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Abstract

Reliable direct and inverse methods in computational hemodynamics
By Luca Bertagna

In the last 25 years, developments in mathematical models/methods together
with the improvements in the data acquisition devices have made possible to use
mathematics to study the behavior of the human cardiovascular system. Further-
more, cardiovascular mathematics has not been limited to be used as a descriptive
qualitative tool, but instead, has started to be used for quantitative analysis of pa-
tients conditions and even treatment design. The robustness of this tool depends
on the reliability of the results. Data Assimilation (DA) is a set of techniques that
helps to improve the specificity of the model, by incorporating available data (e.g.,
measurements) into the model and can therefore help to make the results of the
simulation patient specific. On the other hand, the numerical methods used in the
simulations must be accurate enough to guarantee that the computed solution ac-
curately describes the real behavior of the system.

This work is divided into two parts. In the first, we focus on the estimation of
the compliance of a blood vessel using DA techniques. In particular, we use mea-
surements of the displacement of the vessel wall to estimate its Young’s modulus.
We adopt the variational approach proposed in [69], and we focus on the issue of
the computational costs associated with the solution of the inverse problem. The
secon part of this work concerns the accurate simulation of flows at moderately
large Reynolds numbers. In particular, we focus on the model proposed in [53]
for the discretization of the Leray system, and we propose a new interpretation of
the method as an operator-splitting scheme, for a perturbed version of the Navier-
Stokes equations, and we use heuristic arguments to calibrate one of the main pa-
rameters of the model.

For both these parts we will perform numerical experiments, on 3D geome-
tries, to validate the approaches. In particular, for the first part, we will use syn-
thetic measures to validate our approach, while for the second part, we will test the
method on a benchmark proposed by the Food and Drug Administration, compar-
ing out results with experimental data.
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Chapter 1

Introduction

1.1 Cardiovascular mathematics

The beginning of cardiovascular mathematics, that is, the application of mathemat-

ics to the modeling and investigation of the human cardiovascular system, dates

back to the XVIII century, when Leonard Euler introduced the equations (which

now are called Euler equations) that describe the motion of an inviscid fluid in a

compliant domain, with the goal to describe the motion of blood inside human

arteries [24].

Other important contributions were given, in the XVIII and XIX centuries, by

other mathematicians, physicists and physiologists. Among them, we mention Daniel

Bernoulli, who related the increase of the speed of an ideal, inviscid fluid to a de-

crease of its pressure, Jean Léonard Marie Poiseuille, who gave a formula for the

pressure drop of a laminar viscous flow in a pipe, Thomas Young, who character-

ized the relation between stresses and deformation in an elastic solid through what

we now call Young’s modulus [104] (although the concept was already known to Eu-

ler).

However, it is only in the second half of the XX century that mathematics started

to rise as an important quantitative tool to help understanding the behavior of the

cardiovascular system. First of all, the development of technologies for image ac-

quisition, such as Computed Tomography (CT), ultrasounds and, later on, Optical

Coherence Tomography (OCT), allowed doctors to acquire a larger amount of data.

1



Chapter 1. Introduction 2

These new techniques allowed the investigation of pathologies on patients using

specific information on the geometry of their cardiovascular system.

On the other hand, important advancements were also made in mathematics,

and we can identify (at least) two major areas where advancements made cardio-

vascular mathematics possible: image processing and numerical methods for fluid

and structure dynamics. The first area is focused on the refinement of the avail-

able data, converting it into coherent and ordered data that can be used in further

analysis or computations. For instance, when dealing with images of a blood ves-

sel, this refinement process can include the segmentation of the images, in order to

identify the region where the blood flows (also called lumen of the vessel), and the

registration of the images when, for instance, two images corresponding to two dif-

ferent instants in time are compared, and corresponding points are identified with

the goal to track the movement of the vessel in time.

On the side of mathematical models for fluid and structural dynamics of the cir-

culatory system, several advancements have been done in the second half of the

XX century (see, for instance, [78] and references therein). On one hand, the me-

chanical properties of the vessel wall have been investigated thoroughly and several

models have been proposed, ranging from simple elastic models to more complex

rheologies [16, 31, 70]. We also mention important improvements for the modeling

of the blood flow such as non-Newtonian rheologies for the blood have been pro-

posed [103], or the study of boundary conditions for the inflow and outflow section

of the vessel [63, 98]. The resulting set of equations for fluid and structure and their

interaction have also been thoroughly investigated [73, 94].

Finally, the numerical methods for solving the equations governing the fluid

and structural dynamics also experienced a terrific improvement. Arguably, the

most important advancement was the invention of the Finite Element (FE) method,

which naturally reduces the weak formulation of a Partial Differential Equation to

a suitable finite dimensional discrete space (see, for instance, [79, 91]). In the last

sixty years, the FE method has been massively used in structural mechanics, com-

putational fluid dynamics and, in the last 25 years, for simulating blood flow prob-

lems and Fluid-Structure Interaction (FSI) problems arising in cardiovascular ap-
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plications. Among other methods used in FSI application, we also mention the Im-

mersed Boundary Method, which is particularly successful for problems that involve

large displacements of the structure [71].

1.2 Some of the challenges in cardiovascular mathematics

The increasing power of mathematical models and methods, together with the in-

creasing computational power of modern architectures, has led cardiovascular math-

ematics to become not only a descriptive tool, but more importantly, a tool for diag-

nosis and treatment design [74, 93]. In silico experiments (that is, numerical simu-

lations of possible scenarios) have become an extremely useful resource to analyze

a pathology and investigate possible solutions. The advantage of in silico experi-

ments compared to in vitro experiments is twofold: i) it does not require invasive

testing, which for certain patologies and certain regions of the human body may

be dangerous, and ii) when investigating possible treatments, it allows to consider

and compare multiple solutions before they are concretely implemented. This not

only reduces the risk of experimental treatments, but sometimes also their costs

(for instance, when developing new devices).

However, in order for the numerical results to really help the diagnosis and treat-

ment of the pathology of a patient, two requirements must be satisfied:

• the inputs of the mathematical model (such as geometry, parameters, bound-

ary conditions) must be the ones corresponding to the current patient.

• the numerical method must give a solution which is reliable.

As we mentioned in the previous section, advancement in imaging techniques

and image processing have made it possible to create geometries (i.e., computa-

tional domains) that are specific to the patient at hand [72]. Nevertheless, some of

the other inputs are usually not known, or known with limited precision. For in-

stance, when simulating the motion of blood in a vessel, the full velocity (or stress)

profile at the inflow is usually not known, and all that is available (from medical
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measurements) is some average quantity (such as the pressure or flow rate). An-

other example is given by the mechanical properties of the vessel: in a linearly elas-

tic framework, these are condensed into two parameters, the Young’s modulus and

the Poisson’s ratio. When simualting a blood flow in a compliant vessel, in order to

solve the FSI problem arising from the interaction between blood and vessel wall,

these parameters must be known. If the patient is known to be in “good” condition,

usually an average value taken from literature is used. This not only gives up the

specificity of the numerical experiment, but it may give misleading results in case

the patient is in fact not in good condition. As a matter of fact, the ideal scenario

would be to have the (unknown) parameters as part of the solution of the problem.

This is one of the goals of Data Assimilation (DA), which we will present in more

detail in Chapter 2.

The issue of the reliability of the numerical solution is, on the other hand, more

subtle. When we use numerical methods to approximate the solution to a problem,

say a PDE, we introduce some discretization parameter. The method is then said

to be convergent if, as the discretization parameters vanish, the numerical solu-

tion approaches the solution of the original problem (for a more precise definition

of these concepts, see, for instance, [75]). In practice, the dimension of the discrete

problem increases (often rapidly) as these parameters approach zero, and therefore

one typically has some constraints on the minimum magnitude of the discretiza-

tion parameters. Still, the convergence analysis of the method usually gives, up to

some constants, an estimate of the error in the solution.

However, even if the difference between the numerical and the exact solutions

is small (measured with respect to some norm), the numerical solution may have

some unphysical features. In some cases, these are quite easy to identify, such as

instabilities in convection-dominated flows, and suitable stabilization techniques

can be adopted to fix the problem [79]. The situation is more complicated when

the computed solution does not appear wrong, but still features some important

differences when compared with the exact solution. An important example is given

by the numerical simulation of turbulent flows on underresolved meshes, that is,

meshes with element size h larger than the size of the smallest eddies in the flow.
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The result is a solution that, despite looking correct, does not dissipate enough en-

ergy. In Chapter 5 we will investigate this issue more in detail, showing how an

under-resolved numerical solution can remarkably differ from the exact one (in our

case, coming from experimental measures).

The goals (and also challenges) of cardiovascular mathematics are therefore to

provide results that are reliable and more patient specific. This can be done with a

better integration of the mathematical models with the information coming from

experimental measures (which we call Data Assimilation) and with the develop-

ment of more robust methods, which guarantee that the numerical solutions have

all the important features of the exact ones. We point out that these are not easy

tasks and the computational costs associated may be large, which forces us to fo-

cus particularly on the performance of the algorithm when developing new ap-

proaches.

1.3 Thesis outline

In this thesis we focus on two problems arising in cardiovascular applications. The

first is the estimation of the compliance of a blood vessel using measures in time

of the displacement of the wall. The second is the reliability of the numerical solu-

tions of flows with moderately large Reynolds numbers. In particular, the original

contributions of this work are presented in Chapters 4 and 5.

We start in Chapter 2 with a quick overview of Data Assimilation (DA). First,

we explain what DA does and what its goal is. Then, we will present the two most

common approaches currently used to implement DA in practice, which are the

Kalman filter and the variational method. We will focus mostly on the latter, since

it will be used in the following chapters. Finally, we will discuss how DA can be

beneficial for cardiovascular applications.

In Chapter 3 we will introduce the problem of the (variational) estimation of

the compliance of a vessel, following the idea presented in [69]. This application

of DA will lead to an Inverse Fluid-Structure Interaction (IFSI) problem, which can

be casted in the framework of constrained optimization. We will briefly discuss the
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issues related to the solution of the optimization problem, such as the choice be-

tween discretize-optimize and optimize-discretize approaches or the regularization

of the problem. Finally, we will present some numerical results for some idealized

geometries.

In Chapter 4 we will present a Reduced Order Model approach for the solution of

the inverse problem introduced in Chapter 3. In particular, we will adopt a Proper

Orthogonal Decomposition (POD) strategy for the reduction of the costs associated

with the optimization problem. We will present the algorithm and we will apply it to

the same scenarios analyzed in Chapter 3, comparing the performance and finding

the limitation of the algorithm.

In Chapter 5 we will tackle the problem of the numerical solutions of the Navier-

Stokes equations for moderately large Reynolds numbers. We will follow the idea

presented in [53] and we will elaborate on it, reinterpreting the algorithm as an

operator splitting technique for a perturbed equation. Moreover, we will also derive

a heuristic formula to calibrate one of the important parameters of the method. We

will then test the robustness of the method on a benchmark proposed by the Food

and Drug Administration (FDA).

Concluding remarks and suggestions for future research directions will be ad-

dressed in Chapter 6.



Chapter 2

Data Assimilation: methods,

examples and applications to

cardiovascular mathematics

This chapter contains a brief and general introduction to the topic of Data Assim-

ilation (DA) and some of the techniques used for its application to real problems.

In particular, in Section 2.1 we will motivate the use of DA for a wide class of prob-

lems, and we will formulate a simple reference problem. After discussing in Section

2.2 the two possible approaches that can be used in DA, namely probabilistic and

deterministic, in Sections 2.3 and 2.4 we will give a brief overview of the two main

techniques used in practice. Finally, in Section 2.5 we will discuss how DA can im-

prove the quality of a mathematical study of the cardiovascular system.

We mention that parts of this chapter are inspired by the work presented in [54],

where further details on the topic can be found.

2.1 Introduction

Most of the practical problems in the field of applied sciences are described us-

ing mathematical models. These models are usually derived from basic principles,

such as conservation laws, and by a set of constitutive equations involving the state

of the system, a set of parameters, and input data. For instance, the motion of a

7
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rigid body in a gravity field with no friction can be described by a simple system of

differential equations, involving the position and velocity of the body in time, the

mass of the body and the gravity field acting on the body. In this case, the state of

the problem is given by position and velocity, the only parameter is the mass of the

body and the input datum is the gravity field. Another example is the evolution of

the distribution of currents and voltages in a power grid, where the state is given

by the voltages and currents across each component of the grid, the parameters are

the values of resistance, capacitance and inductance of each component, while the

input data are the voltages or currents imposed through generators. In this case,

the set of equations includes both differential and algebraic equations (DAE).

In general, we can denote the set of equations governing the problem with

Apx,µ,bq � 0, (2.1)

where x is the state of the problem, µ is the vector of the parameters of the model,

and b contains the input data that determine the particular configuration for which

we have to find a solution.

Remark 2.1. It is worth clarifying the distinction between parameters µ and input

data b, which may otherwise seem vague and arbitrary. In this context, we think

of a parameter as a fixed intrinsic quantity of one (or more) component of the sys-

tem, while an input datum is an extrinsic given quantity, which is more related to

the particular instance of the problem rather than to a component of the system.

For instance, if we are to consider an incompressible fluid flowing inside a rigid

pipe, the density and viscosity of the fluid would be considered parameters, while

the initial velocity distribution or the conditions imposed at the boundary of the

computational domain would be considered as given input data.

The quality and reliability of a model can be assessed by comparing the solution

of the mathematical model with measurements that are taken on the system. For

some problem (such as the motion of a rigid body) this can be done directly on

the state x. However, in general, this can only be done on some derived or output

quantity y, which depends on the state x and the parameters µ through a relation
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that we denote as

y � Hpx,µq. (2.2)

This relation could consist of a simple algebraic expression, or a more complicated

set of integro-differential equations. However, we require that the mapH is a func-

tion, that is, for each pair state-parameter px,µq, the quantity y must be uniquely

defined.

One of the most important applications of such mathematical models is predict-

ing the outputs of interest y for a specific configuration corresponding to a given set

of parameters µ and input data b. In particular, once the mathematical model reli-

ability has been established through comparisons with experiments and available

data, one is typically interested in using its predicting power in case the value of y

is required for a large number of configurations and/or if the direct measurement

of y is not feasible (for instance, because the experiment is too expensive, or too

dangerous). This allows us to use the mathematical model to discover new infor-

mation.

On the other hand, information coming from observations, measures and exper-

iments also contains useful information, and can be used to improve the quality of

the mathematical model. As a matter of fact, no mathematical model can perfectly

describe the reality we observe, due to the simplifications and the assumptions that

are made to derive it. Furthermore, as mentioned before, mathematical models

usually contain parameters µ and input terms b, whose numerical values depend

on the specific problem under consideration. The calibration of such quantities

can be a complex task, and the value that it is used to solve a particular instance of

the problem may be known only with limited precision.

Remark 2.2. A mathematical model and the data can be interpreted as dual sources

of knowledge. In particular, mathematical models can be thought of as background

knowledge, since they are based on past experiments and analyses, and they do

not depend on all the details of the particular experiment we are describing. On the

other hand, information coming from data and measurements can be thought of as

foreground knowledge, since it does not rely on any underlying justification (such
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as models and theories), and, under specific circumstances, it has the property of

reflecting the real behavior of the system observed. For instance, patient-specific

measurements are an instance of foreground knowledge. As for any measurement

process, this knowledge is affected by noise and errors. On the other hand, a math-

ematical model for blood flow represents a background knowledge that can be ap-

plied to many patients once the right combination of parameters is used

DA is a set of techniques that aims to use information coming from data (e.g.,

experimental measures) to improve the quality of the mathematical model and, as

a consequence, of the computed solution. This approach, developed in the 20th

century, has been used massively in weather forecast applications as well as in geo-

physics [3]. The merging of the background and foreground knowledges has the

double effect of improving the reliability of the quantitative results of the mathe-

matical model and also to partially remove noise and errors that are systematically

present in the data (for instance, due to the limited resolution of measuring de-

vices). If we denote the state of the system with x, some output of interest with y,

the model parameters with µ and the (in general, limited and noisy) available data

with d, we can identify at least three possible ways in which DA can be used:

i) reconstruction: x and/or y are reconstructed in full starting from d. This can

also be interpreted as a denoising of the data d.

ii) prediction: using data d from previous experiments, the model is used to pre-

dict the value of x and/or y for a new experiment.

iii) estimation: µ is estimated by forcing the model output y to be “close” to the

observed output d, where the meaning of “close” depends on the context.

Regardless of which one of the above is the ultimate goal, DA helps to improve

the reliability of the quantitative solutions, by tuning the model in such a way that

it better explains the data coming from experiments and measures.

In Section 2.2 we present the two different approaches that can be used in DA,

while in Sections 2.3 and 2.4 we will introduce the two most common algorithms
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used in practice for DA problems. Then, in Section 2.5 we will briefly discuss what

is the current and potential impact of DA in computational hemodynamics.

2.2 Stochastic and deterministic approaches

By looking at the approaches that can be used in DA, we can identify two main

categories:

- stochastic approaches: in this case, the goal is to find probability distributions

and confidence intervals for the system state x and output y, starting from

some a priori probabilistic knowledge on the model and the data.

- deterministic approaches: in this case, one is typically interested in recon-

structing, predicting or estimating with no a priori probabilistic knowledge of

the problem of interest.

It is worth noting that, in the second case, one can still incorporate statistical

knowledge about the model, as we will discuss in Section 2.4.2.

Among the methods used in the two approaches, of particular importance are

the Kalman filter (with its extensions) for the stochastic approach and the varia-

tional method for the deterministic one. These constitute the subject of the next

two sections.

To make the description of the methods easier, we introduce a model problem to

which we will apply the Kalman filter and the variational method. We will consider

the following simple (discrete) dynamical problem:

$''&''%
xn � Apµqxn�1 � bnpµq � εn

yn � Hpµqxn � νn
(2.3)

endowed with the initial condition x0 � g�ε0, with g given. Here, the first equation

represents how the current state xn is affected by the previous state xn�1 through

the linear operator A, the parameters µ and the given input bn. Since, as we men-

tioned before, no model is perfect, we also have a term εn�1 that represents errors
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in the model. We assume this term behaves as white noise and is temporally un-

correlated, that is, εn � N p0,Qnq and E
�
εiεj

�
� δijQj , where E is the expectation

operator and δij is the Kronecker symbol. The second equation, instead, represents

the measurement process: the matrix H, usually called the observation matrix, rep-

resents how the output yn depends on the state xn according to the model, while

νn � N p0,Rnq represents errors in the measures (for instance, due to limitations

on the measuring devices). Also for νn we assume that vectors corresponding to

different times are statistically uncorrelated. Furthermore, we will assume that a

set of measurements dn of the output yn is available for every n.

Remark 2.3. In (2.3) we are assuming that the parameters of the model are known

exactly. If this is not the case, as in a parameter estimation problem, dynamics for

the parameters have to be introduced. In particular, for time-independent param-

eters, we can assume µ to have a stochastic dynamics of the form

µn � µn�1 � ηn (2.4)

with ηn � N p0,Snq not correlated with νn and εn. Therefore, we can write the

problem as $''''''&''''''%
xn � Apµnqxn�1 � bnpµn�1q � εn

µn � µn�1 � ηn

yn � Hpµnqxn � νn

(2.5)

This is a non-linear problem, due to the coupling between the state x and the pa-

rameters µ (unless both A and H do not depend on µ).

2.3 The Kalman Filter

The Kalman Filter (KF) was first introduced for linear problems [49], but has then

been extended to non-linear problems with the so called Extended Kalman Filter

[44] and Unscented Kalman Filter [48]. An exhaustive analysis of these methods is

beyond the scope of this work, and we refer to the literature for further information
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[44,48,49]. Here, we limit to a brief overview of the idea behind the KF, applying it to

the linear problem (2.3) with the dependency onµ dropped for the sake of notation.

The KF can be considered as a two-step method. The first is a prediction step,

whose solution we denote withxnp , while the second is a correction step, whose solu-

tion we denote with xnc . In the prediction step, the system evolves according to the

deterministic model, that is, without considering the presence of the model errors

εn. The ideal step would be

xnp � Axn�1 � bn. (2.6)

However, since the “true” solution xn�1 is not available, the state evolves according

to the best information available on xn�1, that is,

xnp � Axn�1
c � bn. (2.7)

In the correction step, the information coming from the data is used to update xnp .

More precisely, the KF performs a correction of the form

xnc � Lnx
n
p �Knd

n (2.8)

where the matrix Kn, which is called Kalman gain matrix, determines how the in-

formation of the data not captured by the model prediction should affect the cor-

rection of the state, and it is clearly crucial for the success of the whole method.

Forcing the correction to be unbiased1, it can be shown that the step can be rewrit-

ten as

xnc � xnp �Kn

�
dn �Hxnp

�
. (2.9)

The derivation of the expression for Kn is not difficult, but requires a few inter-

mediate steps. We just present the final result, and we refer to [49, 54, 96] for more

details on the derivation, noting that the Kalman gain matrix Kn can be derived

based on an optimality criterion. In particular, let us define the prediction and cor-

1That is, Epxn
c q � xn, where Ep�q is the expectation operator.
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rection errors and their corresponding covariance matrices:

enp � xn � xnp (2.10)

Pn � E
�
enp pe

n
p q
T
�

(2.11)

enc � xn � xnc (2.12)

Cn � E
�
enc pe

n
c q
T
�
. (2.13)

Then, an expression for Kn can be obtained by minimizing the expectation of the

squared norm of the correction step error, that is E
�
penc q

Tenc
�

(which is equivalent

to minimize the trace of Cn). An iteration of the KF method can then be written in

the following form

P-step

$''&''%
xnp � Axn�1

c � bn

Pn � ACn�1AT �Qn

(2.14)

C-step

$''''''&''''''%
Kn � PnHT

�
HPnHT � Rn

��1

xnc � xnp �Kn

�
dn �Hxnp

�
Cn � pI�KnHqPn

(2.15)

Notice that the algorithm also requires an initial condition for C0. If x0 is known

exactly, then one can choose C0 � I, otherwise it must be constructed using the

statistical information on the error of the initial condition x0.

Remark 2.4. If we assume that H P Rm�n with rankpHq � m, and we drop all the

stochastic terms in the expression of Kn, we obtain Kn � H:, where H: denotes the

Moore-Penrose pseudo-inverse of H [43]. This is consistent, since

enp � xn � xnp ùñ Henp � Hxn �Hxnp � dn �Hxnp

and therefore, the correction that would give a perfect match with the data is given

by

enp � H:pdn �Hxnp q. (2.16)
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Hence, in a deterministic setting, the correction step would reduce to a simple ap-

plication of the Moore-Penrose inverse. The Kalman gain matrix Kn can thus be

interpreted as a version of the Moore-Penrose inverse adaptated to the DA prob-

lem and enhanced by statistical information about the underlying system dynam-

ics (namely, the covariance matrices of the predicted status xnp and of the data dn).

We conclude this section by listing some of the interesting properties of the KF.

We will make use of the following statistical scalar product:

xu,vys � tr
�

Σ�1{2
v Σ�1{2

u EpuvT q
	
. (2.17)

where Σv and Σu are the covariance matrices of u andv respectively, and trpAq de-

notes the trace of A. According to this definition, for two vectors to be orthogonal

is equivalent to be statistically uncorrelated. The following properties hold (see,

e.g., [96]):

i) xunc , e
n
c ys � 0: the error of the corrected solution is orthogonal to the solution

itself.

ii) xdn �Hunp ,d
n�j �Hun�jp ys � 0,@j ¥ 1: the innovation added at the iteration n

is orthogonal to the iteration added at the previous iteration.

iii) Pn � Cn ¡ 0: the innovation reduces the variance of the output of the model2.

iv) given u0, . . . ,un�1, the solution unc obtained with the KF minimizes the func-

tional

J �
1

2

ņ

k�1

}uk �Auk�1}2
Q�1

n
�

1

2

ņ

k�1

}dk �Huk}2
R�1

n
(2.18)

that underlines a connection between the KF method and the variational method

(which we will present in the next section).

