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Abstract

Development of Machine-Learned Potential Energy Surfaces
with Application to the Reactive and Vibrational Dynamics of

High Dimensional Molecular Systems

By Apurba Nandi

The potential energy surfaces (PESs) play a significant role in quantum chemistry cal-
culations; such as kinetics and dynamics of chemical reactions, reactive and non-reactive
scattering, and molecular spectroscopy. Developing a robust mathematical model for the
generation of high dimensional PESs is a challenging work in theoretical and compu-
tational research, mainly for large molecules and molecular clusters. There are several
bottlenecks as the molecular size increases, such as dimensionality of PES, the number
of appropriate basis functions to fit the dataset, and appropriate fitting method.

In this work, a software has been developed to incorporate both electronic energies
and gradients generating high-dimensional PES using limited numbers of training config-
urations employing a permutationally invariant polynomial (PIP) basis. Our main goal
of this work was to demonstrate a procedure that can produce a very good PES of a
molecule without sacrificing quantitative accuracy using a small training dataset. We
showed that a precisely fitted potential surface of CH4 can be obtained using energies
and gradients with only 100 or even just 50 widely scattered configurations and that was
successfully applied to quantum calculations.

Next, a fragment-based PIP approach has been developed to extend our fitting method
for more than 10-12 atom systems. This was the first time we were able to develop a PES
of 12 atom peptide molecule, N -methyl acetamide, which described both cis and trans
isomers and their two isomerization TS accurately, which was a great achievement. Rig-
orous diffusion Monte-Carlo (DMC) calculations were successfully performed to compute
quantum ZPE of N -methyl acetamide.

Recently, a fascinating method has been developed based on ∆-Machine Learning ap-
proach to achieve CCSD(T) level accuracy (energies and gradients) from low level DFT
or MP2 level of theory using a very limited number of data sets and successfully applied
to 9-atom Ethanol, 12-atom N -methyl acetamide (NMA), and 15-atom Acetylacetone
molecules. This ∆-Machine Learning approach provides a solid ground for future innova-
tion in fields like materials science and computational biology by means of highly accurate
simulations currently out of reach.
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These analytical potential surfaces were also employed in chemical reaction dynamics
study and anharmonic vibrational calculations. Quasi-classical trajectory (QCT) calcula-
tions were performed to investigate the “Zero-point energy leak” and “Isomerization” of
syn-Criegee. The adiabatic switching method was applied to prepare the initial conditions
for these quasi-classical trajectories. Quantum ZPEs of methanol and its all isotopologs
and isotopomers and the D/H exchange probability in their zero-point state have been
investigated which was great interest in astrochemical research. A fascinating work was
done by establishing a vibration-facilitated roaming mechanism in the isomerization of
CO molecule on NaCl(100) surface by considering a (CO-NaCl)n finite cluster models.
The novelty of this work is the isomerization was seen for highly excited CO vibra-
tional states, in excellent agreement with the experiment. Recently, quantum nuclear
simulations have been performed on a newly developed CCSD(T) machine-learned PES
and revealed the equivalence of gas-phase trans and gauche conformers of ethanol when
accurate vibrational zero-point energies and dynamical effects were taken into consider-
ation. This conclusion is drawn on the basis of agreeing on diffusion Monte-Carlo and
semiclassical (SC) calculations of the two isomers’ zero-point energies, and upon DMC
determination of the ground-state vibrational wave-function.

Molecular vibrational properties of N -methyl acetamide (NMA), and ethanol have
been investigated. Diffusion Monte Carlo calculations were applied to characterize the vi-
brational ground state properties and wave-function, while the vibrational eigenenergies
and eigenstates were calculated employing the vibrational self-consistent field (VSCF)
and virtual-state configuration interaction (VCI) method using our home built MULTI-
MODE software.

Additionally, I developed a software to train and predict bimolecular thermal rate
constants over a large temperature range with the use of Machine Learning technique.
Several quantum mechanical methods are there to compute tunneling rate constant, how-
ever, each method has some bottleneck, and a remedy is suggested by this new approach.
The approach uses Gaussian process (GP) regression to predict the rate constant values.
Clustering and training are done over 52 different reactions and predictions are made for
the new reactions that are not included into the training data.
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Chapter 1

Introduction

In chemistry, the systems we are dealing with consist of electrons and nuclei, and their

motions are governed by the Schrödinger equation, except in extreme cases. In principle,

the mysteries in any chemical process can be investigated accurately, if we are able

to solve the exact Schrödinger equation. Unfortunately, however, even with the rapidly

growing power of computational resources, solving the Schrödinger equation exactly for

systems that only consist of a couple of atoms is still almost impossible. Therefore, various

approximations have to be made to simplify the equation.

The famous Born-Oppenheimer (BO) approximation is the most important one based

on the fact that the mass of an electron is much much smaller than the nucleus. Due

to the massive difference in mass, the electrons move much much faster than the nuclei,

and we can separate the motions of the electrons from nuclear motion. Therefore, instead

of solving the Schrödinger equation simultaneously for all the electrons and nuclei, we

can apply a two-step approach. In the first step, the Schrödinger equation for all the

electrons at a set of instantaneous nuclear configurations can be solved. This allows us to

construct the potential energy curve of a diatomic molecule, and in general, a potential

1



Chapter 1. Introduction 2

energy surface (PES) for any polyatomic species. In the second step, the Schrödinger

equation of the nuclei can be solved using the PES obtained in the first step. In most

cases, the BO approximation is exceptionally good, and the research presented in this

dissertation is based on this approximation.

Even with the separation of the electronic and nuclear Schrödinger equation, solving

either one of them is still very challenging. To solve the electronic part, a popular approach

starts from the Hartree-Fock approximation, in which any one electron is assumed to

move in an “average” potential due to all the other electrons. More accurate methods

such as Møllet-Plesset perturbation (MPn), coupled-cluster, and configuration interaction

are all based on the Hartree-Fock theory. Another popular method worth mentioning is

the density functional theory, in which functionals of electron density are used instead

of the traditional wave function. These methods for the electronic structure problem are

available in most quantum chemistry packages.

Next, we consider the Schrödinger equation of the nuclei. The dynamics of a molecule

can be revealed when the molecular eigenstates and eigen-energies are obtained by solv-

ing time-dependent nuclear Schrödinger equation. The computational cost to solve these

problems increases exponentially with increasing degrees of freedom, and this is the

“curse of dimensionality” (Note that the electronic problem in fact also suffers from

this “curse”.). Many efforts have been taken into consideration to tackle the dimension-

ality problem. When the nuclear quantum effect is not significant, the nuclei are often

treated as classical particles and those are governed by Newton’s equation of motion.

This greatly reduces the computational cost. However, when the nuclear quantum effect

is big, several approximated quantum methods and semi-classical methods have been

proposed in calculations of molecular eigenstates and eigen-energies.

The research presented in this dissertation basically follows the procedure described
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above. It is seen that the PES plays an important role in the computation and prediction

of the structure and dynamics of molecular species. Therefore, constructing an accurate

PES is the first and the most significant part of each project. First, I performed electronic

structure calculations to construct the PES, and then it was applied for the study of

molecular vibrations and dynamics calculations of high dimensional molecular systems.

This dissertation is structured into three parts. The first part describes all the the-

ories and computational methods I applied in all of my calculations. In Chapter 2, the

Born-Oppenheimer approximation is explained in detail, and the method I used to con-

struct the analytical representation of the PES is presented. The algorithms and methods

employed in anharmonic vibrational calculations and dynamics simulations are described

in Chapter 3 and Chapter 4, respectively.

The second part emphasizes the systematic developments in the PIP method for the

construction of a robust analytical representation of PESs for large molecular systems.

In Chapter 5, I describe the implementation of simultaneous energy-gradient fitting in

the PIP method. Chapter 6 focuses on the implementation of fragmented basis approach

for the development of accurate PESs for large molecular systems having more than 12

atoms. Using this approach I developed a full-dimensional PES of N -methyl acetamide

and successfully applied this PES for quantum calculations. Chapter 7 emphasizes the

∆-Machine Learning approach for PES fitting, and how to correct a low-level DFT PES

to a “Gold Standard” CCSD(T) level accuracy for large molecular systems. In Chapter

8, I present a rapid and accurate construction of full-dimensional CCSD(T)-level PESs

for large molecules where fragmented-based electronic structure theory is employed to

generate the CCSD(T) dataset in a cheaper way. Chapter 9 focuses on the construction

of a very challenging PES of water 4-body interaction at the CCSD(T) level, which is

one of the important parts of water many-body potential. This potential is successfully
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applied for quantum calculations.

The final part of this dissertation covers my study on reaction dynamics and anhar-

monic vibration of gas-phase molecules using PIP PESs. Chapter 10 describes the appli-

cation of the adiabatic switching method for “zero-point energy leak” and isomerization

of syn-CH3CHOO in quasiclassical trajectory calculations. Chapter 11 involves the study

of quantum zero-point energies of methanol and its all deuterated isotopologs and iso-

topomers and the D/H exchange probability in their zero-point state which has a great

interest in astrochemical research. In Chapter 12, I investigated a fascinating vibration-

facilitated roaming mechanism in the isomerization of CO molecule on NaCl(100) surface

by considering a (CO-NaCl)n finite cluster models. The novelty of this work is the iso-

merization was seen for highly excited CO vibrational states, in excellent agreement with

the experiment. Then I present the nuclear quantum dynamics of Ethanol in Chapter 13,

which reveals the “Leaky” nature of trans and gauche isomers when accurate vibrational

zero-point energies and dynamical effects were taken into consideration. Chapter 13 fo-

cus on the details and results of semi-classical and fully-quantum anharmonic vibrational

calculations of trans and gauche ethanol using recently developed CCSD(T) level PES.

This is the first time fully-quantum anharmonic vibrational frequencies of ethanol are

reported at the CCSD(T) level in excellent agreement with the reported experimental

results.



Part I

Theories and Methods
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Chapter 2

Potential Energy Surface

2.1 Born-Oppenheimer Approximation

The non-relativistic time-independent Hamiltonian (in atomic unit) for a molecule is:

Ĥ = −
∑
α

1

2Mα

∇2
α −

1

2

∑
i

∇2
i −

∑
i,α

Zα
riα

+
∑
i<j

1

rij
+
∑
α<β

ZαZβ
rαβ

, (2.1)

where α, β refer to the nuclei and i, j refer to the electrons; Mα and Zα are the mass and

charge of nucleus α. In a more compact notation, the Hamiltonian can be written as

Ĥ = T̂N(R) + T̂e(r) + V̂eN(r,R) + V̂ee(r) + V̂NN(R), (2.2)

where R denotes the set of nuclear coordinates and r is the set of electronic coordinates;

T̂ and V̂ are the kinetic energy and potential operators, respectively.

The kinetic energy operator of the nuclei, T̂N(r), can be neglected as it is more

than three orders of magnitude smaller than T̂e(r). Now according to Born-Oppenheimer

approximation, the nuclei can be treated as fixed and we can separate the nuclear wave

6
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function. Thus we can make the term V̂eN(r,R) parametrically depend on R. That is, we

can fix the R at a certain value R0, and solve for the electronic wavefunction Ψ(r;R0):

ĤelΨ(r;R0) = EelΨ(r;R0), (2.3)

where

Ĥel = T̂e(r) + V̂eN(r;R0) + V̂ee(r) + V̂NN(R0). (2.4)

When we repeat this for a set of R0, we obtain the potential energy surface (PES) of the

molecule.

Suppose we have already solved equation 2.3 and obtained a set of eigenfunctions

Ψn(r;R) and eigenvalues En(R), i.e.

ĤelΨn(r;R) = En(R)Ψn(r;R). (2.5)

The exact solution of the original Hamiltonian in Eq. 2.2 can always be written in an

infinite expansion.

Φ(r,R) =
∑
k

Ψk(r;R) ∗ χk(R). (2.6)

Insert this expansion into the original Schrödinger equation, multiply by Ψn(r;R)∗, and

integrate over the electronic coordinates r, we obtain

[
T̂N(R) + En(R)

]
χn(R)−

∑
k

∑
α

[
1

Mα

dαnk(R) · ∇α −
1

2Mα

Dα
nk(R)

]
χk(R) = Eχn(R),

(2.7)

where dαnk(R) = 〈Ψn(r;R)|∇α|Ψk(r;R)〉 and Dα
nk(R) = 〈Ψn(r;R)|∇2

α|Ψk(r;R)〉 are

called non adiabatic couplings. In most cases, the couplings are very small and can be
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safely neglected, and we obtain the following equation for the nuclear wave function:

[
T̂N(R) + En(R)

]
χnv(R) = Envχnv(R). (2.8)

The En(R) is the PES and it is a hyper-dimensional function of the nuclear configuration

for polyatomic molecules. With the PES, Eq. 2.8 could then be solved.

2.2 Permutationally Invariant Potential Energy Sur-

face

In principle, we can always solve the electronic Schrödinger, Equation 2.3, “on the fly”

at the desired nuclear configurations when necessary from electronic structure theory

packages. However, the computational cost quickly becomes prohibitive as the level of

electronic structure theory and the system size go up. Therefore, people have chosen an

alternative approach, which is to develop an accurate analytical representation or a func-

tional representation of potential energy in terms of the nuclear coordinates. As the exact

analytical function form of the PES is unknown, developing an efficient and robust math-

ematical representation of a PES is very challenging. Initially, the PESs were constructed

using the Shepard type interpolation method, i.e., the analytical potential agrees with ab

initio energy exactly on any point in the database.1–6 However, this becomes prohibitive

when we move to systems with moderate size because the dimensionality of the problem

increases so rapidly that the simple functions are unable to provide the accurate repre-

sentation of PES. Therefore, the best strategy we can apply by selecting a well-behaved

mathematical function f(R;C) with a set of adjustable parameters C to represent the

PES. The optimal parameters C can be determined via least-square process. First, a set
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of electronic energies on different configurations {Ri, Vi} (i = 1, · · · , N) are computed,

and then the parameters are determined by minimizing the residual
∑

i(f(Ri;C)−Vi)2.

There is extensive literature about obtaining the functional representation of the PES

(e.g., see Ref. 7 and references therein).

Many efforts have been made in mathematical representations, functional form of

f(R;C), of high-dimensional PESs in the last 30 years. Such as Neural Network (NN),8–19,

Gaussian Process Regression (GPR),20–25 and Permutationally Invariant Polynomials

(PIP) which is adopted in this work.26–29 The variables used in the PIP method are

“Morse variables” yij, which are the transformed internuclear distances rij via yij =

exp(−rij/a), where a is in principle also an adjustable parameter but usually fixed at 2.0

Bohr.

The use of Morse variables guarantees that the potential does not diverge when the

molecule dissociates. Therefore, the mathematical function can be written as

f(Ri;C) =
M∑
m=0

Cb

[
N∏
i<j

y
bij
ij

] (
M =

∑
bij

)
, (2.9)

where M is the maximum polynomial order, b stands for the ordered collection of the

exponents bij, Cb are the linear coefficients that need to be determined, and N is the

number of atoms.

The fundamental properties of a molecular potential are the invariant property with

respect to permutations of like atoms as well as translational, and rotational invariant

property. The use of Morse variables ensures that the potential is invariant with respect

to translations and rotations of the molecule. So, the remaining permutational invariant

property of a PES can be achieved by a straightforward way to replicate the electronic

energies to all the equivalent configurations and fit the polynomial to this expanded
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Figure 2.1: Permutation of the two identical H atoms in Ar−H2.

dataset. However, a more elegant approach is to use a mathematical function in which

the invariance property is built in. Two techniques have been developed by our group will

be discussed here. In addition, several progresses have been made recently to incorporate

the permutational invariance into NN,30–34 and GPR35 potentials.

2.2.1 Monomial symmetrization

The general form of a polynomial is shown in Eq. 2.9, which is not permutationally

invariant, but this can be the starting point of monomial symmetrization. Here I just use

a simple triatomic system as an example to illustrate the concept of this method, and

then I will show how this method could be generalized to arbitrary molecules.

To begin with, consider the system Ar−H2, and the molecule labeled as H(1), H(2),

Ar(3) there are three internuclear distances, {r12, r13, r23}. Then these internuclear dis-

tances are transformed to the Morse variables, yij = exp(rij/a), where we generally take

the value of a = 2.0 Bohr. Now the potential of this triatomic system can be simply

presented by the following expansion in monomials of Morse variables:

V (y) =
M∑
m

Cabc[y
a
12y

b
13y

c
23]; (m = a+ b+ c). (2.10)
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This expression in general is not permutationally invariant, and this can be shown by

first fixing the orders of one monomial, ya12y
b
13y

c
23. Now, consider the permutation of the

H(1) and H(2). The monomial ya12y
b
13y

c
23 then maps onto ya12y

b
23y

c
13 which can be rewritten

as the original monomial with permuted powers as ya12y
c
13y

b
23. Figure 2.1 shows the labels

of each atom and all the internuclear distances (and thus the Morse variables) before and

after the permutation. So the value of the sum of these monomials after the permutation

becomes Cabcy
′a
12y
′b
13y
′c
23 +Cacby

′a
12y
′c
13y
′b
23 = Cabcy

a
12y

b
23y

c
13 +Cacby

a
12y

c
23y

b
13. Clearly, there is no

guarantee that the corresponding coefficients, Cabc and Cacb would be equal, with the

exception when the permutation symmetry was included implicitly as mentioned, the

numerical equality of the two coefficients might be achieved. Therefore, comparing the

value of the sum of these two monomials before and after permutation, they are not

equal unless the coefficients Cabc and Cacb have the same value. On the other hand, this

illustration also suggests that the permutation symmetry can be easily ensured by using

a single coefficient for both the terms, and thus the permutational invariance is built into

the polynomial:

V (y) =
M∑
m

Dabc

[
ya12y

b
13y

c
23 + ya12y

c
13y

b
23

]
; (m = a+ b+ c). (2.11)

For a general polyatomic molecule, we can find the mappings of all the possible

permutations and use one coefficient for all the permutationally equivalent monomials.

A general expression of the symmetrized monomials is

V (y) =
M∑
m=0

CbS

[
N∏
i<j

y
bij
ij

] (
m =

∑
bij

)
, (2.12)

where S is the operator that symmetrizes the monomials. When the number of possible
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permutations gets larger, finding the equivalent monomials becomes more difficult. There-

fore, a more efficient approach has been implemented to representing these symmetrized

monomials in a more compact way. In this approach, the symmetrized polynomials can

be generated from the lower-order polynomials in a recursive way. This is called the

monomial symmetrization approach (MSA). The rigorous derivation and proof of this

theory are provided in Ref. 27. The details are beyond the scope of this work. Therefore,

a brief description is given below.

Table 2.1: Monomials (mi), and invariant polynomials (pi) for A2B type molecule up to
degree 3.

Monomials Polynomials

m0 = 1.0 p0 = m0

m1 = y23 p1 = m1 +m2

m2 = y13 p2 = m3

m3 = y12 p3 = m4

m4 = m1 ×m2 p4 = p1 × p2

p5 = p1 × p1 − p3 − p3

p6 = p2 × p2

p7 = p2 × p3

p8 = p3 × p1

p9 = p2 × p5

p10 = p2 × p4

p11 = p1 × p5 − p8

p12 = p2 × p6

In MSA, all the possible monomials with a total degree less than some maximum value

are enumerated, then symmetrized according to the permutation group of the molecule.

Then, the polynomials are decomposed into the product of two polynomials of lower order,

possibly subtracting a small number of same-order polynomials, when this is possible.
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If this factorization is not possible, the polynomial is kept as the sum of monomials.

Continuing with Ar−H2 molecule (A2B type system) as an example, the monomials and

invariant polynomials up to the degree of 3 are listed in Table 5.1. As shown there, the

first monomial is the constant term 1.0, and the following n(n − 1)/2 monomials are

just the Morse variables. The remaining monomials and then the polynomials can be

obtained from previously computed ones. This approach was implemented in 2010 by

Xie and Bowman in C++ and successfully applied to obtain a new PES of H3O+.27

2.2.2 Invariant polynomials

There is an alternative approach to obtain the invariant polynomials based on the invari-

ant polynomial theory. This is mathematically more elegant and leads to a very compact

expression that is more efficient to evaluate compared with the first one. The rigorous

mathematical derivation and proof of this theory are provided in Ref. 36. The details

are beyond the scope of this work, and are skipped here. On the basis of this theory, the

invariant polynomial can be efficiently factorized into polynomials of primary invariants

times secondary invariants. So, the potential can be expressed as

V (y) =
M∑
d=0

Cabha (p(y)) qb(y), (2.13)

where p(y) is the vector formed by the primary invariant polynomials and ha is a poly-

nomial of the primary invariants; qb(y) are secondary invariant polynomials, and d is the

polynomial order whose maximum is set to M . For a molecule consisting of N atoms,

there are N(N−1)/2 primary invariant polynomials. The computational algebra software

MAGMA37 is employed to obtain these primary and secondary invariant polynomials,

and they have been implemented in a fitting library by Braams and Bowman.26
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These two methods we mentioned to generate the permutationally invariant polyno-

mials are numerically equivalent, however, the mathematical expressions are different.

Compared to the MSA method, the invariant polynomials are generally more efficient

to evaluate due to it’s efficient factorization process as the products of primary and

secondary invariant polynomials, but at the cost of less accessibility of the fitting basis

functions. In addition to this, obtaining the analytical first derivatives from the unfactor-

ized, MSA method is trivial, but the factorization in the invariant polynomial approach

makes the derivation of the analytical first derivatives very difficult.

2.3 Dipole Moment Surface

The dipole moment is a three-dimensional vector, and its value is dependent on the choice

of molecule coordinate. Thus the dipole moment surface (DMS) cannot be represented

solely in terms of the internuclear and slightly different approach has been used for the

dipole in terms of invariant polynomials. the expression of dipole moment, ~µ can be

written as a product of effective charges.

~µ(R) =
∑
i

qi(R)~xi (2.14)

Where R denotes the configuration, qi is the effective charge on the ith nucleus, and ~xi

is the position vector of the ith nucleus. The effective charge is a scalar quantity, which

can be expressed in the polynomials that are similar to those used for PESs.

Like PES the dipole moment should be invariant under the permutations of identical

atoms, but there is a caveat to guarantee this invariance, which is the effective charges

of like atoms should be “covariant” with respect to permutations. The term “covariant”
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means, if the configuration transforms from R to R′ by exchanging the identical nuclei i

and j, the effective charges on these two nuclei have to satisfy the following relationship,

(qj(R
′), qi(R

′)) = (qi(R), qj(R)) , (2.15)

and the charges on unique atoms are still invariant. So far, the covariant property has

not yet been incorporated explicitly into the fitting basis, but rather we used a somewhat

indirect and not quite optimal approach. Details can be found elsewhere.26,38

In addition to the covariant charges under permutations, the sum of the effective

charges has to be equal to the net charge of the molecule. Ideally, this property should

be built in the fitting basis, but in reality, we simply impose this as an additional con-

straint in the least-squares problem. Therefore, this condition is not strictly satisfied. This

causes a drawback of the dipole fitting approach when we consider the dipole moment

under translations. Let Z be the total charge of the molecule, and we apply a uniform

displacement ~r to all the atoms. It must be ~µ(R + ~r) = ~µ(R) + Z~r, but in the fitted

dipole, the total charge is not exactly satisfied, and thus this property of the dipole under

translations is not strictly satisfied as well.

2.4 Procedures

Here I describe the general procedures to construct a full-dimensional PES, and the

procedures may vary slightly depending on the system and problem we are interested.

The details of each individual PES will be discussed in the following chapters and can

also be found in the corresponding references.

The very first step is the sampling of a configuration space and generate a dataset.
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One simple way is the direct-product of grid. However, this could only apply for very small

molecules. When we move to high-dimensional systems this method becomes prohibitive.

Suppose, if we chose only 10 grid points, the total number of configurations would be

103N−6 for a nonlinear polyatomic molecule, where N is the number of atoms. Even for

N = 4, the number of configurations becomes too large. Another sophisticated way of

sampling the configuration space is ab initio molecular dynamics (AIMD), at low-level

electronic structure method such as DFT and MP2 with small basis sets. The AIMD

simulations can be carried out at different stationary points, such as global or local

minima, and saddle points, at several total energies to make sure the dataset has the

coverage of extended region in the configuration space. The initial dataset is extracted

from these AIMD trajectories.

Once the geometries are collected from low-level AIMD trajectory calculations, high-

level ab initio calculations are performed on these configurations. Before starting the high

level calculations, several test calculations are carried out to check the accuracy and com-

putation time of a certain method/basis combination. Usually CCSD(T)-F12 method39,40

with Dunning basis set (aug-)cc-pVXZ (X=D, T, . . . )41 provides good accuracy and ef-

ficiency. When bond-breaking process is involved, the single-reference coupled-cluster

method fails, and multireference method is used. After all the ab initio energies are ob-

tained, a linear regression fitting is performed to determine the coefficients of the initial

PES.

The next step is to improve the initial fit if required. At first, the accuracy of this

initial PES is examined by general fidelity tests such as, geometry optimization and nor-

mal mode frequency calculations of stationary points and then compared the results we

obtained from this PES with the direct ab initio ones. If the agreement is not satisfactory,

additional geometries are sampled by adding random displacements to those stationary
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configurations. The energies of the additional geometries are calculated and added to

the dataset. Furthermore, diffusion Monte Carlo simulations are performed to detect the

“holes” in the PES, the regions having no data manifested by large negative values (lower

than the global minimum), and then the additional configurations are added to the old

data set. This iteration goes on until we are satisfied with the PES.

2.5 Summary

The approaches just mentioned have been used to developed a number of PESs that are

discussed in detail in this thesis, and Table 2.2 shows a summary of PIP basis information

about potential energy surfaces. These PESs are successfully applied to the dynamics

simulations and anharmonic vibrational calculations. Further details can be found in the

referred chapters as well as the cited references.

Table 2.2: A summary of a series of potential energy surfaces of which applications will
be presented in this work.

Molecule Max. Poly. # Coeffecients # Training # Training Chapter
Order Energies Gradients

CH4 5 208 9000 135000 5
N -methylacetamide 3 8040 6607 237852 6

Acetylacetone 2 86 430 .... 8
Water 4-body 3 1649 2119 .... 9

NaCl−CO 7 1716 8592 103104 12
Ethanol 4 14 752 11000 297000 13



Chapter 3

Molecular Vibrations

In this chapter I’ll present the methods have been used to study the molecular vibrations.

Vibrational properties of molecular system provide invaluable insight of its structure and

dynamics. Advanced methods mainly focus on solving the nuclear Schrödinger equation

which is a challenging task for polyatomic system. Many different models and techniques

are reported. First, I will start with a simple harmonic model, where we assume that

the potential is harmonic; and anharmonicity, and mode-dome couplings are negligible.

Then the results could be systematically improved when vibrational self-consistent field

(VSCF) and virtual-state configuration interaction (VCI) methods are employed. These

methods have been implemented in the software called MULTIMODE. In addition to

VSCF and VCI approach, diffusion Monte Carlo (DMC) is also described here which is

another strategy to solve the vibrational ground state properties of molecule systems.

3.1 Normal Mode Analysis

The classical Hamiltonian of a polyatomic molecule can be written as

18
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H =
3N∑
i=1

1

2
miẋi

2 + V (x1, x2, · · · , x3N), (3.1)

where xi, ẋi, and mi are the positions, velocities, and masses of ith degree of freedom.

The subscript i runs from 1 to 3N , where N is the number of atoms. Here i = 1, 2, 3

refers to the x, y, and z coordinates of the first atom, i = 4, 5, 6 refers to the x, y, and

z of the second atom, etc. V is the potential and it is a function of the positions of all

atoms.

Now we can apply famous Taylor series approximation and expand the potential, V

about the minimum {x(0)
i } up to second-order terms:

V = V ({x(0)
i })+

∑
i

V ′i ({x
(0)
i })(xi−x

(0)
i )+

1

2

∑
i

∑
j

V ′′ij ({x
(0)
i })(xi−x

(0)
i )(xj−x(0)

j ), (3.2)

where V ({x(0)
i }) is the potential at the minimum, which could be an arbitrary value and

for simplicity it is set to zero here. V ′i ({x
(0)
i }) are the first derivatives of the potential with

respect to the coordinates. These first derivatives are zero as the potential is expanded

about the minimum. The only terms that survive are the second derivatives:

V ′′ij ({x
(0)
i }) =

∂2V

∂xi∂xj

∣∣∣∣
{x(0)i }

. (3.3)

This is a non-separable Hamiltonian due to the coupling in second-order terms (off

diagonal matrix elements). However, we can transform this coordinate system into a new

coordinate system, Q, where this Hamiltonian matrix become diagonal and separable:

H =
∑3N

i=1 [Ti + Vi(Qi)]. This coordinate is the normal mode and it can be found using

normal mode analysis.

First we define the mass-scaled Cartesian displacements qi as qi ≡
√
mi(xi − x

(0)
i ).
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Thus, the classical Hamiltonian becomes

H =
1

2

3N∑
i=1

q̇i
2 +

1

2

∑
i

∑
j

qiFijqj, (3.4)

where Fij are mass-scaled force constants:

Fij ≡
∂2V

∂qi∂qj

∣∣∣∣
{0}
. (3.5)

In matrix notation, q =



q1

q2

...

q3N


, and the Hamiltonian is written as

H =
1

2
q̇>q̇ +

1

2
q>Fq. (3.6)

F is the mass-scaled Hessian matrix, which is a symmetric matrix. We know for a sym-

metric matrix, there exist an orthogonal matrix L that can diagonalize F : L>FL = Λ,

where Λ = diag(λ1, · · · , λ3N). Let q = LQ, and thus

H =
1

2
Q̇>Q̇ +

1

2
Q>ΛQ (3.7)

=
3N∑
i=1

[
1

2
Q̇i

2
+

1

2
λiQ

2
i

]
(3.8)

=
3N∑
i=1

[
1

2
Q̇i

2
+

1

2
ω2
iQ

2
i

]
, (3.9)

where ωi =
√
λi.
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Therefore, we’ve found the new coordinate Q in which the Hamiltonian can be written

as the sum of individual Hamiltonians for each normal mode Qi. Now the system looks

like 3N uncoupled harmonic oscillators, with the harmonic frequencies ωi =
√
λi. Among

these 3N normal modes, there are six zero-frequency modes, which corresponds to three

translations and three rotations of a non-linear molecule.

Under this harmonic approximation, the quantum Hamiltonian of a molecule can be

written as

Ĥ =
3N−6∑
i=1

[
−1

2

∂2

∂Q2
i

+
1

2
ω2
iQ

2
i

]
. (3.10)

The eigenfunctions are just the direct products of 3N − 6 harmonic-oscillator wavefunc-

tions, and the eigenvalues are the sums of harmonic-oscillator eigenenergies:

ψn1···n3N−6
=

3N−6∏
i=1

χni(Qi); (3.11)

En1···n3N−6
=

3N−6∑
i=1

~ωi(ni +
1

2
), (3.12)

where χni(Qi) and ni are the harmonic-oscillator eigenfunction and the quantum number

of the i-th normal mode.

In this harmonic approximation, higher-order terms in the potential expansion are

neglected. In many applications, those non-harmonic terms are also very important and

should be taken into consideration. The non-harmonic terms can be treated as a pertur-

bation to the Hamiltonian, and this leads to the vibrational second-order perturbation

(VPT2) theory.42,43. In this work, I employ a more rigorous method, VSCF and VCI,

which is very similar to the Hartree-Fock and post-Hartree methods in electronic struc-

ture theory.44
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3.2 Vibrational Self-Consistent Field and Virtual-state

Configuration Interaction

Here we write the molecular Hamiltonian in terms of normal mode coordinates:

Ĥ =
3N−6∑
i=1

T̂i + V (Q), (3.13)

where Q = [Q1 · · · Q3N−6] and T̂i is the kinetic-energy operator of the i-th normal mode.

Here the potential energy, V (Q) is the full potential of the molecule.

In the VSCF method, the variational approach is used to solve this problem, and

the trial wavefunction of a quantum state can be representated as a direct product of

one-mode wavefunctions:

ψ(Q) =
3N−6∏
i=1

φi(Qi). (3.14)

The goal is to find a set of optimal one-mode functions {φi(Qi)} (i = 1, · · · , 3N−6) that

minimizes the energy functional

E[{φi}] = 〈ψ|Ĥ|ψ〉 (3.15)

under the condition 〈φi|φi〉 = 1, i.e., φi are normalized. This problem could be solved

using Lagrange’s method of undetermined multiplier, and we construct the Lagrangian

L[{φi}, ε1, · · · , ε3N−6] = 〈ψ|Ĥ|ψ〉 −
3N−6∑
i=1

εi (〈φi|φi〉 − 1) . (3.16)

By setting

δL
δφi

=
δL
δεi

= 0, (3.17)
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a set of 3N − 6 coupled equations (i = 1, 2, · · · , 3N − 6)

[
T̂i +

〈
3N−6∏
k 6=i

φk(Qk)

∣∣∣∣∣V (Q)

∣∣∣∣∣
3N−6∏
k 6=i

φk(Qk)

〉]
φi(Qi) = εiφi(Qi) (3.18)

are obtained. These coupled equations are solved in an iterative way for each model

wavefunction until self-consistency is reached. Each modal function φi(Qi) is expressed

as a linear combination of a finite set of basis functions multiplied by unknown coefficients.

φi(Qi) =

li∑
ni

Cniχ
(ni)(Qi). (3.19)

where li is the number of basis functions for the ith mode. The coefficients can be deter-

mined by diagonalizing the Hamiltonian matrix.

This VSCF method is similar to the Hartree-Fock method in electronic structure

theory. It is a one-mode method, and the coupling between one mode and the others is

taken into account in an “averaged” manner. The result of the VSCF calculation can be

further improved by configuration interaction calculation, which is termed as virtual state

configuration interaction method (VCI). Recall that for each mode, we solve the VSCF

equations to obtain a set of eigenfunctions φ
(vi)
i (Qi) with different quantum number vi.

Therefore, a series of total wavefunctions can be constructed:

ψVSCF
v (Q) =

3N−6∏
i=1

φ
(vi)
i (Qi). (vi = 0, 1, 2, · · · ; and i = 1, · · · , 3N − 6) (3.20)

One of them is the VSCF ground state, and the others are virtual states. In the VCI

calculation, we expand the total wavefunction in terms of the VSCF ground and virtual
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states:

Ψ(Q) =
∑
v

Cvψ
VSCF
v (Q), (3.21)

and the coefficients Cv are obtained by diagonalizing the Hamiltonian matrix.

3.3 The Software “Multimode”

The VSCF and VCI methods are implemented in the software called “MULTIMODE”.45,46

This computational code is based on the rigorous Watson Hamiltonian for non-linear

molecule. MULTIMODE has been widely applied to a variety of molecular systems using

a n-mode representation of the full potential energy. However, there are few practical

issues. In VSCF, integrals

〈∏
k

φk(Qk)

∣∣∣∣∣V (Q)

∣∣∣∣∣∏
k

φk(Qk)

〉
(3.22)

have to be evaluated, and when the number of modes is large this multi-dimensional

integration become computationally very expensive. Additionally, in the VCI calculation,

the Hamiltonian matrix could be very large without any restriction in the expansion in

Equation 3.21. The strategies have been taken into account to circumvent these issues in

MULTIMODE are presented below.

3.3.1 Watson Hamiltonian

In the derivation of VSCF and VCI, the rotation-vibration coupling is neglected in the

Hamiltonian. However, in MULTIMODE, the rigorous Watson Hamiltonian is used.47 For
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any non-linear molecule, the Watson Hamiltonian is represented in normal coordinates,

Ĥ =
1

2

∑
α,β

(
Ĵα − π̂α

)
µαβ

(
Ĵβ − π̂β

)
− 1

2

3N−6∑
k=1

∂2

∂Q2
k

− 1

8

∑
α

µαα + V (Q1, · · · , Q3N−6),

(3.23)

where α, β = x, y, z; Ĵα and π̂α are the total and vibrational angular momenta, respec-

tively; µαβ is the inverse of the effective moment of inertia tensor and V (Q1, · · · , Q3N−6) is

the full potential in terms of the N normal coordinates. The vibrational angular momenta

are given by

π̂α = −i
∑
k,l

ζαk,lQk
∂

∂Ql

, (3.24)

where ζαk,l are Coriolis coupling constants, and these vibrational angular momentum terms

usually cannot be neglected. In most cases, we solve the J = 0 Schrödinger equations.

This Hamiltonian works for semi-rigid molecules; however, for molecules with one

large-amplitude motion, the reaction path version of Multimode should be used, which

is based on the reaction path Hamiltonian.48 This has been applied to molecules with

internal rotation, such as CH3OH and H2O2.49,50 This reaction path Multimode is not

used in this work, so it will not be described here. The theory and details are given in

Ref. 48 and 51.
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3.3.2 n-Mode representation of Potential

In MULTIMODE, the full dimensional potential of a molecule is written as a hierarchical

n-mode representation (nMR):

V (Q1, Q2, · · · , Qm) =
∑
i

V
(1)
i (Qi) +

∑
i<j

V
(2)
ij (Qi, Qj) +

∑
i<j<k

V
(3)
ijk (Qi, Qj, Qk)+

∑
i<j<k<l

V
(4)
ijkl(Qi, Qj, Qk, Ql) + · · · ,

(3.25)

where one mode representation,

V
(1)
i = V (Qi, Ql 6=i = 0), (3.26)

V
(2)
ij = V (Qi, Qj, Ql 6=i,j = 0)− V (1)

i (Qi)− V (1)
j (Qj), (3.27)

V
(3)
ijk = V (Qi, Qj, Qk, Ql 6=i,j,k = 0)− V (2)

ij − V
(2)
ik − V

(2)
jk − V

(1)
i − V (1)

j − V (1)
k . (3.28)

In MULTIMODE, this expansion is truncated, and the maximum number of modes al-

lowed is six. Therefore, numerical quadratures with maximum dimensionality of six are

needed, instead of 3N − 6, and this could greatly reduce the computational cost of

multi-dimensional integrals. In addition, efficient Gauss-Hermite quadrature is used in

Multimode for numerical integration.

3.3.3 VCI excitation space and matrix pruning

We have seen above in VCI calculation the full-CI matrix size is the direct product of

the number of basis for each mode, and it could be enormous when the molecule is

large. Analogous to the truncated CI in electronic structure theory (for example, CISD

or CISDT), constraints are imposed in MULTIMODE. We can use an “m-mode basis”
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to restrict the excitation space to a maximum of m modes excited simultaneously. For

each mode, we specify a maximum value of the quanta of excitation (called MAXBAS

in Multimode), and in addition, the sum of quanta is limited by a user-specified value

(called MAXSUM in Multimode). With all these restrictions, the size of the CI matrix

is greatly reduced.

Even with this truncated CI approximation, the CI matrix becomes very large for

moderate size molecules (10 to 15 atom systems) and this become very problematic

for direct diagonalization. The following strategies are taken into account to overcome

this issue. First, we impose the symmetry of the molecule which transform the full-CI

matrix into a block diagonal matrix and we can easily diagonalized each block instead

of the full matrix. In addition, we only need the lowest a few hundred or thousand

eigenstates, and therefore, more efficient iterative process, block-Davidson method is

implemented. Furthermore, rows and columns of the CI matrix can be eliminated, based

on a perturbation test. This was initially implemented in Multimode by Handy and

Carter,52 and have been optimized recently in a vibrational calculation of CH3NO2.53

3.3.4 Infrared intensity

The intensities of vibrational transitions can be computed from MULTIMODE calcu-

lations using the “dump-restart” procedure54 if the dipole moment surface (DMS) is

available. During VSCF/VCI calculation, the VCI wave functions can be written to the

disk, and they will be used for property calculation, such as, infrared intensity calculation.

Now, the transition dipole matrix elements are calculated according to

Rαif =

∫
Ψi(Q)µα(Q)Ψf (Q)dQ, (3.29)
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where Q is the set of normal coordinates, and µα(Q) is the α component (α = x, y, z) of

the dipole moment. Ψi and Ψf are the initial and final vibrational state of the transition.

The infrared intensity of the i→ f transition is evaluated using the expression

Iif =
8π3NA

3hc(4πε0)
ν
∑
α

|Rαif |2(Ni −Nf ), (3.30)

where NA is the Avogadro’s number, ν is the wavenumber of the transition, and Ni is

the number of the molecules in state i. If we only consider the transition originated from

the vibrational ground state, Ni −Nf is 1.

3.4 Diffusion Monte Carlo

The DMC method is the stochastic approach to solve the exact nuclear Schrödinger equa-

tion for the vibrational ground state energy and wavefunction. The concept behind the

DMC method is to solve the time-dependent Schrödinger equation in imaginary time.55–59

This is done by simulating a random walk of many replicas, also called “walkers”, of the

molecule, using a birth/death processes. This is a powerful method to extract the ground

state wave function and energy of the molecule from the probability distribution of the

random walkers. Here, the basic theory and a practical algorithm of DMC are described.

3.4.1 Theory

The procedure can be illustrated in one dimension (1D) for a particle of mass m that

moves in a potential V(x). The time-dependent Schrödinger equation of this particle is

written as

i~
∂ψ(x, t)

∂t
= Ĥψ(x, t) = − ~2

2m

∂2ψ

∂x2
+ V (x)ψ, (3.31)
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where Ĥ is the Hamiltonian of the system. The wave function can be written as and the

solution can be expressed as

ψ(x, t) =
∞∑
n=0

cnφ(x)n exp

[
−iEnt

~

]
, (3.32)

where φn(x) are the eigenfunctions of the time-independent Schrödinger equation with

the eigenvalues En,

Ĥφn(x) = Enφn(x) (3.33)

and the order of the eigenvalues are follows as

E0 < E1 ≤ E2 ≤ E3 ≤ .... (3.34)

Next, we shift the energy scale by ER such that V → (V (x)−ER) and En → (En−ER),

where ER is a reference energy. Then we introduce a new variable τ = it to transform

real time to imaginary time. So, the 1-D time dependent Schrödinger equation becomes

~
d

dτ
Ψ(x, τ) =

~2

2m

d2

dx2
− [V (x)− ER]Ψ(x, τ), (3.35)

and the the wave functions become

Ψ(x, τ) =
∞∑
n=0

cnφn(x) exp

[
−(En − ER)τ

~

]
. (3.36)

If ER > E0, ψ(x, τ) diverges when τ approaches ∞; if ER < E0, ψ(x, τ) decays to zero;

only if ER = E0, ψ(x, τ) converges to φ0. That means, if we choose the ER to be the

ground state energy E0, and propagate the system to large imaginary time values, ψ(x, τ)

converges to the ground state of the Hamiltonian Ĥ. Of course E0 is unknown in advance,
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and its value could be determined by diffusion Monte Carlo method.

The Equation 3.35. of DMC method is similar to the diffusion equation with a first-

order rate term

∂C

∂t
= D

∂2C

∂x2
− kC. (3.37)

The “diffusion coefficient” of the imaginary-time Schrödinger equation is D =
√
~/2m.

The second derivative part can be modeled with a random walker process with large

number of walkers, and the first-order term can be viewed as a source or sink of the

walkers.

At sufficiently short times, the solution of Equation 3.37. can be approximated as

C(x, t) ≈ U(x, t)C(x, 0) exp (−kt) , (3.38)

where

U(x, t) =
1√

4πDt
exp

[
−(x− x0)2

4Dt

]
(3.39)

is the solution to the diffusion problem without the first-order term, using δ-function

as the initial condition. Therefore, in the simulations, each time increment consists of

two steps: in the first step the walkers are assigned a random displacement based on the

distribution specified by Equation 3.39., and in the second step, the walkers are removed

or replicated based on the probability density exp(−kt) from Equation 3.38. A practical

algorithm is given next.

3.4.2 Algorithm

Initially, we generate N0 replicas from the same initial geometry, so that the initial

condition can be viewed as a δ-function. At each step, a random displacement ∆x is
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assigned to each walker. This displacement is selected from a Gaussian distribution

P (∆x) =
1√

4πD∆τ
exp

[
− (∆x)2

4D∆τ

]
, (3.40)

with D =
√

~/2m and ∆τ is the step size in the simulation. After the displacement, the

potential of each walker, V (x), is calculated and the corresponding weight function

W = exp [−(V (x)− ER)∆τ ] (3.41)

is computed. For each walker, if W < 1, it will be removed with probability 1 −W ; if

W > 1, a new walker with the same configuration will be added, and then an additional

one may be added with probability W − int(W ), where int(W ) is the largest integer that

does not exceed W . This is call birth/death process. When these are done for all the

walkers, the reference energy is calculated as

ER(τ) = 〈V (τ)〉 − αN (τ)−N (0)

N (0)
, (3.42)

where 〈V (τ)〉 is the average potential over all walkers, and N (τ) is the number of live

walkers at imaginary time τ . Here α is a feed-back parameter that controls the fluctu-

ations of the number of the walkers and the reference energy. After equilibration, the

average of the reference energy over the imaginary time gives an estimate of the quan-

tum zero-point energy, and the distribution of the walkers, when properly normalized,

represents the ground-state wavefunction.
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Classical Trajectory Simulations

According to Born-Oppenheimer approximation, one can solve the time-dependent nu-

clear Schrödinger equation for the motion of nuclei. However, this is also very challenging,

and rigorous quantum calculations become prohibitive for the system with more than four

atoms.

Therefore, in many cases people neglect the nuclear quantum effects, and perform

classical trajectory calculations where the motions of the nuclei can be described suffi-

ciently well by classical mechanics. These classical trajectory simulations are widely used

in the study of dynamical and chemical process. The motions of the nuclei follow the

classical Hamilton’s equations (also equivalent to Newton’s and Lagrange’s equations):

dqi
dt

=
∂H

∂pi
,
dpi
dt

= −∂H
∂qi

, (4.1)

H = T (p, q) + V (q), (4.2)

where qi and pi are the position and momentum of i-th atom, respectively. H is the

classical Hamiltonian, which is the sum of the kinetic T(p,q) and potential energy V(q).

32
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In molecular dynamics (MD) simulations, the classical equations of motion in Eq. 4.1 are

integrated numerically if the potential is known. Note that our potential energy surfaces

(PESs) allow very efficient integration, compared to “on-the-fly” ab initio molecular

dynamics.

4.1 Initial Conditions

In the classical dynamic simulations, initial conditions of the sampling are very crucial,

because these are usually chosen to directly compare with experimental results or other

benchmarked calculations.60 Several methods exist for the initial condition sampling,

such as microcanonical sampling (NV E), canonical sampling (NV T ), isobaric sampling

(NPT ), and normal mode sampling etc. Microcanonical sampling and normal mode

sampling are the two most commonly used methods in our projects.

4.1.1 Microcanonical Sampling (NV E)

Microcanonical sampling is the simplest and straightforward sampling process which sat-

isfy the total energy E constraint in the phase space. During its implementation, for

a fixed molecular configuration the velocity of each atom is selected from a uniform

distribution in (−0.5, 0.5). Then the velocities are scaled to make the total kinetic con-

straint. However, this simple implementation fails to describe the zero-point motion of a

molecule, and the total energy E could even be lower than the zero-point energy (ZPE)

of a molecule. This could lead to poor estimation of reaction barriers for a polyatomic

molecule having large amount of ZPE (tens of kcal/mol). On the other hand, this micro-

canonical sampling is unable to model mode-specific reactions where one or more normal

modes are excited. Therefore, the normal mode sampling is introduced.
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4.1.2 Normal Mode Sampling

Normal mode sampling is also a type of microcanonical sampling, where total energy E

equals to the energy of a specific vibrational state. The implementation is very simple,

and It is done in normal mode coordinates. First, we perform normal mode analysis

by diagonalizing the mass-weighted force constant matrix, and we obtain the harmonic

frequencies ω, and the corresponding normal mode vector L. The Hamiltonian of an

n-mode system can be approximately written by the sum of energies for each harmonic

oscillators, given by:

H(P,Q) = ETotal, (4.3)

ETotal =
n∑
i=1

Ei =
n∑
i=1

P 2
i + ω2

iQ
2
i

2
, (4.4)

where P i and Qi are the momentum and normal coordinate of i-th mode, respectively.

Now, random values for Qi and Pi are chosen by assigning a random phase to each mode

for making an uniform distribution in the phase space.

