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Abstract 

Medaboost — An Improved Ensemble Learning Algorithm in Classification with Multiple 
Annotations 
By Yilin Dong 

Classification algorithms build models that can classify new observations based on their 
features. While those algorithms require a training set of samples' features and labels, in 
reality, many datasets do not meet the requirement. Since having experts to give out manual 
labels has a high cost, many industries adopted crowdsourcing, which enables a group of 
people to contribute to the same labeling task. However, multiple annotations from different 
annotators cannot apply to classification algorithms because they assume that labels are single 
and consensus. In this paper, we use truth inference methods to estimate single labels given 
different annotations from multiple annotators. While the Expectation-Maximization method 
provides the best accuracy, our empirical results suggest that better predictive performance 
can be achieved by accounting for disagreements. Thus, we propose Medaboost, a new 
predictive model, that considers the degree of disagreements between annotators to improve 
predictive performance. Medaboost outperforms AdaBoost on both synthetic dataset and 
MIMIC-III dataset under different sets of simulated nurses’.
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Chapter 1

Introduction

The supervised classification problem is one of the most common problems

in the machine learning field. The idea is to predict a newly observed sam-

ple based on its features after learning a discriminative function from a set

of training samples where the labels are known. However, many conven-

tional supervised machine learning methods require a single, consensus la-

bel per sample. In reality, single and accurate labels are hard to get. Tasks

that require human judgment, such as to recognize objects in a graph, to

determine the condition of a system, and to categorize the topic in newspa-

pers. Although manual labeling costs a big amount of money, the quality of

labeling is still not guaranteed. Moreover, due to the growth of the internet

and the cheaper data storage, unlabeled data piled up quickly. As a result,



CHAPTER 1. INTRODUCTION 2

many machine learning studies and also various industries used crowd-

sourcing to deal with unstructured and unlabeled data. In crowdsourcing,

a large group of people from different backgrounds with different levels

of expertise can contribute to the same task. Since crowdsourcing lets a

group of people cooperate on the same task, adopting it brings the advan-

tage of labeling a great amount of data in reduced cost and shorter time.

Since annotators have different levels of knowledge and personal bias, we

need to infer the true labels based on those multiple annotations. This task

introduces the truth inference problem.

It is important to obtain accurate labels to train the prediction model

because inaccurate ones would train a highly biased model and thus make

it meaningless to put the model into practice. A typical solution in truth

inference problem is to summarize labels based on annotators’ accuracy

and bias. In this study, we apply and compare several truth inference

methods (including Majority Voting, Weighted Majority, and Expectation-

Maximization) to estimate the label as accurately as possible.

Adopting the result labels from truth inference methods to train a clas-

sification can build a decent model, but the information from the original

multiple annotations is lost. In particular, we believe that the conflicts

among multiple annotations are also valuable because this information in-
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dicates that certain samples have features that lie in the intersection be-

tween labels and thus cause difficulties for human labeling. Thus account-

ing for the uncertainty associated with the estimated labels can potentially

help build a more robust predictive model.

In this work, we aim to construct a new classification model that learns

from samples’ features, their corresponding true labels (obtained from truth

inference methods), and annotators’ conflicts (disagreements) on labels.

Based on this reasoning, we introduce a new approach called Medaboost,

which can improve the performance of the Adaptive Boosting (Adaboost)

by assigning a set of initial weights that build upon the information in mul-

tiple labels. The sample with a higher agreement ratio is assigned more

initial weight in Medaboost because we want to focus on the samples that

are more likely to be accurate and are not hard to identify.

We evaluate the efficacy of Medaboost with and without the change in

initial weights across several settings. We first construct synthetic data to

evaluate Medaboost. Then we apply it to real data in the healthcare field to

solve the prediction problem of pressure ulcers or pressure injury.
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1.1 A Case Study on Pressure Ulcers

Pressure ulcers (PUs) are a major health problem in the United States, with

more than 2.5 million people suffering annually[1]. They are localized tis-

sue damage, mainly caused by consistent pressure. Thus, this injury often

occurs when patients have limited mobility. PUs can make patients suffer

from pain, increase their morbidity, and are also quite costly given their

chronic nature. Once PU occurs, patients will go through a painful re-

covery process as they can have infection, sepsis, and additional surgical

cure. A study indicates that they cost $3.3 billion in the U.S. in 2008[2].

However, most of PUs can be avoided in their early stages if the nursing

staff take proper prevention measures. Accurate identification of high-risk

patients is crucial for effective prevention strategies and reducing the PU

incidence.

However, a study showed that nurses are not accurate since they might

misclassify the PU risk level for up to 30% of the patients[3]. An inter-rater

agreement study by Waugh et al.[4] also showed that nurses have conflict-

ing judgments on the same patient sample even when they were strictly

following the same risk measure. They used Cohen’s κ[5] to measure the

agreement between nurses that corrects for the agreements by chance, and

the Cohen’s κ was only 0.472 for PU risk assessment on admission, a lot
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below the recommended value of 0.610[4, 6]. Therefore, nurses are not

perfectly accurate, and they often have disagreements on detecting PU

risks. Since predictive models are using labels from nurses, the fact that

various nurses provide conflicting and inaccurate labels makes it unrealis-

tic to assume single label in the model. Unfortunately, the existing mod-

els that predict the PU risk all use single label in both training and test

datasets[7, 8, 9]. Thus, we apply our new model that accounts for not only

the actual labels inferred from multiple labels but also the disagreements

between nurses’ labeling.
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Chapter 2

Background

In this section, we introduce the truth inference problem, common meth-

ods, and provide details about Adaboost, an ensemble prediction model.

2.1 Truth Inference

Many conventional supervised machine learning methods require a single

label per sample. To estimate a single label from multiple annotations,

truth inference or truth discovery methods have been proposed to address

different annotator assumptions. Here we introduce the general truth in-

ference problem and briefly discuss three common truth inference meth-

ods: Majority Voting Algorithm (MV), Weighted Majority Algorithm (WM),

and Expectation-Maximization Algorithm(EM). Additional truth inference



CHAPTER 2. BACKGROUND 7

methods are summarized in a survey by Li et al[10]

2.1.1 Problem Formulation

The general problem of truth inference given multiple noisy labels assumes

we have N samples and M annotators. For each sample i ∈ {1, · · · ,N }, yakxi ∈

{−1,1} represents the annotation made by the annotator ak : k ∈ {1, · · · ,M}.

