85 0.83 0.69 0.60 0.90 0.73 0.74 0.99 0.78 0.74

sq
u
a
re

WNET 0.70 0.60 0.50 0.83 0.78 0.70 0.86 0.83 0.74 0.80 0.73 0.66 0.85 0.78 0.71 0.87 0.83 0.76
WPCR 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
p lasso 0.71 0.61 0.52 0.81 0.75 0.65 0.85 0.80 0.73 0.76 0.69 0.60 0.82 0.73 0.65 0.87 0.81 0.71
glasso 0.64 0.57 0.43 0.82 0.77 0.65 0.85 0.81 0.70 0.78 0.71 0.62 0.82 0.76 0.67 0.86 0.81 0.72
gbridge 0.42 0.43 0.34 0.80 0.79 0.68 0.88 0.82 0.73 0.70 0.70 0.62 0.80 0.80 0.68 0.89 0.86 0.75
p glasso 0.66 0.58 0.45 0.76 0.71 0.57 0.82 0.76 0.63 0.72 0.65 0.54 0.76 0.70 0.59 0.82 0.76 0.63
p gbridge 0.74 0.66 0.48 0.91 0.77 0.66 0.96 0.98 0.84 0.84 0.70 0.58 0.89 0.75 0.70 0.97 0.83 0.71

tr
ia
n
g
le

WNET 0.46 0.53 0.46 0.69 0.68 0.64 0.73 0.71 0.68 0.61 0.63 0.57 0.67 0.68 0.64 0.73 0.72 0.67
WPCR 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01
p lasso 0.48 0.54 0.48 0.62 0.65 0.58 0.73 0.70 0.66 0.54 0.59 0.52 0.61 0.62 0.59 0.72 0.68 0.62
glasso 0.47 0.55 0.46 0.70 0.71 0.64 0.73 0.74 0.68 0.62 0.65 0.58 0.69 0.70 0.64 0.74 0.75 0.69
gbridge 0.33 0.42 0.37 0.62 0.65 0.60 0.69 0.67 0.64 0.53 0.57 0.53 0.59 0.64 0.61 0.67 0.68 0.67
p glasso 0.49 0.57 0.48 0.63 0.64 0.59 0.70 0.71 0.65 0.55 0.60 0.51 0.60 0.64 0.58 0.68 0.69 0.64
p gbridge 0.54 0.66 0.54 0.82 0.71 0.86 0.76 0.72 0.69 0.60 0.64 0.57 0.65 0.65 0.65 0.70 0.70 0.68

B
ia
s

ro
u
n
d

WNET 0.25 0.18 0.20 0.27 0.21 0.24 0.27 0.21 0.25 0.27 0.21 0.23 0.27 0.21 0.24 0.28 0.21 0.25
WPCR 0.29 0.24 0.28 0.29 0.23 0.28 0.29 0.24 0.27 0.29 0.23 0.27 0.29 0.24 0.28 0.29 0.23 0.27
p lasso 0.25 0.19 0.21 0.25 0.20 0.21 0.26 0.20 0.23 0.25 0.19 0.21 0.26 0.19 0.21 0.26 0.20 0.22
glasso 0.23 0.18 0.19 0.26 0.21 0.23 0.27 0.21 0.24 0.27 0.21 0.23 0.27 0.21 0.24 0.28 0.22 0.25
gbridge 0.18 0.17 0.19 0.26 0.22 0.26 0.26 0.22 0.25 0.25 0.21 0.25 0.26 0.22 0.27 0.28 0.23 0.26
p glasso 0.24 0.19 0.20 0.24 0.19 0.20 0.25 0.19 0.21 0.25 0.19 0.20 0.25 0.19 0.21 0.26 0.20 0.21
p gbridge 0.26 0.21 0.22 0.25 0.18 0.20 0.26 0.19 0.21 0.25 0.18 0.19 0.24 0.18 0.20 0.26 0.18 0.20

sq
u
ar
e

WNET 0.22 0.16 0.17 0.24 0.18 0.20 0.24 0.19 0.20 0.23 0.17 0.19 0.24 0.18 0.19 0.24 0.19 0.20
WPCR 0.26 0.20 0.23 0.26 0.20 0.23 0.26 0.20 0.22 0.25 0.20 0.22 0.26 0.20 0.22 0.25 0.20 0.22
p lasso 0.23 0.16 0.18 0.22 0.17 0.18 0.23 0.17 0.18 0.22 0.16 0.18 0.22 0.17 0.18 0.23 0.17 0.18
glasso 0.22 0.17 0.17 0.24 0.19 0.19 0.24 0.19 0.20 0.24 0.18 0.19 0.25 0.19 0.20 0.25 0.19 0.20
gbridge 0.19 0.16 0.17 0.24 0.19 0.21 0.24 0.18 0.20 0.23 0.19 0.22 0.24 0.20 0.22 0.24 0.19 0.21
p glasso 0.22 0.17 0.17 0.23 0.18 0.17 0.23 0.18 0.18 0.22 0.17 0.17 0.23 0.18 0.17 0.23 0.18 0.18
p gbridge 0.25 0.20 0.20 0.23 0.16 0.17 0.23 0.17 0.17 0.22 0.16 0.17 0.22 0.16 0.17 0.23 0.16 0.16

tr
ia
n
gl
e

WNET 0.11 0.09 0.09 0.12 0.09 0.09 0.12 0.10 0.09 0.12 0.09 0.09 0.12 0.09 0.10 0.13 0.10 0.09
WPCR 0.14 0.11 0.11 0.14 0.11 0.11 0.14 0.11 0.11 0.14 0.11 0.11 0.14 0.11 0.11 0.14 0.11 0.11
p lasso 0.11 0.09 0.09 0.11 0.09 0.09 0.12 0.09 0.09 0.11 0.09 0.09 0.11 0.09 0.09 0.12 0.09 0.09
glasso 0.12 0.10 0.10 0.13 0.10 0.10 0.13 0.10 0.10 0.13 0.10 0.10 0.13 0.10 0.10 0.13 0.10 0.10
gbridge 0.10 0.09 0.10 0.12 0.10 0.11 0.12 0.10 0.10 0.11 0.09 0.10 0.12 0.10 0.10 0.12 0.09 0.10
p glasso 0.12 0.10 0.10 0.12 0.10 0.10 0.12 0.10 0.10 0.12 0.10 0.10 0.12 0.10 0.10 0.12 0.10 0.10
p gbridge 0.14 0.13 0.13 0.12 0.09 0.10 0.11 0.09 0.09 0.11 0.10 0.10 0.11 0.09 0.09 0.11 0.09 0.09

A
U
C

ro
u
n
d

WNET 0.80 0.82 0.90 0.76 0.74 0.84 0.74 0.73 0.82 0.77 0.77 0.86 0.77 0.77 0.83 0.73 0.74 0.82
WPCR 0.53 0.53 0.54 0.62 0.53 0.56 0.63 0.54 0.57 0.62 0.54 0.56 0.63 0.53 0.56 0.61 0.54 0.55
p lasso 0.79 0.81 0.89 0.78 0.75 0.86 0.75 0.73 0.82 0.77 0.79 0.87 0.76 0.77 0.84 0.73 0.73 0.83
glasso 0.83 0.82 0.94 0.77 0.74 0.88 0.74 0.72 0.85 0.75 0.75 0.87 0.74 0.74 0.84 0.72 0.72 0.83
gbridge 0.93 0.92 0.96 0.80 0.78 0.86 0.77 0.71 0.84 0.82 0.81 0.89 0.80 0.78 0.85 0.76 0.73 0.83
p glasso 0.82 0.81 0.94 0.80 0.76 0.90 0.78 0.73 0.88 0.79 0.77 0.90 0.79 0.76 0.88 0.76 0.73 0.87
p gbridge 0.79 0.79 0.91 0.79 0.75 0.88 0.77 0.70 0.87 0.80 0.80 0.91 0.80 0.75 0.89 0.77 0.71 0.89

sq
u
ar
e

WNET 0.79 0.83 0.91 0.77 0.75 0.85 0.75 0.73 0.86 0.78 0.78 0.88 0.76 0.75 0.86 0.78 0.74 0.85
WPCR 0.53 0.54 0.54 0.65 0.60 0.57 0.66 0.60 0.58 0.65 0.59 0.57 0.65 0.59 0.58 0.65 0.58 0.57
p lasso 0.78 0.82 0.91 0.79 0.75 0.87 0.76 0.74 0.86 0.80 0.79 0.89 0.78 0.77 0.88 0.78 0.73 0.86
glasso 0.79 0.80 0.94 0.73 0.73 0.89 0.72 0.72 0.88 0.75 0.75 0.90 0.72 0.72 0.87 0.72 0.72 0.87
gbridge 0.91 0.90 0.97 0.80 0.75 0.89 0.76 0.70 0.87 0.84 0.81 0.90 0.79 0.75 0.88 0.76 0.71 0.87
p glasso 0.79 0.80 0.94 0.78 0.74 0.92 0.76 0.73 0.91 0.79 0.76 0.92 0.77 0.73 0.91 0.77 0.72 0.90
p gbridge 0.77 0.79 0.91 0.80 0.77 0.92 0.77 0.70 0.90 0.81 0.82 0.93 0.79 0.74 0.92 0.78 0.71 0.92

tr
ia
n
gl
e

WNET 0.93 0.90 0.96 0.88 0.85 0.94 0.86 0.85 0.94 0.90 0.87 0.96 0.89 0.83 0.94 0.86 0.83 0.94
WPCR 0.54 0.54 0.55 0.66 0.59 0.58 0.66 0.59 0.59 0.66 0.60 0.58 0.66 0.60 0.58 0.65 0.59 0.58
p lasso 0.92 0.89 0.96 0.90 0.86 0.95 0.86 0.83 0.94 0.91 0.88 0.96 0.90 0.84 0.95 0.87 0.83 0.95
glasso 0.92 0.88 0.96 0.86 0.83 0.94 0.84 0.81 0.93 0.88 0.85 0.95 0.86 0.81 0.93 0.84 0.81 0.92
gbridge 0.97 0.94 0.98 0.91 0.87 0.96 0.87 0.84 0.95 0.92 0.90 0.97 0.91 0.83 0.95 0.88 0.80 0.94
p glasso 0.91 0.87 0.96 0.89 0.85 0.95 0.87 0.83 0.94 0.90 0.86 0.96 0.89 0.82 0.95 0.86 0.81 0.94
p gbridge 0.90 0.86 0.94 0.91 0.87 0.96 0.86 0.81 0.95 0.92 0.89 0.96 0.91 0.84 0.96 0.88 0.80 0.96

Table 3.3: Summary for simulation results for minimally overlapping signals
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3.4.4 Sensitivity Analysis to Noise Covariance Estimation Bias

As a sensitivity test, we have reported the error in noise covariance estimation and in-

vestigated the trade-off between the covariance estimation error and performance metrics

corresponding to simulation settings in the unknown noise covariance scenario in the main

manuscript. In order to obtain a range of values for covariance error estimation that is re-

quired to investigate the trade-off between variance estimation error and performance met-

rics, we used three different validation sample sizes (200,100, and 50) corresponding to the

simulation scenario with unknown noise covariance and signal-to-noise ratio of 3. Figure 3.6

reports the trade-off under the projected group lasso method for 50 replicates across differ-

ent validation sample sizes. In particular, this Figure reports the ratio of PMSE/Bias/AUC

metrics between the group lasso method without noise correction and the projected group

lasso, with a lower value in PMSE/Bias metrics or a higher value in AUC metric, implying

the improvement under the projected group lasso over the uncorrected version. From Figure

3.6, it is clear that decreasing the validation sample resulted in an increase in the covariance

estimation error as expected; however, this increase was fairly limited and in general the

covariance estimation error values were manageable in our experience for diagonal error

covariances. More importantly, the deterioration in the performance metrics was limited

as the validation sample size was decreased, although the rates of change in performance

varied across the three signal types, which is to be expected.

We also investigated one additional simulation scenario where we intentionally used a mis-

specified measurement error covariance to fit the data, which corresponds to the set-up

where the noise covariance can not be confidently estimated. Random errors were inde-

pendently added to each diagonal element in the true noise covariance matrix to make the

working noise covariance. The added errors were normally distributed, and the standard

deviation of the normal distribution was made to be 0.1, 0.2 or 0.3 times of the value

in the corresponding cell of the true noise covariance. Figure 3.7 shows the scatterplots

between the bias in the working noise covariance averaged over voxels versus the ratio

of PMSE/Bias/AUC metrics between the projected group lasso method and the group

lasso method without noise correction, over varying degrees of mis-specification in the er-
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ror covariance. These results revealed a robust performance under the proposed method

employing a biased working noise covariance, which is similar to our findings presented in

the scenario above investigating the trade-off between noise covariance estimation bias and

model performance.

Based on these results, we conclude that the methods with noise correction are fairly ro-

bust in their performance with respect to the estimation accuracy of the unknown noise

covariance matrix. In extreme settings with no or limited validation samples to estimate

the measurement error covariance, we expect the performance of the proposed approaches

to deteriorate but we would note that this is expected of essentially all measurement error

corrected approaches that depend on error covariance estimation. It is important to note

that error covariance estimation is not the primary goal of our work - instead we propose

an error covariance estimate that results in theoretically justified and numerically accurate

regression parameter estimates, even when the error covariance estimation is not perfect.

3.4.5 Summary of Results

The results clearly illustrate the benefits of multi-task learning in scalar-on-image regres-

sion, given that the performance of those approaches that fit the model separately for each

data source are often inferior, even when they account for the presence of noise. In addi-

tion, multi-task learning without noise correction results in sub-optimal performance in the

presence of noisy images, compared to projected group lasso and group bridge approaches.

Moreover, the advantages of noise correction under grouped penalties are accentuated un-

der homogeneous signals, and are partially eroded under minimally overlapping true signals

across data sources, as expected. However, the proposed projected group lasso and/or group

bridge still have improved or comparable predictive and estimation performance across the

overwhelming majority of settings for the latter case. Another factor that influences the

performance of the proposed methods is the accuracy of the estimated Σu used in the work-

ing model. In our experience, the prediction and selection performance are largely robust

to mis-specification of the noise covariance, as long as the biases for the estimated noise

covariance are not overly pronounced. In practical applications, the proposed approach is
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Figure 3.6: Trade-off between Noise Covariance Estimation Error and MSE/Bias/AUC
Metrics, shown as the ratios between the projected group lasso method and group lasso
method without noise correction, over varying validation sets used to compute the noise
covariance. The three colors represent the three datasets.
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Figure 3.7: Scatterplots between Bias in Noise Covariance Estimation and MSE/Bias/AUC
Metrics, shown as the ratios between the projected group lasso method and group lasso
method without noise correction. The different colors correspond to the three datasets and
the dots represent different replicates.
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best suited in settings where validation datasets with non-negligible sample sizes are avail-

able for estimating the unknown Σu. For our simulations, the proposed methods with noise

correction often converge within 3 minutes on a machine with 1.90GHz Intel i7 processor

and 16GB RAM. Figure 3.8 shows the convergence plots.

Figure 3.8: Convergence Plots for Simulation Scenarios with Known and Unknown Noise
Covariance (SNR=3). The convergence appears to be slightly faster for the setting with
known noise covariance, as expected.

3.5 Analysis of ADNI Data

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) longitudinal study is designed

to develop and validate neuroimaging, clinical and genetic biomarkers in clinical trials of

Alzheimer’s disease (AD) therapies (Weiner and Veitch, 2015). The primary goal of the

ADNI analysis in this chapter is to discover neuroimaging biomarkers in the form of localized

brain regions that are significantly related to longitudinal changes in cognition for AD

individuals, using magnetic resonance imaging (MRI) scans that measure the brain structure

and brain volumes at the voxel level with dimensions 256× 256× 170.
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3.5.1 Data Pre-processing

Our analysis used 1.5T T1-weighted MRI volumetric scans from ADNI-1, created by the

ADNI MRI Core. The downloaded data included MRI scans acquired from 192 healthy

controls (NC), and 133 Alzheimer’s disease (AD) individuals from screening visit (base-

line), month 6 visit and month 12 visit, in addition to age, gender, and APOE status. The

T1-weighted MRI images were processed with the Advanced Normalization Tools (ANTs)

registration pipeline (Tustison et al., 2014). All images were registered to a population-

based template image to ensure that the brain locations from different participants were

normalized to the same template space. The population-based template image was created

based on 52 normal control participants from ADNI 1 and shared to us from the ANTs

group (Tustison et al., 2019). Among other things, the ANTs pipeline (i) uses the N4

bias correction step to correct for intensity nonuniformity (Tustison et al., 2010), which

inherently normalizes the intensity across samples; and (ii) implements a symmetric diffeo-

morphic image registration algorithm that performs spatial normalization (Avants et al.,

2008), which aligns each participant’s T1 images to a template brain image so that the

images across different participants can be spatially comparable. We also used the ANTs

joint label fusion pipeline to produce the AAL atlas (Rolls et al., 2020) in the ADNI-specific

template space. The fused atlas was then used to locate the significantly associated clus-

ters in our downstream analysis. In Table 3.4, we provide a summary of the demographic

information for the three groups in the ADNI data.

Normal Control Arm (N=192) Alzheimer’s Disease Arm (N=133)

Baseline Age (sd) 75.89 (5.09) 74.75 (7.59)

Gender (% Female) 47.9 48.1

Education Years (sd) 16.04 (2.80) 14.73 (3.11)

APOE number

0 138 44

1 50 58

2 4 31

Table 3.4: Demographic Information of ADNI1 Individuals
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3.5.2 Analysis Outline

The outcome used for our analysis is the Mini-Mental State Exam (MMSE) score that

measures cognitive abilities. We conducted our analysis separately for 9 two-dimensional

axial slices each of size 128× 128, which covers the hippocampus and amygdala and is our

targeted area of interest (depicted in Figure 3.9). A supplementary 3-D analysis was also

conducted to further support the performance of the proposed methods. Our goal is to study

how the relationship between MMSE and brain structures at the voxel level change across

time, by jointly analyzing the imaging data across the three longitudinal visits. Due to the

fact that age, gender and APOE status did not produce significant associations with the

outcome after accounting for the variability due to the brain image, and in order to boost

the power to detect important regions, we chose not to adjust for these additional variables

in our final scalar-on-image regression model as in Wang et al. (2014). The goals of our

analysis are to identify brain regions significantly associated with MMSE, and evaluate the

out of sample prediction in the presence of noisy MRI scans under the proposed approaches

and the same set of competing approaches as in the simulation studies.