Qi =

√
2Ei
ωi

cos(2πri); (4.5)

Pi = −
√

2Ei sin(2πri), (4.6)

where ri is a random number from a uniformed distribution in (0, 1), and Ei is the energy

one would like to put in the i-th mode. Typically Ei is the harmonic zero-point energy

(ZPE) of that mode, and in mode-specific dynamics, it could be the energy of a certain

excited state. Then the Q and P are transformed back to Cartesian coordinates q and
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momenta p using normal mode vector,L by:

q = q0 + M−1/2LQ (4.7)

p = M 1/2LQ, (4.8)

where q0 is the coordinates of the equilibrium configuration, and M is a diagonal matrix

whose elements are masses of the nuclei.

During this sampling process a spurious angular momentum js could be generated,

and this is calculated by

js =
∑
i

ri ×miṙi, (4.9)

where ri is the position of the i-th nucleus. Assume that j0 be the desired angular

momentum, so j = j0 − js is the additional amount which should be added to the

system. Therefore the velocity, (I−1j)×ri is added to each atom, where I is the moment

of inertia tensor.

Finally the internal energy E, after the two steps mentioned above, slightly devi-

ates from the desired total internal energy E0. Therefore, the Cartesian coordinates and

momenta are scaled according to

q′i = qi,0 + (qi − qi,0)
√
E0/E (4.10)

p′i = pi
√
E0/E. (4.11)

We follow this process in loops until the actual internal energy agrees with the desired

internal energy.
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4.2 Final Conditions

In classical dynamics simulations, properties of the products such as the translational

energy release, the rotational and vibrational energy distribution can be calculated from

the coordinates and velocities of the nuclei at the termination of a classical trajectory.

Here I briefly describe the procedures of final condition analysis.61

4.2.1 Translations and Rotations

During the classical dynamics simulation, the system should be translationally invariant,

means the translational energy should be equal to zero. A reaction may have several

products and but here we just focus on one fragment that is of interest. Upper case

letters are used for the center-of-mass positions, and velocities of the product, and lower

case letters for each individual atom. The center-of-mass velocity of a fragment can be

calculated by

V =

∑
imivi
M

, (4.12)

where the sum is over all the atoms in that fragment, and M is the total mass of that

fragment. Therefore the translational energy of this fragment is simply Etrans = 1
2
M |V |2.

By setting v′i = vi − V , we can remove this translational motion from the fragment and

now the internal energy of this fragment becomes sum of the kinetic and potential energy.

Eint = T + V (q) =
∑
i

1

2
mi |v′i|

2
+ V (q), (4.13)

where V (q) is the potential energy in generalized coordinates relative to the equilibrium

structure.

This internal energy consists of vibrational energy and rotational energy. The rota-
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tional angular momentum can be calculated by j =
∑

imir
′
i × v′i, where r′i and v′i are

the position and velocity of atom i in center-of-mass frame. Then the rotational energy

is given by

Erot =
1

2
j>I−1j, (4.14)

where I is the moment of inertial tensor of the fragment. For diatomic molecules, the

rotational quantum number J can be determined using |j| =
√
J(J + 1)~ and rounded

to the nearest integer.

4.2.2 Vibration and Zero-point Energy Constraint

The vibrational energy can be written as Evib = Eint −Erot. For diatomic molecules, the

vibrational quantum number n can be determined by

(
n+

1

2

)
~ω = Evib, (4.15)

where ω is the harmonic frequency.

ZPE violation is one of the common problem in classical simulation. The vibrational

energy of the product could be lower than the ZPE, which is not allowed in quantum

mechanics. To overcome this, a straightforward ZPE constraint could be applied as follow.

If the total vibrational energy of the products is smaller than the sum of ZPEs of each

individual product, the trajectory is discarded and will not be considered in the final

condition analysis, or if the vibrational energy of any fragment is smaller than its ZPE,

the trajectory is discarded. The former is the soft ZPE constraint and the latter is hard

ZPE constraint.



Part II

Systematic Developments in PIP

Method for Generating

High-dimensional PESs

38



Chapter 5

Implementation of Simultaneous

Energy-Gradients Fitting in

Permutationally Invariant

Polynomial Approach

5.1 Chapter Abstract

We describe software to incorporate electronic energies and gradients to develop high-

dimensional potential energy surfaces, using a permutationally invariant polynomial ba-

sis. The energies and gradients are obtained using direct dynamics, using the efficient

B3LYP/6-31+G(d) level of theory. The new software is described along with extensive

testing and assessment of the benefits of using gradients as well as energies for CH4. Start-

ing with a dataset of 9,000 configurations, we examine training and testing on datasets

of energies only and energies plus gradients with datasets as small as 50. In addition to

39
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standard root-mean-square fitting errors of energies and gradients, normal-mode analyses

and diffusion Monte Carlo calculations are performed to examine the fidelity of the fits

using gradients. We show that a precisely fitted potential surface can be obtained using

energies and gradients with only 100 or even just 50 widely-scattered configurations. Fi-

nally, several fits are done using all the data from direct-dynamics trajectories with 1,000

steps. These are more demanding fits compared to the one based on pruning datasets.

The results of these fits are encouraging.

5.2 Overview

Developing potential energy surfaces (PESs) continues to be an active area of theoretical

and computational research. One can get the PES “on the fly” by obtaining the electronic

energies from electronic structure packages; however, the computational cost quickly

becomes prohibitive as the level of electronic structure theory goes up. The alternative is

the development of accurate analytical representations of PESs. The main challenge is to

develop an efficient and robust mathematical representation of the PES, using datasets

of electronic energies that span a high-dimensional space.

In the past 15 years, significant progress has been made in the non-parametric, math-

ematical representations of high-dimensional PESs for molecules and clusters that con-

tain more than four atoms.13–16,19,21–23,25,26,30,34,62–65 The three major methods currently

in widespread use are Permutationally Invariant Polynomials (PIP)26,65, Neural Net-

works (NN),14–16,19,66–69 NN with PIP inputs30,31,34,63,64,70, Gaussian Process regression

(GPR),20,21,25 and GPR with PIP inputs.35 This field is developing rapidly and the ref-

erences cited above are not meant to be comprehensive.

The applications using the various non-parametric methods can be divided into two
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broad areas. One is isolated molecules, including chemical reactions29,34,64,71 and hydrogen-

bonded clusters.65 In these applications, the PESs span large regions of configuration

space but are limited to 5–10 atoms. A recent example to the 10-atom formic acid dimer

has been reported,72,73 which, however, is not a global PES. Most applications in this area

make use of high-level electronic energies, e.g., CCSD(T). These are feasible to perform

for this number of atoms and for tens of thousands of configurations. In general gradients

are not used in the fits in this case, as these are expensive to calculate using CCSD(T)

theory. The second application area deals with tens of atoms, and so an efficient electronic

structure method, i.e., density functional theory, is used.15,20,21,69 A high-level method

such as CCSD(T) is not feasible for tens of heavy atoms such as Cu, Si, etc. or tens of

water monomers.

Our group has developed the PIP approach over the past 15 years and with numerous

applications.26–29,65 This approach was first applied in 2003 to construct a global PES

of CH +
5 cation, a notoriously fluxional molecule, using a basis of polynomials that are

invariant with respect to 120 permutations of the five equivalent H atoms.74 The PESs

developed in our group generally make use of datasets of 104–105 scattered electronic

energies, typically obtained at the CCSD(T) level of theory. However, the scattered con-

figurations are obtained using DFT direct dynamics, generally at several total energies.

After pruning the DFT dataset to a relatively small size, but generally with energies that

span a range of several hundred to roughly 20,000 cm−1, new energies are obtained at the

CCSD(T) level of theory. The fitted PESs are typically tested by making comparisons

with direct ab initio calculations of harmonic normal-mode frequencies at stationary

points and the results are generally highly precise.

For challenging cases with numerous minima and high-energy saddle points, global

PESs are generally less precise and of course the accuracy of normal-mode frequencies de-
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creases. Counter examples to this statement though are full-dimensional, permutationally

invariant PESs for H +
5 ,75 the water dimer,76,77 and the protonated water dimer78 (the

Zundel cation), using CCSD(T)/aug-cc-pVTZ energies. In these cases numerous low-lying

saddle points and associated harmonic frequencies were very accurately described by the

PESs. So, even without gradient data precise fits to electronic energies can produced

highly accurate Hessians, at least at stationary points, where tests have been carried out.

Even though the datasets we have used for fits are very small relative to the number

of energies in direct-product grids, 105 high-level electronic energies are clearly expensive

to obtain. Such large datasets of energies can be required for very high-dimensional PESs,

especially ones with numerous stationary points, e.g., PESs for CH3CHO,71,79 CH3NO2,80

and CH3CHOO.81

Recently, we examined the performance of PIP as well as GPR using PIP inputs for

a variety of dataset sizes for four case studies,H3O+, OCHCO+, H2CO including cis and

trans-HCOH, and formic acid dimer.65 One major goal of that work was to see how

small the datasets could be without sacrificing quantitative accuracy compared to direct

ab initio results and results from fitting larger datasets for properties such as barrier

heights and normal mode frequencies. We noted that both methods produce acceptable

results on large test datasets using training dataset of 1,000 energies for H3O+ and 1,500

for OCHCO+. While these are small datasets to train on, compared to the size of the

datasets used in the original fits, a reasonable question to ask is can these be significantly

further reduced if gradient data were used. We investigate that question in detail here by

extending our software to perform PIP fits using energies to include gradient data as well.

The extended software described here is available at https://github.com/szquchen/MSA-

2.0.

We note that energies and gradients have been used in other non-parametric methods,
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such as NN, reviewed in ref. 16, and GPR, reviewed in ref. 22. The applications have

mainly been to atomic solids and atomic clusters, using DFT calculations of energies and

gradients, which are analytical. Much less work using gradients has been done for isolated

molecules. Neural network fits to electronic energies and gradients have been reported for

the H + HBr reaction,68 H2O, O3, and ClOOCl.82,83 For semi-global PESs of H2O and

ClOOCl 282 and 1,693 configurations were used, respectively, and for the global PES of

O3 2,815 configurations were used in the fits to energies and gradients at the efficient

MP2 level of theory where gradients are also analytical. Here “global” refers to a PESs

that describe at least one dissociation channel.

5.3 Theory and software

5.3.1 Theory

The theory of permutationally invariant polynomials has been presented in several review

articles,26,28,29,65 and so we give a brief review of the essential details. In terms of a PIP

basis, the potential energy, V , can be written as

V =
M∑
i=1

cipi(y), (5.1)

where pi are permutationally invariant polynomials of internuclear distances transformed

to Morse variables, denoted y, and ci are linear coefficients which are determined using

standard linear least-squares fitting, which up to now have been fits to electronic energies.

This summation is up to a certain total polynomial order, M .

The invariant polynomials can be obtained by using monomial symmetrization.26,65

The procedure for n atoms is to begin with a single monomial of the n(n − 1)/2 Morse
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variables, yij = exp (−rij/λ), where rij is the inter-nuclear distance between atoms i and

j and λ is the range parameter. Then by applying the permutations of like atoms these

variables map into another set of Morse variables and thus another monomial, but with

the same total polynomial order. A permutationally invariant polynomial is generated

by summing over the monomials.26

Consider the A2B molecule as a simple example; atom A is labeled as 1 and 2, and

B is labeled as 3. There is only one permutation and this permutation maps the mono-

mial ya12y
b
13y

c
23 to the monomial ya12y

b
23y

c
13, and thus the invariant polynomial is the sum

of the two monomials ya12y
b
13y

c
23 + ya12y

b
23y

c
13. Other examples were given in detail in ref.

26. This approach is mainly pedagogical rather than practical except for very simple

cases, e.g., PESs for H2CO84,85 and H2CN.86 Clearly, a more efficient approach would

be based on representing these symmetrized monomials in a more compact way. This is

done in two ways. One is based on monomial symmetrization but builds up the sym-

metrized polynomials from lower-order ones recursively.27 This is called the monomial

symmetrization approach (MSA). The second approach makes use of the invariant poly-

nomial theory36 and computational algebra software MAGMA37. Based on this theory,

the invariant polynomial can be efficiently factorized into polynomials of primary invari-

ants times secondary invariants. A library of such primary and secondary polynomials

for many molecule types is available upon request.26 For the present application, which

is to incorporate gradient data into the fitting, it is easier to modify the MSA software.

We briefly describe the MSA algorithm and how the gradients can be computed

analytically. In MSA, all the possible monomials with total degree less than some max-

imum value are enumerated then symmetrized according to the permutation group of

the molecule, written for example as A2B for a triatomic molecule with 2 like atoms,

“A”, and a single atom “B”. Then the polynomials are decomposed into the product of
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Table 5.1: Monomials (mi), invariant polynomials (pi), and their partial derivatives dmj

and dpj for A2B up to degree 3.

Monomials / Polynomials Partial Derivative (with respect to xi)

m0 = 1.0 dm0 = 0.0
m1 = y23 dm1 = ∂y23/∂xi
m2 = y13 dm2 = ∂y13/∂xi
m3 = y12 dm3 = ∂y12/∂xi
m4 = m1 ×m2 dm4 = dm1 ×m2 +m1 × dm2

p0 = m0 dp0 = dm0

p1 = m1 +m2 dp1 = dm1 + dm2

p2 = m3 dp2 = dm3

p3 = m4 dp3 = dm4

p4 = p1 × p2 dp4 = dp1 × p2 + p1 × dp2

p5 = p1 × p1 − p3 − p3 dp5 = dp1 × p1 + p1 × dp1 − dp3 − dp3

p6 = p2 × p2 dp6 = dp2 × p2 + p2 × dp2

p7 = p2 × p3 dp7 = dp2 × p3 + p2 × dp3

p8 = p3 × p1 dp8 = dp3 × p1 + p3 × dp1

p9 = p2 × p5 dp9 = dp2 × p5 + p2 × dp5

p10 = p2 × p4 dp10 = dp2 × p4 + p2 × dp4

p11 = p1 × p5 − p8 dp11 = dp1 × p5 + p1 × dp5 − dp8

p12 = p2 × p6 dp12 = dp2 × p6 + p2 × dp6

two polynomials of lower order, and possibly subtracting a small number of same-order

polynomials, when this is possible. If this factorization is not possible, the polynomial is

kept as the sum of monomials.27

Continuing with A2B as an example, the monomials and invariant polynomials up to

degree of 3 are listed in Table 5.1. As shown there, the first monomial is the constant term

1.0, and the following n(n− 1)/2 monomials are just the Morse variables. The remaining

monomials and then the polynomials can be obtained from previously computed ones.

The partial derivatives of the first n(n − 1)/2 + 1 monomials (in this example m0 –

m3) with respect to the Cartesian coordinates can be obtained analytically, and the
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derivatives of the following terms are computed based on previous ones, as shown in the

second column of the table.

Software has been written to obtain the PIP basis and all components of the gradient

and this is described below. However, first we describe how the standard least-squares op-

timization is done using energy and gradient data. Suppose there are M linear coefficients

and the database contains N energies and 3N components of the gradient vector obtained

at N configurations. For a molecule of n atoms, the linear least-squares equations are



p1(1) p2(1) p3(1) · · · pM(1)

p1(2) p2(2) p3(2) · · · pM(2)

...
...

...

p1(N) p2(N) p3(N) · · · pM(N)

∂p1(1)
∂x1

∂p2(1)
∂x1

∂p3(1)
∂x1

· · · ∂pM (1)
∂x1

...
...

...

∂p1(1)
∂x3n

∂p2(1)
∂x3n

∂p3(1)
∂x3n

· · · ∂pM (1)
∂x3n

...
...

...

∂p1(N)
∂x1

∂p2(N)
∂x1

∂p3(N)
∂x1

· · · ∂pM (N)
∂x1

...
...

...

∂p1(N)
∂x3n

∂p2(N)
∂x3n

∂p3(N)
∂x3n

· · · ∂pM (N)
∂x3n





c1

c2

c3

...

cM



=



V (1)

V (2)

...

V (N)

g1(1)

...

g3n(1)

...

g1(N)

...

g3n(N)



, (5.2)

where “(i)” denotes the i-th data point in the database, [x1, · · · , x3n] are the Cartesian

coordinates, and [g1, · · · , g3n] are the components of gradient. The size of the matrix

is (N + 3nN) × M . The linear coefficients are obtained using standard least-squares

methods.
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5.3.2 MSA software

Several steps are involved in generating a PES using the PIPs and gradients with a given

total polynomial order for a given molecule type and with input consisting of energies

or energies plus gradients. These steps are illustrated in the flow chart shown in Figure

5.1. The chart indicates an iterative procedure based on “holes”, which are unphysical,

generally very negative, regions of a PES. This is not done here, as one goal is to assess

the extent of such regions on PESs based on only energies and those based on energies

plus gradients. It is perhaps worth noting that in general non-parametric methods to

obtain PESs are not reliable in regions “far” from the training data. From our extensive

experience with PIPs, these regions are where the true potential is very repulsive, i.e.,

of the order of 0.5 Hartree. This always occurs for small values of internuclear distances,

and such regions are typically not extensively sampled. We will examine this in some

detail below.

A Python script has been written that wraps a C++ code that generates the PIPs

and gradients for a given molecule type, and a Perl script that creates a FORTRAN

code for the PIPs and gradients and does the least-squares fitting. The user is queried

to specify the maximum polynomial order, the permutational symmetry, and the file

that contains ab initio energies (and gradients). The user also has the option to spec-

ify the range parameter λ in the Morse variables and add weights to each data point,

or use the default values. The least-squares linear algebra is done with the freely avail-

able FORTRAN code DGELSS. As noted already the complete software is available at

https://github.com/szquchen/MSA-2.0 and the necessary LAPACK routines are avail-

able at http://www.netlib.org/lapack/lapack-3.1.1/html/.

In the next section we present a demonstration of the new software to develop a PES
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Figure 5.1: Flow chart of the PES fitting procedures. The procedures in the red rectangle
are now integrated in one single Python script.
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for methane with several goals in mind. Namely, we examine fits using just energies and

fits using both energies and gradients. These are for a number of datasets of various

sizes. In addition to reporting root-mean-square (RMS) fitting errors for the energies and

gradients, we report normal mode analyses and also diffusion Monte Carlo calculations

of the zero-point energy. First, we give a simple 1d fitting as a pedagogical example.

5.4 Applications

5.4.1 1d potential

As a simple example, consider fitting the the 1d Morse potential

V (r) = D[1− exp(−x/a)]2, a = 2 bohr, D = 4 eV (5.3)

using the Morse variable, y = exp(−x/3) with energies and derivative data. In this

example the gradient data is equal in size to the energy data, but it does illustrate the

advantage of using the gradient. We consider 8 training configurations, x = −2, −1, 1,

4, 5, 7, 10 and 15. These cover the region of the repulsive wall as well as the asymptote.

Note, the minimum, x = 0, is not included in the training data set. We performed least-

squares fits (no weighting of data) using energies and energies and derivatives with a

maximum polynomial order of 4 (and so 5 linear coefficients). A higher polynomial order

could be used for the fit with derivatives as there are more data in that fit, however,

we do not do that. The RMS errors for the energies and the derivatives for a test set of

440 configurations are 0.0246 eV and 0.0292 eV/bohr, respectively for the energy-only fit

(E-fit), and 0.0253 eV and 0.0142 eV/bohr, respectively for the energy and derivative fit

(EG-fit). The RMS fitting error for the energy is about the same in the two fits and the
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magnitude is in line with our expectations, based on the large energy range, 0 to roughly

12 eV, for the test data. Also, as expected the RMS error for the gradient is significantly

smaller (about a factor of 2) in the EG-fit.

Figure 5.2 shows plots of the two fits as well as the Morse potential in the repulsive,

minimum and long-range regions. As seen, and perhaps as expected, the fit including the

derivatives is more precise than the fit with just energies, although both fits are quite

precise. Indeed a plot of the two fits over the range -2.0 to 20.0 would appear to be

virtually identical to the target Morse potential. The E- and EG-fit give a value of the
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Figure 5.2: Comparison of Morse potential plot between energy-only fit (E-fit) and en-
ergy and gradient fit (EG-Fit) for the repulsive, minimum and long-range regions.
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potential at the minimum of -0.0295 and 0.0002 eV, respectively. Both fits extrapolate

(at 20 bohr) to 4.04 eV and so, considering the values at the minimum, the electronic

dissociation energy from the E- and EG-fit are 4.06 and 4.03 eV, respectively. Clearly,

and as expected, the EG-fit is more precise than the E-fit.

Next we present a detailed study of using energies and energies and gradients for a

full-dimensional PES for methane.

5.4.2 CH4

Methane is a five-atom, highly symmetric molecule and for each energy there are 15

gradient components and thus this is a realistic test case. The dataset of energies and

gradients was generated from ab initio molecular dynamics (AIMD) simulations using

B3LYP/6-31+g(d) level of theory. Three trajectories were calculated with different total

energies to obtain a wide coverage of the configuration space. These trajectories were

propagated for 30,000 time steps with the step size of 5.0 a.u. (about 0.12 fs) and the

total energies in these are 1,000, 10,000, and 15,000 cm−1. Both the energy and gradients

were recorded every 10 steps so the full dataset consists of 9,000 configurations. These

AIMD simulations were done using the MOLPRO quantum chemistry package.87

A number of training datasets which are subsets of the full dataset were used to exam-

ine the new fitting procedure. In all cases we selected an equal number of configurations

from each trajectory. Thus, the energy range of each subset is roughly the same, i.e., 0

to 15,000 cm−1. In the calculations reported in the next section nine datasets were used.

A histogram plot of the distribution of electronic energies from these three AIMD

trajectories and three example subsets are shown in Figure 5.3. The sharp peak at low

energies is just a result of the overlap of these energies from the three trajectories. Clearly,
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there are other ways to obtain datasets, however, we find that the results shown below

validate the distributions shown in this figure.
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Figure 5.3: Distributions of electronic energies from three trajectories at indicated total
energies and in green the actual datasets used for the PES fits.

For each dataset, two fits were done: one is a fit to energies only and the other is

a fit to energies plus gradients. These two classes of PESs are denoted as PES-E and

PES-EG. For all the PES-EG fits the maximum polynomial order is 5 and this results

in 208 polynomials and thus 208 linear coefficients. This maximum polynomial order is

also used for all PES-E fits except for the datasets of 300 and 100. In those cases the

maximum polynomial order is 4, and there are 83 coefficients in this case. The largest
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dataset we used consists of 9,000 energies and 135,000 components of gradients. Clearly,

fits with energies and gradients could be done with a higher maximum polynomial order

than with energies only. However, for the present purpose, which is a direct assessment

of including gradient data for a given fitting basis, we kept the same polynomial order.

Diffusion Monte Carlo (DMC)55,58,59 calculations and normal mode analyses were

performed with these different fits to analyze the fidelity of the PESs and how the two

fitting procedures differ with respect to the number of training configurations. The stan-

dard unbiased algorithm58 is used for the DMC calculations. In each DMC “trajectory”,

10,000 walkers were propagated for 25,000 time steps with the step size 5.0 a.u.; 10,000

steps were used to equilibrate the walkers, and the reference energies in the remaining

15,000 steps were used to compute the zero-point energy (ZPE).

5.5 Results and Discussion

5.5.1 Training and testing precision

First, consider the performance of the fits using training datasets of 9,000, 4,500, 3,000,

2,000, 1,500, 1,000, 600, 300 and 100 configurations. The RMS error of the energy and

gradient magnitude for these datasets are given in Table 5.2.

As seen, the energy and gradient RMS errors are fairly similar and constant for

datasets larger than 1,000 configurations. The EG PESs are more precise for the gra-

dients than the E PESs and the converse holds for the energies. So, there seems to be

no advantage in using gradient data for these larger datasets. The situation changes

significantly for datasets of 1,000 and smaller number of configurations for the gradient

precision, whereas the energy RMS error is only marginally different, i.e., changes of
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Table 5.2: RMS fitting error of energies (RMSE) (cm−1) and gradient magnitude (RMSG)
(cm−1/bohr) for PES-E and PES-EG with the indicated number of training configura-
tions (Ntrain).

PES-E a PES-EG

Ntrain RMSE RMSG RMSE RMSG

9000 2.84 17.36 3.88 14.20
4500 2.15 15.76 3.19 11.84
3000 2.17 17.84 3.62 12.69
2000 1.63 17.25 3.25 11.64
1500 1.58 18.22 3.25 11.73
1000 1.47 21.03 3.01 11.24
600 0.97 24.21 2.55 9.97
300 4.22 78.79 2.28 9.06
100 0.14 458.17 1.47 5.30

a Maximum polynomial order of 4 is used for Ntrain = 100 and 300; all the remaining
fits including the ones with gradients use polynomial order 5.

roughly 2 cm−1. For the datasets of 100 and 300 configurations, where the maximum

polynomial order is 4 (and 83 coefficients), the gradient RMS error is 10 and 100 times

larger for PES-E compared to PES-EG. Note with 100 energies the E-fit with 83 coeffi-

cients is an overfit and that causes the large error in the gradient magnitude. The EG-fit,

however, gives excellent precision for the energies and the gradients.

Another important test is to examine the performance of PES-E and PES-EG on test

datasets. For this test the datasets in Table 5.2 are used, except for the largest one of

9,000 and the test data consists of the remaining data from the 9,000 dataset. The results

are given in Table 5.3. As seen in all cases, the testing RMS error of both energies and

gradients is smaller in PES-EG than PES-E. The difference in these RMS errors increases

significantly with a training set of 1,000 and reaches a very large difference for 100 and

300. Thus, it is clear that there is a major benefit to including gradients in small training



Chapter 5. Implementation of Simultaneous Energy-Gradients Fitting in
Permutationally Invariant Polynomial Approach 55

set of configurations.

Table 5.3: Test RMS error of energies (RMSE) (cm−1) and gradients (RMSG)
(cm−1/bohr) for PES-E and PES-EG with the indicated number of training configu-
rations (Ntrain) .

PES-E a PES-EG

Ntrain Ntest RMSE RMSG RMSE RMSG

4500 4500 4.78 24.48 4.67 19.45
3000 6000 4.61 24.35 4.34 17.97
2000 7000 6.35 28.55 4.46 18.04
1500 7500 6.61 28.92 4.46 17.77
1000 8000 8.37 37.65 4.29 17.59
600 8400 16.35 72.35 4.68 19.67
300 8700 45.66 168.97 5.15 22.75
100 8900 208.00 913.72 8.88 39.84

a Maximum polynomial order of 4 is used for Ntrain = 100 and 300; all the remaining
fits use polynomial order 5.

In order to make a more detailed examination of the errors in gradients, we calculated

the cosine of the angle between ab initio gradient vector and PES-fitted gradient vector

and also the ratio of the magnitudes of these two vectors. The cos θ values and the ratios

of magnitudes for the test dataset are mostly concentrated at 1.0 for the training dataset

of 4,500 in both PES-E and PES-EG. However, for the training datasets of 100 and 300

the cos θ and gradient vector magnitude ratio values are widely spread for PES-E relative

to PES-EG. As a representative example, we plot cos θ and the ratio of magnitudes for

8,700 test datasets using fits trained on 300 configurations in Figure 5.4. As seen, the

PES-EG is far more precise than PES-E. This is not a surprising result, of course.



Chapter 5. Implementation of Simultaneous Energy-Gradients Fitting in
Permutationally Invariant Polynomial Approach 56

 0.992

 0.994

 0.996

 0.998

 1

 1.002

 1.004

 0  1500  3000  4500  6000  7500  9000

co
sθ

No. of Configs

PES−E

 0.992

 0.994

 0.996

 0.998

 1

 1.002

 1.004

 0  1500  3000  4500  6000  7500  9000
co

sθ
No. of Configs

PES−EG

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0  1500  3000  4500  6000  7500  9000

M
ag

ni
tu

de
 R

at
io

No. of Configs

PES−E

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0  1500  3000  4500  6000  7500  9000

M
ag

ni
tu

de
 R

at
io

No. of Configs

PES−EG

Figure 5.4: Plots of cos θ, where θ is the angle between ab initio gradients and the PES-
fitted gradients and plot of vector magnitude ratio between ab initio gradients and the
PES-fitted gradients for 300 training geometries to fit the PESs.



Chapter 5. Implementation of Simultaneous Energy-Gradients Fitting in
Permutationally Invariant Polynomial Approach 57

5.5.2 Normal mode analyses

To further examine the accuracy of the various fits, we performed normal mode analyses

and compare the frequencies with the ab initio ones. Methane has two F , one E and one

A vibrational modes. So, without permutational symmetry it would be very challenging

to reproduce these degenerate modes from PESs. However, by using the full symmetry

group of order 4!, every PES describes these degenerate modes exactly.

Comparisons are given for PES-E and PES-EG in Tables 5.4 and 5.5. First, consider

relatively large training datasets, shown in Table 5.4. Both PES-E and PES-EG produce

very precise results, with PES-EG slightly more precise. Thus, there is no significant

advantage here in using gradient data in these fits. However, for smaller datasets the

results in Table 5.5 show a significant advantage in using gradient data. Even for the

case of just 50 configurations (with energies that still span the energy range shown in

Figure 5.3) PES-EG produces results that are within 0–5 cm−1 of the ab initio ones. As

noted in the table footnote 50 energies are insufficient to obtain a PES-E.

Table 5.4: Comparison of harmonic frequencies (cm−1) of CH4 between PES-E and PES-
EG with the corresponding ab initio ones for indicated training sets.

Training Geom=600 Training Geom=2000 Training Geom=4500

Mode ab initio PES-E PES-EG PES-E PES-EG PES-E PES-EG

1 1365 1367 1366 1367 1366 1367 1366
2 1365 1367 1366 1367 1366 1367 1366
3 1365 1367 1366 1367 1366 1367 1366
4 1581 1583 1580 1582 1580 1582 1580
5 1581 1583 1580 1582 1580 1582 1580
6 3042 3039 3042 3044 3042 3044 3042
7 3147 3145 3147 3147 3146 3147 3147
8 3147 3145 3147 3147 3146 3147 3147
9 3147 3145 3147 3147 3146 3147 3147
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Table 5.5: Comparison of harmonic frequencies (cm−1) of CH4 between PES-E and PES-
EG with the corresponding ab initio ones for indicated training sets

.

Training Geom=50 Training Geom=100 Training Geom=300

Mode ab initio PES-E a PES-EG PES-E b PES-EG PES-E b PES-EG

1 1365 – 1367 1369 1366 1368 1365
2 1365 – 1367 1369 1366 1368 1365
3 1365 – 1367 1369 1366 1368 1365
4 1581 – 1582 1590 1581 1583 1581
5 1581 – 1582 1590 1581 1583 1581
6 3042 – 3037 2929 3042 3032 3042
7 3147 – 3147 3159 3146 3152 3147
8 3147 – 3147 3159 3146 3152 3147
9 3147 – 3147 3159 3146 3152 3147

a This fit was not done because the number of training data is too small;
b These use maximum polynomial order of 4, PES-EG uses maximum polynomial order

5.

These results on the normal mode frequencies continue to demonstrate the power of

energy-based PESs in obtaining quantitatively accurate harmonic frequencies, provided

the datasets are sufficiently large. The new results show the great advantage in also using

gradient data for small datasets of configurations. In all cases, it should be noted that

energies and gradient data at the equilibrium structure is not contained in the datasets.

To explore more regions of the configuration space we present results of diffusion

Monte Carlo calculations of the zero point energy next.

5.5.3 Diffusion Monte Carlo Zero Point Energy

Diffusion Monte Carlo (DMC) calculations are a good probe of the quality of a PES

in extended regions of the configuration space. One common issue with mathematical

fitting of energies is unphysical behavior in regions without data. This can be dramati-
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cally manifested by large negative values. These are referred to as holes. Generally, we

have observed that these occur for highly repulsive configurations, i.e., short internuclear

distances. Adding some data in these regions plus a re-fit generally eliminates these holes.

Here the objective is to examine the hole issue with respect to E and EG fitting. These

holes are discovered in the course of a DMC trajectory and we have flagged their number

for training sets of 100–4,500 configurations. In DMC calculations holes are benign, and

can be easily dealt with provided they are in regions where the actual potential is very

high. In unbiased DMC (which we employ) walkers are “killed” if they enter regions of

large potential. This procedure is followed if a walker encounters a hole. Thus, for all

PESs we do report a ZPE along with the number of holes encountered. The ZPE is an

average over five independent DMC trajectories and the uncertainty in the ZPE is the

standard deviation from the five independent calculations.

Results of these calculations for PES-E and PES-EG are given in Table 5.6. Consider

PES-E first. As seen, the number of holes ranges from several thousand to almost half

a million. These appear to be large values; however, they need to be considered relative

to the number of configurations sampled in the five DMC trajectories. This number is

of order 109 and so the number of holes is a very small fraction of the configurations

sampled.

Considering now the result for the PES-EGs, we observe a dramatic reduction in the

number of holes. Even for 300 and 100 training configurations, PES-EG generates only

307 and 6,369 holes and the ZPE values are good in accord with values for larger datasets.

Thus, the rigorous ZPE of CH4 can be obtained even with just 100 configuration datasets

with energy plus gradient data. As an aside, it is worth noting that the ZPE of 9730 cm−1

for these DFT-based PESs is close to the exact quantum value of 9702 cm−1 88 using an

ab initio-based PES89 of near spectroscopic accuracy.
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Table 5.6: Diffusion Monte Carlo zero-point energy (cm−1) of CH4 and the number of
holes (Nhole) for PES-E and PES-EG with the indicated number of training configurations
(Ntrain).

PES-E a PES-EG

Ntrain Nhole ZPE Nhole ZPE

4500 3529 9732± 4.5 259 9729± 2.5
3000 18069 9732± 2.3 1042 9730± 2.8
1000 17544 9727± 2.9 1147 9729± 3.5
600 2666 9728± 2.1 19 9732± 2.1
300 112481 9756± 2.0 307 9730± 1.9
100 467584 9793± 3.6 6369 9730± 2.4

a Maximum polynomial order of 4 is used for Ntrain = 100 and 300; all the remaining
fits use polynomial order 5.
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Figure 5.5: Plots of 1D cuts for distances indicated and for PES-EG and PES-E with
100 configurations.
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To examine the effectiveness of using gradients in more detail, we show in Figure 5.5

1D cuts of the potential at the minimum in the C−H and the H−H internuclear distances

for PES-E and PES-EG using 100 configurations. As seen, there is a “hole” in the latter

cut at small H−H distances. However, the local maximum in the PES-EG cut occurs at

smaller H−H distances and also at a significantly higher potential value than the one

seen in the PES-E cut.

5.5.4 PES-EG from AIMD direct dynamics

Finally, we examined the fidelity of PES-EGs obtained using energies plus gradients from

every 10th step of direct-dynamics AIMD trajectories. These were all initiated at the

global minimum. Recall that this is not the procedure we followed to obtain the datasets

used in the fits described and tested above. Specifically, we ran AIMD trajectories with

the total energy of 10,000, 20,000, and 30,000 cm−1 for 1,000 time steps. Thus, energies

and gradients at 100 configuration were used to obtain three corresponding PESs, denoted

PES-EG-1, PES-EG-2, and PES-EG-3 corresponding to the three total energies. Each was

used to perform geometry optimization, normal mode analysis and DMC calculations.

The RMS fitting errors are given in Table 5.7. These are all very small, with the

expected growth for increasing total energy of the trajectory. Normal mode frequencies,

given in Table 5.8, are in excellent agreement with the ab initio ones. As expected, the

results from PES-EG-1, which uses data from the lowest energy trajectory is the most

precise one.

The ZPEs and the number of holes from DMC calculations are given in Table 5.9. As

seen, the ZPEs from PES-EG-2 and PES-EG-3 are the same and in excellent agreement

with the ZPE shown in Table 5.6. As expected PES-EG-1 has more holes than PES-EG-2
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Table 5.7: RMS fitting error of energies (RMSE) (cm−1) and gradients (RMSG)
(cm−1/bohr) for PES-EG-1, PES-EG-2, and PES-EG-3.

PES RMSE RMSG

PES-EG-1 0.23 0.68
PES-EG-2 2.88 7.02
PES-EG-3 7.97 24.14

Table 5.8: Comparison of harmonic frequencies (cm−1) of CH4 from PES-EG-1, PES-
EG-2, and PES-EG-3 with the corresponding ab initio ones

Mode ab initio PES-EG-1 PES-EG-2 PES-EG-3

1 1365 1365 1364 1363
2 1365 1365 1364 1363
3 1365 1365 1364 1363
4 1581 1582 1578 1582
5 1581 1582 1578 1582
6 3042 3042 3041 3040
7 3147 3147 3147 3145
8 3147 3147 3147 3145
9 3147 3147 3147 3145
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and PES-EG-3. The reason for this is the small range of configurations sampled by the

AIMD trajectory at 10,000 cm−1 total energy, which is just slightly higher than the ZPE.

Table 5.9: Diffusion Monte Carlo ZPE (cm−1) and the number of holes (Nhole) for PES-
EG-1, PES-EG-2, and PES-EG-3.

PES Nhole ZPE

PES-1 1452 9731± 3.4
PES-2 873 9728± 0.9
PES-3 364 9728± 3.3

As a final test of these three PES-EGs we ran a classical trajectory using each one

at the total energy of each corresponding AIMD trajectory (propagated for 1,000 steps)

and examined how long it took for the trajectory run on the PES-EG to find a hole.

For a 10,000 cm−1 trajectory on PES-EG-1 the trajectory ran for millions of time steps

without finding a hole. For a trajectory of total energy 20,000 cm−1 run on PES-EG-2 a

hole was found at 4,000,000 time steps. Finally, the trajectory with total energy 30,000

cm−1 and run on PES-EG-3 found a hole at only 1,600 time steps. This general behavior

of the trajectories with increasing total energy is understandable because the trajectory

is of sampling larger regions of configuration space (actually phase space) with increasing

energy whereas the datasets of the PESs are limited to a fixed small number (100) of

configurations.

The fidelity of these potentials is excellent and overall we see that fitting with en-

ergies plus gradients produces high-fidelity results for this methane example even with

configuration datasets as small as 50. Of course, the data being used in the fits including

energies plus gradients is much large than using just energies. For methane the ratio of
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gradient data to energy data is 15 to 1. In general it is 3n to 1, where n is the number

of atoms. This large growth in data size is not a major concern for the MSA approach

we have described here since in our experience the linear least-squares equations can be

solved efficiently (in a few hours) for data sizes as large as several hundred of thousand.

For the methane example here, 100 configurations results in a data size of only 1600.

For a larger molecule, for example N -methyl-acetamide with 12 atoms, this number of

configurations would result in a data size of only 3700. Of course more configurations are

likely needed for larger molecules.

It is reasonable to ask if the cost of obtaining gradients is “worth it”. The answer

depends of course on the cost. From the point of view of AIMD simulations (which are

ubiquitous), there is no additional cost as gradients are required in these simulations.

So, one immediate use of the new software reported here is to simply take the output

from an AIMD simulation and create a PES. This was already demonstrated here. At

present, essentially all AIMD simulations use density functional theory and this is likely

to continue at least for the near future. The absolute accuracy of this theory is in general

below that of coupled cluster theory, at least at the level of CCSD(T). This level of theory

is typically used for PESs based on energies using PIP, PIP-NN fitting approaches and the

resultant PESs are highly accurate and predictive.34,64,65 Unfortunately, coupled cluster

energies and gradients are much expensive to calculate. However, as these calculations

increase in efficiency it is likely that these will be used in the future.

5.6 Summary and Conclusions

We presented new software to incorporate electronic energy and gradient data in the

representation of a potential energy surface using permutationally invariant polynomi-
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als and linear least-squares optimization. The new software was described in detail and

demonstrated extensively for methane. PESs were reported using just energies and en-

ergies plus gradients using a large range of training datasets spanning an energy range

from 0 to 15,000 cm−1. The data were obtained from long-time direct-dynamics calcula-

tions using efficient DFT theory (B3LYP). The performance of the PESs in terms of the

RMS errors for energies and gradients, normal mode frequencies, and rigorous diffusion

Monte Carlo zero point energy, obtained using diffusion Monte Carlo, was examined for

both training and testing datasets. A major advantage of using energy plus gradient data

was found for small configuration datasets (as small as 100 and 50) where these PESs,

denoted PES-EG, were shown to be of essentially equivalent fidelity to those obtained

using configuration datasets that are an order of magnitude larger. Unphysical regions of

the PESs (holes) sampled by PESs including gradient data was found to be much smaller

than with PESs fit to energies only.

Data from 100 configurations obtained from every tenth time step of direct-dynamics

calculations run for 1,000 time steps were used to generate PES-EGs at several total

energies. These PESs also performed very well, suggesting that the new software can be

immediately used to obtain PESs from an direct-dynamics “AIMD” simulation.

Finally, the small configuration datasets that include gradient data for PIP-PES fit-

ting appear well poised for obtaining high-dimensional ab initio PESs for molecules much

larger than CH4. Work along these lines is underway and the results will be reported

shortly.
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6.1 Chapter Abstract

We report full and fragmented potential energy surfaces (PESs) for N -methyl acetamide

that contain the cis and trans isomers and the saddle points separating them. The full

PES uses Permutationally Invariant Polynomials (PIPs) in reduced symmetry which de-

scribe the three-fold symmetry of each methyl rotor. A more efficient PES is an extension

of the fragmented PIP approach we reported recently. In this approach the set of Morse

variables is partitioned and the fragmented PIP basis is the union of the PIP basis for

each set of variables. This approach is general and can be used with Neural Network fits.

66
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The fits are done using roughly 250,000 electronic energies and gradients obtained from

direct dynamics, using B3LYP/cc-pVDZ level of theory. The full PIP basis in 66 Morse

variables with maximum polynomial order of 3, contains 8,040 linear coefficients. The

fragmented PIP basis, also with maximum polynomial of 3, contains 6,121 coefficients.

The root-mean-square (RMS) errors of both PESs are roughly 100 cm−1 for energies and

15 cm−1/bohr per atom for gradients, for energies up to roughly 45,000 cm−1, relative to

the trans minimum. Energies and normal mode frequencies of the cis and trans isomers

for the full and fragmented PESs agree well with direct calculations. The energies of the

two saddle points separating these minima are precisely given by both PESs. Diffusion

Monte Carlo calculations of the zero-point energies of the two isomers are also reported.

6.2 Overview

Developing high-dimensional, ab initio-based potential energy surfaces (PESs) remains

to be an active area of theoretical and computational research. In the past 15 years,

significant progress has been made in the development of non-parametric, machine learn-

ing approaches to fit large data set of electronic energies for molecules and clusters

that contains more than four atoms.13–16,19,21–23,25,26,30,34,62–65 These include three pop-

ular methods which are Permutationally Invariant Polynomials (PIP)26,65, Neural Net-

works (NN),14–16,19,66–69 NN with PIP inputs,30,31,34,63,64,70 Gaussian Process regression

(GPR),20,21,25 and GPR with PIP inputs.35 There is a major motivation to extend these

methods to large molecules of interest in chemistry and material science.

Our group has developed the PIP approach over the last 15 years to represent high di-

mensional PESs of molecules and molecular clusters with numerous applications.26–28,65,90

This method makes use of Morse variables, which are transformed internuclear distances.
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In 2003 this method was first applied to CH +
5 cation to construct a global PES that is

invariant with respect to 120 permutations of the five equivalent H atoms.74 Generally

the PESs make use of data sets of 104–105 scattered electronic energies, typically obtained

at the CCSD(T) level of theory. This approach has been applied to obtain PES for more

than 50 molecules, including reactive systems, and molecular clusters.65 Of particular

interest to this paper there are PESs for 7, 8, 9, and 10 atom systems, e.g., CH3CHO,

with many minima and saddle points,91 CH3CHOO,92 malonaldehyde,93 and formic acid

dimer,72 respectively.

There are bottlenecks for PIP methods as the molecular size increases. Consider first

PIP-NN approaches. These use PIPs as the input to NN fits of ab initio electronic ener-

gies.34,63 The minimum number needed to get a faithful representation of the molecular

permutational symmetry has been discussed in the literature.34,63,64,94 Zhang and co-

workers have advocated the use of a set of PIPs known as fundamental invariants (FIs)

to satisfy the above condition. The number of FIs is given by sum of the number of

primary invariant polynomials plus the number of irreducible secondary invariant poly-

nomials. The number of primary invariants is equal to the mathematical dimensionality

of the PES. If all internuclear distances (or Morse variables) are used, this number is

N(N − 1)/2 and thus is fixed by N . The number of irreducible secondary invariant poly-

nomials varies and depends on the number of atoms and the symmetry group; however,

the number can rapidly exceed the number of primary invariants.63 Zhang and co-workers

have reported a number of high-level PIP(FI)-NN PESs for as many as 6 atoms. Guo

and co-workers using PIP-NN have also reported a number of high-quality PESs. The

largest system they reported is the 7-atom reaction OH+CH4,34 where 1,331 PIPs were

used as input variables94,95 and the NN fit contained 5,929 parameters. This is clearly a

large number of PIPs for the input. Given the rapid increase in the number of PIPs or
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FIs for input of NN fits with respect to the molecule size, this number is probably at or

close to the practical limit of these approaches.

The PIP approaches we have developed,26,27,65 and which we briefly review below,

have their own practical limits; however, they are reached in a different manner from

PIP-NN approaches. The size of the input of our PIP approach (i.e., the number of Morse

variables) grows as order N2, which is much milder than the scaling of the input size of

PIP-NN PESs. The size of the PIP basis for the fit increases rapidly with the number of

atoms and the total polynomial order and the size of the appropriate symmetry group

for the molecule of interest. In general as the symmetry group increases the basis size

decreases, as illustrated in detail elsewhere.26,27 As noted above, the PIP approach has

been applied for molecules with as many as 10 atoms. This number of atoms has been

cited in the literature as the practical limit for PIP. This limit was extended using the

PIP approach for 12-atom trans-N -methyl acetamide (trans-NMA).96 The major point

of that paper, which is preliminary to the present one, was to describe a fragmented

PIP approach, with the goal of extending the PIP method to molecules even larger than

N -methyl acetamide. As an aside, we note that the 10-atom limit was also just exceeded

using PIPs in a calculations of of anharmonic rovibrational partition functions including

torsional motion.97

Before presenting the details of the new work on NMA, we make some remarks on the

the atom-centered NN approach due to Behler and Parinello,15 and now denoted high-

dimensional neural network (HD-NN). This is a powerful approach for a large number of

atoms, i.e., of order 100. The PIP-NN and HD-NN approaches were recently discussed

and compared in a very instructive way.94 Of the several systems compared, the OH+CH4

reaction was the largest one. As noted already, this 7-atom system is the largest one for

which a PIP-NN PES has been reported. This is actually a small system for HD-NN;
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however, the detailed comparison showed clearly the difference in computational effort

in the PIP-NN and HD-NN PESs. In brief, the HD-NN method consists of NN fits to

atomic energies with like atoms sharing the same NN fits. Thus for OH+CH4 there are

7 NNs. The NN fits for H contains 6,781 parameters and 5,461 for C and O. For the

PIP-NN PES there is a single NN fit, with 5,929 parameters. The input for the PIP-NN

PES consists of 1,331 PIPs, nevertheless, that PES runs considerably faster than the

HD-NN one.

At this point, it seems clear that for molecules with 10 or fewer atoms PIP approaches,

including GP ones,25,35 are probably the ones of choice, whereas for ca 100 or more

atoms the HD-NN approaches (including the “message-passing” variant98,99 developed

very recently), as well as atom-centered GP approaches,20,22 are currently the only general

and feasible ones. (A caveat however, is that if the many-body(monomer) expansion of the

PES converges rapidly, the PIP approach can and has been used with good success.65,100)

There is, in our opinion, motivation to address the gap between these limits. We

recently reported a new fragmented PIP approach to extend the PIP approach to more

than 10 atoms, perhaps tens or more atoms and thus fill this gap.96 We tested this

approach on trans isomer of N -methyl acetamide, a 12-atom molecule with 66 Morse

variables. A full PIP was used as well to provide the benchmark result and so the 10-

atom limit was modestly exceeded.

Here we extend this work by reporting full PIP and fragmented PIP PESs for NMA,96

that describe both the trans and cis isomers as well as the saddle points separating them.