The true and estimated label of sample xi is denoted as zxi and ẑxi re-

spectively. The truth inference task is to determine the estimated truth

ẑxi ∈ {−1,1} for each sample xi so that it is the same as zxi for as many sam-

ples as possible.

2.1.2 Majority Voting Algorithm(MV).

MV is the simplest method to estimate the truth. Each annotation, yakxi

serves as a vote. The estimated truth ẑxi is the value that gets the most

votes (see Algorithm 1). In the scenario where there are equal votes (i.e.,

no clear majority), MV randomly selects one label as the estimated truth.

Though simple, MV outperforms most of the truth inference methods,

especially when the accuracy of most of the annotators is high[11]. How-

ever, MV treats all annotators equally and ignores the reliability of annota-

tors.
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Algorithm 1 Majority Voting Algorithm

1: for i = 1,2, . . .N do

ẑxi =



1 if
∑M
k=1 y

ak
xi > 0

Random{0,1} if
∑M
k=1 y

ak
xi = 0

−1 otherwise

2: end for

2.1.3 Weighted Majority Algorithm (WM).

WM was proposed to deal with the reliability of the annotators[12]. It as-

signs the initial weight 1 to each annotator (wak = 1), iterates through each

sample sequentially, and calculates the label according to the weighted

vote. Whenever there is a mismatch between the estimated label and the

annotator’s label, WM reduces the annotator’s weight by multiplying a fac-

tor β ∈ [0,1) so that those annotators with high reliability will have large

impacts on the estimated truth. Thus unlike MV, each annotation has a

weighted vote as wak · y
ak
xi (see Algorithm 2).

Generally, WM is more robust compared to MV with respect to unreli-

able annotators.
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Algorithm 2 Weighted Majority Algorithm

wak = 1

2: for i = 1,2, . . .N do

ẑxi =


1 if

∑M
k=1wak · y

ak
xi > 0

−1 else

Update weight for k = 1, ... M:

4: if yakxi , ẑxi then wak ← β ·wak , where β ∈ [0,1)

end if

6: end for

2.1.4 Expectation-Maximization Algorithm(EM).

The EM (Expectation Maximization) truth inference method proposes a

more complex model of the reliability of the annotators using a probabilis-

tic graphical model[13]. Under EM, the annotators’ reliability is modeled

using a confusion matrix πak , where each element represents the probabil-

ity of annotator ak giving label q given that true label is p.

For a binary classification problem, this confusion matrix is defined as:

πak =


β 1− β

1−α α

 , where α = p(yakxi = 1 | zxi = 1) and β = p(yakxi = −1 | zxi = −1).

(2.1)

Note that α,β represent the probability of annotator ak correctly annotat-
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ing sample xi given its true label 1 or −1 respectively. Higher α and β

values correspond to a more reliable worker. The estimated ground truth,

Ẑ, and confusion matrices, πA, are iteratively computed using maximum

likelihood estimation which optimizes the following:

max
Ẑ,πA

N∏
i=1

∑
l∈{−1,+1}

p(ẑxi = l)
∏
ak∈Axi

π
ak
l,y

ak
xi

(2.2)

where Axi indicates the set of annotators that have annotated sample xi .

2.2 Adaboost: An Ensemble Classifier

Adaboost is an ensemble method that aimed at improving the performance

of base models such as decision trees. It combines multiple weak classi-

fiers to produce a robust classifier[14]. Suppose there are n samples in the

training data (x1, ẑx1
), · · · , (xn, ẑxn), where xi is the set of features for sample

i, and ẑx1
is the corresponding label (i.e. the estimated labels from the truth

inference method). Then each sample i has a weight Wt(i) associated with

the tth iteration. Adaboost assigns equal weights to each sample at first and

increases the weights of misclassified samples in each iteration for the clas-

sifier in the next iteration. This way, mislabeling those samples will result

in more loss, and thus the weak learning algorithm will be trained to avoid

mislabelling them. Algorithm 3 shows the pseudo-code for Adaboost.



CHAPTER 2. BACKGROUND 11

Algorithm 3 Adaboost algorithm
Input: Training data - (x1, ẑx1

), · · · , (xn, ẑxn), learning rate η, number of iter-

ations T , and weak learner h

Initialize weight: W1(i) = 1
n , i ∈ {1, · · · ,n}

for t = 1,2, . . . ,T do

Find weak learner ht that minimizes the error εt:

εt =
n∑
i=1

ht(xi ),ẑxi

Wt(i) (2.3)

Choose αt:

αt = η · ln(
1− εt
εt

), where η ≤ 1 is the learning rate (2.4)

Update weight for i = 1, ... n:

Wt+1(i) =
Wt(i)exp(−αt ẑxiht(xi))

Nt
(2.5)

end for

Output Classifier:

H(x) = sign(
T∑
t=1

αtht(x)) (2.6)
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Chapter 3

Medaboost: Multiple Experts

Disagreement Aware Adaboost

We develop a new framework that builds a robust predictive model when

there are multiple annotations (or labels) for each sample. Our framework

involves two steps. First, we use an existing truth inference method to

estimate the sample label from the multiple annotations. Then, we use

the estimated labels and their features to train Medaboost, our proposed

new classifier to account for disagreeing annotations. Figure 3.1 shows an

overview of our model.



CHAPTER 3. MEDABOOST 13

Figure 3.1: Overview of our approach.

3.1 Estimation of Sample Labels

In this study, the raw data is assumed to have only samples’ features and

their corresponding multiple annotations. A decent prediction model needs

to learn from training data that contain single and correct labels. Other-

wise, the model would be highly biased to the incorrect data. Therefore,

we first need to obtain reliable estimated labels from the original sets of

multiple labels. We use truth inference methods that we mentioned ear-

lier to infer the ground truth. After obtaining reliable estimated labels, we

adopt these target labels of the training data in our predictive framework.

