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Abstract 

Climate Change and Malnutrition Among Under-5 Children in Guatemala from 2000 to 2017 

By Sanne Glastra 

 

In Guatemala, malnutrition prevalence rates are among the highest in Latin America and the 

world. Malnutrition drivers are highly complex and intertwined, including socioeconomic, 

agricultural, and climatic factors. Though Guatemala is highly vulnerable to the effects of 

climate change, the connection between climate and malnutrition is thus far under-explored. In 

this thesis, we conduct an exploratory study of the relationship between climate and under-5 

child malnutrition in Guatemala from 2000-2017 to better understand the importance of 

climate variables in determining malnutrition. To do so, regression and random forest analyses 

were performed to uncover the significance of the climate-malnutrition relationship and 

determine how climatic factors compare to non-climatic factors in determining malnutrition. 

Results demonstrate the most significant relationships are between climate and stunting 

malnutrition, especially in the highlands region, with a positive relationship between annual soil 

moisture (drought proxy) (p<0.01) and stunting. We also find a negative relationship between 

growing season temperature and stunting (p<0.01). Similar results were found for underweight 

malnutrition (p<0.01), though with lower effect size, indicating other non-climatic factors may 

be more important in predicting underweight malnutrition in Guatemala. Therefore, this thesis 

highlights the significance of some climate variables as contributing factors to malnutrition 

prevalence in Guatemala. 
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INTRODUCTION 

Malnutrition is a worldwide problem, with more than 30% of the world affected by one 

form of malnutrition (International Food Policy Research Institute (IFPRI), 2016). Guatemala, 

specifically, has among the highest rates of malnutrition in the world; the most severe effects are 

felt in young children under 4 years of age, when the most notable developmental delays occur 

(Marini & Gragnolati, 2003; Martorell, 2010). Chronic malnutrition rates in Guatemala are 

especially high, with the highest rate of stunting (low height-for-age) and underweight (low 

weight-for-age) malnutrition among under-5 children in Latin America; stunting prevalence 

reaches around 70% in some, predominantly indigenous departments in the highlands: 

Totonicapán, Quiche, and Huehuetenango (Ministerio de Salud Pública y Asistencia Social - 

MSPAS/Guatemala et al., 2017). Within Guatemala, high malnutrition prevalence has far-

reaching consequences both on an individual level and societal level. Examples include overall 

lower quality of life, increased risks during pregnancy, working limitations due to stunting 

(leading to lower income), stigmas surrounding stunting leading to hindered academic 

performance, etc. (Martorell, 2010). Within society, individual-level eductions in intellectual 

performance and occupational capacity consequently result in lower overall productivity 

(Martorell, 2010). General contexts leading to and resulting from malnutrition have furthermore 

coincided with increased rates of out-migration to the United States, which has been 

demonstrated to have some positive influence on child nutrition in Guatemala (Carte et al., 2019; 

Carletto et al., 2011). Nevertheless, child malnutrition rates remain high, speaking to other 

existing driving factors that override the potential positive influences of migration.  

 Drivers of malnutrition in Guatemala are complicated and interwoven. It is important to 

note Guatemala is among the most ethnically diverse countries in Latin America, and 45% of the 
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population is indigenous, located mostly in the highland region of Guatemala (Cerón et al., 2016; 

12). Many malnutrition driving factors are often exacerbated for indigenous populations due to 

historical discrimination and marginalization against these groups (Mazariegos et al., 2019; 

Marini & Gragnolati, 2003; U.S. Agency for International Development (USAID), 2021; Cerón 

et al., 2016), further highlighted in chronic malnutrition incidence in Guatemala being almost 

double among indigenous groups (69.7%) as opposed to non-indigenous groups (35.7%) (Pan 

American Health Organization (PAHO), 2007). Other social contexts particularly important in 

determining chronic malnutrition outcomes in Guatemala include poor sanitation practices, low 

maternal education, low wealth index / poverty, and maternal short stature (12% more prevalent 

among indigenous women), to name a few (Marini & Gragnolati, 2003; U.S. Agency for 

International Development (USAID), 2021; Martorell, 2010). Lack of proper health care access 

furthermore magnifies food security issues, which is often the case in rural, poor, indigenous 

parts of Guatemala (Pan American Health Organization (PAHO), 2007). It is important to note 

ethnicity and the indicated social contexts are often intertwined, and rural indigenous populations 

have generally lower socioeconomic status and resources (U.S. Agency for International 

Development (USAID), 2021).  

 Rural sectors of Guatemala, where 70% of people live in poverty, are highly dependent 

on agricultural production for income and food (Lopez-Ridaura et al., 2019). As a result, 

agricultural factors furthermore play a major role in driving food insecurity and ultimately 

malnutrition outcomes. Sufficient arable land availability, for example, is hugely significant for 

food security and remains a significant issue in Guatemala. The Pan American Health 

Organization (PAHO) describes how, in Guatemala, children coming from households with less 

than 1.4 hectares of land are three times more at risk for malnutrition than those with greater than 
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3.5 hectares (2007). The issue particularly affects indigenous groups, who despite comprising 

half of agricultural workers in Guatemala, own only a ¼ of the land (Pan American Health 

Organization (PAHO), 2007). Dependence on agriculture income is also significantly associated 

with severe food insecurity (Beveridge, 2019). In Guatemala, income variability due to 

agricultural cycles often leave insufficient funds for food (Webb, 2018), and it is estimated more 

than half of Guatemalan families have monthly incomes too low to meet necessary dietary intake 

(Pan American Health Organization (PAHO), 2007). In Guatemala, though maize and beans 

(grown primarily in the rainy season) are the primary subsistence crops (Beveridge, 2019), there 

have been recent shifts towards production of export crops --particularly coffee-- in the 

Guatemalan highlands (Webb, 2018). Increased coffee cash cropping, however, comes with 

increased risks, given the high investment needed, difficulty of frequent droughts, as well as the 

problems with coffee rust common in Guatemala (Beveridge, 2019). Even more so, cash 

cropping has been found to correspond to intensified severe food insecurity, when degree of 

production sold is low (2019).  