Figure 3.9: Illustration of brain region used for ADNI analysis using the axial (left), saggital
(middle) and the coronal (right) slices.

For our analysis, we focus our modeling efforts on 133 AD individuals who have data at

baseline, 6 months and 12 months. In addition, we used MRI scans from 192 healthy NC

individuals over three longitudinal visits to obtain an estimate for the noise covariance

matrix as Σ̂u = 1
n∗(M−1)

∑n∗

i=1

∑M
m=1(zmi − z̄·i)(zmi − z̄·i)

T as in Corollary 3.2, which

was subsequently used for the analysis of the AD cohort. The extrapolation of the noise

covariance from the NC cohort to the AD cohort is valid under the assumption that the noise
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in the MRI scans is related to scanner properties and does not depend on the disease status

or other individual-specific characteristics. We note that the data on the NC individuals

was not used to inform the analysis under other competing approaches, since the model

parameters under these methods are specific to the analysis of AD individuals and can not

be generalized to other cohorts. For model fitting and out of sample prediction under all the

methods, we randomly split the 133 AD individuals into training and test groups (50-50),

and consider multiple (25) such splits. The significant voxel-level associations were inferred

via a two-sided t-test (α = 0.05) with Bonferroni corrections using the estimated signals

over the 25 splits. In order to eliminate clinically weak signals from the association map,

all signals with absolute values less than 10−3 were thresholded to zero before performing

the t-test.

3.5.3 Results

Table 3.5 reports the out of sample prediction, and the association maps corresponding to

the significant voxels are plotted in Figures 3.10 and 3.11. Table 3.5 also reports the number

of significantly associated voxels across different methods. From the results, it is clear that

while the projected group lasso with noise correction is able to detect significantly associated

voxels in biologically interpretable regions (see below), all other competing methods report

negligible or no significant associations after multiplicity corrections that is potentially due

to the attenuation to the null phenomenon in the presence of noisy images. Our conjecture

is that multi-task learning methods without noise correction lose their ability to detect

common association patterns across longitudinal visits due to non-negligible noise-to-signal

ratio in the brain images. The longitudinal association maps in Figures 3.10 and 3.11

illustrate the increase in the number of associated voxels over time under the projected

group lasso (also see Table 3.6). It is seen that the significant voxels in early visits are highly

likely to still be significant at later visits, and these are concentrated in the hippocampus,

amygdala, and parahippocampal gyrus regions that is consistent with evidence in literature.

The fusiform gyrus show significant associations that supports prior evidence linking this

region to visual cognition deficits and work memory tasks in AD (Yetkin et al., 2006).
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Prediction PMSE Number of significantly associated voxels
Methods s131 s130 s129 s128 s127 s126 s125 s124 s123 s131 s130 s129 s128 s127 s126 s125 s124 s123 total

B
as
el
in
e

WNET 1.00 1.01 0.97 1.00 1.00 1.00 1.03 1.00 1.03 0 0 0 0 0 0 0 0 7 7
WPCR 1.03 1.33 1.07 1.12 1.17 1.20 1.19 1.22 1.17 19 0 0 0 0 0 0 56 458 533
p lasso 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 46 0 0 0 0 0 0 0 0 46
glasso 0.97 0.93 0.96 0.91 0.97 0.95 0.98 0.98 0.99 16 0 0 25 0 0 0 0 0 41
gbridge 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 0 0 0 0 0 0 0 0 0
p glasso 0.92 0.86 0.89 0.90 0.94 0.97 0.99 0.96 0.97 563 550 455 740 733 631 811 516 1212 6211
p gbridge 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0 0 0 0 0 0 0 0 0 0

M
o
n
th

6

WNET 1.00 1.00 1.00 0.94 0.98 1.00 1.01 0.99 1.00 0 0 0 0 0 0 0 0 68 68
WPCR 1.35 1.09 1.22 1.50 1.42 1.43 1.42 1.51 1.48 318 432 149 308 282 531 472 348 344 3184
p lasso 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0 0 0 0 0 0 0 0 0 0
glasso 0.98 1.00 0.97 0.94 0.95 0.94 0.97 0.93 0.95 8 0 0 12 0 0 0 0 0 20
gbridge 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 0 0 0 0 0 0 0 0 0
p glasso 0.89 0.97 0.97 0.94 0.90 0.92 0.95 0.91 1.00 1257 1124 592 1169 1322 1049 1837 1279 2212 11841
p gbridge 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0 0 0 0 0 486 0 0 0 486

M
o
n
th

12

WNET 1.01 1.00 0.95 0.95 0.99 1.00 1.00 1.00 0.98 0 0 0 3 0 0 0 0 81 84
WPCR 1.22 1.69 1.02 1.70 1.45 1.33 1.07 1.09 1.07 1231 874 176 509 799 569 700 568 695 6121
p lasso 1.00 1.00 0.93 1.00 1.00 0.99 1.00 0.98 1.00 0 0 0 0 0 0 0 0 11 11
glasso 1.00 1.00 0.97 0.94 1.00 0.99 0.99 0.99 0.95 2 0 0 17 0 0 0 0 0 19
gbridge 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 0 0 0 0 0 0 0 0 0
p glasso 0.96 0.92 0.89 0.87 0.91 0.97 0.98 0.90 0.88 1370 1329 976 1646 1718 702 2024 1915 2617 14297
p gbridge 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0 0 0 0 0 896 0 0 0 896

Table 3.5: Left half of the Table shows the prediction MSE for ADNI data analysis, whereas
the right half shows the number of significantly associated voxels, for each of the 9 axial
slices. The bolded numbers imply significantly improved PMSE compared to other methods.

Figure 3.10: Each sub-panel corresponds to association maps of the 9 axial slices. Columns
1-4 correspond to maps under the projected Lasso, group Lasso, projected group bridge and
projected group Lasso methods respectively. The top, middle, and bottom rows correspond
to maps at baseline, month 6 and month 12 respectively.
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Figure 3.11: Association maps from WNET, WPCR and group bridge Methods listed in
columns. The panels (each depicting 9 axial slices) from top to bottom correspond to
baseline, month 6 and month 12 respectively.

Left hemisphere Right hemisphere
Region name baseline month6 month12 baseline month6 month12

Hippocampus 105 191 273 281 481 263
Amygdala 44 92 109 80 48 99
ParaHippocampal 6 107 382 193 210 357
Calcarine 184 169 305 48 227 377
Cuneus 4 5 4 0 2 49
Lingual 267 631 545 67 277 269
Occipital Sup 53 87 93 0 10 15
Occipital Mid 111 453 322 185 311 402
Occipital Inf 27 64 29 60 105 97
Fusiform 177 388 337 315 293 352
Temporal Pole Sup 94 215 382 190 311 599
Temporal Mid 739 1219 1532 241 862 979
Temporal Pole Mid 62 130 126 124 271 507
Temporal Inf 708 784 864 824 1165 1084

Table 3.6: Brain Region Analysis of Associated Voxels from Projected Group Lasso Method
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It is also clear that all methods except the group lasso based approaches have inferior predic-

tive performance, which highlight the advantage of pooling information across longitudinal

images under group lasso. In addition, the projected group lasso approach has significantly

improved prediction performance compared to the group lasso without noise correction for

the vast majority of the 2-D slices. The prediction performance for the group bridge ap-

pears inferior compared to projected group lasso, which is potentially due to the lack of

optimization bound guarantees under the projected gradient descent algorithm under the

group bridge. Another potential explanation is that there is a large number of homogeneous

signals across longitudinal visits, which is better addressed via the group lasso penalty com-

pared to the group bridge penalty.

we included here in Table 3.7 the calculated correlation between predicted and observed

outcomes from all the methods we have compared. The results are averaged across the

random splits for each 2-D slice analysis at the three visits: baseline, month 6 and month 12.

Compared to the prediction MSE results provided in the main manuscript, the correlation

results actually illustrate an even clearer advantage of our projected group lasso method in

terms of prediction performance.

We have implemented an additional 3-D analysis for the ADNI dataset. A 32 × 32 × 32

area was used for the 3-D analysis that included subcortical areas such as the hippocampus,

amygdala and putamen in the right hemisphere. The same group of individuals were utilized

in the 3-D analysis as in the analysis with 2-D slices, and the analysis was performed

in a similar fashion to the 2-D analysis. The prediction performance is summarized in

Table 3.8. Consistent with the 2-D analysis results, the best prediction performance was

observed under the proposed projected group lasso method, with the group lasso approach

without noise correction having the second best performance. The WNET and WPCR

methods had the worst prediction performance, which is consistent with earlier results. This

additional 3-D analysis provides supporting evidence of the prowess of our method for higher

dimensional applications, and complements the existing 2-D analysis results presented in

the main manuscript.

Finally, we also fit a convolutional neural network (CNN) with standard architecture for
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the 2-D slices. However, with the limited samples available from the ADNI study and in

the presence of noisy images, the CNN model demonstrated poor prediction power that was

incomparable with our proposed methods (Table 3.9). The CNN architecture, with two

convolutional layers, two max pooling layers and two dense layers, is displayed in Figure

3.12. The CNN models are implemented in R with the keras package. We note that the

performance of CNN models might improve with more sophisticated architectures - however

with the limited sample size, we do not expect the improvements to be substantial, and do

not expect the CNN models to outperform the proposed approaches.

s131 s130 s129 s128 s127 s126 s125 s124 s123

Baseline

WNET 0.45 0.41 0.43 0.34 0.25 0.33 0.35 0.25 0.38
WPCR 0.34 0.30 0.32 0.27 0.30 0.27 0.26 0.29 0.32
p lasso 0.63 0.66 0.47 0.61 0.52 0.48 0.43 0.47 0.49
glasso 0.48 0.48 0.44 0.51 0.47 0.48 0.36 0.47 0.46
gbridge 0.16 0.07 0.05 0.21 0.14 0.24 0.09 0.09 0.10
p glasso 0.62 0.65 0.63 0.62 0.58 0.60 0.60 0.56 0.55
p gbridge 0.49 0.53 0.51 0.49 0.48 0.49 0.47 0.39 0.32

Month 6

WNET 0.33 0.35 0.38 0.42 0.46 0.35 0.35 0.34 0.39
WPCR 0.37 0.41 0.38 0.35 0.36 0.37 0.33 0.30 0.31
p lasso 0.59 0.52 0.45 0.52 0.59 0.50 0.53 0.53 0.50
glasso 0.53 0.53 0.53 0.55 0.55 0.59 0.48 0.58 0.57
gbridge 0.16 0.09 0.01 0.21 0.14 0.27 0.12 0.12 0.17
p glasso 0.65 0.62 0.60 0.61 0.60 0.63 0.64 0.60 0.57
p gbridge 0.57 0.52 0.53 0.55 0.55 0.56 0.53 0.45 0.45

Month 12

WNET 0.31 0.43 0.44 0.46 0.40 0.39 0.33 0.42 0.46
WPCR 0.28 0.33 0.38 0.37 0.36 0.30 0.29 0.34 0.41
p lasso 0.45 0.57 0.63 0.52 0.57 0.58 0.53 0.55 0.54
glasso 0.58 0.55 0.56 0.61 0.55 0.62 0.53 0.59 0.60
gbridge 0.16 0.09 0.09 0.20 0.12 0.21 0.21 0.20 0.19
p glasso 0.61 0.64 0.65 0.67 0.62 0.62 0.65 0.64 0.61
p gbridge 0.52 0.55 0.59 0.59 0.55 0.55 0.54 0.49 0.46

Table 3.7: Summary of Correlation between Observed and Predicted Outcome based on
2-D analysis of ADNI data.

3.6 Discussion

In this paper, we have proposed a novel approach for joint estimation of multiple scalar-

on-image regression models involving noisy high-dimensional images. Although there is a

rich literature on functional data analysis, the development for scalar-on-image regression
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Baseline Month 6 Month 12

WNET 1.031 1.043 1.012

WPCR 2.221 1.392 1.496

p lasso 0.987 0.983 1.020

glasso 0.955 0.928 0.938

gbridge 1.012 0.991 1.046

p glasso 0.943 0.923 0.920

p gbridge 1.000 1.000 1.000

Table 3.8: Prediction Results (PMSE) for ADNI 3-D Analysis

slice 131 slice 130 slice 129 slice 128 slice 127 slice 126 slice 125 slice 124 slice 123

Baseline 1.59 1.60 1.62 1.59 1.61 1.74 1.63 1.72 1.46

Month 6 1.30 1.26 1.38 1.30 1.26 1.34 1.52 1.39 1.47

Month 12 1.09 1.04 1.10 1.07 1.10 1.10 1.01 1.08 1.05

Table 3.9: Summary of Prediction MSE of CNN Model on ADNI 2-D Slices

Figure 3.12: CNN Architecture Summary
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methods is fairly recent, and existing methods in literature haven’t addressed the question

of mis-specification resulting from noisy images. Hence, the proposed methods are one of

the first to address these issues via a novel M-estimation approach involving convex and

non-convex group penalties that account for functional data mis-specifications. The imple-

mentation of the proposed methods are done via computationally efficient algorithms that

are slightly slower than existing functional linear models that don’t account for measure-

ment error, but is still scalable to high-dimensional brain images. The approach requires

one to compute the noise covariance matrix that can be estimated from a validation dataset

in ADNI analysis, and is largely robust to mis-specifications in the noise covariance. While

we were able to establish optimization convergence results for convex grouped penalties,

the corresponding results for non-convex grouped penalties are still an open problem with

very limited prior literature (Fan et al., 2014), and will be addressed in future work. The

application of our proposed methods on the analysis of the ADNI T1-weighted MRI data

provides a concrete example of the advantages of integrative learning via grouped penalties

in multi-task learning over cross-sectional studies. Future work will include extending the

proposed approach to other types of images, e.g. PET images and RAVENS maps.

3.7 Appendices

3.7.1 Discrete Wavelet Transform in 3-D

Similar to the 2-D setting, the functional predictor Xmi(v) can be decomposed by a set of

orthonormal wavelet bases as:

Xmi(v) =

2j0−1∑
k,l,h=0

c0mi,j0,{k,l,h}ϕj0,{k,l,h}(v) +

J∑
j=j0

2j−1∑
k,l,h=0

7∑
q=1

cqmi,j,{k,l,h}ψ
q
j,{k,l,h}(v) (3.7.1)

with j0 as the primary level of decomposition and J as the maximum level of decomposition.

{ϕj0,{k,l,h}, k, l, h = 1, . . . , 2j0 − 1} and {ψqj,{k,l,h}, j = j0, · · · , J, k, l, h = 0, . . . , 2j − 1, q =

1, · · · , 7} denote the wavelets that are pairwise orthonormal. These wavelets can also be
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expressed by product of one-dimensional father and mother wavelets (Mallat, 1999) as

ϕj0,{k,l,h}(v) = ϕj0,k(v1)ϕj0,l(v2)ϕj0,h(v3), ψ
1
j,{k,l,h}(v) = ϕj,k(v1)ϕj,l(v2)ψj,h(v3),

ψ2
j,{k,l,h}(v) = ϕj,k(v1)ψj,l(v2)ϕj,h(v3), ψ

3
j,{k,l,h}(v) = ϕj,k(v1)ψj,l(v2)ψj,h(v3),

ψ4
j,{k,l,h}(v) = ψj,k(v1)ϕj,l(v2)ϕj,h(v3), ψ

5
j,{k,l,h}(v) = ψj,k(v1)ϕj,l(v2)ψj,h(v3)

ψ6
j,{k,l,h}(v) = ψj,k(v1)ψj,l(v2)ϕj,h(v3), ψ

7
j,{k,l,h}(v) = ψj,k(v1)ψj,l(v2)ψj,h(v3),

where v = (v1, v2, v3) and ϕj,·(·), ψj,·(·) are the one-dimensional father and mother wavelets

of level j. The wavelet coefficients in (3.7.1) can be calculated by

c0mi,j0,{k,l,h} = ⟨Xmi, ϕj0,{k,l,h}⟩ and c
q
mi,j,{k,l,h} = ⟨Xmi, ψ

q
j,{k,l,h}⟩.

In practice the 3-D functional data is only observed at discrete locations, and we pad zero

values around the original functional data to increase the dimension to the nearest high

power of 2 which we denote as p0. Then the maximum level J = log2(p0) − 1 and p = p30,

and the length of the coefficient vector cmi in (3.7.1) is p.

We use wavelet expansions to represent the corresponding functional regression coefficients

truncated at level J as:

βm(v) =

2j0−1∑
k,l,h=0

am,j0,{k,l,h}ϕj0,{k,l,h}(v) +

J∑
j=j0

2j−1∑
k,l,h=0

7∑
q=1

dqm,j,{k,l,h}ψ
q
j,{k,l,h}(v), (3.7.2)

where am,j0,{k,l,h} = ⟨βm, ϕj0,{k,l,h}⟩ and dqm,j,{k,l,h} = ⟨βm, ψqj,{k,l,h}⟩. Expression (3.7.2)

uses the same wavelets to decompose the functional regression coefficient as in the decom-

position of the functional predictor in (3.7.1). Combining (3.7.1)-(3.7.2), one can rewrite

the regression working model as:

ymi = βm0 +
2j0−1∑
k,l,h=0

c0mi,j0,{k,l,h}am,j0,{k,l,h} +
J∑

j=j0

2j−1∑
k,l,h=0

7∑
q=1

cqmi,j,{k,l,h}d
q
m,j,{k,l,h} + ϵmi

= βm0 + cTmiηm + ϵmi, j = 1, . . . , p, i = 1, . . . , nm, m = 1, . . . ,M,

(3.7.3)
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This is in the same format as model (4) in the manuscript. Then the theoretical results

would still hold for the 3-D setting.

3.7.2 KKT Condition

We first give a lemma in preparation to prove Theorem 2.1. Suppose the following Karush-

Kuhn-Tucker (KKT) conditions (Ekeland and Temam, 1999) hold.