Remark 2.5. Here we presented an example of the Kalman filter applied to a re-

construction problem, that is, a problem where we reconstructed the state of the

system x from a set of measurements d. As we mentioned in the previous section,

2The notation A ¡ 0 means that the matrix A is positive definite.
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DA can also be used for estimation problems, where some of the parameters of the

model are not known, such as in (2.5). For this kind of problems, the KF method

has to be adapted in order to deal with the non-linearities of the problem.

2.4 Variational method

The variational method is an approach for DA that aims to assimilate the data by

means of solving a suitable constrained optimization problem. Usually, the op-

timization problem consists of the minimization of a functional measuring (in a

proper norm) the misfit between the available data and the computed solution, us-

ing as a constraint the mathematical model. More precisely, in an abstract frame-

work, let us define a functional F

Fpx,µq � }d�Hpx,µq}p (2.19)

where } � } denotes a suitable norm, and3 p ¥ 1. For instance, for time-dependent

PDE’s, } � } could be the L2pt0, tN ;L2q norm and p � 2. Then, we can write the

optimization problem as

min
uPU
Fpx,µq

s.t. Apx,µ,b, uq � 0. (2.20)

Here, u is a control variable and U is the set of admissible values. The choice of

what u should be is not obvious and is an issue that does not appear when using

the KF method, where the only requirement is some probabilistic knowledge about

the distribution of µ, while the assimilation process is carried out by means of a

fixed set of linear algebra operations.

To understand how to choose u, it is useful to look at the model problem (2.3).

When using the variational method, we are assuming no knowledge of the errors

(in both the model and the data), that is, we are dropping the stochastic terms εn

3Recall that minimizing fpxq is equivalent to minimize gpfpxqq, for every strictly convex function
g.
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and νn. Nevertheless, we are still aware of the fact that the model is not perfect,

meaning that the values for µ or bn may not correspond to the real ones. This sug-

gests that we could use as control variables the subset of µ and b whose values we

are not confident about. The idea is that the information in the data, through the

minimization process, will drive those values towards the “correct” ones.

Remark 2.6. Notice that, at this stage, there is no distinction between linear and

non-linear problems; the differences arising from the nature of the problem are

deferred to the choice of the routines used to minimize the cost functional. In par-

ticular, in the framework of the variational method, there is no distinction in the

algorithm between prediction, reconstruction or estimation problems, since the

approach is formally equivalent. This marks one difference between the variational

method and the KF method, where, due to the nonlinearities, the case of parameter

estimation had to be treated with the EKF or UKF methods.

To give a more concrete example, let us consider again the problem (2.3). Sup-

pose, for simplicity, that the matrices A and H do not depend on the parameters µ,

which are the only source of uncertainty in the problem. We consider the functional

F pxq �
Ņ

n�0

wn}d
n �Hxn}2, (2.21)

where
Ņ

n�0

wn � 1. Notice that this is the discrete counterpart of

Fpxq �
» tN
t0

}d�Hpxq}2dt (2.22)

where the integral is approximated with the quadrature formula

» tN
t0

}uptq}2dt �
Ņ

n�0

wn}u
n}2. (2.23)
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The data assimilation problem would then read

min
µPU

F pxq

s.t. xn � Axn�1 � bnpµq, n � 1, . . . , N. (2.24)

The solution of the minimization problem (especially in the nonlinear case) is

itself a challenging task. Several methods have been developed for such problems,

such as the simplex method (only for the linear case), sequential quadratic pro-

gramming or Lagrange multipliers to mention a few (see [65] for more details).

Among all the possible methods, the last one is arguably the most widely used.

Since this is the method we are going to use in the following chapters, we briefly

recall it in the next section.

2.4.1 The method of Lagrange multipliers

Consider the general minimization problem

min
uPU

F px,uq

s.t. Apx,uq � bpuq (2.25)

where x P Rn is the state variable, u P U � Rk is the control variable, A is a (possibly

nonlinear) operator from Rn �Rk to Rm and F is a function from Rn �Rk to R. For

simplicity, we will assume that both A and F are differentiable for every x and u.

Let us define the Lagrangian functional as

Lpx,u,λq � F px,uq � λT pbpuq �Apx,uqq. (2.26)

The new variable λ is called the Lagrange multiplier, and its dimension equals

the number of constraints in the problem, that is, λ P Rm. It is important to notice

that, at this point, x, u and λ are considered independent variables. If we differ-

entiate L with respect to each variables, and set the partial derivatives to zero, we
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obtain the following system of equations

BL
Bx

�
BF

Bx
px,uq �

BAT px,uq

Bx
λ � 0 (2.27)

BL
Bu

�
BF

Bu
� λT

Bbpuq

Bu
� 0 (2.28)

BL
Bλ

� bpuq �Apx,uq � 0. (2.29)

This system is usually referred to as the Karush-Kuhn-Tucker (KKT) conditions4, or

KKT system, and every pair px,uq that is optimal for the problem (2.25) must also

satisfy these equations (for an opportune Lagrange multiplier λ). In other words,

the KKT conditions are necessary conditions for optimality. Equation (2.27) is called

the adjoint equation, (2.28) is the optimality condition, while (2.29) is called the

state equation, and it is always equal to the constraints of the minimization prob-

lem. Notice that, even in the non-linear case, the derivatives of A andb in equations

(2.27)-(2.28) are always linear when considered as operators acting on λ (i.e., they

are matrices).

Let us now extend the Lagrange multipliers method to the minimization prob-

lem (2.24) where F is defined in (2.21). Here, the control variable u coincides with

the parameter µ. Notice that, since we haveN sets of equations for the constraints,

we will also haveN different Lagrange multipliersλn, n � 1, . . . , N . The Lagrangian

would then read

Lpx0, . . . ,xN ,µ,λ0, . . . ,λN q �

w0}d
0 �Hx0}2 � pλ0qT pg � x0q�

Ņ

n�1

�
wn}d

n �Hxn}2 � pλnqT pAxn�1 � bnpµq � xnq
�
.

(2.30)

As already noted, the state equation corresponds to the constraint of the min-

imization problem. The optimality condition can be obtained by differentiating

4The KKT conditions also apply in the more general setting of inequality constraints [65].
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with respect to the control variable µ, yielding

Ņ

n�1

pλnqT
Bbn

Bµ
� 0. (2.31)

The adjoint equation is more delicate, since, for 1 ¤ n ¤ N � 1, there are two

equations involving xn, namely the equation that expresses xn in terms of xn�1 and

the one that expresses xn�1 in terms of xn. In addition, x0 appears in one equation

and in the initial condition. Paying attention to this detail, differentiating gives

�2wnHT pdn �Hxnq �ATλn�1 � λn � 0, n � 0 . . . , N � 1 (2.32)

�2wNHT pdN �HxN q � λN � 0. (2.33)

Notice that the adjoint equation has the structure of a problem backward in time

and, in order to solve it, the value ofxN must be computed first. The full KKT system

for this problem reads

(State)

$''&''%
xn � Axn�1 � bnpµq, n � 1, . . . , N

x0 � g

(2.34)

(Optimality)
Ņ

n�1

pλnqT
Bbn

Bµ
� 0 (2.35)

(Adjoint)

$''&''%
λn � ATλn�1 � 2wnHT pdn �Hxnq n � N � 1, . . . , 0

λN � �2wNHT pdN �HxN q

(2.36)

If bpµq is linear, then the KKT system is also linear. Notice, however, that, despite

being symmetric, KKT systems are always indefinite, so one cannot use methods

such as the Conjugate Gradient, but must resort to more general methods, such

as GMRES or MINRES. If bpµq is nonlinear, then the KKT system is also nonlinear,

due to the optimality condition, and nonlinear routines must be used to tackle the

problem. There is a vast literature on ways to tackle the non-linear KKT system [5,6,

39]. In particular, we can identify two main approaches: an all at once approach, in

which a Newton or quasi-Newton method is used to solve the whole KKT system,
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and the so called reduced space (RS) approach, in which the problem is formally

expressed in terms of the control variable [38].

Since in the following chapters we will make use of the second approach, let us

show on this simple problem how the KKT conditions can be used to compute the

gradient of the functional F . Using the chain rule, we can write

BF pxpµqq

Bµ
�

BF

Bxn
Bxn

Bµ
, (2.37)

where a summation over n is intended on the right hand side. The first factor reads

BF

Bxn
� �2wnHT pdn �Hxnq.

For the second term, we use implicit differentiation on the constraint, to obtain

Bxn

Bµ
� A

Bxn�1

Bµ
�
Bbn

Bµ

For the sake of notation brevity, in the following let ∆n � �2wnHT pdn � Hxnq and

Bn � Bµb
n. Then, the previous recurrence equation can be solved, obtaining

Bxn

Bµ
�

n�1̧

k�0

AkBn�k,
Bx0

Bµ
� O (2.38)

and therefore
BF pxpµqq

Bµ
�

Ņ

n�1

∆n

n�1̧

k�0

AkBn�k. (2.39)

Rearranging so that we can factor out the terms Bj with the same index, we obtain

BF pxpµqq

Bµ
�

Ņ

n�1

�
Ņ

k�n

∆kA
k�n

�
Bn. (2.40)

Finally, we claim that the term in parentheses is precisely pλnqT . In fact,

λn � ATλn�1 �∆n �
�
AT
�2
λn�2 �AT∆n�1 �∆n � . . . �

Ņ

k�n

Ak�n∆k, (2.41)

where we used the fact that λN � ∆N .
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Therefore, instead of solving the KKT system, one could just use it to compute

the gradient of the functional, and use any unconstrained minimization routine to

find the minimum (see, e.g., [38]). For instance, Algorithm 1 shows how this can be

done using the BFGS [65] algorithm for the minimization.

Algorithm 1 BFGS with KKT-based gradient

1: k � 0, choose µ
0

based on some a priori knowledge (otherwise randomly)
2: while k   kmax and convergence test==false do
3: Solve state equation with µ � µk to compute xk � rx0

k, . . . ,x
N
k s

4: Solve adjoint equation with x � xk to compute λk � rλ0
k, . . . ,λ

N
k s

5: Compute the gradient of F using (2.40)
6: Compute the descent direction δk (using BFGS)
7: µk�1 � µk � τkδk, with τk possible damping parameter
8: k Ð k � 1
9: end while

2.4.2 Regularization

When facing non-linear minimization problems, a question that naturally arises is

whether or not the functional has a minimum. Even when minimizing a smooth

function in Rn, this can be an issue. In fact, if the region of the admissible solutions

is not bounded, the functional may not be bounded from below or, if bounded, may

not achieve the minimum at any point. The same is true in the infinite dimensional

Hilbert spaces setting.

Furthermore, in the context of DA, the data that we are trying to match are usu-

ally affected by noise, due for instance to measurement errors. We can write the

data as

d � dtrue � ν (2.42)

where ν is a white noise. In general, ν does not lie in the space spanned by all

the possible solutions to the constraint equations. Nevertheless, the properties of

the minimization problem (2.24) deteriorate in the presence of noise, which may

impact the convergence of the minimization routine towards the optimum (if any).

A common way to deal with this issue is to modify the functional, adding a term

that penalizes admissible solutions with non-desired features. This technique is

called variational regularization. The analysis of regularization techniques is be-
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yond the scope of this work. Here we introduce only the concept of regularization

and we refer to [23, 100] for more details.

The new functional to minimize can be written as

J px,uq � Fpx,uq � αRpuq (2.43)

where u is the control variable and α ¡ 0 is the regularization parameter, which

determines how much the regularization term should affect the minimization pro-

cess. To calibrate this parameter is not an easy task, and several methods have been

proposed, such as Generalized Cross Validation, L-curve or the Discrepancy Prin-

ciple (see, e.g., [23, 100]).

The choice ofRmay change depending on the application. A popular choice is

given by Tikhonov regularization. In this case, the expression forR is

R � }Lpu� uref q}
2 (2.44)

where uref is a reference value for u, and L is a semi-definite operator. The most

frequent choices for L are the identity operator, which penalizes admissible solu-

tions with large norm, hence enhancing the convexity of the functional, and the

gradient operator, which penalizes highly oscillating solutions.

Another frequently used regularization is the Total Variation, given by

Rpuq �
»
U
|∇u|dx, (2.45)

where | � | denotes the 2-norm.

Remark 2.7. There is a link between the concept of regularization and the a priori

statistical knowledge on the solution that is used in the stochastic approach. As a

matter of fact, it is possible to show that the Tikhonov regularization

R � }u� uref }
2

is equivalent, in the stochastic framework, to provide a Gaussian prior probabil-
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ity distribution for the control variable u with mean uref and covariance matrix

Σ � α2I.

2.5 DA in hemodynamics

To conclude this chapter, we discuss the role that DA has in medicine, with partic-

ular attention to hemodynamics. In the last two decades, we have observed a great

increase in the use of mathematics in medicine. In particular, when we focus on

hemodynamics, we can identify at least two main areas:

- data acquisition: several methods have been developed (or improved) to extract

useful information from the increasing amount of data acquired with new tech-

nologies, such as Magnetic Resonance Imaging (MRI), ultrasounds, Computer

Tomography (CT), to mention a few. Among these methods we mention segmen-

tation, deblurring and registration of images, which have allowed the use of more

realistic and patient specific geometries in numerical simulations.

- mathematical framework: new models to describe the physiology of blood and

tissues have been developed. In addition, new numerical methods have been de-

vised to compute approximate solutions in a faster and more robust way. Among

others, we mention advancements in electrocardiology, fluid-structure interac-

tion and non-Newtonian models.

Both of these areas, separately, have dramatically increased the amount of in-

formation and knowledge available to doctors in order for them to better analyze

the condition of patients and, ultimately, take better decisions on their treatment.

However, both of these areas suffer from a systematic limit. On one hand, image

(or, more generally, data) processing alone is limited by the fact of using general

purpose (and somehow “static”) methods, that is, without considering the fact that

the underlying data should obey physical principles, eventually described by a pre-

cise mathematical model. On the other hand, mathematical models are limited by

the presence of parameters and input data that must be properly tuned in order for

the model to correctly describe the particular problem at hand.
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However, these drawbacks can be compensated by the improvements in the

other area. In particular, the mathematical framework can provide additional con-

straints to the data processing step, hence allowing for a better data reconstruction.

Meanwhile, the acquisition and processing of patient specific data can provide a

useful source of information to calibrate the model so that the parameters and in-

put data are sufficiently close (in an appropriate sense) to the patient ones.

In this scenario DA becomes the perfect framework to extract only the most

relevant information from the data, and use it to obtain reliable results from the

mathematical models. The possible applications in hemodynamics are numerous.

For example, the prescription of boundary conditions remains a major challenge

for applications where the information available from measurements is not suffi-

cient to close the problem. For instance, in [29, 98] the authors use an optimization

approach to handle boundary conditions for flow problems where only the flow

rate was available (i.e., the integral of the normal velocity over the inlet/outlet sec-

tions). For certain boundary conditions, closure models have been proposed to

reduce the prescription of outflow boundary conditions to the opportune tuning

of few constants. For instance, for outflow boundary conditions zero-dimensional

circuit models have been proposed which require only a few parameters to be cali-

brated [28]. Nevertheless, the calibration of these parameters is not obvious, espe-

cially in cases corresponding to patients with non-standard pathologies. In [4], the

Unscented Kalman Filter is used to sequentially estimate the parameters involved

in the zero-dimensional circuit model by assimilating measures of the vessel wall

displacement. Another application of DA was presented in [19], to the case where

the inflow boundary conditions are not known. There, measurements of the veloc-

ity field at some locations in the computational domain were used to quantify the

wall shear stress on the vessel wall.

In the next chapter we will present the problem of estimating the compliance of

the vessel wall, by using a variational method.



Chapter 3

Variational estimation of the

compliance of a blood vessel

3.1 Motivation

In this chapter we focus on the application of DA to parameter estimation, and, in

particular, to the estimation of the compliance of a blood vessel. We start by giving

a medical definition of compliance:

Definition 3.1. The compliance of a vessel, and in general of a hollow tissue, is its

ability to change its size when an internal pressure is applied or, equivalently, as its

tendency to resist recoil towards its original configuration once a compressing or

distending force is removed.

For arteries, we can translate this definition into the more quantitative formula

C �
∆V

∆P
, (3.1)

where ∆V denotes the change of the vessel volume induced by change in the blood

pressure ∆P . The concept of compliance is therefore related to the mechanical

properties of the vessel; it is of great interest from the medical point of view, since

anomalies in its value can indicate the possible presence of pathologies, such as

atherosclerotic plaques or tumors [36, 97].

26
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If we consider the vessel wall to behave as an elastic material, then the compli-

ance can be identified with the Young’s modulus of the tissue. For biological tis-

sues, this parameter can be estimated in vitro and also in vivo for the past 20 years,

with a procedure called elastography [92]. This technique recovers the value of the

Young’s modulus by solving an inverse elasticity problem. In particular, two images

of the tissue are compared: the first is an image of the tissue at rest, while the sec-

ond is an image of the tissue deformed under the action of a known force. The

estimate of the Young’s modulus is given by the value that minimizes the mismatch

between the observed deformation and the one given by the mathematical model.

In the framework of the variational approach for DA introduced in Section 2.4, we

can formulate the elastography technique as

E � arg min
EPU

}ηpEq � ηobs}�

s.t. Apη, E, fq � 0, (3.2)

where η is the deformation of the tissue,E is the Young’s modulus of the tissue, U is

a set of admissible values forE, } � }� is a suitable norm, f is the (known) force acting

on the tissue andApη, E, fq is the elastic model considered for the tissue.

When it comes to estimating the compliance of a large artery inside a patient,

this procedure has to be modified. In fact, the vessel is already undergoing a defor-

mation, caused by the pulsatility of the blood flow. This motion is orders of magni-

tude larger than the one that can be induced using non-invasive techniques, such

as ultrasounds. Therefore, we cannot use an external force to induce a deformation

of the tissue to be used in the inverse problem, since the observed deformation

would be mostly caused by other factors, making the inverse problem extremely

ill-posed.

A possible solution to this issue is to take advantage of the force exerted by the

blood pulsatility on the wall vessel, using it as the force generating the displacement

needed to set up the inverse problem. However, this force is not known, since it is

the solution of a set of PDE governing the motion of the fluid. As a result, the equa-

tions governing the motion of the fluid as well as the interaction between the fluid
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Figure 3.1: Outline of the compliance estimation procedure.

and the structure must be solved. Therefore, instead of a “simple” inverse elastic-

ity problem, we have to solve an inverse fluid-structure-interaction (IFSI) problem.

This procedure, proposed for the first time in [69], is outlined in Fig. 3.1.

In Section 3.2 we will introduce the set of governing equation for the forward FSI

problem. In Section 3.3 we will introduce the inverse problem and the algorithm

used to solve it. Finally, in Section 3.4 we will present some numerical results.

3.2 The forward problem

In the following, the subscripts f and s will be used, if needed, to distinguish fluid

quantities from solid quantities. We will use bold letters (x,u, . . .) to indicate con-

tinuous vector quantities, while double underline (I, σ, . . .) will be used to denote

continuous tensorial quantities. A superscript t will denote quantities at time t

(Ωt
f ,Σ

t, . . .), while the superscriptT will denote the transpose of a tensor (∇uT,BT, . . .).

Also, Bty will be sometimes used to denote the partial derivative of y with respect to

the variable t.

3.2.1 The fluid-membrane interaction

Let Ωt be the region occupied by the fluid at time t. We denote by upx, tq and ppx, tq

the fluid velocity and pressure respectively, and we assume that, at every time, they

fulfill the incompressible Navier-Stokes equations in Ωt. In particular, we assume
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that the fluid has Newtonian rheology, with Cauchy stress tensor

T
f
� �pI� µ

�
∇u�∇uT� , (3.3)

where µ is the fluid’s dynamic viscosity. Since the domain is moving in time, the

fluid equations are formulated in an Arbitrary Lagrangian-Eulerian (ALE) frame-

work. In particular, for every time t we introduce the invertible map At such that

Ωt � AtpΩ0q. A quantity defined on the reference domain Ω0 can then be trans-

ported into the current domain by composition with the ALE mapAt. In particular,

given a quantity pf defined on Ω0 (or its boundary), we will let f � pf � pAtq�1 be the

value of pf on the current domain Ωt. Similarly, given a quantity g defined on Ωt (or

its boundary), we will let pg � g � At be the value of g on the reference domain Ω0.

The domain velocity w � pw � pAtq�1 is then defined in terms of the ALE map by

pw � BtAt. In the ALE framework, the Navier-Stokes equations read

ρf
DAu

Dt
� ρf ppu�wq �∇qu�∇ � T

f
� ff in Ωt � pt0, T q (3.4)

∇ � u � 0 in Ωt � pt0, T q, (3.5)

where ρf is the fluid density and ff accounts for possible external forces (such as

gravity). Here, DA{Dt is the ALE time derivative, that is, the time derivative in the

ALE coordinates.

For the vessel wall we consider a simplified model, where the structure is ap-

proximated with an elastic two dimensional membrane, which we denote by Σt � BΩt.

This approximation, besides being reasonable in large arteries, where the vessel

thickness is much smaller than the diameter, is also motivated by the fact that the

lumen of the vessel is usually easier to identify than the whole wall on medical im-

ages, due to the contrast between different gray levels. In addition to the two di-

mensional approximation, we make the following assumptions for the vessel wall:

- linear stress-strain constitutive law

- small deformations
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- negligible longitudinal and circumferential displacement

- negligible bending terms

which are also reasonable in large arteries (see, e.g., [16]). Thanks to these assump-

tions, the linear elasticity equations for the structure reduce to the simple scalar

equation (sometimes called “independent rings”)

ρshs
B2η

Bt2
� βEη � fs (3.6)

where η is the membrane displacement (in the normal direction), hs and ρs are the

vessel wall thickness and density respectively, E is the Young’s modulus and fs ac-

counts for the external forces, which we assume to consist solely of the fluid stresses

on the wall. The parameter β encodes both geometric and physical properties of the

membrane. Its expression is given by

β �
hs

1� ν2

�
4k2

m � 2p1� νqkg
�

(3.7)

where km and kg are the mean and Gaussian curvatures of the membrane respec-

tively. The equation for the structure will be stated in a Lagrangian framework, so

that, since the displacements are assumed to be small, we can write the structure

equation in the reference domain Σ � Σ0.

Conditions enforcing the continuity of the velocity and stress fields have to be

prescribed on Σt. In particular, we impose

u �
Bη

Bt
n, T

f
pu, pq � n � �fsn, (3.8)

where n is the (outward) unit normal vector to the membrane Σt. The resulting

Fluid-Structure Interaction (FSI) problem is then composed of two coupled sub-

problems:

i) given the domain Ωt and the domain velocity w, compute fluid velocity u,
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fluid pressure p and membrane displacement η such that

$''''''''''''''''''''''&''''''''''''''''''''''%

ρf
DAu

Dt
� ρf ppu�wq �∇qu�∇ � T

f
� ff in Ωt � pt0, T q

∇ � u � 0 in Ωt � pt0, T q

ρshs
B2pη
Bt2

� βEpη � pfs on Σ� pt0, T q,

u � n �
Bpη
Bt
� pAtq�1 on Σt � pt0, T q,

T
f
pu, pq � n � �

� pfs � pAtq�1
	
n on Σt � pt0, T q,

upx, tq � gpx, tq on BΩt
D � pt0, T q

T
f
px, tq � n � hpx, tq on BΩt

N � pt0, T q

(3.9)

endowed with suitable initial conditions for the fluid velocity, membrane dis-

placement and membrane velocity. Here BΩt
D and BΩt

N are the portion of the

boundary where Dirichlet and Neumann conditions are prescribed, and they

are such that BΩt
D Y BΩt

N Y Σt � BΩt and BΩt
D X BΩt

N � H, BΩt
D X BΣt � H

and BΩt
N X BΣt � H. Notice that no boundary conditions are required for the

structure equation, since no spatial derivatives appear in (3.6). Also, notice

that, due to the interface conditions, the initial data must satisfy the compat-

ibility condition upx, 0q � Btηpx, 0qn on Σ.

ii) Given the membrane displacement pη :� pηpn, we compute the displacement

field pd as$''&''%
Spd � 0 in Ω0

pd � pη on Σ

Atpx0q � x0 � pd, pw � BtAtpx0q (3.10)

where S is a suitable smooth extension operator (for instance harmonic) from

the membrane to the fluid domain.