The fidelity of these new PESs is examined by considering energies and harmonic normal

mode frequencies. The full PIP PES is used in diffusion Monte Carlo calculations of the

zero-point energies of the trans and cis isomers.

The choice of NMA not only serves as an example of a moderately large molecule
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to which the fragmented basis can be applied, it is a molecule that has been intensively

studied since it is the smallest molecule in the peptide linkage in polypeptides and pro-

teins. Thus, NMA has been studied both theoretically and experimentally. An important

focus of these studies of the NMA molecule is the cis-trans isomerization. Recently,

NMA have been focused on vibrational and electronic spectroscopy,101–105 solvent shell

structure,106–108 and cis-trans equilibrium.106–111 It was determined that the stability of

trans-isomer is greater than the cis-isomer and the free energy difference is about 1.5–

2.5 kcal/mol. A rough estimation of enthalpy change between these two conformers have

been reported as 2.3 kcal/mol from an infrared spectroscopic measurement of NMA in a

nitrogen matrix.112

Several theoretical investigations have been made of NMA using quantum mechanical

methods mostly focused on thermal properties106–108,110,113 and the vibrational frequencies

in gas phase.101,112,114 Many research groups have reported the ab initio calculations

on NMA at the HF and/or MP2 level of theory with 4-31G(d), 6-31G(d), 6-31G(d,p),

and 6-31++G(d,p) basis sets.101,106–108,115–117 In addition, the study of conformation and

hydrogen bonding effect of NMA and its complexes with water have reported at the DFT

level, B3LYP and/or BLYP functionals with 6-311++G(d,p) basis set110 and the results

are consistence with the experimental data or ab initio results with larger basis set. In

2001, a detailed analysis of structures, dipole moments and thermodynamic properties

of cis- and trans-NMA at HF, MP2 and DFT (B3LYP) level of theories with various

Pople type basis sets was reported.117 Thus, given this level of interest in NMA our

motivation to select NMA to develop full-dimensional and fragmented PESs should be

clear. Technically, it also is a challenge owing to the two distant methyl rotors.
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6.3 Theory

The theory of permutationally invariant polynomials is well established and has been

presented in several review articles,26–29,65 and so we give a brief review of the essential

details. In terms of a PIP basis, the potential energy, V , can be written in compact form

as

V =
M∑
i=1

cipi(y), (6.1)

where pi are permutationally invariant polynomials of internuclear distances transformed

to Morse variables, denoted y, and ci are linear coefficients which are determined using

standard linear least-squares fitting. This summation is up to a certain total polynomial

order, M .

The invariant polynomials can be obtained by symmetrizing the monomials.26,65 The

procedure for N atoms is to begin with a single monomial of the N(N − 1)/2 Morse

variables, yij = exp (−rij/λ), where rij is the inter-nuclear distance between atoms i and

j and λ is the range parameter. For the trivial example of a triatomic molecule, the

expansion in monomials is given by

V =
M∑
m=0

Cabc
[
ya12y

b
13y

c
23

]
; (m = a+ b+ c), (6.2)

where the summation is over all powers of the yij subject to the constraint that the total

degree m is at most M . Then by applying the permutations of like atoms these variables

map into another set of Morse variables and thus another monomial, but with the same

total polynomial order. A permutationally invariant polynomial is generated by summing
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over the monomials.26 So, the eq. 13.2 becomes

V =
M∑
m=0

DabcŜ
[
ya12y

b
13y

c
23

]
, (6.3)

where Ŝ is the operator that symmetrizes the monomials.26,27

Consider the A2B molecule as a simple example; atom A is labeled as 1 and 2, and B

is labeled as 3. There is only one permutation and this permutation maps the monomial

ya12y
b
13y

c
23 to the monomial ya12y

b
23y

c
13, and thus the invariant polynomial is the sum of the

two monomials ya12y
b
13y

c
23 + ya12y

b
23y

c
13. Other examples were given in detail in ref. 26.

There are two efficient approaches to generate these symmetrized monomials in a com-

pact way. The first approach is based on invariant polynomial theory36 and associated

computational algebra software MAGMA.37 Based on this theory, the invariant polyno-

mials can be efficiently factorized into polynomials of primary invariants times secondary

invariants. A library of such primary and secondary polynomials for many molecule types

has been generated.26 The second approach is based on monomial symmetrization and

obtains the symmetrized polynomials from lower-order ones recursively.27 This is called

the monomial symmetrization approach (MSA). Analytical gradients can readily be ob-

tained using the MSA approach and used for both fitting and subsequent evaluations.

The latter was in fact done by Li and coworkers in 2016 in the context of trajectory

calculations.118 We recently implemented analytical gradients into the MSA algorithm

to fit both energy and gradient simultaneously. This approach is used here and more

details can be found elsewhere.119

To motivate the fragmented PIP approach, recall that the PIP basis can be generated
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by starting with a monomial,27 given by eq. 6.4

yn1
1 yn2

2 · · · y
nl
l , l = N(N − 1)/2, (6.4)

where for simplicity the Morse variables are indexed by a single integer. These variables

go to zero as the corresponding internuclear distance goes to infinity. This feature was a

major advantage of these variables as this permits a realistic description of dissociation.

Here this feature has a different advantage. Namely, for large molecules many internuclear

distances are large and so the corresponding Morse variables are nearly zero. Thus, any

monomial with these variable is nearly zero and can be discarded from the basis. This

observation is the major motivation for the fragmented PIP approach we propose for

large molecules.

One way to take advantage of this is to start with the full basis and then remove

polynomials with very small Morse variables. However, this requires obtaining the full

fitting basis first, and this could be prohibitive for large molecules.

Recently, we proposed a way to directly fragment the PIP basis.96 This is done by

partitioning the molecule into fragments, generating the PIP basis of each fragment and

then making the the entire PIP basis as the union of these fragment bases. It is worth

noting that this approach is not the same as the fragment approach to obtain the energy

of large molecules, developed by several groups.120–122 Here we are generating a single

PIP basis for fitting the energies (and gradients) of a large molecule.

A general description of our approach is given below, followed by the details of the

application to NMA. We note that a preliminary account of the fragmented approach

was reported for the trans isomer of NMA.96 Here the application is to the cis and trans

isomers of NMA as well as the saddle points separating them.
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Figure 6.1: PIP basis size for a five-atom molecule for indicated maximum polynomial
order spanning molecule type A5 (50000) to ABDCE (11111).

To begin, consider a five-atom molecule, a small example. Figure 6.1 shows the size of

the PIP basis for molecule types A5, with maximum permutational symmetry, through

ABCDE with no symmetry for maximum polynomial order of 6 and 8. Two points are

clear: one is the large increase (roughly a factor of 5) in the basis for each molecule type

as the maximum polynomial order increases from 6 to 8. The second one is the decrease

in the basis size as the order of symmetric group increases, roughly by the size. So for

A5 the basis size is roughly 5! times smaller than the size for ABCDE, etc. However, the

complexity of the PIPs increases as the symmetry increases. Without any attempt to

factorize PIPs in A5 consist of many more monomials (5! more in the limit of very high
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polynomial order) than the for ABCDE. Thus considering the computational effort to

evaluate V in terms of the PIP basis, there is a trade-off between the reduction in the basis

size and the complexity of the polynomials. However, the effort to solve the linear least-

squares equations to determine the unknown coefficients clearly benefits from the smallest

basis. Thus there are several considerations in deciding on whether to use the maximum

possible permutational symmetry or a reduced symmetry. Of course the feasibility of the

permutation must also be considered. Clearly for CH +
5 the full permutational symmetry

must be used.

The number of variables in the PIP basis is another important parameter that impacts

the size of basis. As an example, the basis size for A2B, A2BC, and A2BCD with maximum

polynomial order of 6 is 50, 502 and 4,264. The number of variables is 3, 6 and 10,

respectively. clearly, there is highly non-linear growth in the size of the basis with respect

to the number of variables, which grows like order N2. This is of central importance when

considering larger molecules.

This growth of the PIP basis with respect to the number of Morse variables and the

polynomial order motivated us to develop the fragmented PIP approach.96 The basic idea

of the fragmented PIP approach is to partition atoms in a large molecule into fragments,

generally with some atoms in common among adjacent fragments. Then PIP bases are

determined for each fragment in terms of the corresponding set of Morse variables. Since

the number of atoms in any fragment is less than N , the total number of atoms, the

size of these PIP bases will be smaller, perhaps much smaller, than the full PIP basis,

certainly for the same maximum total polynomial order.

Considering now NMA, there are 66 Morse variables and we already noted that the

size of PIP basis using the minimal permutational symmetry using maximum polynomial

orders of 3 (8,040) and 4 (95,965).96 Clearly, polynomial orders of 6 or 8 would result in
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completely unfeasible PIP basis sizes. It is perhaps worth noting that in some contexts

NMA would not be considered a large molecule; however, it is large enough for our

purpose which is to apply and test the fragmentation methodology which we describe

next.

Figure 6.2: Structure of the trans N -methyl acetamide with atoms labeled as indicated.

To begin, we introduce an atom numbering scheme shown in Figure 13.4, which depicts

the structure of trans-NMA. As seen, the H atoms on the two methyl rotors (atoms 1–

3 and 10–12) are the most distant sets of atoms and indeed these are the ones with

very small Morse variables. So, by just omitting these variables results in a simple two

fragmentation scheme where one fragment consists of atoms 1–9, and the other consists

of atoms 4–12. There are 36 Morse variables in each fragment and there are variables and

basis functions in common. Clearly, the PIP basis for each fragment is smaller than the
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full PIP basis which contains 66 Morse variables. This fragmentation scheme was used

successfully previously with a maximum total polynomial order 3, where only trans-NMA

was considered.96

trans-NMA cis-NMA

TS1 (syn) TS2 (anti)

Figure 6.3: Structures of trans and cis N -methyl acetamide and their two isomerization
transition states.

During our research to extend the this two-fragmented PES to include the cis-NMA

isomer, as well as two saddle points (see Fig. 6.3), we found some issues, due to an

increased interaction of the distal methyl H atoms ‘H’ (1–3 and 10–12) atoms, which are

closer to each other, especially in the saddle points, than in trans-NMA. To account for

this, still using the fragmentation method, we added a third 6-atom fragment consisting

of the 6 ‘H’ atoms. This fragment of 33 symmetry contains 15 Morse variables and the
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corresponding PIP basis is much smaller compared to the 3111111 PIP basis. All results

below use this 3-fragment scheme.

The PIP fitting bases of the fragments were generated using the latest MSA software

which incorporates gradients.123 For the first two fragments, 3111111 permutational sym-

metry is used, while for third fragment 33 permutational symmetry is used. We denote

the PIP basis for each fragment as {pi}, {qj}, and {rk}, and the Morse variables in each

fragment as y1, y2, and y3. Thus, in this 3-fragment scheme the potential is given by

V =
∑
i

aipi(y1) +
∑
j

bjqj(y2) +
∑
k

ckrk(y3), (6.5)

i.e., the fitting basis of the molecule consists all the p, q and r. We note that, as written,

this fitting basis has some redundancy. That is, there are some PIPs that are the same

in {pi}, {qj} and {rk}. The number of redundant PIPs is a small fraction of the total

PIP fragmented basis given above. They can in principle be removed although with some

non-trivial programming effort. Practically, the redundancy is not an issue as the number

of redundant PIPs is relatively small, as just noted, and also because the LAPACK

software we use (DGELSS) to solve the least-squares problem is based on singular value

decomposition, which can deal numerically with this rank-deficient least-squares problem.

Before presenting the computational details, we make some general remarks about

the fragmentation approach. First, the above expression for a three-fragment PIP basis

is a small (but adequate for the present purposes) example of a general fragmentation.

Clearly, for a molecule with many more than 12 atoms more fragments would appear. As

long as the number of atoms in each fragment is roughly 10 or less the software we have

developed can efficiently generate the PIP basis. Fragments do not have to be adjacent, as

illustrated here for the distal methyl groups. Also, it should be clear that the symmetry
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and maximum polynomial order for each fragment can be independently chosen.

Finally, we make some remarks about the generality of the fragmented PIP approach.

Recall this approach begins by partitioning the Morse variables and then forming PIP

basis for each set of Morse variables, and finally forming the union of PIP basis. It appears

that a similar strategy can be used with NNs and GPs. For example, for PIP-NNs, the

analogue of eq. 6.5, would be to express the potential by

V = NN1(y1) + NN2(y2) + · · ·+ NNi(yi), (6.6)

where in this equation NNi is a PIP neural network in the variables yi. The optimization

of the NN parameters then proceeds in the usual way. Also, the input for each PIP-

NN would be the appropriate PIP basis for the variable set, yi. Clearly, this input size

could be much smaller than the one for a single PIP-NN fit in all Morse variables.

For example, for NMA (recall, with 66 Morse variables) there are 3636 fundamental

invariants, using 31111113 symmetry. This is a large number and clearly comes with

significant computational overhead to evaluate the PIP-NN PES. Using a fragmented

PIP-NN approach the size of the input for each term would be significantly smaller:

there are only 134 FIs for the 9-atom fragment (3111111 symmetry) and 118 for the

6-atom fragment (33 symmetry).

6.4 Computational Details

The data sets of energies and gradients were generated from ab initio molecular dy-

namics (AIMD) simulations at several total energies by using microcanonical sampling

(NVE). Initial conditions were chosen to obtain wide coverage of the configuration space
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Figure 6.4: Distributions of electronic energies (cm−1) of trans- and cis-isomer and two
isomerization TSs relative to their saddle points energy from their corresponding AIMD
trajectories.

for each isomer and the transition states. These AIMD trajectories were propagated

for 3,000 time steps with the step size 5.0 a.u. (about 0.12 fs) and with total energies

of 1,000, 5,000, 10,000, 20,000, 30,000, 40,000, and 50,000 cm−1. The geometries and

their corresponding 36 gradient components were recorded every 10 time steps from each

trajectory to generate the fitting data set. These calculations were done at the efficient

DFT(B3LYP)/cc-pVDZ level of theory, using Molpro quantum chemistry package.87 The

final data set consists of 6,607 energies and corresponding 237,852 gradients for a total

size of 244,459. The distributions of the electronic energies of trans and cis-isomers and

two isomerization TSs are shown in Figure 6.4. As seen, the distribution is very broad;

both trans and cis-isomers cover the energy range up to 40,000–45,000 cm−1 and the

two TSs cover the energy range up to 10,000–14,000 cm−1, relative to the TS reference

configuration energy.
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The full PIP basis to fit the PES is generated using MSA software with a reduced

permutational symmetry of 31111113 (this describes the identity of the hydrogen atoms

within a methyl group which is essential to get the three fold torsional barrier) and a

maximum polynomial order of 3. This leads to 8,040 linear coefficients (PIP basis), which

are determined by solving a linear least-squares problem. The value of range parameter,

λ = 2.0 bohr, is used during the fit. The RMS errors of this fitted PES are 126.4 cm−1

for all energies and 14 cm−1/bohr per atom for gradients respectively.

The fragmented PIP basis is generated using our MSA software with a maximum

polynomial order of 3. As noted already, this fragmented scheme contains two 9-atom

fragments and a single 6-atom fragment. For the first two 9-atom fragments, the permuta-

tional symmetry 3111111 is used, while for the remaining 6-atom fragment, permutational

symmetry 33 is used. This leads to 3,028 PIP bases for each of the 9-atom fragment and

65 PIP bases for the 6-atom fragment. This results in a total of 6,121 linear coefficients,

which are determined by solving a linear least-squares problem. The RMS errors of this

fitted PES are 148.4 cm−1 for energies and 15 cm−1/bohr per atom for gradients respec-

tively. These RMS errors are very similar to the full-PIP PES.

Geometry optimization, normal-mode analysis are performed to examine the fidelity

of these fitted PESs. This full PES is also applied to calculate rigorous zero-point energies

(ZPEs) of both cis- and trans-NMA using diffusion Monte Carlo (DMC) method. The

concept behind DMC is to solve the time-dependent Schrödinger equation in imaginary

time.55,56,124 This is done by simulating a random walk of many replicas, also called “walk-

ers”, of the molecule, using a birth/death processes. Each DMC trajectory is propagated

for 20,000 time steps using 10,000 random walkers with the step size 5.0 a.u.; 10,000 steps

are used to equilibrate the walkers, and the reference energies in the remaining 10,000

steps are used to compute the ZPE. For each isomer, 15 DMC simulations were carried
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out, and the final ZPE is the average of the 15 simulations. Statistical uncertainty of the

zero-point energy is defined as the standard deviation of DMC energies over the total

number of simulations. This is written as

∆E =

√√√√ 1

15

15∑
i=1

(Ei − Ē)2, (6.7)

where Ē is the average energy over the 15 simulations.

6.5 Results and Discussion

6.5.1 Full PIP PES

The PES is generated by using the full PIP basis is denoted full-PES. First, this full-PES

is applied for the geometry optimization of both trans and cis-isomers and their two

TSs. The structures of these isomers and saddle points are shown below, along with the

energies relative to the trans-NMA.

As seen, trans-NMA is more stable than cis-NMA in accordance with previous re-

ported results. Comparison of the cis-trans energy gap with the various theoretical results

as well as the experimental value is shown in Table 6.1 and the agreement with our PES

result is very good. We get this cis-trans energy gap as 818 cm−1 (2.32 kcal/mol) from

our PES whereas the experimental value is 804 cm−1 (2.30 kcal/mol).112

Next to examine the vibrational frequency predictions of the PES, we performed

normal mode analyses for both trans and cis-NMA and their two isomerization TSs.

Comparisons of the harmonic frequencies for trans and cis-NMA and their two TSs with

their corresponding ab initio ones are given in Tables 6.2 and 6.3. The agreement for
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Figure 6.5: Schematic of the N-methyl acetamide potential energy surface showing sta-
tionary points and energies (kcal/mol), relative to the minimum, from the new fitted
PES and ab initio energies (shown in parentheses).

Table 6.1: Comparison of cis-trans energy difference (∆E) at different level of theory
and the corresponding experimental value.

Method ∆E (cm−1) ∆E (kcal/mol)

HF/6-31G(d) 874 2.50
HF/6-311+G(d,p) 983 2.81
B3LYP/6-311+G(d,p) 867 2.48
MP2/6-311+G(d,P) 794 2.27
B3LYP/cc-pVDZ 818 2.32
Experiment 804 2.30
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trans and cis-NMA with the direct B3LYP/cc-pVDZ frequencies is overall very good;

the maximum error is 35 cm−1 but most of the frequencies are within several cm−1

of the ab initio ones. Somewhat larger differences are seen for the two isomerization

TSs; however, the mean absolute deviations (MAD) are 28 and 24 cm −1 respectively

for TS1 and TS2. Recalling that only 6,607 geometries are used in the data sets, the

good results for harmonic frequencies continue to demonstrate the power of simultaneous

energy-gradient fitting method in obtaining such accurate harmonic frequencies.

Now we present the results of diffusion Monte Carlo calculations of the zero-point

energy (ZPE) for both cis and trans isomers to explore more regions of the configuration

space. Diffusion Monte Carlo calculation is a good probe of the quality of a PES in

extended regions of the configuration space. We know one common issue in potential

fitting is the unphysical behavior in regions without data and this can be dramatically

manifested by large negative values. These are referred to as holes in PES. Generally, we

have observed that these occur for highly repulsive configurations, i.e., short internuclear

distances. Adding some data in these regions plus a refit generally eliminates these holes.

The main purpose to present DMC calculations is to examine how our PES correctly

describe the high energy regions for both isomers.

The ZPEs for trans-NMA and cis-NMA are 21905± 16 and 21934± 18 cm−1 respec-

tively, whereas the harmonic ZPEs are 22206 and 22212 cm−1.In these DMC calculations

the holes detected in some trajectories is very small in number compared to the total

number of configurations sampled in a trajectory. The number of holes is around 5− 20

where the total number of configurations sampled is on the order of 108. During the DMC

propagation when a random walker encounters a hole (and thus in reality enter regions

of large potential), we kill that walker and let the trajectory continue to propagate. This

procedure follows our unbiased DMC algorithm. As an aside we believe this is the largest
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Table 6.2: Comparison of harmonic frequencies (in cm−1) between PES and the corre-
sponding ab initio (B3LYP/cc-pVDZ) ones of trans and cis-NMA.

trans-NMA cis-NMA

Mode PES ab initio PES ab initio

1 38 46 76 83
2 119 109 123 144
3 151 160 166 160
4 290 294 286 283
5 393 428 468 471
6 433 442 518 517
7 621 625 575 573
8 629 634 624 627
9 867 871 815 806

10 995 990 977 979
11 1038 1037 1043 1036
12 1113 1111 1087 1087
13 1132 1138 1137 1128
14 1167 1158 1187 1192
15 1260 1263 1330 1330
16 1391 1375 1393 1387
17 1415 1412 1439 1433
18 1434 1439 1447 1447
19 1474 1459 1462 1451
20 1485 1467 1467 1460
21 1491 1472 1478 1471
22 1552 1557 1508 1500
23 1772 1775 1798 1785
24 3019 3013 3001 2990
25 3040 3040 3040 3036
26 3072 3070 3069 3079
27 3125 3123 3107 3102
28 3127 3127 3116 3120
29 3137 3150 3155 3162
30 3631 3627 3592 3585
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Table 6.3: Comparison of harmonic frequencies (in cm−1) between PES and the corre-
sponding ab initio (B3LYP/cc-pVDZ) ones of TS.

TS1 TS2

Mode PES ab initio PES ab initio

1 194i 157i 189i 139i
2 149 170 143 112
3 177 228 174 226
4 232 278 219 287
5 376 394 408 430
6 456 525 532 554
7 628 624 562 601
8 712 756 642 721
9 811 815 803 800

10 973 980 957 971
11 1036 1004 1024 1004
12 1083 1040 1080 1043
13 1088 1136 1125 1132
14 1159 1159 1158 1155
15 1234 1216 1200 1190
16 1367 1360 1355 1360
17 1400 1402 1363 1416
18 1436 1422 1428 1427
19 1444 1425 1440 1433
20 1479 1439 1465 1453
21 1503 1459 1492 1469
22 1527 1488 1501 1488
23 1802 1701 1845 1727
24 3020 2996 2968 2959
25 3050 3027 3032 3030
26 3064 3074 3071 3072
27 3104 3091 3086 3095
28 3111 3102 3106 3112
29 3158 3151 3151 3152
30 3461 3397 3439 3403
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molecule for which a DMC calculation of the ZPE has been reported.

Next, we show the torsional potentials of the two methyl rotors of both trans and cis-

isomers of NMA in Fig. 6.6 (a) and Fig. 6.7 (a), respectively, as a function of the torsion

angles of the two methyl rotors. CH3(CO) represents the CH3 group attached to C−−O

group and CH3(NH) represents the CH3 group attached to N−H. In trans-NMA, the

energy barriers of the CH3(CO) rotor is 37.4 cm−1 and for the CH3(NH) rotor it is 255.9

cm−1. This result is close to the one obtained directly at B3LYP/cc-pVDZ calculations,

namely 56.6 and 185.9 cm−1, obtained by single-point calculations at the minimum and

torsional barrier.

We see a flip of these two rotational barriers when we consider the cis-isomer of NMA.

The energy barriers of CH3(CO) rotor is 360.6 cm−1 and CH3(NH) rotor is 61.3 cm−1 for

the cis-NMA. This result also matches with the corresponding single point calculations

at B3LYP/cc-pVDZ level, namely 301.4 and 67.6 cm−1. Here, our purpose is to describe

the 3-fold symmetry of the two methyl rotors qualitatively as the relevant permutational

symmetry is incorporated in the PES and we are satisfied with these results.

6.5.2 Fragmented PIP PES

The fragmented basis PES using the 3-fragment scheme is denoted simply by frag-PIP

PES. As a first test of this frag-PES, geometries of both trans and cis-isomers and the

two TSs were optimized. Comparison of the relative energies obtaining from the two

PESs (full- and frag-) is shown in the Table 6.4 along with the ab initio ones. It is seen

that the relative energies from full-PES and frag-PIP ones are very close to each other

and also match with the corresponding ab initio ones.

We also performed normal mode analyses using the frag-PIP PES at optimized ge-
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NMA from the full (a) and frag (b) PIP PESs .
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Table 6.4: Comparison of relative energies (in cm−1) of N -methyl acetamide stationary
points from full-PES and frag-PIP PES with the ab initio ones.

Molecule PIP PES frag-PIP PES ab initio

trans-NMA 0 0 0
cis-NMA 818 800 838

TS1 6211 6196 6391
TS2 7376 7353 7579

ometries of both trans and cis-NMA and their two TSs. A direct comparison of the

harmonic frequencies for trans and cis-NMA and their two TSs from the full-PES and

frag-PIP PES are given in Table 6.5 and 6.6. As seen, the frequencies from the frag-PIP

PES are in good agreement with those from the full-PES, which as noted above are in

good agreement with direct B3LP frequencies.

As we mentioned already, previously a 2-fragment scheme was employed to fit the PES

of trans-NMA and the results were encouraging.96 However, this 2-fragment scheme is

unable to describe the cis-NMA and the two TSs. Specifically, using this two fragmented-

PIP PES, we get very good normal mode frequencies for the trans-isomer in comparison

to those from the full-PES, while for the cis-NMA and the two TSs we get energies that

differ by 500–900 cm−1 from the full-PES results and large deviations for the normal

mode frequencies. In fact we even could not locate first-order saddle points for TS1 and

TS2. These failures are due to neglect of the inter-methyl interactions between the 3 ‘H’

atoms of two methyl groups (1–3 and 10–12). These groups of atoms are closer in cis-

NMA and TSs than in trans-NMA. Therefore, the addition of the third fragment (these

six ‘H’ atoms) is necessary and we obtain very good results for geometry optimization

and harmonic frequency calculations. As noted already, the third fragment is the smallest

possible one that describes these six atoms with reduced 33 symmetry.
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Table 6.5: Comparison of harmonic frequencies (in cm−1) between full-PES and frag-PIP
PES for trans and cis-NMA.

trans-NMA cis-NMA

Mode PIP PES frag-PIP PES PIP PES frag-PIP PES

1 38 30 76 76
2 119 113 123 117
3 151 149 166 166
4 290 289 286 285
5 393 388 468 468
6 433 435 518 515
7 621 620 575 576
8 629 630 624 621
9 867 868 815 814
10 995 990 977 977
11 1038 1038 1043 1045
12 1113 1114 1087 1090
13 1132 1134 1137 1131
14 1167 1164 1187 1189
15 1260 1260 1330 1330
16 1391 1382 1393 1389
17 1415 1418 1439 1431
18 1434 1431 1447 1451
19 1474 1478 1462 1459
20 1485 1485 1467 1466
21 1491 1497 1478 1485
22 1552 1554 1508 1506
23 1772 1770 1798 1798
24 3019 3018 3001 3007
25 3040 3045 3040 3040
26 3072 3070 3069 3068
27 3125 3128 3107 3109
28 3127 3130 3116 3113
29 3137 3142 3155 3160
30 3631 3630 3592 3594
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Table 6.6: Comparison of harmonic frequencies (in cm−1) between full-PES and frag-PIP
PES for the TSs.

TS1 TS2

Mode PIP PES frag-PIP PES PIP-PES frag-PIP PES

1 194i 197i 189i 191i
2 149 151 143 140
3 177 174 174 173
4 232 226 219 200
5 376 369 408 406
6 456 447 532 531
7 628 624 562 564
8 712 710 642 641
9 811 812 803 805
10 973 976 957 971
11 1036 1036 1024 1002
12 1083 1087 1080 1079
13 1088 1196 1125 1113
14 1159 1155 1158 1145
15 1234 1236 1200 1193
16 1367 1368 1355 1349
17 1400 1400 1363 1361
18 1436 1434 1428 1427
19 1444 1448 1440 1434
20 1479 1476 1465 1462
21 1503 1497 1492 1484
22 1527 1516 1501 1493
23 1802 1801 1845 1846
24 3020 3021 2968 2973
25 3050 3044 3032 3033
26 3064 3072 3071 3070
27 3104 3109 3086 3092
28 3111 3110 3106 3103
29 3158 3163 3151 3159
30 3461 3467 3439 3449
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We also computed the torsional potential of two methyl rotors for both trans and

cis-isomer using the frag-PIP PES. The energy barriers of CH3(CO) rotor is 18.4 cm−1

and CH3(NH) rotor is 243.6 cm−1 for the trans-NMA molecule and for cis-NMA these

are 370.9 cm−1 and 83.7 cm−1 respectively. These results agree well with the full-PES

results. The potential energy as a function of the torsional angles of the two methyl rotors

of both trans and cis-isomers of NMA are shown in Fig. 6.6 (b) and Fig. 6.7 (b).

Previously, we reported the torsional potential and harmonic frequencies of trans-

NMA using the PES having two 9-atom fragments and the result were generally very

good.96 If we apply this 2-fragment basis to fit the present data set and to compute the

torsional barriers of cis-NMA, we get 346.6 cm−1 for CH3(CO) rotor and 104.7 cm−1 for

CH3(NH) rotor respectively. So, the 2-fragment PES is also able to describe the torsional

potentials well but not as well as the 3-fragment one. Another noticeable improvement

in this work over the previous fragmented PES is the normal mode frequencies of trans-

NMA. These frequencies were reported previously both for fragmented and full PESs and

in both cases we got an imaginary frequency which is the lowest frequency mode. How-

ever, in the present work we get all real frequencies for trans-NMA for both fragmented

PES and full PES. The reason behind this improvement is that the number of training

geometries used to fit both PESs is larger than the previously reported PESs.

Recall that the PIP basis for each 9-atom fragment contains 3,028 terms with 36

Morse variables. The small 6-atom fragment of 33 symmetry contains 15 Morse variables

and 65 terms. Clearly then this fragmented basis is more efficient to evaluate than the

full PIP basis which contains 8,040 terms. A good test of the speed difference between

the full and fragmented PESs is a standard DMC trajectory with the same number of

random walkers and propagation time. The frag-PIP PES takes about 429 sec to finish

a DMC trajectory calculation, while the full-PES takes about 793 sec which is almost
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twice. This factor is larger than the ratio of the sizes of the basis. The reason is that

some of PIPs in the full basis are more complex than those in the fragmented PIP basis

and thus more costly to evaluate. The ZPEs obtained using the frag-PIP PES are within

the statistical uncertainty of the DMC ZPEs reported above using the full PES.

6.6 Summary and Conclusions

In summary, we applied simultaneous energy-gradient fitting to obtain a full dimensional

potential energy surface of 12-atom N -methyl acetamide molecule using both full and

fragmented permutationally invariant polynomial basis. Both full- and frag-PIP PESs

accurately describe trans and cis isomers and the two saddle points separating them.

The frag-PIP PES uses a basis obtained from three fragments of NMA, namely two

9-atom fragments describing the 3H atoms on each methyl rotor and a third 6-atom

one describing the 6 H atoms on two methyl groups. The quality of the frag-PIP PES is

verified by tests against the full-PIP PES as well as direct DFT calculations. As expected,

the frag-PIP PES is significantly faster than the full one. The approach of partitioning

the Morse variables, which is a prerequisite for the fragmented PIP approach, is general

and can be used with other fitting methods. Thus, the fragmented fitting approach can

be applied to many molecules with more than 10 atoms.



Chapter 7

Implementation of ∆-Machine

Learning in Permutationally

Invariant Polynomial Fitting to

Obtain CCSD(T) Level Accuracy

7.1 Chapter Abstract

“∆-machine learning” refers to a machine learning approach to bring a property such

as a potential energy surface (PES) based on low-level (LL) density functional theory

(DFT) energies and gradients to close to a coupled cluster (CC) level of accuracy. Here

we present such an approach that uses the permutationally invariant polynomial (PIP)

method to fit high-dimensional PESs. The approach is represented by a simple equation,

in obvious notation VLL→CC = VLL + ∆VCC−LL, and demonstrated for CH4, H3O+, and

trans and cis-N -methyl acetamide (NMA), CH3CONHCH3. For these molecules the LL

96
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PES, VLL, is a PIP fit to DFT/B3LYP/6-31+G(d) energies and gradients and ∆VCC−LL

is a precise PIP fit obtained using a low-order PIP basis set and based on a relatively

small number of CCSD(T) energies. For CH4 these are new calculations adopting an

aug-cc-pVDZ basis, for H3O+ previous CCSD(T)-F12/aug-cc-pVQZ energies are used,

while for NMA new CCSD(T)-F12/aug-cc-pVDZ calculations are performed. With as

few as 200 CCSD(T) energies, the new PESs are in excellent agreement with benchmark

CCSD(T) results for the small molecules, and for 12-atom NMA training is done with

4696 CCSD(T) energies.

7.2 Overview

Correcting ab initio-based potential energy surfaces (PESs) has been a long-standing

goal of computational chemistry. Several approaches dating from 30 years ago have been

suggested. In one, a correction potential is added to an existing PES and parameters

of the correction potential are optimized by matching ro-vibrational energies to experi-

ment.125–127 This approach relies on being able to calculate exact ro-vibrational energies

to make the comparison with experiment robust. Thus, it has only been applied to tri-

atomic molecules and it is limited to these and possibly tetratomics. Another approach

is to modify an existing potential using scaling methods that go under the heading of

“morphing”.128–130 An impressive example is a PES for HCN/HNC reported by Tennyson

and co-workers131 who morphed a CCSD(T)-based PES.132

More recent approaches using machine learning (ML) aim to bring a PES based on

a low-level of electronic theory to a higher level. As the field moves to consideration of

larger molecules and clusters, where high-level methods are prohibitively expensive, the

motivation for doing this is obvious. There are two classes of such approaches, one is
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“∆-machine learning” (∆-ML) and the other is “transfer learning”.133 ∆-ML, which is

of direct relevance to the present paper, seeks to add a correction to a property obtained

using an efficient and thus perforce low-level ab initio theory.134–139 This approach in-

cludes an interesting, recent variant based on a “Pople” style composite approach.135 In

this sense the approach is related, in spirit at least, to the correction potential approach

mentioned above, when the property is the PES. However, it is applicable to much larger

molecules.

The transfer learning approach has been developed extensively in the context of neural

networks133 and so much of the work in that field has been brought into chemistry.136–140

The idea of transfer learning comes from the fact that knowledge gained from solving one

problem can often be used to solve another related problem. Therefore, a model learned

for one task, e.g., a ML-PES fit to low-level electronic energies/gradients, can be reused

as the starting point of the model for a different task, e.g., an ML-PES with the accuracy

of a high-level electronic structure theory.

Most work using transfer learning or ∆-ML has been on developing general transfer-

able force fields with application mainly in the area of thermochemistry and molecular

dynamics simulations at room temperature and somewhat higher. Meuwly and co-workers

have used transfer learning to improve neural network PESs for malonaldehyde, acetoac-

etaldehyde and acetylacetone.139

Here we report a ∆-ML approach for PESs, using the permutationally invariant poly-

nomial (PIP) approach. The PIP approach has been applied to many PESs for molecules,

including chemical reactions, dating back roughly 15 years. For reviews see Refs. 26,29,65.

Recent extensions of the PIP software to incorporate electronic gradients141,142 have ex-

tended the PIP approach to amino acids (glycine)143 and molecules with 12 and 15 atoms,

e.g., N -methyl acetamide,142,144,145 tropolone,146 and acetylacetone,147 respectively. As is
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widely appreciated in the field, incorporating gradients into fitting requires efficient, low-

level electronic structure methods, such as density functional theory or MP2, as these

provide analytical gradients.148 These levels of theory were used for the PES fits of the

three molecules mentioned above.

Our approach is given by the simple equation

VLL→CC = VLL + ∆VCC−LL, (7.1)

where VLL→CC is the corrected PES, VLL is a PES fit to low-level DFT electronic data,

and ∆VCC−LL is the correction PES based on high-level coupled cluster energies. The

assumption underlying the hoped-for small number of high-level energies is that the dif-

ference ∆VCC−LL is not as strongly varying as VLL with respect to nuclear configuration.

We demonstrate the efficacy and high-fidelity of this approach for two small molecules,

H3O+ and CH4, and for 12-atom N -methyl acetamide (NMA). In all cases VLL is a PIP

fit to DFT energies and gradients and ∆VCC−LL is a PIP fit to a much smaller data base

of differences between CCSD(T) and DFT energies.

Unlike H3O+ and CH4, for NMA there is no previous CCSD(T)-based PES and so

the present CCSD(T)-corrected one is, we believe, the most accurate one available.

7.3 Computational Details

In order to develop a corrected PES we need to generate a data set of high and low-

level energies for training and testing. In this study we need both DFT and CCSD(T)

data sets. Training is done for the correction PES ∆VCC−LL and testing is done for the

corrected VLL→CC . Do note that this two-step “training and testing” is on different data
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sets. Our objective is to see the impact of the training data set size on the fidelity of the

corrected PES VLL→CC for CH4 and H3O+.

For CH4 we take the DFT data sets from our recently reported work where the total of

9000 energies and their corresponding gradients were generated from ab initio molecular

dynamics (AIMD) simulations, using the B3LYP/6-31+G(d) level of theory.141 In that

work we reported PES fits using a number of subsets of the DFT data which span

the energy 0–15000 cm−1. This PES was developed to demonstrate new PIP software

for fitting energies and gradients.123 This PES is based on precise fitting energies and

gradients at 600 configurations. Here, this PES is brought to the CCSD(T) level of

accuracy.

We generate a data set that contains CCSD(T)/aug-cc-pVDZ energies at 3000 con-

figurations, taken from the previously reported DFT data.141 A number of training data

sets and one test data set, which are subsets of this 3000 data, are employed to examine

the ∆-ML procedure. Training and testing is done on several partitions of this dataset.

Figure 7.1 shows the distribution of CCSD(T) and DFT eneriges for the traing data set

of 600 and test data set of 2000. As seen the range of these energies is 0 to roughly 15

000 cm−1, relative to respective minima. The CCSD(T) and DFT distributions look very

similar and this is because the difference in these energies (relative to their respective

minima) are much smaller than the range of the energies.

We train ∆VCC−LL using the difference of CCSD(T) and DFT absolute energies and

then test on a different set. A variety of training data sets were used and details of one

example are shown in Figure 7.2. There we plot ∆VCC−LL versus the DFT energies for a

training set of 600 configurations. Testing the fit is done on a larger dataset of 2000 energy

differences, shown in the lower panel of this figure. For clarity we reference ∆VCC−LL to

the minimum of the difference of the CCSD(T) and DFT energies (which is roughly -19
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Figure 7.1: Distribution of energies (cm−1) relative to the minimum value of CH4 for
both CCSD(T) and DFT training and test data sets.
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820 cm−1). As seen, the energy range of ∆VCC−LL is about 1600 cm−1, which is much

smaller than the DFT energy range relative to the minimum value (which is roughly 15

000 cm−1). Also note the training dataset looks like a “thinned” version of the larger test

dataset.

−19800

−19600

−19400

−19200

−19000

−18800

−18600

−18400

 0  2000  4000  6000  8000  10000  12000  14000

∆E
 (

cm
−

1 )

DFT Rel. Energy (cm−1)

Train

−20000

−19800

−19600

−19400

−19200

−19000

−18800

−18600

−18400

−18200

 0  2000 4000 6000 8000 10000 12000 14000 16000 18000

∆E
 (

cm
−

1 )

DFT Rel. Energy (cm−1)

Test

Figure 7.2: Plot of ∆VCC−LL (relative to the reference value i.e. -19 820 cm−1) vs DFT
energy relative to the CH4 minimum value with the indicated number of training and
test data set.

∆VCC−LL is fit using a dataset of 600 energies using a PIP (describing the 4! permu-

tations of the H atoms) basis with maximum polynomial order 5. This results in a basis

of 208 terms. The linear coefficients were determined by solving the linear least-squares
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problem; the fitting RMS error of this ∆VCC−LL fit is 0.18 cm−1. The fit was tested on

the 2000 energy differences. The RMS test error in this case is 0.79 cm−1.
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Figure 7.3: Distribution of DFT energies (cm−1) relative to the minimum value of Hy-
dronium ion with indicative training data set.

For H3O+ CCSD(T) energies are available from our previously reported PES, which
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is a fit to 32 142 CCSD(T)/aug-cc-pVQZ energies.149 From this large CCSD(T) data set,

four different datasets are generated with energies in the range 0 to 24 000 cm−1 for new

DFT calculations of energies and gradients, and the remaining geometries are considered

as the corresponding test data set. These new DFT calculations are done at the efficient

B3LYP/6-311+G(d,p) level of theory, using the Molpro quantum chemistry package.87

Figure 7.3 shows the distribution of DFT energies for the all the four different sets of

training data. As seen the range of these energies is 0 to roughly 23 000 cm−1, relative to

the minima for all the training sets. Note, these DFT configurations span the same large

range of configurations as the much larger CCSD(T) ones, but have less dense sampling.

A data set of 1000 DFT energes and their corresponding gradients are used to fit the

B3LYP/6-311+G(d,p) PES. We use a maximum polynomial of 7 that results total of

348 PIP basis functions. The corresponding linear coefficients are determined by solving

linear least-square problem. The RMS errors of this fitted PES are 8.76 cm−1 for all

energies and 2.13 cm−1/bohr per atom for gradients.

For NMA we make use of previous DFT/B3LYP/cc-pVDZ energies and the corre-

sponding PES that spans both the trans and cis isomers and barriers separating them.145

New CCSD(T)-F12/aug-cc-pVDZ calculations are done at a sparse set (5430) of config-

urations that span the full range of configurations used in the previous work. This 5430

new CCSD(T) dataset is partitioned into a training data of 4696 geometries and the test

data of 734 geometries. Figure. 7.4 shows the distribution of CCSD(T)-F12/AVDZ ener-

gies for the training and test data sets. Both the training and test data are distributed to

a wide energy range that spans both the trans and cis isomers and barriers separating

them. These datasets are used to obtain the ∆VCC−LL PES.

The PIP fits of ∆VCC−LL are done using our recent monomial symmeterization soft-

ware.123,141 Some details of the PIP bases are given in the next section. We note that



Chapter 7. Implementation of ∆-Machine Learning in Permutationally Invariant
Polynomial Fitting to Obtain CCSD(T) Level Accuracy 105

 0

 100

 200

 300

 400

 500

 600

 700

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000

N
um

be
r

Energy (cm−1)

Train

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000

N
um

be
r

Energy (cm−1)

Test

Figure 7.4: Distribution of CCSD(T)-F12/AVDZ energies (cm−1) relative to the mini-
mum value of N -methyl acetamide for both training and test data sets.

they are all small relative to typical PIP bases needed for precise fitting of the full PES

for these molecules.

For all molecules the data sets are partitioned into several training and testing subsets

to examine how few data are needed for training to get satisfactory results.

7.4 Results

We present root mean square (RMS) errors for VLL→CC relative to direct CCSD(T)

energies for a variety of ∆VCC−LL fits. In addition, comparisons are made with direct

CCSD(T) results for the geometry and harmonic frequencies of relevant stationary points.

To assess the performance of the present approach these results are placed alongside the

corresponding DFT ones.
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7.4.1 CH4

To obtain the corrected PES VLL→CC we add ∆VCC−LL to one of our previously reported

DFT-based PESs for CH4.141 The fitting RMS error of that VLL DFT PES is 2.55 cm−1.

To examine how well the corrected PES VLL→CC reproduces the CCSD(T) energies we

plot the energies of VLL→CC vs the direct CCSD(T) energies for both training and test

data sets in Figure. 7.5. As seen, the correspondence between the two is excellent. The

overall RMS differences are 2.5 and 3.2 cm−1 for the training and testing set, respectively.

This is already an indication of the success of the present approach to correct the DFT-

based PES and bring the corrected PES very close to CCSD(T) energies.

To examine the robustness of these results, fits of ∆VCC−LL were also done using

datasets of 1000, 300, and 100 energies. The corresponding RMS differences between

the VLL→CC and CCSD(T) energies are given in Table 7.1. In case of the training set

with NTrain = 1000, we use a maximum polynomial order of 5 to fit ∆VCC−LL, and this

leads to a basis of 208 terms. For the training data set of 300 and 100, we reduce the

maximum polynomial order to avoid overfitting. As seen, the RMS errors are similar for

all the training data sets. This is certainly notable for the training set of only 100 energy

differences, where the RMS error is only 4.9 cm−1 for the 2000 test energies up to 15000

cm−1. In this case the PIP basis for ∆VCC−LL contains only 30 terms.

Next consider the performance of the ∆-ML approach for the equilibrium geometry

and normal mode frequencies. The results are compared to the CCSD(T) and DFT

ones in Table 9.1. As seen, the corrected PES VLL→CC produces results in excellent

agreement with direct CCSD(T) ones and also provides a large improvement compared

to the DFT PES. Perhaps most impressive is the excellent accuracy achieved even with

the smallest training dataset of 100 energies. For example, the rms deviation for the
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Figure 7.5: Two upper panels show energies of CH4 from VLL→CC vs direct CCSD(T)
ones for the indicated data sets. The one labeled “Train” corresponds to the configura-
tions used in the training of ∆VCC−LL and the one labeled “Test” is just the remaining
configurations. Corresponding fitting errors relative to the minimum energy are given in
the lower panels.
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Table 7.1: RMS error between direct CCSD(T) and VLL→CC energies (RMSE) (cm−1)
with the indicated number of test (NTest) configurations for CH4, where training on
∆VCC−LL is done for various training data (NTrain).

NTrain NTest RMSE

1000a 2000 3.14
600a 2000 3.22
300b 2000 4.41
100c 2000 4.88

a ∆VCC−LL is trained with maximum polynomial order of 5, basis size
of 208.

b ∆VCC−LL is trained with maximum polynomial order of 4, basis size
of 83.

c ∆VCC−LL is trained with maximum polynomial order of 3, basis size
of 30.

Table 7.2: Comparison of differences, δ, in bond lengths (angstroms) and harmonic fre-
quencies (cm−1) relative to direct CCSD(T) benchmarks for the minimum of CH4. Note
2.0(-5) means 2.0× 10−5, etc

Geom. Param. Harmonic Freq.

NTrain δ(C-H) δ(H-H) δv1 δv2 δv3 δv4

1000a -2.0(-5) -2.5(-5) -0.9 1.8 -1.1 0.5
600a -2.0(-5) -2.5(-5) -1.2 1.7 -1.3 0.6
300b -3.0(-5) -4.5(-5) -0.2 1.7 -0.1 -0.1
100c -2.0(-5) -3.5(-5) -0.2 1.5 -2.5 0.3

DFT 8.1(-3) 1.3(-2) -46.1 -47.2 -25.32 -4.0

a Maximum polynomial order of 5, basis size of 208.
b Maximum polynomial order of 4, basis size of 83.
c Maximum polynomial order of 3, basis size of 30.
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harmonic frequencies with respect to the CCSD(T) values is reduced from 31 cm−1 in

the DFT PES to about 1 cm−1 for the corrected PES.

7.4.2 H3O
+

−12000

−11500

−11000

−10500

−10000

−9500

−9000

−8500

 0  4000  8000  12000  16000  20000  24000

∆E
 (

cm
−

1 )

DFT Rel. Energy (cm−1)

Train−1000

−12000

−11500

−11000

−10500

−10000

−9500

−9000

−8500

 0  4000  8000  12000  16000  20000  24000

∆E
 (

cm
−

1 )

DFT Rel. Energy (cm−1)

Train−125

Figure 7.6: Plot of ∆VCC−LL (relative to the reference value i.e. -12 110 cm−1) vs DFT
energy relative to the H3O+ minimum value with the indicated number of training data
sets.

For H3O+ we trained ∆VCC−LL on several sets of the difference of CCSD(T) and

DFT absolute energies and then tested on the remaining data from the total of 32 142
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configurations. In Figure. 7.6 we plot ∆VCC−LL versus the DFT energies, relative to the

DFT minimum for two training sets. We reference ∆VCC−LL to the minimum of the

difference between the CCSD(T) and DFT energies (which is roughly -12 110 cm−1). As

seen, the energy range of ∆VCC−LL is about 3000 cm−1, which is much smaller than the

DFT energy range relative to the minimum value (which is roughly 23 000 cm−1).