C̃T
I y − C̃T

I (C̃η̂) = nλn∇ρ(η̂I) (3.7.4)

C̃T
IIy − C̃T

II(C̃η̂) = nλn∂ρ(η̂II) (3.7.5)

λmin(C̃
T
I C̃I) > nλnκ(ρ, η̂I) (3.7.6)

where η̂I = {η̂mj |η̂mj ̸= 0, η̂(j) ̸= 0} and η̂II = {η̂mj |η̂mj = 0, η̂(j) ̸= 0}, C̃I is the

submatrix of C̃ formed by columns in I = {(m, j)|η̂mj ∈ η̂I}, C̃II is the submatrix of C̃

formed by columns in II = {(m, j)|η̂mj ∈ η̂II}, κ(ρ, η̂I) = max{j|η̂(j) ̸=0}
1
4∥η̂(j)∥

−3/2
1 is the

local concavity of ρ(·), ∇ρ(·) and ∂ρ(·) are the gradient and one subgradient of ρ(·), and

λmin(A) denotes the minimum eigen value for the matrix A.

Lemma 3.7.1. η̂ ∈ RMp is a strict local maximizer of (4) if the KKT conditions (3.7.4)-

(3.7.6) hold, and ∇ρ(·) and ∂ρ(·) satisfy

∇ρ(η̂mj) =
1

2
sgn(η̂mj)∥η̂(j)∥

−1/2
1 for η̂mj ∈ η̂I

∂ρ(η̂mj) ∈ (−1

2
∥η̂(j)∥

−1/2
1 ,

1

2
∥η̂(j)∥

−1/2
1 ) for η̂mj ∈ η̂II .

On the other hand, if η̂ is a local maximizer of (4), then it must satisfy (3.7.4) - (3.7.6)

with > replaced by ≥ in (3.7.6) and ∂ρ(η̂mj) ∈ [−1
2∥η̂(j)∥

−1/2
1 , 12∥η̂(j)∥

−1/2
1 ].

Proof. We follow the proof in Fan and Lv (2011) and Li et al. (2014). We will first derive

the necessary condition. In view of (4), up to an affine transformation, the log-likelihood
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can be expressed in matrix form as

ℓ(η) = yT C̃η − 1

2
ηT C̃T C̃η

Then we have

∇ℓ(η) = C̃Ty − C̃T C̃η, ∇2ℓ(η) = −C̃T C̃

If η̂ is a local maximizer of the penalized problem (4), then by the classical Karush-Kuhn-

Tucker (KKT) condition, there exists gradient ∇ρ(η̂) and sub-gradient ∂ρ(η̂) such that

C̃T
I y − C̃T

I (C̃η̂)− nλn∇ρ(η̂I) = 0

C̃T
IIy − C̃T

II(C̃η̂)− nλn∂ρ(η̂II) = 0

C̃T
IIIy − C̃T

III(C̃η̂)− nλn∂ρ(η̂III) = 0

where

∇ρ(η̂mj) =
1

2
sgn(η̂mj)∥η̂(j)∥

−1/2
1 for η̂mj ∈ η̂I

∂ρ(η̂mj) ∈ [−1

2
∥η̂(j)∥

−1/2
1 ,

1

2
∥η̂(j)∥

−1/2
1 ] for η̂mj ∈ η̂II

∂ρ(η̂mj) ∈ (−∞,+∞) for η̂mj ∈ η̂III

Here η̂I and η̂II are defined in Lemma 1 and η̂III = {η̂mj |η̂mj = 0, η̂(j) = 0}. It is easy to

see that the third condition always holds. Also we note that η̂I is a local maximizer of (4)

constrained on the subspace S1 = {η ∈ RMp : ηII∪III = 0} which has dimension card(I).

Thus it follows from the second order condition that

λmin(C̃
T
I C̃I) ≥ nλnκ(ρ, η̂I)

where κ(ρ, η̂I) is as defined in Lemma 1.

Next we will show the sufficient condition. We denote the penalized likelihood in (4) as

Qn(η). Firstly we constrain the penalized problem on the subspace S1. It follows from

conditions (3.7.4) and (3.7.6) that η̂ is the unique maximizer of Qn(η) in a neighborhood

N1 ⊂ S1 centered at η̂.
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Then we show that there exists a L1 neighborhood N2 in the subspace S2 of dimension

card(I ∪ II) such that S1 ⊂ S2 ⊂ RMp, and that η̂ is the unique maximizer of Qn(η)

constrained on S2. To show this, we take a sufficiently small ball N2 in S2 centered at η̂

such that N2 ∩S1 ⊂ N1. We then need to show that Qn(η̂) > Qn(ϕ1) for any ϕ1 ∈ N2\N1.

Let ϕ2 be the projection of ϕ1 onto the subspace S1. Then we have ϕ2 ∈ N1 which implies

that Qn(η̂) > Qn(ϕ2) if ϕ2 ̸= η̂. Thus it suffices to show that Qn(ϕ2) > Qn(ϕ1).

By the mean-value theorem, we have

Qn(ϕ1)−Qn(ϕ2) = [∇Qn(ϕ0)]
T (ϕ1 − ϕ2)

where ϕ0 lies on the line segment joining ϕ1 and ϕ2. Note that the coordinates of ϕ1 −ϕ2

are zero for indices in I and sgn(ϕ0,mj) = sgn(ϕ1,mj) for indices in II where ϕ0,mj and ϕ1,mj

are the (m, j)th coordinate of ϕ0 and ϕ1 respectively. Thus we have

[∇Qn(ϕ0)]
T (ϕ1 − ϕ2) = [C̃T

II(y − C̃ϕ0)]
Tϕ1,II − nλn

∑
(m,j)∈II

∇ρ(ϕ0,mj)ϕ1,mj

= [C̃T
II(y − C̃ϕ0)]

Tϕ1,II − nλn
∑

(m,j)∈II

∇ρ(|ϕ0,mj |)|ϕ1,mj |

= [C̃T
II(y − C̃ϕ0)]

Tϕ1,II − nλn
∑

(m,j)∈II

1/2(

M∑
m=1

|ϕ0,mj |)−1/2|ϕ1,mj |

(3.7.7)

By continuity of ∇ρ(·) and (3.7.5), there exists δ > 0 such that for any ϕ in an L1-ball in

S2 centered at η̂ with radius δ, we have

(nλn)
−1∥C̃T

II(y − C̃ϕ)∥∞ < 1/2(∥η̂(j)∥1 + δ)−1/2

Let N2 be that ball. Then we also have

M∑
m=1

|ϕ0,mj | ≤
M∑
m=1

|ϕ0,mj − η̂mj |+
M∑
m=1

|η̂mj | ≤ δ + ∥η̂(j)∥1
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Thus we know the term (3.7.7) is strictly less than

nλn[1/2(∥η̂(j)∥1 + δ)−1/2]∥ϕ1,II∥1 − nλn[1/2(∥η̂(j)∥1 + δ)−1/2]∥ϕ1,II∥1 = 0

This concludes that Qn(ϕ1) < Qn(ϕ2) and shows that there exists a neighborhood N2

centered at η̂ in the subspace S2 such that η̂ is the unique maximizer of Qn(η) constrained

on S2. Noting that the third KKT condition always hold, it is easy to see that η̂ is indeed

a local maximizer in RMp, which completes the proof.

3.7.3 Proof of Theorem 3.2.1

Proof. Let ξ = (ξ11, ξ12, · · · , ξMp)
T = C̃Ty − C̃T (C̃η0). Consider events

E1 =
{
∥ξI∥∞ ≤ σ

√
2n log n

}
and

E2 =
{
∥ξII∪III∥∞ ≤ σn1−αp

√
2 log n

}
where σ = max{σ1, · · · , σM}.

Based on the true model, we have that y−C̃η0 = ϵ+A where A = (AT
1 , · · · ,AT

M )T , Am =

(am1, · · · ,amn)T = (
∫
Xm1(v)e

0
m(v)dv, · · · ,

∫
Xmn(v)e

0
m(v)dv)

T for m = 1, · · · ,M , and

that ϵ = (ϵ11, · · · , ϵMn)
T , ϵmi ∼ N(0, σ2m). These together imply that ξmj = C̃T

mj(y −

C̃η0) ∼ N(C̃T
mjAm, σ

2
mj) where σ2mj ≤ σ2∥C̃mj∥22. We assume after standardization that

∥C̃mj∥2 =
√
n, then it follows from Bonferroni’s inequality and tail probability of normal
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distribution that

P (E1 ∩ E2) = 1− P (Ec1 ∪ Ec2)

≥ 1− P (Ec1)− P (Ec2)

= 1− P
(
∪(m,j)∈I |ξmj | ≥ σ

√
2n log n

)
− P

(
∪(m,j)∈II∪III |ξmj | ≥ σn1−αp

√
2 log n

)
≥ 1−

∑
(m,j)∈I

P
(
|ξmj | ≥ σ

√
2n log n

)
−

∑
(m,j)∈II∪III

P
(
|ξmj | ≥ σn1−αp

√
2 log n

)
≥ 1−

∑
(m,j)∈I

P
(
|ξmj − C̃T

mjAm| ≥ σ
√
2nlog n− |C̃T

mjAm|
)

−
∑

(m,j)∈II∪III

P
(
|ξmj − C̃T

mjAm| ≥ σn1−αp
√
2 log n− |C̃T

mjAm|
)

= 1−
∑

(m,j)∈I

2 exp
{
−
(
σ
√
2n log n− |C̃T

mjAm|
)2

2σ2mj

}

−
∑

(m,j)∈II∪III

2 exp
{
−
(
σn1−αp

√
2 log n− |C̃T

mjAm|
)2

2σ2mj

}

≥ 1−
∑

(m,j)∈I

2 exp
{
−
(
σ
√
2n log n− |C̃T

mjAm|
)2

2σ2∥C̃mj∥22

}

−
∑

(m,j)∈II∪III

2 exp
{
−
(
σn1−αp

√
2 log n− |C̃T

mjAm|
)2

2σ2∥C̃mj∥22

}

We know that |C̃T
mjAm| ≤ ∥C̃mj∥2∥Am∥2 =

√
nO(

√
np−1/2) = O(np−1/2). Thus the term

exp
{
−
(
σ
√
2n logn−|C̃T

mjAm|
)2

2σ2∥C̃mj∥22

}
≈ exp

{
−
[
log n + (C

′2

2σ2 )(
n
p ) −

√
2C′

σ

√
n logn
p

]}
. From our

assumptions on the order of n and p, the latter two terms will be negligible compared to

the first term of log n with sufficiently large n. Then this quantity would be approximated

by n−1. Similarly, exp
{
−
(
σn1−αp

√
2 logn−|C̃T

mjAm|
)2

2σ2∥C̃mj∥22

}
can be approximated by e−n

1−2αp logn

with sufficiently large n. Combining together all these results, we have P (E1 ∩ E2) ≥

1− 2[sn−1 + (Mp− s)e−n
1−2αp logn] with sufficiently large n.

Under the event E1 ∩ E2, we will show that there exists a solution to (4) that achieve the
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weak oracle properties in (a) and (b).

Step 1: We prove that with sufficiently large n, there exists a solution to (3.7.4) in the L∞

ball

N = {δ ∈ Rs : ∥δ − η0
I∥∞ = n−γ log n}

Let θ = nλn∇ρ(δ). Then for any (m, j) ∈ I, we have

|θmj | = nλn2
−1sgn(δmj)∥δ(j)∥

−1/2
1

≤ 2−1nλn/(
∑M

m=1|δmj |)1/2

≤ 2−1nλn/(
∑M

m=1|η0mj | −
∑M

m=1 |δmj − η0mj |)1/2

≤ 2−1nλn/(
∑M

m=1|η0mj | −
∑M

m=1 1/2|η0mj |)1/2

≤ nλn/(
√
2l)

≤ nλn(2Md)−1/2

(3.7.8)

as we konw under condition (C2) for sufficiently large n, 1/2|η0mj | ≥ d ≥ n−γ log n ≥

|δmj − η0mj |. Thus it holds that

∥θ∥∞ ≤ nλn(2Md)−1/2

Then given that event E1 holds, we have

∥ξI − θ∥∞ ≤ ∥ξI∥∞ + ∥θ∥∞ ≤ σ
√

2n log n+ nλn(2Md)−1/2 (3.7.9)

Now define

Ψ(δ) = (C̃T
I C̃I)

−1
[
C̃T
I (C̃Iδ − C̃Iη

0
I )− (ξI − θ)

]
We note that Ψ(δ) = 0 is equivalent to (3.7.4). We need to show that former has a solution

in the L∞ ball N . Let u = −(C̃T
I C̃I)

−1(ξI − θ), then Ψ(δ) = (δ−η0
I )+u. It follows from
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equation (3.7.9), condition (C3) and the requirement λnbs = o(n−αd/2−γ log n) that

∥u∥∞ ≤ ∥(C̃T
I C̃I)

−1∥∞∥ξI − θ∥∞

≤ O(bsn
−1)
[
σ
√

2n log n+ nλn(2Md)−1/2
]

= O(bsn
−1/2

√
log n+ bsλnd

−1/2)

= o(n−γ log n)

(3.7.10)

Then for sufficiently large n, if (δ − η0
I )mj = n−γ log n, we have

Ψmj(δ) ≥ n−γ log n− ∥u∥∞ ≥ 0

and if (δ − η0
I )mj = −n−γ log n, we have

Ψmj(δ) ≤ −n−γ log n+ ∥u∥∞ ≤ 0

Thus by the continuity of the vector-valued function Ψ(δ) and applying Miranda’s existence

theorem (Vrahatis, 1989), we know that Ψ(δ) = 0 has a solution η̂I in N . Thus we have

shown that (3.7.4) indeed has a solution in the L∞ ball N .

Step 2: We verify that η̂ = (η̂TI ,0
T )T ∈ RMp satisfies (3.7.5) for the choice of λn. Actually

(3.7.5) requires for any (m, j) ∈ II that

|C̃T
mjy − C̃T

mj(C̃η̂0)| < 1/2nλn

( ∑
m′:(m′,j)∈I

|η̂m′j |
)−1/2

We know from condition (C2) that for sufficiently large n, d ≥ n−γ log n. Thus by definition,

we have sgn(η̂m′j) = sgn(η0m′j) for (m
′, j) ∈ I and in addition

∑
m′:(m′,j)∈I

|η̂m′j | ≤
∑

m′:(m′,j)∈I

|η̂m′j − η0m′j |+ |η0m′j |

≤ 2
∑

m′:(m′,j)∈I

|η0m′j |

≤ 2L2
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Thus it suffices to show that

∥C̃T
IIy − C̃T

II(C̃η̂)∥∞ < nλn/(2
√
2L)

Note that

C̃T
IIy − C̃T

II(C̃η̂) = C̃T
II(y − C̃η0)− C̃T

II(C̃η̂ − C̃η0)

Given that event E2 holds and αλ < αp, we have

(nλn)
−1∥C̃T

II(y − C̃η0)∥∞ ≤ (nλn)
−1σn1−αp

√
2 log n = (nλn)

−1O(n1−αp
√
log n) = o(1)

(3.7.11)

And since η̂I solves Ψ(δ) = 0, we have η̂I − η0
I = −u = (C̃T

I C̃I)
−1(ξI − θ). We also have

equation (3.7.8) implying that ∥θ∥∞ ≤ nλn/(
√
2l). Then by condition (C4) for sufficiently

large n, and given αλ < αp < 1/2, we have

(nλn)
−1∥C̃T

II(C̃η̂ − C̃η0)∥∞ = (nλn)
−1∥C̃T

IIC̃I(η̂I − η0
I )∥∞

= (nλn)
−1∥C̃T

IIC̃I(C̃
T
I C̃I)

−1(ξI − θ)∥∞

≤ (nλn)
−1∥C̃T

IIC̃I(C̃
T
I C̃I)

−1∥∞∥ξI∥∞

+ (nλn)
−1∥C̃T

IIC̃I(C̃
T
I C̃I)

−1∥∞∥θ∥∞

≤ ∥C̃T
IIC̃I(C̃

T
I C̃I)

−1∥∞[σn−1/2λ−1
n

√
2 log n+ 1/(

√
2l)]

≤ 1/(2
√
2L)

(3.7.12)

which completes the proof of step 2.

And finally, it is easy to see that (3.7.6) holds for sufficiently large n given that λnκ0 = o(τ0)

and τ0 = λmin(n
−1C̃T

I C̃I). Thus we have shown that under the event E1 ∩ E2, η̂ is a local

maximizer of (4) such that ∥η̂I − ηI∥∞ ≤ n−γ log n and η̂II∪III = 0.
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3.7.4 Proof of Corollary 3.2.1

Proof. The local maximizer of (4) is obtained with the standardized design matrix C̃. We

first connect it with the wavelet coefficients of the regression using design matrix in its

original scale. We define D to be a diagonal matrix with ∥cmj∥2 as the mj-th diagonal

element and Dm to be the corresponding m-th block of D.

y = Cη +A+ ϵ = C(
√
MnD−1)(D/

√
Mn)η +A+ ϵ = C̃η̃ +A+ ϵ

where C̃ = C(
√
MnD−1). Correspondingly, η̃ = (D/

√
Mn)η is the vector of wavelet

coefficients satisfying the finite error bounds in Theorem 2.1. Thus it is easy to see that

∥ˆ̃η − η̃0∥1 = ∥ˆ̃ηI − η̃0
I∥1 + ∥ˆ̃ηII∪III − η̃0

II∪III∥1 = ∥ˆ̃ηI − η̃0
I∥1 + 0 ≤ sn−γ log n. We define

B+
m(v) = em ⊗ B(v) where em = (0, · · · , 0, 1, 0, · · · , 0)T is the standard basis vector of

length M where the m-th location has value 1 and ⊗ denotes the Kronecker product. Then

|β̂m(v)− β0
m(v)| = |B+

m(v)
T η̂ −B+

m(v)
Tη0 − e0m(v)|

= |B+
m(v)

T
√
MnD−1(ˆ̃η − η̃0)− e0m(v)|

≤ ∥B+
m(v)

T
√
MnD−1∥∞∥ˆ̃η − η̃0∥1 + |e0m(v)|

≤ τm(v)sn
−γ log n+O(p−1/2)

since

∥B+
m(v)

T
√
MnD−1∥∞ = ∥

√
Mn(em ⊗B(v))TD−1∥∞

=
√
Mn∥B(v)TD−1

m ∥∞

= max
j∈{1,··· ,p}

|bj(v)|√
1
Mn∥cmj∥

2
2

:= τm(v)
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For the mean functions, we have

∣∣∣∣ ∫ Xmi(v)β̂m(v)dv −
∫

Xmi(v)β
0
m(v)dv

∣∣∣∣ = |cmiη̂ − cmiη
0 − ami|

= |cmi
√
MnD−1(ˆ̃η − η̃0)− ami|

≤
√
Mn∥cmiD−1∥∞∥ˆ̃η − η̃0∥1 + |ami|

≤ ιmsn
−γ log n+O(p−1/2)

where ιm = maxi∈{1,··· ,n},j∈{1,··· ,p}
|cmi,j |√
1

Mn
∥cmj∥22

.