For the weak formulation of (3.9) we introduce the following function spaces

V t
g :�

!
v P H1pΩtq : v|Σt � τ � 0,v|BΩt

D
� g

)
Qt :� L2pΩtq

X :� H1{2pΣq E :� tE P L8pΣq : E ¥ E0 ¡ 0u (3.11)
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where τ is the unit vector tangent to Σt. Furthermore, we introduce the space

W t �
!
pv, pψq P V t

0 �X : v|Σt � p pψ � pAtq�1qn
)
. (3.12)

Remark 3.1. Technically, if g � 0, then V t
g is not a vector space. Therefore, the

solution of the problem is usually decomposed as

u �
�
u� ug, (3.13)

with
�
u P V t

0 and ug P H
1 is such that ug|BΩt

D
� g. The function ug is usually called

lift function (see, for instance, [79]). Here, when we write u P V t
g , we actually mean

that u can be written in the form (3.13).

Using the second relation in the interface conditions (3.8), we can write the weak

formulation as follows: given g P H1{2pBΩt
Dq and h P L2pBΩt

N q, and givenE P E , find

u P V t
g , p P Qt and pη P X such that

$'''''''''''&'''''''''''%

�
ρf
DAu

Dt
,v



Ωt

� pρf ppu�wq �∇qu,vqΩt � µp∇u�∇uT,∇vqΩt�

�pp,∇ � vqΩt �

�
ρshs

B2pη
Bt2

, pψ

Σ

�
�
βEpη, pψ	

Σ
� pff ,vqΩt � ph,vqBΩt

N

pq,∇ � uqΩt � 0

ppu|Σ � pn� Btpη, pψqΣ � 0

(3.14)

for every pv, pψq P W t and q P Qt. Here, the notation pf, gqΩ denotes the inner prod-

uct inL2pΩq. In the next section we present the discretization of problem (3.14) that

will be used in this chapter and the following one.

3.2.2 The discrete problem

To discretize problem (3.14) we follow the strategy presented in [64]. We start by

introducing a set of discretization points for the time dimension tn � t0 � n∆t, n �

0, . . . N , with tN � T . Correspondingly, we will denote by fn the value of the generic

quantity fptnq. We will use Backward Differentiation Formulas of order p (BDFp)

for the discretization of the time derivatives, with a semi-implicit treatment of the
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convective and geometric non-linearities. In particular, we will denote with Ω�, u�

and w� the extrapolations of Ωn, un and wn respectively, based on the previous time

steps values. For instance, using BDF1 (that is, Backward Euler), we would have

Ω� � Ωn�1, u� � un�1 and w� � wn�1. Accordingly, V �
g , Q� and W � will be the

counterparts of V t
g , Qt and W t when the domain is Ω�. With these choices, in [64]

the authors showed that the FSI problem can be casted into a fluid problem, where

the action of the structure is regarded as a Robin boundary condition on Σt. The

semi-discrete FSI problem reads as follows: given E P E , un�1 P V �
g and pηn�1 P X,

find pun, pn, ηnq P V �
g �Q� �X such that

$'''''''''''''''&'''''''''''''''%

αρf
∆t

pun,vqΩ� � ρf pppu
� �w�q �∇qun,vqΩ� � µp∇un � p∇unqT,∇vqΩ�

�ppn,∇vqΩ� �
»

Σ

�
ρshs
∆t

� Eβ∆t


 pun � pn pv � pndσ
� F pvq �

»
Σ

�
ρshs
∆t

pun�1 � pn� Eβpηn�1


 pv � pndσ
pq,∇ � unqΩ� � 0

1

∆t
ppηn � pηn�1, pψqΣ � ppun � pn, pψqΣ

(3.15)

for all pv, pψq P W � and q P Q�. Here F pvq is a functional accounting for the (pos-

sible) non-homogeneous boundary conditions, the (possible) forcing terms, the

terms in the BDFp approximation to the ALE time derivative corresponding to pre-

vious time steps, while the parameter α is the coefficient of un in such approxima-

tion. Notice that, thanks to the semi-implicit treatment of the geometry, pηn can be

promptly computed from un once the fluid equations has been solved. Finally, we

compute the new position of the domain and the corresponding domain velocity

by solving the smooth extension problem

$''&''%
p∇pdn,∇pzq � 0 in Ω0

pdn � pηn on Σ

@pz P H1pΩ0q : pz|Σ � 0

ñ

$''&''%
Anppxq � x0 � pdn
Ωn � AnpΩ0q. (3.16)

For the space discretization we use conformal Finite Elements (FE). In partic-

ular, we choose inf-sup stable FE spaces for the fluid velocity and pressure (for
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instance, Taylor-Hood elements [79]), and we use the same polynomial order for

the discretization of the membrane displacement. We let V �
h , Q�

h and Xh be the fi-

nite dimensional subspaces of the spaces V �, Q� and X. We will use underlined

variables (u, p, η, . . .) to denote the vectors of the coefficients of the FE expansions

(uh, ph, ηh, . . .) of the corresponding continuous quantities (u, p, η, . . .). Furthermore,

since there is a bijection between each FE function fh and the vector f P Rn of the

coefficients in the FE basis expansion, with abuse of notation, we will use under-

lined variables to denote both the FE function fh and the vector of the coefficients

f . Finally,Anh will denote the discrete ALE map at the time step tn.

To formulate the fully discrete FSI problem, let us introduce the matrices M, K,

B, P, MΣ and MΣpEq, whose entries are defined by

Mij �

»
Ω�
ρfϕj �ϕidx (3.17)

Kij �

»
Ω�
ρf
�
ppu�h �w�

hq �∇qϕj
�
ϕidx�

»
Ω�
µp∇ϕj �∇ϕT

j q : ∇ϕidx (3.18)

Bij � �

»
Ω�
∇ �ϕjψidx (3.19)

Pij �

»
Σ

pϕj � pn pχidσ (3.20)

rMΣsij �

»
Σ
pχj pχidσ (3.21)

rMΣpEqsij �

»
Σ
Epχj pχidσ (3.22)

whereϕi, ψi, pχi are basis functions for the spaces V �
h , Q

�
h and Xh respectively. Simi-

larly, we introduce the momentum right hand side fnpEq, with entries given by

rfnpEqsi � F pϕiq �

»
Σ

�
ρshs
∆t

pun�1
h � pn� Eβpηn�1

h



ppϕi � pnqdσ �

� F pϕiq �
ρshs
∆t

PTMΣPun�1 � βPTMΣpEqη
n�1. (3.23)

The fully discrete problem then reads: given E P E , un�1 P Vh, ηn�1 P Xh, find

pun, pn, ηnq P Vh �Qh �Xh such that
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������
CpEq BT O

B O O

�∆tP O MΣ

������
������
un

pn

ηn

������ �

������
fnpEq

0

MΣη
n�1

������ (3.24)

where we introduced the momentum matrix

CpEq �
1

∆t
M�K� PT

�
ρshs
∆t

MΣ �∆tβMΣpEq



P. (3.25)

The choice of E presented in (3.11) is enough to guarantee that all the bilinear

forms are well defined. However, we will focus on two particular scenarios, which

are interesting both on the application and mathematical point of view. To present

these two scenarios, let s be the curvilinear abscissa along the vessel centerline, and

let Σi � tx P Σ : si ¤ si�1 ¤ siu, i � 1, . . . , k. This is a partitioning of the membrane

into k regions, depending on the curvilinear abscissa s, with s0 corresponding to

the inflow section of the vessel, while sk is the outflow section. We will consider the

following cases:

i) E � Epsq is constant in Σi, that is, the Young’s modulus is piecewise constant

along the vessel. This could model, for instance, the case where an artificial

prostheses in inserted in the vessel, thus introducint a sudden change in the

structural properties of the wall.

ii) E � Epsq is continuous on Σ and linear in Σi, that is, the Young’s modulus

is piecewise linear along the vessel. This could model, for instance, the case

where an atherosclerotic plaque is present at a certain position in the vessell,

affecting the structural properties of the vessel wall in the immediate upstream

and downstream sections.

Although the problem only requires E to be a given function of space, in view

of the solution of the inverse problem, it is convenient to introduce also a space

discretization of the Young’s modulus. In particular, the discrete space Eh for the

discrete Young’s modulus Eh will be the FE space of piecewise constant (or linear)

polynomials. However, to enforce the fact that the Young’s modulus is constant (or
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linear) on rather extended regions of Σ (depending on the curvilinear abscissa), we

introduce an extension matrix R such that the vector of the coefficients E in the

FE expansion of Eh can be written as E � Ry, with y P Rk, with k equal to the

number of independent values of Eh on the membrane, which is assumed to be a

rather small number1. For instance, for the piecewise constant case, Rij � 1 if the

i-th degree of freedom lies in Σj and zero otherwise. For the piecewise linear case,

the expression is slightly more complicated, with two non-zero coefficients per row,

corresponding to the two sections that delimit the region where the i-th degree of

freedom is located. This choice allows us to write the membrane weighted mass

matrix (3.22) as

MΣpEq �
ķ

`�1

y`M`, with rM`sij �

»
Σ

Ri`Rj`pχipχjdσ. (3.26)

Although this expansion requires us to compute k matrices rather than just one, it

will prove useful when deriving the optimality conditions for the inverse problem.

To conclude this section we rewrite the discrete problem (3.24) in a slightly dif-

ferent way, which shall prove useful in chapter 4 to develope a Reduced Basis ap-

proach for the solution of the inverse problem. In particular, we adopt an incre-

mental approach for the pressure [41]: given p�, a suitable extrapolation of pn, we

let pn � p� � δpn, and we rewrite the problem as

������
Cpyq BT O

B O O

�∆tP O MΣ

������
������

un

δpn

ηn

������ �

������
fnpyq � BTp�

0

MΣη
n�1

������ (3.27)

where, in view of the solution of the inverse problem, we stressed the dependence

of C and f on the Young’s modulus as a dependence on y rather than on E.

1In the piecewise constant case, k is simply the number of regions that the membrane has been
divided into, while in the piecewise linear case it will be equal to that number plus one.
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3.3 The inverse problem

In this section we present the inverse problem for the estimation of the Young’s

modulus, following the approach proposed in [69]. In particular, concerning the

framework presented in the previous chapter, we will adopt a variational approach.

The starting point is to define a cost functional

J pEq � 1

2

» T
t0

»
Σ
|pη � pηm|2dσdt� γRpEq, (3.28)

where pηm is the displacement field on the membrane retrieved from the images (the

measures) and R is a regularization term. For instance, we could use a Tikhonov

regularization term of the form

RpEq �
»

Σ
|E � Er|

2dσ, (3.29)

where Er is a (known) reference value for E such as, for example, the value of a

healthy vessel taken from literature. As explained in Section 2.4.2, the role ofR is to

enhance the convexity of the functional. The inverse problem then reads

Eopt � arg minJ pEq

s.t. FSIpu, p, η, Eq (3.30)

whereFSIpu, p, η, Eq indicates thatu, p, η andE must solve the system of equations

(3.9)-(3.10). This means that the FSI problem is regarded as a constraint for the

minimization of the functional J .

When we look for a numerical approximation of the inverse problem, we face the

issue of deciding the order in which to perform the two operations, discretization

and optimization. One approach is to write the optimality conditions for (3.30), for

instance using the Lagrange multipliers method, and then discretize them. This ap-

proach is usually referred to as Optimize-then-Discretize (OD). Alternatively, one

can discretize the functional and the constraint in (3.30) and then write the opti-

mality conditions for the discrete system. This approach is called Discretize-then-
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Optimize (DO). Both of the approaches eventually lead to a set of (possibly non-

linear) equations to solve that, in general, may differ and it is not clear if one ap-

proach is better than the other. However, as pointed out in [38], the DO approach

has the advantage that the solution is optimal for the discrete problem, while the

OD approach may lead to a solution that is not optimal for the continuous or dis-

crete problem.

For time-dependent problems, optimization is an even harder issue. In fact,

when using Lagrange multipliers, one has to solve also an adjoint problem in order

to compute the gradient of the functional, and is a backward in time problem. From

the storage point of view, this is demanding, since it requires storing the solution of

the forward problem at every time step, while the adjoint problem is solved. Storage

costs can be partially reduced using the so called Check-pointing technique [17],

but this causes an increase in the computational costs2. Moreover, for the case of

the estimation of the compliance, the adjoint problem would also involve the cal-

culation of the so called shape derivatives [87], which are also expensive.

In [69] the authors proposed a trade-off approach, tackling the inverse problem

with an approach that we call semi-discretize-then-optimize-then-fully-discretize.

In particular, they discretized the problem in time, introducing an instantaneous

cost functional

J npEq �
»

Σ
|ηn � ηnm|

2dσ � γRpEq (3.31)

and performed the minimization at every time step, treating the geometry explic-

itly. Finally, they discretized the problem in space to obtained a discrete KKT sys-

tem. This approach has the advantage of dramatically reduce the computational

and storage costs, at the price that every time step will in general lead to a differ-

ent estimate for E. In [69], the authors overcome this disadvantage by taking an

average (possibly weighted) of the estimates obtained at all the time steps. Further-

more, they also perform a well posedness analysis, showing that the choices of a

piecewise linear or piecewise constant Young’s modulus guarantee the existence of

an optimum solution.

2Since only a few time steps are stored, the forward problem has to be solved again to recover the
solution at the remaining time steps.
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Remark 3.2. If using Tikhonov regularization of the type (3.29), this approach also

offers a good candidate for Er, namely the estimate obtained at the previous time

step, or a weighted combination of the last k ¥ 1 estimates, to prevent the case

where a bad estimate at a certain time step excessively influences the next estimate.

Here we follow a genuine DO approach, discretizing the problem both in space

and time, and performing the optimization at each time step. We use a Tikhonov

regularization where the reference value at time step tn is set to the average of the

previous m estimates (or all the estimates, if n   m), for a predefined value of m

(in our experiments we used m � 5). The instantaneous discrete cost functional is

given by

Jnpyq �
1

2
}ηn � ηn

m
}Σ �

γ

2
}Rpy � yn

ref
q}Σ (3.32)

where }v}Σ � vTMΣv is the discrete counterpart of the continuous L2 norm on Σ

and yn
ref

is the reference value for the Tikhonov regularization at time step tn. The

optimization problem in the discrete space reads as follows

yn
opt

� arg min Jnpyq

s.t.

������
Cpyq BT O

B O O

�∆tP O MΣ

������
������

un

δpn

ηn

������ �

������
fnpyq � BTp�

0

MΣη
n�1

������ (3.33)

We will refer to this problem as the Inverse Fluid-Membrane Interaction (IFMI)

problem. We decide to tackle the IFMI problem with the Lagrange multipliers method.

To this end, we introduce the Lagrangian function

Lpun, δpn, ηn, y, λu, λδp, ληq �Jnpyq � λT
u

�
Cpyqun � BTδpn � fnpyq � BTp�

�
�

�λT
δpBu

n � λT
η

�
MΣη

n �∆tPun �MΣη
n�1

�
. (3.34)

Then, we differentiate the Lagrangian with respect to each variable, to obtain the
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KKT system

$'''''''''''''''''''''''''&'''''''''''''''''''''''''%

BL
Btun, δpn, ηnu

� 0 ñ

������
CTpyq BT �∆tPT

B O O

O O MΣ

������
������
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λδp

λη

������ �

������
0

0

�MΣpη
n � ηn

m
q

������
BL
Byi

� 0 ñ γMRpy � yn
r
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u

�
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Byi
un �

Bfn

Byi



� 0 i � 1, . . . , k

BL
Btλu, λδp, ληu

� 0 ñ

������
Cpyq BT O

B O O

�∆tP O MΣ

������
������

un

δpn

ηn

������ �

������
fnpyq

0

MΣη
n�1

������
(3.35)

where we have set MR � RTMΣR. The expression for the derivatives
BC

Byi
and

Bfn

Byi
can be computed from (3.23-3.25) and (3.26):

BC

Byi
� ∆tβPTMiP,

Bfn

Byi
� �βPTMiη

n�1. (3.36)

For the solution of the KKT system (which is non-linear) we use the approach we

presented in Section 2.4.1. In particular, we minimize Jnpyq with the BFGS method

(see, for instance, [65]), where the gradient of the functional is computed as

BJnpyq

Byi
� λT

u

�
BC

Byi
un �

Bfn

Byi



� γMRpy � yn

r
q �

� λT
u

�
∆tβPTMiPu

n � βPTMiη
n�1

�
� γMRpy � yn

r
q. (3.37)

In order to compute the gradient, we must therefore solve, in order, the forward

problem and the adjoint problem. Algorithm 2 summarizes the steps to estimate

yn at time tn.

Remark 3.3. The BFGS method is a routine for unconstrained minimization, and

therefore can lead to solutions yn with negative components. However, since this is

clearly not physical, and, moreover, can lead to instabilities of the linear system, in

practice we made a change of variables for the minimization routine. In particular,



Chapter 3. Variational estimation of the compliance of a blood vessel 41

Algorithm 2 Full space BFGS

1: Compute the reference value yn
r

as the average of previous m estimates
2: k � 1, let y

k
� yn

r
3: while k   kmax and convergence test==false do
4: Solve state equation with y � y

k
to compute the state variables

5: Solve adjoint equation with y � y
k

to compute the adjoint variables
6: Compute the gradient of Jn using (3.37)
7: Compute the descent direction δk (using BFGS)
8: Perform line search along δk and update the estimate: y

k�1
� y

k
� τkδk

9: k Ð k � 1
10: end while

we set

py � lnpyq, (3.38)

where the logarithm is to be intended component-wise. With this change of vari-

ables, we can allow py to be negative, while the real (physical) value of y will stay

positive. The new functional to minimize is therefore

pJppyq � Jnpepyq � Jnpyq, (3.39)

so that there is no difference in evaluating pJnppyq versus evaluating Jnpyq. For the

derivatives we obtain

B pJnppyq
Bpyi �

BJnpepyq

Bpyi �

�
BJnpyq

Byi

���
y�epy



epyi . (3.40)

3.4 Results

In this section we present some numerical results on the problem of the estimation

of the compliance. In particular, since the focus of this work is on the Reduced Or-

der Model approach for the reduction of the computational costs associated with

the inverse problem, here we will present only two examples: the first on a cylindri-

cal domain and the second an idealized aortic arch. All the simulations have been

performed using LifeV, a C++ FE library [1].

Remark 3.4. We underline the fact that the variational approach for the estima-

tion of the compliance was already proposed in [69], where several results were
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presented using what we called semi-discretize-then-optimize-then-fully-discretize

approach. The results we present here are obtained, instead, with a genuine DO

approach. Furthermore, in [69], the authors mostly focused on the case where the

Young’s modulus is constant in the whole domain, that is, y P R, with only one test

for the case where y P R3, corresponding to a piecewise linear distribution. Here, we

always focus on the multi-dimensional case, with y P R3, and analyze both piece-

wise constant and piecewise linear distributions of the Young’s modulus.

For these simulations we will make use of synthetic data. This means that we

are going to generate data by solving the forward problem with a given (realistic)

value for the Young’s modulus, and we will use the computed membrane displace-

ment as ‘measures’ for the inverse problem. In order to avoid the so called ‘inverse

crime’, we are going to generate the data on a mesh with a finer granularity than the

one used in the inverse problem, and we will add random noise to the computed

solution. The resulting vectors will then be projected on a coarser mesh, where the

inverse problem will be solved. If we denote with η
f

the solution obtained on a finer

mesh and with Πc
f a projector from the fine to the coarse mesh, the measures used

in the inverse problem can be expressed as

η
m
� Πc

f

�
η
f
� ξ}η

f
}8e

	
, (3.41)

where e is a random vector obtained from the uniform distribution Upr�1, 1sq and

ξ is the reciprocal of the signal to noise ratio (SNR) and represents the amount of

noise in the measures as a fraction of the magnitude of the ‘exact’ measures. For

data retrieved from medical images, the magnitude of the noise can be as large as

20% of that of the wall displacement [14], which means that the SNR can be as low

as 5 and ξ as large as 0.2.

3.4.1 Cylinder case

The geometry for the cylindrical test case is shown in Figure 3.2(a). In particular,

the length of the cylinder is L � 5cm, while the radius isR � 0.5cm. For the Young’s

modulus we will consider a piecewise linear distribution, with y P R3. In particular,
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(a) Cylinder (b) Idealized aortic arch

Figure 3.2: Geometries for the cylinder (a) and idealized aortic arch (b) test cases.

y1 and y3 corresponds to the value of the Young’s modulus at the inflow and outflow

sections respectively, while y2 corresponds to the value of the Young’s modulus in

the middle of the cylinder. The values used for the generation of the synthetic mea-

sures are ry1, y2, y3s � r1.3, 1.8, 1.6s�106 dyn{cm2, and the corresponding distribution

is depicted in Figure 3.3.

The initial condition for the fluid is at rest (zero velocity and pressure), while at

the inflow (Γin) and outflow (Γout) sections we impose a Neumann boundary con-

dition of the type

� pn�
�
∇u�∇uT�n � gptqn, (3.42)

where

gptq �

$''&''%
500 sin p100πtq on Γin

0 on Γout,

(3.43)

and 0 ¤ t ¤ 0.06, so that the inflow pressure wave completes three periods in a

simulation.
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Figure 3.3: Piecewise linear distribution of the Young’s modulus for the cylinder test
case.

For the minimization of the functional with BFGS we used tolerances on both

the functional and its gradient. In particular, we picked relative tolerances of 10�3

and absolute tolerances of 10�5 on both. These values were determined experimen-

tally: larger values for tolerances led to inaccurate results, while smaller values led

to eccessive computational costs, without significantly increasing the accuracy of

the results. We also mention that we used the Tikhonov regularization 3.29, with

regularization parameter γ � 10�2. Also this value has been determined experi-

mentally. In particular, smaller values made the functional oscillate more, and be

more sensitive to noise. On the other hand, larger values were also not satisfactory,

since they excessively affected the functional. The reference value in (3.29) is taken

as the average of the previous 5 estimates (or the available ones, for the first five

time steps).

The history of the estimates of the Young’s modulus is reported in Figure 3.4. In

particular, the blue line represents the estimates for y1, the red line the estimates for

y2 and the green line the estimates for y3. The two dashed lines represent the correct

values of the components of y that were used to generate the synthetic measures.

It is evident from the figure that the first component to approach the correct

value is y1, followed by y2 and, only after several time steps, by y3. This is expected

and reasonable, since the pressure wave propagates in the cylinder with finite ve-

locity, and therefore the displacement of the membrane in the downstream sec-

tions is very small at the beginning. As a consequence, at the beginning, a change

in the value of the Young’s modulus in the downstream sections does not signifi-
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Figure 3.4: Young’s modulus estimates for the cylinder test case. Here, SNR=10 (mean-
ing 10% noise).

cantly influence the value of the functional. However, after a few time steps, the

displacement in the downstream sections starts to be relevant enough to influence

the functional and its gradient in the minimization routine.

In Table 3.1 we reported a summary of the minimization routine. On average,

the BFGS routine took around 4 iterations to converge, as it can be inferred from

the number of evaluation of the functional and its gradient. In fact, each iteration of

the BFGS algorithm require one evaluation of the gradient (to compute the descent

direction) and one or more evaluation of the functional (depending on whether or

not the line search is successful at the first evaluation). In our simulation, we used

the Armijo’s criterion [65] for the line search, with a target reduction of 1%, which

seldom required more than one evaluation of the functional to achieve a sufficient

reduction of the functional.

Another interesting observation that we can extract from Table 3.1 is that the

assimilation procedure gave an average of the estimates that has a relative error

of less than 5%. This is interesting especially if compared to the value of the SNR,
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Summary
yex [1.3, 1.8, 1.3]�106

y� [1.33, 1.87, 1.35]�106

rel. error 3.27%
exec. time 2175s

Functional eval. 251
Gradient eval. 251

Table 3.1: Summary of the minimization of the functional using BFGS for the cylindri-
cal test case.

which was 10, meaning that 10% of the measures consisted of noise. This fact, as

we will see, is observed also on other geometries and also in the ROM approach,

which means that the constrained optimization is able to reduce the error, when

interpreted as a map from the measures to the parameters.

