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Abstract 
 

Application of high-resolution metabolomics in the CHDWB cohort to identify biological 
pathways perturbed by traffic-related air pollution 

 
By Zhenjiang Li 

 
 

 
 
Purpose 

To identify metabolic perturbations associated with short-term exposures to ambient 
traffic-related air pollutants (TRAP), including carbon monoxide (CO), nitrogen dioxide 
(NO2), ozone (O3), fine particulate matter (PM2.5), organic carbon (OC), and elemental 
carbon (EC) among a subset of participants in the Center for Health Discovery and Well-
Being (CHDWB), a cohort of Emory University employees. 
Methods 

A cross-sectional study was conducted on baseline visits of 180 CHDWB participants 
whose plasma samples that had undergone untargeted high-resolution metabolomics 
(HRM) profiling using liquid chromatography-high-resolution mass spectrometry with 
positive and negative electrospray ionization modes. Ambient pollution concentrations 
were measured at an ambient monitor near downtown Atlanta and assigned to each 
participant according to their date of visit. Metabolic variations associated with pollution 
exposures were assessed following a metabolome-wide association study framework, 
considering both Tobit models and regular multiple linear regression models with 
adjustment of temporal covariates to identify significant metabolic features. Enriched 
biological pathways, i.e., those perturbed by pollution, were then identified by 
Mummichog. 
Results 

The study population was predominantly white (76.1%) and non-smokers (95.6%). 
All participants has at least a high school education. In total, 7,821 and 4,123 metabolic 
features were extracted from the plasma samples by the negative and positive ion mode 
runs, respectively. After removing features present in less than 10% of participants, 
7,106 and 3,628 remains. Biological pathways enriched by metabolic features 
associated with the pollutants of interest primarily pertained to nucleotide metabolism 
(e.g., pyrimidine metabolism, which was associated with CO, NO2, EC, and OC), lipid 
metabolism, and amino acid metabolism. NO2 and EC were associated most 
consistently with these pathways.  
Conclusions 

We identified a range of ambient pollutants, including components of TRAP, 
associated with changes to the metabolic phenotype among the cohort. The results 
demonstrate the use of HRM as a viable platform for untargeted characterization of 
molecular mechanisms underlying exposure to TRAP. 
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Introduction 

Outdoor air pollution is an important environmental risk factor for human health all 

over the world (Lelieveld, Evans, Fnais, Giannadaki, & Pozzer, 2015), and traffic-related 

air pollution (TRAP) from motor vehicles is the main contributor in urban areas 

(Greenbaum & CANCER, 2013). TRAP contains large quantities of carbon monoxide 

(CO), nitrogen dioxide (NO2), fine particulate matter [PM2.5, with components such as 

elemental carbon (EC), organic carbon (OC), and metals] which are emitted directly from 

vehicles via combustion processes and tire and brake wear, along with ozone (O3), a 

secondary by-product (Greenbaum & CANCER, 2013). The adverse health effects of 

TRAP and its main components has raised public concerns for decades. 

There has been substantial research investigating the effects of TRAP on respiratory 

and cardiovascular diseases, and a comprehensive systematic review of the literature 

was published in 2010 by the Health Effects Institute, a nonprofit corporation funded by 

the U.S. Environmental Protection Agency and the worldwide motor vehicle industry 

(Health Effects Institute, 2010). In epidemiological studies, TRAP and its components 

were found to be associated with cardiopulmonary morbidity and mortality, with impacts 

on stroke, asthma exacerbation, impaired lung function, and non-asthmatic respiratory 

allergy. Although the review found that a number of animal studies indicated several 

mechanistic pathways, such as systemic inflammation and DNA damage, linking TRAP 

and its components with cardiovascular and respiratory events, the underlying 

mechanisms in human body were poorly depicted due to difficulties in extrapolating from 

animal evidence to humans (Health Effects Institute, 2010). Furthermore, the 

epidemiological literature pointed to detrimental effects beyond the cardiovascular and 

respiratory systems, with observed associations of TRAP and its components with 

outcomes such as type 2 diabetes, preterm birth, and low birth weight (Brauer et al., 

2008; Brook, Jerreft, Brook, Bard, & Finkelstein, 2008; Kramer et al., 2010; Wilhelm et 
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al., 2011). Identifying biological mechanisms that regulate the effects of TRAP can 

inform causal inference and prevention, so it has been a priority to identify and 

characterize the internal biological pathways that link exposure to TRAP with clinical 

outcomes. Since the 2010 HEI review, progress has been made to better understand the 

nature of biological responses induced by exposure to TRAP. Systemic inflammatory 

markers, oxidative stress factors, and cell counts in blood have been the main endpoints 

measured in the more recent studies (Carvalho et al., 2018; Chiu et al., 2016; Golan et 

al., 2018; Jacobs et al., 2010; Krishnan et al., 2013; Kubesch et al., 2015; Sarnat et al., 

2014; Zuurbier et al., 2011). However, results from these studies are inconsistent likely 

due in part to differences in study design and exposure measurement. In addition to 

these studies, some researchers have employed plasma circulating microRNAs, whole 

blood RNA, or mitochondrial abundance to identify changes in gene expression following 

exposure to TRAP; the findings indicate some molecular mechanisms involved in the 

pathogenesis of multiple diseases, such as breast and lung cancers, and cardiovascular 

diseases (Chu et al., 2016; Krauskopf et al., 2018; Zhong et al., 2016). Overall, research 

to date provides increasing evidence indicating that TRAP can induce diverse biological 

responses in the human body, however the underlying mechanisms remain primarily 

inconclusive.  