 A final potential important driver of malnutrition in Guatemala to consider is climate. 

The country has experienced changing precipitation and temperature patterns in recent years, and 

Guatemala has been cited as highly vulnerable to the effects of climate change (Ruano & Milan, 

2014). Historically, the primary season for growing crops in Guatemala is the rainy season, 

occurring roughly from May to October; it is typical for maximum rainfall to occur in the 

beginning and end of the season, with a drier period referred to as the mid-summer drought 

(MSD) of about 30 days in between (Beveridge, 2019). The length and intensity of the MSD 

varies based on El Niño-Southern Oscillation (ENSO) cycles, which are the main drivers of 

climate variability in the region (Beveridge, 2019; Ruano & Milan, 2014); when ENSO cycles 
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are in an El Niño phase, rainy seasons are often drier, and MSD is more intense (Beveridge, 

2019). In recent years, there has been an increased frequency of El Niño events; the amount of El 

Niño events occurring from 1991-2010 were twice as many (6 events) as in the twenty-year 

periods before that (3 events) (Ruano & Milan, 2014). The result has sometimes been 

consecutive dry growing seasons in Guatemala and severe drought events at times, often leading 

to widespread crop failure, thereby affecting locals’ harvest reliability (Ruano & Milan, 2014) 

and overall food security (Beveridge, 2019). For example, the 2014 extended and intensified 

mid-summer drought (due to El Niño) resulted in 70-80% loss of harvests (UN Country Team in 

Guatemala, 2015). Similarly, drought has hindered coffee cash cropping success in Guatemala, 

exacerbating the risks already present in coffee growing (Beveridge, 2019). The resulting crop 

losses due to climate change have direct effects on food insecurity and ultimately malnutrition 

through less food availability, increased food prices (altering food stability and access), and 

reduced income (altering ability to afford food) (FAO et al., 2018; 19).  

 The connection between climate change and malnutrition has been documented by 

studies worldwide. For example, spatial analysis of the relationship between drought and child 

malnutrition in India showed a significant positive relationship between drought and stunting 

(Shaw et al., 2020). A longitudinal study in Ethiopia investigating the relationship between 

climate change and child malnutrition found that there is a significant partial effect of both 

rainfall and temperature on stunting and underweight prevalence (Hagos et al., 2014).  Another 

study examining climate (through temperature and precipitation), livelihood, and malnutrition in 

Mali found a significant relationship between climate and stunting (Jankowska et al., 2012). In 

Nigeria, investigations of the effect of climate change on child underweight and stunting found 

an association between rising temperature and stunting (van der Merwe et al., 2022).  
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Though there is evidence of a climate change-malnutrition pathway in Guatemala, at this 

stage, there are few studies dedicated to exploring the indicated connection over time. As a 

result, this thesis hopes to explore a connection between climate change and under-5 child 

malnutrition from 2000 to 2017 in Guatemala, with aggregation at the department-level to 

account for spatial variability. We acknowledge malnutrition is highly complicated with a 

multitude of driving factors; we furthermore acknowledge the connection between climate and 

malnutrition is not direct. However, given the severity of the nutrition profile of under-5 children 

in Guatemala, the seriousness of how climate change is affecting the region now and in future 

projections (Climate Change Team of the Environment Department of the World Bank & Global 

Facility for Disaster Reduction and Recovery (GFDRR), 2011), as well as the plausible 

connection between the two indicators, we believe an exploratory study is warranted. To do so, 

we aimed to answer the following research questions: 

1. Are climate indicators a relevant predictor for malnutrition in Guatemala? 

2. Is there a differential impact of climate on malnutrition between the highlands and the 

lowlands in Guatemala? 

3. What are the most important climatic and non-climatic factors predicting malnutrition in 

Guatemala? 

To capture climate changes occurring in Guatemala and model overall mid-summer 

drought, soil moisture was selected as a proxy. Soil moisture has consistently shown to be an 

excellent variable for drought monitoring (Zeri et al., 2021; Tramblay & Quintana Seguí, 2022) 

and has been demonstrated to be a more effective proxy than climate indicators to assess how 

droughts affects agriculture (19). Considering reductions in soil moisture have strong negative 

consequences for rainfed and subsistence crops in particular (Zeri et al., 2021), soil moisture is 
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the ideal indicator to capture drought in Guatemala and its effects on agriculture. Though 

temperature is less frequently cited as drought as a major food insecurity concern in Guatemala, 

temperatures have been rising steadily in Guatemala in recent years (Climate Change Team of 

the Environment Department of the World Bank & Global Facility for Disaster Reduction and 

Recovery (GFDRR), 2011). In addition, many studies worldwide have found connections 

between temperature and malnutrition, due to crop failures associated with extreme temperature 

(van der Merwe et al., 2022; Mark et al., 2017; Hagos et al., 2014). As a result, temperature 

(max, min, and mean) was selected as an additional climate variable for exploratory purposes 

and to create a more holistic picture of how climate change may be affecting malnutrition in the 

region. For both soil moisture and temperature, we captured early growing season, growing 

season, and annual indicators. We selected growing season with the purpose of capturing mid-

summer drought through detection of soil moisture levels during that time. Early growing season 

and annual climate variables were also included for a more well-rounded analysis.  

We use the following variables to define malnutrition: stunting, underweight, and 

wasting, with stunting being a proxy for chronic malnutrition, wasting for acute malnutrition, and 

underweight a combination of both (de Onis & Blössner, 2003). We include stunting and 

underweight, given the high prevalence of both indicators in Guatemala. Though wasting 

prevalence is generally low in Guatemala (U.S. Agency for International Development (USAID), 

2021), we still include wasting to create a holistic analysis of the relationship between climate 

and malnutrition. 
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METHODS 

Climate Data 

Temperature timeseries data were obtained from the World Bank Climate Change 

Knowledge Portal (World Bank Group, Climate Change Knowledge Portal, n.d.). Annual 

maximum, minimum, and mean temperature data (in C) were retrieved for each of the 22 

departments in Guatemala from 2000-2017 (coinciding with the available years of malnutrition 

data) to create annual temperature indicators. The same was done for monthly maximum, 

minimum, and mean temperature data (C), which was then used to create early growing season 

and growing season temperature indicators. 