3.7.5 Proof of Lemma 3.3.1

Proof. We have for the outcome ym = Cmη
0
m +Am + ϵm. Thus

∥∥∥γ̂m −
(
BTΣxmB

)
η0
m

∥∥∥
∞

=
∥∥∥ 1
n
W T

mym −
(
BTΣx

mB
)
η0
m

∥∥∥
∞

=
∥∥∥ 1
n
W T

m(Cmη
0
m +Am + ϵm)−

(
BTΣx

mB
)
η0
m

∥∥∥
∞

≤
∥∥∥W T

mϵm
n

∥∥∥
∞

+
∥∥∥W T

mAm

n

∥∥∥
∞

+
∥∥∥{BTΣx

mB − W T
mCm

n

}
η0
m

∥∥∥
∞

Then using the results from Lemma 14 of Loh and Wainwright (2012) we further have for

the first term

P
(∥∥∥W T

mϵm
n

∥∥∥
∞

≥ c0σσm

√
log p

n

)
≤ c1 exp{−c2 log p}

and for the third term

P
(∥∥∥BTΣx

mB − W T
mCm

n

∥∥∥
∞

≥ c0σσx

√
log p

n

)
≤ c1 exp{−c2 log p}

which implies that

P
(∥∥∥{BTΣx

mB − W T
mCm

n

}
η0
m

∥∥∥
∞

≥ c0σσx∥η0
m∥1

√
log p

n

)
≤ c1 exp{−c2 log p}
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While for the second term, we have by the union bound and by the sub-Gaussian distributed

feature of Wm = (wm1, · · · ,wmn)
T as well as supv∈V |e0m(v)| = O(p−1/2) that

P

(∥∥∥W T
mAm

n

∥∥∥
∞
> c′0p

−1/2σ

√
log p

n

)
≤

p∑
j=1

P

(∣∣∣ 1
n

n∑
i=1

wT
mi,jami

∣∣∣ > c′0p
−1/2σ

√
log p

n

)
≤ c1 exp(−c2 log p)

Putting together these results leads us to bound the first deviation condition with parameter

ϕ = maxm∈{1,··· ,M}
{
c0σ(σm + σ∥η0

m∥1)
}
+ c′0σp

−1/2. For the second deviation condition,

we have directly from Lemma 14 of Loh and Wainwright (2012) that

P
(∥∥∥(Γ̂m −BTΣx

mB
)
η0
m

∥∥∥
∞

≥ c0σ
2∥η0

m∥1

√
log p

n

)
= P

(∥∥∥{ 1

n
W T

mWm −BT
(
Σu +Σx

m

)
B
}
η0
m

∥∥∥
∞

≥ c0σ
2∥η0

m∥1

√
log p

n

)
≤ c1 exp{−c2 log p}

Thus the second deviation condition can also be bounded by the same parameter ϕ.

In addition to presenting the deviation condition in two separate expressions, we can actually

have only one deviation condition as ∥γ̂m− Γ̂mη
0
m∥∞ ≤ ϕ

√
log p
n , which will also be used in

proving Theorems 3.1 and 3.2. We know that

∥γ̂m − Γ̂mη
0
m∥∞ =

∥∥∥ 1
n
W T

mym −
( 1
n
W T

mWm −BTΣuB
)
η0
m

∥∥∥
∞

=
∥∥∥ 1
n
W T

m(Cmη
0
m +Am + ϵm)−

( 1
n
W T

mWm −BTΣuB
)
η0
m

∥∥∥
∞

≤
∥∥∥W T

mϵm
n

∥∥∥
∞

+
∥∥∥W T

mAm

n

∥∥∥
∞

+
∥∥∥{BTΣuB − W T

m(Wm −Cm)

n

}
η0
m

∥∥∥
∞

We have already discussed the first and second terms. For the third term, similarly from

Lemma 14 of Loh and Wainwright (2012) we have that

P
(∥∥∥{BTΣuB − W T

m(Wm −Cm)

n

}
η0
m

∥∥∥
∞

≥ c0σσu∥η0
m∥1

√
log p

n

)
≤ c1 exp{−c2 log p}

Thus we know the same parameter ϕ will still work to bound this single deviation condition.
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3.7.6 Proof of Theorem 3.3.1

Proof. We prove the following results conditional on the deviation condition and the lower-

RE condition, which have been shown to hold with probability at least 1−c1 exp{−c2 log p}

from Lemma 3.1 in the manuscript and Lemma 2 in the Supplementary Materials. De-

note the loss function as L(η) =
∑M

m=1

{
1
2η

T
mΓ̂mηm − ⟨γ̂m,ηm⟩

}
+ λnρ(η) where ρ(η) =∑p

j=1

(∑M
m=1 |ηmj |

)1/2
. With the assumption R ≥ ρ(η0) we are guaranteed that η0 is

feasible and by definition L(η̂) ≤ L(η0). Defining ν̂ = η̂ − η0, through some algebra we

obtain the equivalent inequality

M∑
m=1

1

2
ν̂TmΓ̂mν̂m ≤

M∑
m=1

⟨ν̂m, γ̂m − Γ̂mη
0
m⟩+ λn

{ p∑
j=1

( M∑
m=1

|η0mj |
)1/2

−
p∑
j=1

( M∑
m=1

|η̂mj |
)1/2}

(3.7.13)

Note that assuming the deviation condition holds, then for the first term on RHS

M∑
m=1

⟨ν̂m, γ̂m − Γ̂mη
0
m⟩ ≤

M∑
m=1

∥ν̂m∥1∥γ̂m − Γ̂mη
0
m∥∞ ≤ ϕ

√
log p

n

( M∑
m=1

∥ν̂m∥1
)

= ϕ

√
log p

n
∥ν̂∥1 = ϕ

√
log p

n
(∥ν̂S∥1 + ∥ν̂SC∥1)

(3.7.14)

Next we will establish an upper bound for the second term on RHS
∑p

j=1

(∑M
m=1 |η0mj |

)1/2
−∑p

j=1

(∑M
m=1 |η̂mj |

)1/2
. Note that for j ∈ {j : ∥η0

(j)∥1 = 0},

∑
j∈{j:∥η0

(j)
∥1=0}

{( M∑
m=1

|η0mj |
)1/2

−
( M∑
m=1

|η̂mj |
)1/2}

=
∑

j∈{j:∥η0
(j)

∥1=0}

−
( M∑
m=1

|ν̂mj |
)1/2

≤ −
( ∑
j∈{j:∥η0

(j)
∥1=0}

M∑
m=1

|ν̂mj |
)1/2

= −(∥ν̂SC∥1)1/2

≤ −R−1∥ν̂SC∥1

(3.7.15)
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We use the inequality
∑I

i=1 a
1/2
i ≥ (

∑I
i=1 ai)

1/2 for a1, · · · , aI ≥ 0 and

∥ν̂SC∥1/21 ≤
∑

j∈{j:∥η0
(j)

∥1=0}

( M∑
m=1

|ν̂mj |
)1/2

=
∑

j∈{j:∥η0
(j)

∥1=0}

( M∑
m=1

|η̂mj |
)1/2

≤
p∑
j=1

( M∑
m=1

|η̂mj |
)1/2

≤ R

in establishing the inequalities above. While for j ∈ {j : ∥η0
(j)∥1 > 0}, we will use the

following inequality: for a > 0, b > 0,

(a1/2 − b1/2)2 = (a− b)2/(a1/2 + b1/2)2 ≤ (a− b)2/(a+ b)

or

a1/2 − b1/2 ≤
√
(a− b)2/(a+ b) = |a− b|/

√
a+ b

Plugging in a =
∑M

m=1 |η0mj | and b =
∑M

m=1 |η̂mj |, we have for j ∈ {j : ∥η0
(j)∥1 > 0},

∑
j∈{j:∥η0

(j)
∥1>0}

{( M∑
m=1

|η0mj |
)1/2

−
( M∑
m=1

|η̂mj |
)1/2}

≤
∑

j∈{j:∥η0
(j)

∥1>0}

{ |
∑M

m=1 |η0mj | −
∑M

m=1 |η̂mj ||√∑M
m=1 |η0mj |+

∑M
m=1 |η̂mj |

}

≤
∑

j∈{j:∥η0
(j)

∥1>0}

{ ∑M
m=1 ||η0mj | − |η̂mj ||√∑M

m=1 |η0mj |+
∑M

m=1 |η̂mj |

}

≤
∑

j∈{j:∥η0
(j)

∥1>0}

{ ∑M
m=1 |ν̂mj |√∑M

m=1 |η0mj |+
∑M

m=1 |η̂mj |

}

≤
∑

j∈{j:∥η0
(j)

∥1>0}

{ ∑M
m=1 |ν̂mj |√∑M
m=1 |η0mj |

}

≤ l−1∥ν̂S∥1

(3.7.16)
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Then by combing results from (3.7.14), (3.7.15), and (3.7.16), we obtain an upper bound

for the RHS of (3.7.13) as

ϕ

√
log p

n
(∥ν̂S∥1 + ∥ν̂SC∥1) + λn(l

−1∥ν̂S∥1 −R−1∥ν̂SC∥1) (3.7.17)

Our choice of λn guarantees that the term (3.7.17) is at most 3l−1λn
2 ∥ν̂S∥1 − R−1λn

2 ∥ν̂SC∥1.

And it is easy to see the LHS of (3.7.13) is non-negative, so we have 3l−1λn
2 ∥ν̂S∥1 −

R−1λn
2 ∥ν̂SC∥1 ≥ 0, or ∥ν̂SC∥1 ≤ 3l−1R∥ν̂S∥1. Consequently, we have the inequality that

∥ν̂∥1 = ∥ν̂S∥1 + ∥ν̂SC∥1 ≤
(
1 + 3l−1R

)
∥ν̂S∥1 ≤ h1

√
Mk∥ν̂∥2 (3.7.18)

Now from the lower-RE condition for Γ̂m’s and the assumption that α1/τ(n, p) ≥ 2h2Mk,

and also using (3.7.18) we have

M∑
m=1

ν̂TmΓ̂mν̂m ≥
M∑
m=1

(
α1∥ν̂m∥22 − τ(n, p)∥ν̂m∥21

)
= α1∥ν̂∥22 − τ(n, p)

( M∑
m=1

∥ν̂m∥21
)

≥ α1∥ν̂∥22 − τ(n, p)
( M∑
m=1

∥ν̂m∥1
)2

= α1∥ν̂∥22 − τ(n, p)∥ν̂∥21

≥ α1∥ν̂∥22 − τ(n, p)h21Mk∥ν̂∥22

≥ α1

2
∥ν̂∥22

(3.7.19)

Then combining (3.7.13), (3.7.18), (3.7.19) and the upper bound in (3.7.17) we have

α1

4
∥ν̂∥22 ≤ ϕ

√
log p

n
∥ν̂∥1 + λnl

−1∥ν̂∥1

≤ 2max

{
ϕ

√
log p

n
, λnl

−1

}
∥ν̂∥1

≤ 2h1
√
Mkmax

{
ϕ

√
log p

n
, λnl

−1

}
∥ν̂∥2

(3.7.20)



114

which leads to the error bound in L2 norm:

∥η̂ − η0∥2 = ∥ν̂∥2 ≤
8h1

√
Mk

α1
max

{
ϕ

√
log p

n
, λnl

−1

}

By applying (3.7.18) again we have the error bound in L1 norm:

∥η̂ − η0∥1 = ∥ν̂∥1 ≤ h1
√
Mk∥ν̂∥2 ≤

8h21Mk

α1
max

{
ϕ

√
log p

n
, λnl

−1

}

3.7.7 Proof of Corollary 3.3.1

Proof. When the restriction changes to ∥η∥1 ≤ R2, the only difference in the proof procedure

involves the equation (3.7.15). Now we have for

(∥ν̂SC∥1)1/2 =
( ∑
j∈{j:∥η0

(j)
∥1=0}

M∑
m=1

|ν̂mj |
)1/2

=

( ∑
j∈{j:∥η0

(j)
∥1=0}

M∑
m=1

|η̂mj |
)1/2

≤ ∥η̂∥1/21 ≤ R

Based on this inequality, the conclusion in (3.7.15) still goes through. Thus the results in

Theorem 3.1 still hold in the current setting.

3.7.8 Proof of Theorem 3.3.2

Proof. We prove the following results conditional on the deviation condition and the lower-

RE condition, which have been shown to hold with probability at least 1−c1 exp{−c2 log p}

from Lemma 3.1 in the manuscript and Lemma 2 in the Supplementary Materials. De-

note the loss function as L(η) =
∑M

m=1

{
1
2η

T
mΓ̂mηm − ⟨γ̂m,ηm⟩

}
+ λnρ(η) where ρ(η) =∑p

j=1

(∑M
m=1 |ηmj |q

)1/q
with q > 1. With the assumption R ≥ ρ(η0) we are guaranteed

that η0 is feasible and by definition L(η̂) ≤ L(η0). Defining ν̂ = η̂ − η0, through some
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algebra we obtain the equivalent inequality

M∑
m=1

1

2
ν̂TmΓ̂mν̂m ≤

M∑
m=1

⟨ν̂m, γ̂m− Γ̂mη
0
m⟩+λn

{ p∑
j=1

( M∑
m=1

|η0mj |q
)1/q

−
p∑
j=1

( M∑
m=1

|η̂mj |q
)1/q}

(3.7.21)

Note that assuming the deviation condition holds, then for the first term on RHS

M∑
m=1

⟨ν̂m, γ̂m − Γ̂mη
0
m⟩ ≤

M∑
m=1

∥ν̂m∥1∥γ̂m − Γ̂mη
0
m∥∞

≤ ϕ

√
log p

n

( M∑
m=1

∥ν̂m∥1
)

= ϕ

√
log p

n
∥ν̂∥1

= ϕ

√
log p

n
(∥ν̂S∥1 + ∥ν̂SC∥1)

(3.7.22)

Next we will establish an upper bound for the second term on RHS

p∑
j=1

( M∑
m=1

|η0mj |q
)1/q

−
p∑
j=1

( M∑
m=1

|η̂mj |q
)1/q

.

Note that for j ∈ {j : ∥η0
(j)∥1 = 0},

∑
j∈{j:∥η0

(j)
∥1=0}

{( M∑
m=1

|η0mj |q
)1/q

−
( M∑
m=1

|η̂mj |q
)1/q}

=
∑

j∈{j:∥η0
(j)

∥1=0}

−
( M∑
m=1

|ν̂mj |q
)1/q

≤ −
∑

j∈{j:∥η0
(j)

∥1=0}

M−(q−1)/q

( M∑
m=1

|ν̂mj |
)

= −M−(q−1)/q∥ν̂SC∥1

(3.7.23)

where we use the Hölder’s inequality that

M∑
m=1

|ν̂mj | ≤
( M∑
m=1

|ν̂mj |q
)1/q( M∑

m=1

1q/(q−1)

)(q−1)/q

.
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While for j ∈ {j : ∥η0
(j)∥1 > 0},

∑
j∈{j:∥η0

(j)
∥1>0}

{( M∑
m=1

|η0mj |q
)1/q

−
( M∑
m=1

|η̂mj |q
)1/q}

=
∑

j∈{j:∥η0
(j)

∥1>0}

{( M∑
m=1

|η0mj |q
)1/q

−
( M∑
m=1

|η0mj + ν̂mj |q
)1/q}

≤
∑

j∈{j:∥η0
(j)

∥1>0}

{( M∑
m=1

|η0mj |q
)1/q

−
( M∑
m=1

|η0mj |q
)1/q

+
( M∑
m=1

|ν̂mj |q
)1/q}

=
∑

j∈{j:∥η0
(j)

∥1>0}

( M∑
m=1

|ν̂mj |q
)1/q

≤
∑

j∈{j:∥η0
(j)

∥1>0}

( M∑
m=1

|ν̂mj |
)

= ∥ν̂S∥1

(3.7.24)

Then by combing results from (3.7.22), (3.7.23), and (3.7.24), we obtain an upper bound

for the RHS of (3.7.21) as

ϕ

√
log p

n
(∥ν̂S∥1 + ∥ν̂SC∥1) + λn(∥ν̂S∥1 −M−(q−1)/q∥ν̂SC∥1) (3.7.25)

Our choice of λn guarantees that the term (3.7.25) is at most 3λn
2 ∥ν̂S∥1−M−(q−1)/qλn

2 ∥ν̂SC∥1.

And it is easy to see the LHS of (3.7.21) is non-negative, so we have

3λn
2

∥ν̂S∥1 −
M−(q−1)/qλn

2
∥ν̂SC∥1 ≥ 0, or ∥ν̂SC∥1 ≤ 3M (q−1)/q∥ν̂S∥1.

Consequently, we have the inequality that

∥ν̂∥1 = ∥ν̂S∥1 + ∥ν̂SC∥1 ≤
(
1 + 3M (q−1)/q

)
∥ν̂S∥1 ≤ h2

√
Mk∥ν̂∥2 (3.7.26)
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Now from the lower-RE condition for Γ̂m’s and the assumption that α1/τ(n, p) ≥ 2h22Mk,

and also using (3.7.26) we have

M∑
m=1

ν̂TmΓ̂mν̂m ≥
M∑
m=1

(
α1∥ν̂m∥22 − τ(n, p)∥ν̂m∥21

)
= α1∥ν̂∥22 − τ(n, p)

( M∑
m=1

∥ν̂m∥21
)

≥ α1∥ν̂∥22 − τ(n, p)
( M∑
m=1

∥ν̂m∥1
)2

= α1∥ν̂∥22 − τ(n, p)∥ν̂∥21

≥ α1∥ν̂∥22 − τ(n, p)h22Mk∥ν̂∥22

≥ α1

2
∥ν̂∥22

(3.7.27)

Then combining (3.7.21), (3.7.26), (3.7.27) and the upper bound in (3.7.25) we have

α1

4
∥ν̂∥22 ≤ ϕ

√
log p

n
∥ν̂∥1 + λn∥ν̂∥1

≤ 2max

{
ϕ

√
log p

n
, λn

}
∥ν̂∥1

≤ 2h2
√
Mkmax

{
ϕ

√
log p

n
, λn

}
∥ν̂∥2

(3.7.28)

which leads to the error bound in L2 norm:

∥η̂ − η0∥2 = ∥ν̂∥2 ≤
8h2

√
Mk

α1
max

{
ϕ

√
log p

n
, λn

}

By applying (3.7.26) again we have the error bound in L1 norm:

∥η̂ − η0∥1 = ∥ν̂∥1 ≤ h2
√
Mk∥ν̂∥2 ≤

8h22Mk

α1
max

{
ϕ

√
log p

n
, λn

}
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3.7.9 Proof of Theorem 3.3.3

Proof. We prove the following results conditional on the lower- and upper-RE conditions,

which have been shown to hold with probability at least 1− c1 exp{−c2 log p} from Lemma

2 in the Supplementary Materials. We utilize Theorem 2 in Agarwal et al. (2012) and its

remarks to prove this theorem. First we need to show the Lq norm (q > 1) is decomposable

as defined in Definition 3 of Agarwal et al. (2012) and find the subspace compatibility

constant as defined in Definition 4 of Agarwal et al. (2012).