High-resolution metabolomics (HRM) is an emerging quantitative method for 

comprehensive identification and quantitation of internal metabolites (e.g., present in a 

given biological media, such as blood or saliva). This method is providing new 

opportunities for epidemiologists to investigate the associations of external exposures 

with endogenous processes at the molecular level (Jones, Park, & Ziegler, 2012; Uppal 

et al., 2016). In most prior work, targeted methods have been used to identify and 

quantify a defined set of metabolites. In recent years, untargeted methods have been 

developed to maximize the detection of metabolite features in biological media and 
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research has leveraged these data for biomarker discovery or data-driven analysis of 

biological pathways perturbed due to some internal or external factor of interest (Uppal 

et al., 2016). For example, an untargeted metabolome-wide association study (MWAS) 

workflow has been developed, and used in a handful of studies to date, to distinguish 

statistically significant metabolites associated with the exposure to TRAP from tens of 

thousands of metabolic features detected (Jeong et al., 2018; Ladva et al., 2018; Liang 

et al., 2018; D. I. Walker et al., 2018). As part of the MWAS workflow, these studies have 

also employed methods to identify the biological pathways altered after exposure to 

TRAP (Jeong et al., 2018; Ladva et al., 2017; Ladva et al., 2018; Liang et al., 2018; 

Miller et al., 2016; Surowiec et al., 2016; van Veldhoven et al., 2019; Vlaanderen et al., 

2017; D. I. Walker et al., 2018).  

Prior work on HRM and TRAP has used either a cross-over design in which 

participants served as their own matched controls (Miller et al., 2016; Surowiec et al., 

2016; van Veldhoven et al., 2019; D. I. Walker et al., 2018) or a panel study design 

(Ladva et al., 2017; Ladva et al., 2018; Liang et al., 2018; Vlaanderen et al., 2017); 

Jeong et al. conducted two nested case-control studies focusing on asthma and cardio-

cerebrovascular cases in Switzerland and Italy (Jeong et al., 2018). These studies have 

all been limited to less than 60 participant samples due to cost and practicality. The 

small sample sizes may have caused studies to be underpowered to detect some air 

pollution effects, and small participant numbers is likely to have affected the 

generalizability of findings to date.  

To expand on this growing body of research, we performed a cross-sectional study 

with a relatively large sample size of 180 participants. In the present study, we followed 

an MWAS workflow to identify the biological pathways perturbed by TRAP among 

participants at baseline in the Center for Health Discovery and Wellbeing (CHDWB) 

Cohort. The CHDWB Cohort at Emory University in Atlanta, Georgia, USA, was an 



4 

 

observational study designed to investigate the effects of clinical self-knowledge and 

health partner counseling (Tabassum et al., 2014). We applied HRM to 180 plasma 

samples collected at the baseline visit to obtain metabolic profiles and applied these 

data in epidemiologic analyses to identify metabolic features associated with short-term 

exposures to ambient CO, NO2, O3, PM2.5, elementary carbon (EC), and organic carbon 

(OC). Pathway enrichment analysis was conducted to identify biological pathways 

associated with significant metabolic features.  

Methods 

Study Design 

The present study was a cross-sectional design that included the baseline visits of a 

subset of participants in the CHDWB Cohort. Details of the cohort can be found 

elsewhere (Brigham, 2010; Rask, Brigham, & Johns, 2011; Tabassum et al., 2014). 

Briefly, the CHDWB Cohort was initiated in May 2008 and recruited employees of Emory 

University from 2008 to 2012. The participants were free of poorly controlled chronic 

diseases or acute illness at the time of recruitment. Basic demographics and plasma 

samples were collected during the clinical visit, along with tobacco and alcohol usage. A 

subset of 180 baseline visits were included in the current analysis, for participants whose 

plasma samples had previously undergone untargeted high-resolution metabolic profiling 

by the Clinical Biomarkers Laboratory at Emory University (Jin, Kang, & Yu, 2018). All 

participants provided informed consent, and the study was approved by the Emory 

University Institutional Review Board.  

Exposure Assessment 

For the study period (2008-2012), continuous measurements of CO, NO2, O3, PM2.5, 

EC, and OC were made at the Jefferson St. monitor, an ambient monitoring site near 

downtown Atlanta. The details of site information and measure methods can be found 

elsewhere (Hansen et al., 2006). Briefly, CO was measured continuously with 1-min 
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resolution using a TEI Model 48S NDIR analyzer. NO2 was not directly measured but 

converted photolytically from nitrogen monoxide (NO), and NO was measured 

continuously using a TEI Model 42ctl analyzer via chemiluminescence. O3 was 

measured by UV-based ozone analyzer. All trace gases were aggregated to the daily 

level and reported as daily 1-hr maximum values (for CO and NO2) or daily 8-hr 

maximum values (for O3). PM2.5 was measured continuously with an R&P Model 1400 

a/b tapered element oscillating microbalance (TEOM). OC and EC were measured using 

an R&P Model 5400 ambient particulate carbon monitor with 60-min resolution. PM2.5 

and its components were reported as daily 24-hr averages. The daily concentration of 

each pollutant was assigned to each participant according to the date of their baseline 

visit. Daily meteorological data were obtained from the Atlanta Hartsfield-Jackson 

International Airport. 