The performance of the ∆VCC−LL fits is evaluated using the training data sets of

1000, 500, 250 and 125 configurations and the corresponding test data sets consist of

the remaining data from the total of 32 142 configurations. The corresponding RMS

differences between the VLL→CC and CCSD(T) energies are given in Table 7.3. As seen,

the RMS errors are similar for all the training data sets. Results for the training set of

only 125 energy differences are particularly encouraging, where the RMS error is just

32 cm−1 for test energies up to 23 000 cm−1. In this case the PIP basis for ∆VCC−LL

contains only 51 terms.

A plot of VLL→CC vs direct CCSD(T) energies for the training set of 500 points and

its corresponding test data is shown in Figure. 7.7. As seen, there is excellent precision;

however, we see some large errors for the test data set. These come from high energy

configurations which are irrelevant in this study. If needed, one can always improve these

errors by adding the high energy data points into the training data set.

An examination of the fidelity of VLL→CC for various properties is given in Tables 7.4

and 7.5, for the indicated training sets for ∆VCC−LL. As seen, VLL→CC produces results in

excellent agreement with direct CCSD(T) ones and also a large improvement compared

to the DFT PES. Most impressive is the high accuracy achieved even with the smallest

training data set of 125 energies.
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Figure 7.7: Two upper panels show energies of H3O+ from VLL→CC vs direct CCSD(T)
ones for the indicated data sets. The one labeled “Train” corresponds to the configura-
tions used in the training of ∆VCC−LL and the one labeled “Test” is just the remaining
configurations. Corresponding fitting errors relative to the minimum energy are given in
the lower panels.
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Table 7.3: RMS error between direct CCSD(T) and VLL→CC energies (RMSE) (cm−1)
with the indicated number of test (NTest) configurations for H3O+, where training on
∆VCC−LL is done for various training data (NTrain).

NTrain NTest RMSE

1000a 31142 55.11
500b 31642 28.39
250c 31892 50.78
125d 32017 32.46

a ∆VCC−LL is trained with maximum polynomial order of 7, basis size
of 348.

b ∆VCC−LL is trained with maximum polynomial order of 6, basis size
of 196.

c ∆VCC−LL is trained with maximum polynomial order of 5, basis size
of 103.

d ∆VCC−LL is trained with maximum polynomial order of 4, basis size
of 51.

Table 7.4: Comparison of differences, δ, in bond lengths (angstroms) and harmonic fre-
quencies (cm−1) of the corrected PES, VLL→CC , relative to direct CCSD(T) benchmarks
for the minimum of H3O+ for indicated training sets of ∆VCC−LL. DFT PES results are
also given. Note 3.0(-5) means 3.0 x 10−5, etc.

Geom. Param. Harmonic Freq.

NTrain δ(O-H) δ(H-H) δv1 δv2 δv3 δv4

1000a -3.0(-5) -1.8(-4) 4.8 1.8 -4.4 3.3
500b -5.0(-5) -4.4(-4) 6.2 4.7 0.02 3.5
250c -3.0(-5) -7.8(-4) 2.6 4.8 6.3 0.02
125d 1.0(-5) 13.3(-4) -9.1 -12.1 -8.6 3.02

DFT -47.8(-4) -24.1(-3) 125.9 26.5 26.5 33.7

a Maximum polynomial order of 7, basis size of 348.
b Maximum polynomial order of 6, basis size of 196.
c Maximum polynomial order of 5, basis size of 103.
d Maximum polynomial order of 4, basis size of 51.
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Table 7.5: Comparison of differences, δ, in bond lengths (angstroms) and harmonic fre-
quencies (cm−1) of the corrected PES, VLL→CC , relative to direct CCSD(T) benchmarks
for the saddle point of H3O+ for indicated training sets of ∆VCC−LL. DFT PES results
are also given. Note 3.0(-5) means 3.0 x 10−5, etc.

Geom. Param. Harmonic Freq.

NTrain δ(O-H) δ(H-H) δv1 δv2 δv3 δv4 δ(Barrier)

1000a -5.0(-5) -9.0(-5) -3.1i 3.3 -6.1 1.3 2
500b -1.0(-5) -2.0(-5) -2.6i 2.0 -2.2 -0.7 10
250c -2.2(-4) -3.8(-4) -1.2i 1.2 7.7 -4.3 7
125d -1.0(-5) -1.0(-5) -0.7i -3.7 -3.0 -4.8 -9

DFT -70.6(-4) -12.2(-3) 111.3i 17.6 45.5 58.7 297

a Maximum polynomial order of 7, basis size of 348.
b Maximum polynomial order of 6, basis size of 196.
c Maximum polynomial order of 5, basis size of 103.
d Maximum polynomial order of 4, basis size of 51.

7.4.3 N-methyl acetamide

We recently reported DFT-based PESs for 12-atom N -methyl acetamide (NMA) using

full and fragmented PIP basis sets.144,145 The idea of using a fragmented basis to extend

the PIP approach to molecules with more than 10 atoms was illustrated for NMA. The

data set for the more recent PES, which describes the cis and trans minima as well

as saddle points separating them, consisted of energies and gradients. The full basis of

maximum polynomial order of 3 has 8040 linear coefficients. The fragmented PIP basis,

also with a maximum polynomial order of 3, contains 6121 coefficients.

The fits were done using 6607 energies and corresponding 237 852 gradient compo-

nents for a total data size of 244 459. These data were obtained from direct dynamics,

using the B3LYP/cc-pVDZ level. Clearly a data set of this size from CCSD(T) cal-

culations is not feasible and so the present approach is needed in order to bring this
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DFT-based PES close to CCSD(T) quality.

For the training and testing we calculated a total of 5430 CCSD(T)-F12/aug-cc-pVDZ

energies. Training of ∆VCC−LL was done on 4696 data points of the difference of direct

CCSD(T) and DFT-PES absolute energies. Testing of VLL→CC was done on 734 energies.

The distribution of the electronic energies (shown in Figure. 7.4) for both the training

and test data sets spans the large range of configurations used for the DFT-based PES,

i.e., trans and cis isomers and their isomerization TSs.

In Figure. 7.8 we show the range of ∆VCC−LL versus the DFT energies, relative to

the DFT minimum for the training and test data sets. We reference ∆VCC−LL to the

minimum of the difference of the CCSD(T) and DFT energies (which is roughly -50

580 cm−1). As seen, the energy range of ∆VCC−LL is about 4500 cm−1, which is much

smaller than the DFT energy range relative to the minimum value (which is roughly 50

000 cm−1). The PIP basis to fit the ∆VCC−LL is generated using MSA software with the

same reduced permutational symmetry of 31111113 (this describes the identity of the

hydrogen atoms within a methyl group which is essential to get the three fold torsional

barrier) used previously but and a maximum polynomial order of 2. This leads to 569

linear coefficients (PIP basis). The fitting RMS error of this ∆VCC−LL is 57 cm−1. A

plot of VLL→CC vs direct CCSD(T) energies for the training and test data is shown in

Figure. 7.9. The RMS differences between the VLL→CC and direct CCSD(T) energies for

the training and test data sets are 57 and 147 cm−1, respectively. A slight increment of

the test RMS error is comparable with the DFT PES RMS error of 126 cm−1.

We perform geometry optimization and normal mode analyses for both trans and

cis isomers using this ∆-ML PES to examine the high fidelity of this PES, and we get

significant improvement from the DFT PES, which predicts an incorrect minimum for

the trans-isomer. Specifically, the torsion angle of one methyl rotor is shifted by 60 deg
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Figure 7.8: Plot of ∆VCC−LL (relative to the reference value i.e. -50,200 cm−1) vs DFT
energy relative to the N -methyl acetamide minimum value for both training and test
data set.
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relative to the CCSD(T) structure. These differences in structure are shown in the Figure.

7.10, while more discussion of the torsional barriers is given below. We also compare all

the inter-nuclear distances for both trans and cis isomers with the direct CCSD(T)-F12

optimized geometry. The RMS error of differences, δ in bond lengths for ∆-ML PES

relative to the direct CCSD(T)-F12 is 0.0037 and 0.0410 angstroms for trans and cis

minimum, respectively. These RMS errors are 0.3349 and 0.0446 angstroms for DFT

PES minimum structures relative to the direct CCSD(T)-F12 ones. It is expected that

the RMS error for the trans isomer is quite big for DFT PES due to incorrect prediction

of the minimum geometry.

Delta-ML DFT

Figure 7.10: Comparison of Trans-NMA minimum geometry.

The cis-trans energy difference on the corrected PES is 782 cm−1, which is 41 cm−1

below the direct CCSD(T) one. The RMS errors of harmonic frequencies between direct

CCSD(T) one and the ∆-ML one are 15 and 13 cm−1, respectively, for trans and cis

isomers, whereas, these are 26 and 17 cm−1 for the DFT PES. The geometry differences

are comparably small for the cis-isomer but large for the DFT PES for the trans-isomer,

owing mainly to the error in the methyl rotor minimum on the DFT PES, noted already.
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We also performed normal mode analyses for both trans- and cis-NMA. Comparisons

of the harmonic frequencies for trans- and cis-NMA with their corresponding direct

CCSD(T)-F12 ones and the DFT PES ones are given in Tables 7.6 and 7.7. It is seen that

the agreement between ∆-ML PES and CCSD(T)-F12 is very good, specially for the high

frequency modes. Note that we get two imaginary frequencies for the low frequency modes

of trans isomer which are 124i and 144i from the direct CCSD(T)-F12 calculation. These

are due to two methyl rotors which are almost free rotors for the trans isomer. Therefore,

we also performed geometry optimization and normal mode analysis for the trans isomer

at CCSD(T)/AVDZ level of theory. The frequencies we obtained at CCSD(T)/AVDZ

level of theory are very similar to the CCSD(T)-F12 ones and also get one imaginary

frequency which is 20i.

Table 7.6: Comparison of normal mode frequencies (in cm−1) between ∆-ML PES, DFT
PES and the direct CCSD(T)-F12 ones for trans-NMA.

Mode CCSD(T)-F12 ∆-ML DFT-PES Mode CCSD(T)-F12 ∆-ML DFT-PES

1 124i 34 38 16 1397 1415 1391
2 144i 52 119 17 1457 1465 1415
3 116 133 151 18 1468 1471 1434
4 251 265 290 19 1481 1498 1474
5 316 330 393 20 1481 1509 1485
6 416 426 433 21 1511 1554 1491
7 618 621 621 22 1563 1582 1552
8 624 633 629 23 1753 1741 1772
9 876 894 867 24 3045 3042 3019

10 996 1005 995 25 3050 3051 3040
11 1045 1056 1038 26 3110 3098 3072
12 1110 1107 1113 27 3133 3133 3125
13 1155 1153 1132 28 3137 3142 3127
14 1194 1180 1167 29 3140 3147 3137
15 1290 1283 1260 30 3681 3637 3631



Chapter 7. Implementation of ∆-Machine Learning in Permutationally Invariant
Polynomial Fitting to Obtain CCSD(T) Level Accuracy 119

Table 7.7: Comparison of normal mode frequencies (in cm−1) between ∆-ML PES, DFT
PES and the direct CCSD(T)-F12 ones for cis-NMA.

Mode CCSD(T)-F12 ∆-ML DFT-PES Mode CCSD(T)-F12 ∆-ML DFT-PES

1 59 36 76 16 1413 1420 1393
2 120 131 123 17 1465 1468 1439
3 163 179 166 18 1472 1494 1447
4 285 287 286 19 1483 1497 1462
5 468 459 468 20 1492 1500 1467
6 504 501 518 21 1503 1522 1478
7 574 575 575 22 1530 1560 1508
8 605 609 624 23 1766 1777 1798
9 818 829 815 24 3025 3020 3001

10 996 992 977 25 3043 3066 3040
11 1051 1052 1043 26 3095 3075 3069
12 1098 1097 1087 27 3112 3114 3107
13 1155 1156 1137 28 3137 3131 3116
14 1211 1207 1187 29 3169 3171 3155
15 1349 1350 1330 30 3633 3602 3592

Finally, the most exciting results are the torsional potentials of the two methyl ro-

tors of both trans and cis-isomers of NMA. We get significant improvement from our

previously reported DFT PES results.145 Detailed comparisons of the partially relaxed

torsional barriers are given in Table 7.8. As seen, there are large differences between the

DFT PES and CCSD(T) results for the CH3−NH rotors for both cis and trans isomers.

Overall, the ∆-ML PES barriers are significantly closer to the CCSD(T) ones than the

DFT-PES ones.

Given the error in these DFT PES barriers, a detailed examination of the torsional

potentials is warranted. These are shown in Fig. 7.11. These appear as would be expected,

with the exception of panel a), where the ∆-ML potential has a small dip at 60 deg,

instead of a barrier there. The barrier of 34 cm−1 given in Table 7.8 is thus at slightly
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Table 7.8: Comparison of torsion barriers of methyl rotors, CH3−NH and CH3−CO
(cm−1) for trans and cis isomers of N -methyl acetamide.

trans-NMA CH3−NH CH3−CO

DFT PES 256 37
∆-ML PES 34 74

CCSD(T) 42 103

cis-NMA CH3−NH CH3−CO

DFT PES 61 361
∆-ML PES 153 366

CCSD(T) 148 303

the wrong location. The source of this offset is the large error in the DFT PES, which

has a minimum 60 deg in error compared to the benchmark CCSD(T) result. The small

artifact in the ∆-ML torsional potential is of minor consequence given that the CCSD(T)

barrier is only 42 cm−1.

To the best of our knowledge there is no experimental determination of these torsional

barriers for either isomer of NMA. However, there is a report of the torsional barrier for

acetamide of 24 cm−1.150 This barrier is consistent with the small barriers of 34 cm−1

(∆-ML PES) and 74 cm−1 (∆-ML PES) for trans-NMA. Also, it appears that the larger

barriers for cis-NMA may be due to the closer proximity of these methyl rotors.

Next we make some comments about computation times on our cluster with Intel

Xeon 2.40 GHz processors. First, to calculate the 5430 CCSD(T) energies required about

900 cpu-hours. (This was done using multiple nodes.) The time for 100 000 calculations

of the corrected PES, VLL→CC , is the sum of 2.056 seconds for the DFT PES, VLL, plus

0.126 seconds for the ∆VCC−LL PES. Thus, the ∆VCC−LL PES takes only 6% of the total

cpu time.

To conclude this section, we note that preliminary work indicates that using about
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Figure 7.11: Torsional potentials (not fully relaxed) of the two methyl rotors of both
trans and cis-NMA from ∆-ML PES a) and b), and DFT PES c) and d). Note, for the
torsion indicated in red in c), the zero angle corresponds to a structure that is rotated
by 60 deg relative to the corresponding and correct CCSD(T) torsional potential.
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half the number of CCSD(T) energies, i.e., 2200 energies, produces a ∆VCC−LL PES that

is close to the quality of the one reported here. We plan to report the details of this along

with even smaller data sets later.

7.4.4 Timings

Tables 7.9 and 7.10 show the computation time for evaluating the low-level DFT-based

PES and the correction PES, ∆VCC−LL. These calculations are carried out on a single core

of Intel Xeon 2.40 GHz processor-based machines with 64 GB RAM. Clearly, computation

of ∆VCC−LL is much faster when the training data is 300 or 100 for CH4 and 250 or 125

for H3O+.When the training data is large, the number of PIP basis functions is the same

for both the VLL and ∆VCC−LL PES and, therefore, we do not see any time advantage.

However, with decreasing size of the training data we reduce the maximum polynomial

order and we get a great time advantage for the ∆VCC−LL PES. Thus, the additional

cost to bring the DFT-based PES to CCSD(T) level of accuracy is a small fraction of

the cost of evaluating the DFT PES.

Table 7.9: Timings (sec) for 100 000 PES evaluations for CH4.

NTrain VLL ∆VCC−LL VLL→CC

1000a 0.07 0.07 0.14
600a 0.07 0.07 0.14
300b 0.07 0.04 0.11
100c 0.07 0.02 0.09

a Maximum polynomial order of 5, basis size of 208.
b Maximum polynomial order of 4, basis size of 83.
c Maximum polynomial order of 3, basis size of 30.



Chapter 7. Implementation of ∆-Machine Learning in Permutationally Invariant
Polynomial Fitting to Obtain CCSD(T) Level Accuracy 123

Table 7.10: Timings (sec) for 100 000 PES evaluations for H3O+.

NTrain VLL ∆VCC−LL VLL→CC

1000a 0.04 0.04 0.08
500b 0.04 0.03 0.07
250c 0.04 0.02 0.06
125d 0.04 0.01 0.05

a Maximum polynomial order of 7, basis size of 348.
b Maximum polynomial order of 6, basis size of 196.
c Maximum polynomial order of 5, basis size of 103.
d Maximum polynomial order of 4, basis size of 51.

7.5 Summary and Conclusions

We reported an efficient and easy-to-implement correction to a low-level DFT PES based

on a low-order PIP fit to the difference in a sparse set of high-level CCSD(T) and DFT

energies. The correction was shown to produce a final PES with properties that are close

to the corresponding CCSD(T) benchmark values for CH4 and H3O+. Similar results

were shown for N -methyl acetamide and this demonstrates that the approach should be

widely applicable to large molecules. We plan to do this in the future for acetylacetone

and tropolone, for which low-level PESs have recently been reported.142,146,147 However,

it would be difficult to present the rigorous tests against high-level coupled cluster results

for say harmonic frequencies as these require a very large computational effort.

Finally, we note that the low-level PES can be based on any fitting method as can

the correction PES. However, both should be consistent with respect to the same level of

permutational invariance. We believe the PIP approach has advantages for the correction

PES. One is that the fit is permutationally invariant and another, and perhaps more

significant one, is that a low-order PIP fit can be both precise and efficient to evaluate.



Chapter 8

Rapid and Accurate Construction of

CCSD(T)-level PES of large

molecules using Fragmented Method

8.1 Chapter Abstract

124



Chapter 8. Rapid and Accurate Construction of CCSD(T)-level PES of large molecules
using Fragmented Method 125

The construction of a potential energy surface (PES) of even a medium-sized molecule

employing correlated theory, such as CCSD(T), is arduous due to the high computational

cost involved. The present study reports the possibility of efficiently constructing such

a PES of molecules containing up to 15 atoms and 550 basis functions by employing

the fragment-based molecular tailoring approach (MTA) on off-the-shelf hardware. The

MTA energies at the CCSD(T)/aug-cc-pVTZ level for several geometries of three test

molecules, viz., acetylacetone, N -methylacetamide, and tropolone, are reported. These

energies are in excellent agreement with their full calculation counterparts with a time

advantage factor of 3− 5. The energy barrier from the ground to transition state is also

accurately captured. Further, we demonstrate the accuracy and efficiency of MTA for

estimating the energy gradients at the CCSD(T) level. As a further application of our

MTA methodology, the energies of acetylacetone at ∼430 geometries are computed at

the CCSD(T)/aug-cc-pVTZ level and used for generating a ∆-machine learning (∆-ML)

PES. This leads to the H-transfer barrier of 3.02 kcal/mol, well in agreement with the

benchmarked barrier of 3.19 kcal/mol. The fidelity of this ∆-ML PES is examined by

geometry optimization and normal mode frequency calculations of global minima and

saddle point geometries. We trust that the present work is a major development for the

rapid and accurate construction of PES at the CCSD(T) level for molecules containing

up to 20 atoms and 600 basis functions using off-the-shelf hardware.

8.2 Overview

Developing a high-dimensional potential energy surface (PES) of molecules based on

advanced ab initio methods is an active theoretical and computational chemistry research

area. Within the Born-Oppenheimer approximation, one can get the PES “on-the-fly”
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by obtaining the molecular energies from electronic structure packages. However, the

computational cost quickly becomes prohibitive as the level of electronic structure theory

and the system size go up. An alternative approach is to develop an accurate analytical

representation of PES using data sets of electronic energies that span a high-dimensional

space. As the PES establishes a relationship between a nuclear configuration and the

forces acting on nuclei, it has wide chemical applications. The PESs thus constructed

have been employed in the literature for several types of reactions dynamics calculations,

harmonic-anharmonic vibrational analysis, geometry optimization, etc.

In the past 15 years, significant progress has been made in developing non-parametric,

machine-learning approaches for fitting large data sets of electronic energies for molecules

and clusters that contain more than four atoms. Three major methods recently in widespread

use for this purpose are: permutationally invariant polynomials (PIPs), Neural Networks

(NN), and Gaussian Process Regression (GPR) as well as their combinations. Several

reviews have summarized these approaches.14,16,22,26,30,35,65,151,152 However, it is a major

challenge to extend these methods to larger molecules of interest in chemistry and physics.

Increasing the molecular size creates a bottleneck for developing the PES at high-

level theory. Due to the very high scaling of the “gold standard” coupled-cluster with

perturbative triples [CCSD(T)] theory (∼N7, N being the number of basis functions),

its use is generally limited to the molecules containing ∼10 atoms. A large data set

of energies is required for high-dimensional PES, and this data set requirement rapidly

increases with the increasing number of atoms. Therefore, researchers have been focusing

on the simultaneous energy plus gradient fitting method to reduce the number of data

points substantially.141 A significant advantage of using energy plus gradient data is found

for small configuration data sets. The PES thus constructed exhibits equivalent fidelity

to that obtained using only energy data sets, which are an order of magnitude larger.
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Lower-level electronic structure methods such as density functional theory (DFT) and

second-order Møller-Plesset perturbation theory (MP2) are typically used to deal with

the PES of larger molecules. The PES of molecules having more than 10 atoms using the

CCSD(T)/aug-cc-pVTZ (CCSD(T)/aVTZ) level of theory is generally conspicuous by

their absence. In 2016, Bowman and co-workers computed the PES for the formic acid

dimer (HCOOH)2, a 10-atom system, using 13475 energies at CCSD(T)-F12/haTZ for H

atom and aVTZ for C and O atoms’ level of theory.153 This PES was applied for zero-point

energy (ZPE) computation using the diffusion Monte-Carlo (DMC) method and ground-

state tunneling splitting for the H-transfer process. A nine-atom PES for the chemical

reaction Cl+C2H6 was recently reported by Papp et al. using a composite MP2/CCSD(T)

method.154 Examples of potentials for six- and seven-atom chemical reactions, which are

fit to tens of thousands or even hundred thousand CCSD(T) energies, have also been

reported.155,156 Recently, a 15-atom PES was calculated for acetylacetone, containing

seven heavy atoms.157 This was a major computational effort at the LCCSD(T)-F12/cc-

pVTZ-F12 level of theory. This PES was obtained with 2151 LCCSD(T) energies using

the ∆-machine-learning approach.

As pointed out earlier, developing the PES using CCSD(T) level of theory for molecules

containing more than 10 atoms is prohibitively expensive. It also requires a larger dataset

with the increasing dimensionality of the system, often leading to the use of lower-level

methods such as DFT and MP2. However, the DFT and MP2 methods do not yield ac-

curate results for reaction barriers, geometrical parameters, and vibrational frequencies

compared to their CCSD- or higher counterparts. Thus, there is a need to generate a

PES based on CCSD or CCSD(T) level calculations.

Quantum chemical calculations on molecular systems provide reliable insights into

their structural parameters and reactivity. Though accurate, the methods capturing a
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substantial part of electron correlation (such as MP2 or CCSD(T)) have a formidable

scaling, leading to the requirement of high processor speed, memory, and secondary stor-

age. This makes these methods unsuitable for systems comprising ∼100 atoms (MP2)

or ∼20 atoms (CCSD(T)). In order to circumvent this high-scaling problem, several

fragmentation-based (FB) methods have been proposed during the last two decades for

treating large molecules. These methods have been extensively tested and benchmarked

for obtaining the molecular energies, gradients, and Hessian matrix. An overview of such

FB methods has been given in Ref. 158. One of such FB methods, viz. molecular tailoring

approach (MTA), has been developed indigenously by us and appraised for various large

molecules.

The MTA methodology was proposed, developed, and tested out on a variety of

molecules/clusters by Gadre and co-workers.159–164 The MTA framework is currently

applicable to closed-shell systems for estimating the energies/energy gradients/Hessian

matrix. Geometry optimization followed by IR/Raman spectral calculation is also avail-

able within the MTA. Here I briefly capture the essential features of MTA below.

Within MTA, a spatially extended, closed-shell parent molecule under investigation is

divided into a series of primary and overlapping fragments. These fragments are subjected

to computation instead of the entire parent molecule. Then, the MTA program ’patches’

the results (e.g., Energy, E) of the fragments to get a good approximation to the property

of the parent molecule (vide Eq. 8.1) employing set inclusion/exclusion principle.

E =
∑
i

EFi −
∑
i<j

EFi∩Fj + · · ·+ (−1)k
∑

i<j<···<n

EFi∩Fj∩···∩Fn + · · ·. (8.1)

Here, EFi represent the energy of ith primary fragment; EFi∩Fj is the energy of the overlap

fragment between the primary fragments i and j. The term n represents the number of
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primary fragments, and k is the degree of overlap.

On account of this, the required computational expenses/resources for estimating a

property of parent molecule are steeply reduced. The MTA procedure makes initial frag-

ments by putting a sphere on all non-hydrogen atoms of the parent molecule. Then, these

fragments are merged based on distance, with subsequent rounds of fragmentation. Thus,

the near-neighbourhood of an atom is preserved in at least one of the main fragments.

The quality of the results can be gauged a priory by the distance-based parameter called

R-Goodness (RG). In general, the larger the RG, the better the preservation of the atoms’

chemical environment. For more details about MTA’s origin, fragmentation procedure,

and capabilities, as well as the limitations of MTA, readers are directed to Ref. 159–163.

In general, the MTA-based energies carry an error of several milli-hartrees vis-á-vis

the respective full calculation (FC) energies. In 2012, a grafting procedure was devised

and thoroughly benchmarked161,162 in order to reduce these error arising due to the

fragmentation. Within the version of grafting procedure used here for calculating the

energy,161 the difference between the FC and MTA correlation energies computed with

lower basis (LB) is added to the sum of MTA correlation energy at the higher basis (HB)

and the Hartree-Fock (HF) FC energy at HB. All the MTA calculations are done using

an identical fragmentation scheme, vide Eq. 8.2. I call such grafted energy (cf. Eq. 8.2)

as the GMTA energy in the following discussion.

EGMTA = E(HF )HBFC + E(CORR)HBMTA + (E(CORR)LBFC − E(CORR)LBMTA). (8.2)

Here, E(HF)HBFC refers to the FC HF energy computed at HB whereas E(CORR)HBMTA

is MTA correlation energy computed at HB. The correlation energies in FC at LB and

MTA at LB are denoted respectively as E(CORR)LBFC and E(CORR)LBMTA. The grafting
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correction is proposed based on our earlier observation that the difference between MTA

and FC energies is almost independent of the basis set used.164 As expected, this cor-

rection leads to a better estimation of the total energy and electronic properties. The

grafting procedure is now built into the MTA code. The final energy printed out in the

MTA code already incorporates the grafting correction. Because of this, in the discussion

that follows, I denote the grafted MTA energy as EMTA.

With this background, it is felt worthwhile to explore the MTA method for construct-

ing a PES at the CCSD(T) level with augmented basis sets using off-the-shelf hardware.

The computational details of these exploratory studies are given in the following Section.

8.3 Computational Details

The attempt is made for the evaluation of energy of a few trial geometries on the PES for

three test molecules, viz. acetylacetone (AA), N -methyl acetamide (NMA), and tropolone

with the use of MTA. The AA, NMA, and tropolone molecules contain 15, 12, and

15 atoms, respectively. The starting ground- and transition state geometries and a few

other geometries of these molecules are adopted from the articles by Bowman and co-

workers.145,165,166 Because of the enormous computational cost, they have used a modest

level of theory and/or basis set. It would be worthwhile to carry out these calculations

with a high level of theory and a large basis set for a meaningful comparison with the

experimental findings. Therefore, these geometries (ground- and transition state) are

further subjected to the geometry optimization at the MP2/aug-cc-pVTZ(MP2/aVTZ

) level of theory. The number of basis functions for the aVTZ basis set associated with

AA, NMA, and tropolone is 506, 391, and 552, respectively. The optimized structures

of the test molecules are depicted in Figure 8.1. The single point (SP) FC energy eval-
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Figure 8.1: Geometrical structures with the corresponding transition states of (a) acety-
lacetone (AA), (b) N -methylacetamide (NMA), and (c) tropolone molecules optimized
at the MP2/aVTZ level of theory. See text for details.
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uations at MP2 and CCSD(T) levels using the aVTZ basis are carried out for these

geometries. Moreover, the harmonic vibrational frequency computations are also done at

the MP2/aVTZ level of theory to confirm their minimal nature. All the computations

are done using the Gaussian suite of programs167 using the default frozen core option,

on a 16-core Hewlett-Packard (HP) server-grade machine unless otherwise indicated.

Being small in size, the molecules under study are subjected to manual fragmentation

into the main (M) and overlapping (O) fragments, which are used for MTA computations.

The fragmentation schemes for global minimum (GM) geometries of the test molecules

are as shown in Figure 8.2.

In Figure 8.2, the main fragments are highlighted in light red, blue, and green ovals

labeled as M1, M2, etc. The respective overlap fragments are labeled as O1, O2, etc.

There are a maximum of three/four main fragments with an average size of half of the

molecule and two/three overlapping ones. An identical fragmentation scheme is employed

for the TS geometries as well.

The single point MTA energy evaluation for these geometries at MP2/aVTZ and

CCSD(T)/aVTZ level are carried out using these fragments. The grafting correction is

done employing cc-pVTZ basis set at the respective level of theories. Apart from GM and

TS geometries, two other geometries of each test molecule are also explored to compare

the MTA energies with their FC counterparts.

The SP energy gradient calculations at MP2/aVTZ and CCSD(T)/aVDZ levels are

also carried out for one of the geometries (which is not a stationary point on the PES) of

each of the three test molecules, with a view to benchmark the accuracy and efficiency

of MTA. The comparison of the gradients at only one prototype geometry for each of the

test molecules at FC and MTA levels is reported. A computation for estimating gradients

at the CCSD(T)/aVTZ level for the prototype geometry of AA is also carried out. Since
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Figure 8.2: Fragmentation schemes implemented in MTA calculations for Acetylacetone
(AA-GM), Tropolone (GM), trans-NMA, and cis-NMA. See text for details.
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analytical gradients for CCSD(T) level theory is not available in the Gaussian package,167

the numerical gradients (as implemented in the Gaussian) are used in the present study.

I report the appraisal of the accuracy and efficiency of MTA for reproducing the

respective FC energies and energy gradients for three chosen test molecules. The results

of these calculations are presented in the next Section.

8.4 Results and Discussion

Table 8.1: Single-Point Full Calculation(EFC) and Grafted MTA (EMTA) Energiesb (in
a.u.) Using aVTZ Basis for NMA Molecule Using MP2/aVTZ-Optimized Geometries,
along with the (Signed) Errora.

MP2 CCSD(T)

Geometry EFC EMTA ∆ EFC EMTA ∆

Cis -248.06688 -248.06625 -0.00063 -248.13930 -248.13875 -0.00054
Trans -248.07080 -248.07024 -0.00055 -248.14308 -248.14263 -0.00045

TS1-NMA -248.04284 -248.04218 -0.00066 -248.11685 -248.11630 -0.00054
TS2-NMA -248.03753 -248.03695 -0.00058 -248.11169 -248.11123 -0.00046

N1 -248.06834 -248.06791 -0.00043 -248.14116 -248.14081 -0.00035
N2 -248.05584 -248.05547 -0.00037 -248.12912 -248.12856 -0.00055

(1.5) (2.5) (93) (29)

a The respective wall clock timings (min) are given in parentheses. See text for details.
b The MTA energies are calculated employing eq 8.2.

The SP energies at MP2 and CCSD(T) for MP2/aVTZ optimized geometries of the

NMA molecule (both cis- and trans isomers as well as two additional geometries N1,

and N2) are displayed in Table 8.1 and also reports the signed error, ∆ = EFC - EMTA,

at the corresponding level of theory, bringing out the excellent agreement of MTA energy
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with its FC counterpart, the error being uniformly negative and numerically less than 0.7

mH. The wall-clock time shows a significant advantage (a factor of ∼3 or so) for MTA

vis-á-vis the FC for computing the energies at CCSD(T) level. Note that for small test

systems, no time advantage is seen in the case of MP2 computations. However, a small

time advantage is noticed for the largest system, viz. tropolone (cf. Table 8.2), with the

augmented basis sets employing MP2 method.

Table 8.2: Single-Point Full Calculation(EFC) and Grafted MTA (EMTA) Energies (in
a.u.) for the Enol Forms of Acetylacetone (AA) and Tropolone Molecules Estimated
Using aVTZ Basis Seta.

MP2 CCSD(T)

Geometry EFC EMTA ∆ EFC EMTA ∆

Enol Form of Acetylacetone (AA)

GM -345.17691 -345.17641 -0.00050 -345.27104 -345.27056 -0.00048
TS -345.17343 -345.17299 -0.00044 -345.26610 -345.26567 -0.00043
A1 -345.09946 -345.09910 -0.00036 -345.19219 -345.19181 -0.00038
A2 -345.09048 -345.09023 -0.00025 -345.18336 -345.18290 -0.00045

(6) (6) (740) (172)

Tropolone

GM -420.00707 -420.00667 -0.00040 -420.10670b -420.10642 -0.00028
TS -420.00049 -420.00067 0.00018 -420.09604b -420.09600 -0.00004
T1 -419.92486 -419.92624 0.00138 -420.02997b -420.02948 -0.00049
T2 -419.98716 -419.98826 0.00110 -420.08595b -420.08663 0.00067

(21) (18) (2040) (421)

a The wall clock timings (min) are given in parentheses and the (signed) error is given
as ∆. See text for details.

b Calculation is done on 16 cores of a node.

Likewise, for the other two test molecules, viz. the enol form of AA and tropolone,

the MTA- and FC energies at MP2 and CCSD(T) using aVTZ basis set are in shown in
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Table 8.2. The energy differences are seen to (numerically) reduce with the elevation of

the level of theory164 for all the test cases testifying our earlier observation. In addition,

a time advantage factor between 4 and 5 is noticed for both the molecules at CCSD(T)

level theory.

The energy barrier between the ground- and transition-state is also seen to be well-

estimated by MTA. For example, in the case of AA molecule at CCSD(T)/aVTZ level,

the FC barrier of 4.96 mH is well-captured by MTA (4.89 mH). Similarly, for tropolone,

the FC energy barrier of 10.66 mH is also estimated quite well by the MTA one (10.42

mH).

As mentioned earlier, it is helpful to have the energy gradients for different geometries

of a molecule (which are not the GM or TS) to build its PES. However, the cost of FC

gradient calculation with a high theory/basis set level is prohibitively difficult. Because

of this, an appraisal of MTA for estimating the energy gradients (GR) is carried out.

Since FC gradient calculation is readily possible at the MP2/aVTZ and CCSD(T)/aug-

cc-pVDZ (aVDZ) levels, I have used these levels of theory for benchmarking purposes. Fi-

nally, Table 8.3 compares the gradients (GR) calculated using FC and MTA at CCSD(T)/aVDZ

level theory for the prototype geometry of NMA. For this purpose, I use a simpler version,

viz. overall grafting correction, viz.

GRGMTA = GRHB
MTA + (GRLB

FC −GRLB
MTA). (8.3)

The FC and MTA CCSD(T)/aVDZ level gradient results for acetylacetone and tropolone

are also displayed in Table 8.4 and 8.5. These gradient results show a substantial time

advantage factor for MTA gradient calculation, retaining a very good accuracy, especially

for the gradients with a magnitude greater than 0.005, vis-á-vis their FC counterparts.
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Table 8.3: Comparison between Full Calculation (GRFC) and MTA (GRMTA) gradients
(in a.u.) calculated at CCSD(T)/aVDZ basis for the geometry of N -methyl acetamide
molecule. See text for details.

N -methyl acetamide

Atom GRFC GRMTA

H -0.0013 -0.0012 -0.0030 -0.0003 -0.0015 -0.0027
H -0.0031 -0.0021 0.0086 -0.0021 -0.0024 0.0083
H 0.0016 0.0143 0.0015 0.0029 0.0138 0.0015
C 0.0098 -0.0146 -0.0085 0.0046 -0.0123 -0.0084
N -0.0095 0.0222 0.0020 -0.0088 0.0213 0.0019
H 0.0018 -0.0171 0.0001 0.0020 -0.0162 0.0001
O -0.0011 -0.0070 0.0013 -0.0012 -0.0060 0.0013
C -0.0045 0.0090 -0.0029 -0.0033 0.0096 -0.0029
C -0.0061 -0.0183 -0.0004 -0.0066 -0.0193 -0.0003
H 0.0061 0.0041 -0.0072 0.0061 0.0043 -0.0071
H 0.0051 0.0000 0.0055 0.0051 0.0002 0.0055
H 0.0012 0.0107 0.0029 0.0013 0.0107 0.0029

0.0222a 0.0081b 355c 0.0213a 0.0078b 95c

a Maximum gradient
b RMS gradient
c Wall clock time (min)
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Table 8.4: Comparison between Full Calculation (GRFC) and MTA (GRMTA) gradients
(in a.u.) calculated at CCSD(T)/aVDZ basis for the geometry of Acetylacetone molecule.
See text for details.

Acetylacetone

Atom GRFC GRMTA

C 0.0302 0.0150 0.0230 0.0310 0.0151 0.0233
O -0.0864 -0.0085 0.0353 -0.0866 -0.0088 0.0350
H 0.0166 0.0054 -0.0123 0.0165 0.0060 -0.0118
O -0.0300 0.0009 0.0076 -0.0309 0.0004 0.0076
C -0.0618 -0.0741 0.0020 -0.0618 -0.0736 0.0028
C 0.0467 0.0405 -0.1342 0.0476 0.0400 -0.1346
H -0.0005 0.0247 0.1502 -0.0009 0.0247 0.1500
H -0.0210 -0.0028 -0.0098 -0.0212 -0.0028 -0.0098
H 0.0184 -0.0151 -0.0098 0.0181 -0.0152 -0.0095
C 0.1029 0.0433 -0.0194 0.1020 0.0432 -0.0198
H -0.0078 -0.0053 -0.0005 -0.0078 -0.0053 -0.0004
C -0.0361 -0.0850 0.0023 -0.0356 -0.0856 0.0017
H 0.0340 -0.0010 0.0066 0.0340 -0.0009 0.0068
H 0.0172 0.0070 -0.0224 0.0170 0.0069 -0.0223
H -0.0223 0.0550 -0.0185 -0.0225 0.0551 -0.0187

0.1502a 0.0459b 2520c 0.1500a 0.0459b 322c

a Maximum gradient
b RMS gradient
c Wall clock time (min)
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Table 8.5: Comparison between Full Calculation (GRFC) and MTA (GRMTA) gradients
(in a.u.) calculated at CCSD(T)/aVDZ basis for the geometry of Tropolone molecule.
See text for details.

Tropolone

Atom GRFC GRMTA

C -0.0802 0.0277 0.0043 -0.0809 0.0276 0.0052
O 0.0206 0.0134 0.0175 0.0207 0.0139 0.0175
H -0.0688 -0.0450 -0.0181 -0.0689 -0.0447 -0.0182
O -0.0843 -0.0109 -0.0060 -0.0823 -0.0110 -0.0060
C 0.0988 -0.0693 0.0070 0.0969 -0.0666 0.0071
C 0.1608 0.0533 0.0033 0.1596 0.0551 0.0017
H -0.0282 0.0081 -0.0025 -0.0283 0.0081 -0.0026
C -0.0039 -0.0284 -0.0092 0.0024 -0.0320 -0.0075
H -0.0107 0.0003 0.0049 -0.0108 0.0003 0.0048
C 0.0113 0.0051 0.0145 0.0101 0.0098 0.0133
H 0.0150 0.0065 -0.0021 0.0150 0.0066 -0.0019
C 0.0130 0.0001 -0.0335 0.0116 -0.0012 -0.0334
H -0.0301 0.0046 0.0189 -0.0302 0.0046 0.0188
C -0.0170 0.0565 -0.0045 -0.0139 0.0562 -0.0041
H 0.0038 -0.0221 0.0054 0.0036 -0.0217 0.0055

0.1608a 0.0408b 3480c* 0.1596a 0.0405b 1470c

a Maximum gradient
b RMS gradient
c Wall clock time (min)
* Using Advanced computational facility
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Moving ahead, the MTA gradient calculation at CCSD(T)/aVTZ level of theory for

the smallest test case i.e., NMA is reported in Table 8.6. The elapsed time for this com-

putation is somewhat large, viz. 1636 min. Although benchmarking with the respective

FC results is not feasible, I trust that the results are accurate, with a significant time

advantage employing off-the-shelf hardware. The CCSD(T)/VTZ level of theory is used

for grafting correction. As this is a prototype computation, a single 16 core machine was

employed for this calculation. However, the multiple nodes can be easily harnessed for

production jobs because MTA code is highly parallel.

Table 8.6: MTA Gradients (GRMTA, in a.u.) Calculated at CCSD(T)/aVTZ Level of
Theory for the Geometry (N1) of the N -methyl acetamide Molecule. See text for details.

Atom GRMTA

H 0.0033 0.0006 0.0037
H 0.0019 0.0000 0.0017
H 0.0014 0.0055 0.0016
C 0.0060 -0.0115 -0.0083
N -0.0056 0.0235 0.0019
H 0.0017 -0.0098 0.0003
O -0.0013 -0.0239 0.0014
C -0.0076 0.0168 -0.0030
C -0.0048 -0.0182 -0.0007
H 0.0016 0.0019 -0.0001
H 0.0009 -0.0020 -0.0015
H 0.0020 0.0180 0.0032

0.0239a 0.0085b 1636c

a Maximum gradient
b RMS gradient
c Wall clock time (min)

Table 8.6 brings out the possibility of applying the MTA for obtaining the energy
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gradients at such high level of theory viz. CCSD(T) using aVTZ basis set on an off-the-

shelf hardware.

8.4.1 New PES for Acetylacetone at CCSD(T)/aVTZ Level

As an application of the present MTA-based methodology, we develop a new full-dimensional

MTA-based PES of AA at CCSD(T)/aVTZ level of theory using “∆-machine learning

(∆-ML)” approach. The dataset of ∼430 geometries used for generating this PES is taken

from previously reported work by Qu et al.157 The overall grafting procedure (similar to

that used in Eq. 8.3) was used for evaluating the energies these geometries. The basic idea

of ∆-ML approach is to construct a high-level, coupled cluster level PES starting from a

lower level MP2 one by using a correction PES. The details of this ∆-ML approach can

be found elsewhere.168 This correction PES is a fit to a small number of high-level ab

initio energies that span the same range of configurations used to obtain the lower-level

(LL) PES. The corrected CCSD(T)-level PES is denoted as VLL→CC , viz.

VLL→CC = VLL + ∆VCC−LL, (8.4)

where VLL is the lower-level PES and ∆VCC−LL is the correction PES. Here VLL was

previously reported PES which is a fit to 5454 energies and their corresponding gradients

computed at MP2/aVTZ level of theory.165 In this work, I develop a correction PES,

∆VCC−LL, using only ∼430 electronic energies computed at CCSD(T)/aVTZ level of

theory using MTA approach. This is a permutationally invariant polynomials (PIPs) fit

using maximum polynomial order of 2 with 1 2 5 7 permutational symmetry (This sym-

metry indicates that the 7 ‘H’ atoms are permutable with each other, as the 2 ‘O’ atoms

and 5 ‘C’ atoms. The transferring atom H, atom 1, is treated as distinguishable.) which
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leads to 86 linear coefficients. These coefficients are determined by standard linear least-

square regression method. These PIP bases are generated using the MSA software.123

I perform both weighted average and unweighted fitting for ∆VCC−LL. The root means

square errors (RMSE) for both weighted and unweighted fitting are 25 and 106 cm−1,

respectively. In order to examine the performance of the VLL→CC PES, we use weighted

averaged ∆VCC−LL fitting only. Geometry optimization and normal mode frequency cal-

culations are performed for both the global minimum (GM) and H-transfer saddle point

(SP) geometries to examine the fidelity of the VLL→CC PES. All the normal mode fre-

quencies for GM and SP geometries are listed in Table 8.7 and 8.8 along with previously

reported MP2 and LCCSD(T) frequencies. I get the symmetric double well H-transfer

barrier as 1057 cm−1 or 3.02 kcal/mol, in good agreement with the previously reported169

value of 1119 cm−1 or 3.19 kcal/mol. Though this ∆-ML PES slightly underestimates the

barrier height, it is a significant improvement over the MP2-based PES,165 which leads

to a barrier height of 745 cm−1 or 2.13 kcal/mol.

The systems under consideration, though apparently rather small, are computa-

tionally heavy at the CCSD(T)/aVTZ level. Thus, FC gradient calculations for these

molecules may be possible only by the investment of very large hardware and wall clock

time. However, for spatially extended large molecule, MTA can indeed be a possible

solution.

8.5 Summary and conclusions

The present work has reported some exploratory studies toward an application of MTA for

the construction of PES of the three chosen test molecules at MP2- and CCSD(T)/aVTZ

level of theory. The energies of ground- and transition states, as well as other some other



Chapter 8. Rapid and Accurate Construction of CCSD(T)-level PES of large molecules
using Fragmented Method 143

Table 8.7: Harmonic frequencies (in cm−1) of the global minimum geometry of acety-
lacetone from the indicated sources.

Global Minimum

Mode aDirect aVLL→CC VLL→CC
aVLL

[at LCCSD(T)] [at LCCSD(T)] [at CCSD(T)/aVTZ] [at MP2]

1 113 97 95 97
2 133 120 117 119
3 169 157 158 153
4 197 191 187 189
5 236 227 205 229
6 372 359 361 364
7 392 389 378 390
8 505 502 507 507
9 554 570 560 567
10 643 652 648 650
11 654 657 653 656
12 793 801 799 803
13 919 881 886 921
14 942 912 910 936
15 951 934 930 942
16 1010 1005 984 1014
17 1040 1044 1039 1048
18 1050 1052 1046 1058
19 1072 1069 1063 1071
20 1192 1192 1182 1200
21 1276 1270 1249 1290
22 1393 1377 1379 1384
23 1405 1404 1407 1399
24 1424 1433 1418 1433
25 1462 1450 1449 1470
26 1480 1486 1482 1494
27 1483 1489 1482 1497
28 1488 1499 1491 1505
29 1502 1508 1505 1512
30 1670 1662 1635 1655
31 1709 1705 1696 1704
32 3047 3058 3048 2855
33 3052 3080 3079 3095
34 3118 3122 3107 3099
35 3122 3170 3154 3178
36 3157 3178 3161 3187
37 3165 3203 3187 3208
38 3220 3210 3194 3218
39 3257 3248 3249 3258

a Ref. 157
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Table 8.8: Harmonic frequencies (in cm−1) of the H-transfer saddle point geometry of
acetylacetone from the indicated sources.

Global Minimum

Mode aDirect aVLL→CC VLL→CC
aVLL

[at LCCSD(T)] [at LCCSD(T)] [at CCSD(T)/aVTZ] [at MP2]

1 1278i 1082i 999i 921i
2 100 57 64 53
3 121 62 69 57
4 165 159 156 156
5 198 197 198 198
6 289 286 280 285
7 412 416 410 417
8 537 530 534 531
9 540 540 545 539
10 578 589 577 580
11 661 654 640 645
12 767 739 730 740
13 781 751 741 756
14 949 947 939 953
15 992 981 971 979
16 1035 1032 1004 1039
17 1037 1039 1035 1043
18 1054 1059 1052 1060
19 1067 1060 1054 1062
20 1195 1182 1168 1189
21 1308 1250 1219 1223
22 1341 1341 1313 1347
23 1406 1401 1397 1409
24 1413 1418 1417 1422
25 1481 1490 1483 1496
26 1487 1491 1483 1496
27 1488 1494 1486 1500
28 1491 1496 1489 1502
29 1569 1560 1550 1567
30 1613 1617 1574 1629
31 1624 1648 1649 1670
32 1904 1744 1698 1685
33 3054 3058 3045 3098
34 3057 3079 3075 3099
35 3130 3179 3156 3190
36 3132 3180 3156 3190
37 3154 3196 3177 3207
38 3156 3197 3177 3208
39 3241 3273 3274 3282

a Ref. 157



Chapter 8. Rapid and Accurate Construction of CCSD(T)-level PES of large molecules
using Fragmented Method 145

(non-stationary) geometries of these molecules are probed using the MTA methodology.