3.4.2 Idealized aortic arch case

The geometry for the cylindrical test case is shown in Figure 3.2(b). The idealized

aortic arch consists of half a torus completed by a cylinder. In particular, the major

and minor radii of the torus (i.e. the distance between the center of the torus and

the centerline of the pipe and the radius of the pipe respectively) are R � 1.5cm

and r � 0.5cm, while the length of the cylindrical part is L � 5cm. For this case

we consider, instead of a piecewise linear, a piecewise constant distribution for the

Young’s modulus, with y P R3. More precisely, y1 and y2 correspond, respectively, to

the value of the Young’s modulus in the first and second quarter of the torus, while

y3 corresponds to the value of the Young’s modulus in the cylindrical part.

The synthetic measures are generated with y � r1.3, 1.8, 1.3s � 106 dyn{cm2. The

corresponding distribution of the Young’s modulus is pictured in Figure 3.5. The

initial condition is at rest, while at the inflow (Γin) and outflow (Γout) sections we

impose the same Neumann boundary conditions that we used in the cylindrical

case:

� pn�
�
∇u�∇uT�n � gptqn, (3.44)

where
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Figure 3.5: Piecewise constant distribution of the Young’s modulus for the idealized
aortic arch test case.

gptq �

$''&''%
500 sin p100πtq on Γin

0 on Γout,

(3.45)

and 0 ¤ t ¤ 0.06, so that the inflow pressure wave completes three periods in a

simulation.

The tolerances used for the minimization with the BFGS method are the same as

for the cylinder test case, namely relative tolerances of 10�3 and absolute tolerances

of 10�5, on both the functional and its gradient. The functional is regularized with

Tikhonov regularization (3.29), with coefficient γ � 10�2, with reference value taken

as the average of the previous 5 estimates (or the available ones, for the first five

time steps).

The estimates of the three components of y are plotted in Figure 3.6. In partic-

ular, the blue line refers to the estimates of y1, the red line to the estimates of y2

and the green line to the estimates of y3. As we already noticed in the cylinder test

case, the estimates for y1 are the first to approach the correct value used to gener-

ate the synthetic measures, followed by the estimates of y2 and y3. In this test case,

however, the estimates are somewhat more oscillatory around the correct value.

A summary of the performance of the minimization routine is reported in Table

3.2. As for the cylinder test case, the number of BFGS iterations per time step is, on
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Figure 3.6: Young’s modulus estimates for the idealize aortic arch test case. Here,
SNR=10 (meaning 10% noise).

Summary
yex [1.3, 1.8, 1.3]�106

y� [1.33, 1.84, 1.31]�106

rel. error 1.91%
exec. time 3176s

Functional eval. 246
Gradient eval. 246

Table 3.2: Summary of the minimization of the functional using BFGS for the idealized
aortic arch test case.
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average, four. The relative error of the estimates is also significantly smaller than

the error in the measures, as it was the case in the cylinder test case, passing from

10% in the measures to less than 2% in the estimates.

The computational costs associated with the solution of the inverse problem are

however elevated. The simulations for both the cylinder and idealized aortic arch

were performed on a personal laptop, with 2 processors (1.7GHz per processor).

The number of unknowns was somewhat limited: for the fluid velocity, we used

9186 total d.o.f. for the cylinder case and 13017 total d.o.f. for the idealized aortic

arch. In the next chapter we will present a POD approach for the reduction of these

costs.



Chapter 4

Reduced Order Modeling for the

compliance estimation problem

In this chapter we show how Reduced Order Models (ROM) can be used to reduce

the computational costs in the solution of the inverse problem presented in the

previous chapter. First, we will introduce the concept of ROMs in general, illustrat-

ing the two most common approaches used to build the reduced model. Then we

will present the ROM that we used for the problem of the estimation of the com-

pliance. Finally we will show some results, comparing the ROM approach with the

Full Order Model (FOM) approach that we presented in the previous chapter.

4.1 Reduced Order Models

When using a mathematical model to describe a complex system, in order to have

an accurate solution, the number of variables (and equations) must usually be fairly

large and, in addition, may have to be solved several times, as often happens in

optimization problems. This means that tackling the problem is expensive both

from the storage and, most importantly, the computational point of view. To reduce

the computational costs, there are two main strategies:

- reduce the complexity of the model

- reduce the size of the space where a solution is sought.

50
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In the first case, further assumptions are made, so that the set of equations to be

solved simplifies to a smaller set of equations or to a different (and simpler) type of

equation. This is precisely what we presented in Section 2.4, where a 2D model has

been used for the vessel wall instead of a full 3D one. However, the model cannot

be simplified beyond a certain level, otherwise the quality and reliability of the so-

lution would deteriorate. In the example presented in (2.3), a simplification of the

model corresponds to an increase of the model error term εn.

If the model cannot be further simplified without losing reliability, then addi-

tional reduction in the computational costs can be achieved by reducing the di-

mension of the space of solutions. To explain the concept, consider the simple al-

gebraic problem

Apµqx � bpµq, (4.1)

where µ P R is a parameter, A P Rn�n and x, b P Rn. In general, different values of

µ would lead to different solutions. It is convenient at this point to think of x as a

function of the parameter µ. Then, the map that at each parameter associates a so-

lution defines a trajectory (or a hyperplane, if µ is a vector) in the space of solutions

Rn. Clearly, each point along this trajectory has a representation with respect to the

canonical basis, of the form

xpµq �
ņ

i�1

xipµqei. (4.2)

If we assume that the dependence of x on µ is smooth, then, for µmin ¤ µ ¤ µmax, it

is reasonable to look for a solution of the form

xpµq �
Ņ

i�1

cipµqvi, (4.3)

where N    n, vi P Rn, and, without loss of generality1, vTi vj � δij .

Definition 4.1. The vectors v1, . . . , vN are called the reduced basis and the space

they span is called the reduced space. Congruently, we will sometimes refer to the

ambient space Rn as the full space.

1In fact, we can always ortho-normalize the vectors first.
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If we let W � rv1, . . . , vN s be the matrix containing the new basis, then (4.3) can

be written as

xpµq � Wc, (4.4)

where c P RN is the unknown in the reduced space. If we plug this expression in

(4.1), we obtain

ApµqWc � bpµq. (4.5)

This is an overdetermined system, which does not, in general, admit a solution. To

overcome this issue, one has two strategies:

a) Least Squares: minimize the residual in the full space.

b) Galerkin: solve exactly the problem in the reduced space.

This alternative is similar to the one that arises when using Krylov methods to

solve linear systems. In that framework, choice a) leads to the GMRES method,

while choice b) leads to the Conjugate Gradient method (provided the matrix is

symmetric and positive definite).

In the context of reduced basis, the first approach leads to the system of the

normal equations, projected onto the reduced space

WTATAWc � WTbpµq, (4.6)

with the drawback that the condition number would increase. The second ap-

proach, on the other hand, leads to the linear system

Arpµqc � brpµq, (4.7)

where Arpµq � WTApµqW and brpµq � WT bpµq. This linear system, which is of order

m, in general features a dense matrix Ar and can be tackled with a direct method.

Let us denote with xr the projection to the full space of the solution computed in

the reduced space, that is x � Wc. Clearly, the crucial question is: how well does xr

approximate x? To answer this question, let P and R be, respectively, the projector
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from Rn onto the reduced space and its orthogonal complement. In terms of the

matrix W, these projectors are given by

P � WWT R � I�WWT . (4.8)

Then, the reduced basis approximation error is given by

x�Wc �x�WA�1
r WT b � x�WA�1

r WTAx � (4.9)

�x�WA�1
r WTApP� Rqx � (4.10)

�x�WA�1
r WTAWWTx�WA�1

r WTARx � (4.11)

�x�WA�1
r ArW

Tx�WA�1
r WTARx � (4.12)

�x�WWTx�WA�1
r WTARx � (4.13)

�Rx�WA�1
r WTARx � pI�WA�1

r WTAqRx, (4.14)

where we omitted the dependency on µ for the sake of brevity, and we used the fact

that P� R � I. This expression shows that the error is small if either WA�1
r WT is a

good approximation of A�1 or if Rx is small. Since the matrix A may be large and

depend on µ, the first requirement appears much harder to fulfill in general. On

the other hand, the projector R has norm one, so the term Rx cannot be small for

every x. However, if we limit our attention to the vectors x that are solutions of (4.1)

with µmin ¤ µ ¤ µmax, then it is possible to construct a basis that fulfills the second

requirement.

A ROM approach consists then of two stages:

• offline: it is the stage where the RB is constructed. The computational costs

of this stage may be rather high.

• online: it is the stage where the offline work is exploited to solve the problem

(4.1) for several values of the parameter µ. The solution of each instance of

problem (4.7) should be remarkably cheaper compared to problem (4.1).

In Sections 4.1.1 and 4.1.2 we will present two of the most common methods

used in literature to construct the RB, namely the so-called greedy approach and the
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Proper Orthogonal Decomposition (POD). For both of these methods, the starting

point is the construction of a training set for the parameter µ:

S � tµ1, . . . , µmu . (4.15)

Then, using the solution corresponding to one (or all) of these values, these meth-

ods build a basis that is guaranteed to approximate any solution xpµq within a de-

sired tolerance for every µ P S.

4.1.1 Greedy Reduced Basis

In the so called Greedy Reduced Basis (GRB) approach, the basis is built bottom-up;

that is, we start with an empty basis, and then add vectors according to a particular

rule, until some stopping criterion is satisfied. In particular, given a current RB of

size k, the algorithm estimates the RB approximation error for every value of the

parameter in S, then adds to the RB the solution corresponding to the value of the

parameter that maximizes the error estimates. Since in this thesis we will not use

the GRB approach, we provide only a quick overview of it, in order to highlight the

differences with the POD method, and we refer to the literature for further details

(see e.g., [15, 26, 55, 83] and references therein).

Let us consider the problem (4.1), that is a steady discrete linear problem. We

will denote byVN the reduced space generated by the basis vectors v1, . . . , vN . Given

a training set S for the parameter, and a tolerance τ ¡ 0, the GRB procedure is sum-

marized in Algorithm 3.

Algorithm 3 GRB

1: Set N � 0, V0 � H and ε � 8.
2: while ε ¡ τ and N   n do
3: Compute xpµjq for all µj P S.
4: Compute ∆N pµjq for all µj P S.
5: Find µj � arg max

S
∆N pµjq and set ε � ∆N pµjq

6: Solve the full order model Apµjqx � bpµjq
7: Expand the reduced space: VN�1 � VN ` spantxu
8: N Ð N � 1
9: end while
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Here we denoted with ∆N pµq the estimate of the RB approximation error for the

solution corresponding to the parameter µwhen the size of the reduced space isN .

Clearly, the error estimator ∆N pµq plays a key role in this process. In order to

be reliable, the estimate must be sharp and effective. On the other hand, since at

every iteration it must be computed for every parameter in the training set, it must

also be cheap to evaluate, otherwise the construction time overhead may defeat

the purpose of the whole procedure. For these reasons, its construction must be

tuned on the problem at hand and, depending on the nature of the problem, may

involve the estimation of many factors. As a matter of fact, there is a vast literature

on problem specific a posteriori error estimators (see e.g., [20, 50, 82]). However, in

most of the cases, the main idea is to exploit the error relation

ApµqeN � rN pµq, (4.16)

where

eN :� xN � x, rN � bpµq �ApµqxN , (4.17)

with xN being the RB solution corresponding to the basis v1, . . . , vN . For instance,

in the case wher A is positive definite, multiplying both side by eN and using the

Schwarz inequality, one obtains

αpµq}eN}
2 ¤ eTNApµqeN � eTNrN pµq ¤ }eN}}rN pµq}, (4.18)

where αpµq � minRe rλpApµqqs. If Apµq is also symmetric, then αpµq � λminpApµqq.

The error estimator is then defined as

∆N pµq �
}rN pµq}

αLB pµq
, (4.19)

where αLB pµq is a lower bound for αpµq which can be computed in a reasonable

time. One possibility is to use the so called Successive Constraint Method (SCM),

which allows to compute a lower bound forαpµq for everyµ P S, by means of solving

a certain number of linear optimization problems [46].
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The positive and negative aspects of the GRB method can be summarized as

follows (see, for instance, [68]):

` The full order model is solved only for a limited number of parameters.

` The RB approximation error decreases monotonically with respect to the ba-

sis dimension.

a The procedure needs a sharp and effective a posteriori error estimator.

a The basis is not optimal, in the sense that there may be a basis of smaller size

that achieves the same approximation error.

The dependence of the GRB method on an error estimator constrains its use to

a limited class of problems, where such an estimator is available. Although in the

last ten years this class has been enlarged, this still remains the major limitation of

the method.

4.1.2 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) approaches the problem of the con-

struction of a RB from a different that can be regarded as the dual of that of the

GRB method. The GRB method starts from an empty basis and progressively adds

the vectors that help to improve the approximation error estimates. On the other

hand, the POD starts from the set of all the solutions corresponding to the training

set parameters, and discards redundant information.

POD is a technique that have been used for decades in different fields, and has

been named in different ways, depending on the field: in statistics it is often called

Principal Component Analysis (PCA) or Hotelling transform [47], in the theory of

stochastic processes it is known as Karhunen-Loéve transform [57], in whether fore-

cast and meteorology is known as Empirical Orthogonal Functions analysis [58], in

matrix analysis it is known as Eckart-Young theorem [43] (although the result was

first shown by Schmidt [86]).

To see how the POD method works, assume that we have a given set of values for

the parameter S � tµ1, . . . , µmu, which we will call training set, and that we have
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solved the problem (4.1) for all the parameters in S. We can gather the solutions in

the so called snapshots matrix

X � rx1, . . . , xms, (4.20)

where xi is the solution corresponding to the parameter µi. In the following, we

will always assume that m ¤ n, that is, the number of snapshots is smaller than

the dimension of each snapshot2. Furthermore, without loss of generality, we will

assume that the average of all the snapshots is 0. Otherwise, one has to subtract the

average to every snapshot and apply the POD to the matrix X � rx1�x, . . . , xm�xs,

where x is the average of all the snapshots.

The POD aims to find a low dimensional approximation of the range of X. In

particular, we look for a matrix Xr such that

}X�Xr} ¤ τ}X}, rankpXrq � r (4.21)

where τ is a given tolerance. In general, different choices for the matrix norm would

lead to different matrices Xr. However, if we restrict our attention to unitarily in-

variant norms3, then the matrix Xr has a precise structure in terms of the singular

value decomposition (SVD) of X. In particular, let

X � UΣVT (4.22)

be the SVD of X, where U P Rn�n and V P Rm�m are unitary and Σ P Rn�m is such

that Σij � 0 for i � j, and Σ11 ¥ Σ22 ¥ � � � ¥ Σmm ¥ 0. Moreover, if rankpAq � k  

m, then Σii � 0 for i ¡ k. The numbers σi :� Σii are called the singular values of

X, while the columns of U and V are the left and right singular vectors respectively.

The non-zero singular values can be characterized as the non-negative square roots

of the non-zero eigenvalues of ATA (or, equivalently, AAT).

2This is not a requirement, but rather a way to fix the notation: it allows us to write, in the following,
the matrix Σ in the SVD of X as a matrix with more rows than columns.

3} � } is unitarily invariant if }UAV} � }A} for every unitary matrix U,V (of the proper dimensions).
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Let us decompose U,Σ and V as

U �

�
Ur Un�r

�
, Σ �

���Σr

Σn�r

��� , V �

�
Vr Vm�r

�
(4.23)

where Ur P Rn�r and Vr P Rm�r contain the first r columns of U and V respectively,

while Un�r and Vm�r contain the remaining columns of U and V respectively. The

matrix Σr P Rr�r is the restriction of Σ to the first r rows and r columns. In [61] it is

shown that for a unitarily invariant norm } � }, the matrix of rank r that minimizes

(4.21) is given by

Xr � UrΣrV
T
r , (4.24)

which is usually referred to as truncated SVD (TSVD). Moreover, the corresponding

approximation error depends solely on the singular values of X and r. In fact, since

we are focusing on a unitarily invariant norm, we have that }X} � }Σ}, and therefore

we can express (4.21) as

τ}Σ} ¥
��UΣVT �UrΣrV

T
r

�� � ��Σ�UTUrΣrV
T
rV
�� � (4.25)

�

�������
���Σr

Σn�r

����
���Ir

O

���Σr

�
Ir O

�������� � }Σn�r}. (4.26)

John von Neumann showed [101] that if }A} is a unitarily invariant matrix norm,

then }A} � ~σ~, where ~ � ~ is a vector norm and σ is the vector of the singular

values of A4. Therefore, the POD first step is to find r such that

~pσ1, . . . , σrq~ ¥ τ~pσ1, . . . , σmq~. (4.27)

Let us show what this condition translates into for the unitarily invariant matrix

norms that are more frequently used:

i) spectral norm: }A}2 � max
}x}2�1

}Ax}2. It is possible to show5 that this definition

4More precisely, he showed that to each unitarily invariant norm }A} corresponds a symmetric
gauge function g such that }A} � gpσq.

5For instance, using Lagrange multipliers.
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leads to }A}2 �
a
ρpATAq, where ρpAq is the spectral radius of A. Therefore,

}A}2 � σ1 and, since the singular values are ordered, }A}2 � }σ}8. The POD

truncation criterion for the spectral norm case is therefore

σr
σ1

¥ τ. (4.28)

ii) Frobenius norm: }A}F �
a°

|Aij |2. It is easy to show that }A}F �
a
trpATAq

and, since the trace is the sum of the eigenvalues, }A}F �
a°

λipATAq �b°
σ2
i , by the characterization of the singular values. The Frobenius norm is

therefore equivalent to the 2-norm on σ, that is }A}F � }σ}2. The POD trunca-

tion criterion for the Frobenius norm case is

ŗ

i�1

σ2
i

m̧

i�1

σ2
i

¥ τ2. (4.29)

iii) nuclear norm: }A}� �
°
σi. The nuclear norm is, by definition, the sum of

the singular values, and is therefore equivalent to the 1-norm on σ. The POD

stopping criterion is therefore

ŗ

i�1

σi

m̧

i�1

σi

¥ τ. (4.30)

Once the SVD of X has been computed and the rank of the approximating matrix

Xr has been determined, the construction of the reduced basis needs no additional

time. In fact, we know from the property of the SVD that the left singular vectors

form an orthonormal basis for the range of X. Therefore, one simply takes W � Ur.

The POD from a statistical perspective

It is interesting to analyze the difference between the three unitarily invariant norms

we presented, when used inside the POD method. In particular, if we forget the fact
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that the snapshots are the solutions to the problem (4.1) corresponding to different

values of µ, and we regard them simply as points in Rn, we may consider them as

realization of the random variable x. From the statistical point of view, the POD

is a techniques that aims to identify privileged directions, that capture most of the

variability of this dataset. In statistics, this analysis is usually called Principal Com-

ponent Analysis (PCA): through a SVD, the dataset is rotated on the reference frame

generated by the left singular vectors of X. In this context, the singular values are

the variability of the dataset along the direction of the corresponding left singular

vector. In the PCA terminology, the singular vectors are called principal compo-

nents and the singular values correspond to the sample standard deviation along

the corresponding principal component. The three norms presented in the pre-

vious section correspond to different ways to measure the total variability of the

dataset when projected on a subset of the principal components.

The spectral norm is remarkably different from the other two. In fact, it measures

the variability of a dataset based only on the variability along the first principal

component. Therefore, once the direction with the largest variance has been iden-

tified, each other direction is marked as statistically relevant (or irrelevant) based

solely on how its variability compares with σ1. No information about the variance

along the other principal components is needed.

The Frobenius and nuclear norm, on the other hand, both consider the dataset

variance along all the principal components to establish if a component is needed

to describe the dataset variability. However, they weigh the variabilities along the

principal components in a different way. The Frobenius norm considers the squares

of the singular values, which, in statistical terms, represent the sample variances

along each principal direction. On the other hand, the nuclear norm considers the

singular values themselves, that is, the sample standard deviations. The Frobenius

norm is therefore more meaningful from the statistical point of view, and in fact, it

is the norm mostly used in PCA.
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4.2 A POD approach for the compliance estimation problem

In this section we present how the POD method can be applied to the problem

of the estimation of the compliance of a vessel. In particular, we want to reduce

the computational costs associated with the solution of the optimization problem

(3.33).

To motivate the choice of using a RB method for this problem, it is useful to

look at the correlation between solutions corresponding to different values of y and

at different instants in time. In particular, let us consider the fluid-membrane in-

teraction problem (3.15), with yi P t1, 2, 3u � 106dyn{cm2, and inflow and outflow

boundary conditions given by

µ
�
∇u�∇uT�n� pn � gptqn, (4.31)

with gptq � 0 at the outflow (homogenous Neumann conditions) and gptq � 500p1�

sinp100πtqq at the inflow. We chose ∆t � 0.001 and store the results for 60 time steps

and build the corresponding snapshots matrix. Here, we consider the solutions as

if the time t were itself a parameter. In other words, un�1 and un are considered

as different snapshots, even if they are computed using the same Young’s modu-

lus. Nevertheless, we expect a rather smooth dynamics in time, so that the singular

values of the snapshots matrix should decay of several orders of magnitude rather

quickly. In Figure 4.1 we show the behavior of the singular values of the snapshots

matrices of velocity and displacement. As we expected, the magnitude of the sin-

gular values decays rather quickly at the beginning and, although there is no gap

in the spectrum, it is reasonable to infer that u and η can be well approximated by

vectors belonging to spaces of dimensions much lower than the corresponding fi-

nite element ones (which, in this example, are Nh � 36, 624 for the velocity and

Nh � 7, 760 for the displacement).

To construct a Reduced Basis (RB) we decide to use the POD approach since,

at the best of our knowledge, no a priori error estimator is known for the fluid-

membrane interaction problem (3.14). Moreover, we want to take advantage of the
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Figure 4.1: Singular values of the velocity (left) and membrane displacement (right)
snapshot matrices. The snapshots have been first amended of the non-homogeneous
boundary conditions and cenetered around the sample average.

fact that the snapshots are divergence free. To understand how, let us assume we

already computed the RB for the velocity space and let us denote by Wu the matrix

whose columns are the RB vectors. If we project the momentum equation onto the

velocity reduced space, we obtain

WT
uCpyqun �WT

uBTδpn � WT
ufpyq �WT

uBTp�. (4.32)

Should the geometry be fixed in time, then the term WT
uBT � pBWuq

T would be

identically zero, due to the (weak) divergence-free nature of the snapshots. In the

case of a moving domain, this is no longer true, in general, for each snapshots is

divergence-free only in the geometry in which it was computed. However, for small

displacements, we expect the product BW to be small. Furthermore, for small time

steps, we expect δpn to be also small. For the sake of the computational costs,

we drop the pressure term in (4.32). Notice that this is equivalent to use a time-

advancing scheme where the pressure is treated explicitly. Once the momentum

equation has been solved and the velocity field has been computed, the pressure

can be recovered by solving a least squares problem in the full space:

pn � arg min
pPRn

}fn � Cun � BTp}2. (4.33)

Notice that (4.33) is well posed since the FE spaces for velocity and pressure are

assumed to satisfy the inf-sup condition.
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Remark 4.1. In order to be able to project a saddle point problem onto a reduced

space without resorting to an explicit treatment of the pressure, one has to make

sure that the inf-sup condition holds also for the reduced problem. A possible

way to enforce this is to enrich the velocity reduced space, by adding the so called

supremizers: for each pressure snapshot p
i
, an element zi is added to the velocity

snapshots. The new element zi solves

Hzi � BTp
i
, (4.34)

where H is the matrix corresponding to the discretization of the inner product in

H1. In other words, zi is the Riesz representative (in the discrete norm induced by

H) of the gradient of the pressure snapshot p
i
. An example of this procedure can be

found in [20, 82].