High-Resolution Metabolomics 

Analysis of the biological samples was accomplished by randomizing the de-

identified and blinded plasma samples into blocks of 20. Each analytical batch contained 

a pooled plasma sample that had been referenced against the NIST 1950 standard 

reference material. Sample preparation for mass spectral analyses included: 65 μL of 

plasma stored at -80°C was added to 130 μL of acetonitrile containing 3.5 μL mixture of 

14 stable isotope standards (Soltow et al., 2013). After mixing and incubation at 4°C for 

30 min, precipitated proteins were pelleted via centrifugation for 10 min at 4°C and 

14,100 × g. Following protein precipitation, triplicate 10 mL aliquots were analyzed by 

reverse-phase C18 liquid chromatography with Fourier transform mass spectrometry 

(Dionex Ultimate 3000, Q-Exactive, Thermo Scientific, Waltham, MA) operated in either 

negative or positive electrospray ionization mode. Having data from both modes should 

provide a more comprehensive profile of metabolism than data extracted from only one 

mode; compounds are ionized with different ionization efficiency between the positive 
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and negative ion mode, which results in varying sensitivity and detection limits (Liigand 

et al., 2017). A mass-to-charge (m/z) scan range of 85 to 1275 was used. Data from 

each analytical run was saved in both the .RAW format and converted to the .mzMl 

format using ProteoWizard. Then, metabolic profiles were extracted by apLCMS with 

modifications using the R package xMSanalyzer (Uppal et al., 2013). 

Date Analysis 

To prepare the HRM data for epidemiologic analysis, extracted metabolic features 

present in less than 10% of the participants were excluded. This was done in order to 

reduce the background noise generated by the measurement equipment (Alonso, 

Marsal, & Julia, 2015), and also as a means of focusing the analytic dataset to more 

common metabolites (e.g., endogenous metabolites that are common across people) in 

order to facilitate detection of biological pathways later in the analysis. 

Associations of air pollution with metabolic features were estimated following an 

untargeted MWAS workflow. Specifically, for each air pollutant-feature pair, Tobit 

regression models were conducted, controlling for potential temporal confounders. 

Although we filtered the features to remove those with less than 10% presence across 

participants, the analytic dataset still contained a large number of features with missing 

values (i.e., not all of the remaining features were present in all 180 participant plasma 

samples). The Tobit model was therefore used, as it is devised for situations where the 

dependent variable is censored at a specific nonnegative value (McBee, 2010). The 

basic form of the model was: 

𝑙𝑜𝑔(𝑌𝑖)∗ = 𝛽𝑖0 + 𝛽𝑖1 × 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 + 𝛽𝑖2 × 𝑦𝑒𝑎𝑟 + 𝛽𝑖3 × 𝑠𝑒𝑎𝑠𝑜𝑛 + 𝛽𝑖4 × 𝑤𝑒𝑒𝑘𝑑𝑎𝑦 + 𝛽𝑖5

× 𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡_𝑡𝑒𝑚𝑝 + 𝛽𝑖6 × 𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡_𝑡𝑒𝑚𝑝2 + 𝜀𝑖 

{
𝑙𝑜𝑔(𝑌𝑖) = 𝑙𝑜𝑔(𝑌𝑖)∗                                                         𝑖𝑓 𝑙𝑜𝑔(𝑌𝑖) > 𝐿𝑂𝐷

𝑙𝑜𝑔(𝑌𝑖) = 𝐿𝑂𝐷                                                                𝑖𝑓 𝑙𝑜𝑔(𝑌𝑖) ≤ 𝐿𝑂𝐷 
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where 𝑌𝑖 refers to the observed intensity of metabolic feature i; 𝑙𝑜𝑔(𝑌𝑖)∗ refers to the 

latent log-transformed feature intensity; 𝛽𝑖1 refers to the coefficient for the air pollutant, 

indicating the change in feature intensity for a one unit increase in pollution, holding all 

other covariates as constant. Year (3-level: 2008, 2009, >2009), season (4-level: spring, 

summer, fall, winter), and weekday (5-level) were determined by the date of baseline 

visit. 𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡_𝑡𝑒𝑚𝑝 denotes the daily apparent temperature and was computed using 

the daily mean air temperature in combination with the daily mean dew point (Steadman, 

1984). We introduced a linear term and a quadratic term of apparent temperature into 

the model to account for the nonlinear relationship between apparent temperature and 

dependent variable. Results were visualized using Manhattan plots that displayed results 

for all features by pollutant, with the retention time of metabolic feature i on the x-axis 

against the −log10(p) for 𝛽𝑖1 on the y-axis. All analyses were performed in R (v.3.5.1).  

Biological pathways for significant metabolic features (i.e., meeting the p = 0.025 and 

p = 0.05 threshold in MWAS analyses for negative and positive ion modes, respectively) 

were identified using Mummichog (v.2.0.1) (Li, Dunlop, Jones, & Corwin, 2016). Different 

thresholds were implemented because the appropriate number (100-500) of features 

needed for Mummichog. A p-value for each pathway was generated by penalizing 

pathways with fewer significant metabolic features and assigning greater significance to 

pathways with more significant features. We excluded pathways with a p-value higher 

than 0.05 and those containing less than 3 significant metabolic features. 

MWAS analyses (and pathway enrichment analysis) were also performed using 

regular multiple linear regression (MLR) models as a sensitivity analysis. For MLR 

analyses, missing values (i.e., metabolic features missing for a given participant) were 

assigned the half of the minimum feature intensity (also defined as the limit of detection) 

observed across all metabolic features in the dataset (note that the Tobit model, given its 

design, does not require such imputation). Otherwise, the MLR model was constructed 
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similar to the Tobit model, with the same covariate control. The performance of MLR 

models was compared to that of Tobit models based on the total number of significant 

metabolic features detected for each pollutant, and based on comparisons of the unique 

significant features detected by the models relative to each feature’s percent presence 

among participants given the assumption that the significance of features with fewer 

missing values will be more robust across different statistical methods.  