For all the test molecules, the energetics are accurately estimated, with the typical error

(vis-á-vis the respective FC energy) being typically smaller than 1 milli-hartree. The

energy barriers from the ground- to transition-state also turn out to be accurate for all

the three test cases. It may be mentioned that the FC jobs at CCSD(T)/ aVTZ level

theory in this work, albeit at a high computational cost, are done only for demonstration

purpose. Furthermore, the accuracy of the MTA for computing the energy gradients

is critically assessed. All the MTA-based energy gradients at CCSD(T)/aug-cc-pVDZ

level are efficiently and accurately calculated using a single 16-core machine. With the

inherently parallel nature of MTA, we expect a significant time saving with the use of

multiple machines in parallel. Substantial time-saving can also be gained using other

efficient parallel ab initio packages, such as ORCA and CFOUR etc. The customization

of MTA to accommodate these software packages is underway.

As per our experience, grafting from CCSD(T)/cc-pVTZ level works the best for MTA

calculations at CCSD(T)/aVTZ level calculations. This necessitates the full calculation of

the single point energy at CCSD(T)/cc-pVTZ level, which may be feasible for molecules

containing up to 20 atoms/400 basis functions. For going beyond this threshold, a further

detailed study is required for choosing the level of theory and basis-set for effecting the

grafting correction.

The actual application for exploring a few hundred energy values on the PES for

one of the test molecules at CCSD(T)/aVTZ level theory is computationally rather ex-

pensive, but indeed possible with the use of MTA. A full dimensional MTA-based PES

for the Acetylacetone molecule is developed using ∼430 CCSD(T)/aVTZ energies with

∆-ML approach. We obtain the H-transfer barrier height as 3.02 kcal/mol, in excellent

agreement with the benchmarked value of 3.19 kcal/mol. Recently, Qu et al. published
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a full dimensional AA PES at LCCSD(T)-F12/cc-pVTZ-F12 level of theory, showing a

barrier height of 3.49 kcal/mol.157 Note that present results are at CCSD(T)/aVTZ level

with no local approximation.

In summary, the present work has clearly demonstrated an efficient and economic

method for constructing the PES, which can be readily extended to molecules containing

up to 20 (first-row) atoms/600 basis functions using high level ab initio methods such as

CCSD(T).



Chapter 9

Development of a CCSD(T)-based

4-body Potential for Water

9.1 Chapter Abstract

High-level, ab initio calculations find that the 4-body interaction is needed to account

for near-100 percent of the total interaction energy for water clusters as large as the

21-mer. Motivated by this, we report a permutationally invariant polynomial, machine-

learned, potential energy surface (PES) for the 4-body interaction. This PES is a fit to

2119, symmetry-unique, CCSD(T)-F12a/haTZ 4-b interaction energies. Configurations

for these come from tetramer direct-dynamics calculations, fragments from an MD water

simulation at 300 K, and from tetramer fragments in a variety of water clusters. The PIP

basis is purified to ensure that the PES goes rigorously to zero in monomer+trimer and

dimer + dimer dissociations. The 4-b energies of isomers of the hexamer calculated with

the new PES are shown to be in better agreement with benchmark CCSD(T) results

than those from the MB-pol potential. Tests on larger clusters further validate the high-

147
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fidelity of the PES. The PES is shown to be fast to evaluate, taking 2.4 seconds for 105

evaluations on a single core of 2.4 GHz Intel Xeon processor, and significantly faster using

a parallel version of the PES.

9.2 Overview

The many-body expansion (MBE) for the non-covalent interactions is pervasive in com-

putational chemistry and has been applied in many guises for water. There are numerous

studies of this expansion for water, and this large literature has been reviewed in a recent

article.170 There are many aspects of this expansion, but the one of particular interest

here is the convergence of this expansion for water. This is not a trivial matter to exam-

ine since one has to ask, convergence with respect to what property? Certainly the most
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common property that has been examined in this respect is the complete dissociation

energy of water clusters to all monomers or, almost equivalently, the interaction energy of

clusters. The former includes relaxation of the monomer geometry in the full dissociation

limit whereas the latter does not.

The general conclusion from numerical studies on moderate sized clusters is that

an accurate, i.e., to within a few percent, description can be obtained with the MBE

truncated after 3-body interactions. However, it has been known for many years that the

4-b interaction, while small, may be not negligible. Theoretical work that came to this

conclusion dates back more than 35 years with the pioneering work investigating many-

body aspects of the classical induced interaction of rigid water.171,172 Gregory and Clary

investigated the effects of 4-b induction interactions on the zero-point energy of the water

hexamer in 1996.173 (These interactions are formally N -body, where N is the number of

monomers and are referred to as N -body induction energies.) It was assumed in this early

work that 3 and 4-b interactions were negligible at short range and thus only the long-

range classical induced energies were focused on. In 2000, Xantheas reported calculations

of the total interaction energies of isomers of the water hexamer at the MP2 level and

concluded that the 4-b contribution to the total interaction energy varies from 1.4 to 4.4

percent, depending on the isomer.174 In 2011, a many-body analysis of the lowest energy

isomers for the hexamer, the prism and the cage, determined from CCSD(T)/aug-cc-

pVTZ calculations that 4-b contributions to the interaction energy were -0.57 and -

0.43 kcal/mol, respectively.175 A more recent examination of the 4-b interaction for the

hexamer isomers confirms these values.176 This lowers the prism energy by about 49

cm−1 more than the cage. Recently, Heindel and Xantheas reported a careful numerical

examination (focusing on elimination of basis set superposition errors) of the MBE for

interaction energies of water clusters, consisting of 7, 10, 13, 16 and 21 monomers.177
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Based on this and previous analyses, they concluded that the MBE can thus be safely

(i.e., converged to less than 1 percent) truncated after the 4-body term and not after the

3-body level.

The above conclusion notwithstanding, it is the case that the MBE truncated at the

3-body term does capture roughly 95 percent of the interaction energy for water clusters.

Thus, in the past 10 or so years several ab initio water potentials have been developed

based on 1-, 2- and 3-body ab initio PESs or correction PESs. These are known by

the acronyms WHBB,178 HBB2-pol, MB-pol,100 and CC-pol.179 The WHBB, HBB2-pol,

and MB-pol potentials use a spectroscopically accurate 1-b potential,180 and for the 2-b

numerical fits, they are calculated using permutationally invariant polynomials (PIPs)181

and thousands of CCSD(T) energies.182–184 The 3-b potential in WHBB is a PIP fit to

thousands of MP2 energies, whereas the one in the HBB2-pol and MB-pol potentials is

based on fits to thousands of CCSD(T) energies. To be more precise, MB-pol uses PIP

fits to the difference in 2-b and 3-b energies obtained from the TTM4-F PES185 and

CCSD(T) energies. The CC-pol potential uses elaborate functional forms to represent

the 2 and 3-b interactions and to fit them to many CCSD(T) energies.179

The WHBB potentials account for 4 and higher-body interactions by switching to

TTM3-F potential186 in the long-rage. This potential provides a sophisticated treatment

of long-range electrostatics for an arbitrary number of monomers. The MB-pol potential

uses a different strategy, since it is based on correction PESs at the 2 and 3-body level to

the TTM4-F potential185 plus additional electrostatic terms. A critical assessment of the

accuracy of the TTM3-F and TTM4-F potentials for 4-b energies of isomers of the water

hexamer against direct CCSD(T)-F12b/VTZ was reported in 2015.176 While the TTM4-

F 4-b potential is generally more accurate than the TTM3-F one, it has errors between

around 0.1 and 0.35 kcal/mol. These are fairly large fractions of the 4-b energy itself.
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Indeed these errors account substantially for the overall errors of the WHBB and MB-pol

potentials for the interaction energies of hexamer isomers. In addition, these errors are

potentially significant for rigorous studies of the relative energies of the prism and cage,

which have been done with both the WHBB and MB-pol potentials and using rigorous

treatments of the vibrational motion.187 In the latest study using MB-pol, the cage was

reported to be more stable at 0 K than the prism by roughly 0.1 kcal/mol, including a

rigorous treatment of zero-point energy.188 This difference is within the range of errors

in the hexamer 4-b interaction in the MB-pol potential and so the conclusion probably

should be viewed with some caution.

Based on this and previous work, there is strong motivation to develop a full-dimensional

PES for the 4-b water interaction potential. This is a challenging 12-atom system that

was beyond consideration during the time when WHBB, MB-pol, and CC-pol were de-

veloped. Attempts have been made by some of us to obtain analytical expressions of high

dimensional 4-body interactions of molecular systems, i.e. hydronium-water-water-water

4-b interaction.189 In that work, inspired by Skinner and coworkers’ E3B water 3-body

model,190,191 we proposed empirical exponential functions for different types of 4-b geome-

tries and fitted relevant parameters from limited ab initio data. However, these simple

exponential functions can not meet the requirement of a robust and high dimensional

4-body potential.

9.3 Results and Discussion

Recently, we extended the PIP approach to describe PESs for 12-atom N -methyl ac-

etamide141,144, 15-atom tropolone166, and acetylacetone.165 Also noteworthy is a recent

paper reporting a method to generate a very compact PIP fitting basis.192 Both our
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papers from 2019 and this one have clearly broken the oft-cited “10-atom” limit for PIP

bases that appeared 12 years ago.181 Because the long-range behavior is important for

the 4-b interaction, here we use a PIP basis that is purified193–195 so that the 4-b PES

goes rigorously to zero as any monomer (or dimer) separates from the other group of

monomers. The CCSD(T)-F12a/haTZ (aug-cc-pVTZ basis for O and cc-pVTZ for H)

method was selected for the calculations of electronic energies as it provides accurate

results at an acceptable computational cost.

Below we give details of the generation of the database of electronic energies and

standard tests of the precision of the 4-b PES are given. Then the new PES is tested

for the 4-b energies of 8 isomers of the water hexamer, and the total 4-b energies of a

number of larger water clusters. The long-range behavior is examined for two dissociation

1d-profiles of the water tetramer to two dimers and to a monomer plus trimer.

It is instructive to investigate the contributions of the various n-body (n=2, 3, 4)

interaction energies for the water tetramer. (Recall that these are obtained in a series of

calculations where, for example, the 2-b energies correspond to the energies of all pairs

of monomers, etc. Of course finally, the sum of these n-body interactions, n=2-4, must

equal the total interaction energy of the tetramer.) This is shown in Figure 9.1 for the

the movement of two dimers starting at the global minimum (GM) structure where just

the distance between two equivalent dimers, denoted R, is varied. At large R we have

two equivalent non-interacting water dimers. The total interaction is repulsive for R less

than 2.5 A. But, as seen, the addition of the 3-b interaction to the 2-b ones moves the

minimum to smaller R and likewise shifts the repulsive wall to smaller R. The same

occurs, albeit to a smaller extent, by the addition of the 4-b interaction. Thus, over the

range of the plot the 3-b and 4-b interactions are attractive. As seen, the 2-b interaction

is the largest, followed by the 3-b, followed by the 4-b, as expected. The 4-b is very small
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Figure 9.1: Interaction potential for the water tetramer including the n-body terms as
indicated. See text for details of the 1d path defining this energy profile.
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in this case; however, it should be noted that while there are 6 2-b interactions and 4

3-b interactions there is only a single 4-b interaction for the tetramer. Of course, as the

number of monomers increases the number of 4-body interactions grows faster than the

number of 2 and 3-b interactions.

The Figure 9.1 provides important evidence that the lower-limit of the range R for

the 4-b PES should be roughly 2 Å. With that in mind a variety of approaches were used

to generate a diverse database of 4-b configurations and energies. First, configurations

were obtained from direct-dynamics calculations for the water tetramer. Second, tetramer

fragments were selected from a classical dynamics simulation of water using the MB-pol

potential. This source of data anticipates the eventual use of the 4-b potential for con-

densed phase simulations. Third, tetramer fragments were selected from the equilibrium

configuration of isomers of the water hexamer, heptamer, decamer, and 13-mer. Lastly,

configurations along the dimer+dimer dissociation profile shown in Figure 9.1. In total,

2119 configurations were obtained from this sampling, details of which are given next.

The NVE direct-dynamics calculations were done using the efficient B3LYP/6-31+G(d,p)

level of theory. Trajectories were initiated from the two high-energy planar ring struc-

tures of the tetramer. These were generated by simply bringing the up-down-up-down

ring structure of the global minimum to a planar structure by flipping the out-of-plane

H atoms to the plane of the four O atoms. And for the first planar structure the dis-

tances between two equivalent dimers are 2.7515 and 2.7575 Å, respectively, and for the

second one these are 2.3533 and 2.7575 Å, respectively. The energies of these structures

are respectively 8,100 and 11,243 cm−1 above the GM. These planar structures along

with the GM one are given in the Figure 9.2. Two trajectories were calculated from

the first planar structure and three trajectories were calculated from the second planar

structure. An initial kinetic energy of 1000 cm−1 was distributed randomly in these five
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independent trajectories to all atoms at these initial configurations. The total energies

of tetramers in the direct-dynamics trajectories are thus 9,100 and 12,243 cm−1. These

trajectories were propagated for 30,000 time steps with the step size of 5.0 a.u.(about

0.12 fs). A histogram distribution of tetramer potential energies, relative to the global

minimum, is shown in Figure 9.3. As seen they span a range from roughly 2000 to 11 500

cm−1. This indicates that the tetramer configurations from the AIMD trajectories span

a large range of distorted geometries. The data generated from these trajectories was

pruned by simply saving every 10th configuration (in time) to obtain 468 configurations

for the final database. However, since dissociation of the tetramer did not occur in these

direct-dynamics simulations, additional configurations are needed. These are describe

next.

GM Planar

Geom-1 Geom-2

Figure 9.2: Water tetramer Geometries.
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Figure 9.3: Tetramer potential energies from direct dynamics trajectories

Additional 4-b configurations were obtained from tetramer clusters selected from a

300 K MD simulation of water using 256 monomers and the MB-pol potential. These are

defined as four monomers with the third largest O-O distance smaller than 4.5 Å. These

we selected quasi-randomly from the large database of monomer configurations, and 540

configurations were selected.

Sixty one energies were obtained from the cut dissociating to the two dimers over the

range 1.7 to 7.7 Å. Finally, tetramer configurations were obtained from 4 isomers of the

water hexamer, namely the prism, cage, book-1, and cyclic-chair, the water heptamer,

decamer, and 13-mer water clusters. All 4-body configurations were selected at the equi-

librium structures of these clusters. For the hexamer isomers the structures are from ref.

196 and for the heptamer, decamer and 13-mer from ref. 177. In total 1050 configurations
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from these clusters were calculated.

To construct the new PES, we calculated the 4-b energies at the CCSD(T)-F12a/haTZ

level of theory for the above 2119 configurations. The choice of basis was made consid-

ering Basis Set Superposition Error (BSSE) and computational efficiency. Since BSSE

is typically assessed for interaction energies, that is what we considered for three con-

figurations, the minimum, Geom-1 and Geom-2. Table 9.1 shows this analysis for three

bases. As seen all bases exhibit a relatively small BSSE and the results for the haTZ

basis are very close to the much more expensive haQZ basis. So, based on this analysis

we chose the haTZ basis for the CCSD(T) energies at the database configurations. The

entire energy range of these 4-b energies is -1063.1 to 105.2 cm−1 and the distribution of

most of these energies in a smaller range is shown in Figure 9.4. There are just a small

number of 4-b energies outside this range.

Table 9.1: Comparison of BSSE corrected (corr.) and uncorrected (uncorr.) 4-b interac-
tion energies (in cm−1) for minimum geometry as well as two more geometries (Geom-1
and Geom-2) at various level of theory.

Minimum Geom-1 Geom-2

Method corr. uncorr. corr. uncorr. corr. uncorr.

CCSD(T)-F12a/haDZ -173.1 -169.4 -402.6 -395.3 -636.2 -636.0
CCSD(T)-F12a/haTZ -174.4 -174.5 -405.6 -404.0 -647.2 -646.2
CCSD(T)-F12a/haQZ -175.9 -175.3 -406.8 -404.8 -649.4 -648.7

Histograms of the OO distances in the tetramer configurations from the entire dataset

are shown in 9.5. As seen they span a range from roughly 2 to 9 Å, indicating good

coverage of this important distance. Histograms of the 4-b energies for the water heptamer

and decamer are given in Fig. 9.6.
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Figure 9.4: Histogram of the CCSD(T)-F12a/haTZ points used in the PES fit to the
4-body potential energy surface.

The PES is a linear least-squares fit to the data base of energies using a representation

in permutationally invariant polynomials (PIPs).27,142,181 The permutational symmetry

that describes all the permutations of like atoms has the designation 84, meaning that

the eight hydrogens permute with one another and the four oxygens permute with one

another. However, it is also possible to use reduced symmetries if one replicates the data

set with the proper number of permutations of the water molecules. Here we use the

symmetry 22221111, meaning that the hydrogens within each water monomer permute

with one another but that they do not permute between water molecules, and that the

oxygens do not permute among themselves. In order to describe the invariance with

respect to the 4! permutations of water monomers we replicated the symmetry-unique

configuration 4! times. The reason for using this reduced symmetry is given below, where

we discuss the total polynomial order for the fit.

The usual method for fitting the energy data set with the PIP polynomials is not
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Figure 9.5: Distribution of OO distances for the entire dataset.
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Figure 9.6: Histograms of 4-b energies for heptamer and decamer.

to use the internuclear distances directly in the PIPs but rather to transform them

into functions such as Morse variables (exp(−rij/a)) or 1/rij variables. For the current

application, we used a mixture of these functions, namely Morse variables for the 12

intramolecular coordinates with the range parameter a = 2 Bohr, and 1/rij variables for

the 54 intermolecular coordinates.

Another consideration for the basis set choice is the behavior of the PIPs as a monomer

or dimer of the tetramer is removed to a great distance with respect to the remaining wa-

ters. By definition, the 4-body interaction energy must go to zero as any water monomer
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or water dimer is distanced. Many of the PIPs do not have this property.181 The process

of eliminating these PIPs193 is what we term “purification”.194,197,198 Our method of pu-

rification starts by assigning random numbers to all the internuclear distances for the four

water molecules, 66 in this case, and evaluating the polynomials using Morse variables.

One then adds a large number to the Cartesian coordinates of the water monomers, one

at a time, and water dimers, two at a time, and then calculates the new values of the

polynomials. If for any of these distancing operations the value of a polynomial does not

become less than a small cutoff number (we used 10−6), the polynomial is eliminated

from the set.

For the maximum 84 symmetry and using a maximum polynomial order of 3, there

are 86 PIPs, but only 2 remain after purification. Clearly this is not a usable basis.

In the 22221111 symmetry with polynomial order 3, there are 10 737 PIPs, and 1649

remain after purification. Of course, we want the number of PIPs, equal to the number of

unknown coefficients, to be less than the size of energy database but not to be so much

less that we do not obtain good fit precision. Using 22221111 symmetry and replication

the data set of 2119 × 24 we have 50 856 energies, and so 1649 coefficients should be

sufficient and precise. Although we considered other possibilities, many were infeasible

and, for some, the permutational replication of the data set was not effective because it

mixed intra- and inter-monomer coordinates. In the end, we used the 22221111 symmetry

with a data base size of 50 856 and 1649 coefficients. For this basis the fitting error for

the energies, shown in Figure 9.7, is small with an RMS error for the entire dataset of

6.2 cm−1.

We now present several tests of the new 4-b PES, ranging from 1d energy profiles to

tests for variety of water clusters. We compare to CCSD(T)-F12a calculations as well as

results from the MB-pol and TTM4-F potentials. The first test is a comparison of 4-b
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Figure 9.7: Correlation plot between ab initio energies and energies calculated by the
PES fit. The correlation coefficient is R2 = 0.990 and the RMS error is 6.2 cm−1. (blue)
The cumulative RMS error is in cm−1.

energies from the PES, TTM4-F, and CCSD(T)-F12a for a 1-d profile showing the 4-b

energy along the separation of the water tetramer to two rigid dimers passing through the

cyclic minimum (OO equal to 2.75 Å). These are shown in Figure 9.8 from the current

PES, direct CCSD(T)-F12a/haTZ, and TTM4-F calculations. Note, CCSD(T) energies

for OO greater than 8 Åare not included in the training data set. As seen, over the range

1.7 to nearly 14 Å, the PES is in very good agreement with direct CCSD(T)-F12a/haTZ

energies. The 4-b energies from the TTM4-F potential are also in good agreement with

the benchmarks for OO distance greater than 2 Å. However, a major breakdown of

the accuracy of that potential is seen for shorter distances. Evidently, this is where the

classical electrostatic description of the two water dimer interaction fails, presumably due

to significant chemical interaction between the electronic orbitals of the dimers. We focus
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here on the TTM4-F potential as it plays a central role in the MB-pol water potential.199

Namely, MB-pol uses high-level, ab initio correction PESs to TTM4-F at the 2 and 3-b

level in the short range and relies on that potential for all 4-b and higher body water

interactions and also for the interactions beyond the range of the corrections. Finally

note the gradual approach to zero in this profile. At 11 Å the energy is less than -1.0

cm−1

Figure 9.8: 4-b energies from indicated sources (see text for more details) as a function
of the oxygen-oxygen distance between pairs of water dimers in the tetramer. The dashed
arrows indicate the dimer pair that separates from the rigid tetramer. The equilibrium
value of this distance is 2.7 Å.

A second profile showing PES and CCSD(T) energies is given in Figure 9.9. Here the

tetramer dissociates to a monomer plus trimer over an OO range of 2.7 to 15 Å, and

corresponding energy range of -175 cm−1 to 0. This is a significant test of the PES as no

CCSD(T) data for this profile were included in the fitting database. As seen, the PES
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agrees well with the benchmark results and the range of the interaction for this profile is

roughly 7 Å.

Figure 9.9: Test of the 4-b PES for a cut with a single monomer separating from the
tetramer against CCSD(T)-F12a/haTZ energies. OO is the distance between the O atoms
on the two monomers on the axis inferred from the arrow.

Both profiles show that the 4-b energy is rapidly becoming more negative at OO

distances near and especially less than the equilibrium value of 2.7 Å. (This was already

inferred in the discussion about Figure 9.1, where the many-body decomposition of the

tetramer potential was shown.) In general, this indicates the possible importance of the

4-b in softening the repulsive interaction in the condensed phase, especially for high

pressure conditions. At long range the two 1d-potentials show different behavior with

trimer+monomer interaction at somewhat shorter range than the dimer+dimer interac-

tion. Also, the 1-d potential for the former decays to zero slightly more slowly (a difference

of 1–2 cm−1) than the CCSD(T) reference energies. Below we comment on practical ap-
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proaches to treat the long-range behavior of the 4-b interaction for uses in applications to

the condensed phase with many monomers. Those comments will address in more detail

this small difference between the PES and CCSD(T) energies for the trimer+monomer

interaction.

Another test of the PES is the 4-b energies of the isomers of the water hexamer, prism,

cage, book-1 (bk-1), book-2 (bk-2), bag, cyclic-chair (c-chair), cyclic-boat-1 (c-bt-1) and

cyclic-boat-2 (c-bt-2). These isomers have been the focus of a number of papers, and the

one by Medders et al. is of particular interest.176 There the 4-body energy from several

water potentials, including WHBB5, MB-pol, TTM3-F and TTM4-F were compared with

CCSD(T)-F12/VTZ energies for eight isomers. Here we focus on the errors in the MB-pol

and the new 4-b PES. These are shown in Figure 9.10. As seen, the 4-b PES errors are

smaller than those from MB-pol. A numerical comparison of 4-b energies, the present

CCSD(T) calculations and the previous ones from Medders et al. are given in Table 9.2.

The two sets of CCSD(T) calculations are within 0.1 kcal/mol and generally less than

that for the eight isomers. Given that MB-pol and TTM4-F 4-b energies differ by no more

than 0.04 kcal/mol, and given the limited accuracy of TTM4-F shown in Figure 9.8, for

OO distances relevant to the hexamer, the lower level of accuracy of MB-pol compared

to the PES is not unexpected.

One aspect of an accurate 4-b PES is that it can be used for arbitrarily many

monomers with virtually zero BSSE. Thus, it is possible to test the prediction of 4-b

energies of larger water clusters using the 4-b PES and against benchmark calculations.

A convenient set of benchmark calculations has been published by Heindel and Xanth-

eas,177 who provided geometries (in their Supporting Information) and reported many-

body energies calculated with and without BSSE-correction at several levels of theory.

Table 9.3 shows their results in columns 4 and 5 for MP2 and the basis set listed in col-
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Figure 9.10: 4-b CCSD(T) energies for indicated isomers of the water hexamer from the
4-b PES, MB-pol, and previous CCSD(T)-F12/VTZ calculations.

Table 9.2: 4-b interaction energies (in kcal/mol) of eight isomers of the water hexamer
from indicated sources.

Isomer PES Present CCSD(T)- CCSD(T) MB-pol
F12a/haTZ -F12/VTZa /TTM4-F

Prism -0.66 -0.62 -0.66 -0.52
Cage -0.61 -0.54 -0.53 -0.47
Book-1 -1.12 -1.16 -1.08 -0.92
Book-2 -1.08 -1.05 -1.00 -0.85
Bag -1.38 -1.21 -1.16 -0.90
Chair -1.88 -1.85 -1.78 -1.44
Boat-1 -1.73 -1.71 -1.63 -1.35
Boat-2 -1.71 -1.69 -1.61 -1.35

a From Medders et al J. Chem. Phys. 143, 104102 (2015).
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umn 3. The results using the PES to calculate all 4-b energy in each n-mer are shown in

the last column. The agreement is good through n = 16. Remarkably, even better agree-

ment is obtained between the PES and benchmark CCSD(T)-F12a/haTZ calculations

performed up to the 13-mer. For the two isomers of n = 21 the BSSE correction to MP2

calculations was not applied and coupled clusters energies were not obtained as both com-

putations were evidently too intensive. As seen, the PES 4-b results are much less than

the uncorrected MP2/aVDZ results. While this is almost certainly qualitatively correct,

the quantitative accuracy of the 4-b results would require new benchmarks calculations,

which for these larger clusters are currently not easily done.

Table 9.3: 4-b interaction energies (kcal/mol) for various water clusters, where the in-
formation in columns 3–5 is taken from the SI in ref. 177, numbers in column 6 are from
our CCSD(T)-F12/haTZ calculations, and the numbers in column 7 are calculated using
our 4-b PES.

(H2O)n No. of H-X MP2 CCSD(T)- 4-b
n= 4mers basis MP2 BSSE- F12/haTZ PES

in nmer corrected
7a 35 aVTZ -1.106 -0.874 -0.987 -1.012
10a 210 aVTZ -3.028 -1.978 -2.576 -2.341
13a 715 aVDZ -6.352 -1.499 -1.539 -1.571
16a 1820 aVDZ -9.463 -2.179 - -2.983
21b 5985 aVDZ -20.976 - - -9.888
21c 5985 aVDZ -19.892 - - -5.920

a These are global minimum structures;
b Fully solvated structure;
c All surface structure.

For most of the large clusters, many of the 4-mer configurations involve at least

one water that is quite distant from the others, so that the 4-b energy is quite small.

For example, Figure 9.11 shows a histogram of the PES-determined 4-b energies for
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the “fully-solvated” 21-mer. There are large peaks near zero, although the distribution

actually stretches from -95 to 54 cm−1, with only a minor number of energies outside

the range depicted in the figure. Since the total 4-b energy is the sum of all the 4-body

contributions (5985 in the case of n = 21), there is evidently a large degree of cancellation.

The issue of the many very small 4-b interactions is of course an important one and we

comment on it after we discuss the computational effort to evaluate the 4-b PES, which

we do next.

Figure 9.11: Distribution of PES 4-b energies for the fully solvated 21-mer

Finally, an important aspect of the new 4-b PES is the computational effort to use

it. One hundred thousand evaluations of the 4-b PES takes 2.45 seconds on a single core

of the 2.4 GHz Intel Xeon processor. This is significantly smaller than the computational

effort to evaluate our WHBB PES for the water trimer.

While this computational effort is not large, it should be recalled that the number

of 4-b interactions goes formally as N4 for N water monomers, Thus, the cost would
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be high if all the tetramers were to be evaluated for say a condensed phase simulations

which require hundreds of monomers. A standard approach to deal with this is to use a

distance-based cutoff via a standard switching function. This would greatly reduce the

number of tetramers to be evaluated because in large clusters many tetramers have large

inter-monomer distances and the 4-b energy for such tetramers is essentially zero and thus

not necessary to evaluate. We demonstrate this below with results shown in Table 9.4,

for clusters with 64, 128 and 256 monomers. In this case we evaluate the 4-b potential

of tetramers whose largest O-O distance is smaller than 7 Å. (We don’t necessarily

recommend this for all applications of course, it is used here just for illustration.) With

this choice more than 99% of the tetramers are not evaluated, and calculating the total

4-b energy takes seconds, as seen, rather than more than an hour. Parallelization is

another possible strategy since the calculation of one tetramer is independent of the

others. This has been done using OpenMP and as seen there is a substantial speed-up in

the calculations.

Table 9.4: Computation cost of 4-b PES calculation with cut-off O-O distance of 7 Å

(H2O)n No. of No. of Time (s) Time (s)
n= total 4b calculated 4b single core 8 cores
64 635,376 5,078 0.18 0.03
128 10,668,000 24,460 0.79 0.12
256 174,792,640 58,804 1.80 0.25

Limiting the range of the 4-b interaction through the use of a multiplicative damping

factor (switching function) that brings the 4-b to zero in a finite range is the well-

established way to deal with the huge number of interactions. The parameters of such a

function of course are varied, within practical limits, to establish systematic uncertainties
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of any property with respect to this switching. An example from our group used damping

of the 3-b interaction in H2−H2O−H2O interaction in a diffusion Monte Carlo quantum

calculation of vibrational energies of H2 in a hydrate clathrate.200 In this calculation the

WHBB water potential was used to describe the water interaction and a separate 1,2,3-

body potential was used to describe the H2-water interactions.197 It is worth noting that

this is a general many-body approach to describe the interaction of molecules and ions

with water.

9.4 Summary and conclusions

In summary, we reported the first ab initio, full-dimensional potential energy surface for

the 4-body interaction of water. The potential is a purified PIP fit to a diverse set of

2119 unique CCSD(T)-F12a/haTZ energies. This representation ensures that the PES

rigorously goes to zero as a monomer or dimer is separated from a tetramer cluster.

Tests of the 4-b PES demonstrate the high-fidelity compared to benchmark calculations.

In addition, the 4-b PES was shown to significantly reduce errors in 4-b interaction

energies for isomers of the water hexamer obtained from a high-level water potential that

describes water interactions to the 3-b level. This new 4-b PES was shown to be fast

to evaluate, and for applications to large numbers of water monomers a large fraction

of 4-b configurations are beyond the range of the 4-b PES and so do not have to be

evaluated. This was demonstrated for the 21-mer. The PES is also robust, at least for

the present applications. In total roughly 100,000 4-b energies have been obtained using

the new PES and none show huge negative values, i.e., “holes”. The current 4-b PES

could be an add-on to a water potential that either does not contain 4-b terms or has an

approximate treatment of the 4-b, e.g., the TTMn family of potentials. Specifically, as
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seen in Fig. 4, TTM4-F provides an accurate description of the 4-b interaction, except

at short range where it fails. This suggests that a correction PES to the TTM4-F 4-b

interaction might be a reasonable future project. However, the unphysical behavior of

TTM4-F shown at short OO distances could be problematic for a correction PES. In any

case, we plan to investigate this in the future. Finally, it should be clear that the present

4-b PES is “version 1.0”. And while it appears to be both fast to evaluate and accurate,

we anticipate being able to make significant speed-ups, the easiest one of which is to

make use of multi-core architecture of all modern workstations and computer nodes.
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Chapter 10

Implications of “Zero-Point Leak”

and Isomerization of syn-CH3CHOO

in Quasiclassical Trajectory

Calculations via Adiabatic Switching

10.1 Chapter Abstract

Quasiclassical trajectory calculations are distinguished from molecular dynamics calcula-

tions primarily by the difference in the phase-space used for sampling initial conditions.

In the former, this phase space incorporates zero-point energy (ZPE), whereas the latter

uses the classical phase space, typically at a given temperature. There are advantages and

disadvantages to these approaches. Clearly, the quasiclassical one aims to mimic quan-

tum mechanics, where zero-point energy is a major and essential difference with classical

mechanics. But, “ZPE leak”, a well-known issue with quasiclassical calculations, has

173
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largely prevented the use of the quasiclassical method for larger systems and also is often

mentioned as an issue even for smaller systems, where it is routinely used. By not incor-

porating ZPE, molecular dynamics calculations avoid this issue; however, at the cost of

neglecting this important difference with quantum mechanics. In this article we examine

ZPE leak from the point of view of rigorous semi-classical quantization; actually the lack

thereof. We examine this issue here specifically for syn-CH3CHOO, where the ZPE is

roughly twice as large as the barrier for isomerization to the more stable isomer vinyl

hydroperoxide. Semi-classical quantization is done for this 18 degree-of-freedom molecule

using adiabatic switching in Cartesian coordinates, using the methodology recently de-

scribed by us [C. Qu and J. M. Bowman, J. Phys. Chem. A., 120, 4988–4993 (2016)]. Good

agreement for vibrational energies is found compared to accurate quantum calculations.

Finally, some aspects of possible mode-specific isomerization to vinyl hydroperoxide is

examined using the adiabatically switched trajectories.

10.2 Overview

Molecular dynamics, i.e., classical trajectory, calculations are by far the most commonly

used simulation approach to investigate the nuclear motion in applications ranging from

locating stationary points on potential energy surfaces (PESs) to IR and electronic spec-

troscopy to chemical reactions. There are of course known issues with this approach,

especially when applied to H-atom motion. One is the lack of zero-point energy, which

can be quite large. For H-atom motion in particular the issue is serious because even a

single mode involving an H-atom, e.g., the OH stretch in water, can have a ZPE that is

much larger than kBT at room temperature. This means that a classical simulation of

this stretch at room temperature produces essentially a localized harmonic description
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of this motion. Among other implication, this means that the resulting IR band of this

mode is essentially the harmonic one, which as is well known, can be upshifted from the

correct one by roughly 100-200 cm−1.

Adding zero-point motion to a classical simulation is done in so-called quasiclassical

trajectory (QCT) calculations. It is well-known, and widely-used in gas-phase reactive

scattering. Since its introduction by Karplus et al. for the H+H2 reaction,201 it has been

used successfully in many atom+diatom reactions. For a diatomic molecule the addition

of ZPE results in a perfectly periodic motion that is stationary in time and so there is

no “ZPE leak” in this case. For chemical reactions, the addition of ZPE is known to

produce much more accurate results than a simple classical simulation,202 and it is also

justified from a semi-classical point of view clearly. Similarly, a quasiclassical simulation

of the IR spectrum of say OH is clearly superior to the classical one since the QCT

one captures a significant effect of the anharmonicity, which is essentially neglected in a

classical simulation except at very high temperature.

The problem with the QCT approach becomes apparent for applications with more

than one mode, i.e., virtually all applications. To understand this, consider how ZPE is

added for many modes. Typically, this is done by performing a normal mode analysis of

the molecule, cluster, etc. and then applying straightforward semi-classical conditions on

the harmonic motion. Details of this procedure and its use to obtain initial conditions for

trajectory calculations can be found in the excellent 1998 article by Hase.203 The problem

is that the Hamiltonian that governs the nuclear motion is, in general, anharmonic and

so the approximate harmonic semi-classical quantization breaks down, and the resulting

mode-mode coupling causes energy transfer among the modes, which in the case of ZPE

in the modes, results in the infamous “ZPE leak”. This leak can be relatively benign

or insidious. In the former case, the mode energies beat back and forth and on average
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mode ZPE is sustained, at least for long-enough times for the simulation to finish, e.g.,

in X+CH4 chemical reactions.204,205 In the latter case, the leak can cause unphysical

chemistry, e.g., bond-breaking. This is well known and is largely the reason given for

not using QCT simulations in say water simulations, as even the water dimer shows this

failure.206 Just 15% ZPE leakage from the four OH-stretches is sufficient to break the

H-bond. ZPE leak has also been noted recently in the context of a quantum thermostat

for molecular dynamics simulations.207

Several “active” procedures to prevent this leakage among harmonic modes have

been reported.208–211 The earliest one was motivated by the model, 2-mode Henon-Heiles

Hamiltonian

H =
1

2
(p2

1 + p2
2 + q2

1 + q2
2) + q2

1q2 −
1

3
q3

2. (10.1)

Vibrational energy leak is particularly fast in this model as the two harmonic modes

have the same frequency. The transfer of mode energy can be completely turned off at

a certain threshold value by applying an impulse in the phase-space of each mode that

changes the sign of the momentum, p1(t) or p2(t) at some time t, when the energy in

mode 1 or mode 2 is equal to a threshold value. A generalization of this approach was

used successfully to prevent ZPE leak in the water dimer206 and trimer212. However, the

procedure is cumbersome as it requires defining sets of normal modes as the trajectory

evolves and so is not readily adaptable to larger clusters.

In any case, these methods are a patch to the fundamental problem, which is the lack

of rigorous semi-classical quantization of the zero-point state. In principle rigorous semi-

classical quantization determines the stationary classical action variables, which are the

analogs of quantum numbers. For the unique zero-point state these quantum numbers

are all zero and semi-classical quantization should be easiest for this state. So, assuming
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that this can be done (and perhaps also assuming that there is a stationary quantum

zero-point state), it seems clear that the classical motion of this state should be the most

separable one and the one least likely to be plagued by islands of “chaos”. Thus, correct

semiclassical quantization of the zero-point state should lead to a stationary phase space

with no ZPE leak, benign or insidious.

The theoretical and computational study of semiclassical quantization of molecular

motion, in particular periodic or quasi-periodic vibrational motion, is large, with many

contributions and advances made in the 1980s.213–226 Nevertheless, the methodology is

complex, as the forces, even at zero-point energies, are non-linear and the search for

periodic orbits is challenging. Most of the applications were to model problems and only

later to small molecules, e.g., triatomics and tetraatomics. For larger systems, some of the

methods, especially those that search for periodic orbits and work for smaller molecules,

become unwieldy.

We recently used adiabatic switching (AS)219–226 in a calculation of quantization of the

vibrational zero-point state and selected fundamentals of CH4.227 This was done using an

accurate PES, for which exact quantum calculations of these states were available. Details

of these calculations, which were done in Cartesian coordinates and which required some

new methodology, are given below. As noted above, standard, approximate harmonic

semi-classical quantization of these vibrational states of CH4 was done (successfully) in

studies of reaction dynamics. And so in this case ZPE and higher excited vibrational

energy leak is benign. (For interesting further discussion of ZPE leak in reactive QCT

calculations see ref. 228.)

Adiabatic switching appears to be straightforward to apply to high-dimensional sys-

tems, as the following brief description of it makes clear. The basic idea of AS is as

follows: the Hamiltonian of the polyatomic molecule can be written as the sum of a
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zeroth-order separable, and non-separable parts, H = H0 + ∆H. The separable part H0

is assumed to be easily quantized semiclassically. Then a time-dependent Hamiltonian is

introduced that evolves, via a simple switching function, from H0 to H. If this is done

sufficiently slowly, and according to the adiabatic theorem, the quantized state of H0

will slowly evolve to the corresponding quantized state associated with the true Hamil-

tonian H. The application of AS in semiclassical quantization of mostly model systems

has been investigated and reviewed.219–226 The method, as will become clear below, is

straightforward to apply and so it offers the prospect of being readily implemented in

QCT calculations involving polyatomic reactants (and products). Recently, AS has been

applied successfully to obtain the Wigner distribution for anharmonic coupled oscillators,

starting with a zero-order separable distribution.229

The current application of AS is to the Criegee intermediate syn-CH3CHOO. The

Criegee intermediates are an important source of atmospheric OH radicals, and the dis-

sociation of syn-CH3CHOO has been studies extensively recently.230–234 The mechanism

of the dissociation of syn-CH3CHOO to vinoxy+OH is based on the usual analysis of

stationary points of the PES schematic. This indicates that syn-CH3CHOO isomerizes to

the vinyl hydroperoxide (VHP) through a five-membered ring-like transition state, and

the VHP dissociates to OH+CH2CHO products. While this mechanism is largely correct;

there are added complexities in the region of the PES from VHP to the products,233 and

it is also incomplete at high internal energy of syn-CH3CHOO, where a second, direct

pathway to these products opens up.234 In this paper, we focus on the issue of ZPE

leak in the isomerization of syn-CH3CHOO to VHP. The reason for choosing this iso-

merization, beyond the current interest in it, is that ZPE of syn-CH3CHOO is almost

twice the electronic barrier for isomerization. Thus, in a quasiclassical simulation, the

isomerization might occur due to the ZPE leak. We apply AS to obtain the semi-classical
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ZPE of syn-CH3CHOO and investigate the time evolution of the molecule to see in fact

if isomerization does occur. To push the method a bit, we also apply AS to the funda-

mental excitation of a mode that is predicted from a simple projection theory to promote

isomerization.

This article is organized as follows: we briefly review the theory of adiabatic switching

and provide the computational details in Section II. Results are presented in Section III

and a summary and conclusions are given in Section IV.

10.3 Theory and Computational Details

10.3.1 Adiabatic switching

Adiabatic switching is founded in the adiabatic theorem of classical mechanics,235 which

states that certain constants of the motion may evolve invariantly in time. For semi-

classical quantization, these are the good actions variables.219–223 In AS a time-dependent

Hamiltonian is given by

H(t) = H0 + s(t)(H −H0), (10.2)

where H0 is the zeroth-order Hamiltonian (which is the harmonic Hamiltonian in this

work), and s(t) is a switching function that varies monotonically from 0 to 1 over a

finite time interval T and remains 1 when t > T . The familiar harmonic zeroth-order

Hamiltonian for 3N -6 vibrational modes is given by

H0 =
3N−6∑
i=1

(
P 2
i

2
+
ω2
iQ

2
i

2

)
, (10.3)
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where Qi are the mass-scaled normal modes and ωi are the corresponding harmonic

frequencies. The switching function s(t) in this work is chosen as223,226

s(t) =
t

T
− 1

2π
sin

2πt

T
, (10.4)

where T is the switching time.

The semiclassical quantization conditions of H0 are the usual ones,

∮
PidQi = 2π(ni +

1

2
)~, (10.5)

where ni are integers and these variables are classical actions. Since the H0 is a separable

harmonic-oscillator Hamiltonian, the semiclassical quantization can be achieved trivially,

as shown next.

10.3.2 Quantization of H0

To proceed, a standard normal-mode analysis is performed at the minimum structure,

where the trajectories are initiated, in the present case the minimum of syn-CH3CHOO.

A set of harmonic frequencies ωi and the corresponding normal mode eigenvectors Li

(i = 1, 2, · · · , 3N − 6) are obtained.

For each mode, the normal coordinate Qi and the corresponding momentum Pi are

in terms of action/angle variables by

Qi = [(2ni + 1)~/ωi]1/2 cos (ωit+ φi) , (10.6)

Pi = − [(2ni + 1)~ωi]1/2 sin (ωit+ φi) , (10.7)
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where ni is the integral quantum number of mode i, and φi is the phase of the oscillator

i, which varies uniformly from 0 and 2π.

For sampling purposes, e.g., in QCT calculations, at t = 0, the phase for each mode

is randomly sampled from a uniform distribution on (0, 2π). Once the random phases φi

are determined, Qi and Pi are obtained and then transformed rigorously to the Cartesian

coordinates qi and momenta pi via

q = q0 + M−1/2LQ, (10.8)

p = M 1/2LP , (10.9)

where q0 is a vector of the Cartesian coordinates of the minimum; L is a matrix consists

of the normal mode eigenvectors; M is a diagonal matrix whose elements are the masses

of atoms.

These are then the initial conditions for the AS trajectory. AS can be done with a

single trajectory, or as is more typical, for an ensemble of trajectories.

10.3.3 Propagation

To be completely general, we implemented AS in Cartesian coordinates and momenta,

and so the method can be applied to any molecule, cluster, etc. The equations of motion

q̇i =
∂H(t)

∂pi
, ṗi = −∂H(t)

∂qi
(10.10)

are integrated numerically, where H(t) = H0 + s(t)(H −H0). Using the rigorous H does

lead to a complication, owing to the neglect of vibrational angular momentum terms

in the above expression for H0.236 Without treating this coupling, evaluation of normal
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modes from time-evolving Cartesian coordinates can become numerically very inaccurate

as rotational normal modes develop non-zero values. To correct this the coordinate system

is transformed to the original Eckart frame. The transformation to the Eckart frame is

done by a rotation of the coordinate system ri to a new one that satisfies the Eckart

conditions. The rotation matrix, C is computed using the method of Dymarsky and

Kudin237. The details of the procedure used in our group are given elsewhere,205,238

where the context was the final state analysis of products. In brief, C is determined from

the equation
N∑
i=1

mir
eq
i × (Cri − reqi ) = 0, (10.11)

where reqi is the reference configuration where the normal mode analysis was performed.

Once the Cartesian coordinates in the Eckart frame are obtained, the reference set of

normal coordinates is obtained as usual, and V0 can be easily evaluated as

V0 =
3N−6∑
i=1

ω2
iQ

2
i

2
. (10.12)

and subtracted from the full potential. Note that the transformation to the Eckart frame

is only performed to evaluate the harmonic potential, otherwise the classical propaga-

tion proceeds as usual in the original set of Cartesian coordinates and momenta. This

transformation is easily implemented into any trajectory code.

10.3.4 Computational details

The PES of the CH3CHOO we use is a full-dimensional one that is a permutation-

ally invariant fit26 to roughly 160 000 electronic energies (roughly 140 000 CCSD(T)-

F12b/HaDZ and 20 000 CASPT2(12,10)/cc-pVDZ energies).233,234,239,240 The first version
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of the PES was restricted to the region of the syn-CH3CHOO minimum and used in joint

theory/experimental spectroscopic work.239 The more recent one is far more extensive,

describing region of the syn-CH3CHOO minimum, the saddle point region to VHP, the

VHP region, and dissociation to the products OH+vinoxy.233,234 This recent version is

employed in this work.

We performed AS calculations for syn-CH3CHOO, with different switching times T

for the zero-point state and one fundamental. The velocity Verlet algorithm was applied

to numerically integrate the equations of motion, and the gradient at each step was calcu-

lated by numerical finite difference. The step size used in all the trajectory calculations

was 0.06 fs. For each quantized state, three different switching times have been used,

namely, T = 1209.5, 2419, and 4838 fs. After the full potential was completely turned

on, the trajectories were further propagated for another T using the full PES.

10.4 Results and Discussion

Before presenting results from the AS, we show in Figure 10.1 a schematic of the potential

energy of the syn-CH3CHOO–VHP isomerization along a rectilinear reaction coordinate,

namely the imaginary frequency normal coordinate of the saddle point separating these

minima, denoted Qim.241 The potential shown is the one minimized with respect to the

3N-7 (17) normal modes of the saddle point for each value of Qim. The Qim can be viewed

as the rectilinear reaction coordinate for the syn-CH3CHOO–VHP isomerization. In the

present context it is a very convenient way to monitor the approach to the isomerization

barrier and indeed isomerization as well by determining the Qim value at each step in

a trajectory. This figure also shows the rigorous quantum ZPE of the syn-CH3CHOO

(12851 cm−1), and it is almost twice as large as the barrier (6524 cm−1) that separates
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the syn-CH3CHOO and the VHP.
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Figure 10.1: Schematic of the isomerization of syn-CH3CHOO to VHP

Unlike methane, to which we successfully applied AS, syn-CH3CHOO has a large-

amplitude CH3 torsion mode. When the excitation of this mode is large due to ZPE

leak during the switching time, displacement of this torsion mode is large, and using the

normal modes of the original reference geometry, as we do, can be problematic as there

are three equivalent minima for the torsion. This is a fairly rare event and from previous

diffusion Monte Carlo calculations of the ZPE,240 we know that torsional mode is fairly

localized (as expected given that the torsional barrier is 730 cm−1). Thus, we discard

trajectories which display this problematic behavior.