For any subset S of {1, · · · , p}, define the subspace M(S) =
{
η ∈ RMp

∣∣∣∥η(j)∥1 = 0,∀j /∈ S
}

and its orthogonal complement M⊥(S) =
{
η ∈ RMp

∣∣∣∥η(j)∥1 = 0,∀j ∈ S
}

where η(j) =

(η1j , · · · , ηMj)
T . Then for any pairs of vectors η1 ∈ M(S) and η2 ∈ M⊥(S), we have

ρ(η1 + η2) =

p∑
j=1

( M∑
m=1

|η1,mj + η2,mj |q
)1/q

=
∑
j∈S

(
|η1,mj + 0|q

)1/q
+
∑
j /∈S

(
|0 + η2,mj |q

)1/q
=
∑
j∈S

(
|η1,mj |q

)1/q
+
∑
j /∈S

(
|η2,mj |q

)1/q
= ρ(η1) + ρ(η2)

This has shown the decomposability of the Lq norm. We also need to determine the subspace

compatibility constant for it. For u ∈ M(S)/0 and subset S with cardinality k, using

Cauchy-Schwarz inequality we have

ρ(u) =

p∑
j=1

( M∑
m=1

|umj |q
)1/q

=
∑
j∈S

( M∑
m=1

|umj |q
)1/q

≤
∑
j∈S

( M∑
m=1

|umj |
)

≤

√√√√(∑
j∈S

M∑
m=1

|umj |2
)√

Mk =
√
Mk∥u∥2

Thus the subspace compatibiity constant Ψ(M) := supu∈M(S)/0
ρ(u)
∥u∥2 =

√
Mk.

We also need to show that the lower- and upper-RE conditions imply the restricted strong

convexity (RSC) and restricted smoothness (RSM) conditions with L1,q norm. First from
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Hölder’s inequality, we have

M∑
m=1

( p∑
j=1

|θmj |
)2

≤
( M∑
m=1

p∑
j=1

|θmj |
)2

=
( p∑
j=1

M∑
m=1

|θmj |
)2

≤
[ p∑
j=1

M (q−1)/q
( M∑
m=1

|θmj |q
)1/q]2 (3.7.29)

Thus for θ = (θT1 , · · · ,θTM )T ∈ RMp where θm = (θm1, · · · , θmp)T for m = 1, · · · ,M , from

lower-RE condition, we have

M∑
m=1

θTmΓ̂mθm ≥ α1

( M∑
m=1

∥θm∥22
)
− τ(n, p)

( M∑
m=1

∥θm∥21
)
.

Combined with (3.7.29), we have

M∑
m=1

θTmΓ̂mθm ≥ α1

( M∑
m=1

∥θm∥22
)
− τ(n, p)

[ p∑
j=1

M (q−1)/q
( M∑
m=1

|θmj |q
)1/q]2

= α1∥θ∥22 − τ(n, p)M2(q−1)/qρ2(θ)

Compared with the RSC condition in Agarwal et al. (2012), it suffices to have γl = 2α1 and

τl = τ(n, p)M2(q−1)/q. Similarly having γu = 2α2 and τu = τ(n, p)M2(q−1)/q gives us the

RSM condition.

One last step is to find the contraction coefficient and the tolerance parameter. The

compound contraction coefficient is defined as κ :=

{
1 − γ̄l

8α2
+ 64kτM(3q−2)/q

γ̄l

}
ξ where

γ̄l := 2α1 − 64kτM (3q−2)/q and ξ := γ̄l
2γ̄l−γl . From assumption in our Theorem 3.2, γ̄l > 0.

Then given that τ ≍ log p
n and that n ≿ Mk log p, we have ξ = O(1) and κ ∈ (0, 1). The

compound tolerance parameter is defined as ϵ2 := 8ξω
[
6
√
Mk∥η̂ − η0∥2 + 8ρ

(
ΠM⊥(η0)

)]2
where ω :=

(
γ̄l
4α2

+ 256kτM(3q−2)/q

γ̄l
+ 10

)
τM2(q−1)/q. Again given that τ ≍ log p

n and that

n ≿ Mk log p, we know that ω = O( log pn ). Also as η0 is feasible with the restriction,

ρ
(
ΠM⊥(η0)

)
= 0. Thus the compound tolerance parameter ϵ2 = O( log pn )k∥η̂ − η0∥22.

Finally by applying Theorem 2 in Agarwal et al. (2012) and its remarks, we have for any
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t ≥ 2[log(1/κ)]−1 log L(η∗)−L(η̂)
δ2

+ log2 log2(
Rλn
δ2

)(1 + log 2
log(1/κ)) and δ

2 ≥ (1− κ)−1ϵ2,

∥η(t) − η̂∥22 ≤
2λ2n + 16τM2(q−1)/q

γ̄lλ2n
δ2 +

144τkM (3q−2)/q

γ̄l
= O(1)δ2 + o(1)

Thus putting together the results for ϵ2 and δ2 leads us to the conclusion.

3.7.10 Proof of Corollary 3.3.2

Proof. The first estimator of Σ̂u has expression Σ̂u = 1
n0
UT0 U0 where U0 has n0 indepen-

dently sub-Gaussian distributed rows of the measurement errors. The second estimator has

expression

Σ̂u =
1

n∗(M − 1)

n∗∑
i=1

M∑
m=1

(zmi − z̄·i)(zmi − z̄·i)
T

under the assumptions that zmi = xi + umi and umi
i.i.d.∼ N(0,Σu). Under this set-up, we

have

Σ̂u =
1

n∗(M − 1)

n∗∑
i=1

M∑
m=1

(umi − ū·i)(umi − ū·i)
T = (1/n∗)

n∗∑
i=1

Si,

where ū·i =
∑M

m=1 umi/M and n∗(M − 1)Σ̂u ∼Wishart(Σu, n
∗(M − 1)). Thus the second

estimator has the same probability distribution as 1
n∗(M−1)Ũ

T Ũ where Ũ has rows that

are independently distributed as N
(
0,Σu

)
. If we can prove the probability results for

1
n∗(M−1)Ũ

T Ũ , then the results hold with same probabilities for the second estimator of

Σ̂u. In the following parts of the proof, we use Σ̂u to denote both the first estimator and

1
n∗(M−1)Ũ

T Ũ . The arguments go through for both expressions in the same manner.

Define Γ̃m = 1
nW

T
mWm − BT Σ̂uB. We first show that the deviation condition still holds

with high probability. We know that

∥γ̂m − Γ̃mη
0
m∥∞ ≤ ∥γ̂m − Γ̂mη

0
m∥∞ + ∥(Γ̃m − Γ̂m)η

0
m∥∞

= ∥γ̂m − Γ̂mη
0
m∥∞ + ∥BT (Σ̂u −Σu)Bη0

m∥∞

where ∥γ̂m − Γ̂mη
0
m∥∞ has been shown to be bounded in Lemma 3.1 and then it suffices

to show that ∥BT (Σ̂u −Σu)Bη0
m∥∞ can be bounded as well. Actually applying Lemma 14
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from Loh and Wainwright (2012) and also noting that n0 > n, n∗(M − 1) > n, we would

obtain

P
(
∥BT (Σ̂u −Σu)Bη0

m∥∞ ≥ c0σ
2
u∥η0

m∥1

√
log p

n∗∗

)
≤ P

(
∥BT (Σ̂u −Σu)B∥∞ ≥ c0σ

2
u

√
log p

n

)
≤ c1 exp{−c2 log p}

where n∗∗ refers to either n0 or n∗(M − 1) in the above equation depending on the context.

This is exactly what we need to show the deviation condition. Next we turn to the lower-

and upper-RE conditions. Similarly we can split the terms as

|θT (Γ̃m −BTΣx
mB)θ| ≤ |θT (Γ̂m −BTΣx

mB)θ|+ |θTBT (Σ̂u −Σu)Bθ|

Based on the proof of Lemma 2 in the Supplementary Materials, we can guarantee the

same parameters for the lower- and upper-RE conditions by ensuring the following two

inequalities:

sup
θ∈K(2s)

|θT (Γ̂m −BTΣx
mB)θ| ≤ 1

108
δmin

and

sup
θ∈K(2s)

|θTBT (Σ̂u −Σu)Bθ| ≤ 1

108
δmin

hold with high probability. The first inequality has already been investigated in the proof of

Lemma 2. While for the second inequality, by applying Lemma 15 of Loh and Wainwright

(2012), we have for some positive constant c′′ that

P
(

sup
θ∈K(2s)

|θTBT (Σ̂u −Σu)Bθ| ≥ δmin/108
)
≤ 2 exp

(
− c′′nmin{δ

2
min

σ4u
,
δmin

σ2u
}+ 2s log p

)
≤ 2 exp

(
− c′′nmin{δ

2
min

σ4
,
δmin

σ2
}+ 2s log p

)
With the choice of s in the proof of Lemma 2, we see the probability statement still holds

for the lower- and upper-RE conditions.
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3.7.11 Proof of Lemma 3.3.2

Proof. Using Lemma 12 from Loh and Wainwright (2012) and letting δ = 1
54δmin, Γ =

Γ̂m −BTΣx
mB, we have the bound

|θT (Γ̂m −BTΣx
mB)θ| ≤ 1

2
δmin

(
∥θ∥22 +

1

s
∥θ∥21

)
Then we have

θT Γ̂mθ ≥ θT (BTΣx
mB)θ − 1

2
δmin

(
∥θ∥22 +

1

s
∥θ∥21

)
≥ λmin(B

TΣx
mB)∥θ∥22 −

1

2
δmin

(
∥θ∥22 +

1

s
∥θ∥21

)
≥ 1

2
δmin∥θ∥22 −

1

2s
δmin∥θ∥21

and also

θT Γ̂mθ ≤ θT (BTΣx
mB)θ +

1

2
δmin

(
∥θ∥22 +

1

s
∥θ∥21

)
≤ λmax(B

TΣx
mB)∥θ∥22 +

1

2
δmin

(
∥θ∥22 +

1

s
∥θ∥21

)
≤ 3

2
δmax∥θ∥22 +

1

2s
δmin∥θ∥21

Thus it remains to show that

sup
θ∈K(2s)

|θT (Γ̂m −BTΣx
mB)θ| ≤ 1

54
δmin

with high probability for certain s ≥ 1.

We denote Dm(s) := sup
θ∈K(2s)

|θT (Γ̂m − BTΣx
mB)θ|. We know that Wm is a sub-Gaussian

matrix with parameters
(
BT (Σx

m +Σu)B, σ
2
)
. Thus using the results from Lemma 15 of

Loh and Wainwright (2012), we have for some positive constant c′

P(Dm(s) ≥ δmin/54) ≤ 2 exp
(
− c′nmin{δ

2
min

σ4
,
δmin

σ2
}+ 2s log p

)

Now we choose s := 1
c

n
log p min

{ δ2min
σ4 , 1

}
. It is guaranteed that for sufficiently small c, we
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have s ≥ 1 and

P(Dm(s) ≥ δmin/54) ≤ 2 exp
(
− c2nmin

{δ2min

σ4
, 1
})

This concludes the proof for lower- and upper-RE conditions.
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Chapter 4

A Unified Sparse Learning

Framework for Lipschitz Loss

Functions

4.1 Introduction

High-dimensional data has emerged in various research fields such as human genetics, neu-

roimaging, and microbiome studies. When the number of features in the data becomes

larger than the sample size or even increases exponentially with the sample size , the tradi-

tional regression models would fail to provide an estimation for the regression coefficients,

and the theoretical large sample results would not apply. In order to accommodate the

ultra high number of features in the regression framework, a series of penalized methods

have been proposed. These methods assume that there are only a small set of features

contributing to the outcome variable, thus the regression coefficients only include very few

nonzero elements. The number of truly nonzero regression coefficients is usually assumed to

be small, and not increase with the total number of features and the sample size. Famous

example of the sparse learning methods include Lasso with convex L1 penalty (Tibshirani,

1996) and the closely related Dantzig selector (Bickel et al., 2009), and the non-convex type
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of methods such as the smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001)

and the minimax concave penalty (MCP) (Zhang, 2010).

For these penalized methods, the sparse assumption on the regression coefficients have en-

abled establishment of nice theoretical results. Agarwal et al. (2010) studied the convex

optimization with norm-based penalties including Lasso and derived the finite sample sta-

tistical and optimization error bounds for the estimators. Fan and Lv (2011) investigated

the performance of specific nonconvex penalties including SCAD and MCP in ultrahigh

dimensions and showed them to possess the oracle property under mild assumptions, in the

context of generalized linear models. In addition to modeling continuous outcomes, binary

classification is also of vital importance in high-dimensional data analysis. Logistic loss and

hinge loss of the support vector machine (SVM) are among the most commonly used loss

functions in sparse learning of classification problem. Peng et al. (2016) derived the finite

sample statistical error bounds for L1-norm SVM and further showed the oracle property of

non-convex penalized SVM when using their L1-norm SVM as initial value. There are also

developments that applied Lasso and the Dantzig selector to the generalized linear models

such as that in the original Lasso paper (Tibshirani, 1996) and the generalized Dantzig

selector (GDS) in James and Radchenko (2009).

A more recent line of work has extended penalized sparse learning approaches to the case of

high dimensional covariates with measurement errors. Due to various reasons like technical

limitations and experimental design, measurement errors are prevalent in the real applica-

tions (Raser and O’shea, 2005; Liu, 2016). If we ignore the problem and continue using

the contaminated features in the learning process, we have the risk of admitting many false

positive signals (Sørensen et al., 2015) and attenuating the estimated coefficients to the null

(Carroll and Stefanski, 1994). Typically in high-dimensional settings, one uses corrected

versions of the objective functions in order to tackle the measurement error in covariates

that require availability of additional validation samples in order to compute moments of

the noise distribution. See for example, recent work by Loh et al. (2012); Rosenbaum and

Tsybakov (2013); Datta et al. (2017) and more recent work involving grouped penalties

in the presence of noisy imaging features (Ma and Kundu, 2021). However, these existing
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methods may not be suitable in scenarios where replicated samples are limited, or simply

unavailable. Another important limitation is that these existing approaches have primarily

been developed for linear models, but there are very limited (if any) approaches for dealing

with high-dimensional covariates with measurement error for a wider class of loss functions

involving classification or quantile regression that are commonly encountered in practice.

In contrast to the methods that rely on knowing the noise distribution, there are some more

recent work on accommodating measurement errors in linear models without requirement

the knowledge of noise distributions or the requirement of validation samples. Examples

include the matrix uncertainty selector (MUS) (Rosenbaum and Tsybakov, 2010) that is

motivated by the Dantzig selector, sparse total least squares (Zhu et al., 2011), and the

orthogonal matching pursuit (Chen and Caramanis, 2013). Of particular note in this line

of work, is the seminal work by Rosenbaum and Tsybakov (2010) where the authors pro-

posed an MUS estimator that depends on the construction of high confidence set that is

guaranteed to contain the true parameters and then define a sparse estimator belonging to

this confidence set that satisfies certain properties. Later Sørensen et al. (2018) proposed

the generalized MUS (GMUS) which extended the MUS to accommodate generalized linear

models (GLM). However, this heuristic approach did not provide any asymptotic or finite

sample theory on the statistical errors. In general, while the above set of approaches are

useful, they are not directly applicable to loss functions lying outside of the GLM family,

such as the hinge loss, that is routinely used in classification problems.

Given the importance of classification and quantile regression problems in literature that go

beyond linear regression settings, it is extremely important to develop scalable and theoret-

ically guaranteed estimators for these class of problems. Moreover in order to make these

methods scalable and readily applicable to a wide class of problems, it is desirable to avoid

requiring additional validation samples for computing moments of the noise distributions.

While there is extensive literature on linear regression approaches with measurement error,

and some work on measurement error models in GLM frameworks, there is a paucity of

relevant measurement error models in high dimensions for more general loss functions that

go beyond these settings.
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In order to bridge these gaps in the literature, we propose in this chapter a unified sparse

learning framework for the class of Lipschitz loss functions in the ultra high-dimensional

setting with built-in strategy for measurement errors. This class of loss functions include

widely used class of loss functions such as logistic loss, hinge loss for binary classification,

quantile regression loss, and various smoothed versions of these losses, and was investigated

in Dedieu (2019) without considering the scenario of high-dimensional covariates with mea-

surement errors. Motivated by the line of work by Rosenbaum and Tsybakov (2010) and

the considerations mentioned earlier, we define a sparse estimator in terms of L1 norm on a

confidence set based on the gradient of the empirical loss function where the true regression

coefficients reside in with high probability. With mild assumptions that are also proved

to hold with high probability, we derive the finite sample statistical error bounds and sign

consistency results for the proposed estimator. We develop a Newton-Raphson type algo-

rithm with linear programming to handle the computation of the sparse estimator. We also

conduct extensive simulation experiments and illustrate the superior performance of our

proposed estimator over other competing methods in a variety of settings.

We make several significantly novel contributions in this article. (i) develop an unifying

penalized regression approach for high-dimensional covariates with measurement error under

a broad class of loss functions; (ii) derive theoretical guarantees for the proposed estimators;

(iii) develop an efficient computational algorithm for implementation; (iv) evaluate the

numerical performance of the approach for certain special classes of models such as the

SVM that is perhaps one of the most widely used classifiers. To our knowledge, we are one

of the first to propose a penalized SVM approach for high-dimensional covariates subject

to measurement error.