Soil moisture data (m3 / m3) was collected from the U.S. Geological Survey, specifically 

the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System 

(FLDAS) data portal (2018). 0 – 10 cm monthly soil moisture data (0.25-degree spatial 

resolution) was extracted in geoTIFF file format for all months across 2000-2017 for the Central 

American region. Soil moisture data was processed in ArcGIS Pro: all raster data was 

downloaded, properly projected (UTM 15N), and clipped to just include the country of 

Guatemala (OCHA Field Information Services Section (FISS) & Coordinadora Nacional Para La 

Reducción De Desastres, 2021). Annual soil moisture data was created using cell statistics to 

find the mean of all monthly raster data for each year. Zonal statistics as table was then utilized 

to convert all annual and monthly spatial data to tables of soil moisture values by department and 

year; these tables were exported in CSV format to R for analysis. Within R, monthly soil 

moisture values were converted to early growing season and growing season soil moisture 

indicators.  
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We define early growing season as the weather events occurring directly before the 

rainy/growing season beginning in May; therefore, we select the last three months of the dry 

season (categorized as November to April according to (Depsky & Pons, 2020; Climate Change 

Team of the Environment Department of the World Bank & Global Facility for Disaster 

Reduction and Recovery (GFDRR), 2011): February, March, and April. Growing season for 

Guatemala was represented by the months of May, June, July, August, and September (Food and 

Agriculture Organization of the United Nations, 2022; Tay & Nelson, 2020). All climate data 

was summarized across the 22 departments and 18-year-period to create 396 (22 x 18) 

observations for each of the following climate indicators: annual soil moisture, annual 

temperature (min, max and mean), early growing season soil moisture, early growing season 

temperature (min, max, and mean), growing season soil moisture, and growing season 

temperature (min, max, and mean).  

Malnutrition Data 

Stunting, wasting, and underweight prevalence data for under-5 children were obtained 

from the Institute for Health Metrics and Evaluation (IHME) at 5 x 5 km spatial resolution from 

2000 to 2017 (2018). The data combines Demographic Health Survey (DHS) and UNICEF 

Multiple Indicator Cluster Survey (MICS), in addition to Guatemala-specific surveys, to produce 

country-level, department-level, and municipality-level GeoTIFF and CSV data across the 

period. Given the spatial resolution of climate data (only available at the department level), 

department-level GeoTIFF and CSV data was extracted across the 18-year period (resulting in 

396 observations).  

The indicated malnutrition data was selected due the importance of temporal resolution in 

this study. Data was validated by comparing Global Health Data Exchange malnutrition data for 
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2014-2015 to Demographic Health Survey stunting, wasting, and underweight data for 2014-

2015 (Ministry of Public Health and Social Assistance - MSPAS/Guatemala et al., 2017). Results 

show very high correlations between GHDE data and DHS data for stunting (: 0.95) and 

underweight (: 0.91); therefore, we concluded both stunting and underweight data for the 

Global Health Data Exchange were accurate. Correlation between GHDE data and DHS data for 

wasting was quite low (: 0.34); though we continued with analysis for wasting data, we 

encourage repetition of our analysis for wasting with other datasets to ensure accuracy.  

Control Variable Data 

The following socioeconomic variables have been demonstrated to be associated with 

malnutrition indicators and were therefore selected as controls for this study, aggregated at the 

department level: proportion of rural households, proportion of indigenous mothers, proportion 

of children with low birth weight, proportion of low birth interval incidents, proportion of 

mothers with no education, proportion of mothers with low height, proportion of households 

with poor wealth index, mean maternal age, proportion of households with unimproved 

sanitation, and proportion of households with unimproved drinking water (Nshimyiryo et al., 

2019; Fagbamigbe et al., 2020; U.S. Agency for International Development (USAID), 2021). By 

controlling for the indicated factors at the department level, general socioeconomic differences 

among departments were controlled for in analyses.  

The 2014-2015 DHS survey for Guatemala was used to acquire all control variable data 

(Ministry of Public Health and Social Assistance - MSPAS/Guatemala et al., 2017). To decode 

the DHS survey responses for Guatemala and obtain all controls indicators, the following 

methods were used. For the indigenous categorization, Maya, Garifuna, and Xinxa ethnic groups 

were included, while Ladina / Mestizo was categorized as non-indigenous (U.S. Agency for 
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International Development, 2022). Low birth weight and low birth interval were defined per the 

WHO definition: birth weight of less than 2500 grams (World Health Organization, Nutrition 

Landscape Information System (NLiS), n.d.) and birth interval of less than 33 months (Wakeyo 

et al., 2022). No maternal education was defined as “no education/pre-primary” (Shaw et al., 

2020).  Low maternal height was defined using 145 cm as a cutoff, where anything below 145 

cm is considered low maternal height (Bisai, 2011). Poor and poorest wealth index categories 

were grouped to create a “poor health index” indicator (Shaw et al., 2020).  Mean maternal age 

was obtained by subtracting mother’s current age from child age. Unimproved sanitation 

included the following responses: "flush to somewhere else", "no facility", "latrine", and "open 

latrine"; not included in unimproved sanitation was “flush toilet", "flush to piped sewer system", 

"flush to septic tank", "flush, don't know where", "pit toilet latrine", and "ventilated improved pit 

latrine (vip)" (Croft et al., 2018). Unimproved drinking water included the following responses: 

"unprotected spring” , "mechanical or manual well", "river/irrigation channel", "lake or stream”, 

and “other”; not included in unimproved drink water was "piped into dwelling", "piped to 

yard/plot", "public tap/standpipe", "other piped", "public fountain/tank", "protected spring", 

"rainwater", "tanker truck", and "bottled water" (Croft et al., 2018).  

All data were averaged across department to control for department-level socioeconomic 

differences that may influence malnutrition. Since controls were used to account for differences 

across Guatemala departments, this study assumed that 2014-2015 controls remained constant 

over time for each department and control data was applied for all years.  