Since it is impossible for truth inference methods to reach 100% accuracy

for every dataset, those wrong labels in the estimated labels bring chal-

lenges to the prediction model. Standard classifier models will only use

the estimated label so they will be negatively impacted by the incorrect la-

bels. Thus, we introduce a robust prediction model that also incorporates
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the information from multiple annotations to improve the performance of

the existing model.

3.2 A Robust Prediction Model

A standard machine learning algorithm, Adaboost, can be vulnerable to

overfitting in the presence of noisy labels, since it constantly increases the

weights for misclassified samples. The underlying assumption in Adaboost

is that all labels are accurate. However, the assumption is wrong in this

case. As we explained earlier, the labels to train the model are not accu-

rate because they are adopted from the result of truth inference methods.

Even when we use multiple truth inference methods to make the estima-

tion as accurate as possible, bias always exists. We believe that disagree-

ments or conflicts in the multiple annotations may arise from the fact that

the samples’ features are quite complicated, making the assessment more

challenging. Thus we posit that leveraging the uncertainty in samples in-

stead of ignoring it by changing the Adaboost weights will improve the

model performance.

Several studies have proposed a re-weighting scheme or changing the

initial weights in Adaboost [15, 16, 17]. For instance, Jia st al. showed

discarding some small weight samples during the boosting process can in-
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crease training speed while keeping prediction performance [15]. Kim et

al. built a model based on Adaboost, which assumed that positively labeled

samples have a more concentrated feature distribution than those nega-

tively labeled samples[17]. They increased the initial weight for samples

with features that are close to the peak of overall distribution[17]. How-

ever, their assumption was only proved in the dataset for object detection

tasks, so it might not be the case for other datasets. Moreover, they applied

different strategies to samples with different labels, so their model will also

be worse off when we use inaccurate labels. Hu et al. changed the initial

weight in Adaboost to reduce the false-alarm rate (which is the possibility

that the model gives out positive labels when the true labels are negative).

In their applications, the false-alarm rate raises unnecessary costs. How-

ever, we do not need a low false-alarm rate. In fact, in cases like detecting

diseases, having a low false-negative rate is also important.

Although these methods are not applicable in this case, they proved

that changing the initial weight in Adaboost has a significant impact on

the formation of a strong classifier because it impacts the sum of weighted

classification errors from the very beginning[16]. Therefore, we also adjust

the initial weight to prevent Adaboost from overfitting toward the inaccu-

rately labeled samples. Instead of setting all samples to be equal weight
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(i.e., W1(i) = 1
n ), we propose to adjust the initial weights to be proportional

to the level of observed conflict among annotators.

We believe those conflicting samples indicate that their features are

hard to label and are more likely to have wrong estimated labels than con-

sensus samples. Therefore, we choose to decrease their weight.

The initial weight W1(i) is calculated as:

dxi =
1
2

(M − |
M∑
k=1

y
ak
xi |) (3.1)

W1(i) =
M − dxi
dxi +M

· 1
N

(3.2)

dxi is the disagreement number for sample xi , and N is the normalization

factor. For instance: if M = 5, yakxi = 1 for k = 1, 2, 3; yakxi = −1 for k = 4,

5, then dxi = 2. Higher d leads to lower weight. Since 0 ≤ dxi ≤M − 1, we

know 1
(2M−1)N ≤ W1(i) ≤ 1

N . The conflicting samples might have weights

close to zero, which means they are heavily discounted in terms of their

contribution to the initial classifiers.

The pseudo-code for our entire framework is shown in Algorithm 4.

The first part is to estimate the sample labels using an accurate truth infer-

ence algorithm. Then, we input the sample features and the estimated la-

bels to Medaboost, which changed the initial weight from Adaboost model.
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Algorithm 4 Our framework to deal with multiple annotations
Input: Training data - (x1, ẑx1

), · · · , (xn, ẑxn), learning rate η, number of iter-

ations T , and weak learner h

Initialize weight for i = 1, ..., n:

dxi =
1
2

(M − |
M∑
k=1

y
ak
xi |) (3.3)

W1(i) =
M − dxi
dxi +M

· 1
N

(3.4)

for t = 1,2, . . . ,T do

Find weak learner ht that minimizes the error εt:

εt =
n∑
i=1

ht(xi ),ẑxi

Wt(i) (3.5)

Choose αt:

αt = η · ln(
1− εt
εt

), where η ≤ 1 is the learning rate (3.6)

Update weight for i = 1, ..., n:

Wt+1(i) =
Wt(i)exp(−αt ẑxiht(xi))

Nt
(3.7)

end for

Output Classifier:

H(x) = sign(
T∑
t=1

αtht(x)) (3.8)



CHAPTER 4. EXPERIMENT SETUP 18

Chapter 4

Experiment Setup

4.1 Data Description

In this study, we conduct experiments on two different datasets. We use a

synthetic dataset to simulate the problem setting to explore the impact of

several different weighing formulas. We then apply Medaboost on a real-

world dataset, the MIMIC-III [18] critical care database. For both datasets,

we have sample features and the ground truth label. We also discuss how

to create multiple labels to simulate different expert annotations and their

reliabilities. The details are explained below.
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4.1.1 Synthetic Dataset

This model is aimed at solving the issue of no ground truth but only mul-

tiple conflicting annotations are available. However, we need the ground

truth to conduct testing metrics for Medaboost’s performance evaluation.

Therefore, real datasets with both ground truth and annotations from mul-

tiple annotators are not easy to find. For the evaluation and investigation

purposes, we generate a synthetic dataset.

Features and Labels. In this study, we construct a dataset with 10000

samples. For each sample i ∈ {1, ...,10000}, it has 10 features (f xij , where

j ∈ {1,2, ...10}) and one binary ground truth (ẑxi ∈ {−1,1}). We assign label

-1 to 80% of the dataset, and label -1 to 20% of it in order to test whether

our model can work well in imbalanced datasets.