Results 

Baseline information for the 180 participants is shown in Table 1. Three-quarters of 

the participants were over the age of 42, and 76.1% of them were white. Over half of 

participants had completed a graduate school or above. They predominantly were not 

current smokers (95.6%). Most baseline visits (95.0%) were conducted in 2008 and 

2009, and none of them was over the weekend.   

We extracted 7,821 metabolic features by negative ion mode and 4,123 by positive 

ion mode in plasma samples. After data filtering for removing features that were present 

in less than 10% of participants, the data contained 7,106 negative ion mode features 

and 3,628 positive ion mode features, respectively. We performed Tobit models for all 

pollutants of interest. Numbers of significant features for the pollutants are summarized 

in Table 2.  Different significant levels were used for negative ion mode (p-value < 0.025) 

and positive ion mode (p-value < 0.05) due to the requirement of the appropriate number 

of significant metabolic features for Mummichog. Figure 1 to 6 depict the results for each 

pollutant in Manhattan plots displaying the –log10 p values of each metabolic feature 

against its retention time.  

Pathway Enrichment Analysis 

We further performed pathway enrichment analyses and examined whether the 

features associated with the pollutants of interest co-occurred as enriched metabolites 

within specific metabolic pathways. Nineteen biological pathways associated with at 
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least one pollutant were identified (Figures 7 and 8). The significant pathways mainly 

pertain to nucleotide metabolism, lipid metabolism, and amino acid metabolism. There 

was no overlap in identified pathways between results of negative ion mode and positive 

ion mode analyses, which may be due to the differences in features identified by each 

mode. Pyrimidine metabolism was associated with the most pollutants, including 1-day 

lag concentrations of NO2, EC, and OC, and the moving average of 1-2 day lag 

concentrations of CO, NO2, EC, and OC. The 1-day lag concentration of NO2 was 

associated with seven biological pathways. The moving average concentration of EC 

was associated with nine pathways, six of which are involved in lipid metabolism.   

Sensitivity Analysis 

MLR models were performed to replace Tobit models as a sensitivity analysis. The 

results from MLR models are shown in Table S1 and Figures S1-S8 in the Appendix. 

The significant pathways identified with MLR models (Figures S7 and S8) were all 

contained within the results observed with Tobit models (Figures 7 and 8). We further 

compared the performance of these two modeling approaches types of models based on 

their identification of unique significant metabolic features (aligned on m/z values), and 

the distribution of those features with respect to their % presence among participants. As 

shown in Figures S9-S14, Tobit models identified more significant features with a 

presence of over 60% among participants than did MLR models; this was especially the 

case for features absent in only one or two participants (with a percentage of presence 

close to 100%).  

Discussion 

In the present study, we applied HRM to identify metabolic alterations associated 

with exposures to ambient CO, NO2, O3, PM2.5, OC, and EC in an adult Emory 

University-based employee cohort using a cross-sectional study design. We identified 

several biological pathways that were associated with one or multiple pollutants. These 
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pathways are involved in various biochemical processes in the human body, including 

nucleotide metabolism (pyrimidine metabolism and purine metabolism), amino acid 

metabolism (alanine and aspartate metabolism, and tyrosine metabolism), lipid 

metabolism (C21-steroid hormone biosynthesis and metabolism, fatty acid biosynthesis, 

and fatty acid metabolism, and carnitine shuttle), and metabolism of cofactors and 

vitamins (vitamin A metabolism) (Kanehisa & Goto, 2000). These biochemical processes 

are responsible for maintaining homeostasis and wellbeing in humans.  

Pyrimidine metabolism was associated with 1-day lag concentrations of NO2, EC, 

and OC, and the moving average of 1-2 day lag concentrations of CO, NO2, EC, and 

OC, respectively, among positive ion mode metabolic features. Purine metabolism was 

associated with 1-day lag concentration of OC. Pyrimidine and purine are heterocyclic 

aromatic organic compounds and serve as a critical part of DNA and RNA. DNA damage 

has been previously considered as a potential mechanism of adverse effects due to 

TRAP exposure (Baccarelli et al., 2009; Carvalho et al., 2018; Huang et al., 2012). For 

example, Carvalho et al. found that exfoliated buccal mucosa cells collected from 

professional motorcyclists presented a higher average frequency of micronuclei 

compared to those from office workers, which suggests elevated DNA damage 

associated with occupational exposure to TRAP (Carvalho et al., 2018). In that study, 

personal measures of NO2 and O3 had a strong positive correlation with micronuclei 

when analyzed individually (Carvalho et al., 2018). In Huang et al. (2012), the 

concentration of DNA strand breaks in blood samples collected from traffic conductors 

within half an hour after the work-shift was significantly higher than that among the office 

workers (Huang et al., 2012). In addition to DNA damage, gene expression changes due 

to TRAP exposure have also been studied. For example, blood DNA methylation was 

found to decrease in individuals with recent exposure to higher levels of ambient PM2.5 

and black carbon as well (Baccarelli et al., 2009). Krauskopf et al. identified changes of 
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gene expression profiles after exposure to TRAP by plasma circulating miRNA, which 

are involved in posttranscriptional regulation of gene expression (Krauskopf et al., 2018). 