Descriptive Analysis 
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The descriptive table showing summary statistics for all malnutrition and climate 

variables was created with the table1 package in R. Since climate trends were generally 

consistent across department, country-level time series plots were created to summarize changes 

in climate indicators across the 18-year period; malnutrition indicators sometimes varied across 

department, so time series plots faceted by department were created. All plots were created using 

ggplot2 package in R.  Maps representing annual prevalence rates of stunting, wasting, and 

underweight over time were drafted using ArcGIS Pro, categorized by prevalence level (World 

Health Organization, 1995).  

Regression Analysis 

Modeling methods used by previous studies examining the relationship between climate 

change and malnutrition (Bauer & Mburu, 2017; Grace et al., 2012; Shaw et al., 2020), a 

multiple linear regression model was utilized to examine the relationship between climate 

variables and child malnutrition prevalence, using malnutrition as the response variable and 

accounting for variation across departments using socioeconomic controls.  
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Figure 1. Correlation of plots of climate indicators and socioeconomic indicators. 

A. Climate Indicators B. Socioeconomic Indicators 

 
 

Figure 1A demonstrates correlation among all climate variables of interest, which 

demonstrates no correlation among soil moisture indicators and temperature indicators; however, 

we see very high correlation among all temperature indicators. As a result, all regression models 

included only one soil moisture indicator and one temperature indicator to ensure correlation 

among multiple temperature indicators would not affect  value accuracy. As a result, the 

following models were used: 

𝑦𝑠𝑡+1,𝑤,𝑢𝑡+1 = 𝛼 + 𝛽1𝑆𝑜𝑖𝑙𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 + 𝛽2𝑀𝑖𝑛𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝛽3𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 +  𝜀                     (1) 

𝑦𝑠𝑡+1,𝑤,𝑢𝑡+1 = 𝛼 + 𝛽1𝑆𝑜𝑖𝑙𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 + 𝛽2𝑀𝑎𝑥𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝛽3𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 +  𝜀                    (2) 

𝑦𝑠𝑡+1,𝑤,𝑢𝑡+1 = 𝛼 + 𝛽1𝑆𝑜𝑖𝑙𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 + 𝛽2𝑀𝑒𝑎𝑛𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝛽3𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 +  𝜀                 (3) 

All three models were completed for annual climate indicators, early growing season 

climate indicators, and growing season climate indicators, resulting in a total of nine regression 

models.  Stunting and underweight were lagged by one year to account for the delayed effect of 
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climate on such malnutrition indicators; Gonzalez Romero, et al. uses similar methods (2020). 

Controls included all previously discussed socioeconomic control variables; in addition, for 

wasting and underweight models, year was included as a control variable to account for the 

significant trending behavior seen for wasting and underweight in Figure 4 and Figure 5.  

Figures 6 and 8 highlight a spatial aggregation of malnutrition indicators in the 

Guatemala highlands region for stunting and underweight, and Table 1 shows that stunting and 

underweight prevalence is 6-16% higher in the highlands than in the lowlands. Therefore, to 

explore differential effects of climate on child malnutrition in the Guatemala highlands versus 

lowlands, a multiple linear regression model accounting for the interaction of climate and 

highland variables was run.  

𝑦𝑠𝑡+1,𝑤,𝑢𝑡+1 = 𝛼 + 𝛽1𝐶𝑙𝑖𝑚𝑎𝑡𝑒 + 𝛽2𝐻𝑖𝑔ℎ𝑙𝑎𝑛𝑑𝑠 + 𝛽3𝐶𝑙𝑖𝑚𝑎𝑡𝑒: 𝐻𝑖𝑔ℎ𝑙𝑎𝑛𝑑𝑠 +  𝜀                       (4) 

Here, we remove all socioeconomic control variables to assess the sole impact of 

highlands alone on the relationship between climate and malnutrition. For wasting and 

underweight, a year control variable was added to account for trending behavior as was done in 

models 1, 2, and 3.  

Benchmarks for practical significance for all regressions were determined by considering 

both variance and overall real-world practicality. Considering the standard deviations for 

stunting, wasting, and underweight are 10, 0.87, and 4.2 respectively (Table 1), we define a 

practically significant change in stunting to be 1% and a practically significant change in 

underweight to be 0.5%. We also choose 0.5% as the practical significance benchmark for 

wasting, since anything significantly below 0.5% would be too small of a change for real-world 

scenarios.  



 14 

Random Forest Machine Learning Models 

To understand how climate variables and socioeconomic variables compare in explaining 

child malnutrition in Guatemala, a random forest machine learning model was utilized. Random 

forest was selected as a favorable model to use considering its excellent predictive ability 

(Fernandez-Delgado et al., 2014) and its tolerance of data with much interaction among variables 

(Loef et al., 2022). The ability to rank variables in terms of importance allowed for easy insight 

into which variables are most significant in predicting malnutrition.  

To run the random forest model, the R package randomForest was used in R software to 

run a random forest regression. We chose to use 500 trees, as this was large enough to minimize 

error in the model. Variable importance was defined by %MSE, which measures how much each 

individual variable decreases the model’s overall predictive accuracy when it is removed 

(Boehmke, 2018). Variance importance plots were created using the ggplot2 package in R.  To 

identify which variables are most important, the methodology shown in Figure 2 was used, in 

which stunting, wasting, and underweight were regressed onto Model 1, 2, 3, and 4.  
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Figure 2. Process towards identification and selection of final Random Forest regression model. 

 

To ensure model accuracy, all variables included in Model 4 (the final model used in 

analysis) were uncorrelated with one another. Specifically, the most important climate variables 

in Model 4 consisted of one soil moisture indicator and one temperature indicator, since soil 

moisture and temperature are uncorrelated as shown in Figure 1A. In addition, if the most 

important socioeconomic controls were correlated with one another (shown in Figure 1B), the 

lesser important of the indicators was dropped. For both wasting and underweight, year was 

controlled for to account for trending behavior.  

In our interpretation of results, we view the most important soil moisture indicator and the 

most important temperature indicator as proxies for general soil moisture and general 

temperature. Ultimately, the goal is to see how climate variables, such as soil moisture and 

temperature, predict malnutrition in comparison to socioeconomic variables. 
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RESULTS 

Descriptive Analysis 

Table 1. Descriptive Characteristics of All Malnutrition and Climate Variables. 