To construct the features for the samples, we assume each class sam-

ple follows a multivariate Gaussian distribution. We construct two ten-

dimensional spheres that are centered at their mean point and follow the

standard multivariate normal distribution. The negative class is centered at

mean point (avg(−1) =(f1,−1, ..., f10,−1) where fj,−1 = 1.5) with a standard de-

viation (S.D) of 2.5. The positive class is centered at mean point (avg(1) =(f1,1, ..., f10,1)

where fj,1 = 5) with a standard deviation of 2.5. Figure 4.1 shows the nor-
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mal distribution of the first of the 10 features f xi1 from the two clusters. The

left curve represents the distribution of label -1, and the right one repre-

sents that of label 1. We assume that it is easy for annotators to determine

the class when the probability density of one class is much higher than

the other one. The overlap between the two classes makes it hard to give

accurate labels in the intersection.

Figure 4.1: A single feature distribution depending on the two classes. The

one has a mean of 1.5 is the negative class while the one has a mean of 5 is

the positive class.

For each sample, we first determine whether it belongs to the negative

class or the positive class (at a ratio of 80:20). Each sample is then drawn

from its class-specific multivariate normal distribution. Figure 4.2 shows a

3-d visualization of the first 3 features (f xi1 , f
xi

2 , f
xi

3 ) drawn from our multi-
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variate Gaussian distribution. It is important to note that during the con-

struction of the features, the actual ground truth label is known for every

sample.

Figure 4.2: A Dataset with Three Features. Blue dots represents negative

label, and red dots represents positive label

Multiple Annotations. In this study, we construct the 10 annotations

y
ak
xi ∈ {−1,1} from 10 annotators ak , k ∈ {1, ...,10} for each sample i. To simu-

late annotations from multiple annotators, we assume that the annotators

become less accurate when labeling a sample which has a set of features

that are located at the intersection of the two clusters. Under this assump-
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tion, data belong to the region where the features clearly belong to one of

the labels, those annotators often agree with each other. However, in the re-

gion of the intersection between the two labels, it is not easy to distinguish

between two labels, so the disagreements between annotators increase.

In order to construct the 10 annotators’ labeling based on our assumed

situation, we first calculate the Euclidean distance (dxi ,avg{−1,1}) between the

sample’s mean point (avg(−1) or avg(1)) and the sample xi ’s feature point

(f xi1 , ..., f
xi

10) by using the formula:

dxi ,avg{−1,1} =

√√√√ 10∑
j=1

(fj,{−1,1} − f
xi
j )2 (4.1)

The annotation standard for all annotators is defined using the Euclidean

distance and the clusters’ standard deviations. S.D−1 is the standard de-

viation of class -1, and S.D1 represents that for class 1. First, we calculate

the value of dxi ,avg−1
−dxi ,avg1

, which is the distance between class -1’s mean

point and the sample point minus distance between class 1’s mean point

and the sample point. If the sample is closer to one of the class mean, then

it is more likely that this sample belongs to that class (or label). Then, we

divide the possible values of this difference into 8 groups, the division is

based on the two clusters’ standard deviations (see Equation (4.2)). We cal-

culate the true percentage of zxi = −1 and zxi = 1 in each of the 8 conditions.

Equation(4.2) shows the percentage of zxi = −1. We set the truth to be our
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annotation standard.

P (zxi = −1) =



1, for dxi ,avg−1
− dxi ,avg1

≤ −(S.D−1 + S.D1)

1, for − (S.D−1 + S.D1) < dxi ,avg−1
− dxi ,avg1

≤ −1
2 (S.D−1 + S.D1)

0.99, for − 1
2 (S.D−1 + S.D1) < dxi ,avg−1

− dxi ,avg1
≤ −1

4 (S.D−1 + S.D1)

0.91, for − 1
4 (S.D−1 + S.D1) < dxi ,avg−1

− dxi ,avg1
≤ 0

0.56, for 0 < dxi ,avg−1
− dxi ,avg1

≤ 1
4 (S.D−1 + S.D1)

0.22, for 1
4 (S.D−1 + S.D1) < dxi ,avg−1

− dxi ,avg1
≤ 1

2 (S.D−1 + S.D1)

0, for 1
2 (S.D−1 + S.D1) < dxi ,avg−1

− dxi ,avg1
≤ (S.D−1 + S.D1)

0, for (S.D−1 + S.D1) < dxi ,avg−1
− dxi ,avg1

(4.2)

To simulate annotators’ actions and adjust their accuracy, we set two

parameters to make them deviate from the ground truth. We use a set of 10

deviation factors devak to differentiate the 10 annotators. For instance, the

actual possibility that an annotator ak labels sample xi as -1 (P (yakxi = −1))

would be the annotation standard that we calculated from the ground truth

(P (zxi = −1)) plus the deviation factor devak . The purpose of having this

factor is to make each annotator’s action differ from each other. When

|devak | is high, the annotator deviates more from the ground truth and thus
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becomes more inaccurate. To control this factor, we introduce our first

parameter R ∈ (0,1) to limit the range of the deviation factor. i.e. devak ∈

[−R,R]. devak is a random number within the range.

Moreover, our assumption in this study is that when a sample gets

closer to the overlapping area of two labels, it is more difficult for anno-

tators to label accurately. Therefore, we introduce a set of degree factor

f rac ∈ (0,1) to control the degree of deviation. When the sample is far from

the overlapping area, which means P (zxi = −1) and P (zxi = 1) differs a lot,

f rac should be small, and vice versa. Therefore, each condition in Equa-

tion (4.2) has one f rac. In the Equation (4.3) below shows the possibility

that an annotator ak labels sample xi as -1 (P (yakxi = −1)).

if P (zxi = −1) < −f rac · devak , then devak = −devak

P (yakxi = −1) = P (zxi = −1) + f rac · devak

where P (yakxi = −1) ≥ 0, P (yakxi = 1) ≥ 0,devak ∈ (−R,R).

(4.3)

The chance that this annotator labels 1 to the same sample is calculated as

P (yakxi = 1) = 1− P (yakxi = −1).

10 sets of different f rac and R are selected, and the mean reliability and

the S.D of reliability is calculated for each annotator.