And, Chu et al. employed gene expression network analyses based on whole blood RNA 

collected before and after work shift from trucking industry workers with regular 

exposures to TRAP and detected differentially expressed genes that have implicated a 

range of cellular responses and pathways such as oxidative stress responses and 

interferon-mediated in amatory responses to viral infection (Chu et al., 2016). Pyrimidine 

and purine metabolism were also reported as significant pathways with TRAP exposure 

in previous studies using untargeted metabolomics (Jeong et al., 2018; Liang et al., 

2018; D. I. Walker et al., 2018). Walker et al. found that pyrimidine metabolism and 

purine metabolism were associated with the long-term exposure to ultrafine particles 

(UFP) estimated by modeling in a community-based participatory cross-sectional study 

(D. I. Walker et al., 2018). Annual average exposure to NO2 was also associated with 

pyrimidine metabolism among patients with adult-onset asthma or cardio-

cerebrovascular diseases compared with healthy controls (Jeong et al., 2018). Liang et 

al. reported multiple ambient air pollutants, including black carbon, nitric oxide, and 

PM2.5, to be associated with purine metabolism among a panel of 54 college students 

living in dormitories located either near or far from a major highway (Liang et al., 2018). 

Our current results provide further evidence of NO2 and PM inducing variation in 

nucleotide metabolism as a mechanism of action.  

Lipid metabolism is central to the function of the human body; lipids serve not only as 

an energy source and building block for biological membranes, but they also serve as 

components of lipoproteins, fat-soluble vitamins, corticosteroid hormones, and mediators 

of electron transport (Gropper & Smith, 2012). We found that the moving average of 1-2 

day lagged EC was associated with several pathways involved in fatty acid biosynthesis 

and metabolism, including carnitine shuttle, de novo fatty acid biosynthesis, fatty acid 
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activation, fatty acid oxidation, and omega-6 fatty acid metabolism. For NO2 and PM2.5, 

1-day lag concentrations were associated with saturated fatty acid beta-oxidation. One-

day lag concentrations of CO was associated with the carnitine shuttle pathway. Fatty 

acids (FAs) are a type of simple lipids transported from tissue to tissue by lipoproteins 

and crucial as an energy nutrient, structural elements of membranes, and signaling 

molecules (Gropper & Smith, 2012). Human studies that have investigated the effect of 

exposure to TRAP on blood lipid profiles are scarce. Chen et al. employed blood 

measurements of total cholesterol, high-density lipoproteins-cholesterol (HDL-C), low-

density lipoproteins-C (LDL-C), and HDL-C-to-LDL-C among Mexican Americans and 

measured exposure to TRAP using NOx (Chen et al., 2016). Although no significant 

association was observed between TRAP and lipid measurements, they reported that 

short-term exposure to ambient PM2.5 was associated with a lower HDL-C-to-LDL-C 

ratio, and higher total cholesterol and LDL-C (Chen et al., 2016). Jiang et al. reported a 

significant higher level of LDL-C among subjects living within 50 m to the major road 

compared with those living more than 200 m, and no significance of total cholesterol and 

HDL-C were found (Jiang et al., 2016). Gouveia et al. compared the effect of controlled 

biodiesel exhaust exposure on circulating lipid metabolites to that of filtered air among 

healthy subjects using a randomized and double-blinded crossover study; the authors 

observed that the level of monohydroxy fatty acids was altered by biodiesel exhaust 

(Gouveia-Figueira et al., 2018). The potential protective effect of fish oil supplementation 

against pro-allergic sensitization effects of TRAP exposure was found among children 

who were randomized to fish oil supplementation or placebo (Hansell et al., 2018). In 

addition, an increasing body of evidence indicates that exposure to ambient PM can 

enhance the adverse effects on atherosclerotic processes, though the mechanisms 

underlying are undefined (Health Effects Institute, 2010). Atherosclerosis contributes a 

lot to cardiovascular diseases, and a large body of evidence has well established the 
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essential role of lipids and lipoproteins in atherosclerotic processes (Linton et al., 2019). 

Untargeted metabolomics allows researchers to characterize the metabolism profile of 

lipids more comprehensively, and previous MWAS studies also reported several lipid 

metabolism pathways (including fatty acid activation, de novo fatty acid biosynthesis, 

and carnitine shuttle) associated with air pollutants (Jeong et al., 2018; Miller et al., 

2016; D. I. Walker et al., 2018). Overall, our current results support these prior findings.  

Four significant pathways of amino acid metabolism were also identified in our study: 

tyrosine metabolism, histidine metabolism, tryptophan metabolism, and alanine and 

aspartate metabolism. Tyrosine, histidine, and tryptophan are aromatic amino acid and 

susceptible to the attack of reactive oxidative species (ROS) (Stadtman, 2006). ROS can 

mediate the conversion process of tyrosine residues to hydroxyl derivatives (for 

example, 3-nitrotyrosine), histidine residues to 2-oxohistidine and asparagine, and 

tryptophan residues to formyl-kynurenine and kynurenine (Stadtman, 2006). The 

oxidative modification of amino acid residues of proteins is involved in the etiology or 

progression of many diseases (Stadtman & Berlett, 1998). Moreover, 3-nitrotyrosine is 

used as a marker of oxidative stress, and Rossner reported a significantly higher level of 

3-nitrotyrosine in plasma among bus drivers compared with healthy volunteers spending 

most daily times indoors (Khan et al., 1998; Rossner et al., 2007). Histidine is a well-

known inflammatory agent involved in airway hyper-responsiveness (Juniper, Frith, & 

Hargreave, 1981). However, few studies have employed markers of protein oxidation to 

investigate the effect of TRAP on human body, and thus our current findings are unique 

and require confirmation by future studies.   