However, in the case of the fluid-membrane interaction problem, even adding

the supremizers to the velocity snapshots does not guarantee that the projection

of the saddle point problem will be inf-sup stable for every possible value of the

Young’s modulus. For this reason, in this work we decided to circumvent the inf-

sup condition and formulate the problem in the sole velocity space.

We therefore solve the forward problem for a given set of Young’s moduli y
1
, . . . , y

M

and store the corresponding velocity and membrane displacement fields, ui and η
i
.

In case of non-homogeneous Dirichlet boundary conditions at the inflow and/or

outflow section, we modify the velocity snapshots as

ûi � ui � u`, (4.35)

where u` is a (weakly) divergence-free velocity field, computed as a solution of a

steady Stokes problem and used as a boundary datum lift function. This allows us

to maintain the divergenge-free nature of the snapshots.

Next, the snapshots (possibly amended by the lifting) are collected in the ve-

locity and displacement snapshots matrices Xu and Xη. We perform the POD, as

described in Section 4.1.2, using the Frobenius norm to establish the truncation in-
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dex in the SVD, and we collect the velocity and displacement RB in the matrices Wu

and Wη.

Projecting the IFMI problem (3.33) onto the reduced space, we obtain

yn �arg min
yPRk

Jnr pyq �
1

2
}Wηη

n � ηnmeas}Σ �
γ

2
}Rpy � yn

ref
q}Σ

s.t.

��� Cr O

�∆tPr MΣ,r

���
���unr
ηn
r

��� �

��� fn
r

MΣ,rη
n�1
r

��� (4.36)

where, Cr � WT
uCWu, MΣ,r � WT

ηMΣWη, Pr � WT
ηPWu and fn

r
� WT

u

�
fn � BTpn�1

�
.

Remark 4.2. Notice that, since the projection onto the reduced space is orthogonal,

for the sake of the minimization we can replace the first part of the functional with

1

2

���ηn
r
�WTηn

meas

���
Σ,r

(4.37)

where }v}Σ,r � vTMΣ,rv is the discrete L2 norm in the reduced space. This allows

to evaluate the functional with a number of operations that depends solely on the

dimension of the reduced spaces, since the term WTηn
meas

can be precomputed be-

fore the optimization loop.

The optimization problem (4.36) can be solved using, again, the Lagrange mul-

tipliers method. The Lagrangian for the reduced problem reads

Lpunr , ηnr , y
n, λu, ληq � J nr pyq � λT

u

�
Cru

n
r � fn

r

	
� λT

η

�
ηn �∆tPru

n � ηn�1
�

(4.38)

where λu and λη are the Lagrange multipliers corresponding to the momentum and
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displacement equations respectively. The KKT system then reads

(KKT)

$''''''''''''''''''''''&''''''''''''''''''''''%

����CT
r �∆tPT

r

O MΣ,r

����
����λu
λη

���� �

���� 0

�MΣ,rη
n
r
� dnr

���� Adjoint

γ
�
MRpy

n � yn
ref
q
�
i
� λT

u

�
BCr

Byi
unr �

Bfn
r

Byi



� 0 i � 1, . . . , k Optimality

���� Cr O

�∆tPr MΣ,r

����
����unr
ηn
r

���� �

���� fn
r

MΣ,rη
n�1
r

���� State

(4.39)

where, as we did in (3.35), we set MR � RTMΣR. The expression for the derivatives
BCr

Byi
and

Bfn
r

Byi
is the projection onto the reduced space of the derivatives in (3.36),

namely
BCr

Byi
� ∆tβWT

uPTMiPWu

Bfn
r

Byi
� �βWT

uPTMiWηη
n�1
r

. (4.40)

As we did for the full order problem in Section 3.3, we can tackle the KKT system

(4.39) with the BFGS method, using the KKT system to evaluate the functional and

its gradient.

Algorithm 4 shows the steps of the POD at the generic time step tn.

Algorithm 4 POD-ROM

1: Compute the reference value yn
r

as the average of previous m estimates
2: Assemble the FE matrices/vectors
3: Load the measures and project them onto the reduced space
4: Project the FE matrices onto the reduced space
5: Using BFGS, compute unr , ηn

r
and yn

6: Compute un and ηn by extending their reduced space counterparts
7: Compute pn by solving the least squares problem (4.33)

Remark 4.3. The choice of the parameter τ in the POD is a delicate issue. In the next

section we will show a numerical sensitivity study for this parameter to justify the

value that we used. In [38], it is suggested to use a value ‘close’ to unity, but there is

no unique and universal way to define what ‘close’ should be in practice. A possible

strategy could be to look at the singular value of the snapshots matrix to see if it
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is possible to identify a corner, where the singular values flatten out. However, in

practice, this cutoff may lead to a RB af size much larger than what is needed to get

good estimates of the parameter. As a matter of fact, it is important to point out that

the reduced matrices are in general full, therefore, to achieve good computational

speeds in the optimization loop, the size of the RB must stay controlled, otherwise

the costs of the direct solvers used to solve the reduced system may become too

large. In our experiments, even with a threshold as high as τ � 0.999 we never

observed a RB larger than 50 vectors.

4.3 Results

We present numerical results of the POD approach for the estimation of the com-

pliance. As we did for the Full Space approach, we are going to use synthetic data.

Let us recall how this procedure works. First, we solve the forward problem with a

given (realistic) value for the Young’s modulus on a mesh which is finer than that

used to solve the inverse problem, in order to avoid the so called ‘inverse crime’. Fi-

nally, after adding random noise to the computed solution, we project the vectors

on the coarser mesh, where the inverse problem will be solved. If we denote with

η
f

the solution obtained on a finer mesh and with Πc
f a projector from the fine to

the coarse mesh, the measures used in the inverse problem can be expressed as

η
m
� Πc

f

�
η
f
� ξ}η

f
}
8
e
	
, (4.41)

where e is a random vector obtained from the uniform distribution Upr�1, 1sq and

ξ is the reciprocal of the signal to noise ratio (SNR) and represents the amount of

noise in the measures as a fraction of the magnitude of the ‘exact’ measures. We

recall that, for data retrieved from medical images, the magnitude of the noise can

be as large as 20% of that of the wall displacement [14], which means that the SNR

can be as low as 5 and ξ as large as 0.2

To assess the effectiveness and robustness of the method with respect to noise

level and availability of measures, we will perform different simulations, consider-
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ing the two geometries that we used for the experiments in Section 3.4 (see Fig. 3.2).

We will test the algorithm with different values of SNR, to verify how the algorithm

behaves with respect to the noise level. We will also compare some results obtained

with the Reduced Space (RS) approach with those presented in Section 3.4 for the

Full Space (FS) approach. All the simulations have been performed using LifeV, a

C++ FE library [1].

(a) Cylinder (b) Idealized aortic arch

Figure 4.2: Geometries for the cylinder (left) and idealized aortic arch (right) test cases.

4.3.1 Cylinder case

The geometry for the cylindrical test case is shown in Figure 4.2(a). It is the same

geometry used in Section 3.4.1, namely a 5cm long cylinder with radius 0.5cm. For

the Young’s modulus we will consider both the piecewise linear and piecewise con-

stant case, with y P R3. The two possible scenarios are pictured in Figure 4.3. The

initial condition is at rest, while at the inflow (Γin) and outflow (Γout) sections we

impose a Neumann boundary condition of the type

� pn�
�
∇u�∇uT�n � gptqn, (4.42)
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(a) Piecewise constant (b) Piecewise linear

Figure 4.3: Possible distributions of the Young’s modulus: piecewise constant (left) and
piecewise linear (right).

where

gptq �

$''&''%
500 sin p100πtq on Γin

0 on Γout,

(4.43)

and 0 ¤ t ¤ 0.06, so that the inflow pressure wave completes three periods in a

simulation.

Piecewise linear Young’s modulus

For the piecewise linear test, we generate the synthetic measures with y � r1.3, 1.8, 1.3s�

106 dyn{cm2, and we added random noise with SNR=10. The RB has been generated

with the training set given by

S � ty P R3 : yi P t1, 2u � 106 dyn{cm2u, (4.44)

that is a set consisting of 8 possible configurations for y.

Remark 4.4. Notice that the value of y used to generate the measures lies inside

convpSq, the convex hull of S. This is not a coincidence, but rather a desired sce-

nario. As a matter of fact, we noticed that with this choice the algorithm behaves

better. Another way to see this is that, in this case, we are trying to interpolate the

exact solution with the snapshots generated with y P S, while if the exact value lied

outside convpSq, the process would be more similar to an extrapolation. It may ap-

pear like we are using information about the exact solution to build the RB, which is

not the case in a real application, where the exact solution is unknown. Neverthe-
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τ 0.9 0.95 0.99
Nu 3 6 17
Nη 3 4 7

Table 4.1: Dimension of the fluid velocity and membrane displacement RB for different
values of the POD threshold for the cylinder test case with piecewise linear Young’s
modulus distribution.

less, it is reasonable to assume that a “good-guess” range for the exact value of the

parameters is available, so that one can build a training set S in such a way that the

exact value of the parameters are “expected” to lie inside convpSq. We also notice

that, a good “guess-range” for the parameters also provide a reasonable choice for

the initial guess for the minimization, namely y
0

equal to the baricenter of S. In our

experiments, however, we always chose y
0

on the boundary of convpSq, to better

assess the robustness of the method.

In Table 4.1 we report the dimension of the RB size for different choices of the

parameter τ used in the POD approximation (4.29). We observe that the dimension

of the velocity RB grows faster than the dimension of the displacement RB. This is

reasonable, if we consider that the fluid dynamics is more complex than the struc-

ture one, and that the dimension of the velocity FE space is larger than that of the

displacement FE space.

In Figure 4.4 we show the first four modes of the membrane displacement RB. It

is interesting to notice the increasing number of valleys and peaks along the axial

direction. This reflects the fact that the singular vectors in the SVD decomposition

of the snapshots matrices become more oscillatory as the index moves forward.

In Figure 4.5 we show the history of the Young’s modulus estimates for both the

FS approach and the RS approach. In particular, the RB was obtained using τ � 0.95

as threshold for the POD method. The graph on the left is the same as the one in Fig-

ure 3.4. In particular, there, as well as in the next figures, the blue line refers to the

estimates of y1, the red line to the estimates of y2 and the green line to the estimates

of y3. As we can see, the estimates obtained with the RS approach are comparable to

those obtained with the FS. In particular, we notice how the delay in the estimates

of the values of the Young’s modulus corresponding to the downstream section is



Chapter 4. Reduced Order Modeling for the compliance estimation problem 70

(a) pη
0

(b) pη
1

(c) pη
2

(d) pη
3

Figure 4.4: First four modes of the membrane displacement RB for the piecewise linear
Young’s modulus distribution. The deformation has been amplified by a factor 3 for
display purposes.
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(a) Full Space
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(b) Reduced Space

Figure 4.5: Estimates for the piecewise linear Young’s modulus distribution: FS (left),
and RS (right) with τ � 0.95.
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reproduced similarly in both cases. This qualitative similarity is confirmed by the

numerical values of the estimates, which are reported in Table 4.2, together with

other information on the performance of the minimization algorithm.

In this table, the number of Navier-Stokes solves for the FS approach includes

both forward and adjoint problems, while for the RS approach it refers to the Navier-

Stokes solves needed in the offline stage to build the reduced basis. We observe

that the error of the estimate obtained with the RS approach is roughly equivalent

to that of the estimate obtained with the FS approach, even slightly better. We will

come back on this aspect later. The execution time of the RS approach is roughly

one order of magnitude smaller than that of the FS approach, although it is still

non negligible. The residual computational costs are mainly due to the fact that

the FE matrices have to be assembled at every time step before the problem can be

projected onto the RS, due to the change in the geometry and the presence of the

convective term. Although we point out that the assembly of the FE matrices is the

most scalable part, it would be preferable to have online costs fully independent on

the dimension of the FE spaces used in the offline stage. In Chapter 6 we will briefly

discuss this issue and address a possible way to cut these costs.

We also point out that a comparison of the online execution times for the two ap-

proaches is not fair. In fact, with the RS approach, for a given new patient (hence,

geometry) we first have to compute the reduced basis before we can start the op-

timization routine. Therefore, it is more fair to count the number of Navier-Stokes

solves needed by the two approaches, that is, we also consider the offline costs for

the RB approach. If we do this, we find out that the two approaches have roughly

the same costs. In the concluding remarks in Chapter 6 we will discuss how these

offline costs can be damped on patient specific cases.

It is also interesting to observe how the error on the estimate behave with respect

to the threshold τ used in the POD for the construction of the RB. In Figure 4.6

we show the history of the estimates of the Young’s modulus obtained with the RS

approach using τ � 0.9, 0.95, 0.99. We observe that, for τ � 0.9, the method cannot

estimate the value of y3. This can be explained looking at the modes in Figure 4.4:

the RB for τ � 0.9 has only 3 modes, for both velocity and displacement. As we can
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approach FS RS
yex [1.3, 1.8, 1.3]�106 [1.3, 1.8, 1.3]�106

y� [1.33, 1.87, 1.35]�106 [1.33, 1.85, 1.36]�106

rel. error 3.27% 3.13%
exec. time (online) 2175s 203s

NS solves 502 480

Table 4.2: Summary of the minimization of the functional using BFGS for the cylindri-
cal test case, for both FS and RS approaches.

see, the first modes favor deformation towards the inflow section, where most of the

displacement is concentrated. Therefore, a small basis cannot accurately describe

the displacement of the structure in the downstream sections.

In Table 4.3 we report the time average of the estimates obtained with τ � 0.9,

0.95, 0.99. The averages are computed excluding the first 10 estimates, since we

want to avoid an average which is clearly biased by the initial condition. As we can

observe, the estimate improve as τ approaches one, which is what we expected.

For this case, however, it appears as there is no significant improvement when τ is

increased from 0.95 to 0.99. Notice that, for the case τ � 0.9, the large magnitude of

the error is mostly due to the fact that y3 is not estimated correctly (with a relative

error of about 30%).

τ = 0.9 τ = 0.95 τ = 0.99
yex [1.3, 1.8, 1.3]�106 [1.3, 1.8, 1.3]�106 [1.3, 1.8, 1.3]�106

y� [1.34, 1.89, 1.01]*106 [1.33, 1.85, 1.36]*106 [1.35, 1.83, 1.33]*106

rel. error 11.87% 3.22% 2.57%

Table 4.3: Time average of the estimates and relative error for different values of the
POD threshold for the cylinder test case.

Piecewise constant Young’s modulus

We also test our method on the same geometry but with a piecewise constant dis-

tribution of the Young’s modulus. In particular, we generate the synthetic measures

with y � r1.3, 1.8, 1.3s � 106 dyn{cm2, but the meaning of these values is clearly not

the same as for the piecewise linear case: here, y1, y2 and y3 represent, repsectively,

the constant value of the Young’s modulus in the first, second and third portion of
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(a) τ � 0.9
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(b) τ � 0.95
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(c) τ � 0.99

Figure 4.6: Estimates of the Young’s modulus for different choices of the threshold τ in
the POD method, for the case of piecewise linear Young’s modulus.
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τ 0.9 0.95 0.99
Nu 4 7 20
Nη 4 5 10

Table 4.4: Dimension of the fluid velocity and membrane displacement RB for different
values of the POD threshold for the cylinder test case with piecewise constant Young’s
modulus distribution.

the cylinder, as shown in Figure 4.3(a). The RB is generated using the same training

set we used in the piecewise lienar case, namely

S � ty P R3 : yi P t1, 2u � 106 dyn{cm2u, (4.45)

that is a set consisting of 8 possible configurations for y.

In Table 4.4 we report the dimension of the RB size for different choices of the pa-

rameter τ used in the POD approximation (4.29). As we observed also for the piece-

wise linear Young’s modulus case, the dimension of the velocity RB grows faster

than the dimension of the displacement RB. In addition, we can also observe that

the dimension of the RB is slightly larger than in the case of piecewise linear Young’s

modulus, probably due to the fact that a piecewise constant distribution allows for

more irregular modes. In particular, the first 4 modes look similar to those in Fig-

ure 4.4, but further modes allow for more irregular displacements. In Figure 4.7

we show, for instance, the fifth and sixth mode of the membrane displacement RB,

where we can observe the precence of more rapid changes along the axial direction.

In Figure 4.8 we show the history of the estimates of the Young’s modulus for

different values of the SNR. The RB was obtained with τ � 0.95. If we compute the

average of the estimates, omitting, as we did before, the first 10 estimates (which, at

least for y3 are still clearly affected by the choice of the initial condition), we see that

this is not true. As we can see from Table 4.5, the error in the estimate increases as

the signal to noise ratio deteriorates. Nevertheless, it does not explode, and remains

of the same order of magnitude as the POD truncation error.

Remark 4.5. In Figure 4.8 we observe some spikes in the estimates, especially for y2

and y3, with the largest spike always occurring at t � 0.01s (or at the time step right



Chapter 4. Reduced Order Modeling for the compliance estimation problem 75

(a) pη
4

(b) pη
5

Figure 4.7: Fifth and sixth modes of the membrane displacement RB for the piecewise
constant Young’s modulus distribution. The deformation has been amplified by a fac-
tor 3 for display purposes.

after). This can be explained by looking at the inflow boundary condition, which

at t � 0.01s vanishes. The inflow boundary condition is the only external forcing

term. The fact that it vanishes decreases the controllability of the system. and, as a

consequence, the quality of the estimates deteriorates.

SNR = 20 SNR = 10 SNR = 5
yex [1.3, 1.8, 1.3]�106 [1.3, 1.8, 1.3]�106 [1.3, 1.8, 1.3]�106

y� [1.35, 1.85, 1.36]*106 [1.36, 1.86, 1.37]*106 [1.37, 1.90, 1.41]*106

rel. error 3.76% 4.32% 6.30%

Table 4.5: Time average of the estimates and relative error for different values of SNR
for the cylinder test case.

4.3.2 Idealized aortic arch case

The geometry for the cylindrical test case is shown in Figure 4.2(b), and it is the

same used in Section 3.4.2, namely a 5cm long cylinder joint with half a torus, with

major and minor radii given by R � 1.5cm and r � 0.5cm respectively. For this case

we will consider only the the piecewise constant case, with y P R3. In particular, y1
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(a) SNR=20
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(b) SNR=10
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(c) SNR=5

Figure 4.8: Estimates of the Young’s modulus for different values of SNR for the case of
piecewise constant Young’s modulus.
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Figure 4.9: Piecewise constant distribution of the Young’s modulus for the idealized
aortic arch test case.

and y2 correspond, respectively, to the value of the Young’s modulus in the first and

second quarter of the torus, while y3 corresponds to the value of the Young’s mod-

ulus in the cylindrical part. A distribution of a piecewise constant Young’s modulus

is depicted in Figure 4.9. The initial condition is at rest, while at the inflow (Γin) and

outflow (Γout) sections we impose the same Neumann boundary conditions that we

used in the cylindrical case:

� pn�
�
∇u�∇uT�n � gptqn, (4.46)

where

gptq �

$''&''%
500 sin p100πtq on Γin

0 on Γout,

(4.47)

and 0 ¤ t ¤ 0.06, so that the inflow pressure wave completes three periods in a

simulation.

We generate the synthetic measures with y � r1.3, 1.8, 1.3s � 106 dyn{cm2 and we

added random noise with SNR=10. The RB has been generated with the training set

given by

S � ty P R3 : yi P t1, 2u � 106 dyn{cm2u, (4.48)

that is, again, a set consisting of 8 possible configurations for y6. In Table 4.6 we

6In fact, there are 3 components of y, and each of them can attain 2 possible value. Hence, the
training set contains 23 different configurations.
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τ 0.9 0.95 0.99
Nu 5 8 22
Nη 5 7 12

Table 4.6: Dimension of the fluid velocity and membrane displacement RB for different
values of the POD threshold for the idealized aortic arch test case with piecewise linear
Young’s modulus distribution.
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(b) Reduced Space

Figure 4.10: Estimates for the piecewise constant Young’s modulus distribution: FS
(left), and RS (right) with τ � 0.95.

report the dimension of the RB for different choices of the threshold parameter τ in

the POD method. We observe that the dimension of the basis is larger than in the

case of the cylinder test case. This is due in part to the fact that the total number of

degrees of freedom is larger (for instance, for the velocity, we have 13017 total d.o.f

for the idealized aortic arch, versus 9186 for the cylinder test case), but also to the

fact that the flow pattern is more complex in this case, due to the curved pipe.

In Figure 4.10 we show the history of the Young’s modulus estimates for both

the FS approach and the RS approach. In particular, the RB was obtained using

τ � 0.95 as threshold for the POD method. The graph on the left is the same as the

one in Figure 3.6. In particular, there, as well as in the next figures, the blue line

refers to the estimates of y1, the red line to the estimates of y2 and the green line

to the estimates of y3. As we can see, the estimates obtained with the RS approach

are comparable to those obtained with the FS. This is also confirmed by the nu-

merical value of the estimates averages, which we report in Table 4.7, together with

additional information on the performance of the minimization algorithm.
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approach FS RS
yex [1.3, 1.8, 1.3]�106 [1.3, 1.8, 1.3]�106

y� [1.33, 1.84, 1.31]�106 [1.34, 1.80, 1.33]�106

rel. error 1.91% 2.01%
exec. time (online) 3176s 277s

NS solves 492 480

Table 4.7: Summary of the minimization of the functional using BFGS for the idealized
aortic arch test case, for both FS and RS approaches.

In this table, as we did for the cylinder test case, we report the average of the

estimates (discarding the first ten estimates), the online execution time and the to-

tal number of Navier-Stokes solves. For the FS approach, this number accounts for

both the forward and adjoint problems solves, while for the RS approach it accounts

for the forward solves needed to construct the basis in the offline stage. We notice

that the quality of the estimates is similar, and in both cases the error is remarkably

smaller than the error in the measures (around 2% versus 10%).

Finally, also for this test case we study the behavior of the estimates with respect

to the POD threshold τ . In Figure 4.11 we show the history of the estimates of the

Young’s modulus obtained for different choices of τ , with SNR=10. Differently from

what we observed in the cylinder test cases, here even with τ � 0.9 the RB is rich

enough to give reasonable estimates for y3. In fact, comparing Table 4.6 with Table

4.4, we notice that, even with τ � 0.9, the RB has a larger size in this case.

In Table 4.8 we report the time average of the estimates obtained with τ � 0.9,

0.95, 0.99. As we did for the cylinder test case, the averages are computed excluding

the first 10 estimates, since we want to avoid an average which is clearly biased

by the initial condition. As we can observe, the estimate improve as τ approaches

one, which is what we expected. For the cylinder test case, the improvement was

not significant when τ changed from 0.95 to 0.99. Here, instead, we notice that the

quality of the estimate keep improving when τ increases. We justify this difference

by noticing, as we did before, that the number of degrees of freedom is larger in

the idealized aortic arch test case, and, furthermore, the dynamics of the flow is

more complicated. Hence, an increase of τ from 0.95 to 0.99 can still add significan

information, useful to correctly reconstruct the flow pattern.
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(a) τ � 0.9
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(b) τ � 0.95
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(c) τ � 0.99

Figure 4.11: Estimates of the Young’s modulus for different choices of the threshold τ
in the POD method, for the case of piecewise constant Young’s modulus.
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τ = 0.9 τ = 0.95 τ = 0.99
yex [1.3, 1.8, 1.3]�106 [1.3, 1.8, 1.3]�106 [1.3, 1.8, 1.3]�106

y� [1.34, 1.89, 1.01]*106 [1.33, 1.85, 1.36]*106 [1.35, 1.83, 1.33]*106

rel. error 11.87% 3.22% 2.57%

Table 4.8: Time average of the estimates and relative error for different values of the
POD threshold for the idealized aortic arch test case.



Chapter 5

Deconvolution-based filtering

schemes

In this chapter we focus on the issue of the reliability of the numerical solution of

the Navier-Stokes equations when the Reynolds number is large enough to trigger

disturbances or even turbulent effects. After a quick introduction of the topic, we

will present the non-linear Leray model, used to describe the flow and the so called

indicator function, which plays a big role in the model. Then we will present a rein-

terpretation of an existing discretization algorithm for the non-linear Leray model

as an operator splitting method, which will allow us to obtain a practical way to cal-

ibrate the parameters of the model. Finally, we will present some numerical results,

related to a benchmark recently proposed by the Food and Drug Administration

(FDA) [40].