The vibrational energy of the syn-CH3CHOO as a function of time for a single trajec-

tory and three total switching times is shown in Figure 10.2. As seen, the initial harmonic

ZPE (12981 cm−1) changes as the potential is switched to the full potential and the vi-
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brational energy of the syn-CH3CHOO converges to a value that is close to the exact

quantum ZPE of 12851 cm−1. When averaging over all the trajectories (about 10 tra-

jectories for each switching time), we obtained a ZPE of 12834 cm−1, which is about 17

cm−1 below the quantum value. The decrease in energy with respect to time is generally

monotonic with small oscillations. This result is in good accord with the one we observed

earlier for the ZPE of CH4, where the AS value is roughly 30 cm−1 below the exact one.227

 12820

 12840

 12860

 12880

 12900

 12920

 12940

 12960

 12980

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

V
ib

ra
tio

na
l e

ne
rg

y 
(c

m
-1

)

Time (fs)

T = 1209.5 fs

T =  2419 fs

T = 4838 fs

Figure 10.2: Zero-point vibrational energy of syn-CH3CHOO using adiabatic switching
for three switching times.

Figure 10.3 shows the time dependence of the Qim value in an adiabatically switched

trajectory. From the figure, we can see that the Qim value oscillates around -80 (the syn-

CH3CHOO minimum), and it stays in the negative region, i.e., the syn-CH3CHOO well.

Note that the Qim value has to reach 0.0 in order to reach the isomerization barrier to the

VHP; therefore, even with a ZPE that is twice as large as the barrier, the syn-CH3CHOO
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→ VHP isomerization did not occur in these AS trajectories.
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Figure 10.3: Time dependence of Qim for zero-point adiabatically switched trajectory.
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Table 10.1: The projection of the syn-CH3CHOO normal modes on the imaginary-
frequency mode of the saddle point.

Mode frequency (cm−1) Projection

1 211 -0.3207
2 301 -0.2729
3 445 0.0872
4 665 -0.1893
5 728 -0.1490
6 934 0.1002
7 981 0.1349
8 1044 -0.1916
9 1097 0.5280
10 1293 -0.0748
11 1428 0.0998
12 1456 0.3810
13 1474 -0.4346
14 1523 0.1992
15 2948 -0.0979
16 3094 0.0735
17 3110 0.0767
18 3189 0.0029

Next, we consider the isomerization when a promoting vibrational mode of the syn-

CH3CHOO is excited. The identification of this mode is based on a simple theory where

the projections of the normal mode vectors onto the imaginary-frequency normal mode

of the saddle point are used to determine, within a simple harmonic model, which modes

promote isomerization when excited.242 Note Jiang and Guo also proposed a similar

model.243 Therefore, we calculated the projection of the 18 modes of syn-CH3CHOO onto

the imaginary-frequency mode, and they are presented in Table 10.1. We find that mode 9

has the largest projection. Therefore we ran AS trajectories with this mode being excited.

This can be done by simply setting n9 = 1 in the initial quantization of the harmonic
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Hamiltonian H0. The vibrational energies of the syn-CH3CHOO as a function of time for

T = 1209.5 fs are shown in Figure 10.4. The average final energies of all these excited

state trajectories (about 10 trajectories for each switching time) are 13923 cm−1, leading

to a semiclassical energy of 1089 cm−1 for the excitation of mode 9. In comparison, the

excitation energy of this vibrational mode is 1097 cm−1 from quantum calculation.239 Our

semiclassical result is in very good (probably fortuitous) agreement with the quantum

calculation. Figure 10.5 shows the time dependence of the Qim value after the switching

from trajectories with mode 9 excited. The Qim values still stay negative, meaning that

the isomerization did not occur in these trajectories.

The time dependence of Qim(t) for the AS trajectories is interesting, beyond serving

as a diagnostic for unphysical isomerization. The time-dependence is clearly complex

and in the future we plan to subject it to standard Fourier analysis. As well, the inner

turning points are configurations (caustics) where the trajectory is reflected from the

isomerization barrier. These can be used in simple estimates of the tunneling probability

for isomerization. This would, in a sense, be the extension of our harmonic projection

theory to obtain tunneling rates.242 It would also be close in spirit to earlier work of

Makri and Miller.244 We plan to investigate this in the future.

We conclude this Discussion with some general comments. While AS is successful in

obtaining vibrational energies in good agreement with quantum calculations, it is not

assured that the switching has produced invariant tori in phase space with no traces of

“chaotic” dynamics. Unfortunately, some of diagnostics such Poincaré surface-of-section

analysis cannot be applied here owing the very large dimensionality of the phase space.

However, the lack of isomerization does strongly suggest that the dynamics is more “regu-

lar” than “chaotic”. Further, it would be interesting to see at what energy prompt isomer-

ization occurs and indeed to continue the dynamics to the formation of the OH+vinoxy
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products and to investigate the predictions of John Light’s elegant phase space theory of

chemical reactions,245,246 which is directly applicable to this dissociation.
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Figure 10.4: Vibrational energy of syn-CH3CHOO with mode 9 excited, using adiabatic
switching with one switching time.

10.5 Summary and conclusions

In this article, we presented a calculation of the zero-point energy of CH3CHOO for the

ground state and one fundamental using adiabatic switching with an existing ab initio-

based potential energy surface. Adiabatic switching was done using a standard separable

harmonic normal mode zeroth-order Hamiltonian to the full one in Cartesian coordi-

nates. Details of the procedure were given, with special note taken of the transformation

from Cartesian coordinates of the adiabatic switching trajectory to the reference normal

mode coordinates. Comparison with available accurate quantum energies showed good
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Figure 10.5: Time dependence of Qim for excited adiabatically switched trajectory.

agreement. A major point of the paper was the demonstration of the lack of zero-point

energy “leak” causing unphysical isomerization to vinyl hydroperoxide, even though the

internal energy of the syn-CH3CHOO is roughly twice the isomerization barrier. Our fu-

ture work will combine adiabatic switching and our simple 1-D approach242 to calculate

the tunneling effect in the CH3CHOO → VHP isomerization.



Chapter 11

Quantum Zero-point Energies of

Methanol and Deuterated Methanol

11.1 Chapter Abstract

Diffusion Monte Carlo (DMC) simulations have been used to obtain quantum zero-point

energies of methanol and all its isotopologs and isotopomers, using a new, accurate semi-

global potential energy surface. This potential energy surface is a precise, permutationally

invariant fit to 6,676 ab initio energies, obtained at the CCSD(T)-F12b/aug-cc-pVDZ

level of theory. Quantum zero-point energies of deuterated methanol isotopomers are

very close to each other and so a simple statistical argument can be used to estimate

the populations of each isotopomer at very low temperatures. The DMC simulations also

indicate that there is virtually zero probability for H/D exchange in the zero-point state.

191
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11.2 Overview

Isotopic substitution plays a significant role in astrochemistry and biology. For example,

in spite of the very low abundance of deuterium (about 105 times less than hydrogen) in

the universe, D-containing isotopologues are commonly found in many interstellar and

pre-stellar environments. Singly, doubly and triply deuterated molecules have been de-

tected in various interstellar environments during the last couple of decades.247 Methanol

and ammonia are the two molecules which show the highest D-enhancements248–250. In

1988, singly deuterated methanol, CH3OD, was detected,251 and in 1993 CH2DOH was

observed in the Orion Compact Ridge.252 The fractional H/D ratio for [CH3OD]/[CH3OH]

in the Orion Compact Ridge was found to be about 0.01–0.06, and about 1.1–1.5 for

[CH2DOH]/[CH3OD] respectively. Detection of the doubly deuterated methanol (CHD2OH)

was reported by Parise et al.253 in 2002 in solar-type protostar IRAS 16293-2422. The

abundance ratio of CHD2OH/CH3OH was found to be about 0.2± 0.1. In this work, two

singly deuterated methanol were also observed and the abundance ratios are [CH2DOH]/[CH3OH]

= 0.9 ± 0.3 and [CH3OD]/[CH3OH] = 0.04 ± 0.02. Later, triply deuterated methanol,

CD3OH, was found in solar-type protostar IRAS 16293-2422 in 2004.250 The observed

fractional ratio of [CD3OH]/[CH3OH] is about 1.4%. However, other deuterated iso-

topomers (CH2DOD and CHD2OD) of methanol have not been observed yet in the in-

terstellar environment.

In order to explain the abundance of the deuterated methanol and the absence of

CH2DOD and CHD2OD in interstellar environment, the reaction mechanism of methanol

formation is an active area in contemporary research. The experimental observations are

consistent with the formation of methanol from successive hydrogenations of CO by

reaction with atomic H/D on grain surfaces, if the atomic D/H ratio is 0.1–0.3.254 The
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study of Whittet et al. also supports this model.255 Theoretically, in 1997, Charnley et

al.256 calculated a CH2DOH/CH3OD ratio of 3:1 in the Orion Compact Ridge, so the

calculated ratio conflicts the observed ratio (1.1–1.5) and the authors show that when

these mantles are evaporated, the [CH2DOH]/[CH3OD] ratio can be altered by gas-phase

reactions. We will discuss the CH2DOH/CH3OD ratio later in the paper.

In addition to its importance in astrochemistry, methanol is one of the molecules that

has large-amplitude torsional motion with a small electronic barrier (roughly 360 cm−1))

to this internal rotation.49,257,258 The advent of modern spectroscopic techniques and

computational hardware have enabled exploration of methanol in great detail. Several

experimental investigations have been performed in the last two decades to understand

the interaction of this large amplitude motion with other normal modes.259–262 High-

level theoretical works on vibrational and torsional energies of CH3OH have produced

several ab initio-based force fields and potential energy surfaces.49,258,263–267 However,

The theoretical and experimental description of the deuterated methanol species is very

limited. Firstly, In 1974, Serrallach et al. have reported experimental vibrational fre-

quencies of methanol and its all deuterated isotopologs.259 They used these experimental

data for the determination of significant valence force field parameters by a simultane-

ous least-square adjustment. A theoretical study of anharmonic vibrational frequencies

of CH3OH, CH3OD,CD3OH, and CD3OD have presented by Halonen and co-workers263

in 2000. They employed CCSD(T)/aug-cc-pVTZ level of theory to calculate the har-

monic part and MP4(SDQ)/aug-cc-pVTZ level of theory to calculate the anharmonic

part of the potential energy surface and all the vibrational terms are calculated by using

second order perturbation theory. In 2005, Sibert reported the anharmonic vibrational

frequencies of methanol and its three deuterated analogs (CH3OD,CD3OH, and CD3OD)

using a combination of perturbative and variation method258. The effect of deuteration
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on torsional tunneling splitting is clearly a very sensitive probe of the torsional barrier

and dynamics. Mode coupling effects for this 6-atom molecule require a high-dimensional

potential energy surface (PES). Huang et al. reported a full-dimensional PES in 200749.

This PES, which was a permutationally invariant fit to 19,315 ab initio energies at the

CCSD(T)/aVTZ level of theory, is limited to the minima of methanol potential. It was

used in MULTIMODE-Reaction Path calculations49,268 having good agreement with ex-

periment. Later in 2013, another PES was developed by Qu et al.17 and roughly 46,000

ab initio energies were fitted using CCSD(T)-F12b level of theory and aug-cc-pVDZ ba-

sis set. This latest PES describes the region of the minimum of the potential as well as

the (CH3 + OH) dissociation channel17 with excellent agreement of IUPAC evaluation of

dissociation energy.269

One aspect of deuteration that has not been investigated theoretically is the zero-point

energy of all isotopomers of partially deuteratated isotopologs of methanol. Specfically,

this is energy ordering of D-substituted (mono, double and triple) methanol isomers with

a focus on which position the D atom prefers to attach (either with C or with O) for

partial deuteration. In this case, there are two possibilities to form deuterated-CH3OH

from CH3OH, namely CH3OD vs CH2DOH, CH2DOD vs CHD2OH and CHD2OD vs

CD3OH. To address this precisely for the zero-point state, we use the rigorous Diffusion

Monte Carlo (DMC) approach with a new, accurate potential energy surface.

The paper is organized as follows. In section 2, we briefly present the details of the new

PES, followed by the computational details of DMC calculations. In section 3, we present

the results of our DMC simulations of all the D-containing isotopologues of methanol and

the ZPE differences from each other. In section 4, we present the conclusions and remarks.
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11.3 Theory and Computational Details

11.3.1 Potential Energy Surface of CH3OH

We reported a permutationally invariant PES for methanol that describes the dissociation

to CH3+OH in 2013, based on a dataset of 45,199 configurations and corresponding

CCST(T)-F12b/aVDZ energies/17 The PES used in this work is a fit to a subset of 6,676

configurations in the global minimum and torsional saddle point regions of methanol.

This more local PES uses the same permutationally invariant polynomial fitting basis

and the same maximum polynomial order. This leads to 3,250 linear coefficients which

were determined by solving a weighted linear least-squares problem. Each energy was

weighted by 0.1/(0.1 + δE), where δE is the energy relative to the minimum in hartree.

The number of ab initio data points and the fitting root-mean-square (rms) error as

functions of the energy are shown in Figure 11.1. The rms error below 25000 cm−1 is

only about 8 cm−1, and the overall rms is 12.3 cm−1. These are all smaller than the semi-

global one presented in 2007,49 and are significantly smaller than those of the dissociable

PES,17 and therefore it is much more precise for zero-point properties studied in this

work.

The torsional barrier of this PES is 355.2 cm−1, and it is in good agreement with

the 359.5 cm−1 from CCSD(T)/VQZ calculations.263 The harmonic frequencies of the

minimum and the torsional saddle point are listed in Table 11.1, together with the ab

initio ones calculated at CCSD(T)-F12b/aVDZ level of theory. The differences between

the PES frequencies and the ab initio ones are generally within 5 cm−1.
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Figure 11.1: Number of ab initio data points and rms fitting error a function of the
energy.

Table 11.1: Harmonic frequencies (in cm−1) of the global minimum and saddle point of
CH3OH from the PES, and comparison with CCSD(T)-F12b/aVDZ calculations

Minimum Saddle point

Mode PES ab initio PES ab initio

1 294 289 298i 284i
2 1068 1064 1068 1069
3 1091 1089 1094 1100
4 1179 1178 1188 1192
5 1384 1380 1361 1366
6 1483 1481 1486 1488
7 1505 1505 1498 1499
8 1517 1515 1524 1527
9 3014 3013 3028 3030
10 3070 3072 3097 3100
11 3133 3133 3103 3106
12 3865 3865 3899 3901



Chapter 11. Quantum Zero-point Energies of Methanol and Deuterated Methanol 197

11.3.2 Diffusion Monte Carlo

In this work, we calculate rigorous quantum ZPEs of CH3OH and its D-containing iso-

topologs and all isotopomers, using the Diffusion Monte Carlo procedure. The concept

behind the DMC method is to solve time-dependent Schrödinger equation in imaginary

time55,56,124. This imaginary time Schrödinger equation is solved by simulating a random

walk of many replicas, “walkers”, of the molecule, using a birth/death processes. This is

a powerful method to extract the ground state wave function of the molecule from the

probability distribution of the random walks, though it is computationally expensive as

many walkers must be propagated for tens of thousands of steps in order to obtain an

precise estimate of the ZPE.

The procedure can be illustrated in 1d for a mass m, subject to a potential V(x). The

time dependent Schrödinger equation of this particle is written as

i~
d

dt
Ψ(x, t) = ĤΨ(x, t), (11.1)

Ĥ = − ~2

2m

d2

dx2
+ V (x), (11.2)

where Ĥ is the Hamiltonian of the system. The wave function can written as

Ψ(x, t) =
∞∑
n=0

cnφn(x)e−
i
~Ent, (11.3)

where φn(x) are the eigenfunctions of the time-independent Schrödinger equation with

the eigenvalues En

Ĥφn(x) = Enφn(x) (11.4)
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and the order of the eigenvalues are follows as

E0 < E1 ≤ E2 ≤ E3 ≤ .... (11.5)

Next, we shift the energy scale by ER such that V → (V (x)−ER) and En → (En−ER),

where ER is a reference energy. Then we introduce a new variable τ = it to transform

real time to imaginary time. So, the 1-D time dependent Schrödinger equation becomes

~
d

dτ
Ψ(x, τ) =

~2

2m

d2

dx2
− [V (x)− ER]Ψ(x, τ), (11.6)

and the the wave functions become

Ψ(x, τ) =
∞∑
n=0

cnφn(x)e−
En−ER

~ τ . (11.7)

Clearly, as τ increases this sum converges to one term if ER = E0. Thus, Ψ(x, τ) converges

to the ground state wave function φ0(x) regardless of the choice of the initial wave function

Ψ(x, 0), provided there is some overlap of the function with the ground state eigenstate.

Here we use simple, unbiased DMC algorithm, proposed by Anderson56.

This equation is solved by random walk propagation technique to simulate the evo-

lution of Schrödinger equation in imaginary time. Initially, we generate N0 replicas from

the same initial geometry of a molecule, as the distribution of Ψ(x, 0). This geometry

is typically at the minimum of interest, which in this case is the global minimum. The

replicas are described through a position x
(j)
n , where the suffix n represent the diffusive

displacement and (j) represent the replicas. In the first step of the propagation, N1 repli-

cas are generated by adding random displacement to each position of the molecule. These
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position vectors xj1 are determined by the following equation,

x
(j)
1 = x

(j)
0 + σ ∗ ρ(j)

1 (11.8)

where σ =
√

~∗∆τ
m

and ρ
(j)
1 is a Gaussian random number with zero mean and variance

equal to one and ∆τ is the time step. This is the one step diffusive process of the system of

replicas. Once the new replicas are determined, in the next step we calculate the weight,

W (x
(j)
1 ).

W (x
(j)
1 ) = e−

V (x
(j)
1 )−ER

~ ∆τ (11.9)

After that, another random number is choose to describe the birth/death process. If

[1 −W (x
(j)
1 ) ]is grater than this random number then the replica (j) will remain and if

[1 − W (x
(j)
1 )] is less than this random number then the replica (j) will die; if W (x

(j)
1 )

grater than 1.0 then the replica (j) is duplicated. Thus total number of replicas N1 is

determined after one diffusive process. Due to the birth/death process, the total number

N1 of replicas will change from its original N0 value. According to the above equation (7),

for reference energy ER smaller then the ground state energy E0, the replicas eventually

all die; for ER value larger than ground state energy E0, the number of replicas Nn will

increase. Only when ER = E0, the number of replicas fluctuate around an average value

of N0. One can adjust the value of ER by redefining the reference energy to keep the

total number of replicas approximately constant, which follows as

ER = 〈V 〉+ α

(
1− N1

N0

)
. (11.10)

Where, α is a positive parameter, is called the ”feedback” parameter. α value is chosen

to adjust the reference energy, ER as to minimize the statistical fluctuations in replicas,
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N0.56,124

11.3.3 Computational details

In this work, for methanol and all its isotopologs, we used 30,000 walkers, and they were

propagated for 60,000 time steps with the step size of 5.0 a.u; 25,000 steps were used

to equilibrate the walkers, and the reference energies in the remaining 35,000 steps were

used to compute the ZPE. In all the simulations, the value of α was chosen to be 0.1.

For each isotopomer, 30 DMC simulations were carried out, and the final ZPE is the

average of the 30 simulations. Statistical uncertainty of the DMC energy is defined as

the standard deviation of DMC energies over the total number of simulations. This is

written as

∆E =

√√√√ 1

30

30∑
i=1

(Ei − Ē)2, (11.11)

where Ē is the average energy over the 30 simulations.

11.4 Results and Discussion

To begin, we present the harmonic frequencies of CH3OD, CH2DOH, CH2DOD, CHD2OH,

CHD2OD, CD3OH and CD3OD in Table 11.2. From the first two columns we can de-

termine the effect of locating the single D on the O atom versus on the methyl group.

In particular, we see that the OD-stretch is 2814 cm−1 whereas the CD-stretch is 2233

cm−1. Comparing these numbers to the corresponding ones for CH3OH in Table 11.1, we

see a roughly a significantly larger downshift for CH3OD than for CH2DOH. However,

the effect on the ZPEs must take account of all the modes.

These effects are given at the harmonic level and from the DMC calculations in Table
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Table 11.2: Harmonic frequencies (cm−1) of isotopologs of methanol.

Mode CH3OD CH2DOH CH2DOD CHD2OH CHD2OD CD3OH CD3OD

1 234 288 226 284 218 279 214
2 881 929 843 911 800 866 785
3 1077 1056 979 933 961 910 910
4 1179 1093 1082 1047 1034 1010 1004
5 1255 1294 1187 1124 1094 1089 1070
6 1483 1378 1347 1293 1121 1093 1089
7 1505 1406 1385 1342 1348 1160 1102
8 1515 1499 1499 1415 1372 1326 1161
9 2814 2233 2233 2191 2210 2163 2163
10 3014 3042 2814 2278 2316 2278 2278
11 3070 3130 3042 3125 2815 2322 2322
12 3134 3865 3131 3865 3049 3865 2815

Table 11.3: Harmonic and DMC ZPE (cm−1) of methanol and its all isotopologs. Values
inside the parenthesis represent the statistical uncertainties in the DMC result.

Molecule Harmonic ZPE DMC ZPE

CH3OH 11303 11107 (1.6)
CH3OD 10581 10414 (1.7)

CH2DOH 10607 10426 (1.5)
CH2DOD 9884 9728 (1.7)
CHD2OH 9903 9739 (1.5)
CHD2OD 9168 9042 (2.0)
CD3OH 9181 9044 (1.9)
CD3OD 8455 8346 (1.4)



Chapter 11. Quantum Zero-point Energies of Methanol and Deuterated Methanol 202

11.3. As expected the harmonic ZPEs are all higher than the rigorous DMC ones. The

anharmonic ZPE of CH3OH is 11107 cm−1 with a standard deviation of 1.6 cm−1 from

30 DMC simulations, whereas the harmonic one is 11303 cm−1, which is about 200 cm−1

higher. This DMC ZPE perfectly matches with our previous work (11108 cm−1).17 The

DMC ZPEs for mono-deuterated methanol, CH3OD and CH2DOH, are 10414 and 10426

cm−1 respectively, and their harmonic ones are 10581 and 10607 cm−1 respectively. Con-

sidering the differences in the ZPEs of the isotopomers, the harmonic result is 26 cm−1,

which is roughly twice the difference in the DMC anharmonic ZPEs. This indicates that

these two isotopomers are very close to each other in energy. This statement is also true

for doubly and triply deuterated methanol isotopomers. The difference of anharmonic

ZPEs is only 11 cm−1 between CHD2OH and CH2DOD, and is only 2 cm−1 between

CD3OH and CHD2OD, which is within the statistical uncertainty. For singly and doubly

deuterated methanol, the ∼10 cm−1 difference in the ZPE is still larger than the statis-

tical error of the DMC simulations, so we are able to determine that the lowest-energy

isotopomers always have the deuterium in the OD position. On the other hand, for triply

deuterated methanol, the 2 cm−1 difference is within the statistical uncertainty. There-

fore, it is impossible to say which isotopomer is the most stable. Note that even though

the harmonic approach overestimates the ZPE by roughly 200 cm−1, it also predicts small

difference in ZPEs between the two isotopomers for the same isotopolog of methanol.

Given the small differences in the DMC ZPEs, one can inquire about the robustness

of the DMC results with respect to possible dynamical D/H exchange. Since this involves

the breaking of two covalent bonds, one would expect that it is essentially a “zero-

probability” process. We verified this in the DMC calculations for CH2DOH and CH3OD

in the following way. We determined the distribution of CD and OD bond lengths in

CH2DOH and CH3OD for all walkers along the DMC trajectories. If exchange happens
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Figure 11.2: Distribution of C-D and O-D distance of CH3OD and CH2DOH. 29,619 and
29,696 configuration are selected from the DMC trajectory for CH2DOH and CH3OD,
respectively.
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with substantial probablity we would expect to see two peaks in the distribution of the

CD/OD bond length. If exchange happens with small probabilty we would expect to see

some overlap of the distributions; this would be necessary but not sufficient indicator

of possible exchange. The distributions are shown in Figure 2, where only one peak is

observed for each isotopomer. As expected the peaks are near the equilibrium CD/OD

bond lengths. Further, there is no overlap of the green and red distributions. Thus, as

expected the H/D exchange is dynamically a very low probability process and so each

isotopomer would be expected to be stable in the ground vibrational state.

Next we discuss the possible implications of the DMC calculation on the abundance

ratio of [CH2DOH]/[CH3OD] in the interstellar medium discussed in the Introduction.

As noted, there is some discrepancy between the observed ratio, which is roughly 1.5:1

and the one from a model, which is 3:1. We have shown that the ZPEs for these are

essentially equal and so the population ratio at 0 K would be determined from a simple

statistical argument which gives 3:1 for [CH2DOH]/[CH3OD]. That this agrees with the

ratio obtained from an elaborate kinetic model with no consideration of ZPEs is certainly

a coincidence. However, it seems like a reasonable ”prior” expectation for this ratio.

11.5 Summary and Conclusions

Here, we presented the anharmonic ZPEs of methanol and its D-substituted isotopologs,

using Diffusion monte carlo simulations and a new semi-global potential energy surface.

The anharmonic ZPE of methanol decrease as the number of deuterium increases, which

is expected, however the ZPEs of isotopmers are nearly equal and become essentially same

for the triply D-substitued methanol. Our result supports the co-existence of two different

isotopomers of singly, doubly and triply deuterated methanol in the cold interstellar
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environments.



Chapter 12

Vibration-facilitated roaming in the

isomerization of CO adsorbed on

NaCl

12.1 Chapter Abstract

The desire to better understand the quantum nature of isomerization led to recent ex-

perimental observations of the vibrationally induced isomerization of OC-NaCl(100) (‘C-

Down’) to CO-NaCl(100) (‘C-Down’). To investigate the mechanism of this isomeriza-

tion, we performed dynamics calculations using finite (CO-NaCl)n cluster models. We

constructed new potential energy surfaces for CO-NaCl and CO-CO interactions using

high-level ab initio data and report key properties of the bare CO-NaCl potential en-

ergy surface, which show much in common with the experiment. We investigated the

isomerization dynamics using several cluster models and, in all cases, isomerization was

seen for highly excited CO vibrational states, in agreement with experiments. A detailed

206
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examination of the reaction trajectories indicates that isomerization occurs when the dis-

tance between CO and NaCl is larger than the distance at the conventional isomerization

saddle point, which is a strong indicator of ‘roaming’.

12.2 Overview

Isomerization is a pervasive phenomenon in chemistry and yet it has rarely been observed

in real time experimentally. Theoretical work has been extensive on this topic; however,

few quantum dynamical studies of isomerization have been reported. The isomerization of

HCN to HNC is one notable exception, where isomerizing quantum states were reported

using an accurate potential.132,270 Another example is isomerization between acetylene

and vinylidene, where theory was able to assign vibrational features in photodetachment

of vinylidene anion.271,272

Recent experiments reported isomerization of CO adsorbed on NaCl(100)273 (flipped

to OC) for highly excited vibrational states of CO.274 By resolving small differences in

the emission spectra of CO and OC adsorbed on the surface the authors conclusively

observed the isomerization from “C-down” to “O-down” on the surface. This experiment

is a major step in observing isomerization dynamically, under state-controlled conditions

in a condensed phase environment. The mechanism for this isomerization is complex as

it involves excitation of the CO to high vibrational states via CO?CO energy pooling,

followed by isomerization, subsequent emission and perhaps (partial) stabilization of the

O-down isomer.

Several aspects of the experiment are important for theoretical modeling. First, it

was determined that in the energetically favored C-down orientation275 the CO bond

axis makes an angle of approximately 25 deg relative to the surface normal.273,275 For



Chapter 12. Vibration-facilitated roaming in the isomerization of CO adsorbed on
NaCl 208

the O-down isomer that angle is approximately 45 deg.273 Second, the fundamental CO

frequency, of the C-down isomer is blue-shifted by 7.6 cm−1, whereas the O-down isomer

fundamental is red-shifted by 9.3, cm−1, relative to free CO.273 Third, isomerization is

only observed for the C-down isomer for CO for vibrational greater than roughly 20.

And fourth the O-down isomer is also highly vibrationally excited, as evidenced by the

overtone emission spectrum of that isomer.

In this Report we present a dynamics study of CO isomerization on the NaCl(100)

surface by modeling the system by a finite CO-NaCl cluster. We develop a potential

energy surface (PES) for the cluster that consists of a new ab initio CO-NaCl PES (for

rigid NaCl) and a re-fit, using permutationally invariant polynomials (PIPs) to high-level

ab initio energies for the CO-CO interaction reported recently in a precise PIP-Neural

Network (PIP-NN) form.276 Dynamics calculations are done for the bare CO-NaCl, a

cluster where a central CO is surrounding by four neighboring COs and a cluster with

12 surrounding COs. Isomerization is found in all cases; however, there are quantitative

differences. The results for the largest cluster model are closest to the experiment. In

cases isomerization is found to occur at distances from the NaCl that strongly point

to a roaming mechanism, which is vibrationally facilitate. Calculated emission spectra

corresponding to experiment,273 are also given.

In the next section we present essential details of the new PES for the cluster, key

properties and how they relate to the experiment. Quasiclassical trajectory calculations

of the isomerization are reported and interpreted in terms of a large amplitude roaming-

type mechanism that opens up upon high vibrational excitation of the CO stretch.

We note previous theoretical work on CO adsorbed on NaCl(100). These include a

study of the structure of CO monolayer adsorbed on NaCl(100) from molecular dynam-

ics277 using model potentials, a perturbation theory study of an adlayer CO on NaCl(100)
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with consideration of CO-CO coupling,278 a sophisticated kinetic model of CO-CO en-

ergy pooling,279 a study of infrared fluorescence of a monolayer of 13CO:NaCl(100) from

highly vibrational excited states,280 and a study of structures, energetics, and vibrational

Davydov splittings.281 None of these considered CO/OC isomerization. While the cur-

rent paper was being revised, some of the current authors also reported PESs for CO

interacting with NaCl(100) using density functional theory (DFT) and implications in

isomerization of vibrationally excited CO.282 The DFT PESs assume periodic boundary

conditions, and thus are not suitable for dynamics calculations of CO isomerization.

12.3 Computational Details

12.3.1 Potential Energy Surface for CO-NaCl

In order to model the isomerization dynamics a potential energy surface was developed

for CO-NaCl. The NaCl distance was held fixed at 2.82 angstrom, which is the distance

in NaCl(100). In order to investigate the dynamics of highly vibrationally excited CO

states, the PES must describe highly compressed and stretched CO. It is known that for

such large displacements the ground electronic state of CO develops multi-reference char-

acter.283 Rather than develop an expensive multi-reference CI-based PES, we addressed

this challenge using a “plug and play” form for the PES.284 Thus the total potential can

be written as

Vtot = Vint + VCO(rCO) + VNaCl, (12.1)

where VCO(rCO) is the potential for isolated CO as a function of rCO (the CO inter

nuclear distance) we developed based on multi-reference configuration interaction (MRCI)

calculations. The interaction potential, Vint is given by the difference of the full potential
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energy and the potential energy of just the CO at a general configuration of CO and

NaCl. VNaCl is the NaCl potential which is constant as the NaCl distance is held fixed

at 2.82 angstrom and for convenience we have set this potential to be zero. As CO and

NaCl separate Vint goes to zero and this is the origin of the term “interaction potential”.

Finally, we note in passing that a similar analysis of the CO potential was also used in

Ref. 282.

We describe first the interaction potential and then the isolated CO potential.

Database and fit for the interaction potential

To begin, we performed constrained (fixed NaCl) geometry optimizations of the C and

O-down minima at the CCSD/aug-cc-pVDZ level of theory using the MOLPRO quantum

chemistry package.87 These are used as the reference configurations for direct-dynamics

(AIMD) calculations described below. These are used to establish a database of energies

and gradients for fitting. Before we give the details of the AIMD calculations, which were

done with MOLPRO, we note that the interaction potential is equal to the total potential

minus the potential of the CO for a given CO-NaCl configuration. The same applies to

the gradient.

The dataset of energies and gradients was obtained using direct dynamics, with the

following sets of initial conditions. In one case, at each minimum the CO bond was

stretched to 1.5 Angstrom with additional kinetic energies of 1000, and 5000 cm−1. The

six components of the momenta of C and O were determined by randomly subject to

the constraint of the given kinetic energy. For NaCl the bond length was fixed at 2.82

angstrom and the components of Na and Cl momenta were set to zero at each time step.

Trajectories were propagated for each minimum for 3000 time steps with the step size of

5.0 a.u. (about 0.12 fs).



Chapter 12. Vibration-facilitated roaming in the isomerization of CO adsorbed on
NaCl 211

Another batch of trajectories was run at each minimum but with the CO distance

initially at the equilibrium value at each minimum. The trajectories were run with initial

kinetic energies of 10000, 15000, and 30000 cm−1 relative to the C-down and O-down

minimum and again with random sampling of the momenta. Seven trajectories were run

at each minimum. These trajectories were also propagated for 3000 total time steps.
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Figure 12.1: Distribution of interaction energies (cm−1) relative to the minimum value.

These sets of trajectories provide large coverage of the configuration space for both C-

down and O-down isomers and also for highly vibrationally excited CO. Sparse sampling

of the complete data set was done so as to avoid nearly redundant data. The final data

set consists of 8,592 energies and 103,104 gradients for a total data size of 111,696. The

distributions of (interaction) energies used for the fitting database is shown in Fig. 12.1.
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For reference histograms of the total potential energy (from CCSD calculations) are given

in Fig. 12.2 for trajectories initiated at the indicate minimum.

These data were fit using our recent permutationally invariant polynomial (PIP)

approach that incorporates gradients in the fitting.285 These polynomials are functions

of Morse variables, as explained in detail elsewhere.26,65 The software to include gradients

in the PIP basis fits is an extension of the monomial symmetrization MSA software27

and is freely available.123 The fit was done using a maximum polynomial order of 7.

This leads to 1716 linear coefficients that were determined by solving the standard linear

least-square problem. The root-mean-square (RMS) errors of this fitted PES are 27 cm−1

for energies and 22 cm−1/bohr for all the gradient components.
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Figure 12.2: Distribution of electronic energies (cm−1) of C-down and O-down isomers
relative to their minimum energy.
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MRCI CO Potential

It is known that the ground electronic state of CO is of multireference character at

large internuclear distances, of interest to the present work. Tao et al. reported an accu-

rate potential at the MRCI/aug-cc-pV5Z level of theory.283 However, only a plot of the

CO potential was available in that paper. Therefore, we performed MRCI/aug-cc-pVTZ

calculations of this potential using MOLPRO.87 These were done at 152 values of rCO

ranging from 0.88 to 2.4 angstrom. In this calculation, eight outermost orbitals and ten

valence electrons of CO were selected as the active space. Spline interpolation was used

to obtain the potential at arbitrary rCO.
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Figure 12.3: Comparison of ground state potential energy curve of isolated CO between
CCSD, CCSD(T) and MRCI levels of theory.

This potential is shown in Fig. 12.3 along with ones obtained using the CCSD/aug-cc-

pVDZ and CCSD(T)/aucg-cc-pVTZ levels of theory. As seen both CCSD and CCSD(T)
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methods begin to fail when the CO internuclear distance is greater than 1.83 angstrom

where the energy is roughly 50 000 cm−1. In addition, the CC calculations showed con-

vergence issues for rCO greater than 1.85 angstrom.

We used this MRCI CO potential to calculate the numerically exact fundamental

energy and obtained a value 43 cm−1 below the experimental value of 2143.3 cm−1 273.

So, we applied a coordinate scaling trick286 to adjust the potential so as to produce the

experimental fundamental. In this simple case we simply multiplied the displacement

variable, rCO-re, where re is the equilibrium bond length, by 1.0215 before calling the

potential routine.

It is perhaps useful to comment on using this scaled MRCI CO potential with the

interaction potential based on CCSD/aug-cc-pVDZ(aVDZ) calculations described above.

It appears that for energies up to around 50 000 cm−1 a CCSD CO potential would be

adequate and for dynamics calculations up to that energy and indeed for the present

work that is sufficient. However, for the calculation of the IR emission spectra, where we

consider higher energies, we cannot rely on a CCSD or CCSD(T)-based CO potential.

Thus, the present “plug and play” PES consisting of the MRCI CO potential plus the

CCSD-based interaction potential serves for both the dynamics and emission spectra

calculations.

12.3.2 (CO-NaCl) Cluster

The PES describing a monolayer of CO on NaCl consists of an average CO-NaCl PES plus

a CO−CO interaction potential. First, we discuss the development of CO−CO interaction

potential.
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Table 12.1: Monomials, and symmetrized monomials for A2B2 molecule in reduced sym-
metry.

Atom Labels Monomials Normal order
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b
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CO-CO Interaction PES

Recently, Guo and coworkers reported276 an accurate full dimensional CO−CO inter-

action PES which is a PIP-NN fit of 16,000 geometries where electronic energies were

obtained at all-electron explicitly correlated coupled cluster level with singles, doubles

and perturbative triples (AE-CCSD(T)-F12b)287 and extrapolated to the complete basis

set (CBS) limit from the CVnZ-F12 (n = 2, 3) basis sets. For computational efficiency,

we re-fit these data using PIPs, which provide the energy and analytical gradients.

In view of the fact that there is no atom exchange between the two COs, we use

permutationl symmetry (22) for the PES. (This was also used for the PIP inputs of for

the NN fit.) So, here we consider each CO as a monomer and we can permute these two

CO molecules with each other. Recall that, in MSA invariant polynomials that are the

Morse variables of inter nuclear distances, yij = exp (−rij/λ), are used to fit the data-set.

However, we also require that this potential rigorously separate to two non-interaction

CO molecules. To do that we “purified” the standard monomial symmetrized basis. The

basic monomials and symmetrized monomials for this reduced permutational symmetry

are given in Table 12.1.

Some of the symmetrized monomials (last line of Table 12.1), will have an incorrect

dependence on the CO distance at large separation of two CO molecules. So, we need
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to remove these polynomials at large CO−CO distance. (We term this “purifying the

basis”.) The polynomials which contain powers of y13 or y24 or combine power of y13y24

will not be zero at large separation of two CO. This means ym13 or yn24 or ym13y
n
24 6= 0,

when m or n = 1,2,..., ≤ M, M is the maximum polynomial order. Here we use maximum

polynomial order as 8 and the number of basis functions before purification is 3004. After

removing the terms ym13 and yn24 and ym13y
n
24 when m or n = 1,2,..., ≤ 8, the basis size is

reduced to 2959 (with some duplications). After removing duplicates, the total number

total of polynomials (symmetrized monomials) is 1565. The dataset of roughly 16,000

energies276 was fit with a final total precision of 7 cm−1. Analytical gradients were coded

up as well using some recursive routines. A sample of these gradients is shown up to

degree 3 in Table 12.2.

Average Potential

The average CO-NaCl potential described in the text makes use of the CO-NaCl PES

described above in the obvious way. Fig. 12.4 of shows the geometric arrangement of the

Na and two Cl atoms. As seen, the CO-axis of the C-down and O-down minima lie along

a 45 deg bisector of the X-Y plane defined by NaCl and NaCl′. The C-down minimum has

a polar (tilt) angle of 34 degrees with respect to the normal to the plane of this triangle

(the Z-axis in the figure). The O-down minimum has a tilt angle of 51 deg. These agree

well with the experimentally reported tilt angles of about 25 and 45 deg, respectively.273

The goal is produce a potential where the CO is oriented between the two Cl atoms.

To see that this is indeed the case for the average potential we show 1-D potentials for C-

down and O-down isomers as a function of the azimuthal angle from the X-axis (depicted

in Fig. 12.4) in Fig. 12.5. As seen, these are single well potentials with minima at 45 deg.

Further properties of these potentials are given below.
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Table 12.2: Invariant purified polynomials (pi), and their partial derivatives dpj for A2B2

up to degree 2.

Polynomials Partial Derivative (with respect to xi)

p0 = 0.0 dp0 = 0.0
p1 = y12 dp1 = ∂y12/∂xi
p2 = y14 + y23 dp2 = ∂y14/∂xi + ∂y23/∂xi
p3 = y34 dp3 = ∂y34/∂xi
p4 = p1 × (y13 + y24) dp4 = dp1 × (y13 + y24) + p1 × (∂y13/∂xi + ∂y24/∂xi)
p5 = p1 × (y14 + y23) dp5 = dp1 × (y14 + y23) + p1 × (∂y14/∂xi + ∂y23/∂xi)
p6 = p1 × p3 dp6 = dp1 × p3 + p1 × dp3

p7 = y13y14 + y23y24 dp7 = y13y14 × ∂y13/∂xi + y13y14 × ∂y14/∂xi
+ y23y24 × ∂y23/∂xi + y23y24 × ∂y24/∂xi

p8 = y13y23 + y14y24 dp8 = y13y23 × ∂y13/∂xi + y13y23 × ∂y23/∂xi
+ y14y24 × ∂y14/∂xi + y23y24 × ∂y24/∂xi

p9 = p3 × (y13 + y24) dp9 = dp3 × (y13 + y24) + p3 × (∂y13/∂xi + ∂y24/∂xi)
p10 = y14y23 dp10 = y14y23 × ∂y14/∂xi + y14y23 × ∂y23/∂xi
p11 = p2 × p3 dp11 = dp2 × p3 + p2 × dp3

p12 = p1 × p1 dp12 = dp1 × p1 + p1 × dp1

p13 = y2
14 + y2

23 dp13 = 2× y14 × ∂y14/∂xi + 2× y23 × ∂y23/∂xi
p15 = p3 × p3 dp15 = dp3 × p3 + p3 × dp3



Chapter 12. Vibration-facilitated roaming in the isomerization of CO adsorbed on
NaCl 218

Figure 12.4: Structures of the C-down and O-down minima from the average CO-NaCl
potential. C is indicated by dark gray, O by red, Na by purple and Cl by green.
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Figure 12.5: Average potential for both C-down (left one) and O-down (right one) iso-
mers. When angle (φ) is zero CO or OC is co-planar with Na and Cl-1 and angle (φ) is
90 degree CO or OC is co-planar with Na and Cl-2.
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Cluster Potential

The NaCl-CO cluster model consists of a number of NaCl units arranged according to 100

face and then adsorbed COs, with each C associated with one Na and shared with two Cl

atoms. The average CO-NaClCl′ potential describes the bonded interaction of each CO

to the given Na. The arrangement of the CO is such that a central CO is surrounded by

COs. For the largest cluster there are 12 surrounding COs and the total potential is the

sum of 13 average potentials and all 78 CO−CO potentials. Note that these 78 CO−CO

interaction potentials, most of them are very weak due to their large distance between

many pairs. Therefor, we considered only 32 CO−CO interaction potentials which are

the strongest and moderately strong (the nearest and next nearest neighbors of any CO).

12.4 Results

In order to model the isomerization dynamics of a monolayer of CO on NaCl(100) we

make note of the following properties (and assumptions) of such a monolayer. (Note, that

while it is reasonable to refer to Na as Na+ and Cl as Cl− we do not do that below.)

First, each CO is associated with a given Na on the surface and there is no migration of

COs to other Na sites. However, since it is not possible to assign a single Cl to a given Na

some consideration of the surrounding Cls must be given. Of the four nearest neighbor

Cls only two are available for each CO in a monolayer and so each CO is shared by two

Cls. This template for each CO and Na and two Cls is used to create a cluster model

for the monolayer. There is a central CO molecule in this cluster that is surrounded by

other CO molecules. Isomerization dynamics are modeled by vibrationally exciting the

central CO. That CO interacts with other COs in a pairwise fashion and we consider

the CO-CO interactions among the surrounding COs within a certain distance, which we
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describe below.

The PES that corresponds to this model consists of a new ab inito PES for the

CO-NaCl interaction with the Na-Cl distance fixed at 2.82 angstrom (the distance in

NaCl(100)) plus an ab inito PES describing CO-CO interactions. Both PESs describe

highly vibrationally excited CO. The CO-NaCl interaction PES is used in the Cl-sharing

scenario by using an average of the CO-NaCl and CO-NaCl′ potentials where Cl and Cl′

denote the relevant shared Cls, as is shown in detail below.

Details of CO-NaCl PES, which is a permutationally invariant polynomial (PIP) fit to

8592 energies and gradients at CCSD/aug-cc-pVDZ level of theory and which describes

the C-down and O-down minima, are given in the Computational section. The PIP PES

describing the CO-CO interaction is also described in the Computational section. This

PES is a refit the PIP-NN PES.276 The PIP re-fit is done to have fast evaluation of energy

and analytical gradients. A final aspect of this model is the treatment of the interaction

of CO with Cl. For isolated CO-NaCl the CO and NaCl are coplanar with the O end

pointed towards the Cl (as expected) as discussed in detail in the Computational section.

For the O-down isomer all atoms are also coplanar with C end pointed to the Cl. This is

not qualitatively correct for a monolayer of CO on the NaCl surface where the CO axis

is not coplanar with Na and Cl, as discussed in the recent DFT study.282

The approach to address this is to use the average potential for CO-NaCl and CO-

NaCl′ where the Cl and Cl′ are nearest neighbors to a given Na. As seen in the Com-

putational section the average CO-NaClCl′ potential gives a minimum with the CO axis

bisecting the right triangle made by Na and two Cl.

We performed constrained (fixed NaCl distance) geometry optimizations of the C-

down and O-down minima using the single CO-NaCl PES and directly from CCCD/AVDZ,

CCSD(T)(with an aug-cc-pVTZ basis for C and O atoms, and aug-cc-pwCVTZ basis
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Figure 12.6: Geometrical parameters (angstroms and degrees) of C-down and O-down
isomers from the bare CO-NaCl PES and at indicated level of theory. See text for details.

set for Cl and Na atoms288), and DFT/B97D3 calculations using aug-pc-3 basis for C,

O, Cl atoms and aug-pc-4 basis for Na atom.289,290 The energy difference between C-

down and O-down minimum is 640 cm−1 from the PES is close to the one obtained

directly from CCSD/AVDZ calculations, 645 cm−1 but is less than the one obtained

from CCSD(T)/aug-cc-pVTZ calculations, 1045 cm−1. Comparison of their geometrical

parameters at different level of theories are shown graphically in Fig. 12.6. As seen these

minima are well described by the PES. We also performed the geometry optimization

for the central CO using both the average CO-NaClCl′ PES and also the 13-CO cluster

PES for both C-down and O-down isomers. The energy differences between C-down and

O-down minimum are 766 cm−1 and 729 cm−1 for the CO-NaClCl′ and for the cluster
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PESs, respectively.

We also located a constrained isomerization saddle point on the CO-NaClCl′ averge

PES. The barrier height is about 2568 cm−1. This SP is shown in Fig. 12.7. We did not

locate an exact SP from the cluster PES as this SP is very flat. The flatness of the PES

is also consistent with the recent DFT study.282

Figure 12.7: Saddle point geometry from CO-NaClCl′ average PES

We performed normal mode analyses for both C-down and O-down isomers using the

single CO-NaCl PES with the constraint of a fixed NaCl distance. The results are given

in Table 12.3 for which is of relevance to experiment.273 As seen, with the exception of

the CO-stretch, the remaining four vibrational modes are very low frequency. The mode

of interest is the CO-stretch, which has frequencies of 2170 and 2079 cm−1 for the C-down

and O-down isomers, respectively. These are respectively blue (+43 cm−1) and red-shifted

(-46 cm−1) relative to the harmonic frequency of the isolated CO (from the PES). The

normal mode frequencies from both CO-NaClCl′ average PES and (CO-NaCl)13 PES are
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given in Tables 12.4 and 12.5. The CO stretch frequency for both C-down and O-down

mimina is very close to each other and they are also blue shifted and red shifted relative

to the isolated CO. The SP of the CO-NaClCl′ PES was confirmed by the harmonic

frequency calculations, where we obtained one imaginary frequency which is 56i, which

indicates a flat isomerization barrier and likely roaming dynamics. The other frequencies

are given in Table 12.4.

Table 12.3: Harmonic frequencies (in cm−1) between C-down, O-down isomers from
single CO-NaCl PES.

Mode C-down O-down

1 39 31
2 121 90
3 153 108
4 218 114
5 2170 2079

Table 12.4: Harmonic frequencies (in cm−1) between C-down, O-down isomers and their
isomerization SP from CO-NaClCl′ average PES.