To the best of our knowledge, Tobit models have not been used before in addressing 

missing values in mass spectrometry-based metabolomics data. As such, we used MLR 

models with missing value imputation of half the minimum feature intensity as a 

sensitivity analysis. Replacing missing values by the half of the minimum of non-missing 
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values is commonly used and provided by almost all statistical packages and online 

toolkits, although limitations exist (e.g., distorting distributions) (Wei et al., 2018). We 

compared the performance of Tobit models with that of MLR models with the expectation 

that features with a high percent presence would be identified by both models (e.g., for 

MLR, these features would have little imputation) and that as percent presence 

decreases, the Tobit models would be able to identify more features than MLR models. 

As shown in Tables 2 and S1, in general, Tobit models identified more significant 

features than MLR models. However, Figures S9 to S14 suggest an opposite trend to 

our expectation that a number of features with a high percent presence were significant 

only in Tobit models. There are two possible reasons. Firstly, we used half of the 

minimum feature intensity of the whole dataset for imputation for MLR models. For 

features with high abundance and a high percent presence among participants, the 

relatively low imputated values may have been outliers which would severely distort the 

association between these features and exposures. Replacing missing values with half 

of the feature-specific minimum is an alternative method in this situation that could be 

considered in future work. Secondly, the p-values of the features that were uniquely 

significant in Tobit models were close to the significant threshold as well in MLR models. 

The difference was not so dramatic as showed by the significance we observed. Further 

analysis can be constructed to verify these two explanations.    

There are several limitations in the present study. First, metabolism exhibits diurnal 

variation. Diurnal changes of energy expenditure and intake distribution are associated 

with many factors, including time of day, amount of sleep, timing of meals, and light-dark 

cycles (Douglas I Walker, Go, Liu, Pennell, & Jones, 2016). Principal component 

analysis on averaged metabolic profiles according to time of sampling shows three time-

of-day patterns, morning, afternoon, and night (Park et al., 2009). Diurnal changes may 

influence intra-individual variation in response to TRAP, so the time of sampling should 
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be considered in interpretation of results. . Second, the exposure assessment in the 

current study was relatively simple and may not have been sufficiently accurate to 

observe associations of interest. Exposures were measured at one ambient monitoring 

site located near downtown Atlanta and assigned to participants living across the city. 

So, the spatial gradients in day-to-day pollutant concentrations were not captured. 

Exposures of participants living near highways may have been underestimated. 

Moreover, due to the lack of information on daily activities, we were not able to account 

for factors that may have affect participants’ daily exposures to ambient concentrations, 

such as time spent inside or outside. Finally, metabolic features were not annotated or 

identified in our study. This presents difficulties in the interpretation of results since with 

the pathway analysis that was conducted, it is not possible to determine which nodes in 

the metabolic pathways are primarily impacted and whether the biological processes are 

upregulated or downregulated, only that they are perturbed.  

Conclusions and Recommendations 

Despite these limitations, we identified a range of ambient pollutants, including 

components of TRAP, associated changes to the metabolic phenotype. The results 

demonstrate the use of HRM as a viable platform for untargeted characterization of 

molecular mechanisms underlying exposures to TRAP. The biological pathways 

identified are primarily involved in nucleotide metabolism, lipid metabolism, and amino 

acid metabolism. These results provide further evidence for the hypothesis that 

exposure to TRAP can induce biological effects on the human body via a range of 

mechanisms manifested by perturbed biological pathways, and oxidative stress is a 

plausible explanation due to the capacity of ROS to oxidize DNA, lipids, and proteins. 

Future work on HRM and air pollution in the CHDWB Cohort is planned that will utilize 

information from the repeated measures over the set of annual follow-up visits for each 

participant in the cohort. We anticipate that these data will provide a rich resource for 
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validating the underlying mechanisms associated with air pollution, when used in 

combination with more comprehensive exposure assessment and feature annotation 

(e.g., annotating compounds based upon physicochemical properties and/or spectral 

similarity with public spectral libraries) or identification (e.g., verifying compounds with 

authentic chemical standards analyzed under the same experimental conditions) 

(Sumner et al., 2007).     
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Tables and Figures 

Table 1. Participant characteristics and the temporal characteristics of baseline 

visits 

Characteristics Number Proportion (%) 

Age, years [median (Q1-Q3)] 51.0 (42-57) 

BMI, lb/in2 [median (Q1-Q3)] 26.4 (23.6-29.7) 

Race/ethnicity   

  White 137 76.1 

  Black 34 18.9 

  Other races a 9 5.0 

Gender   

  Female 113 62.8 

  Male 67 37.2 

Marital status   

  Married 117 65.0 

  Other statuses b 63 35.0 

Income   

  0-50,000 17 10.1 

  50,000-100,000 44 26.0 

  100,000-200,000 58 34.3 

  200,000+ 50 29.6 

  Missing 11  

Education   

  College and high school 78 43.3 

  Graduate school and above 102 56.7 

Smoking status   

  Non-smoker 172 95.6 

  Current smoker 8 4.4 

Drinking status   

  Yes 139 77.2 

  No 41 22.8 

Year of visit   

  2008 76 42.2 

  2009 95 52.8 

  Over 2009 9 5.0 
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Weekday of visit   

  Monday 39 21.7 

  Tuesday 37 20.6 

  Wednesday 40 22.2 

  Thursday 30 16.7 

  Friday 34 18.9 

Season of visit   

  Spring 29 16.1 

  Summer 63 35.0 

  Autumn 44 24.4 

  Winter 44 24.4 

a Other races includes American Indian or Alaskan Native and Asian. 

b Other statuses includes single, divorced, widowed, separated, and partnered. 
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Table 2. Number of significant metabolic features by negative and positive ion 

mode associated with lag 1 day (i.e., previous day) and the moving average of lag 

1-2 days pollution from Tobit models.  