Table 4.1 shows the ten datasets that we generated. The mean reliability

of annotators ranges from 74% to 91%.
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Table 4.1: Ten datasets with different parameters

No. frac R for devak Annotators’

mean (S.D)

reliability

1 [0.1, 0.3, 0.8, 0.9, 0.9, 0.8, 0.3, 0.1] 0.8 82.2% (2.2%)

2 [0.2, 0.3, 0.6, 0.9, 0.9, 0.6, 0.3, 0.2] 0.7 85.1% (2.6%)

3 [0.2, 0.3, 0.4, 1, 1, 0.4, 0.3, 0.2] 0.6 88.1% (2.8%)

4 [0.3, 0.4, 0.6, 0.9, 0.9, 0.6, 0.4, 0.3] 0.8 77.6% (6.4%)

5 [0.1, 0.3, 0.4, 0.7, 0.7, 0.4, 0.3, 0.1] 0.7 91.4% (3.6%)

6 [0.1, 0.3, 0.4, 0.7, 0.7, 0.4, 0.3, 0.1] 0.0 89.2% (4.6%)

7 [0.3, 0.4, 0.6, 0.9, 0.9, 0.6, 0.4, 0.3] 0.8 77.2% (6.2%)

8 [0.1, 0.3, 0.4, 0.7, 0.7, 0.4, 0.3, 0.1] 0.65 86.2% (5.6%)

9 [0.2, 0.3, 0.6, 1, 1, 0.6, 0.3, 0.2] 0.6 86.8% (3.4%)

10 [0.3, 0.4, 0.8, 0.9, 0.9, 0.8, 0.4, 0.3] 0.9 74.8% (6.7%)

4.1.2 MIMIC-III Critical Care Database

We use the MIMIC-III [18] critical care database, a freely-available dataset,

to allow for easy replication of our experiments. This dataset is one of

the most commonly used benchmarks for analytic studies as it contains

various information including demographics, lab results, diagnosis, and
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notes. MIMIC-III contains information about 38,597 patients admitted to

intensive care units (ICU) at a large tertiary care hospital, between 2001-

2012.

Cohort Selection

Hospital stays were chosen as our unit of prediction, to resemble the real-

world situation of nurses’ assessment of charts. We first discarded non-

sensible hospital stays such as records containing negative length of stay

(∼ 50K unique stays had reasonable stays). Since the prevalence of PU is

extremely low in the younger population, hospital stays of individuals aged

20 years or less were removed. In addition, only hospital stays between

2-120 days were considered, since lab events were not likely to be mea-

sured for shorter stays. Longer stays (more than 120 days) also indicated

medically complex patients. The exclusion criteria reduced the number of

unique hospitals stays to ∼ 26K .

Establishing PU. To establish sufficiently reliable ground truth labels

(i.e. presence of PU or its absence), we consider two sources of information,

the ICD-9 diagnosis codes and notes for each hospital stay. We used the fol-

lowing ICD-9 codes to determine the potential presence of PU: [707, 707.1,

707.2, 707.3, 707.4, 707.5, 707.6, 707.7, 707.9, 707.11, 707.21, 707.22,
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707.23, 707.24, 707.25]. We also searched for the following keywords in

the notes: [Pressure Ulcer Prevention, Skin Surveillance, Decubitus Ulcers,

Impaired Tissue Integrity, Impaired Skin Integrity, Bed Sores, Pressure Ul-

cer, Pressure sore].

If both sources indicated the presence of PU, this constituted as a pos-

itive sample. Similarly, any stay that did not have any indication in both

sources was labeled as a negative sample. A stay that indicated PU either

in only the notes or in the ICD-9 codes were not used due to the potential

ambiguity.

Establishing PU Case/Control Samples. The ratio of positive samples

(PU) to negative samples (no PU) in the 26k hospital stays is significantly

imbalanced (3.5%) and can negatively impact the predictive model. Thus,

we designed a case-control study. Case-control study is very common in

medical research and has also been suggested for use in Artificial Intelli-

gence for healthcare[19]. Each positive PU stay is matched with 4 negative

PU stays based on similarity in terms of age, gender, the total length of stay,

and the ICU length of stay. The number of potential negative matches was

chosen as 4 to introduce enough diversity in matched stays’ characteristics.

Negative samples do not need to be unique for each positive sample. In
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fact, some negative samples are matched with multiple positive ones. A to-

tal of 856 stays were identified as positive samples for PU and an additional

2733 stays were selected as negative samples for PU for our study. Thus,

the final cohort contains 3589 hospital samples with a 31.3% prevalence

rate of PU.

Feature Construction. For our prediction task, multiple layers of features

are constructed from various tables in MIMIC-III to be merged together.

The layers include demographics, counts of times each ICD-9 diagnosis

class appears, and lab measurements during each hospital stay. The demo-

graphics of the patient for each hospital stay were extracted from MIMIC-

III Admissions and Patients tables, we partly used [20] for these prepro-

cessing steps. To establish diagnosis classes, we used the standard chapters

of ICD-9 diagnosis codes [21] and summed the number of diagnosis codes

falling into each chapter for building diagnosis features. For lab events

features, we used the MIMIC-Extract pipeline [22] and aggregated the lab

results for each day. We also used only the first 2 days of hospital stay av-

erage lab measurements. Missing lab measurements were imputed using

its mean across available stays. All lab measurement features were nor-

malized using the min-max normalization. A summary of the features in
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each layer, used in our prediction task, is given in Table 4.2. A total of 89

features were used for each hospital stay.