5.1 Motivation: numerical simulation of turbulent flows

Consider the unsteady Navier-Stokes (NS) equations for Newtonian fluids in a rigid

domain Ω $''&''%
ρ
Bu

Bt
� ρpu �∇qu� 2µ∆su�∇p � f in Ω� pt0, T q,

∇ � u � 0 in Ω� pt0, T q,

(5.1)

82
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where u and p are the fluid velocity and pressure, ρ andµ are the fluid density and

(dynamic) viscosity and f accounts for external forces (such as gravity). Here we

defined ∆su � ∇ �∇su, where∇su � p∇u�∇uTq{2 is the deformation tensor. The

system (5.1) is endowed with the initial and boundary conditions

$''''''&''''''%
u � u0 in Ω� tt0u,

u � uD on ΓD � pt0, T q,

2µp∇u�∇uTqn� pn � g on ΓN � pt0, T q,

(5.2)

where ΓD Y ΓN � BΩ and
�
ΓD X

�
ΓN � H.

Remark 5.1. In the continuous formulation,∇�∇uT � ∇p∇�uq � 0, due to the con-

tinuity equation. Therefore, the Navier-Stokes equations are often formulated with

the operator ∆ rather than ∆s. However, the contribution of the term ∇uT does

not vanish when problem (5.1) is formulated in its weak form - as done in the finite

element approximation [37]. For some applications, such as fluid-structure inter-

action problems, the contribution of∇uT is essential to get the correct behavior of

the flow.

As it is well known, the NS equations feature several challenging aspects, such as

the non-linearity or the saddle-point nature of the problem, that makes the analy-

sis quite complicated [94]1. These aspects reflects in a discrete counterpart when

numerical methods are used to compute approximate sulutions. For instance, the

saddle-point nature of the problem impose a condition that the spaces where the

approximate velocity and pressure are sought must satisfy, the so-called as inf-sup

or LBB condition [12]. When resorting to numerical methods, other difficulties also

arise, peculiar to the discrete world, such as instabilities in convection dominated

flow. These can be avoided by restrictions on the discretization parameters or by

adopting suitable stabilization techniques (e.g., [13]).

An additional issue related to the discretization arises only in particular flow

1The uniqueness of the solution of (5.1) has been proven in 2D, but it is still an open problem in
3D.
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conditions. In particular, let

Re �
ρUL

µ
(5.3)

be the Reynolds number, where U and L are a macroscopic velocity and length as-

sociated with the flow. For instance, for a steady flow in a pipe, U would be the

average velocity on the centerline and L the pipe diameter. The Reynolds number

can be interpreted as a comparison between inertial and viscous forces: for small

Reynolds numbers (Re � Op1q), inertial forces dominate and we observe a laminar

flow; for large Reynolds numbers (Re � Op103q and above) the inertial forces domi-

nate and the flow is much more irregular and features the presence of structures of

a large variety of space scales. This regime is usually referred to as turbulent.

Remark 5.2. In cardiovascular mathematics, the Reynolds number associated with

the flow is usually small, so that the flow can be considered laminar. However, there

are a few scenarios where it could be large enough to trigger turbulent effects. In

physiological conditions, the only region where this can happen is the aortic arch,

where the blood, coming from the left ventricle, can reach velocities that give a

Reynolds number between 1000 and 2000, depending on the person and the con-

ditions. However, more recently, with the development of new medical implants,

it is possible to reach even larger values. For instance, consider a patient with a

Left Ventricular Assist Device (LVAD). The LVAD is an artificial external pump that is

used in case of pathological defects in the aortic valve (see Figure 5.1(a)). This pump

replaces the left ventricle and injects the blood directly into the aorta by means of

a graft (called cannula) usually sutured in the ascending aortic arch. Since the di-

ameter of the cannula is smaller than that of the aorta (around 0.5cm, compared to

the 2.5cm of the aorta), in order to deliver the same flow rate (of about 5 liter per

minute, for a healthy adult patient), the velocity of the blood in the cannula must

be larger than that usually present in aorta (see Figure 5.1(b)), leading to Reynolds

number of up to 3000-3500.

From the numerical point of view, a flow at a large Reynolds number is more

complicated to simulate, since the numerical discretization should be fine enough

to capture all the scales involved in the dynamics. Unfortunately, as the Reynolds
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(a) LVAD concept (b) velocity streamlines

Figure 5.1: A depiction of the concept of the LVAD (a) and an example of a CFD study
performed on a possible graft configuration (b) (courtesy of Dr. Divya Gupta, Emory
University Hospital).

number increases, this requirement quickly becomes very restrictive, and Direct

Numerical Simulation (DNS) may be computationally unaffordable.

A possible way to keep the computational costs under control while maintain-

ing sufficient accuracy is to resort to different models, which properly transfer the

effects of the presence of the small scales (which are not solved) to larger scales.

For instance, the NS equations can be averaged in time, leading to the so called

Reynolds-Averaged Navier-Stokes equations (RANS), or in space, leading to Large

Eddy Simulation (LES) techniques (see, e.g., [25]).

Here, we consider a variant of the so called Leray model [56], where small scale

effects are described by an additional set of equations to be added to the discrete

NS equations, which can be interpreted as a differential filter. In the next section

we present the continuous model, originally proposed in [9], and its actual imple-

mentation, which was first presented in [53].
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5.2 Non-linear Leray models

To motivate the introduction of the Leray model, it is useful to look at the behavior

of the turbulent kinetic energy (TKE) of the fluid, which is the kinetic energy asso-

ciated with eddies in the turbulent flow. In the framework of the Kolmogorov 1941

(K41) theory [51, 52], the TKE is injected in the system at the large scales (low wave

numbers). Since the large scale eddies are unstable, they break down, transferring

the energy to smaller eddies. Finally, the TKE is dissipated by the viscous forces

at the small scales (high wave numbers). This process is usually referred to as en-

ergy cascade. The scale at which the viscous forces dissipate energy is referred to as

Kolmogorov scale and can be expressed as

η �

�
ν3

ε


1{4

, (5.4)

where ν � µ{ρ is the kinematic viscosity, and ε is the time-average of the rate at

which the energy is dissipated (see e.g. [30]). Formally, ε is defined as

ε :� lim sup
TÑ8

1

T |Ω|

» T
t0

ν||∇u||2L2dt. (5.5)

The dissipation rate has to be of the same magnitude of the production rate, which

is the rate at which the TKE is supplied to the small scales. A common way to ex-

press ε in terms of the macro-scale variables is ε � U3{L [95], leading to the expres-

sion

η � Re�3{4L. (5.6)

This scaling law pinpoints the difficulty of the numerical solution of the NS equa-

tion at high Reynolds numbers: a thrustworthy numerical simulation must cor-

rectly dissipate energy, and therefore DNS should use grids with spacing h � η.

Clearly, as the Reynolds number increases, this requirement causes the number

of unknowns to dramatically increase, and the computational costs become pro-

hibitive. On the other hand, when the mesh size h fails to resolve the Kolmogorov

scale, nonphysical wiggles are observed in the computed velocity due to an under-
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diffusion in the simulation.

A common way to overcome this problem without increasing the number of

unknowns is to introduce a model which uses filter and/or averaging techniques

to extract information on the small scales dynamics using only information at the

large scales. Such models can be thought as a way to revert the energy cascade by

transferring the energy dissipated at the small (unresolved) scales towards larger

(resolved) scales. An example is the so-called “generalized Leray model” that cou-

ples the Navier-Stokes equations with a differential filter.

5.2.1 The continuous problem

The non-linear Leray model can be written as

$'''''''''&'''''''''%

ρ
Bu

Bt
� ρpu �∇qu� 2µ∆su�∇p � f in Ω� pt0, T q,

∇ � u � 0 in Ω� pt0, T q,

� 2δ2∇ � papuq∇suq � u∇λ � u in Ω� pt0, T q,

∇ � u � 0 in Ω� pt0, T q,

(5.7)

(5.8)

(5.9)

(5.10)

The first equation is a variation of the NS momentum equation, where the con-

vective field has been replaced with u. This new variable is in turn related to the

fluid velocity by the third equation, which can be interpreted as a differential filter,

with δ as the filtering radius2. The action of the filter is to extract information from

the unresolved scales, using the information on the resolved scales in a neighbor-

hood of radius δ. We therefore refer to u as the the filtered velocity, or regularized

velocity. The variable λ is a Lagrange multiplier used to enforce the incompressibil-

2In literature, this is usually denoted with α. Here we used a different notation, because, later on,
as we did in Chapter 3, we will use α to denote the leading coefficient in the BDF approximation of
the time derivative of u.
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ity constraint for u. Finally, ap�q is a scalar function such that

apuq ¥ 0 everywhere

apuq � 0 where the velocity u does not need regularization

apuq � 1 where the velocity u does need regularization.

This function is usually called indicator function, and clearly it is of the utmost im-

portance for the success of the Leray model. We will discuss the possible choices

that have been proposed in literature for this function in Section 5.3. For now, we

only point out that the choice apuq � 1 corresponds to the classic Leray-α model,

proposed in [18]. The Leray-α model has a rather limited effectiveness, because it

introduces a uniform regularization in the whole domain. Nevertheless, the fact

that apuq � 1 makes the filter equations linear and constant in time makes the

Leray-αmodel useful for preliminary investigations of possible numerical methods

used to discretize (5.7-5.10).

The Leray system consists of two coupled saddle point problems: the NS equa-

tions (5.7-5.8), where the advection field is equal to the filtered velocity u, and the

filter problem (5.9-5.10). Notice that the latter has a structure that resembles that

of a generalized Stokes problem (apart from the non-constant viscosity). We will

return on this fact in Section 5.5, where we will introduce the preconditioners used

in the solution of the discretized problem.

The filter equations also require suitable boundary conditions. These are chosen

to be $''&''%
u � uD on BΓD � pt0, T q

p2δ2apuq∇su� λIqn � 0 on BΓN � pt0, T q

(5.11)

while no initial condition is required for u, since its time derivative does not appear

in (5.7-5.10). The impact of non-Dirichlet boundary conditions so far has not been

investigated thoroughly in literature. In Section 5.4, we will discuss the effect of

these boundary conditions on the solution of the problem.
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5.2.2 The time-discrete problem

To discretize in time problem (5.7)-(5.10), let ∆t P R, tn � t0�n∆t, withn � 0, ..., NT

and T � t0 � NT∆t. Moreover, we denote by yn the approximation of a generic

quantity y at the time tn. In the following, we will assume that all the equations

hold in Ω, unless otherwise specified.

For the discretization of the time derivative we adopt a Backward Differentiation

Formula of order p (BDFp) [75]. The system (5.7-5.10) discretized in time then reads:

given u0, for n ¥ 0 find pun�1, pn�1,un�1, λn�1q such that

$''''''''&''''''''%

ρ
α

∆t
un�1 � ρpun�1 �∇qun�1 � 2µ∆sun�1 �∇pn�1 � bn�1,

∇ � un�1 � 0,

� 2δ2∇ �
�
apun�1q∇sun�1

�
� un�1 �∇λn�1 � un�1,

∇ � un�1 � 0,

(5.12)

(5.13)

(5.14)

(5.15)

where α is a coefficient that depends on the order of BDF chosen and bn�1 contains

the forcing term fn�1, the possible contributions of the non homogeneous bound-

ary conditions and the solution at the previous time steps used to approximate the

time derivative of u at time tn�1. For example, when using BDF2, we have

Btu �
3un�1 � 4un � un�1

2∆t
, (5.16)

thus α � 3{2 and bn�1 � fn�1 � p�4un � un�1q{p2∆tq � bcn�1.

To tackle problem (5.12-5.15) in a monolithic fashion, one has to introduce subit-

erations to work around the non-linear terms. For instance Newton or, more gener-

ally, fixed point iterations can be used. However, this would remarkably increase the

computational costs of each time step, especially if the expression of ap�q is rather

complex. This would make the advantage of the Leray model compared to a DNS

questionable. To save computational time, we can decouple the two saddle point

problems in one of the following two ways:

1. Filter-Evolve : we first solve the filter equations with un�1 replaced by a suitable
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extrapolation w� both in the right hand side and in the indicator function, and

then solve the NS equations.

2. Evolve-Filter : we first solve the NS equations with the advection field un�1 re-

placed by a suitable extrapolation w�, and then solve the filter problem.

Although these two approaches look different, if we use BDF to compute the ex-

trapolation w� we find out that they are rather similar, and that the only substantial

difference between the two lies in the convective term used in the solution of the

NS equations. In particular, we would obtain

1. Filter-Evolve: pun�1 �∇qun�1 � pp2un � un�1q �∇qun�1.

2. Evolve-Filter: pun�1 �∇qun�1 � pp2un � un�1q �∇qun�1.

Notice that the two are not equivalent in the case of non-linear filters. The first

approach has been investigated thoroughly in literature, using the linearly extrap-

olated Crank-Nicolson approximation un�1 � p3un � un�1q{2 [8]. The second ap-

proach, as we stated, has been less investigated. As a matter of fact, the dynamics

of u is induced by that of u, so an extrapolation of the filtered velocity appears less

meaningful. In order to avoid extrapolations of the filtered velocity, one could take

w� to be an extrapolation of un�1 also the Evolve-Filter approach. However, this

would cause un�1 to not depend anymore on the filtered velocity, ultimately mak-

ing the scheme a discretization for the NS equations rather than the Leray system.

To overcome this impasse, in [53] the authors proposed a three steps algorithm,

which they called Evolve-Filter-Relax (EFR), in which a relaxation step is introduced

after the solution of the filter problem. The EFR algorithm, as proposed in [53],

reads as follows: given the velocities uk (k � n�p�1, . . . , n) needed for the approx-

imation of Btu by BDFp at tn�1, and given an extrapolation v� of un�1 (for instance,

using the BDFp),

i) evolve: find intermediate velocity and pressure pvn�1, qn�1q such that

$'&'%
ρ
α

∆t
vn�1 � ρpv� �∇qvn�1 � 2µ∆svn�1 �∇qn�1 � bn�1,

∇ � vn�1 � 0,

(5.17)

(5.18)
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ii) filter: find pvn�1, λn�1q such that

$&%� 2δ2∇ �
�
apvn�1q∇svn�1

�
� vn�1 �∇λn�1 � vn�1

∇ � vn�1 � 0

(5.19)

(5.20)

iii) relax: set

$&%un�1 � p1� χqvn�1 � χvn�1,

pn�1 � qn�1,

(5.21)

(5.22)

where χ P r0, 1s is a relaxation parameter.

The choice of using an extrapolation of un�1 rather than un�1 in the convective

term of the NS equations comes at the price of the additional parameter χ, which

has to be properly tuned. It was shown in [66] that the EFR algorithm is equivalent

to a certain viscosity model in Large Eddy Simulation (LES). In [53] the authors use

energy arguments to support the choice χ � Op∆tq, in order to keep the numerical

dissipation introduced by the filter step under control, but they do not specify a

practical way to tune the parameter.

In Section 5.4, we will rewrite step (ii) so that we will be able to interpret the

EFR algorithm as an operator splitting method. On one hand, this reinterpretationi

will allow us to use the Lagrange multiplier for the incompressibility constraint in

the filter equations to relax also the pressure found at step (i); on the other hand, we

will be able to give an argument on how to tune the relaxation parameterχ based on

the physical and numerical parameters of the problem. Moreover, we will discuss

how step (ii) affects the boundary conditions that are satisfied by un�1 and pn�1 (in

particular in the case of Neumann boundary conditions).

5.3 Indicator functions

Although the breaking down of eddies into smaller ones until they get damped is

highly nonlinear, most current models for eddy viscosity use linear filters to select
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the eddies to be damped. Linear filter based stabilization, developed by Boyd [10]

and Fischer and Mullen [27, 62], has been widely studied over the past years (see,

e.g., [32, 59, 99]). Only in a recent publication by Layton and coauthors [53] nonlin-

ear filters have been introduced: eddies are selected for damping based on knowl-

edge of how nonlinearity acts in real flow problems.

The success of nonlinear filters such as (5.7)-(5.10) in simulations ultimately de-

pends on the quality of the indicator function. One of the most mathematically

convenient indicator function is apuq � }∇su}F (suitably normalized [7]), where

} � }F denotes the Frobenius norm, because of it is strongly monotone, easy to im-

plement and stable, and allows us to recover variants of the so called Smagorinsky

model. This choice, however, is known to be too dissipative (the corresponding arti-

ficial viscosity is not bounded for large gradients) and not sufficiently selective. For

instance, it selects laminar shear flow, where |∇u| is constant but large, as regions

of the domain with large turbulent fluctuations.

In the following, we report on some indicator functions that have been proposed

in the literature. We group them into two categories: physical phenomenology

based and deconvolution based. In Sections 5.3.1 and 5.3.2 (respectively), we will

highlight their strengths and limitations.

5.3.1 Physical phenomenology based indicator functions

The indicator functions proposed in [53] are defined on physical quantities that are

known to vanish for coherent flow structures, that is structures that do not break

into smalle ones, following the energy cascade process. One of the most popular

methods for deduction of coherent vortices is the Q criterion [45], which identifies

as persistent and coherent structures those regions where

Qpu,uq �
1

2
p∇ssu : ∇ssu�∇su : ∇suq ¡ 0, (5.23)

where ∇ssu � p∇u � ∇uTq{2 is the spin tensor. So, Q ¡ 0 occurs in those regions

where spin dominates deformation. Since dissipation occurs where deformation

dominates spin, we can build an indicator by rescalingQpu,uq so that the condition
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Qpu,uq ¡ 0 implies apuq � 0, that is regularization is not needed. The Q-criterion

based indicator function is given by:

aQpuq �
1

2
�

1

π
arctan

�
δ�1 Qpu,uq

|Qpu,uq| � δ2



. (5.24)

A second indicator uses an eddy viscosity coefficient formula proposed by Vre-

man [102] that vanishes for 320 types of flow structures known to be coherent. The

Vreman based indicator function is given by:

aV puq �

d
Bpuq

|∇u|4F
, (5.25)

where Bpuq is defined as

B � β11β22 � β2
12 � β11β33 � β2

13 � β22β33 � β2
23, βijpuq �

¸
m�1,2,3

Bui
Bxm

Buj
Bxm

. (5.26)

Since 0 ¤ Bpuq{|∇u|4F ¤ 1, aV puq P r0, 1s. The Vreman based indicator function was

shown to be successful in [8].

Another physics-based indicator function uses the relative helicity density RH ,

which is a local quantity, its macroscopic counterpart being the helicityH . The two

quantities H and RH are defined as

H �
1

|Ω|

»
Ω
u � ω dΩ, RH �

u � ω

|u||ω|
(5.27)

with ω denoting vorticity, i.e. ω � ∇ � u. From the Navier-Stokes equations in ro-

tational form, it is possible to see that local high helicity suppresses local turbulent

dissipation caused by breakdown of eddies into smaller ones. The helicity based in-

dicator is developed by adjusting relative helicity density so that values of RH near

one imply apuq � 0:

aHpuq � 1�

���� u � ω

|u||ω| � δ2

���� . (5.28)

Notice that other (more selective) indicator functions can also be obtained by

taking the geometric average of two (or more) indicator functions.
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All the indicator functions discussed in this section have the advantage of re-

quiring only algebraic operations on u and its derivatives. Depending on how the

Navier-Stokes solver is coded and vectors/matrices are handled, the implementa-

tion of these indicators could be trivial. However, the major drawback of the physics

based indicator functions is that they do not allow for a rigorous convergence the-

ory to verify the robustness of the associated filtering method. This limitation is

overcome by the mathematics-based (rather than physics-based) indicators dis-

cussed in the next section.

5.3.2 Deconvolution based indicator functions

To motivate the deconvolution-based indicator functions, let F be a linear, invert-

ible, self-adjoint, compact operator from a Hilbert spaceV (such asH1pΩqorH1
0 pΩq)

to itself. The spectral theorem gives (see, for instance, [85])

Fx �
8̧

i�0

λixx, eiyei, (5.29)

F�1y �
8̧

i�0

1

λi
xy, eiyei, (5.30)

where ei are the eigenfunctions of F , which form an orthonormal basis for V .

Since F is compact, we know that F�1 is unbounded. Nevertheless, since the

inverse is defined, we have that x � F�1Fx. Let D be a bounded regularized ap-

proximation of F�1, whose action on y is given by

Dy �
8̧

i�0

φ

�
1

λi



xy, eiyei (5.31)

where the function φ is such that

φ

�
1

λi



�

$''&''%
1

λi
if i is “small”,

0 if i is “large”.

(5.32)
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Then we have that

}x�DFx} is

$''&''%
small if x is “smooth”,

large if x is not “smooth”,

(5.33)

where “smooth” is intended with respect to the eigenfunction of the operator F .

In particular, x is smooth if xx, eiy is significantly different from zero only for small

values of i. The composition of the two operators F and D can be interpreted as a

low-pass filter. This motivates the indicator function

aDpuq � |u�DFu| . (5.34)

Remark 5.3. In order to ensure that apuq P r0, 1s, indicator function (5.34) may be

rescaled

aDpuq �
|u�DFu|

maxp1, ||u�DFu||8q
. (5.35)

A popular choice for D is the Van Cittert deconvolution operator DN , defined as

DN �
Ņ

n�0

pI � F qn. (5.36)

The evaluation of the indicator function corresponding to the Van Cittert deconvo-

lution of order N requires then to apply the filter F a total of N � 1 times. If I � F

is spectrally bounded by 1, thenDN can be seen as the truncated Neumann expan-

sion of F�1, andDN approaches F�1 asN Ñ8. We will see later on that the bound

on I �F is actually true if the mesh is fine enough, even if this does not introduce a

limitation for this method to be applied.

In practice,N is chosen to be small, as the result of a trade-off between accuracy

(for a laminar solution) and filtering (for a turbulent solution). For instance, for

N � 0, 1, the indicator function (5.34) becomes

aD0
puq � |u� F puq| , aD1

puq � |u� 2F puq � F pF puqq| . (5.37)

Remark 5.4. The Van Cittert deconvolution DN can also be interpreted also as the
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N-th iteration of a Richardson scheme to solve the problem F puq � b. In fact,

letting uN � DN pbq, we have

uN�1 �
N�1̧

n�0

pI � F qnb � b�
N�1̧

n�1

pI � F qnb �

� b� pI � F q
Ņ

n�0

pI � F qnb � b� pI � F quN � uN � pb� FuN q.

From this perspective, we can further support the choice of limiting the order of

the Van Cittert deconvolution. In fact, being the operator F compact, we know that

its eigenvalues accumulate to 0, and that its inverse leads to an ill-posed problem.

Among the possible regularization techniques used to deal with ill-posed problem,

one is precisely to use iterative methods (such as Richardson method) limiting the

number of iterations. We can therefore see the Van Cittert deconvolution as an

iterative regularization of the inverse problem Fu � b.

In this work, we use as F the linear Helmholtz filter operator FH [34], defined by

F � FH �
�
I � δ2L

��1
, L � �∆ � �

3̧

i�1

B2

Bx2
j

, (5.38)

From [22], we know that

v �DNFHv � δ2N�2LN�1FN�1
H

v � p�1qN�1δ2N�2∆N�1FN�1
H

v. (5.39)

Therefore, aDN
puq is close to zero in the regions of the domain where u is smooth.

Indicator function (5.34) with D � DN and F � FH has been recently proposed

in [8], however the idea of using van Cittert approximate deconvolution in fluid

models to increase accuracy is well established and mathematically grounded [22,

89, 90].