Total number of features extracted Lag* Negative mode a Positive mode b 

CO L1 194 216 

 MA 225 173 

NO2 L1 354 338 

 MA 283 280 

O3 L1 311 245 

 MA 190 247 

PM2.5 L1 337 259 

 MA 287 244 

EC L1 264 208 

 MA 330 230 

OC L1 322 251 

 MA 236 254 

*L1, the exposure at lag 1 day; MA, the moving average of exposure at lag 1-2 days; EC, 

elemental carbon, OC, organic carbon. 

a Metabolic features were statistically significant with p-values less than 0.025.  

b Metabolic features were statistically significant with p-values less than 0.05.
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Figure 1. Manhattan plots of associations between log-transformed metabolic feature intensity and CO from Tobit models. 

X-axis denotes the retention time (in seconds), Y-axis denotes the negative log10 of the p-values calculated from the Tobit model. 

Blue triangles and red circles denote negative and positive associations, respectively.
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Figure 2. Manhattan plots of associations between log-transformed metabolic feature intensity and NO2 from Tobit models. 

X-axis denotes the retention time (in seconds), Y-axis denotes the negative log10 of the p-values calculated from the Tobit model. 

Blue triangles and red circles denote negative and positive associations, respectively. 
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Figure 3. Manhattan plots of associations between log-transformed metabolic feature intensity and O3 from Tobit models. X-

axis denotes the retention time (in seconds), Y-axis denotes the negative log10 of the p-values calculated from the Tobit model. Blue 

triangles and red circles denote negative and positive associations, respectively. 
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Figure 4. Manhattan plots of associations between log-transformed metabolic feature intensity and PM2.5 from Tobit models. 

X-axis denotes the retention time (in seconds), Y-axis denotes the negative log10 of the p-values calculated from the Tobit model. 

Blue triangles and red circles denote negative and positive associations, respectively. 
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Figure 5. Manhattan plots of associations between log-transformed metabolic feature intensity and EC from Tobit models. 

X-axis denotes the retention time (in seconds), Y-axis denotes the negative log10 of the p-values calculated from Tobit model. Blue 

triangles and red circles denote negative and positive associations, respectively. 
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Figure 6. Manhattan plots of associations between log-transformed metabolic feature intensity and OC from Tobit models. 

X-axis denotes the retention time (in seconds), Y-axis denotes the negative log10 of the p-values calculated from the Tobit model. 

Blue triangles and red circles denote negative and positive associations, respectively. 
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Biological pathways 
Negative ion mode  Positive ion mode 

CO NO2 O3 PM2.5 EC OC  CO NO2 O3 PM2.5 EC OC 

Pyrimidine metabolism 
      

 
      

Saturated fatty acids beta-oxidation 
      

 
      

Alanine and Aspartate Metabolism 
      

 
      

Alkaloid biosynthesis II 
      

 
      

C21-steroid hormone biosynthesis and metabolism 
      

 
      

Carnitine shuttle 
      

 
      

Nitrogen metabolism 
      

 
      

Purine metabolism 
      

 
      

Tyrosine metabolism 
      

 
      

Vitamin A (retinol) metabolism 
      

 
      

 

Figure 7. Metabolic pathways associated with 1-day lag pollution from Tobit models. Cells are shaded according to the 

magnitude of p-values derived from Tobit models. Pathways enriched by more than 2 annotated significant metabolic features were 

included and ordered according to the total number of the significant associations between pathways and pollutants by either 

negative or positive ion modes. 

  

P-values 0 0.0375 0.0125 0.05 0.025 



36 

 

Biological pathways 
Negative ion mode  Positive ion mode 

CO NO2 O3 PM2.5 EC OC  CO NO2 O3 PM2.5 EC OC 

Pyrimidine metabolism 
      

 
      

Tyrosine metabolism 
      

 
      

Alkaloid biosynthesis II 
      

 
      

Biopterin metabolism 
      

 
      

Carnitine shuttle 
      

 
      

De novo fatty acid biosynthesis 
      

 
      

Fatty acid activation 
      

 
      

Fatty acid oxidation 
      

 
      

Fatty acid oxidation, peroxisome 
      

 
      

Histidine metabolism 
      

 
      

Omega-6 fatty acid metabolism 
      

 
      

Tryptophan metabolism 
      

 
      

 

Figure 8. Metabolic pathways associated with the moving average of lag 1-2 days pollution from Tobit models. Cells are 

shaded according to the magnitude of p-values derived from Tobit models. Pathways enriched by more than 2 annotated significant 

metabolic features were included and ordered according to the total number of the significant associations between pathways and 

pollutants by either negative or positive ion modes. 
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Appendices 

Table S1. Number of significant metabolic features by negative and positive ion 

mode associated with lag 1 day (i.e., previous day) and the moving average of lag 

1-2 days pollution from multiple linear regression models.  