Table 4.2: Layers of Features used in Prediction of PU

Feature

Layer

Features Available in that Layer (Number of Features in the

layer)

Demographics {Age, Gender, ICU Type, Admission Type, Insurance Type,

Religion, Ethnicity, Marital Status, Length of Stay in ICU, Total

Length of Stay} (10 Features)

ICD-9

Diagnosis

Charts’

Counts

{ Blood, Circulatory, Congenital, Digestive, Endocrine,

External, Genitourinary, Ill defined, Infectious, Injury, Mental,

Muscular, Neoplasms, Nervous, Pregnancy, Prenatal,

Respiratory, Skin conditions except PU} (18 Features)

Lab Mea-

surements

{Albumin Bilirubin, Calcium, Cardiac Index, Chloride,

Cholesterol, Co2, Creatinine, Diastolic Blood Pressure,

Eosinophils, Fibrinogen, Fraction Inspired Oxygen, Glucose,

Heart Rate, Height, Hematocrit, Hemoglobin, Lactate

Dehydrogenase, Lactic Acid, Lymphocytes, Magnesium, Mean

Blood Pressure, Monocytes, Neutrophils, Oxygen Saturation,

Ph, Phosphate, Phosphorous, Platelets, Potassium, Red Blood

Cell Count, Respiratory Rate, Sodium, Venous Pvo2, Weight,

White Blood Cell Count, etc.} (61 Features)
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Simulation of Nurse Annotation. To simulate a group of nurses labeling

stays for PU, we consider two parameters: (1) mean reliability of nurses, or

how likely on average the group of nurses are to annotate a true case of PU

as positive; and (2) variability in nurses’ degrees of expertise to reflect the

seniority or training received. A previous study showed that the inter-rater

agreement between nurses for PU is around 70%[4]. We chose the two pa-

rameters’ ranges based on this evidence to generate annotations. Moreover,

to capture the true conditions of the PU annotation process, we conducted

our experiments with 3 and 5 nurses, since it is infeasible to employ more

nurses for annotations.

As is typical in crowdsourcing literature, we adopt the Beta distribution

for the generation of each nurse’s reliability [23]. The reliabilities of a given

number of nurses are drawn as samples of a Beta distribution with its mean

set to the average reliability and its standard deviation (nurses’ conflict

level) either set to high or low. Intuitively, conflicts between a group of less

reliable nurses are more than that of more reliable nurses. Thus, we use a

lower variance when the Beta distribution mean increases. In other words,

a group of nurses with higher average reliability will have less conflict.

Once each nurse’s reliability is established, its annotations are generated

by randomly choosing (100-reliability) percentages of positive cases of PU
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(+1) and flipping their labels into negative (-1).

We conduct experiments varying the number of nurse annotators (M ∈

{3,5}); the group’s average reliability (mean ∈ {0.5,0.57,0.64,0.7}); and the

standard deviation of the nurses’ conflict level (low and high). For each

distribution setting (mean and standard deviation), we generate 2 different

annotation datasets. An example of one draw for 5 annotators (M = 5) is

shown in Table 4.3. In total, there are 2× 4× 2× 2 = 32 datasets to run.

Table 4.3: Example of a Nurses’ Annotation Simulation with Different Pa-

rameters for Beta Distribution.

Group No. Reliability mean Reliability standard deviation Example of 5 nurses reliabilities

1 50% Low (5.6%) [52.5%, 51.7%, 35.7% , 50.5%, 53.1%]

2 50% High (11%) [56.6%, 39.8%, 50.4%, 56.5%, 37.6%]

3 57% Low (5.5%) [58.9%, 56.9%, 45.1%, 58.7% , 55.7%]

4 57% High (9.7%) [61.5%, 61.4%, 40.5%, 59.2%, 52.4%]

5 64% Low (4.7%) [62.5%, 59.8%, 63.5%, 67.2%, 68.1%]

6 64% High (9.4%) [62.6%, 75.6%, 76.4%, 56.1% , 70.2%]

7 70% Low (4.1%) [76.7%, 73.4%, 67.5%, 69.4%, 73.7%]

8 70% High (8.2%) [68.7%, 75.1%, 79.4%, 56.2%, 83.8%]
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4.2 Evaluation

4.2.1 Training, Validation, and Test Data

We divide our data (10000 in synthetic dataset; 3589 stays in MIMIC-III)

into 64% training, 16% validation, and 20% test set. We construct 10 dif-

ferent sets of train-validation-test splits in order to get more accurate eval-

uation results. After the split, we impute the missing values with column

mean for each set individually.

4.2.2 Truth Inference Methods

We used MV, WM, and EM to perform truth inference (as discussed in Sec-

tion 2.1). For the WM method, we adopted the typical re-weighting multi-

plier β = 0.5 [24]. For the EM method, we used an existing implementation

[23] and set the number of iterations to 20. To estimate the labels for the

model training, we evaluate the accuracy of the three truth inference meth-

ods’ estimated labels compared to the ground truth. In this study, we only

run truth inference methods on the training data and validation data.

4.2.3 Prediction Models

We use the decision tree as the weak learner for AdaBoost and Medaboost

since the decision tree has been widely applied in healthcare especially for
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heterogeneous data of various types [25], as in our dataset.

Because the data has more negative labels, we balance the two labels

when we train the basic decision tree by adjusting the weight for each class

C ∈ {−1,1} inversely proportional to the number of classes’ occurrences as:

WC = n
2·(occurrence of class C) .

The prediction models (i.e., AdaBoost and Medaboost) are first trained

on the training set. The validation set is then used to optimize two hyper-

parameters: numbers of iterations T and learning rate η. A higher number

of iterations means more weak classifiers are combined in the final pre-

diction combines. A higher learning rate means sample weights at each

iteration increase or decrease as shown in Equations (3.6) and (3.7). The

model is then trained on the entire training and validation data (80% of

the data) using the best pair of T and η. The prediction of the classifier is

then evaluated on our test set.

4.2.4 Evaluation Metrics

Since our data is imbalanced toward negative class, we cannot use accuracy

because labelling all samples as negative gives a high accuracy but cannot

make a good model. Therefore, we evaluate the models using the Area Un-

der the Receiver Operating Characteristic Curve (AUC). AUC is generally
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insensitive to class imbalance and is the de facto measure of discrimination

in literature.

For the truth inference part, we use accuracy to evaluate their perfor-

mance because it provides the most intuitive result. It is calculated as:

the number of samples that are correctly labelled
the total number of samples

(4.4)

A result with high AUC and high accuracy indicates good performance.
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Chapter 5

Result

5.1 Performance of truth inference methods

5.1.1 Synthetic Dataset

We use accuracy as the metric to evaluate the performance of the three

truth inference methods: MV, WM, and EM. Since we do not need to use

the test set (20% of the samples), we only calculate the accuracy of the three

methods using 8000 samples.