We conclude this section by pointing out that the Van Citttert-Helmholtz decon-

volution operators D0 and D1 can be conveniently interpreted in a different man-

ner, in view of the theory of maximal monotone operators and their Yosida regular-

ized operator stated in [11], Chapt. 7. Following the theory and notation there in,

if we let L � �∆, then FH is the resolvent Jδ2 of L. Correspondingly, we introduice
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the Yosida approximation (or regularization) of L, as

Lδ2 � δ�2 pI � Jδ2q � δ�2 pI � FH q (5.40)

From here we obtain

aD0puq � δ2 |Lδ2u| , aD1puq �
��pI � FH q

2u
�� � δ4

��L2
δ2u

�� . (5.41)

Here, we list some properties we infer from Proposition 7.2 in [11]. We assume

that the argument v of each operator is selected properly

i) Lδ2v � LJδ2v

ii) Lδ2v � Jδ2Lv

iii) |Lδ2v| ¤ |Lv|, δ2|Lδ2v| ¤ |v|

iv) pLδ2v, vq ¥ 0

v) lim
δ2Ñ0

Jδ2v � v

vi) lim
δ2Ñ0

Lδ2v � Lv pñ lim
δ2Ñ0

δ2Lδ2v � 0q.

From the first of these properties we can deduce straightforwardly (5.39).

5.4 EFR as an operator-splitting algorithm

In this section we will rewrite the EFR scheme introduced in Section 5.2.2 as an

operator-splitting method, with indicator function a given by (5.35), D � DN and

F � FH . We will derive an empirical formula, based on physical arguments, to

tune the relaxation parameter χ. Moreover, we will investigate how the filter equa-

tions affect the boundary conditions that are satisfied by the end-of-step velocity

and pressure (with particular attention to the case where non-Dirichlet boundary

conditions are prescribed).

For the space discretization we will use the Finite Element Method, and in par-

ticular we will use inf-sup stable Finite Element spaces for velocity and pressure (for
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instance, Taylor-Hood elements [80]). The details concerning space discretization

will be covered in section 5.5. However, for the content of this section, we need to

define the discretization parameter h, which we take to be the length of the shortest

edge in the mesh. Coherently, we will denote by fh the discrete FE approximation

of a generic continuous function f .

With the goal of expressing the EFR algorithm as an operator-splitting method,

let u�h be an extrapolation of un�1
h , and let pvn�1

h , qn�1
h q be the solution of the evolve

step

$'''''''''&'''''''''%

ρ
α

∆t
vn�1
h � ρpu�h �∇qvn�1

h �∇ � p2µ∇svn�1
h q �∇qn�1

h � bn�1
h ,

∇ � vn�1
h � 0,

vn�1
h � uD, on ΓD

p2µ∇svn�1
h � qn�1

h Iqn � g, on ΓN

(5.42)

(5.43)

(5.44)

(5.45)

Next, let us then denote by pvn�1
h , qn�1

h q the solution to the filter step, which we

rewrite as

$'''''''''&'''''''''%

ρ
vn�1
h

∆t
�∇ �

�
2µh∇svn�1

h

�
�∇qn�1

h � ρ
vn�1
h

∆t
,

∇ � vn�1
h � 0,

vn�1
h � uD, on ΓD

p2µh∇svn�1
h � qn�1

h Iqn � g, on ΓN

(5.46)

(5.47)

(5.48)

(5.49)

where we defined the filter viscosity

µh � ρ
δ2

∆t
apvn�1

h q. (5.50)

Here, the parameter δ is chosen to be of the order of h. Notice that with this formu-

lation, µh is dimensionally a dynamic viscosity and the Lagrange multiplier qn�1
h is

dimensionally a pressure.
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Finally, the relaxation step for the velocity reads

un�1
h � p1� χqvn�1

h � χvn�1
h . (5.51)

To further analyze the method, let us define the operators

LNS ru
�
hsvh � ρpu�h �∇qvh �∇ � p2µ∇svhq, (5.52)

LF rvhsvh � �∇ � p2µh∇svhq. (5.53)

Here, the notation Arvsu means that the operator A is computed at v and then

applied to the function u. Notice that the operator LF depends on vh through the

artificial viscosity µh in (5.50). If we multiply (5.46) by χα and add it to (5.42) we

obtain

ρ
α

∆t
pp1�χqvn�1

h �χvn�1
h q�LNS ru

�
hsv

n�1
h �χαLF rv

n�1
h svn�1

h �∇pqh�χαqhq � bn�1
h .

(5.54)

Then, using the relaxation for the velocity (5.51), we obtain that un�1
h satisfies

ρ
α

∆t
un�1
h �LNS ru

�
hsv

n�1
h � χαLF rv

n�1
h svn�1

h �∇pqh � χαqhq � bn�1
h . (5.55)

Using one more time (5.51), we obtain

ρ
α

∆t
un�1
h �LNS ru

�
hsu

n�1
h �∇pqn�1

h � αχqn�1
h q� (5.56)

� χpLNS ru
�
hspv

n�1
h � vn�1

h q � αLF rv
n�1
h svn�1

h q � bn�1
h .

The continuity equation for un�1
h is automatically satisfied, since both vn�1

h and

vn�1
h are divergence free.

A few interesting observations can be made by looking at equations (5.55)-(5.56).

First of all, they suggest a relaxation for the end-of-step pressure, namely

pn�1
h � qn�1

h � αχqn�1
h . (5.57)
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Next, consider the following perturbed version of the discrete Navier-Stokes equa-

tions

ρ
α

∆t
un�1
h �L ru�h,u

n�1
h sun�1

h �∇pn�1
h � bn�1

h , (5.58)

where the operator L is defined by

L ru�h,u
n�1
h sun�1

h � LNS ru
�
hsu

n�1
h � αχLF ru

n�1
h sun�1

h . (5.59)

The perturbation in eq. (5.58) with respect to the Navier-Stokes equations is due to

the operator LF , which provides additional diffusion through a nonlinear artificial

viscosity. A possible strategy to solve eq. (5.58) is the following:

1. split the operator L according to eq (5.59)

2. solve operator LNS to obtain the intermediate velocity vn�1
h

3. solve operator LF , linearized with respect to vn�1
h , to obtain vn�1

h

4. relax the two solutions according to (5.51).

It is easy to show that the end-of-step solution of such strategy satisfies eq. (5.55).

Therefore, we can look at the EFR algorithm as an operator-splitting method for

solving the perturbed Navier-Stokes equations (5.58). In particular, the operator-

splitting scheme involves three steps:

i) in the first step, given by equations (5.42)-(5.43), the intermediate velocity and

pressure are computed using the Navier-Stokes operator LNS with the physical

viscosity µ;

ii) in the second step, given by equations (5.46)-(5.47), the filtered velocity and

pressure are computed using the filter operator LF with the artificial viscosity

µh;

iii) finally, we combine the solutions found at steps i) and ii) with (5.51), (5.57) to

get the end-of-step velocity and pressure.
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In the third step, the velocity and pressure found at the first step are corrected by

taking into account the energy dissipated at the scales that were not resolved with

the given mesh in the Navier-Stokes step. More precisely, looking at the diffusive

terms in (5.55), we observe that there are two contributions:

i) ∇ �
�
2µ∇svn�1

h

�
: this is the physical dissipation, corresponding to the viscosity

of the fluid µ.

ii) αχ∇ �
�
2µh∇svn�1

h

�
: this is the numerical dissipation, induced by the filter step,

corresponding to the artificial viscosity αχµh.

Finally, we remark that in eq. (5.56) the perturbation with respect to the usual

Navier-Stokes momentum equation is modulated by χ. As mentioned in Section

5.2.2, in [53] the authors suggest the scaling χ � Op∆tq. Moreover, we recall that, if

∆t Ñ 0 no faster than h2 (as it is typically the case), thanks to eq. (5.39) we obtain

that µh Ñ 0 and vn�1
h Ñ vn�1

h as h Ñ 0. Therefore, as the discretization parame-

ters approach zero, the perturbation of the Navier-Stokes equation vanishes. This

behavior is consistent with the fact that a mesh with characteristic length h smaller

than the Kolmogorov length η is able to fully resolve the flow, and no stabilization

should be added to account for missing dissipation (at under-resolved scales).

Remark 5.5. Eq. (5.57) is not the only possible choice for the end-of-step pressure.

For example, another possible relaxation is given by

pn�1
h � p1� χqqn�1

h � χqn�1
h , (5.60)

with the advantage of treating velocity and pressure in the same way, which may

be useful from the implementation point of view. If we adopt this relaxation instead

of (5.57), then eq. (5.56) becomes

ρ
α

∆t
un�1
h �LNS ru

�
hsu

n�1
h �∇pn�1

h

� χpLNS ru
�
hspv

n�1
h � vn�1

h q � αp1� χqLF rv
n�1
h spvn�1

h � vn�1
h qq

� χ∇pqn�1
h � pα� 1qqn�1

h q � bn�1
h . (5.61)
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Notice that this choice introduces an additional perturbation (last term at the at

the left-hand side in eq. (5.61)), which is still multiplied by χ. For this reason, we

preferred to use the pressure relaxation given by (5.57) for the numerical simula-

tions reported in Section 5.6.

5.4.1 The choice of the relaxation parameter χ

In [53], the authors observe that, since µh in (5.50) features ∆t in the denominator,

the choice χ � Op∆tq guarantees that the numerical dissipation vanishes as hÑ 0,

regardless of ∆t. Given the properties of ap�q shown in Section 5.3, we can claim

that µ Ñ 0 when h Ñ 0, provided that h2{∆t stays bounded (meaning that ∆t Ñ

0 no faster than h2, as it is typically the case). Therefore, the scaling χ � Op∆tq

leads to end-of-step velocity and pressure that satisfy the Navier-Stokes equations

up to a residual which vanishes with the discretization parameters (provided h2{∆t

is bounded, as mentioned above).

However, this scaling rule does not provide a practical way to tune the propor-

tionality constant between χ and ∆t, and the natural choice χ � ∆t does not pro-

vide enough numerical dissipation in realistic applications (see Section 5.6). We

also point out that, although consistency is an important property for a numerical

method, in this case one is not interested in the behavior of the scheme as h Ñ 0,

since for h small the mesh is already fine enough to capture all the scales and the

filter is not needed.

In order to find a proper formula for χ we use a heuristic argument. We want

to find χ such that the viscous stress in (5.58) on an under-resolved mesh of size

h provides the same amount of dissipation as the viscous term in (5.42) on a fully

resolved mesh of size η, η being the Kolmogorov length scale defined in (5.6).

We identify an equivalent stress tensor in the perturbed Navier-Stokes equations

(5.58):

σn�1 � �pn�1
h I� 2µ∇svn�1

h � 2αχµ∇s vn�1
h . (5.62)

Then, we require that the viscous contribution of this tensor matches the viscous

contribution of the usual stress tensor of a Newtonian fluid on a mesh of size η. In



Chapter 5. Deconvolution-based filtering schemes 103

other words,

pµ� αχµhq∇shun�1
h � µ∇sηun�1

h , (5.63)

where∇sa (a � h, η) denotes the operator∇s on a mesh of size a. Assuming that all

the above velocities have the same order of magnitude, and approximating∇sa with

a�1, we obtain

pµ� αχµhq
1

h
� µ

1

η
, (5.64)

and thus

χ �
µ

αµ

�
h

η
� 1



�

µ

αρ

∆t

||a||8δ2

�
h

η
� 1



. (5.65)

Here, ||a||8 is the infinity norm of the indicator function. Notice that, except for

||a||8, the value of χ in (5.65) depends only on physical parameters, discretization

parameters (recall that, in practice, δ � h), and the Kolmogorov length scale, which

are all available quantities.

The expression (5.65) is compatible with the scaling χ � Op∆tq proposed in [53],

but, in addition, it provides a practical way to compute a reasonable value for χ,

requiring little a priori knowledge of the solution. In particular, one only needs to

provide the Kolmogorov length η, which can be estimated through equation (5.6).

Moreover, as we will see in Section 5.6, the ratio χ{∆t can be significantly larger

than one.

5.4.2 The boundary conditions

Here we check which boundary conditions are satisfied by the end-of-step solution,

and we justify the choice of (5.49) for the case of Neumann boundary conditions.

By combining (5.51), (5.44), and (5.48), we see that:

un�1
h � uD, on BΓD. (5.66)
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As for the Neumann part of the boundary ΓN , from (5.51) and (5.57), we have

p2µ∇sun�1
h � pn�1

h Iqn � p2µ∇spp1� χqvn�1
h � χvn�1

h q � pqn�1
h � αχqn�1

h qIqn

� p2µ∇svn�1
h � qn�1

h Iqn� χp2µ∇spvn�1
h � vn�1

h q � αqn�1
h Iqn.

Then, using (5.45) and (5.49), we find that

p2µ∇sun�1
h � pn�1

h Iqn � g � χp2µ∇spvn�1
h � vn�1

h q � 2αµh∇s vn�1
h qn, (5.67)

which states that the Neumann boundary condition satisfied by the end-of-step

quantities is a perturbation of the prescribed one. We recall that, thanks to eq.

(5.39), as the mesh size approaches zero, µh Ñ 0 and vn�1
h � vn�1

h . Therefore, as the

mesh size approaches zero, the perturbation introduced in the Neumann boundary

condition vanishes.

Although less common, it is possible to have, on a portion of the boundary, more

general Robin boundary conditions of the form

p2µ∇sun�1
h � pn�1

h Iqn� γun�1
h � gn�1 on ΓR,

where γ ¡ 0. Among the scenarios where this kind of boundary condition can

arise, we mention domain decomposition techniques in geometric multiscale ap-

proaches (see, e.g., [28], Chapter 11), and the use of the so called transpiration tech-

niques for Fluid-Structure Interaction problems (see, e.g., [21]).

It can be shown that, for this type of boundary condition, the same perturbation

as in (5.67) can still be achieved by imposing the following boundary condition for

the filter equations:

p2µh∇svn�1
h � qn�1

h Iqn�
γ

α
vn�1
h �

γ

α
vn�1
h on ΓR,

where, we recall, α is the coefficient of un�1
h in the approximation of Btuh at tn�1 by

BDFp.
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5.5 Discretization of the operator-splitting algorithm

As we mentioned in the previous section, we use the Finite Elements Method for

the space discretization. We start by introducing a conformal and quasi-uniform

partition Th of Ω made up of a certain number of tetrahedra. For the approximation

of velocity and pressure, we will resort to the inf-sup stable FE pair P2-P1. For more

details concerning the discretization of the Navier-Stokes problem, we refer, e.g.,

to [80]. We do not use any stabilization for the convective term; in fact, we will

show how the non-linear filtering of the velocity not only improves the quality of

the solution, but also allows to use coarser meshes compared to standard Navier-

Stokes equations, therefore introducing a stabilizing effect.

For the time discretization we will use BDF2 (5.16), with the corresponding con-

vective term extrapolation

u�h � 2unh � un�1
h .

In order to write the algebraic form of the problem, let us introduce the notation

for both the evolve and filter steps. For the evolve step, we will denote by M the

mass matrix, K the diffusion matrix, N the matrix associated with the discretization

of the convective term, and B the matrix associated with the discretization of the

operator p�∇�q. Furthermore, we will denote with v the vector of coefficients in

the FE expansion of vh. The full discretization of problem (5.42)-(5.43) with BDF2

yields the following system

ρ
3

2∆t
Mvn�1 � ρNvn�1 � µKvn�1 � BTqn�1 � bn�1

u , (5.68)

Bvn�1 � 0, (5.69)

The array bn�1
u accounts for the contributions of solution at the previous time steps

and the contribution that the boundary nodes give to the internal nodes (concern-

ing the non-homogeneous boundary conditions), while the constant 3{2 in the first

term comes from the formula (5.16).
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Setting C � ρ 3
2∆tM� ρN� µK, we can rewrite (5.68)-(5.69) in the form

Axn�1 � bn�1, (5.70)

where

A �

���C BT

B 0

��� , xn�1 �

���vn�1

qn�1

��� , bn�1 �

���bn�1
u

0

��� . (5.71)

For the filter step, we still denote by M the mass matrix and by B the discretiza-

tion of the (negative) divergence operator. We let K be the matrix associated with

the discretization of the diffusive term in (5.46). The full discretization of problem

(5.46)-(5.49) then yields to the system:

ρ

∆t
Mvn�1 �Kvn�1 � BTqn�1 �

ρ

∆t
Mvn�1, (5.72)

Bvn�1 � 0, (5.73)

where vn�1 and qn�1 are the nodal values of the filter step velocity and pressure.

Setting C � ρ
∆tM�K, we can rewrite (5.72)-(5.73) in the form

Axn�1 � b
n�1

, (5.74)

where

A �

���C BT

B 0

��� , xn�1 �

���vn�1

qn�1

��� , b
n�1

�

��� ρ
∆tMvn�1

0

��� . (5.75)

At every time level tn�1, to solve systems (5.70) and (5.74) we use the left pre-

conditioned GMRES method. To precondition both systems, we use an upper-

triangular variant of the pressure corrected Yosida splitting [33, 84]. For the matrix

A, this preconditioner reads:

PA �

���C BT

0 SpS� BHpµK� ρNqHBTq�1S

��� , H �
2∆t

3ρ
M�1, S � �BHBT. (5.76)

The above preconditioner is a suitable approximation of the U factor in the exact
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block LU factorization of matrix A in (5.71):

A � LU, L �

��� I 0

BC�1 I

��� , U �

���C BT

0 �BC�1BT

��� . (5.77)

See [35,76,77] for more details. For the matrix A, the preconditioner has a similar

structure, namely:

PA �

���C BT

0 SpS� BHpKqHBTq�1S

��� , H �
∆t

ρ
M�1, S � �BHBT. (5.78)

The application of the preconditioner requires to solve two linear systems in

both C and S for PA, and two linear systems in both C and S for PA. To solve each of

these systems, we use a Krylov method with a general purpose preconditioner, such

as incomplete LU or algebraic multilevel. It is worth mentioning that, while C is in

general non-symmetric because of the convective term, the matrix C is symmetric

(and positive definite). Therefore, while for PA the (1,1) block is solved with GMRES

method, for PA it can be solved with the Conjugate Gradient method.

All the linear solvers use a stopping criterion based on the relative residual. In

particular, in the outer solvers (for the matrices A and A) the tolerance is set to 10�9,

while for the inner solvers (for the matrices C, C, S and S) the tolerance was set to

10�3.

5.6 Numerical experiments

In order to demonstrate the effectiveness of the approach described in the previous

sections, we have selected a benchmark from the U.S. Food and Drug Administra-

tion (FDA). This benchmark consists in simulating the flow of an incompressible

and Newtonian fluid with prescribed density and viscosity (ρ � 1056 kg/m3 and

µ � 0.0035 Pa�s) in an idealized medical device shaped like a nozzle (see Fig. 5.2)

at different Reynolds numbers. In the geometry pictured in Fig. 5.2, the fluid flows

from left to right, passing through a cylindrical entrance region, a conical conver-
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Figure 5.2: A section of the computational domain, with Di � 0.012, Dt � 0.004, Li �
4Di and Lo � 12Di. The units are meter.

Ret Rei flow rate Q (m3/s) η

3500 1167 3.6444e-5 2.6371e-5
5000 1667 5.2062e-5 2.0182e-5

Table 5.1: Throat Reynolds number Ret, inlet Reynolds number Rei, flow rate Q, and
Kolmogorov length scale η for the flow regimes under consideration.

gent, a cylindrical throat, and a sudden expansion into a larger cylinder.

The complete FDA benchmark requires to study this system for a variety of con-

ditions, including laminar, transitional, and turbulent regimes: the results of the

published inter-laboratory experiments refer to values of the Reynolds numbers in

the throat (defined as in (5.3)) of Ret � 500, 2000, 3500, 5000, 6500. In a previous

work [67], the authors have successfully validated LifeV [1] against this benchmark

for Ret up to 3500 using direct numerical simulations.

To test our methodology, we focus on Reynolds numbersRet � 3500, 5000. In Ta-

ble 5.1, we report the throat Reynolds numberRet, the corresponding inlet Reynolds

number Rei, flow rate Q, and the Kolmogorov length scale η for the flow regimes

that we are going to consider. The value of η was found by plugging into (5.6) the

value of Ret and the diameter of the expansion channel Di as characteristic length.

Notice that for both flow regimes the flow in the entrance region is laminar, Rei

being below the critical Reynolds number for transitional flow in a straight pipe

(Re � 2000 [81]).

On the lateral surface of the computational domain we prescribe a no-slip bound-

ary condition. For the two flow regimes in Table 5.1, at the inlet section we prescribe

a Poiseuille velocity profile to get the desired flow rate, a choice which is justified

by the considered values of Rei. The length of the inlet chamber Li was set to four
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times its diameter. At the outlet section, we prescribe a stress-free (natural) bound-

ary condition. This is an artificial condition, which does not correspond to the ex-

perimental set up of the FDA benchmark (a closed flow loop [40]). However, this

choice is expected to alter the computed solution only in a confined region of the

computational domain close to the outlet section [42]. The results of the flow analy-

sis are not affected, provided that the expansion channel is long enough. For all the

simulations, the length of the expansion channel (Lo in Fig. 5.2) was set to 12 times

its diameter and we checked that in all the cases the velocity components reach a

plateau before the outlet.

As for the initial condition, we start our simulations with fluid at rest, i.e., p � 0

and u � 0 everywhere in Ω. We use a smooth increase of the velocity profile at the

inlet to transition from the fluid at rest to the regime flow conditions.

For both flow regimes in Table 5.1, we considered several meshes with different

levels of refinement. The selection of the time step was driven by accuracy con-

siderations solely. In fact, even though the semi-implicit treatment of the convec-

tive term in eq.(5.42) does not guarantee the unconditional stability in time of the

numerical scheme, we encounter no time stability issues in the numerical experi-

ments.

We compare the experimental data provided by the FDA with our numerical

simulations for the flow regimes listed in Table 5.1. The experimental data were

acquired by three independent laboratories and one of the laboratory ran three tri-

als, so that for each case we have five sets of data. The comparison is made in terms

of normalized axial component of the velocity and normalized pressure difference

along the centerline. The axial component of the velocity uz is normalized with

respect to the average axial velocity at the inlet ūi:

unormz �
uz
ūi
, with ūi �

Q

πD2
i {4

, (5.79)

where Q is the volumetric flow rate calculated from the throat Reynolds number

(see Table 5.1). The pressure difference data are normalized with respect to the

dynamic pressure in the throat:
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∆pnorm �
pz � pz�0

1{2ρū2
t

, with ūt �
Q

πD2
t {4

, (5.80)

where pz denotes the wall pressure along the z axis and pz�0 is the wall pressure at

z � 0. To compute the value of ∆pnorm, we probed the pressure value at the cor-

responding location on the axis of the domain, since we observed pressure values

being approximately uniform on axial cross-sections.

The graphs with the above comparisons are reported in Sec. 5.6.1 and 5.6.2 for

Ret � 3500 and Ret � 5000, respectively.

5.6.1 CaseRet � 3500

Among the Reynolds numbers considered by the FDA benchmark,Ret � 3500 is the

lowest above the critical Reynolds number for transitional flow in a straight pipe. As

mentioned earlier, in [67] the authors already investigated this case, showing that

DNS with a properly refined mesh is able to capture with precision the jet break-

down observed in the experiments. Here, we start from the mesh used in [67] for

the DNS at Ret � 3500 and make it progressively coarser to understand the perfor-

mances of the EFR algorithm described in Sec. 5.4.

The meshes we considered and the associated time step used in the simulations

are reported in Table 5.2. The name of each mesh is the number of elements. After

several numerical experiments, in [67] we managed to identify a time step value

and a mesh sufficiently refined in the different regions of the domain such that the

results obtained with DNS were in excellent agreement with the experimental data.

Mesh 1900k features that level of refinement and is associated with the same ∆t

used for the simulations in [67]. The time step associated with all the other meshes

in Table 5.2 was chosen such that the ratio hmin{∆t is kept roughly constant.

We noticed that, starting from fluid at rest, the turbulent regime is fully devel-

oped already passed t � 0.3 s. So, we let the simulations run till after that time and

then save around 10 snapshots, one every 100 time steps, we compute their average

and we compared it with the experimental data. In fact, since the measurements

of a turbulent flow are averaged over time [40], we average also the numerical re-
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mesh name hmin havg hmax # nodes # tetrahedra ∆t

1900k 1.06e-4 5.15e-4 1.49e-3 3.7e5 1.9e6 1e-4
1200k 1.08e-4 5.46e-4 1.63e-3 2.3e5 1.2e6 1e-4
900k 1.09e-4 5.16e-4 1.87e-3 1.8e5 9.0e5 1e-4
330k 2.23e-4 9.48e-4 1.93e-3 6.5e4 3.3e5 2e-4
140k 3.39e-4 1.11e-3 3.09e-3 3.1e4 1.4e5 3e-4

Table 5.2: Case Ret � 3500: meshes used for the simulations, with their minimum
diameter hmin, average diameter havg, maximum diameter hmax, and number of nodes
and tetrahedra. We also report the time step ∆t used for the simulations with each
mesh.

sults for a fair comparison. We noticed that averaging over more than 10 snapshots

would not change the average value.