 

Table 1 shows the prevalence of malnutrition indicators (stunting, wasting, and 

underweight) and values of climate indicators on average from 2000 to 2017. The results 

demonstrate that for Guatemala, across the 18-year time period, under-5 Stunting was in the 

“very high” prevalence category (World Health Organization, 1995) with an overall value of 

50%; stunting prevalence was especially high in the highlands at 61% on average. For wasting, 
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we see an overall low prevalence rate of 2.1% (World Health Organization, 1995), with no major 

difference between highlands and lowlands. Underweight prevalence was on average 15%, 

placing it in the “medium” prevalence category (World Health Organization, 1995); underweight 

prevalence was greater in highlands than lowlands by about 6%. 

Table 1 furthermore highlights average climate markers for the 18-year period. 

Generally, we observe minimum temperature ranging from 17 C - 24 C at the early growing 

season, growing season, and annual level; in comparison, maximum temperature ranges from 28 

C - 29 C and mean temperature ranges from 22 C - 23 C. Standard deviation does not vary 

much across all temperature indicators. Also noteworthy is that temperature is about 4-6 C low 

in the highlands than in the lowlands. In terms of soil moisture, we see much lower levels in the 

early growing season (24%) than in the growing season (39%) and at the annual level (34%); 

these values make sense as the early growing season takes place during the dry season while the 

growing season is part of the wet season (Climate Change Team of the Environment Department 

of the World Bank & Global Facility for Disaster Reduction and Recovery (GFDRR), 2011). 

Furthermore, early growing soil moisture has a much higher standard deviation (3.8) than 

growing season and annual soil moisture (1.6 and 1.7 respectively); soil moisture has comparable 

values between the lowlands and highlands.  
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Figure 3. Time series analysis of mean stunting prevalence rate from 2000 to 2017 by department. 

 

Figure 3 highlights the mean stunting prevalence rate by year and department, and the 

figure shows stunting trends vastly differed across department. Departments of Huehuetenango 

and Quiché experienced a ~10-20% increase in stunting prevalence from 2000-2017, while 

departments of Escuintla, Quetzaltenango, Retalhuleu, Sacatepéquez, Santa Rosa, Sololá, and 

Suchitepéquez experienced notable decline.  
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Figure 4. Time series analysis of wasting prevalence rate from 2000 to 2017 by department. 

 

Figure 4 shows the percent of mean wasting prevalence across 2000-2017 aggregated by 

department. Here, it is evident that wasting has decreased sharply and in highly similar trends 

across all departments by ~2-4%.  
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Figure 5. Time series analysis of underweight prevalence rate from 2000 to 2017 by department. 

 

Figure 5 displays prevalence rate for undernutrition by year and department; underweight 

prevalence rate decreased across all departments, though at varying intensities. Escuintla, 

Quetzaltenango, Retalhuleu, Sololá, and Suchitepéquez all demonstrate steep declines (~10-

15%), as opposed to departments such as Zacapa who declined more slowly across the period 

(~4%).  
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Figure 6. Stunting prevalence rate in Guatemala from 2000 to 2017. 

 

Figure 6 demonstrates the notoriously very high prevalence of stunting endemic to a 

majority of Guatemala. Though prevalence rates were uniformly very high across all of 

Guatemala for most of the period, around the year 2014, we start to see reduced prevalence in 

Northern and Pacific Lowlands of Guatemala, while the Guatemalan highlands retained a very 

high prevalence of stunting.  
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Figure 7. Wasting prevalence rate in Guatemala from 2000 to 2017. 

 

Figure 7 highlights that wasting has reach uniformly very low prevalence rates across 

Guatemala; until about 2006/2007, the country had mostly low prevalence rates, with the 

Western Highlands having lowest prevalence rates. From 2012 to 2017, Guatemala had very low 

wasting prevalence rates throughout.  
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Figure 8. Underweight prevalence rate in Guatemala from 2000 to 2017. 

 

Figure 8 demonstrates that historically the highest underweight prevalence rates have 

concentrated in the Western Highlands region of Guatemala. However, across the period from 

2000 to 2017, prevalence rates have generally declined. Specifically, the Northern and Pacific 

Lowlands drop from very high, high, and medium Prevalence to mostly low prevalence across 

the time period. Furthermore, there is a clear reduction in underweight prevalence in the 

highlands region also, though levels generally remain at medium prevalence, with some part of 

the Western highlands retaining high level underweight prevalence.  
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Figure 9. Time series analysis of climate variables from 2000 to 2017 for Guatemala. 

 

Figure 9 visualizes soil moisture, minimum temperature, maximum temperature, and 

mean temperature from 2000 to 2017 by department at all following levels: early growing 

season, growing season, and annual. Figure 9A demonstrates soil moisture values do not show 

clear increasing or decreasing trends over time. However, there are some notable valleys and 

peaks in soil moisture that coincide with known El-Niño drought episodes in Guatemala. For 
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instance, early growing season, growing season, and annual soil moisture trends show a dip in 

soil moisture (most significant for annual soil moisture) in 2009; the indicated drop in soil 

moisture coincides with the 2009 El Niño drought episode resulting in 50% maize and beans 

crop losses (Beveridge, 2019). Furthermore, all soil moisture indicators demonstrate a drop in 

soil moisture from roughly 2014-2016, which matches the large El Niño event occurring from 

2014-2015 which is estimated to have resulted in agricultural losses of about 80% (Climate 

Change Team of the Environment Department of the World Bank & Global Facility for Disaster 

Reduction and Recovery (GFDRR), 2011).  