We give the outline of the rest of the chapter here. In Section 4.2, we define our model

framework and present the theoretical results. In Section 4.3, we develop the computational

algorithm and provide advice on parameter tuning and initialization. In Section 4.4, we

compare our proposed method to other competing methods over a series of simulation

scenarios. In Section 4.5, we apply the methods to a real dataset to classify children with

attention deficit hyperactivity disorder (ADHD) and children as neurotypical controls and
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find the most related functional connectivities. Finally in Section 4.6, we include the details

of proving the theoretical results.

4.2 Proposed Method with Lipschitz Losses

We consider a dataset with independent samples {(xi, yi) ∈ Rp×Y, i = 1, · · · , n}, where the

relationship between the outcome y ∈ Y and covariates x are defined by a pre-specified class

of loss functions denoted by f(·, y). As elaborated below, the class of general loss functions

considered in this article can encompass both binary classification and quantile regression

problems, which corresponds to y being discrete or continuous respectively. With a fixed

loss function f(·, y), we define the coefficient β∗ as the one that minimizes the theoretical

version of the empirical loss L(β) = (1/n)
∑n

i=1 f(⟨xi,β⟩; yi) as β∗ = argminβ{E(L(β))} =

argminβ{E(f(⟨x,β⟩; y))} noted that the expectation is over the joint distribution of x and

y. Our goal is to study the theoretical and empirical properties under such loss functions

under high-dimensional settings, and for cases encompassing measurement error on the

observed covariates, that is often encountered in practice. The high-dimensional settings

considered in our work corresponds to ultra-high dimensions where the number of covariates

p is allowed to grow exponentially with the sample size n such that log(p)/n goes towards

zero with increasing n and p. Such settings are typically encountered in our motivating

neuromaging applications, where the number of voxels in a brain image can be orders of

magnitudes higher than the sample size, or brain network-based analysis where the number

of candidate edges in the network grow quadratically with the number of brain regions and

vastly exceed the sample size. In such high dimensional settings, we typically assume that

the true coefficient β∗ to be sparse, which is routinely done in literature. This implies that

the number of non-zero elements in β∗ (denoted as k) is usually much smaller compared to

p and n. Under this set-up our goal is to find a sparse estimator β̂ that is close to the true

coefficient β∗ for a general class of loss functions that satisfy certain reasonable conditions

including Lipschitz continuity.

The class of loss functions considered in our paper is assumed to be Lipschitz continuous
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that admits first and second-order derivatives as elaborated below. As illustrated in the

sequel, this class of loss functions involve several commonly used losses in literature including

logistic regression, smooth hinge loss, and quantile regression.

Definition 4.2.1. A non-negative, convex loss function f(·, y) is L-Lipschitz continuous if

|f(t1, y)− f(t2, y)| ≤ L|t1 − t2|,∀t1, t2,

and there exists first-order derivative function ∂f(·, y) such that

f(t2, y)− f(t1, y) ≥ ∂f(t1, y)(t2 − t1), ∀t1, t2.

In addition, the loss function is twice-differentiable and admits a second-order derivative

function ∂2f(·, y).

We note that the derivatives are with respect to the first argument of the loss function.

Below we present three example loss functions that satisfy the definition above.

1. Logistic regression: The logistic loss satisfies Definition 4.2.1 with L = 1, where

Y = {0, 1} with log(P (yi = 1|x = xi))− log(P (yi = 0|x = xi)) = ⟨xi,β⟩. The loss function

takes the form f(t; y) = −yt+log{1+et} with first-order derivative ∂f(t; y) = −y+et/(1+et)

and second-order derivative ∂2f(t; y) = et/(1+et)2, so that |∂f(t; y)| < 1 and ∂2f(t; y) > 0.

2. Smooth hinge loss: The smooth hinge loss is an adaptive version of the original hinge

loss for support vector machine (SVM) and has the advantage of avoiding discontinuity

issues encountered in the original hinge loss and admitting first and second-order derivatives

due to convexity - see Luo et al. (2021) for more details. Smooth hinge losses have been

used in literature for classification problems involving text and document classification

(Chang et al., 2008; Hong et al., 2019), and those involving disease and socio-economic

status (Lee and Mangasarian, 2001; Wang et al., 2020). We use the form of the smooth

hinge loss function as f(t; y) = 1
2(1 − yt) + 1

2

√
(1− yt)2 + σ2, where Y = {−1, 1}, σ > 0.

The smooth hinge loss tends to the original hinge loss as σ → 0, as evident from Figure

1 in Luo et al. (2021). The smooth hinge loss also satisfies Definition 4.2.1 with L = 1
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as |∂f(t; y)| < 1 and ∂2f(t; y) > 0. This can be seen from the first-order derivative that

has the expression, ∂f(t; y) = −1
2y[1 + (1 − yt)/

√
(1− yt)2 + σ2], while the second-order

derivative is ∂2f(t; y) = 1
2σ

2/[(1− yt)2 + σ2]3/2.

3. Quantile regression: We consider the smoothed version of the quantile loss, named

conquer loss, which is twice-differentiable and globally convex, which was proposed by He

et al. (2021). Here, Y = R and the loss function takes the form f(t; y) = lh(y − t) with

lh(u) = (ρτ ∗ Kh)(u) =
∫∞
−∞ ρτ (v)Kh(v − u)dv where ∗ denotes the convolution operator.

Here ρτ (u) = u{τ −1(u < 0)} is the check function, while K(·) represents a kernel function

that integrates to one. Several examples of such kernel function have been given in Section

2 of He et al. (2021). The corresponding first- and second-order derivatives of the conquer

loss are ∂f(t; y) = Kh(t − y) − τ and ∂2f(t; y) = Kh(y − t), where Kh(u) = h−1K(u/h),

Kh(u) = K(u/h) and K(u) =
∫ u
−∞K(v)dv. We can see that both Kh(t − y) and τ are

bounded between 0 and 1, thus the first-order derivative is bounded with |∂f(t; y)| ≤ 1. In

addition, the non-negative kernel function ensures the second-order derivative to be non-

negative. Therefore, we know that the conquer loss for the quantile regression satisfies our

Definition 4.2.1 with L = 1.

While the above three examples of loss functions provide some concrete settings for the

proposed approach, we note that our methodology is generally applicable to more general

loss functions that satisfy Definition 4.2.1. Starting from a setting that involves covariates

without measurement error that has been the main thrust in literature (Dedieu, 2019), we

subsequently generalize the proposed method to the case of covariates with additive mea-

surement error. Our treatment of high-dimensional noisy covariates in classification and

quantile regression problems is one of the first such results in literature to our knowledge,

and is a novel contribution of independent interest. In addition, the proposed approach

has several practical advantages including the ability to avoid computing a noise covariance

matrix, which is often encountered in regression problems involving high-dimensional fea-

tures observed with measurement error (Loh et al., 2012; Ma and Kundu, 2021), but can

slow down computations in high-dimensional applications and requires replicated datasets.

These, and additional aspects of the proposed methodology and theory are elaborated be-
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low.

4.2.1 Estimation with Noiseless Predictors

In this section, we propose an estimator for the Lipschitz continuous loss function when

we have the uncontaminated predictor xi’s available. Our treatment assumes that the

noiseless predictors xi’s are independently distributed as multivariate normal with mean 0

and covariance Σ, which is routinely assumed in literature. We denote the gradient of the

empirical loss L(β) as S(β) where

S(β) = (1/n)
n∑
i=1

∂f(⟨xi,β⟩; yi)xi.

From the definition of the true coefficient β∗ we know that the expectation of its gradient

function is equal to 0, which is to say that E{S(β∗)} = 0. Therefore intuitively we expect

the gradient S(β∗) to be bounded under a certain threshold with probability tending to 1.

This motivates us to define the following confidence set C based on the gradient function:

C = {β ∈ Rp : ∥S(β)∥∞ ≤ λ}, where λ acts as a pre-determined threshold and || · ||∞

denotes the supremum norm. A suitable choice of λ should ensure that the true coefficient

β∗ lies in this confidence set C with high probability. This is confirmed in the following

Lemma 4.2.1.

Lemma 4.2.1. Let λ =
√

ϕ log p
n and σ2x = ∥Σ∥op denotes the spectral norm of matrix Σ,

then β∗ ∈ C with probability at least [1− 2p1−(ϕ/2L2σ2
x)].

The parameter ϕ in Lemma 4.2.1 refers to a constant that can be selected on a finite scale.

Under our high-dimensional settings where log(p)/n becomes negligible for increasing n

and p, Lemma 4.2.1 suggests that the confidence set only contains those β values that

encourage the gradient S(β) to have increasingly tighter bounds in terms of the || · ||∞

norm. Hence, the set of admissible solutions for β’s belonging to the confidence set C have

a bounded empirical gradient, which is expected to mimic the behavior of the true coefficient

β∗ that satisfies E{S(β∗)} = 0 with high probability. In addition to the proposed estimator

belonging to C, another key consideration is sparsity. In other words, it is desirable to select



132

an estimator with the highest sparsity level, as measured by L1 norm (represented as || · ||1),

to prevent the solution from admitting excessive false positive signals and to replicate the

behavior of the true coefficient β∗ that is assumed to be sparse. Following this argument,

we define our estimator as:

β̂ = argmin
β∈C

∥β∥1. (4.2.1)

Remark 1: The proposed estimator in (4.2.1) can be viewed as a generalization of the

Dantzig selector (Candes and Tao, 2007) for linear regression to the case with Lipschitz

continuous losses. On closer inspection of the the constraint of the Dantzig selector, we can

see that it is exactly the gradient function of the least squares loss of a linear regression

model.

Remark 2: The proposed estimator in (4.2.1) is fundamentally different from related

work based on Lipschitz continuous loss functions (Dedieu, 2019). These existing methods

were focused on minimizing the empirical loss functions under sparse estimators for the

coefficients β using suitable penalties. In contrast, our treatment using confidence sets

provides a more intuitive approach based on the behavior of gradients, and is more closely

aligned with the related methods in Rosenbaum and Tsybakov (2010, 2013).

We denote the difference between our estimator and the true coefficient as ĥ = β̂ − β∗.

It turns out that the difference ĥ can be proved to lie in a cone set H, as detailed in the

following Lemma 4.2.2. The cone set condition ensures that the norm of the estimated

coefficients corresponding to truly zero effects (β∗j = 0) is bounded above by the difference

between the estimated and true non-zero coefficients. When the number of truly non-

zero features (k) is small (in comparison to p), and assuming that all true coefficients

are bounded, this upper bound is a tractable quantity that is bounded for all estimated

coefficients belonging to the confidence set C. Hence the following result on the cone set

ensures that the number of false positives is bounded, and it will form the basis of our main

error bound result in the sequel (Theorem 4.2.1). This concept of cone set is also crucial in

defining the restricted strong convexity condition following Lemma 4.2.2. Usually when the
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number of total predictors p far exceeds the sample size n, there is no guarantee of strong

convexity on all directions as the Hessian matrix is singular. However, if we are able to

define the strong convexity on some restricted directions that are concerned to our problem,

which is the cone set H for our case, then we can still derive nice theoretical property on

our estimator. More discussions can be found in Negahban et al. (2012).

Lemma 4.2.2. Assume β∗ is k-sparse and lies in the confidence set C. Define set s =

{j ∈ {1, · · · , n} : β∗j ̸= 0} and complement set sc = {j ∈ {1, · · · , n} : β∗j = 0}, then

h = β̂ − β∗ ∈ H = {h ∈ Rp : ∥hsc∥1 ≤ ∥hs∥1}.

While Lemma 4.2.2 provides some understanding of the behavior of the estimated coeffi-

cients in context of the true coefficients β∗, it is not sufficient to characterize the overall

error bounds on its own. In order to guarantee that the estimator β̂ lies in the neighbor-

hood of the true coefficient β∗, we also need the following restricted strong convexity (RSC)

condition to hold with high probability on the cone set defined in the above Lemma. This

condition is needed to ensure that the loss function is not too flat in the restricted cone

set such that a closeness in the values of the loss function corresponding to the true and

estimated coefficients translates to tight error bounds. With the theoretical results from

Raskutti et al. (2010), we can prove this condition to hold with high probability under

certain assumptions, as detailed in Lemma 4.2.3 in the sequel. First we formulate the RSC

condition below, in the absence of measurement errors.

Restricted strong convexity condition without measurement errors: There exists

τ > 0 such that for h ∈ H we have L(β∗ + h)− L(β∗)− ⟨S(β∗),h⟩ ≥ τ∥h∥22.

Definition 4.2.2. (square root of a matrix) we say Σ1/2 =
√
Σ is the square root of a

positive semidefinite matrix Σ if: (i) Σ1/2 is positive semidefinite; (ii) Σ1/2Σ1/2 = Σ.

Lemma 4.2.3. Assume that mini,h∈H |∂2f(⟨xi,β∗ + h⟩; y)| ≥ M1 > 0 for i = 1, . . . , n,

and for V ar(x) = Σ we define κ1 = (1/4)λmin(Σ
1/2) and κ2 = 9

√
maxj=1,··· ,pΣjj. If that

n > 4(κ2/κ1)
2k log p, then the RSC condition holds with τ = M1

2

(
κ1 − 2κ2

√
k log p
n

)2
with

probability at least (1− c1 exp(−c2n)) for positive constants c1 and c2.

Lemma 4.2.3 states that as long as the number of covariates increases at a rate such that
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log(p)/n is bounded, the RSC condition will hold. We note that the bound on log(p)/n

depends on the ratio κ2/κ1 that is related to the condition number encountered in random

matrix theory literature (Edelman, 1988), as well as the true sparsity level k.

Remark 3: With the reference to the example loss functions after Definition 4.2.1, the

assumption mini,h∈H |∂2f(⟨xi,β∗+h⟩; y)| ≥M1 > 0 can be translated into the requirement

that the inner product |⟨xi, β̂⟩| = |⟨xi,β∗ +h⟩| <∞ for h ∈ H. We can see that |⟨xi,β∗ +

h⟩| ≤ (maxj{xij})∥β∗ + h∥1 and ∥β∗ + h∥1 = ∥β∗
s + hs∥1 + ∥β∗

sc + hsc∥1 ≤ ∥β∗
s∥1 +

∥hs∥1 + ∥hsc∥1 ≤ ∥β∗
s∥1 + 2∥hs∥1. As we have assumed xi to follow multivariate normal

distribution, then maxj{xij} would have a finite amplitude with high probability converging

to 1. Moreover, both β∗
s and hs are vector of length k, where k is assumed to be fixed and not

growing with n and p, thus their L1 norm would also have finite amplitude. Combining these

arguments, the assumption in Lemma 4.2.3 should stand with high probability converging

to 1.

Given the RSC condition and the definition of cone sets, we are now in a position to state

our main error bound results. Theorem 4.2.1 provides explicit non-asymptotic error bounds

between β̂ and β∗ under L2 and L1 norms.

Theorem 4.2.1. Assume β∗ is k-sparse, then with probability at least [1− 2p1−(ϕ/2L2σ2
x) −

c1 exp(−c2n)] for positive constants c1 and c2, the difference between the estimator β̂ and the

true coefficient β∗ can be bounded in terms of L1 and L2 norms as: ∥β̂−β∗∥2 ≤ 4
τ

√
ϕk log p

n ,

and ∥β̂ − β∗∥1 ≤ 8k
τ

√
ϕ log p
n

Remark 4: from Theorem 4.2.1, we can see that as long as k2 log p = o(n) where o

denotes the small-o notation, then the L1 and L2 error bounds would vanish to zero as

n and p increase to infinity. This requires that the number of truly nonzero coefficients

remains relatively small, while the total number of coefficients p is allowed to increase with

n exponentially.

Although Theorem 4.2.1 is able to explicitly establish non-asymptotic error bounds, it is not

immediately clear how the proposed approach performs in terms of feature selection. The

next result in Theorem 4.2.2 establishes the sign consistency for a thresholded version of the
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estimator β̂, which illustrates that the thresholded estimator is able to accurately identify

the truly non-zero coefficients as long they are not exceedingly small. Taken together,

the results in Theorems 2.1 and 2.2 establish desirable results on error bounds and sign

consistency properties for a general class of Lipschitz continuous loss functions.

Theorem 4.2.2. (Sign Consistency) Let τ1 =
8k
τ

√
ϕ log p
n and define a thresholded version

of estimator as β̃j = β̂j1{|β̂j | > τ1}, j = 1, · · · , p. If the error bounds in Theorem 4.2.1

hold and we have minj∈s |β∗j | > 2τ1, then signβ̃j = signβ∗j .

4.2.2 Estimation with Noisy Predictors

In the case that the observed predictors are contaminated with random noise, usual estima-

tion procedures that do not account for noise lead to unsatisfactory results and inconsistent

estimates (Loh et al., 2012; Sørensen et al., 2018; Ma and Kundu, 2021). Based on the above

and given the fact that the true coefficient is not guaranteed to be within the confidence set

C defined in Section 2 with high probability in the presence of noise, it is clear that the pro-

posed approach in Section 2 needs to be generalized to accommodate noisy predictors. Also

see Section 7 in Rosenbaum and Tsybakov (2010) for more detailed explanations. We illus-

trate in this section, that a modified confidence set can be constructed, which is guaranteed

to contain the true coefficient with high probability even in the presence of measurement

error for the covariates.

In this section, we still assume the true predictor xi’s follow independent normal distri-

butions with mean 0 and covariance matrix Σ, which we will denote as Σx in the fol-

lowing discussion to distinguish from the covariance of the measurement errors. However,

the true covariates are unobserved, and instead one observes a contaminated version of

the predictor as wi’s where wi = xi + ui, i = 1, · · · , n. The ui’s are the measurement

errors, which are assumed to independently follow multivariate normal distribution with

mean 0 and covariance Σu. The xi’s and ui’s are assumed to be independent from each

other on all indices. The above constructions for the measurement error is routinely as-

sumed in literature involving linear regression models (Rosenbaum and Tsybakov, 2010;
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Loh et al., 2012; Ma and Kundu, 2021). Based on the new design matrix, the correspond-

ing empirical loss and gradient functions would be Lw(β) = (1/n)
∑n

i=1 f(⟨wi,β⟩; yi) and

Sw(β) = (1/n)
∑n

i=1 ∂f(⟨wi,β⟩; yi)wi. We make the following assumptions.

(A1) nσ2u = O(1) where σ2u = ∥Σu∥op, and || · ||op denotes the operator norm and O is the

big-O notation.

(A2) Without loss of generality, we will assume the design matrix W = (w1, · · · ,wn)
T has

been standardized such that all the diagonal elements in WTW
n are equal to 1.