Mode C-down O-down SP

1 14 35 56i
2 119 100 27
3 182 109 59
4 182 126 67
5 2071 2080 2125

We now turn to the cluster model consisting of a central CO with 12 surrounding COs
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Table 12.5: Harmonic frequencies (in cm−1) between C-down, O-down from cluster PES.

Mode C-down O-down

1 32 56
2 119 103
3 177 119
4 185 120
5 2171 2080

Figure 12.8: Depictions of the central CO for C-down and O-down isomers for the cluster
with 13COs. C is indicated by dark gray, O by red, Na by purple, and Cl by green. The
energy of the O-down isomer is 729 cm?1 relative to the C-down isomer. In this model
only the central CO flips from the C-down to the O-down minimum. Surrounding COs
remain in the C-down configuration.

and 18 NaCls. This cluster is depicted in Fig. 12.8 for the C-down and O-down minima.

At the former all COs are C-down and oriented in the same way; for the O-down minimum

we indicate this isomer only for the central CO. The total potential is expressed as sum

of all 13 CO-NaClCl′ average potentials and CO-CO 2-body interactions. Note, it is

not necessary to consider all (78) CO-CO interactions, because most are weak owing

to the large distances between many pairs. At equilibrium, the nearest-neighbor CO-

CO distance between centers of mass is 3.99 angstrom. Next nearest neighbors are 5.64

angstrom apart. Restricting to these, there are 32 CO-CO interactions and these range
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from -123 to -15 cm−1.

Because the CO-CO interactions are weak compared to the interaction between the

COs and the associated NaClCl′ units the CO equilibrium configurations are expected to

be close to those for the averaged CO-NaClCl′ potential. Thus, full geometry optimzation

of this 62-atom cluster was not done. Geometry optimization and normal mode analyses

were performed for the central CO using this cluster PES for both C-down and O-down

isomers. The energy of the O-down isomer is 729 cm−1 relative to the C-down isomer.

This is close to the 766 cm−1 energy difference for the average CO-NaClCl′ potential.

(This energy difference is similar to the energy difference of around 750 cm−1 based on

an electrostatic model without short-range interactions and at a fixed distance of the CO

above the surface.274)

Normal mode frequencies of the central CO at the stationary points are already

given above in Table 12.5. The CO-stretch has frequencies of 2171 and 2080 cm−1 for

the C-down and O-down isomers, respectively. These are respectively blue (+44 cm−1)

and red-shifted (-47 cm−1) relative to the harmonic frequency of the isolated CO (from

the PES). These are in qualitative agreement with experiment; however, the values of

the shifts are larger than seen in the experiment. The normal mode frequencies of the

frustrated CO rotations and translations are in the range 10 to 220 cm−1 for the minima.

In anticipation of the dynamics calculations, which focus on vibrationally excited CO,

we show several plots that indicate the change in energetics for highly stretched CO. The

first are one-dimensional plots of unrelaxed potentials as a function of γ for two values of

rCO. The angle γ is defined precisely in the Fig. 12.9 and all other coordinates are fixed

at the C-down minimum. These potential cuts are shown in Fig. 12.10. In these plots the

CO is simply rotated about an axis perpendicular to the plane of the figure showing the

C-down equilibrium configuration in Fig. 12.4. For CO at equilibrium the (unrelaxed)
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Figure 12.9: Z is the normal distance from the NaCl surface to center of mass of the CO
and γ is the spherical polar angle of the CO such that when γ is 146 and 326 degrees the
cluster becomes C-down and O-down, respectively.

isomeriation barrier is roughly 2700 cm−1 but in the stretched case it is roughly half that

value, relative to the C-down minimum. Note the large change in the O-down minimum

relative to the C-down one. We also tried to estimate the dissociation energy from both

average and cluster PESs. These dissociation energies are 2137 and 2727 cm−1 for average

and cluster PESs when the CO (central one) is at ground vibrational state and these are

570 and 1014 cm−1 when the CO (central one) is v = 20 vibrational state. We already

mentioned earlier about the large change in the PES upon CO vibrational excitation.

O-down minimum becomes much lower in energy compare to C-down minimum when

CO is highly vibrationally excited. Therefor, we also computed the dissociation energy
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Figure 12.10: One-dimensional unrelaxed potential cuts for isomerization. These are
as a function of γ(deg) relative to the C-down isomer for the indicated values of rCO
corresponding to v = 0 (1.13 angstrom) and the outer turning point for v = 20 (1.59
angstrom) vibrational states. These plots show a dramatic effect of stretching the CO on
the energetics of the isomerization.

with respect to O-down minimum when CO is at v = 20 vibrational state and these are

2451 and 3049 cm−1 for average and cluster PES, respectively. We have seen a significant

increment of this dissociation energy after adding CO-CO interactions.

Next are contour plots of the interaction potential of the central CO, shown in Fig.

12.11. Fig. 12.9 shows the coordinates of the contour plots. In these the Z-component

of the position vector of the center of mass of the central CO is the additional variable.

In the upper plot with rCO at re the deeper minimum at 146 deg is C-down and the

unrelaxed barrier is at around 230 deg and at Z of about 5 angstrom. For rCO equals 1.59

angstrom the unrelaxed O-down minimum is much deeper than the C-down minimum
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Figure 12.11: Contour plots for the large cluster PES in the variables Z and γ, defined
in the text, for the indicated values of rCO. Contour values are in 31 cm−1 increments for
the top one and 38 cm−1 increments for the below one.

and also spans a much large space than the C-down minimum and the unrelaxed barrier

moves to nearly 6 angstrom. Another difference is the extent of anisotropy in γ for the

stretched-CO plot. As seen this region extends to Z-values greater than 8.0 angstrom.



Chapter 12. Vibration-facilitated roaming in the isomerization of CO adsorbed on
NaCl 229

These changes are relevant the dynamics presented next (and also to experiment where

isomerization is seen when the CO (C-down) is highly vibrationally excited273).

From these plots we expect different dynamics for CO in the ground and this highly

excited vibrational state. For the latter where the interaction extends to large distances

above the surface, roaming291–293 is likely. This is confirmed from analysis of the dynamics

calculations given next.

12.4.1 Normal mode CO-stretch Potentials, and Vibrational

Energies for C and O-down isomers
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Figure 12.12: Potential energy (cm−1) a functions of normal mode of the CO-stretch for
the C-down and O-down isomers from cluster PES.

This 13-COs cluster PES was used in calculations of exact wavefunctions and energies

of the CO-stretch for stretching mode on NaCl for both C-down and O-down isomers. The

one-dimensional CO/OC potential cuts as a function of the corresponding normal mode

at the PES minima are generated to solve the one-dimensional Schrödinger equation us-
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ing the Colbert-Miller discrete variable representation of the Hamiltonian.294 These two

potential cuts are shown in Fig. 12.12. Discrete variable representation (DVR) technique

was applied to compute the eigenvalues of these two adiabatic potentials. A list of these

eigenvalues are given in Table 12.6. It has been clearly seen that vibrational energy differ-

ence between C-down and O-down is increasing with increasing the vibrational quantum

number, v. When v=8 this vibrational energy difference exceeds the energy difference

between C-down and O-down isomers (∆E = 735 cm−1). Another interesting aspect we

have notices that when we stretch the CO bond the O-down isomer become lower in

energy than the C-down isomer. C-down isomer becomes lower in energy when rCO is

less than 1.2 angstrom and after that O-down becomes lower in energy. These details can

be found in Fig. 12.13. We also note that CO stretching of C-down isomer is blue shifted

and O-down isomer is red shifted from isolated CO molecule which qualitatively agrees

with the experimental result.
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isomers shown together with the zero at the C-down minima from cluster PES.
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Table 12.6: Eigenvalues (cm−1) of the central “CO” stretch for the C-down and O-down
isomers from cluster PES.

Quantum State C-down (cm−1) O-down (cm−1) Diff. (cm−1)

v = 0 1085.79 1044.03 41.76
v = 1 3238.00 3113.39 124.61
v = 2 5365.05 5156.55 208.50
v = 3 7467.08 7173.59 293.49
v = 4 9544.11 9164.49 379.62
v = 5 11596.19 11129.32 466.87
v = 6 13623.39 13068.13 555.26
v = 7 15625.76 14980.98 644.78
v = 8 17603.39 16867.93 735.46
v = 9 19556.31 18729.06 827.25
v = 10 21484.61 20564.47 920.14
v = 11 23388.38 22374.31 1014.07
v = 12 25267.73 24158.75 1108.98
v = 13 27122.83 25918.09 1204.74
v = 14 28953.94 27652.76 1301.18
v = 15 30761.45 29363.36 1398.09
v = 16 32545.91 31050.66 1495.25
v = 17 34308.04 32715.57 1592.47
v = 18 36048.70 34359.08 1689.62
v = 19 37768.81 35982.13 1786.68
v = 20 39469.24 37585.50 1883.74
v = 21 41150.68 39169.73 1980.95
v = 22 42813.60 40735.05 2078.55
v = 23 44458.11 42281.40 2176.71
v = 24 46084.02 43808.58 2275.44
v = 25 47690.89 45316.39 2374.50
v = 26 49278.20 46805.65 2472.55
v = 27 50845.84 48281.63 2564.21

12.4.2 Quasiclassical Trajectory Calculations

To study the C-down to O-down isomerization process, quasiclassical trajectory calcula-

tions were performed using CO-NaClCl′ and cluster PESs. In all cases the initial condi-
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tions for the central C-down CO vibrational excited state were obtained by stretching the

CO to an outer turning point and keeping all the 12 COs at their equilibrium value. The

normal coordinate QCO was extended to a value such that the potential (shown in Fig.

12.12 ) equals the energy of a given vibrational state from Table 12.6. The corresponding

Cartesian coordinates of the C and O were obtained from the usual transformation from

normal coordinates to Cartesians and the corresponding velocity vector was set to zero.

Thus, the energy in this mode is the correct quantum vibrational energy. An additional

amount of kinetic energy of 300 cm−1 is added randomly and microcanonically to other

degrees of freedom of the central CO to account for the thermal energy corresponding to

the experimental temperature of 7 K.273 NaCl bond distance was fixed at 2.82 angstrom

during the propagation of each trajectory. 500 trajectories were run for each vibrational

state v and each trajectory was run for a maximum of 200,000 time steps (roughly 20

ps). As a trajectory propagates we monitor the Na-C and Na-O distances. If they become

nearly equal we examine the trajectory in detail to determine if and for how long the

Na-O distance is shorter than the Na-C one. This is our criterion for isomerization.

Such trajectory calculations were also done for the bare CO-NaCl and the smaller

cluster with 4 surrounding COs. In all cases, we observed isomerization based on the

above criterion, desorption, or failure of the trajectory (after 200 000 time steps) due

to unphysical edge effects of the finite cluster where some of the outermost COs sample

configurations that are far from those described by the average CO-NaClCl′ PES.

For the bare NaCl-CO, we observed isomerization starting at v = 12. For v = 15 and

above desorption is the major outcome. While this is not unexpected (since the total

energy of the CO is more than ten times the dissociation energy), it is at odds with

experiment, which has little or no desorption. For the small, 5 CO-cluster isomerization

starts at v = 16 and desorption does not become a major process until v = 20. For the
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large 13-CO cluster we performed QCT calculations for v = 16,18,20,22 and 24. In this

case isomerization starts when v = 22 which is in much closer accord with experiment.

So adding the CO-CO interactions suppresses desorption and also moves isomerization

to higher vibrational states. We discuss this further below.
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Figure 12.14: Histogram of the distribution of Z, the distance above the surface, for
isomerizing trajectories for v = 22 and 24. The red arrow indicates the value of Z at the
saddle point transition state for the average CO-NaCl potential.

For the large cluster for v = 22, 63 trajectories isomerized, only 9 trajectories di-

rectly desorbed, 32 trajectories completely propagated for 200 000 time steps without

any isomerization or desorption. The remaining 396 eventually failed due to the edge ef-

fect mentioned above. For v = 24 we observed 126 isomerizing trajectories, 185 desorbed

and only 2 trajectories completely propagated for 200 000 times steps. The remainder
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failed due to the edge effect. In total, there were 189 isomerizing trajectories for these

two vibrational states. For these, we calculated the value of Z where the Na-C and Na-O

distances are first about equal. A histogram of these Z-values is shown in Fig. 12.14. As

seen, the major peak is at around 5-6 angstrom; this is much larger than the conventional

SP distance of 3.0 angstrom.

Plots of the time dependence of Z and the interaction potential of an isomerizing

trajectory for v = 22 are shown in Fig. 12.15. Initially the CO is at the C-down minimum

with a stretched CO bond length and Z is at the equilibrium value. Z increases with time

and reaches a plateau value of around 4.7 angstrom before declining again to less than

2.5 angstrom. The corresponding interaction potential oscillates strongly except in the

plateau region. This behavior can be understood as follows. At early times the C-down

CO stretch is interacting with NaCl surface largely based on ion-dipole forces. At times

after isomerization the O-down CO-stretch is similarly interacting (albeit more strongly)

with the surface. In both cases the dipole moment of the highly excited CO changes sign

as the molecule compresses and stretches (see Fig. 12.19 in the next section for a plot

of the dipole moment vs rCO.) Thus, if the total interaction is mostly due to dipole-

ion interactions, the oscillation in the dipole moment explains the oscillations of the

interaction potential. By contrast, at large Z the potential is nearly flat. This is because

of longer range and hence a smaller interaction and also because the CO dipole is nearly

parallel to the surface as so the dipole interaction is much reduced.

This plateau region both in Z and the potential at long range where isomerization

occurs satisfies the general conditions of roaming.291,295 A plot of the C and O distances to

the Na atom is shown in Fig. 12.16 for this trajectory. This plot shows the early history of

the trajectory where C is closer to Na than O, the plateau region where the two distances

are nearly equal (and also the point where they are equal) and the later part of the
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Figure 12.15: Signature of roaming dynamics. Pannel ‘a’ and ‘b’ shown the time de-
pendence of the interaction potential (a) and Z, the distance above the surface (b) for
an isomerizing trajectory for v = 22 for the large cluster. The vertical arrow indicates
the time at which the isomerization occurs. The plateau region is where roaming and iso-
merization occur. Note the decrease in the oscillation of the interaction potential. This is
due to both the relatively large distance from the surface and also due to the orientation
of the CO dipole moment which has a reduced interaction with the surface ions.
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trajectory where the O atom is closer to the Na. Snapshots of a representative isomerizing

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0  2000  4000  6000  8000  10000  12000  14000  16000

D
is

ta
nc

e 
((

Å
))

Time Step

Na−C

Na−O

Figure 12.16: A plot of C and O distances to the Na atom during the propagation of an
isomerizing trajectory.

trajectory for v = 22 are shown in Fig. 12.17. As seen the CO initially separates from

the NaCl and isomerization begins at where thus, isomerization predominatly occurs at

values of R much larger than the SP value.

Another important result of the present calculations is that CO is vibrationally excited

after isomerization. This is indicated in Fig. 12.18, which shows rCO as a function of time

prior to and then after isomerization, for CO at v = 22. As seen isomerization occurs

rapidly on the time scale of this figure; however, the high vibrational motion indicated in

this figure is maintained during the brief period of isomerization. As seen there is virtually

no change in the vibrational state. Thus the O-down isomer is highly vibrationally excited

and so emission from this state for the O-down isomer can occur.
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Figure 12.17: Snapshots of a representative trajectory starting from the C-down config-
uration and exhibiting isomerization.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 42000  44000  46000  48000  50000  52000

r C
O
 (

Å
)

Time Steps

C−Down

O−Down

Figure 12.18: CO-stretch internuclear distance versus time for v = 22 just prior to
isomerization and after isomerization
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12.4.3 IR emission Spectra for C and O-down isomers

The 1D vibrational wavefunctions for the C-down and O-down CO-stretch were used in

standard calculations of the IR emission spectrum by doing numerical integrals with the

isolated CO-dipole moment.296 The dipole moment of isolated CO is shown in Fig. 12.19.

It is clearly seen the dipole moment vector changes sign when the CO is highly stretched

and compressed. Using the isolated CO dipole is of course not exact; however, in the

absence of a full-dimensional dipole moment surface of CO-NaCl we had to resort to this

approximation.
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Figure 12.19: Dipole moment of isolated CO with the indication of both inner and outer
turning point (orange line) at v = 22 state.

To make further contact with experiment, we calculated the emission spectra for ∆
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v = -2 transitions of the C-down and O-down isomers. This was done using numerically

exact wavefunctions and energies by solving the one-dimensional Schrödinger equation

using the CO/OC cut potentials as a function of the corresponding normal mode at the

PES minima. These two cut potentials are shown in Fig. 12.12 along with details of

the wavefunction calculations and numerical matrix elements using an accurate ab initio

dipole moment.296 The simulated spectra are shown in Fig. 12.20 as sticks. As seen,

the two spectra are interleaved with both showing increasing intensity and decreasing

overtone gaps as v increases, as expected owing to the increasing non-linearity of the

dipole moment at large values of rCO, in agreement with experiment.
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Figure 12.20: Calculated ∆v=-2 emission spectra of both C-down and O-down isomers
with the indication of their vibrational transition.
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12.5 Summary and Conclusions

The present trajectory calculations find that isomerization occurs only for highly excited

vibrational states of the C-down isomer. The threshold for isomerization increases as

surrounding COs are added to the bare CO-NaCl moiety, with the threshold at v =

22 for the 13-CO cluster mode. This threshold is consistent with the experiment, which

shows emission from the C and O-down isomers for vibrational states up to v of 27.

Second, the present calculations show that CO continues to be highly vibrationally excited

after isomerization. This is also clearly in agreement with experiment. Also, from the

calculations, it appears that emission from much lower-lying O-down vibrational states

seen in experiment occurs not from prompt isomerization but from relaxation of higher

vibrationally excited O-down CO.

The driving force for this vibrationally induced isomerization is the major change

in the potential energy surface from energetically favoring the C-down isomer to greatly

favoring the O-down isomer upon high vibrational excitation of the CO-stretch. Also, the

region of interaction between the CO and NaCl extends to longer range upon high vibra-

tional excitation. The isomerization dynamics thus occurs over large range of distances

of the CO from the NaCl surface, very reminiscent of roaming.291–293 For the specific

case of isomerization, recall that roaming was reported in unimolecular dissociation of

energized CH3NO2.295,297–299 In this case internally excited CH3NO2 can undergo a frus-

trated dissociation to fragments, CH3 and NO2, where the incipient fragments roam at

large distance in a flat part of the potential and go on to form CH3O+NO products.

Finally, we make some comments of the effects of CO-CO interactions on the central

active CO. These interactions provide a channel for energy transfer from the vibrationally

excited CO. This qualitatively at least accounts for the increase in the threshold for
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isomerization in going from NaCl-CO to the small 5-CO cluster to the larger 13-CO

cluster. Second, the large amount of desorption observed for bare NaCl-CO is reduced

for the small CO-cluster and further reduced for the 13-CO cluster. Some of this effect

can again be accounted for by the CO-CO energy transfer. Also, because the CO-CO

interactions are attractive, the effect of them is to increase the dissociation energy (which

we estimate to be roughly 600 cm−1), which also results in less desorption.

The calculated IR overtone emission spectra are in accord with the experimental

ones in showing significant intensity for high v-states.273 The present calculations find

a threshold for isomerization at v = 22, whereas experiment cannot determine such a

threshold from the emission spectra. There are indeed strong experimental emission lines

for the O-down isomer in the region of v = 20-28, but also a long progression at lower v

all the way down to around v = 4. The present calculations interpret these lines below

around 20 as due to vibrational relaxation of the highly excited O-down isomer and not

prompt emission following isomerization of the C-down isomer in these low v states.

In summary, the present calculations verifies the vibrationally induced isomerization

reported experimentally dominated by a roaming pathway, where the isomerization occurs

at large separations, roughly 5 angstroms larger than the separation at the conventional

isomerization saddle point. There are aspects of the experiment that will need to be

addressed in future work. One is the details of the energy pooling that is needed to

prepare CO in highly excited vibrational states. Another is the relaxation of highly excited

O-down isomers and the subsequent reformation of the C-down isomer.



Chapter 13

Nuclear quantum dynamics reveal

the leaky nature of gas-phase trans

and gauche Ethanol conformers

13.1 Chapter Abstract

Ethanol is a molecule of fundamental interest in combustion, astrochemistry, and con-

densed phase as a solvent. It is characterized by two methyl rotors and trans (anti) and

gauche conformers, which are known to be very close in energy. Here we show that based

on rigorous quantum calculations of the vibrational zero-point state, using a new ab ini-

tio potential energy surface (PES), the ground state resembles the trans conformer but

substantial delocalization to the gauche conformer is present. This explains experimental

issues about identification and isolation of the two conformers. This “leak” effect is par-

tially quenched when deuterating the OH group, which further demonstrates the need

for a quantum mechanical approach. Diffusion Monte Carlo (DMC) and full-dimensional

242
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semiclassical dynamics calculations are employed. The new PES is obtained by means

of a ∆-Machine learning approach starting from a pre-existing low level (LL) density

functional theory (DFT) surface. This surface is brought to the CCSD(T) level of theory

using a relatively small number of ab initio CCSD(T) energies. Agreement between the

corrected PES and direct ab initio results for standard tests is excellent. One- and two-

dimensional discrete variable representation calculations focusing on the trans-gauche

torsional motion are also reported, in reasonable agreement with experiment.

13.2 Overview

Ethanol is one of the most important organic molecules with many applications in indus-

trial products, chemicals, and solvents. It is also the leading biofuel in the transportation

sector, where it is mainly used in a form of reformulated gasoline300,301 and studied from

scientific, industrial, and environmental perspectives for its role in internal combustion

engines.

Ethanol exists as a mixture of trans (or anti) and gauche (+/−) conformers in both

solid, liquid, and gaseous state.302–304 Therefore, the energy difference between the trans

and gauche conformers is expected to be very small. This is corroborated by the data

extracted upon fitting models to spectroscopic experiments in the microwave and far-

infrared portion of the electromagnetic spectrum, which estimate the energy gap at 0.12

kcal/mol or 41 cm−1 in favor of the more stable trans conformer.303,305 Therefore, there is

an anticipated preponderance of the gauche form at room temperature (62%) because of

its two-fold degeneracy (+/−). Furthermore, ethanol has two isomerization saddle points

and a three-fold methyl torsional potential, which makes its potential surface much more

complex.
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Reports on ethanol in the literature have been often accompanied by several ex-

perimental studies of its isomers. In 1980, Quade and co-workers reported microwave

torsional-rotational spectra of gauche ethanol303 and later Durig and Larsen presented

a detailed examination of the torsional modes.305 Rotational isomerization of ethanol in

nitrogen and argon matrices has been recorded under various conditions of temperature

and irradiation in the OH and CO stretches by Coussan et al.306 In 2013, comparative

analysis of low-temperature FTIR absorption spectra were reported for ethanol isolated

in an argon matrix by Balevicius and co-workers.307 It was observed that in an argon

matrix ethanol is predominantly in the trans configuration, although the most intense

absorption lines of the gauche conformer were still observed in the spectra of the samples.

Recently, the trans-gauche conformational distribution of ethanol has been investigated

using the O-H and symmetric C-C-O stretching infrared spectra in argon and nitrogen

matrix.308 It was found that the trans conformer is more populated in nitrogen mixture

whereas the gauche conformer is more populated in the argon mixture. After thermal

cyclisation in the matrix, the trans conformer isomerises to the gauche conformer in a ni-

trogen matrix but the reverse happens in an argon matrix. Finally, Pearson et al. (PBD)

also reported a comprehensive analysis of the threefold asymmetric rotational?torsional

spectrum of ethanol in the torsional ground state of the OH internal rotation.309 Zheng

et al. considered the partition functions of rotors in ethanol and performed helpful cal-

culations on the energy levels.310

Ethanol has also been investigated extensively using electronic structure calculations

to understand its energetics and complex potential energy surface (PES). In 2004, cal-

culations have been performed at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ

levels of theory by Dyczmons.311 It is reported that the trans isomer is 0.52 kJ mol−1

or 44 cm−1 more stable than the gauche isomer and the energy barrier for the torsional
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motion of the OH group for trans to gauche isomerisation is 3.9 kJ mol−1 or 326 cm−1.

Recently, a high level calculation has been performed at the CCSD(T)/aug-cc-pVQZ

level of theory by Kirschner and co-workers.312 It was found that the trans isomer is

more stable by 0.53 kJ mol−1 or 44 cm−1 compared to gauche isomer. Thus, it is con-

cluded that the trans conformer is more stable in the gas phase compared to the gauche

conformer. Remarkably, a thorough investigation on conformational analysis by system-

atically improving the basis set and the level of electron correlation of ethanol has been

reported by Kahn and Bruice in 2005.313 Their best estimate of the trans-gauche en-

ergy gap is 0.134 kcal mol−1 or 47 cm−1 and the energies of the two isomerization TSs

(eclipsed and syn) are 1.08 kcal mol−1 or 378 cm−1 and 1.20 kcal mol−1 or 420 cm−1,

respectively, relative to the trans minimum. They came to the common conclusion that

the trans conformer is more stable in the gas phase compared to the gauche conformer.

Very recently, Grimme and co-workers reported combined implicit and explicit solvation

protocols for the quantum simulation of ethanol conformers in the gas phase, liquid phase

and in CCl4 solutions. The implicit treatment of solvation effects suggested that the ratio

of the trans and gauche conformers of ethanol increases only slightly when going from

gas phase to a CCl4 solution, and to neat liquid.314

However, we note that both experiments and theoretical calculations may not have

been conclusive in describing the trans-gauche dichotomy of gas-phase ethanol. On the

one hand, the experiments referenced above appear to deal with a mixture of the two

conformers and to be even affected by experimental conditions. For instance, in Ref. 306

it is shown that infrared experiments performed in the 8-30 K temperature range point

at temperature-dependent trans-gauche isomerism when a nitrogen matrix is employed,

while the temperature dependence vanishes and evidence of trans isomer only is found

when an argon matrix is used. Other experiments found a mixture of the two conformers
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also in argon matrix, but with abundance conclusions at odds and an inter-conversion

rate dependent on temperature and matrix type. On the other hand, accurate but static

theoretical calculations have been performed only at the level of electronic structure, while

quantum nuclear effects have not been taken into consideration or have been estimated

just with basic and inaccurate harmonic approaches.

The main goal of this study is to investigate the energetics of ethanol and its chal-

lenging conformational properties including quantum nuclear effects. This is obtained by

means of rigorous diffusion Monte Carlo (DMC) and semiclassical calculations able to

describe nuclear quantum effects performed on a new “gold standard” ab initio CCSD(T)

PES, which we have constructed for this investigation.

Developing high-dimensional, ab initio-based PESs remains an active area of theoret-

ical and computational research. Significant progress has been made in the development

of machine learning (ML) approaches to generate PESs for systems with more than five

atoms, based on fitting thousands of CCSD(T) energies.64,65,90,315 Examples of potentials

for 6 and 7-atom chemical reactions which are fits to tens of thousands or even hundred

thousand CCSD(T) energies have been reported.316,317 However, there is a bottleneck for

developing the PES at high level theory with the increase of molecular size. Due to the

steep scaling of the “gold standard” CCSD(T) theory (∼ N7, N being the number of

basis functions), it is computationally demanding to fit PESs for systems with a larger

and larger number of atoms.

The increasing dimensionality of the PES with the increase of number of atoms re-

quires a large number of training datasets to fit the PES. Thus, the use of lower-level

methods such as density functional theory (DFT) and second-order Møller-Plesset per-

turbation (MP2) theory is understandable, but probably not accurate enough for precise

investigations like the one here targeted. To circumvent this bottleneck, researchers are
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applying ML approaches to bring a PES based on a low-level of electronic structure

theory (DFT or MP2) to a higher level (CCSD(T)) one. One way to achieve this is by

means of the ∆-machine learning (∆-ML) approach, in which a correction is made to a

property dataset obtained using an efficient, low-level ab initio theory such as DFT or

MP2.134,136–138,318,319

We apply a ∆-machine learning approach that we recently reported319,320 to take a

DFT-level PES of ethanol that we recently reported321 (details of the dataset of energies

and gradients are given in that paper) to the CCSD(T) level using a manageable subset of

ab initio CCSD(T) energy points. The new PES is tested against the usual fidelity tests

and then employed for the challenging DMC and SC simulations and for an investigation

of the wavefunctions of the −CH3 and OH motions, for which Quade et al. have suggested

a geared motion by analyzing microwave spectra.322,323

13.3 Theory and Computational Details

13.3.1 ∆ Machine Learning for PES construction

The theory underneath our ∆-ML approach is very simple319,320 and can be presented in

a simple equation

VLL→CC = VLL + ∆VCC-LL, (13.1)

where VLL→CC is the corrected PES, VLL is a PES fit to low-level DFT electronic data, and

∆VCC-LL is the correction PES based on high-level coupled cluster energies. It is noted

that the difference between CCSD(T) and DFT energies, ∆VCC-LL, is not as strongly

varying as VLL with respect to the nuclear configurations and therefore just a small

number of high-level electronic energies are adequate to fit the correction PES. In the
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present application to ethanol, we computed a total of 2319 CCSD(T)-F12a/aug-cc-

pVDZ electronic energies and performed training on a subset of these data in size of 2069

energies. This choice of basis was made to balance between accuracy and computational

efficiency. We do compare several key energies using this basis with the published results

using aVQZ basis.

Here we employ PIP approach to fit both the VLL and ∆VCC-LL PESs. The theory

of permutationally invariant polynomial is well established and has been presented in

several review articles.26–28,65,90 In terms of a PIP basis, the potential energy, V , can be

written in compact form as

V (x) =

np∑
i=1

cipi(x), (13.2)

where ci are linear coefficients, pi are PIPs, np is the total number of polynomials for a

given maximum polynomial order and x are Morse variables. For example, xαβ is given

by exp(−rαβ/λ), where rαβ is the internuclear distance between atoms α and β. The

range (hyper)parameter, λ, was chosen to be 2 bohr. The linear coefficients are obtained

using standard least squares methods for a large data sets of electronic energies (and for

large molecules’ gradients as well) at scattered geometries.

In order to develop a corrected PES, we need to generate a dataset of high and low-

level energies for training and testing. In this study, we need both DFT and CCSD(T)

datasets. Training is done for the correction PES ∆VCC-LL, and testing is done for the cor-

rected VLL→CC. Do note that this two-step “training and testing” is on different datasets.

Here we take the DFT dataset from our recently reported “MDQM21” dataset321

where a total of 11000 energies and their corresponding gradients were generated from ab

initio molecular dynamics (AIMD) simulations at B3LYP/6-311+G(d,p) level of theory.

The DFT PES (VLL) was a fit using 8 500 DFT data, which span the energy range of
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0?35 000 cm−1. Here, we generate a sparse dataset that contains CCSD(T)-F12a/aVDZ

energies at 2319 configurations, taken from the “MDQM21” dataset. The following pro-

cedure is employed to generate the dataset of 2319 configurations. First, we took every

8th geometry from the DFT training dataset of 8500 configurations, which gives a set of

1063 geometries. Then we took half of the DFT test dataset of 2500 geometries. From

the another half of the DFT test dataset, we took just 6 geometries having energy greater

than 30 000 cm−1 relative to the minima. These lead to a total of 2319 configurations

subject to CCSD(T) single point energy computation. This 2319-geometry dataset is

partitioned into a training dataset of 2069 geometries and a test dataset of 250 geome-

tries, respectively. Histogram plots of the distribution of DFT and CCSD(T) electronic

energies are shown in Figure 13.1, where it can be seen that both the DFT and CCSD(T)

datasets span a similar energy range. Geometry optimization and normal-mode analysis

are performed to examine the fidelity of the VLL→CC PES.

13.3.2 Diffusion Monte Carlo

This PES is also applied to compute rigorous quantum zero-point energies (ZPEs) of

ethanol and its single deuterated isotopologues using unbiased DMC calculations. The

concept behind DMC is to solve the time-dependent Schrödinger equation in imaginary

time.55,56,124 This is done by simulating a random walk of many replicas, also called

“walkers”, of the molecule, using a birth/death processes. At each step, a random dis-

placement in each degree of freedom is assigned to each walker, and this walker may

remain alive (and may give birth to a new walker) or be killed by comparing its potential

energy, Ei, with a reference energy, Er. For the ground state, the probability of birth or
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Figure 13.1: Distributions of DFT and CCSD(T) electronic energies (cm−1) of both
training and test datasets relative to their respective minimum value.
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death is given as:

Pbirth = exp [−(Ei − Er)∆τ ]− 1 (Ei < Er) (13.3)

Pdeath = 1− exp [−(Ei − Er)∆τ ] (Ei > Er), (13.4)

where ∆τ is the step size in imaginary time. After removing all dead walkers, the reference

energy is updated using the equation

Er(τ) = 〈V (τ)〉 − αN(τ)−N(0)

N(0)
, (13.5)

where τ is the imaginary time; 〈V (τ)〉 is the average potential over all the walkers that

are alive; N(τ) is the number of live walkers at time τ ; α is a parameter that can control

the fluctuations in the number of walkers and the reference energy. Finally, the average

of the reference energy over the imaginary time gives an estimate of ZPE.

In this study, each DMC trajectory is propagated for 30,000 time steps with step size

of 5.0 a.u.; 20,000 steps are used to equilibrate the walkers, and the reference energies

in the remaining 10,000 steps are used to compute the ZPE. For each isomer, 15 DMC

simulations (or trajectories) were carried out, and the final ZPE is the average of the 15

simulations. Statistical uncertainty of the zero-point energy is defined as the standard

deviation of DMC energies over the total number of simulations. This is written as

∆E =

√√√√ 1

15

15∑
i=1

(Ei − Ē)2, (13.6)

where Ē is the average energy over the 15 simulations. We also perform DMC calculations

on three single deuterated isotopologues employing 15 DMC trajectories. For trans- and
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gauche-CH3CH2OH and trans- and gauche-CH3CH2OD 40,000 random walkers are used,

while for CH2DCH2OH and CH3CHDOH only 20,000 random walkers are employed.

We note that we have used DMC calculations of zero-point energies in numerous simi-

lar applications using ML potential energy surfaces. Some recent examples and additional

details of our implementation can be found in refs. 145,166,320.

13.3.3 Adiabatically Switched Semiclassical Initial Value Rep-

resentation

Calculation of ethanol (trans and gauche) ZPEs, and those of its deuterated isotopo-

logues can be performed from a dynamical point of view by means of the adiabatically

switched semiclassical initial value representation (AS-SCIVR) technique. The goal is to

corroborate DMC findings employing a completely different, but still full-dimensional,

technique.324–326 AS SCIVR is a recently developed two-step semiclassical approach able

to regain quantum effects starting from classical trajectories. In this it is quite similar to

standard semiclassical techniques327–330, but it differs in the way the starting conditions of

the semiclassical dynamics run are selected. In AS-SCIVR a preliminary adiabatic switch-

ing dynamics is performed. On the basis of the adiabatic theorem, this allows to start

from harmonic quantization and approximately preserve quantization after switching on

the true system Hamiltonian. The exit molecular geometry and momenta of the adia-

batic switching run serve as starting conditions for the subsequent semiclassical dynamics

trajectory. This entire procedure is applied to a distribution of harmonically quantized

starting conditions.

In practice the adiabatic switching Hamiltonian is331–333
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Has = [1− λ(t)]Hharm + λ(t)Hanh, (13.7)

where λ(t) is the following switching function

λ(t) =
t

TAS

− 1

2π
sin

(
2πt

TAS

)
, (13.8)

Hharm is the harmonic Hamiltonian built from the harmonic frequency of vibration cal-

culated by Hessian matrix diagonalization at the equilibrium geometry qeq, and Hanh is

the actual molecular vibrational Hamiltonian. In our simulations TAS has been chosen

equal to 25000 a.u. (about 0.6 ps) and time steps of 10 a.u. have been employed. 5400

trajectories are evolved according to the Hamiltonian in Eq.(14.3) by means of a 4th

order symplectic algorithm334 starting from harmonic ZPE quantization.

Once the adiabatic switching run is over, the trajectories are evolved according to

Hanh for another 25000 a.u. with same step size to collect the dynamical data needed for

the semiclassical calculation. This relies on Kaledin and Miller’s time-averaged version

of semiclassical spectroscopy.335,336 Therefore, the working formula is

Ias(E) =

(
1

2π~

)Nv Ntraj∑
i=1

1

2π~T

∣∣∣∣∫ T

0

dte
i
~ [St(pas,qas)+Et+φt(pas,qas)]〈Ψ(peq,qeq)|g(p′t,q

′
t)〉
∣∣∣∣2 ,

(13.9)

where Ias(E) indicates that a vibrational spectral density is calculated as a function of

the vibrational energy E. Ias is peaked at the eigenvalues of the vibrational Hamiltonian,

the lowest one being the ZPE. Eq.(14.5) is made of several terms. Nv is the number

of vibrational degrees of freedom of the system, i.e. 21 in the case of ethanol. T is the

total evolution time of the dynamics for the semiclassical part of the simulation. As

anticipated, we chose T equal to 25000 a.u. with a time step size of 10 a.u. (p′t,q
′
t) is
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the instantaneous full-dimensional phase space trajectory. The semiclassical trajectory is

started at time 0 from the final phase space condition (pas,qas) of the adiabatic switching

part of the simulation. St is the classical action along the semiclassical trajectory, and

φt is the phase of the Herman-Kluk pre-exponential factor based on the elements of the

stability matrix and defined as

φt = phase

[√∣∣∣∣12
(
∂q′t
∂qas

+ Γ−1
∂p′t
∂pas

Γ− i~ ∂q′t
∂pas

Γ +
iΓ−1

~
∂p′t
∂qas

)∣∣∣∣
]
, (13.10)

where Γ is an Nv × Nv matrix usually chosen to be diagonal with elements numerically

equal to the harmonic frequencies. We note that evolution in time of φt requires calcula-

tion of the Hessian matrix, which represents the bottleneck of the AS-SCIVR approach

and semiclassical methods broadly speaking. Based on Liouville’s theorem, the stability

(or monodromy) matrix has the property to have its determinant equal to 1 along the en-

tire trajectory. However, classical chaotic dynamics can lead to numerical inaccuracies in

the propagation, so, following a common procedure in semiclassical calculations, we have

rejected the trajectories based on a 1% tolerance threshold on the monodromy matrix

determinant value. Finally, the working formula is completed by a quantum mechanical

overlap between a quantum reference state |Ψ〉 and a coherent state |g〉 characterized by

the following representation in configuration space

〈q|g(p′t,q
′
t)〉 =

(
det(Γ)

πNν

)
exp

{
−(q− q′t)

T Γ

2
(q− q′t) +

i

~
p′Tt (q− q′t)

}
. (13.11)

The reference state |Ψ〉 is usually chosen to be itself a coherent state. In Eq. (14.5) |Ψ〉 is

written as |Ψ(peq,qeq)〉, where peq stands for the linear momenta obtained in harmonic

approximation setting the geometry at the equilibrium one (qeq).
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AS SCIVR allows for a full-dimensional investigation of zero-point energies of ethanol

isomers. It is based on classical molecular dynamics and it is able to regain quantum ef-

fects by means of a stationary-phase approximation to Feynman’s quantum propagator.

Therefore, AS SCIVR is a very different approach from the stochastic DMC one, and

we employ it to corroborate the outcomes of DMC calculations. There is no straight-

forward way to provide an uncertainty for these kinds of semiclassical approaches, but

numerous previous studies (the interested reader can have a look, for instance, at Refs.

337–339 ) indicate that the method is able to approximate quantum results with an

error ranging from very few wavenumbers to 20-30 cm−1. We expect to find the same

results of the benchmark DMC calculation within this range of uncertainty. AS SCIVR

can also provide more information than DMC about excited states and quantum vibra-

tional frequencies (including anharmonic overtones and combination bands). Calculation

of ethanol fundamental frequencies of vibration including Fermi resonaces is left for a

future work.

13.4 Results and Discussion

13.4.1 The starting low level PES (VLL)

The low level PES, VLL was developed using the efficient B3LYP/6-311+G(d,p) level

of theory. For the fit, we used maximum polynomial order of 4 with permutationally

symmetry 321111, which leads to a total of 14752 PIPs in the fitting basis set. These

were used to fit a dataset of 8500 energies and their corresponding gradients. The fitting

RMS errors for energies and gradients are 40 cm−1 and 73 cm−1 bohr−1, respectively.

Testing was done on 2500 geometries. The testing RMS errors for energies and gradients



Chapter 13. Nuclear quantum dynamics reveal the leaky nature of gas-phase trans and
gauche Ethanol conformers 256

are 51 cm−1 and 106 cm−1 bohr−1, respectively.

13.4.2 The correction PES (∆VCC-LL)

A dataset of 2319 geometries are sparsely selected from the “MDQM21” DFT dataset and

CCSD(T)-F12a/aug-cc-pVDZ energy computations are performed at those geometries.

To develop the correction PES, we train ∆VCC-LL on the difference between the CCSD(T)

and DFT absolute energies of 2069 geometries and test the obtained surface on the

remaining 250 geometries. A plot of ∆VCC-LL versus the DFT energies for both training

and test datasets is shown in Figure 13.2. Note that we reference ∆VCC-LL to the minimum

of the difference between the CCSD(T) and DFT energies (roughly 35 732 cm−1). As seen,

the energy range of ∆VCC-LL is about 1800 cm−1, which is much smaller than the DFT

energy range relative to the minimum value (roughly 35 000 cm−1).

The difference ∆VCC-LL is not as strongly varying as VLL with respect to the nuclear

configuration. Therefore, low-order polynomials will be adequate to fit the correction

PES. We use maximum polynomial order of 2 with permutational symmetry 321111 to fit

the training dataset which leads to a total of 208 unknown linear coefficients (equivalent

to the number of terms in the PIP fitting basis set). These coefficients are determined by

solving a linear least-squares problem. The PIP basis to fit this PES is generated using

our “in-house” MSA software.123,141 The fitting RMS error of this ∆VCC-LL fit is 25 cm−1.

The fit is tested on the 250 energy differences and the RMS test error in this case is 41

cm−1.
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Figure 13.2: Plot of ∆VCC−LL (relative to the reference value i.e. -35 732 cm−1) vs DFT
energy relative to the CH3CH2OH minimum value with the indicated number of training
data sets.
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13.4.3 The New CCSD(T) Ethanol PES (VLL→CC)

To obtain the CCSD(T) energies we add the correction ∆VCC-LL to the low-level DFT

PES, VLL. A plot of VLL→CC vs corresponding direct CCSD(T) energies for the training

set of 2069 points and the test set of 250 points is shown in Figure 13.3. As seen, there

is overall excellent precision; however, we see a few larger errors. The RMS differences

between the VLL→CC and direct CCSD(T) energies for the training and test datasets are

49 cm−1 and 63 cm−1, respectively.

To examine this fidelity of the new VLL→CC PES, we perform geometry optimization

and normal mode frequency calculation of both trans and gauche isomers and their two

isomerization saddle point geometries. They are the eclipsed one, in which the hydroxylic

hydrogen eclipses with the hydrogen of the adjacent CH2 group, and the syn one, in which

the hydroxylic hydrogen is above the methyl group. The structures of these isomers and

saddle points are shown in Figure 13.4. We get the PES optimized energies within 5

cm−1 of the direct CCSD(T)-F12a calculation and find that the trans isomer is lower in

energy by 38 cm−1. Next, to examine the vibrational frequency predictions of the PES, we

perform normal mode analyses for both trans and gauche isomers and their isomerization

saddle points. The comparison of harmonic mode frequencies of trans and gauche ethanol

with their corresponding ab initio ones are shown in Table 13.1. The agreement with the

direct CCSD(T)-F12a/aug-cc-pVDZ frequencies is overall very good; the maximum error

is 21 cm−1 for the lowest frequency mode of trans conformer, but most of the frequencies

are within a few cm−1 of the ab initio ones and the mean absolute error (MAE) is only

4 cm−1. The gauche isomer shows even better agreement with the ab initio data. The

two trans - gauche isomerization saddle point geometries such as eclipse and syn ones

are confirmed by obtaining one imaginary frequency. The normal mode frequencies of
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Figure 13.3: The two upper panels show energies of CH3CH2OH from VLL→CC vs direct
CCSD(T) ones for the indicated data sets. The one labeled “Train” corresponds to the
configurations used in the training of ∆VCC-LL and the one labeled “Test” is just the set
of remaining configurations. Corresponding fitting errors relative to the minimum energy
are given in the lower panels.
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Trans Gauche

TS1 (Eclipsed)      TS2 (Syn)

(0.0) (0.11)

(1.08) (1.35)

Figure 13.4: Geometry of trans and gauche conformers of ethanol and their two isomer-
ization TSs and their electronic energies (kcal/mol) relative to the trans minimum from
∆-ML PES.
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this saddle point geometry are given in Table 13.2. The barrier height of trans - gauche

isomerization with respect to eclipse and syn TSs are found to be 377 cm−1 and 472 cm−1,

respectively, and the corresponding direct ab initio values are 389 cm−1 and 438 cm−1.

These are in excellent agreement with the experimental barrier heights of 402 cm−1 and

444 cm−1.305

Table 13.1: Comparison of harmonic frequencies (in cm−1) between VLL→CC PES and the
corresponding ab initio (CCSD(T)-F12a/aug-cc-pVDZ) ones of both trans and gauche
isomers of ethanol.

trans-ethanol gauche-ethanol

Mode ∆-ML PES ab initio Diff. ∆-ML PES ab initio Diff.

1 243 222 -21 268 258 -10
2 273 274 1 278 271 -7
3 417 413 -4 424 420 -4
4 818 813 -5 804 803 -1
5 909 907 -2 894 895 1
6 1055 1049 -6 1075 1069 -6
7 1115 1115 0 1094 1096 2
8 1181 1180 -1 1144 1141 -3
9 1284 1274 -10 1290 1284 -6

10 1302 1300 -2 1375 1374 -1
11 1403 1402 -1 1406 1402 -4
12 1454 1456 2 1424 1426 2
13 1488 1484 -4 1490 1491 1
14 1500 1501 1 1496 1497 1
15 1530 1531 1 1519 1522 3
16 2995 3001 6 3007 3014 7
17 3028 3036 8 3020 3028 8
18 3036 3042 6 3088 3089 1
19 3120 3122 2 3108 3108 0
20 3126 3127 1 3121 3123 2
21 3862 3853 -9 3845 3837 -8
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Table 13.2: Comparison of harmonic frequencies (in cm−1) between VLL→CC PES and
the corresponding ab initio (CCSD(T)-F12a/aug-cc-pVDZ) ones of both eclipsed and syn
TSs of Ethanol.

eclipsed syn

Mode ∆-ML PES ab initio Diff. ∆-ML PES ab initio Diff.

1 267i 287i 20i 332i 300i -32i
2 261 256 -5 270 271 1
3 420 416 -4 411 414 3
4 800 797 -3 812 807 -5
5 899 899 0 892 892 0
6 1058 1064 6 1057 1061 4
7 1106 1106 0 1105 1109 4
8 1133 1132 -1 1186 1187 1
9 1285 1285 0 1307 1298 -9

10 1370 1358 -12 1308 1306 -2
11 1399 1397 -2 1406 1402 -4
12 1428 1427 -1 1446 1440 -6
13 1485 1486 1 1493 1493 0
14 1500 1598 -2 1507 1502 -5
15 1522 1520 -2 1534 1539 5
16 3020 3028 8 3015 3027 12
17 3028 3034 6 3027 3030 3
18 3059 3069 10 3054 3061 7
19 3112 3123 1 3103 3106 3
20 3123 3124 1 3109 3113 -6
21 3896 3890 -6 3872 3865 -7
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Another comparison to the experiment we are able to perform thanks to the new PES

concerns the torsional barrier for the methyl rotor. The methyl rotor torsional potentials

(not fully relaxed) for both trans and gauche isomers as a function of the torsional angle

are shown in Figure 13.5. It is seen that results from the PES are very close to the

ones obtained from direct ab initio calculations at CCSD(T) level by means of a set

of single point calculations. We obtain that the methyl torsional barriers for trans and

gauche isomers are 1208 cm−1 and 1324 cm−1, respectively. The methyl torsional barrier

heights extrapolated from microwave spectroscopy for the trans and gauche isomers are

1174 cm−1 and 1331 cm−1.303,340,341 A different experimental analysis of the infrared and

Raman spectra determined the methyl torsional barriers to be 1185 cm−1 and 1251 cm−1

for trans and gauche, respectively.305 To complete our investigation of torsional barriers,

we also report the methyl rotor torsional potential (not fully relaxed) for TS1 and TS2

geometries as a function of the CH3 torsional in Figure 13.6. We get perfect three-fold

symmetry with barrier heights of 1283 and 1404 cm−1, respectively.