Total number of features detected Lag* Negative mode a Positive mode b 

CO L1 218 211 

 MA 177 166 

NO2 L1 338 307 

 MA 270 240 

O3 L1 283 214 

 MA 171 227 

PM2.5 L1 321 237 

 MA 267 235 

EC L1 248 182 

 MA 272 215 

OC L1 307 229 

 MA 212 241 

*L1, the exposure at lag 1 day; MA, the moving average of exposure at lag 1-2 days. 

a Metabolic features were statistically significant with p-values less than 0.025.  

b Metabolic features were statistically significant with p-values less than 0.05.
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Figure S1. Manhattan plots of associations between log-transformed metabolic feature intensity and CO from multiple linear 

regression models. X-axis denotes the retention time (in seconds); Y-axis denotes the negative log10 of the p-values calculated 

from the multiple linear regression model. Blue triangles and red circles denote negative and positive associations, respectively. 
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Figure S2. Manhattan plots of associations between log-transformed metabolic feature intensity and NO2 from multiple 

linear regression models. X-axis denotes the retention time (in seconds); Y-axis denotes the negative log10 of the p-values 

calculated from the multiple linear regression model. Blue triangles and red circles denote negative and positive associations, 

respectively. 
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Figure S3. Manhattan plots of associations between log-transformed metabolic feature intensity and O3 from multiple linear 

regression models. X-axis denotes the retention time (in seconds); Y-axis denotes the negative log10 of the p-values calculated 

from the multiple linear regression model. Blue triangles and red circles denote negative and positive associations, respectively. 
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Figure S4. Manhattan plots of associations between log-transformed metabolic feature intensity and PM2.5 from multiple 

linear regression models. X-axis denotes the retention time (in seconds); Y-axis denotes the negative log10 of the p-values 

calculated from the multiple linear regression model. Blue triangles and red circles denote negative and positive associations, 

respectively. 
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Figure S5. Manhattan plots of associations between log-transformed metabolic feature intensity and EC from multiple linear 

regression models. X-axis denote the retention time (in seconds); Y-axis denotes the negative log10 of the p-values calculated from 

the multiple linear regression model. Blue triangles and red circles denote negative and positive associations, respectively. 
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Figure S6. Manhattan plots of associations between log-transformed metabolic feature intensity and OC from multiple linear 

regression models. X-axis denotes the retention time (in seconds); Y-axis denotes the negative log10 of the p-values calculated 

from the multiple linear regression model. Blue triangles and red circles denote negative and positive associations, respectively. 
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Biological pathways 
Negative ion mode  Positive ion mode 

CO NO2 O3 PM2.5 EC OC  CO NO2 O3 PM2.5 EC OC 

Pyrimidine metabolism 
      

 
      

Alkaloid biosynthesis II 
      

 
      

Purine metabolism 
      

 
      

Vitamin A (retinol) metabolism 
      

 
      

 

Figure S7. Metabolic pathways associated with 1-day lag pollution from multiple linear regression models. Cells were shaded 

according to the magnitude of p-values derived from multiple linear regression models. Pathways enriched by more than 2 annotated 

significant metabolic features were included and ordered according to the total number of the significant associations between 

pathways and pollutants by either negative or positive ion modes. 
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Biological pathways 
Negative ion mode  Positive ion mode 

CO NO2 O3 PM2.5 EC OC  CO NO2 O3 PM2.5 EC OC 

Pyrimidine metabolism 
      

 
      

Tyrosine metabolism 
      

 
      

Histidine metabolism 
      

 
      

Alkaloid biosynthesis II 
      

 
      

Carnitine shuttle 
      

 
      

Linoleate metabolism 
      

 
      

 

Figure S8. Metabolic pathways associated with the moving average of lag 1-2 days pollution from multiple linear regression 
models. Cells were shaded according to the magnitude of p-values derived from multiple linear regression models. Pathways 
enriched by more than 2 annotated significant metabolic features were included and ordered according to the total number of the 
significant associations between pathways and pollutants by either negative or positive ion modes. 
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Figure S9. The % presence among all participants by mass to charge (m/z) ratio of unique significant metabolic features 

associated with CO from Tobit (red squares) and multiple linear regression (green triangles) models. X-axis denotes the m/z 

ratio, Y-axis denotes the percent presence of the feature among the 180 participants. 
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Figure S10. The % presence among all participants by mass to charge (m/z) ratio of unique significant metabolic features 

associated with NO2 from Tobit (red squares) and multiple linear regression (green triangles) models. X-axis denotes the m/z 

ratio, Y-axis denotes the percent presence of the feature among the 180 participants. 
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Figure S11. The % presence among all participants by mass to charge (m/z) ratio of unique significant metabolic features 

associated with O3 from Tobit (red squares) and multiple linear regression (green triangles) models. X-axis denotes the m/z 

ratio, Y-axis denotes the percent presence of the feature among the 180 participants. 
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Figure S12. The % presence among all participants by mass to charge (m/z) ratio of unique significant metabolic features 

associated with PM2.5 from Tobit (red squares) and multiple linear regression (green triangles) models. X-axis denotes the 

m/z ratio, Y-axis denotes the percent presence of the feature among the 180 participants. 
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Figure S13. The % presence among all participants by mass to charge (m/z) ratio of unique significant metabolic features 

associated with EC from Tobit (red squares) and multiple linear regression (green triangles) models. X-axis denotes the m/z 

ratio, Y-axis denotes the percent presence of the feature among the 180 participants. 
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Figure S14. The % presence among all participants by mass to charge (m/z) ratio of unique significant metabolic features 

associated with OC from Tobit (red squares) and multiple linear regression (green triangles) models. X-axis denotes the m/z 

ratio, Y-axis denotes the percent presence of the feature among the 180 participants. 
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