A DNS is possible only with meshes 1900k and 1200k. A DNS with mesh 900k

does not even reach regime conditions because the instabilities in the computed

velocity due to mesh under-resolution cause the simulation to crash. We report the

comparison for the normalized axial velocity (5.79) along the z axis (Fig. 5.3(a)) and

the normalized pressure difference (5.80) along the z axis (Fig. 5.3(b)). In Fig. 5.3,

we plotted a dot for every measurement and a solid line to linearly interpolate the

five sets of measurements, while we used a dashed line for the numerical results ob-

tained with meshes 1900k and 1200k. We notice that the axial velocities computed

with both meshes match the measurements all along the portion of the z axis un-

der consideration (�0.088   z   0.08), capturing with precision the jet breakdown

point observed in experiments. As shown in Fig. 5.3(b), also the simulated pressure

difference on both meshes is in very good agreement with the experimental data,

except in the convergent where the simulated pressure difference overestimates al-

most all the measurements. The reason for this pressure difference overestimation

is explained in [67]. Fig. 5.3 shows that even mesh 1200k has a sufficient level of

refinement to obtain numerical results in excellent agreement with the measure-

ments in terms of average quantities, despite its havg is roughly 20 times larger than

the Kolmogorov length scale at Ret � 3500 (see Tables 5.1 and 5.2).

We test the EFR algorithm described in Sections 5.4 and 5.5 with deconvolution

of order N � 0 on all the meshes in Table 5.2 that are coarser than mesh 1200k. We

report the comparison between computed and measured normalized axial velocity
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(a) normalized axial velocity along z (b) normalized pressure difference along z

Figure 5.3: Case Ret � 3500, DNS with two different meshes: comparison between
experimental data (solid lines) and numerical results (dashed lines) for (a) normalized
axial velocity (5.79) along the z axis and (b) normalized pressure difference (5.80) along
the z axis. The legend in (b) is common to both subfigures.

(5.79) and pressure difference (5.80) in Fig. 5.4(a) and 5.4(b), respectively. Remark-

ably, the EFR algorithm succeeds in curing the convective term instabilities even

on mesh 140k, which has 88% less elements than mesh 1200k (the coarsest mesh

that allowed for a DNS) and an average diameter more than 42 times larger than η

at Ret � 3500. From Fig. 5.4(a), we see that the axial velocity computed on meshes

900k and 330k are in agreement with the measurements all along the z axis. With

mesh 140k, the jet starts to breakdown closer to the sudden expansion than the jets

obtained with the other two meshes. Nonetheless, the total jet length computed

with mesh 140k agrees very well with the measured total jet length. As for the pres-

sure difference, we see in Fig. 5.4(b) that the pressure differences computed on the

three meshes fall within the measurements. In particular, the pressure difference

simulated with mesh 900k is in very good agreement with the experimental data,

again with the exception of the convergent region.

In [88], none of the presented CFD results were able to reproduce the correct

jet breakdown point, because DNS predicted a longer jet (likely due to an incor-

rect simulation setup) while simulations with turbulence models under-predicted

the jet length. Thus, all the computed axial velocities in Fig. 5.4(a) are reasonable,

regardless of the mesh.

For a qualitative comparison, we report in Fig. 5.5 the velocity magnitude com-
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(a) normalized axial velocity along z (b) normalized pressure difference along z

Figure 5.4: Case Ret � 3500, EFR with three different meshes, N � 0: comparison
between experimental data (solid lines) and numerical results (dashed lines) for (a)
normalized axial velocity (5.79) along the z axis and (b) normalized pressure difference
(5.80) along the z axis. The legend in (b) is common to both subfigures.

puted with meshes 1200k, 330k, and 140k on a section of the domain after the tur-

bulent regime is fully established. We remind that the results with mesh 1200k (in

Fig. 5.5(a)) have been obtained with DNS and therefore show a high level of detail.

With meshes 330k and 144k, the finer details of the smaller turbulent structures are

lost, yet thanks to the EFR algorithm the average behavior of the flow is well cap-

tured (see Fig. 5.5(b) and 5.5(c)) at a fraction of the computational cost. In fact, a

time step of the DNS with mesh 1200k takes around 240 s on 80 CPUs, while a time

step of the EFR algorithm with mesh 330k takes around 80 s (50 s for the evolve step

plus 30 s for the filter step) on 48 CPUs and with mesh 140k around 65 s (50 s for

the evolve step plus 15 s for the filter step) on 24 CPUs. These computational times

refer to simulations run on Maxwell, a cluster of the Research Computing Center at

the University of Houston.

Next, we set the deconvolution orderN to 1 and repeat the simulations on meshes

900k, 330k, and 140k. We report the comparison for the normalized axial velocity

(5.79) along the z axis in Fig. 5.6(a) and the normalized pressure difference (5.80)

along the z axis in Fig. 5.6(b). From Fig. 5.6(a), we see that, while the axial velocity

computed on mesh 900k is still in excellent agreement with the experimental data,

the jet obtained with coarser meshes is too long. It seems that at Ret � 3500 the

choice N � 1 leads to too much artificial viscosity if the mesh is too coarse with
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(a) mesh 1200k

(b) mesh 330k

(c) mesh 140k

Figure 5.5: Case Ret � 3500: velocity magnitude computed with meshes (a) 1200k, (b)
330k, and (c) 140k on a section of the domain after the turbulent regime is fully estab-
lished. The results with mesh 1200k have been obtained with DNS, while the results
with meshes 330k and 140k have been obtained with the EFR algorithm and N � 0.

(a) normalized axial velocity along z (b) normalized pressure difference along z

Figure 5.6: Case Ret � 3500, EFR with three different meshes, N � 1: comparison
between experimental data (solid lines) and numerical results (dashed lines) for (a)
normalized axial velocity (5.79) along the z axis and (b) normalized pressure difference
(5.80) along the z axis. The legend in (b) is common to both subfigures.

respect to those that allow for DNS. Concerning Fig. 5.6(b), we see that the pressure

difference gets more and more overestimated in the entrance region as the mesh

gets coarser (up to 25% overestimation on mesh 140k with respect to the average

measured pressure difference).

In order to understand the differences in the results obtained with N � 0 and

N � 1, we track the value of χ over the time interval r0.43, 0.68s s for mesh 140k.

Note that ||a||8 is the only quantity in the definition of χ (5.65) that varies in time.

In Fig. 5.7(a), we see that for N � 0 the value of χ does not change over interval

r0.43, 0.68s s and it is equal to 0.1, which corresponds to ||a||8 � 1. WhenN � 1, the
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(a) N � 0 (b) N � 1

Figure 5.7: Case Ret � 3500, EFR with mesh 140k: value of χ over time interval
r0.43, 0.68s s for (a) N � 0 and (b) N � 1.

value of χ oscillates between 0.1 and 0.17 (see Fig. 5.7(b)). The value of χ is chosen

so that the dissipation given by the physical and artificial viscosity amounts to the

physical dissipation on a properly refined mesh, i.e. with h � η (see relation (5.63)).

However, the larger the value of χ, the more the filtered velocity vh weights in the

end-of-step velocity (5.51). This explains the longer jets in Fig. 5.6 that we get with

meshes 330k and 140k for N � 1.

Notice that the values of χ computed with eq. (5.65) and shown in Fig. 5.7 are

two orders of magnitude larger than ∆t used for mesh 140k (see Table 5.2). For the

problem under consideration, the choice χ � ∆t is not appropriate, since it would

lead to an under-diffused flow that would not match the experimental data.

By comparing Fig. 5.4 and 5.6, one could think that the artificial viscosity intro-

duced by the filtering step increases as N increases. To this purpose, we compare

the normalized axial velocity (5.79) along the z axis and the normalized pressure

difference (5.80) along the z axis obtained with mesh 140k and N � 0, 1, 2, 3 in Fig.

5.8(a) and 5.8(b), respectively. From Fig. 5.8(a), we see that the jet length reduces as

N is increased from 1 to 3, while the let length for N � 0 is comparable to that ob-

tained forN � 2. As for the pressure difference, the results obtained withN � 0, 2, 3

are fairly close to each other, while the pressure difference computed with N � 1 is

larger in the entrance region. The sensitivity of the solution to N (among other pa-

rameters) is currently under investigation and will be object of a future publication.
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(a) normalized axial velocity along z (b) normalized pressure difference along z

Figure 5.8: Case Ret � 3500, EFR with mesh 140k and four different values of the de-
convolution order N � 0, 1, 2, 3: comparison between experimental data (solid lines)
and numerical results (dashed lines) for (a) normalized axial velocity (5.79) along the z
axis and (b) normalized pressure difference (5.80) along the z axis. The legend in (b) is
common to both subfigures.

We tried also an extremely coarse mesh with roughly 7.2�104 elements and havg �

1.25 � 10�3m. The simulation with the EFR algorithm on such a mesh crashed less

than 0.1 s after reaching regime conditions regardless of the deconvolution order.

This indicates that with an extremely coarse mesh (with approximately 95% less

elements than the coarsest mesh that allowed for a DNS) the EFR algorithm does

not provide enough artificial diffusion to cure the convective term instabilities.

A key role in the EFR algorithm is played by the indicator function. We show in

Fig. 5.9 the indicator function aD0 (see (5.37) and Remark 5.3 for the definition),

computed with meshes 330k, and 140k at the same time step as the velocity mag-

nitudes reported in Fig. 5.5(b) and 5.5(c), respectively. For both cases in Figure 5.9,

the indicator function takes its largest value in the boundary layer at the entrance of

the throat. Moreover, on mesh 140k it takes fairly large values all along the jet, while

on mesh 330k larger values are taken only where the jet breaks down. Figure 5.9

shows that aD0 is a suitable indicator function since it correctly selects the regions

of the domain where the velocity does need regularization.

Remark 5.6. The exact choice of the filtering radius δ is an open problem when

using non-uniform grids. If the mesh has been properly generated, it is fine where

the smaller scales are expected and coarser where larger scales are expected. In this
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(a) mesh 330k

(b) mesh 140k

Figure 5.9: Case Ret � 3500, EFR with N � 0: indicator function aD0
computed with

meshes (a) 330k and (b) 140k at the same time step as the velocity magnitudes reported
in Figure 5.5(b) and 5.5(c), respectively.

case, it is reasonable to set δ � hmin. So, where the smaller scales are expected the

velocity will be smoothed but not oversmoothed (which happens if δ ¡ hmin), while

where the larger scales are expected and the local h is greater than δ the filtering is

essentially not affecting the flow. For all the simulations in this work, we have set

δ � hmin.

Remark 5.7. The operator ∇s in eq. (5.42) and (5.46) could be replaced by the op-

erator∇ only if the mesh is not too coarse with respect to the meshes that allow for

DNS. This option is appealing because it reduces the computational costs3, but if

the mesh is too coarse it leads to instabilities that make the simulation crash. The

only mesh with which we could use operator ∇ is 900k, where we obtained results

almost superimposed to those we got with operator ∇s, shown in Figure 5.4. As

mentioned in Remark 5.1, at the discrete level the contribution of∇uT is essential.

Remark 5.8. When ||a||8 is very small, the value of χ becomes large. In order to

avoid dealing with a large value of χ, in our solver the filter is turned on only when

the velocity is sufficiently large to make the current Kolmogorov length scale (which

is computed with the current Reynolds number) smaller than hmin.

3In fact, using the operator ∇s rather than ∇ for the stress tensor creates a coupling between the
different velocity components, which causes the pattern of the momentum matrix to be full rather
than block diagonal.
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(a) kinetic energy (b) power spectral density

Figure 5.10: Re � 3500, DNS with mesh 1900k: kinetic energy over time interval
r0.29, 0.64ss (a) and the velocity power spectral density (b).

We conclude this section by analyzing the evolution of the kinetic energy of the

system. More precisely, we study the power spectral density of the velocity field. Re-

call that the power spectral density of a time-series xptq is simply the distribution

in the frequency domain of its variance. In this case, the time-series is the velocity

field, and its variance is the kinetic energy related to the velocity fluctuations [2].

This allows us to establish the periodic characterof the solution in time. We let the

DNS with mesh 1900k run for several tenths of seconds. The computed kinetic en-

ergy is shown in Figure 5.10(a): it oscillates around the mean value 0.0153. The

power spectral density of the signal in Figure 5.10(a) is reported in Figure 5.10(b):

there are several peaks for frequencies up to 50 Hz. In Figure 5.11, we see the power

spectral density of the velocity field computed with the EFR algorithm on meshes

900k and 140k. Not all the peaks that appear in the spectrum of the kinetic energy

obtained with DNS are present in the spectra of the kinetic energy given by the EFR

algorithm and, in particular, the coarser the mesh the less frequencies are excited.

Nonetheless, the frequencies that do get excited appear also in the in the power

spectrum in Figure 5.10(b).

5.6.2 CaseRet � 5000

The second flow regime we consider features a throat Reynolds numberRet � 5000.

As for Ret � 3500, turbulence downstream of the sudden expansion was observed



Chapter 5. Deconvolution-based filtering schemes 119

Figure 5.11: Re � 3500, EFR with meshes 900k and 140k: power spectral density of the
velocity field.

mesh name hmin havg hmax # nodes # tetrahedra ∆t

3000k 1.17e-4 4.76e-4 9.64e-4 5.5e5 3.0e6 1e-4
1900k 1.06e-4 5.15e-4 1.49e-3 3.7e5 1.9e6 1e-4
900k 1.09e-4 5.16e-4 1.87e-3 1.8e5 9.0e5 1e-4
330k 2.23e-4 9.48e-4 1.93e-3 6.5e4 3.3e5 2e-4

Table 5.3: Case Ret � 5000: meshes used for the simulations, with their minimum
diameter hmin, average diameter havg, maximum diameter hmax, and number of nodes
and tetrahedra. We also report the time step ∆t used for the simulations with each
mesh.

in all the experiments with a reproducible jet breakdown point.

We consider several meshes with different levels of refinement. Table 5.3 con-

tains the details of all the meshes under consideration, together with the associated

time step used in the simulations. Meshes 1900k, 900k, 330k are the same used for

the simulations at Ret � 3500, while the finest mesh was generated for this specific

case. Despite the large number of nodes and tetrahedra, mesh 3000k has an aver-

age diameter roughly 24 times larger than the Kolmogorov scale at Ret � 5000 (see

Tables 5.1 and 5.3) and is not refined enough for a DNS to give results in good agree-

ment with the experimental data. In fact, we see in Figure 5.12(a) that the computed

velocity underestimates the measured velocity in the throat and the computed jet

length is too small due to insufficient diffusion. A better agreement is found be-

tween computed and measured pressure difference (see Figure 5.12(b)). We remark

that the lab whose data are labeled as “data5” provided measurements for for the

axial velocity but not of the pressure at Ret � 5000.

We have seen in Sec. 5.6.1 that the results obtained atRet � 3500 with the EFR al-
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(a) normalized axial velocity along z (b) normalized pressure difference along z

Figure 5.12: Case Ret � 5000, DNS with mesh 3000k: comparison between experi-
mental data (solid lines) and numerical results (dashed line) for (a) normalized axial
velocity (5.79) along the z axis and (b) normalized pressure difference (5.80) along the
z axis. The legend in (b) is common to both subfigures.

gorithm compared well with the measurements when N � 0, while the choice N �

1 featured too much artificial viscosity. Since we are mostly using the meshes em-

ployed at Ret � 3500, we expect the EFR algorithm to perform better at Ret � 5000

for N � 1 because additional dissipation is needed to compensate for the smaller

scales that are filtered out by each mesh. We report the comparison between com-

puted and measured normalized axial velocity (5.79) and pressure difference (5.80)

for all the meshes in Table 5.3 in Figure 5.13(a) and 5.13(b), respectively. Indeed,

from those figures we see that the jet length is very well captured with all the mesh,

and the axial velocity and pressure difference computed on meshes 3000k, 1900k,

and 900k are in excellent agreement with the respective measured quantities. For

the results on mesh 330k, we observe that the axial velocity gets overestimated in

the throat and the pressure difference is overestimated in the entrance region. No-

tice that this same behavior for the solution on coarser meshes was observed at

Ret � 3500 for N � 1 (see Figure 5.6).

From Figure 5.13, we notice that there is little difference between the results ob-

tained with mesh 3000k and those obtained with mesh 900k, as they both compare

well with the experimental data. See also Figure 5.14 for a qualitative comparison

of the velocity magnitude computed in the two cases on a section of the domain

after the turbulent regime is fully established. Obviously, the computational time
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(a) normalized axial velocity along z (b) normalized pressure difference along z

Figure 5.13: Case Ret � 5000, EFR with four different meshes, N � 1: comparison
between experimental data (solid lines) and numerical results (dashed lines) for (a)
normalized axial velocity (5.79) along the z axis and (b) normalized pressure difference
(5.80) along the z axis. The legend in (b) is common to both subfigures.

(a) mesh 3000k

(b) mesh 900k

Figure 5.14: Case Ret � 5000, EFR with N � 1: velocity magnitude computed with (a)
mesh 3000k and (b) mesh 900k on a section of the domain after the turbulent regime is
fully established.

needed for the two simulations is very different: a time step of the EFR algorithm

with mesh 3000k takes around 280 s (220 s for the evolve step plus 60 s for the filter

step) on 208 CPUs and with mesh 900k around 220 s (165 s for the evolve step plus

55 s for the filter step) on 96 CPUs. Again the computational times refer to simula-

tions run on Maxwell. Better computational times were achieved on Stampede, a

cluster of the XSEDE consortium (around 52 s per iteration on 256 CPUs for mesh

3000k).

In order to analyze the evolution of the kinetic energy of the system, we let the

EFR algorithm with mesh 1900k run for several tenths of seconds. In Figure 5.15(a)

we show the computed kinetic energy, while in Figure 5.15(b) we show the power

spectral density of the velocity field. At Ret � 5000, the kinetic energy oscillates

around the mean value 0.0285. As expected, more peaks appear in Figure 5.15(b)
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(a) kinetic energy (b) power spectral density

Figure 5.15: Re � 5000, EFR with mesh 1900k: kinetic energy over time interval
r0.25, 0.62ss (a) and velocity field power spectral density (b).

than in Figure 5.10(b), which has been obtained with the same mesh atRet � 3500:

atRet � 5000 (Ret � 3500, resp.) frequencies up to 100 Hz (50 Hz, resp.) have power

spectral density peaks higher than 5 � 10�7.
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Conclusions and future directions

The recent development of medical imaging equipment and mathematical mod-

els/methods has opened the way for a massive use of mathematics in clinical di-

agnosis and treatment. In particular, for the cardiovascular field, numerical simu-

lations have proved to be an important tool to understand the flow of blood inside

vessels and its interaction with the vessel walls. Furthermore, in recent years, car-

diovascular mathematics has changed from a tool for describing and understand-

ing the behavior of the cardiovascular system to a tool for quantitatively analyzing

it and even design possible treatments. However, the quantitative use of mathe-

matical tools demands more accurate and patient specific results, which means

improvements in the reliability of numerical solutions. This, in turn, reflects on

the choice of the numerical discretizations and, on the other hand, on the accurate

tuning of the parameters in the model.

Data Assimilation

Data Assimilation is a collection of techniques that, after having proved successful

in other engineering fields, are recently rising as a complementary tool in biomedi-

cal application, making the results of numerical simulations more reliable for clin-

ical purposes. In this work we followed the idea proposed in [69] for the variational

estimation of the compliance of a vessel by means of assimilating measures of the

displacement of the vessel wall. In particular, we proposed a POD-based Reduced

123
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Order Model (ROM) approach for the reduction of the costs associated with the so-

lution of the inverse problem, and we compared the estimates with those obtained

by solving the inverse problem in the Full Order Model (FOM). The algorithm had

proven to be robust with respect to the errors in the measurements while adding

a regularizing effect to the inverse problem. This is expected, since the ROM ap-

proach forces the solution to lie in a vector space of dimension remarkably smaller,

compared to that of the corresponding FOM. This constraint ultimately helps to

filter out a considerable amount of the noise present in the measurements. In par-

ticular, we emphasize the robustness of the method with respect to the noise in the

measures, with good results for Signal to Noise Rations as low as 5 (corresponding

to an intensity of noise up to 20% of the intensity of the data).

On the computational costs side, the approach contributed to reduce the costs

of the online stage by roughly an order of magnitude. Most of the residual online

costs are associated to the assembly of the Finite Element matrices and to the re-

covery of the pressure at the end of the time step, which, ultimately, depend on the

fact that the geometry changes in time. In the case of small displacements, we can

identify a possible research direction for further damp the online costs. To this end,

let Apηq denote a generic matrix assembled in the geometry corresponding to the

wall displacement η. If η is a linear combination of the displacement Reduced Basis

vectors w1, . . . , wN , then we can write

Apηq � A pc1w1 � � � � cNwN q . (6.1)

If the displacements are small, one can approximate Apηq with a linear Taylor poly-

nomial with respect to the coefficients c1, . . . , cN , as

Apηq � Ap0q �
Ņ

i�1

ci
BA

Bwi
, (6.2)

where Ap0q denotes the matrix assembled in the undeformed geometry, while
BA

Bwi
can be computed using the shape derivatives or approximated by simple finite dif-

ferences. This approach would allow us, in the offline stage, to precompute these
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matrices and project them onto the corresponding reduced space. Then, in the on-

line stage, the reduced system matrix can be obtained again using the expression

(6.2), where each of the matrices in the linear expansion is of the dimension of the

reduced space, hence making the assembly cost independent of the dimension of

the FE space used in the offline stage.

Another important direction that would be worth exploring is the reusability of

the Reduced Basis. As a matter of fact, since the geometry is patient specific, it is

necessary to compute a RB for every new geometry. A possible way to damp the

offline costs would be to construct a geometry atlas, consisting of a limited num-

ber of domain configurations. The RB construction and the solution of the inverse

problem would then happen only on the geometries in the atlas. When the inverse

problem has to be solved for a new set of measures corresponding to a new ge-

ometry, we would then map the measures on the atlas, find the closest geometry

available in the atlas, and then solve the inverse problem with the corresponding

RB. This approach has already been used for building ROM for biomedical appli-

cations [60], and it relies on the development of a reliable and efficient mapping

criterion.

Large Reynolds numbers and filtering techniques

Although blood flow in the human cardiovascular system is usually laminar, there

are a few scenarios where the Reynolds number may be large enough to trigger tur-

bulent effects, as we pointed out in the Remark 5.2. The accuracy and the compu-

tational costs of simulating flows at large Reynolds number represent a challenging

aspect, and Direct Numerical Simulation (DNS) can become a big burden in some

cases. In such scenarios, stabilization techniques that allow to obtain accurate re-

sults while keeping the number of unknowns limited become mandatory.

In this work we analyzed the model proposed in [53], for the discretization of

the generalized Leray system, with a deconvolution-based indicator function. In

particular, we reinterpreted the method as an operator-splitting scheme for the dis-

cretization of a perturbed version of the Navier-Stokes equations, and we used this

to derive a heuristic tuning of one of the main parameters involved in the model.
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We tested the effectiveness of the algorithm on a realistic 3D flow problem, corre-

sponding to a benchmark proposed by the Food and Drug Administration, and we

compared the results with experimental data. We emphasize, in particular, the fact

that the method allows to use meshes of much smaller dimension (even by an order

of magnitude) than those neded with a DNS approach, while still providing reliable

results.

Furthermore, the interpretation of the algorithm as an operator-splitting scheme

opens the door to a variety of techniques, such as incomplete factorization and cor-

rection techniques, that may lead, in the future, to more accurate schemes.
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