This is another proof of the accuracy of the new PES and another evidence of exper-

imental results obtained from ethanol vibrational spectroscopy being not conclusive. So

far only electronic energies have been investigated, but we now move to consider nuclear

quantum effects.

As a remarkable quantum nuclear application of the PES, we present the results of

diffusion Monte Carlo (DMC) calculations of the zero-point energy (ZPE) for both trans

and gauche isomers and singly deuterated isotopologues. In addition to that, it is well

known that a DMC calculation is a very challenging test to examine the quality of a

PES in extended regions of the configuration space. A common issue in PES fitting is

the unphysical behavior in the extrapolated regions where the fitting dataset is lacking

data, and this is dramatically manifested by large negative values. These are referred
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Figure 13.5: Comparison of torsional potential (not fully relaxed) of the methyl rotor of
trans (a) and gauche (b) Ethanol between direct CCSD(T) and ∆-ML PES.
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Figure 13.6: Torsional potential (not fully relaxed) of the methyl rotor of TS1 (a) and
TS2 (b) geometry of Ethanol.
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to as “holes” in the PES. Generally, we have observed that “holes” occur for highly

repulsive configurations, i.e., short internuclear distances. Adding some more data in

these regions and perform a refit generally eliminates the issue. So, one goal of presenting

DMC calculations is also to demonstrate that our PES correctly describes the high energy

regions of ethanol and it is therefore suitable for quantum approaches that need to sample

these regions.

Table 13.3: Harmonic, DMC, and SC ZPEs (cm−1) of trans and gauche ethanol and
singly deuterated isotopologues. The zero of energy is set at the electronic global mini-
mum. Values inside the parentheses represent statistical uncertainties in the DMC results.

Molecule Harmonic ZPE DMC ZPE SC ZPE

CH3CH2OH(trans) 17568 17321 (9) 17298
CH3CH2OH(gauche) 17621 17321 (6) 17317
CH3CH2OD(trans) 16842 16619 (6) 16598
CH3CH2OD(gauche) 16894 16619 (8) 16611
CH2DCH2OH(trans) 16874 16649 (7) 16622
CH3CDHOH(trans) 16836 16613 (9) 16586

Table 13.3 shows the DMC ZPEs of ethanol (both isomers) and singly deuterated iso-

topologues of the trans conformer along with semiclassical and harmonic ZPEs. It is seen

that the agreement between AS-SCIVR and DMC ZPEs is very good and within method

uncertainties (for SC methods uncertainty is typically within 20-30 cm−1). Relative to

the electronic global minimum, i.e. the bottom of the trans conformer well, the DMC

ZPEs of trans and gauche isomers are 17321 ± 9 cm−1 and 17321 ± 6 cm−1, respectively,

whereas the corresponding SC ones are 17298 cm−1 and 17317 cm−1, and the harmonic

ZPEs are 17568 cm−1 and 17621 cm−1. The harmonic ZPEs of the trans and gauche

overestimate the true ZPE values by about 250-300 cm−1 revealing a substantial level
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of anharmonicity. We note that in the DMC calculations very few “holes” are detected

and in just a couple of trajectories. The total number of “holes” detected is 44, which

is negligible compared to the total number of configurations (of the order of 1011) sam-

pled during the DMC trajectory calculations. This demonstrates that our PES can be in

practice considered “hole-free”. A further certification of this is given by the AS-SCIVR

simulations, which are successfully run at energies close to the ZPE one. During DMC

propagation, when a random walker encounters a “hole” (and thus it enters a region of

large potential energy), we kill that walker and let the trajectory continue to propagate.

This procedure follows our unbiased DMC algorithm.

We believe this is the first time the quantum anharmonic ZPE of ethanol is reported at

CCSD(T) level of theory. At this point a comparison of our values to the experimentally-

derived ones is very insightful. Since the experiment has the ZPE in it, we compare our

DMC and SC results with 41 cm−1, which is the experimental energy difference value

we already anticipated in the Introduction. The bare electronic energy difference on the

PES is 38 cm−1 with the trans conformer being the lower energy one. SC calculations

estimate an energy difference of 19 cm−1 still in favor of the trans conformer, while DMC

results have the two conformers basically degenerate. These values suggest an energy gap

narrower than the experimentally-derived one, with SC and DMC results in agreement

within uncertainty.

The DMC vibrational ground-state wavefunctions for hydrogens for both trans and

gauche conformers are shown in Figure 13.7. The DMC results clearly show that the

ground-state wavefunction has a trans fingerprint even when starting from the gauche

conformer. On the other hand, the ground-state wavefunction is partly delocalized at the

gauche geometry. This conclusion is corroborated by the top panel of Figure 13.8, which

shows the distribution of walkers at the end of DMC trajectories (15 DMC trajectories
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Trans Ethanol
ZPE = 17321 (9)

Gauche Ethanol
ZPE = 17321 (6)

Trans OD
ZPE = 16619 (6)

Gauche OD
ZPE = 16619 (8)

Figure 13.7: Vibrational ground-state wavefunction. The two upper panels represent the
trans and gauche-ethanol and the two lower panels represent the trans-CH3CH2OD and
gauche-CH3CH2OD. The hydrogen atom attached to the oxygen atom has been removed
to help the eye. ZPEs values are reported with uncertainties in parentheses.
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are computed, so total number of walkers are roughly 15×40 000 = 600 000.) started from

the trans configuration relative to the C1-C2-O-H torsional angle. The gauche geometry

is found at the torsional angle of ±120 degrees.

We also present the vibrational ground-state wavefunction from DMC calculations for

the OD motion in trans-CH3CH2OD, i.e. one of the singly deuterated isotopologues of

trans ethanol in Figure 13.7. The ZPEs for the deuterated isotopologue is still equivalent

with very similar wavefunctions. In the case of deuteration, the bottom panel of Figure

13.8 shows that the torsional angle distribution is more centered at the trans geometry

and only very few walkers are found at gauche geometry. This shows that, on the one

hand, quantum delocalization is somewhat quenched by the deuteration, while, on the

other hand, starting from the deuterated gauche conformer still leads to the deuterated

trans one.

The wave function of the OD motion still looks delocalized, but an interesting effect

of deuteration on the dynamics of ethanol can be pointed out by examining AS-SCIVR

calculations. In fact, as anticipated, a certain rate of AS-SCIVR trajectories are nu-

merically unstable and discarded according to a threshold parameter, as defined in the

Theory and Computational Details section. The rejection rate we find is about 55% for

both the trans and gauche conformers and also for the methyl-deuterated isotopologues.

Conversely, for CH3CH2OD the rejection rate decreases to about 20% and 38% for the

trans and gauche conformer, respectively. This somehow strengthens DMC calculations

by providing evidence of a more vibrationally-localized motion for OD with respect to

OH and a clue of a reduced influence of the “leak” effect.

Then, it is interesting to compare the 1-D O-H torsional potential determined from

our full-dimensional PES with the model used by Pearson, Brauer, and Drouin (PBD).309

As shown in Figure 13.9 the two are very similar. The relative potential energies of the
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Figure 13.8: Distribution of C1-C2-O-H torsional angle (φ) from the DMC walkers. The
upper panel represents the trans-CH3CH2OH and the lower panel represents the trans-
CH3CH2OD.
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gauche state and TS1 with respect to the trans state are nearly the same, while TS2 is

somewhat higher in energy for the 1-D potential from our PES as compared to PBD.

Recall that the 1-D OH torsional is not fully relaxed, so some minor adjustments to it

might be anticipated.
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Figure 13.9: Comparison of C1-C2-O-H torsional potentials from this work (blue) and
from PBD (green).

Having an 1-D model available is always advantageous because one can easily compute

the energy levels and the corresponding wavefunctions. Our preferred method for doing

so is by using the Discrete Variable Representation (DVR) techniques described in ref.

342. For the problem at hand, we use the azimuthal (0 to 2 π interval, periodic) variant.

There is really only one adjustable parameter, the moment of inertia of the rotor. An
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Figure 13.10: Comparison of the ground state OH torsional wavefunctions as deter-
mined from Discrete Variable Representation calculation on a 1-D cut (red) and from
Diffusion Monte Carlo calculations on the full-dimensional PES (blue). Note that both
wavefunctions have substantial amplitude near 120◦, the geometry of the gauche state.



Chapter 13. Nuclear quantum dynamics reveal the leaky nature of gas-phase trans and
gauche Ethanol conformers 273

estimate for this might be µO−H × r2
OH , where µO-H is the reduced mass of the OH in

atomic units, and rOH is the equilibrium distance of the O-H bond in bohr. For ethanol,

this is about 3.2/(NAV ∗ me), where NAV is Avogadro’s number and me is the mass of

the electron. We reduced this numerical value from 3.2 to 2.7 so that, when applied to

the PBD model torsional potential, we obtained agreement with their energy differences.

With this moment of inertia then applied to our own PES, we obtained the energy levels

and wavefunctions shown in Fig. 13.11, where the wavefunctions for only the first two

levels are shown. It is interesting to note that there is substantial wave function amplitude

for the gauche state at the geometry of the trans state and for the trans state at the

geometry of the gauche state, an observation that was shown for the trans state also in

the DMC results of Figure 13.8 based on the full-dimensional PES. In fact, the DMC

trans wavefunction from Figure 13.8 and the wavefunction from Figure 13.11 are nearly

identical, as shown in Figure 13.10.

Of course, a 1-D potential tells only a small part of the story. Two cuts of the 1-D

CH3 torsional potential have previously been shown in Figure 13.5. When we combine

these cuts with two others (taken at the OH torsional angles corresponding to TS1 and

TS2, see Figure 13.6) as well as with the OH torsional potential of Figures 13.9 and 13.11,

we can obtain a reasonable fit for a 2-D potential of the combined motions of the OH

and the CH3, as shown in Figure 13.12. As described in the caption, when both OH and

CH3 are rotating, the minimum energy path for moving, for example, from the well at

{θ, φ} = {0◦,−120◦} to {360◦, 120◦} is not at all straight, but rather follows the dashed

black saw-tooth path reflecting the geared motion of the two rotors. As anticipated in

the Introduction, this geared motion in ethanol has been suggested previously by Quade

and colleagues from analysis of microwave spectra, but, to our knowledge, it has not

previously been shown via a full-dimensional PES.



Chapter 13. Nuclear quantum dynamics reveal the leaky nature of gas-phase trans and
gauche Ethanol conformers 274

TS1

TS2

TransGauche

PES (this work)

-150 -100 -50 0 50 100 150

0

100

200

300

400

500

Torsional Angle (degrees)

E
ne
rg
y
(c
m

-
1
)

Figure 13.11: DVR results for energies and wavefunctions based on the 1-D C1-C2-O-H
torsional potential from this work. The solid blue curve gives the potential, while the
dotted lines give the first seven energy levels (there are two levels at 163.1 and 165.3
cm−1). The solid red and green lines give the wavefunctions corresponding to the two
lowest torsional energy levels.
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Figure 13.12: Two-dimensional contour plot of the potential energy as a function of OH
torsional angle and CH3 torsional angle. The color scale gives the potential in cm−1. If
the CH3 torsional angle is constant, for example at 0°, 120°, 240°, or 360°, the lowest
energy path for the OH rotational motion is in the vertical direction, for example along
the red arrow. If the OH torsional angle is constant, for example at -120°, 0°, or 120°,
then the lowest energy path for CH3 rotational motion is in the horizontal direction, for
example along the green arrow. If both the OH and CH3 are rotating, instead of moving
in a straight line, say from {θ, φ}={0°, -120°} to {360°, 120°}, the lowest energy path is to
move along the saw-tooth arrow, which describes a geared motion in which the horizontal
and vertical displacements take place along the minimum energy paths.
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The functional form of the 2-D fit to the methyl and OH torsional motions shown in

the 2-D contour plot (Figure 13.12) is presented here. The best values of the variables

in Table 13.4 were obtained by simultaneously fitting five cuts of the OH and CH3

torsion calculated from the full-dimensional PES. There were two unknown parameters.

These cuts are shown in Figures. 13.5, 13.11, and Figure 13.6. The fits are virtually

indistinguishable from the data and the values of the constants are listed in the Table

13.4.

VOH(φ) = 0.5
4∑

n=1

VnOH(1− Cos(nφ)),

VCH3(θ) = V φ=0
CH3(0.5)(1− Cos(3θ)),

Correction(φ) = 1 + (
3∑

n=1

Vnx(1− Cos(nφ))

V (θ, φ) = VCH3(Correction(φ))× (0.5)(1− Cos(3θ)) + VOH(φ)

(13.12)

Table 13.4: Constants for the two-dimensional potential for the OH and CH3 torsion in
ethanol.

Constant in Eq. (1) Value (cm−1)

V1x 0.0653
V2x 0.000147
V3x 0.00827
VCH3 1208.4
V1OH 86.3
V2OH -4.37
V3OH 381.9
V4OH -32.7
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1-D DVR result for the CH3 potential is shown in Figure 13.13. The moment of inertia

for the methyl rotor was taken here to be 10.5/(NAVme).
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Figure 13.13: 1-D DVR results for the CH3 torsional potential, whose potential is shown
in the blue curve. The energy levels are shown as dotted lines, while the wavefunctions
for the lowest three levels are shown as solid red, green, and purple lines.

Given the 2D potential in Eq. (13.12) and the parameters in Table 13.4, we can

predict how the OH torsion will vary as a function of the CH3 torsional angle θ, as shown

in Figure 13.14. Not surprisingly, the barriers and the gauche conformation increase in

energy as the methyl rotates so that one CH bond eclipses the OH bond. The figure

demonstrates substantial interaction between the methyl and OH torsional motions.

The functional form of the 2-D torsional motions just mentioned also made it possible

to perform a 2D DVR calculation of the combined energy levels and wavefunctions.

Moments of inertia of 2.7/(MAVme) for the OH rotor and 10.5/(MAVme) for the CH3
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Figure 13.14: OH torsional potential for θ = 0 and θ = 60 degrees, normalized to have
the same minimum.

rotor gave the best agreement with the experimental data summarized in PBD.309 The

results are shown in Table 13.5, where the first column gives the observed transitions, the

second column gives our transition estimates based on the 2-D model (which was fit to

five cuts through the full dimensional PES) and the third column gives the DVR results

if instead of the full model potential, we use a separable potential having no cross terms

between functions of θ and φ. The agreement is good, though certainly not perfect. It

should be noted, however, that the 2-D potential is based on unrelaxed cuts and on a

fit to 5 cuts of the potential; other cuts could modify the 2-D fit to the full-dimensional

surface. There could be adjustments due to either effect. Nonetheless, it is remarkable

that the ab initio surface is in such reasonable agreement with experiment. Following

our calculations, we found that Zheng et al. had recommended moments of inertia for

the two rotors based on their electronic structure calculations and the resulting low-lying
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energy levels. Their results, converted to atomic units, are 2.66/(MAVme) for the OH

rotor and 9.32/(MAVme) for the methyl rotor, very close to the values we found to be in

best agreement with the experimental results of PBD.

Table 13.5: Comparison of experimental energy levels relative to the lowest level, our
2-D DVR calculations, and our 2-D DVR calculations omitting cross terms in the 2D
torsional potential. All energies are in cm−1.

Level vOH vCH3 Experiment full 2-D potential Omitting cross terms

e1 0 0 0 0 0
e1 0 0 39.5 52.3 46.7
o1 0 0 42.8 54.4 48.9

o2 1 0 202.6 198.2 196.9
e2 1 0 238.6 236. 235.1
o3 1 0 285.9 293.6 289.

e0 0 1 244.4 251.8 246.5
e1 0 1 ? 299.4(?) 281.9(?)
o1 0 1 ? 301.4(?) 284.9(?)

e0 0 2 475.5
472.1
477.7

468.
473.

e1 0 2 529.49 532. 504.4
o1 0 2 532.8 533.8 524.4

13.5 Summary and conclusions

We presented a new potential energy surface for ethanol at the CCSD(T) level of the-

ory. This was achieved by a ∆-ML method applied to a recent B3LYP-based PES that

we previously reported. The new PES was validated for torsional barriers and harmonic

frequencies against direct CCSD(T) calculations for the trans and gauche conformers
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and their isomerization TSs. Diffusion Monte Carlo and semiclassical calculations were

reported for the zero-point energies of CH3CH2OH and several singly deuterated isotopo-

logues. DMC wavefunctions have also been presented.

Our main goal was to investigate the energetics of ethanol which was known to be

characterized by two conformers very close in energy. To achieve this goal we needed

a way to perform high-level quantum stochastic and dynamical simulations. Therefore

our first effort was to construct a “gold-standard” PES of ethanol suitable for quantum

calculations that require sampling of the high energy region of the phase space. This is

a real need for accurate quantum simulations and not just an exotic requirement. The

DMC and SC applications reported demonstrate that not only we achieved our goal,

but that the PES is robust for application of methods spanning a large portion of the

configuration space.

Our quantum results provided us with a breakthrough in the chemistry of ethanol

since we found that the ground state is of trans type with a leak to the gauche con-

former. Indeed, DMC ZPE evaluations return the same value starting from both trans

and gauche geometries. A semiclassical estimate of the first excited state starting from

the gauche conformer provides a reduced energy difference with respect to the energy gap

between conformers found by electronic structure calculations. This is also at odds with

harmonic estimates, which anticipate an increased gap. In our view, the “leak” effect and

the reduced energy difference eventually explain experimental discrepancies in ethanol

investigations and the difficulty to isolate the two conformers even at low temperatures.

We also notice that this result points to a striking resemblance with glycine as dis-

cussed in one of our previous works.143 We found that the 8 identified isomers of glycine

reduced to 4 couples of conformers once zero-point energy and nuclear dynamics effects

were taken into account. However, the impact of this finding was minor compared to the
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one for ethanol because the three main and experimentally investigated conformers of

glycine were still energetically well separated. We think these results, and especially those

presented for ethanol, provide a new insight on the chemistry of small organic molecules

demonstrating the need to take nuclear quantum effects into account.

We employed the new potential to study the motions of the −CH3 and −OH rotors

at the quantum mechanical level. DMC and DVR results are in very good agreement and

the computed DVR wavefunctions confirm the presence of the “leak” effect. Furthermore,

the previously suggested geared motion of the rotors is confirmed by our calculations,

and the 2-D model of the torsions based on cuts through the full-dimensional potential

provides reasonable energy levels when compared to experiment.

Finally, as a perspective and as anticipated, we notice that semiclassical calculations

are able to evaluate the energy of vibrationally excited states and therefore, given the

high fidelity of the PES, they will be employed, together with MULTIMODE calculations,

in a future work for determining ethanol fundamental frequencies of vibration.



Chapter 14

Semiclassical and Multimode

Calculations for the Vibrational

Energies of Trans and Gauche

Ethanol

14.1 Chapter Abstract

A full-dimensional, permutationally invariant polynomial potential energy surface based

on the ∆-Machine learning approach, recently constructed for ethanol, is here employed

for semiclassical and MULTIMODE calculations to determine the anharmonic vibra-

tional spectra for both trans and gauche conformers of ethanol. Both semiclassical and

MULTIMODE estimates agree well the with experimental data. We show that signifi-

cant mixing between the quantum states and Fermi resonances occur when low frequency

bending modes are included during vibrational self-consistent field (VSCF) and virtual-

282
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state configuration interaction (VCI) calculations via MULTIMODE. The same effects

are also accurately described by the full-dimensional semiclassical calculations. This is

the first time such high-level anharmonic calculations at “gold-standard” CCSD(T) level

are reported.

14.2 Overview

From the very early days of quantum mechanics the holy grail of theoretical chemists

has been to put quantum mechanics to use as a computational tool that would some day

rival the precision of experiment. The foundational, specific goal has been to develop first-

principles, i.e., from quantum mechanics, potentials that govern nuclear motion. Progress

in doing this for ever-larger molecules has been dramatic in the past 15 or so years.

Developing high-dimensional, ab initio-based potential energy surfaces (PESs) re-

mains an active area of theoretical and computational research. Significant progress has

been made in the development of machine learning (ML) approaches to generate potential

energy surfaces (PESs) for systems with more than five atoms, based on fitting thousands

of CCSD(T) energies.64,65,90,315 The quantum chemical methods capturing a substantial

part of electron correlation such as coupled-cluster with singles and doubles (CCSD),

coupled-cluster with perturbative triples [CCSD(T)] etc. have a formidable scaling, lead-

ing to the requirement of high speed processor, memory, and secondary storage. Thus,

there is a bottleneck for developing the PES at high level theory with the increase of

molecular size. Due to the steep scaling of the “gold standard” CCSD(T) theory (∼ N7,

N being the number of basis functions), it is computationally demanding to build PES

of systems with more than 9-10 atoms. (Many researchers do not consider this number

of atoms as a “large molecule”, however, it is used here as a computational boundary
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for the CCSD(T) method.) Therefore, people are bound to use low level electronic struc-

ture methods such as density functional theory (DFT) and Møller-Plesset second order

perturbation theory (MP2) to generate PESs for large molecules.

The PESs of molecules having more than 10 atoms using CCSD(T) level of theory

are generally conspicuous by their absence. One 10-atom PES using the method we are

aware of is the formic acid dimer (HCOOH)2,343 which contains 6 heavy atoms. It was

developed by Bowman and co-workers in 2016. This was a major computational effort at

the CCSD(T)-F12a/haTZ (VTZ for H and aVTZ for C and O) level of theory, which was

a fit to 13475 electronic energies. A 9-atom PES for the chemical reaction Cl + C2H6 was

recently developed by Papp et al. using a composite MP2/CCSD(T) method.344 Examples

of potentials for 6 and 7-atom chemical reactions which are fits to tens of thousands or

even hundred thousand CCSD(T) energies have also been reported.64,90,315–317

The increasing dimensionality of the PES with the increase in number of atoms re-

quires large training datasets to fit the PES. Thus, given the intense interest, and progress,

in moving to larger molecules and clusters, where high-level methods are prohibitively

expensive, the use of lower-level methods such as DFT and MP2 is understandable.

These methods also provide analytical gradients, and this is an important source of data

needed for larger systems. Our group has made use of the permutationally invariant poly-

nomial (PIP) approach for developing PESs of N -methyl acetamide,144,145 glycine143 and

tropolone.166

To circumvent this bottleneck, people are applying machine learning (ML) approaches

to bring a PES based on a low-level of electronic structure theory (DFT or MP2) to a

higher level (CCSD(T)) one. There are two popular methods currently being investigated

to achieve this goal. One is the “transfer learning” (TL), and the other is the “∆-machine

learning” (∆-ML).
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TL has been developed extensively in the context of artificial neural networks,133 and

much of the work in that field has been brought into chemistry.136–138,140,318 The basic

idea of TL is that a fit obtained from one source of data (perhaps a large one) can be

corrected for a related problem by using limited data and by making hopefully small

training alterations to the parameters obtained in the first fit. Therefore, in the present

context of PES fitting, an ML-PES fit to low-level electronic energies/gradients can be

reused as the starting point of the model for an ML-PES with the accuracy of a high-

level electronic structure theory. As noted, this is typically done with artificial neural

networks, where weights and biases trained on lower-level data hopefully require minor

changes in response to additional training using high-level data. Recently, Meuwly and co-

workers applied TL to improve the MP2-based neural network PESs for malonaldehyde,

acetoacetaldehyde and acetylacetone using thousands of local CCSD(T) energies .318

The other approach is ∆-machine learning. In this approach a correction is made to

a property dataset obtained using an efficient, low-level ab initio theory such as DFT

or MP2.134,136–138,318 We applied this ∆-machine learning approach to correct a PES

based on DFT electronic energies and gradients.319 Initially, this was successfully done

for CH4 and H3O+, and for 12-atom N -methyl acetamide.319 In all cases, the coupled

cluster energies were obtained over the same large span of configurations used to get

the lower-level DFT PES. For N -methyl acetamide these included both the cis and

trans isomers and the saddle points separating them. Later, ∆-machine learning was

extensively applied to the 15-atom acetylacetone (AcAc, CH3COCH2COCH3) molecule.

Not only was a full-dimensional PES at CCSD(T) level developed, but it was successfully

applied to compute the quantum zero point energy and ground state wavefunction using

diffusion Monte-Carlo (DMC) algorithm as well as to determine the tunneling splitting

of H-transfer process.320
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The focus of most work on TL or ∆-ML learning has been on developing transferable

force fields, with applications mainly in the thermochemistry and molecular dynamics

simulations at room temperature or somewhat higher. This motivates us to develop a full-

dimensional PES of 9-atom ethanol (CH3CH2OH) molecule at CCSD(T) level applying

the ∆-ML approach.345

Ethanol is widely used as a solvent in chemical reactions, and it has great importance

in combustion chemistry. Ethanol is the leading biofuel in the transportation sector,

where it is mainly used in a form of reformulated gasoline.300,301 Thus, the study of ethanol

chemistry in internal combustion engines is of high interest from scientific, industrial, and

environmental perspectives. Ethanol exists as a mixture of trans or anti and gauche (+/-)

conformers in both solid, liquid, and gaseous state.302–304 It is well known that the energy

gap between the two conformers is quite small; experimentally it is observed that ∆G is

0.12 (0.02) kcal/mol in favour of the trans conformer.303 Ethanol also has a three-fold

methyl torsional potential which makes its potential surface much more complex. These

aspects have been investigated when presenting the new PES. Diffusion Monte Carlo

(DMC) calculations performed on the new PES have shown that the global minimum is

of the trans configuration even when starting from the gauche geometry. In this work

we complete our study of ethanol by examining the fundamental frequencies of vibration

of both conformers, which are expected to be influenced by quantum state mixing and

Fermi resonances. To accomplish this task we employ full-dimensional semiclassical (SC)

calculations and vibrational self-consistent field (VSCF) and virtual-state configuration

interaction (VCI) calculations via MULTIMODE.
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14.3 Theory and Computational Details

14.3.1 CCSD(T) PES of Ethanol

The full-dimensional CCSD(T) PES of ethanol used here has been recently reported,345

so we give only a brief summary here. The development of this PES can be divided into

two parts – low-level DFT PES (VLL) and a correction PES (∆VCC−LL). Initially, a low-

level DFT PES is developed using the efficient B3LYP/6-311+G(d,p) level of theory, then

a correction is made using a sparse set of a relatively small number of ab initio CCSD(T)

energies to determine the ∆-ML surface using our recently developed approach.319

This VLL PES is a permutationally invariant polynomial fit to 8500 energies and their

corresponding gradients at B3LYP/6-311+G(d,p) level of theory spanning the energy

range of 0 - 35 000 cm−1. For this fit, we used a maximum polynomial order of 4 with

permutationally symmetry 321111, leading to a total of 14752 PIP basis functions and

linear coefficients whose values were determined by linear least-squares regression. More

details of this PES can be found elsewhere.321

To develop the correction PES, we train ∆VCC−LL on the difference between the

CCSD(T)-F12a/aug-cc-pVDZ and DFT absolute energies for 2069 geometries. A low-

order PIP fit was employed because the difference ∆VCC−LL is not as strongly varying as

VLL with respect to the nuclear configuration. We used maximum polynomial order of 2

with permutational symmetry 321111 to fit the training dataset which leads to a total of

208 PIP basis. The PIP basis to fit these VLL and ∆VCC−LL PESs were generated using

our ?in-house? MSA software.123,141

To obtain the CCSD(T) PES we add the correction ∆VCC−LL to the low-level DFT

PES, VLL. Investigation of this potential surface located two conformers of ethanol as

well as two isomerization saddle points connecting them. Rigorous diffusion Monte Carlo
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(DMC) and semiclassical calculations are also performed to compute anharmonic zero-

point energies (ZPEs) of these conformers. Details of this PES for the interested reader

can be found in ref. 345.

14.3.2 MULTIMODE Calculations

The harmonic vibrational frequencies could be systematically improved by use of vi-

brational self-consistent field (VSCF) and virtual-state configuration interaction (VCI)

methods. These methods have been implemented in our “in-house” software called MUL-

TIMODE. First, we present a brief recap of the VSCF346,347 and VSCF/VCI scheme348 in

MULTIMODE.45,46,349 The computational code is based on the rigorous Watson Hamilto-

nian47 in mass-scaled normal coordinates, Q, for non-linear molecule. This Hamiltonian

is represented as

Ĥ =
1

2

∑
αβ

(Ĵα − π̂α)µαβ(Ĵβ − π̂β)− 1

2

F∑
k

∂2

∂Q2
k

− 1

8

∑
α

µαα + V (Q), (14.1)

where α(β) represent the x, y, z coordinates, Ĵα and π̂α are the components of the total

and vibrational angular momenta respectively, µαβ is the inverse of effective moment of

inertia tensor, and V (Q) is the full potential in terms of normal coordinates. The number

of normal modes is denoted by F , and for non-linear molecules F equals 3N−6. In many

applications of this Hamiltonian in the literature, the vibrational angular momentum

terms are neglected and this approximation leads to an inaccurate result. Therefore, We

include these terms in the MULTIMODE software.

In general there are two major bottlenecks in applications to the VSCF/VCI scheme.

One is the numerical evaluation of matrix elements (multi-dimensional integrals) and the

second is the size of the H-matrix. Both naively have exponential dependence on the



Chapter 14. Semiclassical and Multimode Calculations for the Vibrational Energies of
Trans and Gauche Ethanol 289

number of normal coordinates.

As an effective approach to deal with exponential scaling of matrix elements we rep-

resent the full potential in a hierarchical n-mode representation (nMR).349 In normal

coordinates, this representation is given by

V (Q1, Q2, · · · , QF ) =
∑
i

V
(1)
i (Qi) +

∑
i,j

V
(2)
ij (Qi, Qj)+

∑
i,j,k

V
(3)
ijk (Qi, Qj, Qk) +

∑
i,j,k,l

V
(4)
ijkl(Qi, Qj, Qk, Ql) + · · · ,

(14.2)

where V
(1)
i (Qi) is the one-mode potential, i.e., the 1D cut through the full-dimensional

PES in each mode, one-by-one, V
(2)
ij (Qi, Qj) is the intrinsic 2-mode potential among all

pairs of modes, etc. Here, intrinsic means that the any n-mode term is zero if any of the

arguments is zero. Also, each term in the representation is in principle of infinite order

in the sense of a Taylor series expansion. So for example, V (1)(Q) might look like a full

Morse potential.

This representation has been used for nearly twenty years by a number of research

groups; a sample of these are refs. 45,46,349–353. It continues to be actively used in a

variety of applications and theoretical developments.354–359 In MULTIMODE the max-

imum value of n is 6. However, from numerous tests it appears that a 4MR typically

gives energies that are converged to within roughly 1–5 cm−1 360–362. Thus we generally

use 4MR with an existing full-dimensional PES and this is also done here.

The second major bottleneck to all VCI calculations is the size of the H-matrix,

which as noted already can scale exponentially with the number of vibrational modes.

There are many strategies to deal with this. Basically, they all limit the size of the

excitation space, with many schemes taken from electronic structure theory. For example,
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the excitation space can be limited by using the hierarchical scheme of single, double,

triple, etc. excitations. MULTIMODE uses this among other schemes and can consider

up to quintuple excitations. A major difference with electronic structure theory is that

the nuclear interactions go beyond 2-body. This is immediately clear from the n-mode

representation. Thus, MULTIMODE tailors the excitation scheme for each term in this

representation. Other schemes to prune the CI basis have been suggested and the reader

is referred to reviews53,352,354,360,363–367 for more details.

We note that the above basic VSCF/VCI scheme with the n-mode representation

has been implemented in Molpro by Rauhut and co-workers with the option to obtain

the electronic energies directly on n-mode grids, with n up to 4 or from an existing

potential.368 Of course numerous enhancements and modifications to the basic scheme

can be found there.

Finally, some comments on the limitations of rectilinear normal modes and thus the

Watson Hamiltonian are in order for ethanol, which has low energy torsional modes.

These are not expected to be accurately described, especially for excited states which

will exhibit large amplitude curvilinear motion. We typically either include these modes,

albeit with just a small number of basis functions, or drop then from the calculation.

Both of these strategies are examined here. With respect to large amplitude curvilinear

motion or torsional modes, we do note that the reaction path version of MULTIMODE49

is able to describe these. However, because such motion is not the focus of the present

work, we do not use this version, as it is also more computationally demanding than the

version we adopt here. Thus, the spectra we present are more reliable quantitatively in

the high-frequency region than in the low-frequency region.
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14.3.3 Semiclassical Theory

An alternative approach we employ to calculate the fundamental frequencies of vibration

for the two conformers is represented by the adiabatically switched (AS) semiclassical

initial value representation (SCIVR) technique.324,326 AS SCIVR is a recently developed

two-level procedure able to regain quantum effects starting from classical trajectories.

Therefore, AS SCIVR is a member of the family of semiclassical methods327,328 and it

features a characteristic way to determine the starting conditions of the dynamics. In AS

SCIVR one starts from harmonic quantization and slowly switches on the actual system

Hamiltonian. The final molecular geometry and momenta of the adiabatic switching run

serve as starting conditions for the subsequent semiclassical dynamics trajectory. This

procedure is applied to a distribution of harmonically quantized starting conditions.

The adiabatic switching Hamiltonian is331–333

Has = [1− λ(t)]Hharm + λ(t)Hanh, (14.3)

where λ(t) is a switching function

λ(t) =
t

TAS

− 1

2π
sin

(
2πt

TAS

)
, (14.4)

Hharm is the harmonic Hamiltonian built from the harmonic frequencies of vibration, and

Hanh is the molecular vibrational Hamiltonian. We chose TAS equal to 25000 a.u. (about

0.6 ps), and we employed time steps of 10 a.u. for a total of 4400 trajectories.

Once the adiabatic switching run is over, the trajectories are evolved according to

Hanh for another 25000 a.u. with same step size to collect the dynamical data needed for

the semiclassical calculation. For this purpose we use Kaledin and Miller’s time-average
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formula

Ias(E) =

(
1

2π~

)Nv Ntraj∑
i=1

1

2π~T

∣∣∣∣∫ T

0

dte
i
~ [St(pas,qas)+Et+φt(pas,qas)]〈Ψ(peq,qeq)|g(p′t,q

′
t)〉
∣∣∣∣2 ,

(14.5)

where Ias(E) indicates that a vibrational spectral density is calculated as a function of the

vibrational energy E. Ias is peaked at the eigenvalues of the vibrational Hamiltonian, the

lowest one being the ZPE. Frequencies of vibration are obtained by difference between the

relevant eigenvalues and the ZPE. In Eq.(14.5) Nv is the number of vibrational degrees of

freedom of the system, i.e. 21 in the case of ethanol. T is the total evolution time of the

dynamics for the semiclassical part of the simulation. As anticipated, we chose T equal

to 25000 a.u. with a time step size of 10 a.u. (p′t,q
′
t) is the instantaneous full-dimensional

phase space trajectory started at time 0 from the final adiabatic-switching phase space

condition (pas,qas). St is the classical action along the semiclassical trajectory, and φt

is the phase of the Herman-Kluk pre-exponential factor based on the elements of the

stability matrix and defined as

φt = phase

[√∣∣∣∣12
(
∂q′t
∂qas

+ Γ−1
∂p′t
∂pas

Γ− i~ ∂q′t
∂pas

Γ +
iΓ−1

~
∂p′t
∂qas

)∣∣∣∣
]
, (14.6)

where Γ is an Nv × Nv matrix usually chosen to be diagonal with elements numerically

equal to the harmonic frequencies. Based on Liouville’s theorem, the stability (or mon-

odromy) matrix has the property to have its determinant equal to 1 along the entire

trajectory. However, classical chaotic dynamics can lead to numerical inaccuracies in the

propagation, so, following a common procedure in semiclassical calculations, we have

rejected the trajectories based on a 1% tolerance threshold on the monodromy matrix
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determinant value. Finally, the working formula is completed by the quantum mechanical

overlap between a quantum reference state |Ψ〉 and a coherent state |g〉 with the following

representation in configuration space

〈q|g(p′t,q
′
t)〉 =

(
det(Γ)

πNν

)
exp

{
−(q− q′t)

T Γ

2
(q− q′t) +

i

~
p′Tt (q− q′t)

}
. (14.7)

The reference state |Ψ〉 is usually chosen to be itself a coherent state. In Eq. (14.5) |Ψ〉 is

written as |Ψ(peq,qeq)〉, where peq stands for the linear momenta obtained in harmonic

approximation setting the geometry at the equilibrium one (qeq).

14.4 Results and Discussion

Calculations are performed using Version 5.1.4 of MULTIMODE.46,346,349 During all the

calculations, a four-mode representation of the potential in mass-scaled normal coordi-

nates and a three-mode representation of the effective inverse moment of inertia for the

vibrational angular momentum terms in the exact Watson Hamiltonian are used.47. The

formalism is based on CI from the virtual space of the ground vibrational state VSCF

Hamiltonian. Here we explore reduced-mode models, i.e 11-mode and 15-mode models,

with maximum mode excitation of 10 10 10 8, which means that the first three modes

can be excited up to a maximum of 10 quanta and the fourth mode can be excited up to

a maximum of 8 quanta. This leads to CI matrix sizes of 45486 and 155026 for 11-mode,

and 15-mode calculations, respectively. We compute 200 CI vibrational states up to the

energy of 4000 cm−1.

Tables 14.1 and 14.2 show the comparison of Multimode and semiclassical AS-SCIVR

anharmonic frequencies with the corresponding experimental and harmonic ones. It is
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Table 14.1: Vibrational frequencies for trans-ethanol. Harmonic, Multimode (4MR), AS-
SCIVR, and experimental IR gas values from Ref. 314. Experimental values in parenthesis
refer to the Raman gas experiment of Ref. 369.

Mode Harmonic Multimode Multimode AS SCIVR Experiment
(4MR, 11 Modes) (4MR, 15 Modes)

7 1115 **** 1101 1088 1090
8 1181 **** 1160 1148 1166
9 1284 **** 1251 1242 1241
10 1302 **** 1276 1271 1275
11 1403 1367 1370 1363 1367
12 1454 1427 1426 1420 1450 (1430)
13 1488 1444 1443 1440 1455
14 1500 1459 1459 1456 1480 (1460)
15 1530 1491 1489 1481 1500 (1460)
16 2995 2810a 2811a 2881 2888
17 3029 2864a 2884a 2888 2902
18 3037 2939a 2937a 2933 2922
19 3120 2976a 2977a 2983 2987
20 3126 2978a 2981a 2986 2992
21 3862 3679 3672 3676 3676

a These states are mixed and not pure ones. See text for details.
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Table 14.2: Vibrational frequencies for gauche-ethanol. Harmonic, Multimode (4MR),
AS-SCIVR, and experimental IR gas values from Ref. 314. Experimental values in paren-
thesis refer to the Raman gas experiment of Ref. 369.

Mode Harmonic Multimode Multimode AS SCIVR Experiment
(4MR, 11 Modes) (4MR, 15 Modes)

7 1094 **** 1085 1060 1066
8 1144 **** 1124 1115 1117
9 1290 **** 1259 1247 1249
10 1375 **** 1337 1332 1342
11 1406 1370 1370 1369 1373
12 1424 1393 1393 1386 1394 (1430)
13 1490 1448 1447 1448 1460
14 1496 1454 1454 1451 1465 (1460)
15 1519 1480 1480 1475 1493 (1460)
16 3007 2867a 2880a 2885 2912
17 3020 2874a 2923a 2909 2936
18 3089 2927a 2931a (2950)a 2957 2972
19 3108 2958a 2959a (2979)a 2977 2987
20 3121 2976a 2978a 2985 2994
21 3845 3659 3653 3655 3662

a These states are mixed ones. See text and Table 4 for details.
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seen the excellent agreement between Multimode and AS-SCIVR frequencies as well as

experimental ones. We see substantial improvement moving from 11-mode to 15-mode

Multimode calculations specially for the high frequency modes which are highly coupled.

However, we see a big difference for mode 16 of trans-Ethanol in which the MULTIMODE

calculation is differed by 70 and 77 cm−1 with respect to the AS-SCIVR frequency and

the experimental frequency, respectively.

Table 14.3: Three largest VSCF/VCI expansion coefficients of indicated energies (cm−1)
frequencies for trans-Ethanol.

trans-Ethanol

Energy Mode State Coeff.

bend-12 2ν12 0.6051
2811 stretch-16 ν16 -0.5347

bend-11+bend-12 ν11 + ν12 -0.4571

stretch-17 ν17 -0.8634
2884 twist-10 + wag-12 ν10 + ν12 0.2818

rock-8 + bend-15 ν8 + ν15 -0.2263

stretch-18 ν18 0.6277
2937 bend-14 2ν14 -0.5442

bend-13 2ν13 0.3019

stretch-19 ν19 0.8309
2977 bend-14 + bend-15 ν14 + ν15 -0.3612

bend-14 2ν14 -0.2379

stretch-20 ν20 0.9237
2981 bend-13 + bend-14 ν13 + ν14 0.1871

wag-12 + bend-13 ν12 + ν13 -0.1319

The most exciting finding during these MULTIMODE calculations are the presence of
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Table 14.4: Three largest absolute magnitude coupling coefficients of Multimode fre-
quencies for gauche-Ethanol.

gauche-Ethanol

Multimode Coupling Quanta Coeff.
Frequency Modes

stretch-16 ν16 0.5852
2880 bend-12 + bend-14 ν12 + ν14 -0.4138

bend-13 2ν13 0.2968

bend-14 2ν14 -0.5771
2923 stretch-17 ν17 -0.4987

bend-13 2ν13 -0.3752

stretch-18 ν18 -0.5134
2931 bend-13 + bend-15 ν13 + ν15 0.4367

bend-14 + bend-15 ν14 + ν15 0.4249

stretch-18 ν18 0.5068
2950 bend-15 2ν15 -0.4341

bend-14 + bend-15 ν14 + ν15 0.4097

bend-15 2ν15 -0.6244
2959 stretch-19 ν19 -0.4643

stretch-18 ν18 -0.4046

stretch-20 ν20 0.8087
2978 bend-14 + bend-15 ν14 + ν15 0.3754

stretch-19 ν19 -0.2759

bend-15 2ν15 0.5336
2979 stretch-19 ν19 -0.5294

bend-14 + bend-15 ν14 + ν15 0.3885
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mixed states and Fermi resonances. From the Tables. 14.3 and 14.4, it is clearly seen that

the high frequency modes (mode 16-20) are highly coupled for both the isomers. Most

of the coupling are mainly occurred between C-H stretching modes and low frequency

bending, twisting, and rocking modes and their coefficients are big which reveal that the

mixing are significant. Due to this strong mixing, the anharmonic frequencies are lowered

by 100-150 cm−1.

The presence of mixed states and Fermi resonances found with Multimode are con-

firmed by the AS-SCIVR simulations. There are two aspects that make AS SCIVR ef-

ficient in this task. One is that trajectories are fully dimensional and this allows one to

take into account couplings between all modes. Secondly, the presence of coherent states

in Eq. 14.5, which have a Gaussian shape and therefore a tail in phase space, allows one

to correctly collect quantum eigenenergies even if the energy of run trajectories is not

perfectly tailored for the state under investigation. A good example of this is given by

the AS-SCIVR estimate of mode 16 of the trans conformer, which is very close to the

experimental value even if the mode is involved in a Fermi resonance.
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14.5 Summary and Conclusions

Recently developed a full-dimensional CCSD(T) PES of ethanol has been employed to

compute the anharmonic vibrational frequencies of both trans and gauche-ethanol. We

found good agreement between MULTIMODE and semi-classical AS SCIVR calculations

as well as the previously reported experimental results as shown in Tables 14.1 and 14.2.

In addition, we also observed significant mixing between the vibrational states and Fermi

resonances when low frequency bending modes are include during VCI calculations.
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[22] Bartók, A. P.; Csányi, G. Int. J. Quantum Chem. 2015, 115, 1051–1057.

[23] Uteva, E.; Graham, R. S.; Wilkinson, R. D.; Wheatley, R. J. J. Chem. Phys. 2017,

147, 161706.

[24] Kolb, B.; Marshall, P.; Zhao, B.; Jiang, B.; Guo, H. J. Phys. Chem. A 2017, 121,

2552–2557.

[25] Kamath, A.; Vargas-Hernández, R. A.; Krems, R.; Carrington, T.; Manzhos, S. J.

Chem. Phys. 2018, 148, 241702.

[26] Braams, B. J.; Bowman, J. M. Int. Rev. Phys. Chem. 2009, 28, 577.

[27] Xie, Z.; Bowman, J. M. J. Chem. Theory Comput. 2010, 6, 26–34.



References 302

[28] Bowman, J. M.; Braams, B. J.; Carter, S.; C., C.; Czakó, G.; Fu, B.; Huang, X.;
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[238] Czakó, G. J. Phys. Chem. A 2012, 116, 7467.

[239] Lin, H.-Y.; Huang, Y.-H.; Wang, X.; Bowman, J. M.; Nishimura, Y.; Witek, H. A.;

Lee, Y.-P. Nat. Commun. 2015, 6, 7012.

[240] Bowman, J. M.; Wang, X.; Homayoon, Z. J. Molec. Spect. 2015, 311, 2–11.

[241] Wang, Y.; Bowman, J. M. J. Chem. Phys. 2008, 129, 121103.

[242] Wang, Y.; Bowman, J. M. J. Chem. Phys. 2013, 139, 154303.

[243] Jiang, B.; Guo, H. J. Chem. Phys. 2013, 138, 234104.

[244] Makri, N.; Miller, W. H. J. Chem. Phys. 1989, 91, 4026.

[245] Light, J. C. J. Chem. Phys. 1964, 40, 3221–3229.

[246] Pechukas, P.; Light, J. C.; Rankin, C. J. Chem. Phys. 1966, 44, 794–805.

[247] Roueff, E.; Gerin, M. Space Sci. Rev. 2003, 106, 61–72.

[248] Lis, D. C.; Roueff, E.; Gerin, M.; Phillips, T. G.; Coudert, L. H.; van der Tak, F.

F. S.; Schilke, P. Astrophys. J. Lett. 2002, 571, L55.

[249] van der Tak, F. F. S.; Schilke, P.; Müller, H. S. P.; Lis, D. C.; Phillips, T. G.;

Gerin, M.; Roueff, E. Astron. Astrophys. 2002, 388, L53–L56.



References 318

[250] Parise, B.; Castets, A.; Herbst, E.; Caux, E.; Ceccarelli, C.; Mukhopadhyay, I.;

Tielens, A. G. G. M. Astron. Astrophys. 2004, 416, 159–163.

[251] Mauersberger, R.; Henkel, C.; Jacq, T.; Walmsley, C. M. Astron. Astrophys. 1988,

194, L1–L4.

[252] Jacq, T.; Walmsley, C. M.; Mauersberger, R.; Anderson, T.; Herbst, E.; De Lu-

cia, F. C. Astron. Astrophys. 1993, 271, 276.

[253] Parise, B.; Ceccarelli, C.; Tielens, A. G. G. M.; Herbst, E.; Lefloch, B.; Caux, E.;

Castets, A.; Mukhopadhyay, I.; Pagani, L.; Loinard, L. Astron. Astrophys. 2002,

393, L49–L53.

[254] Parise, B.; Ceccarelli, C.; Tielens, A. G. G. M.; Castets, A.; Caux, E.; Lefloch, B.;

Maret, S. Astron. Astrophys. 2006, 453, 949–958.

[255] Whittet, D. C. B.; Cook, A. M.; Herbst, E.; Chiar, J. E.; Shenoy, S. S. Astrophys.

J. 2011, 742, 28.

[256] Charnley, S. B.; Tielens, A. G. G. M.; Rodgers, S. D. Astrophys. J. 1997, 482,

L203.

[257] Xu, L. H.; Hougen, J. T. J. Mol. Spectrosc. 1995, 169, 396–409.
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