Figure 9B, 9C, and 9D show temperature in Guatemala shows some variation over the 

years; since 2010, temperature levels seem to be showing a gradually increasing trending 

behavior, most notable for mean and max temperature. We furthermore see a long period of 

higher temperatures from 2000 to 2006 and sharp drops in temperature in 2010 and 2013. Also 

clear are peaks in temperature during El Niño years; this is relevant, as we know El Niño events 

correspond to heatwaves (Food Security Information Network (FSIN), 2019).  For example, we 

see a peak in maximum, mean, and to some degree minimum temperature in 2010, coinciding 

with the 2009 El Niño event. Also, there is a huge jump in most temperature indicators in 2015-

2016, accompanying the 2015-2016 El Niño event.  
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Regression Analysis 

Figure 10. Regression Analysis of Marginal Effect of Annual Climate Indicators on Malnutrition.  

 

At the annual level, results show a highly significant, negative relationship between soil 

moisture and both stunting and underweight malnutrition. At a practical level, soil moisture is 

significant for stunting, for with  values of -1.2286, -1.361, and -1.281, it is larger than the 1% 

set benchmark for practical significance for stunting. In addition, the relationship between soil 

moisture and underweight is marginally practically significant, with  values just below the 0.5% 

practical significance benchmark for underweight (-0.413, -0.476, and -0.444). Therefore, the 

relationship between annual soil moisture and stunting prevalence is statistically and practically 

significant; with a 1% increase in annual soil moisture, there is a ~1.3% decrease in stunting 

prevalence in the following year. The relationship between annual soil moisture and underweight 

is statistically significant and practically marginally significant; a 1% increase in annual soil 

moisture corresponds to a ~0.45% decrease in underweight prevalence in the following year.  

Results also show a highly significant, negative relationship between all annual 

temperatures and all types of malnutrition. However, none of the relationship are significant at 

the practical level;  is less than 1% for stunting, and  is less than 0.5% for wasting and 



 27 

underweight. Therefore, there is not a statistically and practically significant relationship 

between annual temperature and any type of malnutrition.  

Figure 11. Regression Analysis of Marginal Effect of Early Growing Season Climate Indicators on 

Malnutrition. 

 

  

Results show that early growing season soil moisture has a highly significant, negative 

relationship with both stunting and underweight prevalence; the relationship with wasting is not 

significant. On a practical level, the marginal effect of early growing season soil moisture on 

stunting is not significant with  values less than 1% (: -0.771, -0.828, -0.790); similarly, the 

marginal effect of early growing season soil moisture on underweight is not significant with  

values less than 0.5% (: -0.304, -0.324, -0.313). Therefore, the effect of early growing soil 

moisture on any malnutrition type is not significant.  

The effect of early growing season temperature is statistically very significant for 

stunting and wasting. The relationship between early growing season temperature is also 

significant for min and mean values, though not for maximum values. At a practical level, the 
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change in stunting, wasting, and underweight prevalence is not significant due to  not meeting 

the previously mentioned benchmark for practical significance. Therefore, the relationship 

between early growing season temperature and malnutrition is not significant.  

Figure 12. Regression Analysis of Marginal Effect of Growing Season Climate Indicators on 

Malnutrition.  

 

 

Growing season soil moisture is not statistically significant for any of the malnutrition 

indicators. Growing season temperature, in contrast, was highly statistically significant for all 

malnutrition indicators. Though the relationship between growing season temperature and both 

wasting prevalence was not significant at the practical level with  values considerably less than 

0.5%, stunting was practically significant with  values all above the 1% benchmark for practical 

significance for stunting. Specifically, as growing season min, max, and mean temperature 

increases by 1C, stunting prevalence in the following year decreases by 1.234%, 1.468%, and 

1.361% respectively. The relationship between growing temperature and underweight prevalence 

was marginally significant at the practical level, with  values just below 0.5% (-0.446, -0.473, -
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0.468). Therefore, as growing season min, max, and mean temperature increases by 1C, 

underweight prevalence in the following year decreases by -0.446%, -0.473%, and -0.468% 

respectively.  

Figure 13. Regression Analysis of Differential Effect of Annual Climate Indicators on Malnutrition: 

Highlands vs. Lowlands. 

 

Figure 13 regression results demonstrate that the absolute value of the effect of annual 

soil moisture for stunting (though not wasting or underweight) is significantly greater in the 

highlands region in comparison to the lowlands region, both statistically and practically. More 

specifically, regression results demonstrate that the effect of soil moisture on stunting in the 

lowlands is -0.336, in comparison to -1.511 (-0.336 – 1.175) in the highlands. The differential 

effect of soil moisture between highlands and lowlands was not statistically significant for 

wasting or underweight malnutrition.  
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Figure 13 furthermore highlands the significant difference between highlands and 

lowlands in the absolute effect of annual min, max, and mean temperature on stunting. The effect 

size of annual min, max, and mean temperatures on stunting in the lowlands is -0.438, -0.298, 

and -0.374 respectively, while the effect in the highlands is -1.899, -1.708, and -1.866 for annual 

min, max, and mean temperature. Therefore, the effect of temperature on stunting is much 

greater in the highlands than the lowlands region. In addition, the differential effect of min, max, 

and mean temperature between highlands and lowlands on underweight was highly statistically 

significant. At a practical level, results were marginally significant with  values of the 

interaction terms roughly at the 0.5% level (-0.519, -0.455, -0.498). Specifically, the effect of 

min, max, and mean temperature on underweight is 0.078, 0.149, and 0.117 in the lowlands in 

comparison to -0.441, -0.306, and -0.381 in the highlands. Therefore, with high statistical 

significance and marginal practical significance, the effect of annual temperature on underweight 

is greater in the highland region than the lowland region.  
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Random Forest Machine Learning Models 

Figure 14. Random Forest Variable Importance Plots for Stunting, Wasting, and Underweight. 

 

For Figure 14A, which identifies predictors of stunting, maternal height is more 

important than any climate variable or any other socioeconomic variable in predicting stunting a 

year later. Closely following maternal height as important indicators are climate variables 

(specifically annual min temperature and annual soil moisture), both of which are more 
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important than other socioeconomic indicators in predicting stunting (except for maternal 

height). Temperature is slightly more important in predicting stunting a year later than soil 

moisture. Other socioeconomic variables important in predicting stunting are low birth weight, 

poor wealth index, and unimproved drinking water. Indigenous was also identified as important 

but was dropped because of its correlation with low maternal height. 