For each of the 10 datasets, we calculate the accuracy for 10 different

train-validation-test splits. In the end, we use box plot to visualize the

10*10 = 100 accuracy results for each of the three methods. Figure 5.1

shows the result. From the figure, we can see that three methods all achieve
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high accuracy, with medians greater than 92%. In comparison, EM per-

forms the best among the three methods, with a median of 97.5%. MV

is the second-best truth inference method, with a median of 95.5%. WM

performs the worst, with a median being 92%.

Figure 5.1: Accuracy of MV, WM, and EM Using Synthetic Datasets
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5.1.2 MIMIC-III Critical Care Database

Similar to Synthetic dataset, we evaluate the performance of MV, WM, and

EM on just the training and validation data. Given that there are 10 differ-

ent train-validation-test splits, we present the average accuracy based on

the average reliability of the nurses. Figure 5.2 shows the average accuracy

of MV, WM, and EM over the mean of groups’ sample reliability for anno-

tations from 3 nurses and 5 nurses. We observe from the figure that EM

is always higher than the other two methods. For example, in Figure 5.2a,

even for the lowest mean reliability of 0.50, the accuracy of EM is as high

as 95.75%, while that of MV and WM are 83.07% and 82.58% respectively.

We also observe that when the reliability of the annotators increases, the

average generally increase, with some minor fluctuation of WM. Compar-

ison of the two figures also suggests that it is always better to have more

annotators as the accuracy with 5 annotators (Figure 5.2a) is slightly higher

than 3 annotators (Figure 5.2b). Based on the results in Figure 5.2, we use

EM as the truth inference algorithm for the predictive models.



CHAPTER 5. RESULT 38

(a) Five Annotators

(b) Three Annotators

Figure 5.2: Accuracy of MV, WM, and EM over Different Mean Reliability

of Annotators
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5.2 Robustness and advantage of Medaboost.

5.2.1 Synthetic Dataset

We calculate AUC for both Medaboost and baseline (Adaboost) to evaluate

their performance. For each of the ten synthetic datasets, we take 10 differ-

ent train-validation-test splits to calculate the AUC using the test set. We

then use box plot to visualize the 10 AUC in different splits for each dataset.

Figure 5.3 shows AUC of Medaboost and Adaboost, which is grouped by

different mean accuracy of 10 experts.

From the figure, we observe that the median of Medaboost is always

higher than that of our baseline. On average, the median AUC of Med-

aboost is 97.0%, and that of our baseline is 96.4%, 0.6% higher.

Figure 5.3: AUC of Medaboost and Adaboost under different mean accura-

cies of experts
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To further analyze the advantage of Medaboost over the baseline, we

also conduct a one-sided paired t-test. We run the test on all AUC values

in 10 splits and 10 datasets (10 × 10 = 100 AUC values). Table 5.1 shows

the result of the t-test. Our null hypothesis is that the AUC of Medaboost is

strictly smaller then that of the baseline. Take the first t-test as an example.

On average, Medaboost’s AUC is 0.969% (with S.D 0.006) higher than base-

line’s. As p < 0.05, we can reject our null hypothesis. It means that using

Medaboost can have a statistically significant increase than using baseline.

Table 5.1: Performance of Medaboost and baseline on datasets with dif-

ferent M and S.D. The table presents the one-sided paired t-test for the

Medaboost’s AUC and Adaboost’s AUC.

Paired Difference of Medaboost-Adaboost p-value

(one-sided)Mean Difference S.D Difference

Synthetic Dataset 0.004 0.003 0.000
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5.2.2 MIMIC-III Critical Care Database

Similar to the synthetic dataset experiment, we conduct a one-sided paired

t-test for 4 different groups by fixing the number of annotators (i.e., 3 or 5)

and the standard deviation level (i.e., high or low), and each group has 8

datasets with different mean reliability. For each dataset, we calculate the

AUC values for 10 different splits. Our null hypothesis is that the AUC of

Medaboost is strictly smaller than that of baseline. Thus, we run a paired

t-test for 80 paired differences of AUC values between Medaboost and Ad-

aboost for each of the 4 groups. Table 5.2 shows the result of the t-test.

As an example, consider the first t-test with 5 nurses and a high standard

deviation level. On average, Medaboost’s AUC is 1.3% (with S.D. of 0.016)

higher than Adaboost. This suggests that Medaboost improves the predic-

tive performance compared to the baseline. The table shows that all p-

values are smaller than 0.05, so Medaboost is better than Adaboost across

all 4 groups.

Sensitivity to different nurses’ mean reliability. To analyze the predic-

tive models’ sensitivity to different nurses’ mean reliability, we compare

the test set’s AUC value on datasets with different means, while keeping
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Table 5.2: Performance of Medaboost and baseline on datasets with dif-

ferent M and S.D. The table presents the one-sided paired t-test for the

Medaboost’s AUC and Adaboost’s AUC.

Paired Difference of Medaboost-Adaboost p-value

(one-sided)Dataset Mean Difference S.D Difference

5 nurses high S.D 0.013 0.016 0.000

5 nurses low S.D 0.018 0.013 0.000

3 nurses high S.D 0.017 0.013 0.000

3 nurses low S.D 0.017 0.013 0.000

the number of annotators and the standard deviation the same. Figure

5.4a shows the boxplots of the AUC across the 10 different splits for both

Medaboost and Adaboost (baseline) with 5 annotators and a high standard

deviation in the nurses’ reliabilities. From the figure, we observe that the

median AUC of Medaboost (colored green) is higher than that of the Ad-

aboost (colored blue). On average, the median AUC of Medaboost is 0.611,

0.014 higher than that of the baseline (0.597), with the highest difference at

0.025. We also observe that there are no major differences in predictive per-

formance even as the mean value gets higher when there is a high standard

deviation in the nurses’ reliabilities.
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(a) Five Annotators with High S.D Reliability

(b) Five Annotators with Low S.D Reliability

(c) Three Annotators with High S.D Reliability

(d) Three Annotators with Low S.D Reliability

Figure 5.4: Predictive performance with varying number of annotators and

different reliability parameters.
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Sensitivity to different number of nurses. To analyze the predictive mod-

els’ sensitivity to different number of nurses, we compare the AUC on

datasets with M = 3 and M = 5, and keep standard deviation the same

(either high or low). Figure 5.4 shows the AUC performance of both Med-

aboost and Adaboost (baseline). Each sub-figure summarizes the 8 datasets

with the same number of annotators and standard deviation, while each

boxplot summarizes the results from 10 train-validation-test splits.

