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Abstract

Option Pricing: Lévy Process

By Lan Mi

We present an introduction and implementation of exponential Lévy model for op-

tion pricing. First of all, we provide a short introduction on two of most popular option

pricing models, Binomal Price Tree and the celebrated Black-Scholes Model. Through

the introduction, we also illustrate several mathematical and numerical concepts re-

lated to solve our Lévy model. Then, we demonstrate the idea to use Lévy process to

approximate financial market movements and to estimate option prices. Finally, we

develop an explicit-implicit finite difference scheme for solving the exponential Lévy

process, which has a parabolic partial integro-differential equation (PIDE) with jump-

diffusion process. We implement this scheme based on European put option, and we

calculate the call option price based on Put-Call Parity. We also compare the numeri-

cal results by our Lévy model and the Black-Scholes model.
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13 Results by Lévy compared to the Black-Scholes . . . . . . . . . . . . . . . . 37

List of Tables

1 Fundamental Multiplication Rule of Wiener Process . . . . . . . . . . . . . . 9

2 Numerical Methods for Partial Integro-Differential Equations . . . . . . . . . 21

3 Put Price Results with Changed Order of A . . . . . . . . . . . . . . . . . . 34



1 INTRODUCTION 1

1 Introduction

First introduced in the eighteenth century, put and call options did not embrace a rapid

growth in transactions until the 1970s with the exchange markets open to trade options.

From the chart below, we can see that the market of options is still growing even since 2007

to 2011, except for a slightly decrease during the credit crisis. Actually, derivatives markets

have become even more important at the time that the world was and is experiencing a severe

credit crisis. It is critical to professionals in the financial services industry to understand how

the derivatives markets work. Also, it is essential for academics to develop better applications

to estimate large market movements and more accurate valuations of options.

Figure 1: The Number of Call Contracts from the year 2007 to 2011 - Data from the Chicago
Board Options Exchange

Achdou[1], Cont[5], Daffy[6] and Tankov[13] all have stressed that the exponential Lévy

processes can give an improved approach to compute option prices. The celebrated Black-

Scholes model assuumes that the probability distribution of the underlying asset price (here

we use stocks) to be lognormal. If the market price moves apart from the lognormal distri-

bution, the Black-Scholes model will under-estimate or over-estimate option prices. Models

such as Lévy processes allow jumps in asset price movements, which are more realistically
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representing the price dynamics. Also, those models allow the users to choose different prob-

ability measures, such as the Merton diffusion model and variance Gamma models. This

open choice tenders the flexibility to tailor our model in order to better approximate the

market movements.

1.1 Outline

Section 2 introduces basic facts about derivatives, especially European options. Then, it

investigates two option pricing models, with a concentration in the celebrated Black-Scholes

model. Section 3 introduces the Lévy processes and discusses how we can use its properties

to evaluate European options. In Section 3, we also introduce several mathematical and

numerical concepts, such as viscosity solutions, used to determine the existence, uniqueness

and accuracy of our explicit-implicit finite difference scheme to solve the Lévy model.

In Section 4, we continue our discussion on how to develop an explicit-implicit finite

difference scheme. As well, we present a full MATLAB algorithm. Section 5 provides results

on option pricing by our model, and gives a comparison to results by the Black-Scholes

model.

1.2 Terminology

V = V(S,t): value function

C(S,t): value of call option

P(S,t): value of put option

K: exercise / strike price

S: current stock price

St: stock price at time t

ST : stock price at maturity

T: expiry date

PV(*): present value of * (= e−rt∗)
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σ: volatility of underlying asset

r: riskless rate

XT : a stochastic process, given a probability space (Ω, A, P ) and a measurable space (S,Σ),

is a collection of random variables on Ω, indexed by a totally ordered set T (time), such that,

Xt : t ∈ T . Xt is an S-valued random variable on Ω and S is called the state space of the

process. A is a subset of Ω, and P is a non-negative probability measure on Ω such that

P (Ω) = 1.[1]
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2 Derivatives and Option Pricing

In this section, we present a summary on the European options. Then, we investigate in

two option pricing models: the Binomial Price Tree model and the Black-Scholes model. We

focus on the evolution of the Black-Scholes equation. Through introducing these two models,

we also illustrate definitions and properties to some concepts, such as Brownian process and

Itô formula. Those concepts will also give us a hand in developing a finite difference scheme

to solve the Lévy processes.

2.1 European options

Options are financial products. By definition[11], the European call and put options have

payoffs depending on the price behavior of the underlying asset, oftentime stocks. The seller

of such contracts is called the subscriber; the counterparty is called the holder.

At the drawing up time of the contract (time t = 0) and exercise or strike price K is

fixed. Thus, at the expiry date T ,

1. under a call contract: the holder can exercise the contract and purchase the asset at K,

oftentime when ST > K, so the holder can pay less than the market price;

2. under a put contract: the holder can exercise the contract and sell the asset at K, often-

time when ST < K, so the holder can receive more than the market price.

Contrast to forward and future contracts, option contracts do not require the holders to

exercise the option. Without assigning any obligation, ption contracts give to the holder a

right to get a payoff: (ST −K)+ for a call contract and (K −ST )+ for a put contract. Thus,

the holder has to pay extra price for option contracts.