(A3) The true coefficient β∗ satisfies β∗ = argmin{E(f(⟨x,β⟩; y))}.

We note that it is not unreasonable to have assumption (A1) for practical applications.

In medical imaging analysis, as we collect the image data at finer and finer resolutions,

which means more voxels and larger p, we expect the scale of measurement errors to go

down. This implies that σ2u is on a negative order of p. Typically the number of samples

we collect on is far less compared to the voxel numbers (p >> n). Thus the assumption

nσ2u = O(1) or even nσ2u = o(1) (with o denoting the small-o notation) will be applicable

in a general sense. Assumption (A2) is a common argument in the literature (Fan and Lv,

2011; Rosenbaum and Tsybakov, 2010). Finally, Assumption (A3) captures the relationship

between the true coefficient β∗ and the outcome y ∈ Y via the loss function that depends

on the true (noiseless) predictors x.

Similar to the MU-selector (Rosenbaum and Tsybakov, 2010) for linear regression models,

we enlarge the feasible band for ∥Sw(β)∥∞ by allowing the boundary of the feasible set to

adapt to the L1 norm of the coefficients. The modified confidence set Cw is defined as: Cw =

{β ∈ Rp : ∥Sw(β)∥∞ ≤ λ+ γ∥β∥1}. Following the same spirit of the last section, we define

our estimator to be the sparsest solution within the confidence set: β̂w = argminβ∈Cw ∥β∥1.

Similar to Rosenbaum and Tsybakov (2010), we can define an optimization problem as Lasso

type analog of this estimator as: minβ{Lw(β) + λ1∥β∥1 + λ2∥β∥21}.

Once again, with properly chosen parameters λ and γ, we can show that the true coefficient

β∗ lie in Cw with high probability, as in the following Lemma 4.2.4. Also, the difference

between β̂w and β∗ lies in the cone set H in the same manner. Thus with a modified
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RSC condition when the measurement errors are present, holding with high probability,

we can obtain the error bounds and sign consistency results similar to those in Theorems

4.2.1-4.2.2, as shown in the following Lemma 4.2.5 and Theorems 4.2.3 - 4.2.4.

Lemma 4.2.4. Let λ =
√

ϕ1 log p
n and γ = M2

√
ϕ2 logn

n where M2 = max |∂2f(·; y)|, then

β∗ ∈ Cw with probability at least {1− 2p1−[ϕ1/2L2(σ2
x+σ

2
u)] − 2n(1−ϕ2/2nσ

2
u)}.

Remark 5: in general, we can find a finite upper bound of the second-order derivative M2

for the class of Lipschitz continuous losses we consider. Take the logistic loss for example,

it is easy to see that |∂2f(·; y)| = et/(1 + et)2 ≤ 1/4. As for the smooth hinge loss, we also

have |∂2f(·; y)| = 1
2σ

2/[(1− yt)2 + σ2]3/2 ≤ 1/(2σ).

Restricted strong convexity condition with measurement errors

There exists τw > 0 such that for h ∈ H we have

Lw(β∗ + h)− Lw(β∗)− ⟨Sw(β∗),h⟩ ≥ τw∥h∥22.

Lemma 4.2.5. We denote Σw = Σx+Σu, κ
w
1 = (1/4)λmin(

√
Σw) and κw2 = 9

√
maxj=1,··· ,pΣwjj.

Assume that for the samples we collect mini,h∈H |∂2f(⟨wi,β
∗ + h⟩; y)| ≥ Mw

1 > 0. If that

n > 4(κw2 /κ
w
1 )

2k log p, then the RSC condition holds with τw =
Mw

1
2

(
κw1 − 2κw2

√
k log p
n

)2
with probability at least (1− c′1 exp(−c′2n)) for positive constants c′1 and c′2.

Remark 6: similar to the arguments after Lemma 4.2.3, the assumption in Lemma 4.2.4

that mini,h∈H |∂2f(⟨wi,β
∗ + h⟩; y)| ≥ Mw

1 > 0 should hold with high probability as wi’s

also follow multivariate normal distribution.

Theorem 4.2.3. Assume β∗ is k-sparse, then with probability at least {1−2p1−[ϕ1/2L2(σ2
x+σ

2
u)]−

2n(1−ϕ2/2nσ
2
u) − c′1 exp(−c′2n)} for positive constants c′1 and c′2, the difference between β̂w

and β∗ can be bounded in terms of L1 and L2 norms:

∥β̂w − β∗∥2 ≤
4
√
k

τw

(√
ϕ1 log p

n
+M2

√
ϕ2 log n

n
∥β∗∥1

)

∥β̂w − β∗∥1 ≤
8k

τw

(√
ϕ1 log p

n
+M2

√
ϕ2 log n

n
∥β∗∥1

)
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Theorem 4.2.4. (Sign Consistency) Let τw1 = 8k
τ

(√
ϕ1 log p
n + aM2

√
ϕ2 logn

n

)
where

∥β∗∥1 ≤ a and define a thresholded version of estimator as

β̃wj = β̂wj 1{|β̂wj | > τw1 }, j = 1, · · · , p

If the error bounds in Theorem 4.2.3 hold and minj∈s |β∗j | > 2τw1 , then signβ̃wj = signβ∗j .

4.3 Computations

4.3.1 Computational Algorithms

We propose to utilize Newton-Raphson type of method with first-order approximation to

the gradient function at each iteration. We assume β(m) to be our estimate at the m-th

iteration. Then through first-order Taylor expansion, we can obtain an approximation of

the gradient function around β(m) as

S(β) ≈ S(β(m)) +
∂S(β)

∂β

∣∣∣∣
β=β(m)

(β − β(m)) = Σ(m)β + ν(m)

where Σ(m) = ∂S(β)
∂β

∣∣∣
β=β(m)

= 1
n

∑n
i=1[∂

2f(⟨xi,β(m)⟩; yi)]xixTi and ν(m) = S(β(m)) −

Σ(m)β(m). Using this approximation, the computation turns into the problem of minimizing

∥β∥1 for β ∈ {β ∈ Rp : ∥Σ(m)β+ ν(m)∥∞ ≤ λ}, which translates into a linear programming

that can be solved by standard software. We formalize the linear programming problem

here:

min
b+,b−

1Tp (b
+ + b−)

such that b+ ≥ 0, b− ≥ 0,

Σ(m)(b+ − b−) ≤ λ1p − ν(m),

− Σ(m)(b+ − b−) ≤ λ1p + ν(m).
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where 1p denotes the vector of length p with entries all equal to 1. We obtain the estimation

of β at iteration m + 1 as β(m+1) = b̂+ − b̂−. Then we just repeat this process until

convergence.

As for the computation with noisy predictors, we need the approximation of the modified

score function Sw(β) around β(m) such that

Sw(β) ≈ Sw(β
(m)) +

∂Sw(β)

∂β

∣∣∣∣
β=β(m)

(β − β(m)) = Σ(m)
w β + ν(m)

w

where Σ
(m)
w = ∂Sw(β)

∂β

∣∣∣
β=β(m)

= 1
n

∑n
i=1[∂

2f(⟨wi,β
(m)⟩; yi)]wiw

T
i and ν

(m)
w = Sw(β

(m)) −

Σ
(m)
w β(m). And the computation turns into the problem of minimizing ∥β∥1 for β ∈ {β ∈

Rp : ∥Σ(m)
w β+ν

(m)
w ∥∞ ≤ λ+γ∥β∥1}, which can also be formalized as a linear programming

problem:

min
b+,b−

1Tp (b
+ + b−)

such that b+ ≥ 0, b− ≥ 0,

(Σ(m)
w − γJp)b

+ − (Σ(m)
w + γJp)b

− ≤ λ1p − ν(m)
w ,

− (Σ(m)
w + γJp)b

+ + (Σ(m)
w − γJp)b

− ≤ λ1p + ν(m)
w .

where Jp denotes the p by p square matrix with entries all equal to 1.

4.3.2 Parameter Tuning and Initialization

It is critical to tune the model parameters in order for the algorithm to perform optimally in

practice. For the parameters λ and γ involved in the confidence set, we can conduct a cross

validation (CV) procedure on a selected grid of candidate values. The evaluation criterion

for the CV procedure can either be the mis-classification rate on the testing samples, or the

deviance for likelihood-based loss functions, such as the logistic loss.

There is one specific parameter, σ2, for the smooth hinge loss function. When σ2 is equal to

0, the smooth hinge loss is exactly the original hinge loss. As σ2 increases, the corresponding

smooth hinge loss function gets further away from the original hinge loss. If σ2 becomes too
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large, it would dominant the loss function and cause it to lose distinguishing power. On the

other hand, if σ2 gets too close to 0 and resembles the original hinge loss, it would be very

unstable when the inner product of x and β is around zero, which can lead to ill condition

for the linear programming algorithm in the computation. Given all these considerations,

we want to pick a value for σ2 which is neither too large nor too small. We choose σ2 equal

to 1, 2 and 4 in our empirical experiments, which provide stable estimations.

A warm start for the computational algorithm is also critical here for our methods. In

our empirical experiments, we have found that the algorithm may not converge to a fixed

point but rather jump between two positions if we start the algorithm from a random point,

such as a vector of all zeros. A good starting point is not difficult to obtain for the binary

classification problem. We can use the estimate from the lasso regression, or the generalized

Dantzig selector.

4.4 Simulations

We examine the empirical performance of our proposed method in several different scenarios

of binary classification problem that is subject to measurement errors, and also compare with

other competing methods including logistic regression with L1-norm penalty (‘L1logistic’),

L1-norm SVM, GDS and GMUS. These competing methods are realized through R packages

including glmnet (Friedman et al., 2010), penalizedSVM (Becker et al., 2009) and hdme

(Sørensen et al., 2018). We denote our proposed methods as matrix uncertainty classifier

(MUC). We test MUC with logistic loss (‘MUC.logistic’) and with smooth hinge loss at

different σ2 settings of 1 and 4 (‘MUC.smhinge1’, ‘MUC.smhinge4’).

We consider three data generation schemes, which are presented in details below.

• Scheme 1: P (y = 1) = P (y = 0) = 0.5, x|(y = 1) ∼ Np(µ,Σ), x|(y = 0) ∼

Np(−µ,Σ), µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0, · · · , 0)T ∈ Rp, Σ = (σij) where σij = 1

for i = j, σij = −0.2 for 1 ≤ i ̸= j ≤ 5 and σij = 0 otherwise. Set β0 =

(1.39, 1.47, 1.56, 1.65, 1.74, 0, · · · , 0)T ∈ Rp such that the Bayes rule of sign(xTβ0)



141

has Bayes error 6.3%.

• Scheme 2: x ∼ Np(0p,Σ), Σ = (σij) where σij = 0.4|i−j| for 1 ≤ i, j ≤ p, β0 =

(1.1, 1.1, 1.1, 1.1, 1.1, 0, · · · , 0)T ∈ Rp, P (y = 1|x) = Φ(xTβ0) where Φ(·) denotes the

cumulative density function of centered t-distribution with degree of freedom 2.

• Scheme 3: x ∼ Np(0p,Σ), Σ = (σij) where σij = 0.4|i−j| for 1 ≤ i, j ≤ p, β0 =

(1.1, 1.1, 1.1, 1.1, 1.1, 0, · · · , 0)T ∈ Rp, P (y = 1|x) = [1 + exp(−xTβ0)]−1.

Scheme 1 and 2 are adapted from experiments in Peng et al. (2016). Scheme 1 resembles

the linear discriminate analysis (LDA). Scheme 2 is based on a robit regression framework

(Liu, 2004), while Scheme 3 is in a typical logistic regression setting. In all three schemes,

the predictors are designed to be correlated to certain degree. We also generate the error-

prone predictors as w = x + u where u ∼ Np(0p, σ
2
uIp). All methods use the error-prone

predictors in the estimation procedure instead of the true predictors x’s. We set the training

and testing sample sizes both at n = 100 and the total number of predictors at p = 1000.

We consider four levels of standard deviation σu for the measurement errors at 0.3, 0.4, 0.5

and 0.6.

The performance of the competing methods are evaluated by variable selection accuracy

measured by number of false negatives (‘β.FN’) and number of false positives (‘β.FP’)

and estimation error in L1 norm (‘β.L1err’) on the regression coefficients, as well as the

Matthews correlation coefficient (‘y.MCC’), classification accuracy (‘y.Accu’), sensitivity

(‘y.SE’), specificity (‘y.SP’), precision (‘y.Prec’), recall (‘y.Recall’), F1 score (‘y.F1’) on the

testing samples.

Tables 4.1 through 4.3 summarize the results from our proposed methods and all the com-

peting methods evaluated by the performance metrics. In general, the methods ignoring the

measurement errors including ‘L1logistic’, L1-norm SVM and GDS have worse performance

compared to the methods with noise correction strategy including GMUS and our MUC

methods. The difference is most obvious on the number of false positives and L1-norm

error in the estimated regression coefficients, which has been supported by the fact that

there is risk of admitting many false positives when ignoring measurement errors in the es-
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timation (Sørensen et al., 2015). On the other hand, among the methods with strategy on

noise correction, our MUC method with smooth hinge loss has generally better performance

compared to GMUS method, and even advantage over MUC method with logistic loss in

cases including Scheme 3 where the data generation follows logistic regression. When the

data is generated with a different framework, like LDA in Scheme 1 or robit regression in

Scheme 2, then the MUC with smooth hinge loss is shown to be more flexible and able to

provide better performance.

Table 4.1: Results from Simulation Scheme 1 with LDA data generation

β.FN β.FP β.L1err y.MCC y.Accu y.SE y.SP y.Prec y.Recall y.F1

σu = 0.3

L1logistic 1 15 8.651 0.476 0.734 0.713 0.753 0.751 0.713 0.722
L1SVM 1 34 9.464 0.368 0.684 0.673 0.691 0.694 0.673 0.678
GDS 2 9 7.576 0.467 0.728 0.690 0.764 0.758 0.690 0.708
GMUS 2 7 7.478 0.449 0.716 0.681 0.750 0.747 0.681 0.685
MUC.logistic 2 2 7.513 0.465 0.733 0.728 0.737 0.734 0.728 0.729
MUC.smhinge1 2 2 7.526 0.476 0.739 0.731 0.745 0.741 0.731 0.734
MUC.smhinge4 2 2 7.527 0.457 0.729 0.726 0.732 0.731 0.726 0.727

σu = 0.4

L1logistic 2 8 8.033 0.435 0.713 0.719 0.708 0.712 0.719 0.706
L1SVM 2 36 9.665 0.305 0.649 0.634 0.669 0.650 0.634 0.636
GDS 2 7 7.604 0.428 0.707 0.713 0.702 0.710 0.713 0.697
GMUS 2 5 7.463 0.441 0.711 0.716 0.705 0.720 0.716 0.700
MUC.logistic 3 0 7.567 0.401 0.701 0.706 0.696 0.698 0.706 0.698
MUC.smhinge1 2 2 7.511 0.433 0.716 0.722 0.712 0.707 0.722 0.712
MUC.smhinge4 2 1 7.463 0.433 0.717 0.706 0.728 0.713 0.706 0.708

σu = 0.5

L1logistic 2 18.0 9.205 0.409 0.700 0.703 0.697 0.694 0.703 0.686
L1SVM 2 33.5 9.737 0.290 0.644 0.662 0.628 0.626 0.662 0.638
GDS 2 10.5 7.812 0.376 0.675 0.721 0.639 0.678 0.721 0.687
GMUS 2 4.0 7.663 0.384 0.678 0.724 0.644 0.682 0.724 0.683
MUC.logistic 3 1.5 7.641 0.394 0.699 0.710 0.685 0.681 0.710 0.691
MUC.smhinge1 3 2.0 7.897 0.390 0.694 0.699 0.693 0.677 0.699 0.685
MUC.smhinge4 3 0.5 7.631 0.389 0.692 0.713 0.677 0.675 0.713 0.689

σu = 0.6

L1logistic 2 16 9.133 0.324 0.657 0.653 0.660 0.671 0.653 0.647
L1SVM 2 37 9.900 0.241 0.621 0.602 0.636 0.631 0.602 0.611
GDS 2 11 8.039 0.351 0.672 0.638 0.697 0.703 0.638 0.653
GMUS 2 7 7.772 0.335 0.661 0.618 0.692 0.700 0.618 0.635
MUC.logistic 3 2 7.770 0.346 0.673 0.680 0.666 0.678 0.680 0.675
MUC.smhinge1 3 2 7.734 0.359 0.679 0.674 0.685 0.683 0.674 0.676
MUC.smhinge4 3 1 7.860 0.372 0.685 0.687 0.685 0.689 0.687 0.686
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Table 4.2: Results from Simulation Scheme 2 with robit data generation

β.FN β.FP β.L1err y.MCC y.Accu y.SE y.SP y.Prec y.Recall y.F1

σu = 0.3

L1logistic 0 6 5.137 0.536 0.763 0.781 0.749 0.767 0.781 0.766
L1SVM 1 33 7.055 0.409 0.704 0.710 0.699 0.705 0.710 0.704
GDS 0 6 4.863 0.539 0.762 0.770 0.760 0.780 0.770 0.762
GMUS 1 3 4.638 0.545 0.763 0.779 0.752 0.779 0.779 0.767
MUC.logistic 1 1 4.802 0.531 0.765 0.764 0.768 0.770 0.764 0.765
MUC.smhinge1 1 1 4.764 0.527 0.763 0.762 0.766 0.768 0.762 0.762
MUC.smhinge4 1 1 4.507 0.540 0.769 0.774 0.767 0.772 0.774 0.770

σu = 0.4

L1logistic 0 3.0 5.179 0.502 0.744 0.728 0.764 0.758 0.728 0.730
L1SVM 1 33.0 7.105 0.331 0.665 0.659 0.671 0.659 0.659 0.655
GDS 1 3.0 4.747 0.520 0.752 0.747 0.762 0.765 0.747 0.742
GMUS 1 0.5 4.736 0.512 0.745 0.732 0.763 0.769 0.732 0.731
MUC.logistic 2 0.0 4.862 0.508 0.754 0.767 0.741 0.740 0.767 0.752
MUC.smhinge1 1 0.0 4.766 0.522 0.760 0.775 0.747 0.746 0.775 0.759
MUC.smhinge4 2 0.0 4.594 0.504 0.752 0.765 0.739 0.737 0.765 0.750