Figures 5.4a and 5.4b illustrates the AUC when M = 5, while Figures

5.4c and 5.4d summarizes the performance when M = 3. A comparison of

high standard deviation of reliability (Figures 5.4a and 5.4c) illustrate the

importance of having more nurses annotations especially in the presence

of high standard deviation. For 5 annotators, the median AUC values range

between 0.600 and 0.619 while for 3 annotators the range is between 0.582

and 0.616. The same trend is found even with low standard deviation (Fig-

ures 5.4b and 5.4d) as the AUC ranges between 0.605 and 0.622 for M = 5

and 0.593 to 0.615 for M = 3.

Sensitivity to nurses’ conflict level (or standard deviation of reliability)

To determine the robustness to the standard deviation of the nurses’ relia-

bilities, we compare the predictive models’ AUC between the two levels of



CHAPTER 5. RESULT 45

standard deviation and keep M and range of mean the same. Figure 5.4a

and 5.4c show the AUC when the S.D of nurses’ reliability is high, while

Figure 5.4b and 5.4d represent when S.D of nurses’ reliability is low. By

comparing AUC with 5 annotators, we can see that the degree of S.D re-

liability does not affect the performance of Medaboost. For high S.D, the

mean of median AUC values is 0.611, and it is the same as that for low

S.D(0.611). For AUC with 3 annotators, the mean of median AUC values is

0.603 for high S.D, 0.001 higher than that for low S.D (0.602). Therefore,

no obvious trend is found for the degree of S.D reliability.
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Chapter 6

Conclusions

In this study, we investigated the performance of several truth inference

methods to predict true labels based on multiple annotations. Our results

suggest that EM is the most accurate method and is a reasonable choice

to estimate the true label. We also propose Medaboost, a new predictive

model that adjusts the initial weight of the Adaboost algorithm based on

annotators’ disagreements on each sample.

In our model, the more conflicts on one sample, the less weight that

sample gets to reflect the greater uncertainty about the sample’s label. From

our experimental studies on both synthetic dataset and MIMIC-III dataset,

we illustrated the benefit of Medaboost as it outperforms Adaboost, an en-

semble prediction model. Additionally, the performance of Medaboost is
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generally robust to the number of annotators, the mean reliability of the an-

notators, and the conflict levels across the annotators. We note that this is

a pilot study on a relatively small case-control study with well-established

ground truth labels for the patients. Thus more experiments are neces-

sary to provide evidence of Medaboost’s viability, but the early results are

promising.

There are several limitations in our study. First, in the MIMIC-III the

number of annotators is limited to reflect practical considerations for PU

annotations. While Medaboost can be applied to other applications, ad-

ditional experiments are necessary to explore a large range of annotators.

Similarly, we only generate synthetic data under a fixed ground truth dis-

tribution. More experiments need to be done using more datasets. Second,

we only use simulated nurses’ labels in our dataset to evaluate three truth

inference methods and Medaboost. In reality, the studies should be con-

ducted with real patient assessments from a panel of nurses. Third, the

discrimination power of our predictive model when the annotators’ mean

accuracy is low (such as in the MIMIC-III dataset) is still low with an AUC

of 0.61. Additional features can be explored such as mining unstructured

text to improve the predictive performance of PU identification. Fourth,

our baseline does not reflect whether using the truth inference methods is
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helpful in this study because we use the results from truth inference meth-

ods to train Adaboost. In further studies, we will also set an Adaboost

model without truth inference methods as one of our baselines. We will

deal with the multiple annotations by duplicate that sample for each of

its annotations. For instance, if each sample has 3 annotations, we create

three samples with the same feature set and one of the three annotations

per sample. In this way, we can also evaluate the necessity of including

the truth inference step in Medaboost. Finally, Medaboost only consid-

ers information from multiple annotations, i.e. the disagreements in them

and the estimated labels generated from them. The use of features is the

same as the normal prediction models. In future studies, the distributions

of samples’ features and their relationship with disagreements in multiple

annotations can be investigated.
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[19] Gyöngyösi M, Ploner M, Porenta G, Sperker W, Wexberg P, Strehblow

C, et al. Case-based distance measurements for the selection of con-

trols in case-matched studies - application in coronary interventions.

Artif Intell Medicine. 2002;26(3):237–253.

[20] Cummings D. Predicting hospital length-of-stay at

time of admission; 2018. [Online; accessed 8-

March-2020]. https://towardsdatascience.com/

predicting-hospital-length-of-stay-at-time-of-admission-55dfdfe69598.

[21] Marathon Studios I. ICD-9-CM Chapters; 2020. [Online; accessed 8-

March-2020]. https://icd.codes/icd9cm.

[22] Wang S, McDermott MBA, Chauhan G, Hughes MC, Naumann T,

Ghassemi M. MIMIC-Extract: A Data Extraction, Preprocessing, and

Representation Pipeline for MIMIC-III. arXivorg. 2019 Jul;.

https://towardsdatascience.com/predicting-hospital-length-of-stay-at-time-of-admission-55dfdfe69598
https://towardsdatascience.com/predicting-hospital-length-of-stay-at-time-of-admission-55dfdfe69598
https://icd.codes/icd9cm


BIBLIOGRAPHY 53

[23] Zheng Y, Li G, Li Y, Shan C, Cheng R. Truth inference in crowdsourc-

ing: is the problem solved? Proceedings of the VLDB Endowment.

2017;10(5):541–552.

[24] Kolter JZ, Maloof MA. Dynamic weighted majority: An ensemble

method for drifting concepts. Journal of Machine Learning Research.

2007;8(Dec):2755–2790.

[25] Podgorelec V, Kokol P, Stiglic B, Rozman I. Decision trees: an

overview and their use in medicine. Journal of medical systems.

2002;26(5):445–463.