Figure 14B showed the most important predictors of wasting. Results show that 

temperature is the most important predictor for wasting and is more important than soil moisture 

and all socioeconomic indicators. The following socioeconomic indicators followed temperature 

as very important predictors of wasting: rural (% in department) and low birth weight. Soil 

moisture, though more important than all other socioeconomic indicators, was less important 

than temperature, rural, and low birth weight. Poor wealth index, though identified as an 

important indicator, was dropped due to its high correlation with rural.  

In Figure 14C, we see the most important predictor of underweight is temperature and 

poor wealth index. Following poor wealth index and temperature is unimproved drinking water. 

Temperature is more predictive of underweight malnutrition in the following year than soil 

moisture; though soil moisture is important, and more important than most socioeconomic 

indicators (including low maternal height and low birth weight), it is not as important as 

temperature, poor wealth index, and improved drinking water. Low maternal height and low 

birth weight are furthermore important socioeconomic variables predicting underweight.  

  

 

DISCUSSION 
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All climate indicators, except for growing season soil moisture, were highly statistically 

significant for stunting. Of these, only annual soil moisture and growing season temperature 

were practically significant, and we observe a negative relationship between both annual soil 

moisture and growing season temperature and stunting. Similarly, for underweight malnutrition, 

apart from growing season soil moisture, all climate indicators were statistically significant for 

underweight. Of these, only annual soil moisture and growing season temperature were 

marginally significant for underweight at the practical level, with both annual soil moisture and 

growing season temperature values having a negative relationship with underweight. Wasting, in 

contrast, did not have a statistically significant relationship with any soil moisture indicator. 

Though all temperature indicators were highly statistically significant for wasting, no 

temperature indicator had a large enough effect size to be significant for wasting at the practical 

level. In comparing the effect of climate on malnutrition between the highlands and lowlands, the 

absolute effect of all annual climate indicators on stunting are significantly greater in the 

highlands than the lowlands. Even more so, all annual climate variables for stunting are highly 

significant in the highlands, but not in the lowlands. In addition, absolute effect of temperature 

on underweight is marginally significantly greater in the highlands than the lowlands. Results 

from random forest models highlight that some socioeconomic indicators (such as maternal 

height for stunting, rural for wasting, poor wealth index for underweight) are highly important in 

predicting malnutrition; yet, climate variables may be almost equally as important in predicting 

malnutrition, with temperature being universally more important than soil moisture. 

 Decreases in annual soil moisture, used as a proxy for drought, coincide with increases in 

stunting and underweight malnutrition in Guatemala; for stunting, the relationship is especially 

significant in the highlands (marginal statistical significance). The indicated inverse relationship 
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is expected, as drought (which can be represented by a reduction in soil moisture) affects food 

insecurity through many pathways, one important one being agricultural production, which in 

turn can lead to malnutrition (Beveridge, 2019).  

The highly significant, negative relationship between annual soil moisture (as an 

indicator for drought) and stunting is consistent with findings in the literature Most relevantly, 

Beveridge finds a positive association between mid-summer drought duration and stunting 

prevalence in Guatemala (2019).  Furthermore, in India, Shaw et al. demonstrate a highly 

significant, positive relationship between drought (measured by a remote sensing retrieved 

Scaled Drought Condition Index) and stunting (2020). In addition, in a study by Jankowska et al. 

examining drought, livelihoods, and malnutrition in Mali, results demonstrate a positive 

relationship between arid climate and district-level stunting prevalence (2012). Cooper et al., 

conducting a study examining the effect of drought (measured by anomalies in precipitation) on 

stunting across 53 LMIC countries, finds significant positive relationships between all severities 

of drought and stunting (2019). The study furthermore highlights longer-term drought indicators 

(as opposed to growing season drought indicators) are best at predicting stunting prevalence 

(Cooper et al., 2019); this is consistent with our results that annual soil moisture was significant 

for stunting, but early growing season and growing season soil moisture was not. It is possible 

that since annual soil moisture includes conditions in both the primary and secondary growing 

seasons (Beveridge, 2019), it best captures the longer-term, compounded soil conditions 

ultimately leading to crop failure. Additional research is recommended to explore temporal 

relationships between drought and stunting in Guatemala, particularly in the highlands where the 

relationship is most strong. 
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Results from our random forest model confirm the relevance of soil moisture to stunting 

prevalence, considering it is the third most important indicator in predicting stunting (apart from 

maternal height and temperature). It is important to note, however, that some socioeconomic 

indicators are more important than soil moisture (maternal height) and some are almost equally 

as important as soil moisture in predicting stunting in Guatemala: low birth weight, poor wealth 

index, and unimproved drinking water. It is furthermore important to highlight that the 

intermediate in the connection between drought and stunting prevalence are regional 

socioeconomic trends such as food prices, income, etc. (Lloyd et al., 2018). Therefore, we 

conclude that of the different complex players that drive stunting prevalence in Guatemala, soil 

moisture (as a drought proxy) is one important one; this is consistent with conclusions from 

Jankowska et al. (2012).  

Lieber et al., a meta-analysis of 22 studies investigating the impact of drought (among 

other climate change indicators) on malnutrition, finds that overall, there is a significant positive 

relationship between drought and wasting/underweight malnutrition (2020). Results for wasting 

in our study contradict these results, as we find no significant statistical relationship between any 

soil moisture indicator and wasting; it is important to keep in mind that our wasting data was 

inconsistent with DHS data and could not be validated. Therefore, it will be important to repeat 

methods with other wasting data to ensure there is indeed no relationship between wasting and 

drought in Guatemala (using indicators such as soil moisture).  

Although our results for the relationship between annual soil moisture (drought) and 

underweight malnutrition align with those of Lieber et al. (2022) in terms of statistical 

significance, we find only a marginally significant practical effect size of annual soil moisture on 

underweight malnutrition in Guatemala. We know from previous research that, in Guatemala, the 
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link between drought and acute food insecurity is complicated (Müller et al., 2020), and that the 

effect of drought on food insecurity may be mitigated or heightened by socioeconomic contexts 

(Beveridge, 2019). It is possible, therefore, that even though the effect of drought on 

underweight is highly statistically significant in Guatemala, it is not as significant in practice as 

other contextual factors and therefore the practical effect size is lower. From our random forest 

analysis, we know that some socioeconomic indicators, specifically poor wealth index and 

unimproved drinking water, are more important in predicting undernutrition than soil moisture. 