σu = 0.5

L1logistic 1 3.0 5.296 0.485 0.735 0.756 0.715 0.741 0.756 0.736
L1SVM 2 34.0 7.296 0.331 0.664 0.674 0.654 0.667 0.674 0.664
GDS 1 5.5 5.018 0.493 0.741 0.764 0.717 0.744 0.764 0.744
GMUS 1 2.5 4.884 0.497 0.742 0.761 0.721 0.747 0.761 0.743
MUC.logistic 2 0.0 4.977 0.493 0.746 0.759 0.733 0.745 0.759 0.750
MUC.smhinge1 2 0.0 4.839 0.491 0.746 0.753 0.737 0.745 0.753 0.747
MUC.smhinge4 2 0.0 4.740 0.488 0.744 0.754 0.734 0.743 0.754 0.746

σu = 0.6

L1logistic 1 5 5.361 0.426 0.710 0.668 0.740 0.735 0.668 0.684
L1SVM 2 34 7.390 0.278 0.639 0.627 0.648 0.637 0.627 0.627
GDS 1 10 5.545 0.413 0.706 0.648 0.751 0.735 0.648 0.686
GMUS 2 1 5.148 0.390 0.690 0.615 0.750 0.744 0.615 0.658
MUC.logistic 2 0 5.230 0.409 0.705 0.706 0.702 0.697 0.706 0.699
MUC.smhinge1 2 1 5.139 0.418 0.709 0.719 0.697 0.698 0.719 0.707
MUC.smhinge4 2 1 5.067 0.406 0.704 0.699 0.706 0.698 0.699 0.696
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Table 4.3: Results from Simulation Scheme 3 with logistic data generation

β.FN β.FP β.L1err y.MCC y.Accu y.SE y.SP y.Prec y.Recall y.F1

σu = 0.3

L1logistic 1 10 5.722 0.558 0.774 0.775 0.774 0.775 0.775 0.767
L1SVM 1 34 7.283 0.387 0.690 0.703 0.680 0.682 0.703 0.686
GDS 1 5 4.928 0.566 0.775 0.787 0.764 0.775 0.787 0.769
GMUS 1 2 4.770 0.556 0.767 0.777 0.759 0.775 0.777 0.759
MUC.logistic 2 1 4.857 0.557 0.778 0.780 0.778 0.769 0.780 0.773
MUC.smhinge1 2 0 4.874 0.554 0.776 0.781 0.774 0.767 0.781 0.772
MUC.smhinge4 2 0 4.624 0.554 0.776 0.778 0.776 0.768 0.778 0.771

σu = 0.4

L1logistic 1.0 3.0 4.992 0.534 0.764 0.751 0.776 0.775 0.751 0.755
L1SVM 1.0 33.0 7.186 0.356 0.678 0.665 0.689 0.678 0.665 0.668
GDS 1.0 7.0 4.972 0.541 0.768 0.756 0.777 0.777 0.756 0.758
GMUS 1.0 1.0 4.781 0.526 0.758 0.742 0.773 0.776 0.742 0.746
MUC.logistic 1.5 0.0 4.846 0.515 0.757 0.762 0.754 0.753 0.762 0.755
MUC.smhinge1 2.0 0.5 4.800 0.508 0.754 0.758 0.751 0.750 0.758 0.752
MUC.smhinge4 2.0 0.0 4.541 0.530 0.765 0.769 0.762 0.761 0.769 0.763

σu = 0.5

L1logistic 1 11 6.009 0.443 0.718 0.705 0.726 0.736 0.705 0.707
L1SVM 2 34 7.370 0.320 0.660 0.642 0.677 0.670 0.642 0.652
GDS 1 9 5.289 0.467 0.729 0.717 0.734 0.748 0.717 0.717
GMUS 1 3 5.056 0.447 0.715 0.701 0.723 0.745 0.701 0.696
MUC.logistic 2 0 5.055 0.463 0.732 0.722 0.740 0.741 0.722 0.730
MUC.smhinge1 2 1 4.901 0.472 0.736 0.735 0.736 0.742 0.735 0.736
MUC.smhinge4 2 1 4.872 0.482 0.741 0.728 0.753 0.752 0.728 0.738

σu = 0.6

L1logistic 1 6 5.566 0.446 0.714 0.728 0.705 0.712 0.728 0.705
L1SVM 1 36 7.343 0.343 0.668 0.689 0.650 0.655 0.689 0.665
GDS 1 7 5.246 0.452 0.718 0.736 0.704 0.715 0.736 0.712
GMUS 2 2 5.029 0.419 0.699 0.718 0.683 0.711 0.718 0.688
MUC.logistic 2 0 5.155 0.432 0.716 0.710 0.722 0.705 0.710 0.705
MUC.smhinge1 2 1 5.042 0.441 0.720 0.725 0.716 0.705 0.725 0.713
MUC.smhinge4 2 1 5.019 0.444 0.721 0.714 0.729 0.711 0.714 0.710
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4.5 Real Data Application

We test the classification performance of our proposed methods and the competing methods

using the training and validation datasets from the Connectomics in NeuroImaging Transfer

Learning Challenge (CNI-TLC) (Schirmer et al., 2021). Their training dataset includes 100

children diagnosed with attention deficit hyperactivity disorder (ADHD) and another 100

children as neurotypical controls. The validation dataset includes additional 20 children

with ADHD and 20 children as controls. We combine these 240 samples and randomly split

them into two parts: first part with 216 children’s data to train the models and obtain

estimated coefficients, second part with the rest 24 children’s data as testing samples to

evaluate the classification accuracy of the models.

For each child in the training and validation datasets, resting-state functional magnetic

resonance imaging (rs-fMRI) time series are provided in the Craddock200 parcellation with

200 regions of interests (ROIs) (Craddock et al., 2012). We first compute the correlation

matrix of the rs-fMRI time series for each child. Then the partial correlation matrix is

obtained by finding a sparse inverse of the correlation matrix at a certain density level. The

sparse inverse matrix is calculated using R package QUIC with specified ρ parameter (Hsieh

et al., 2011). Finally, the vectorized lower diagonal part of the partial correlation matrix, or

we call it the edge set, is fed into the models as predictors after removing the edges whose

standard deviation across the training dataset is below 0.03.

Table 4.4 summarizes the misclassification rates on the testing samples, where the low-

est rate is obtained with the proposed ‘MUC.logistic’ method and followed closely by the

‘MUC.smhinge4’ method. Table 4.4 also includes the number of selected edges from all

methods. All four edges selected by the ‘MUC.smhinge4’ as well as the GMUS method are

included in the eight selected edges of the ‘MUC.logistic’ method, and these eight edges are

included in the selections of the ‘MUC.smhinge1’ method. In addition, all of the 15 edges

selected by ‘MUC.smhinge1’ are also selected by the GDS method and the L1SVM method.

By observing the extremely large number of selected edges by L1SVM and GDS methods, it

is reasonable to assume that they may have admitted excessive false positive edges. Finally,
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we note that the ‘L1logistic’ method has the second highest misclassification rate, and its

selection of edges is quite different from all other methods, indicating a bad performance.

Table 4.4: Summary on the CNI-TLC Analysis

Misclassification rate Number of selected edges

L1logistic 0.375 90
L1SVM 0.375 127
GDS 0.458 79
GMUS 0.292 4
MUC.logistic 0.167 8
MUC.smhinge1 0.250 15
MUC.smhinge4 0.208 4

We further provide the four edges selected by all our proposed methods here in Table 4.5.

The atypical functional connectivity from these edges in the ADHD population have been

hinted in the literature (Cherkasova and Hechtman, 2009; Vance et al., 2007; Rolls et al.,

2021; Fair et al., 2010).

Table 4.5: Four Selected Edges with Region Location Information

Edge information Related region information

Edge between Region 32: Temporal pole: middle temporal gyrus, right
region 32 & 140 Region 140: Middle temporal gyrus, right

Edge between Region 38: Middle frontal gyrus, right
region 38 & 132 Region 132: Superior parietal gyrus, right

Edge between Region 44: Calcarine, right
region 44 & 195 Region 195: Lingual gyrus, right

Edge between Region 140: Middle temporal gyrus, right
region 140 & 166 Region 166: Angular gyrus, right

4.6 Appendices

In this section, we will provide the detailed proofs of the theoretical results.
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4.6.1 Proof of Lemma 4.2.1

Proof. From the definition of the confidence set C, we know it is equivalent to prove that

P (∥S(β∗)∥∞ > λ) ≤ 2p1−(ϕ/2L2σ2
x). By the union bound, we have that

P (∥S(β∗)∥∞ > λ) ≤
p∑
j=1

P

(
1

n

∣∣∣∣ n∑
i=1

∂f(⟨xi,β∗⟩; yi)xij
∣∣∣∣ > λ

)

As xi follows multivariate normal with mean 0 and covariance Σ, we know that xij is sub-

Gaussian with parameter σ2x such that P (|xij | > t) ≤ 2 exp(− t2

2σ2
x
). Also from the assump-

tion that loss function f(·, y) is L-Lipschitz continuous, we have that |∂f(⟨xi,β∗⟩; yi)| ≤ L.

Thus

P
(
|∂f(⟨xi,β∗⟩; yi)xij | > λ

)
≤ P

(
|xij | >

λ

L

)
≤ 2 exp

(
− λ2

2L2σ2x

)
By the definition of β∗, we know that E{∂f(⟨xi,β∗⟩; yi)xij} = 0. Combining these two

results we know that ∂f(⟨xi,β∗⟩; yi)xij is sub-Gaussian with parameter L2σ2x. Then with

the independence of ∂f(⟨xi,β∗⟩; yi)xij for i = 1, · · · , n, we have that

P

(
1

n

∣∣∣∣ n∑
i=1

∂f(⟨xi,β∗⟩; yi)xij
∣∣∣∣ > λ

)
≤ 2 exp

(
− λ2

2L2σ2x

)

Then by the union bound result and that λ =
√

ϕ log p
n , we have that

P (∥S(β∗)∥∞ > λ) ≤ 2p exp
(
− λ2

2L2σ2x

)
= 2p1−(ϕ/2L2σ2

x)

4.6.2 Proof of Lemma 4.2.2

Proof. As we assume that β∗ lies in the confidence set C, then by the definition of β̂ we have

that ∥β̂∥1 ≤ ∥β∗∥1. Also we know that ∥β̂∥1 = ∥β̂s∥1 + ∥β̂sc∥1 and that ∥β∗∥1 = ∥β∗
s∥1.

Thus we have ∥β̂s∥1 + ∥β̂sc∥1 ≤ ∥β∗
s∥1 which means that ∥β̂sc∥1 ≤ ∥β∗

s∥1 − ∥β̂s∥1.

From the definition ĥ = β̂ − β∗, we know that ∥ĥsc∥1 = ∥β̂sc∥1, and by the triangle
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inequality that ∥ĥs∥1 = ∥β̂s−β∗
s∥1 ≥ ∥β∗

s∥1 −∥β̂s∥1. Thus comparing with the result that

∥β̂sc∥1 ≤ ∥β∗
s∥1 − ∥β̂s∥1, we have ∥ĥsc∥1 ≤ ∥ĥs∥1.

4.6.3 Proof of Lemma 4.2.3

Proof. By second-order Taylor expansion, we know that

L(β∗ + h)− L(β∗)− ⟨S(β∗),h⟩ = 1

2n

n∑
i=1

∂2f
(
⟨β∗,xi⟩+ ν⟨h,xi⟩

)
⟨h,xi⟩2, ν ∈ [0, 1]

With the assumption that mini,h∈H |∂2f(⟨xi,β∗+h⟩; y)| ≥M1 > 0, and we also know that

νh ∈ H given h ∈ H, thus we have

L(β∗ + h)− L(β∗)− ⟨S(β∗),h⟩ ≥ M1

2

[ 1
n

n∑
i=1

⟨h,xi⟩2
]
=
M1

2

(∥Xh∥2√
n

)2

where X = (x1, · · · ,xn)T . Based on Theorem 1 of Raskutti et al. (2010),

∥Xh∥2√
n

≥ κ1∥h∥2 − κ2

√
log p

n
∥h∥1

with probability at least (1 − c1 exp(−c2n)). Then for h ∈ H, ∥ĥ∥1 = ∥ĥs∥1 + ∥ĥsc∥1 ≤

2∥ĥs∥1 ≤ 2
√
k∥ĥs∥2 = 2

√
k∥ĥ∥2 by the triangle inequality. Thus ∥Xh∥2√

n
≥
(
κ1−2κ2

√
k log p
n

)
∥h∥2

for h ∈ H. Combining with the results above will lead us to the statement.

4.6.4 Proof of Theorem 4.2.1

Proof. As the loss function is convex and admits first-order derivative, we have that

f(⟨xi,β∗+ ĥ⟩; yi)− f(⟨xi,β∗⟩; yi) ≥ ∂f(⟨xi,β∗+ ĥ⟩; yi)⟨xi, ĥ⟩ = ⟨∂f(⟨xi,β∗+ ĥ⟩; yi)xi, ĥ⟩
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Then we have that

L(β∗ + ĥ)− L(β∗) =
1

n

n∑
i=1

f(⟨xi,β∗ + ĥ⟩; yi)−
1

n

n∑
i=1

f(⟨xi,β∗⟩; yi)

≥ 1

n

n∑
i=1

⟨∂f(⟨xi,β∗ + ĥ⟩; yi)xi, ĥ⟩ = ⟨S(β∗ + ĥ), ĥ⟩

Then if we assume that β∗ ∈ C and that ĥ satisfies the RSC condition, which is with

probability at least [1− 2p1−(ϕ/2L2σ2
x) − c1 exp(−c2n)], then we have that

τ∥ĥ∥22 ≤ ⟨S(β∗ + ĥ), ĥ⟩ − ⟨S(β∗), ĥ⟩

≤ ∥S(β∗ + ĥ)− S(β∗)∥∞∥ĥ∥1

≤ (∥S(β∗ + ĥ)∥∞ + ∥S(β∗)∥∞)∥ĥ∥1 (as β∗, β̂ ∈ C)

≤ 2λ∥ĥ∥1

From Lemma 4.2.2 and the triangle inequality, we also have that ∥ĥ∥1 = ∥ĥs∥1 + ∥ĥsc∥1 ≤

2∥ĥs∥1 ≤ 2
√
k∥ĥs∥2 = 2

√
k∥ĥ∥2. Combined with the results above, we have that τ∥ĥ∥22 ≤

2λ∥ĥ∥1 ≤ 4
√
kλ∥ĥ∥2. Then we are led to the result that

∥ĥ∥2 ≤
4
√
kλ

τ
=

4

τ

√
ϕk log p

n

Applying ∥ĥ∥1 ≤ 2
√
k∥ĥ∥2 again, we are led to the result that

∥ĥ∥1 ≤
8k

τ

√
ϕ log p

n

4.6.5 Proof of Theorem 4.2.2

Proof. For j ∈ sc, we have β∗j = 0. Then |β̂j | = |β̂j − β∗j | < ∥ĥ∥1 ≤ τ1. Thus β̃j = 0 and we

have signβ̃j = signβ∗j = 0.

For j ∈ s, we also have |β̂j −β∗j | < ∥ĥ∥1 ≤ τ1. Combined with that |β∗j | > 2τ1, then we also
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have signβ̃j = signβ∗j .

4.6.6 Proof of Lemma 4.2.4

Proof. By first-order Taylor expansion, we have

∂f(⟨wi,β
∗⟩; yi) = ∂f(⟨xi,β∗⟩; yi) + ∂2f(⟨w∗

i ,β
∗⟩; yi)⟨ui,β⟩

where w∗
i = xi + κiui, κi ∈ [0, 1]. Then we can rewrite Sw(β

∗) as

Sw(β
∗) = (1/n)

n∑
i=1

[
∂f(⟨xi,β∗⟩; yi) + ∂2f(⟨w∗

i ,β
∗⟩; yi)⟨ui,β∗⟩

]
wi

= (1/n)
n∑
i=1

∂f(⟨xi,β∗⟩; yi)wi + (1/n)
n∑
i=1

∂2f(⟨w∗
i ,β

∗⟩; yi)⟨ui,β∗⟩wi

As wi follows multivariate normal distribution with mean 0 and covariance (Σx+Σu) with

∥Σx + Σu∥op ≤ σ2x + σ2u. Then using similar arguments to those in Lemma 4.2.1, we can

have that P (∥(1/n)
∑n

i=1 ∂f(⟨xi,β∗⟩; yi)wi∥∞ > λ) ≤ 2p1−[ϕ1/2L2(σ2
x+σ

2
u)].

We denote U = (u1, · · · ,un)T . Then

∥∥∥(1/n) n∑
i=1

∂2f(⟨w∗
i ,β

∗⟩; yi)⟨ui,β∗⟩wi

∥∥∥
∞

≤M2

∥∥∥ 1
n

n∑
i=1

⟨ui,β∗⟩wi

∥∥∥
∞

=M2

∥∥∥ 1
n
W TUβ∗

∥∥∥
∞

Note that by Cauchy-Schwartz inequality and that W has been standardized such that∥∥∥w(j)

∥∥∥
2
=

√
n for j = 1, · · · , p

∥∥∥ 1
n
W TUβ∗

∥∥∥
∞

=
1

n
max
1≤j≤p

∣∣∣wT
(j)Uβ∗

∣∣∣
≤ 1

n
∥Uβ∗∥2 max

1≤j≤p

∥∥∥w(j)

∥∥∥
2

=
1√
n
∥Uβ∗∥2

≤ ∥Uβ∗∥∞

≤ ∥U∥∞∥β∗∥1
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From the distribution assumption on ui’s and by the union bound, we have that

P

(
∥U∥∞ >

√
ϕ2 log n

n

)
≤

n∑
i=1

P

(
∥ui∥∞ >

√
ϕ2 log n

n

)
≤ 2n exp

(
−ϕ2 log n

2nσ2u

)
= 2n(1−ϕ2/2nσ

2
u)

Putting together the results above, we have β∗ satisfies ∥Sw(β∗)∥∞ ≤
√

ϕ1 log p
n +M2

√
ϕ2 logn

n ∥β∗∥1

with probability at least {1− 2p1−[ϕ1/2L2(σ2
x+σ

2
u)] − 2n(1−ϕ2/2nσ

2
u)}.

4.6.7 Proof of Lemma 4.2.5

Proof is similar to that of Lemma 4.2.3 by replacing xi’s with wi’s.

4.6.8 Proof of Theorem 4.2.3

Proof is similar to that of Theorem 4.2.1.

4.6.9 Proof of Theorem 4.2.4

Proof is similar to that of Theorem 4.2.2.
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