The indicated results are furthermore confirmed by our descriptive analysis showing that 

underweight malnutrition has overtime concentrated in the Western Highlands region, where 

social determinants of health are generally poor due to historical discrimination of indigenous 

groups in the area (Cerón et al., 2016). Therefore, though we can conclude drought partially 

contributes to underweight malnutrition prevalence in Guatemala, it will be important in the 

future to further investigate the relationship among drought, socioeconomic, and underweight 

indicators, particularly in the highland region, to better understand the significance of the role of 

drought in predicting undernutrition. It will also be important to examine the relationship 

between drought and malnutrition using indicators other than soil moisture to validate our 

results.  

Increases in min, max, and mean growing season temperature corresponds to decreases in 

stunting in Guatemala. Though some studies concur with our results and find inverse 

relationships between seasonal temperature and stunting (Randell et al., 2020), most studies 

contradict our results and find a positive (not negative) relationship with temperature and 

malnutrition (van der Merwe et al., 2022; Mark et al., 2017), given the consensus that higher 

than average temperatures ultimately reduce crop yields (Nelson et al., 2009). However, when 
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considering our analysis of the differential effects of annual temperature on stunting between the 

highlands and lowlands, perhaps our results are more plausible. More specifically, our analysis 

shows the negative relationship between temperature and stunting is highly significant in the 

highlands only (not the lowlands), consistent with findings from studies citing the same negative 

relationship between temperature and stunting in other highland regions, specifically the 

Mexican and Ethiopian highlands (Randell et al., 2020; Skoufias & Vinha, 2012). Both indicated 

studies cite frost, which occurs in greater frequency with climate change (IPCC, 2018), as a 

potential mechanism for how low temperatures in highland regions correspond with increased 

stunting; considering temperatures are generally lower in the high altitudes, temperatures in these 

regions are more likely to reach freezing thresholds. In Guatemala, some literature suggests that 

deforestation has reduced insulation often created by forests, and as a result, higher altitudes in 

Guatemala are experiencing greater frost on immature crops (Ford, 1992). Climate Change Team 

of the Environment Department of the World Bank and Global Facility for Disaster Reduction 

and Recovery (GFDRR) also suggests that the increased temperatures in Guatemala have been 

more prominent in the lowlands than highlands (2011). However, beyond that, there is not much 

in the literature to suggest that frequent frost episodes are occurring in the Guatemalan 

highlands. As a result, though the inverse relationship between temperature and stunting is 

plausible, we recommend future research investigating how reduced temperature events (such as 

frost) in the Guatemalan highlands are affecting crop yield.  

Though wasting did not have a practically significant association with growing season 

temperature, underweight did at the marginal level. The low effect size of growing season 

temperature on underweight can perhaps once again be explained by the greater significance of 

other socioeconomic factors on influencing underweight outcomes. Our random forest analysis 
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demonstrates, for example, that poor wealth index was almost equally as significant in 

explaining underweight as temperature. Therefore, though temperature may be very important in 

predicting undernutrition, other socioeconomic factors may in practice have a greater effect; it 

will be important to further explore the relationship between temperature, socioeconomic 

indicators, and underweight malnutrition in the future, particularly in the Western Highlands.  

It is important to acknowledge limitations in our study due to constrains in our 

methodology. Due to the limitations in practical knowledge, we were unable to model mid-

summer drought as a drought indicator in Guatemala and instead used soil moisture as a general 

drought proxy; early growing season, growing season, and annual soil moisture may not 

represent drought in Guatemala as well as an MSD-specific drought indicator would. 

Furthermore, due to remote sensing and spatial epidemiology knowledge constraints, we did not 

run spatial autocorrelation and autoregressive models; therefore, granular spatial dependence of 

the climate-malnutrition relationship was not accounted for. Finally, due to the difficulty of 

retrieving reliable agricultural yield data for Guatemala overtime at the department-level, crop 

yield was not accounted for in our analysis or in our controls, which is a limitation considering 

the importance of crop yield as an intermediary in the relationship of climate and malnutrition.  

Limitations furthermore exist in this thesis due to the lack of granularity in our data. Due 

to our interest in the time aspect of the climate-malnutrition relationship, our analysis had a 

relatively low amount of data points (396) with limited degrees of freedom; this may have 

affected the accuracy of our results. Data was furthermore summarized at the department-level 

due to data limitations; we therefore assumed that socioeconomic indicators, climate variables, 

and malnutrition prevalence are uniform within departments, which does not reflect reality. 

Malnutrition data was furthermore available at the annual level, and as a result, stunting and 
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underweight were lagged by one year while wasting was not lagged; it would have been ideal to 

have monthly malnutrition data to better capture the nuances in the temporal relationship 

between climate and each of the malnutrition indicators. There are some notable limitations in 

the accuracy of our data as well. First and foremost, our wasting data did not align with 

validation data, and therefore, it is difficult to ensure wasting data utilized in this study was 

wholly accurate. Furthermore, Demographic Health Survey data was used to capture control 

variables in our study, one of which is the indigenous indicator; it is important to note that 

indigenous data is not always representative in Guatemala, as surveyors sometimes make 

assumptions about ethnicities of respondents and/or respondents sometimes are dishonest about 

their true ethnicity.  

The indicated study is one of the few, to our knowledge, to examine the effect of climate 

indicators such as soil moisture and temperature on malnutrition over time in Guatemala. Factors 

leading to malnutrition are incredibly complex and the pathway of climate to malnutrition is not 

direct; yet this study highlights the significance of particular climate-malnutrition relationships, 

such as drought and stunting in the highlands, as contributing factors to overall malnutrition 

prevalence rates in Guatemala.  As the effects of climate change are increasingly felt in future 

decades, it will be imperative to continue the indicated research to better understand the 

relationship between climate and malnutrition to drive climate-adaptation policy protecting 

vulnerable populations.   
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