An option pricing model is designed to find the ”right” price of options based on fair ap-

proximation of its future payoffs. Those models are based on no-arbitrage principle, which
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means that, in the hypothesis of efficient market, if an arbitrage opportunity exists (oppor-

tunity to invest with cash inflow today and no cash outflow in the future), the market will

correct it automatically immediately. We also need to know an important equalibrium: the

European Put-Call Parity,

C − P = S − PV (K)

Later in this paper, we will use this equation to transfer the price between puts and calls.

In the following sub-section, we will introduce two basic option pricing models and some

concepts related to our exponential Lévy process model.

2.2 The binomial price tree model

The binomial price tree model involves dividing the life of the option into several subintervals.

It begins with the current stock price and assumes that stock price changes only to two

directions, either up or down movement. Option price is calculated backward, assuming

at maturity, which is the end of this model, option only has intrinsic value ((S − K)+ for

call). And all the proceeds at each step are discounted back to the current stage. The major

limitation on this model is that it is not sufficient to estimate large market movements, if the

number of subintervals is not large enough. Also, it is difficult to know the correct discount

rate to use for payoffs at each stage[14].

Figure 2: Binomial Price Tree - Stock

This model is easy to implement and to use, especially for those underlying assets having

discontinuous dividents. It is also fundamental model for many option pricing extensions,

such as the Black-Scholes model.
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Figure 3: Binomial Price Tree - Payoff of Call

2.3 The Black-Scholes model

In the early 1970s, Fischer Black, Myron Scholes, and Robert Merton invented the most

celebrated approach to evaluate options, the Black-Scholes model, also known as Black-

Scholes-Merton model. Black and Scholes used the capital asset pricing model to calibrate

the factors of stock price movements with time.

This model assumes the market efficiency [11]: (a) the market responds instantaneously

to new information on the asset; (b) the price has no memory: its past history is fully stored

in the present price, without further information.

These two properties imply that the stock movement dS has the following characteristics:

1. Stationary distribution: the probability distribution of dS does not change over time;

2. Stochastic processes: dS changes over time with uncertainty. Look up in Terminology

for a rigorous definition;

3. Markov property: a stochastic process has the Markov property if it has the indepen-

dence of the future process Xt+s from the past (absence of memory) when the present Xs is

known and reflects the absence of memory of the random walk[11, for a rigorous definition].

The process is called a Markov process, such as Brownian motion;

4. Diffusion process: continuous-time stochastic process.

Thus, in the time interval from t to t + dt, the Black-Scholes model considers that S

undergoes a change from S to S + dS. this model also assumes that the return dS/S is

consisted of two terms: an average growth term with time and a stochastic term.

The average growth rate of S is measured by a drift µ: dS
S

= µdt. From basic calculus, we

know that d(logS) = dS
S

= µdt. Thus, S(t) has an exponential growth: S(t) = S(0)eµt. To
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include the random walks in stock price movements, the stochastic term contains an incre-

ment of a Brownian motion: σdB. The coefficient σ is called the volatility and measures

the standard deviation of the return; this model assumes σ to be constant.

Now we have,

dS
S

= µdt+ σdB.

In order to get a solution for the above system, we need to learn about Brownian motion

(Wiener Processes) and Itô Processes. The following two sub-sections further explain these

two processes.

2.3.1 Brownian motion: Wiener process

Definition: a stochastic process ȳ(t) has the following properties[14]:

1. ȳ(t) has Gaussian normal distribution;

2. The covariance between ȳ(ti) and ȳ(tj) is zero, for i 6= j.

Wiener Process is also known as standard Brownian motion, a Brownian motion with

Gaussian distribution. It is a particular type of Markov stochastic process, with mean at

zero and standard deviation at 1. Its first property implies that for any two non-overlapping

intervals, values of ȳ(t) are independent. To transform this process from N(0, 1) to N(0, dt),

we consider the change in a process B:

B(t+ ∆t) = B(t) + ȳ(t)
√

∆t

∆B(t) = B
√

∆t

If ∆t→ 0, B = ȳ
√

(dt),

where dB ∼ N(0, dt), is an increment of a Brownian process[11].

In our case, the Black-Scholes model makes the random aspects as a stochastic contribu-

tion: σdB. Combining with the average growth rate term of S, we have,
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d(logS) = dS
S

= µdt+ σdB,

which is a stochastic differential equation[11]. In order to integrate dS/S between 0 to t,

we need to use Itô formula, a stochastic version of the chain rule[11]. The next sub-section

will explain what Itô formula is, and how it can be applied to option pricing.

Figure 4: Wiener Process Simulation

To better understand these random movements, we build a generalized Wiener process

with the form, dx̄ = adt + σdz̄. As shown in Figure 4, the generalized Wiener process goes

up and down, with a dominating trend of rising.

2.3.2 Itô Processes

Definition: an Itô process X = X(t) is a solution of a stochastic differential equation of the

type[11],

dX = a(X, t)dt+ σ(X, t)dB

where a is the drift term and σ is the volatility coefficient.

Now, we consider a smooth function F = F (x, t), which has the form:
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dF = Ftdt+ FxdX = {Ft + aFx}dt+ σFxdB.

Numerically, we use the Taylor’s formula to approximate the integration of F , letting X(0) =

X0,

F (X, t) = F (X0, 0) + Ftdt+ FxdX + 1
2
{Fxx(dX)2 + 2FxtdXdt+ Ftt(dt)

2}+ ....

We need to find the differential of F along the trajectories of Itô formula.Thus, we only

consider linear terms,

Ftdt+ FxdX = {Ft + aFx}dt+ σFxdB.

Excluding the non linear terms 2FxtdXdt and Ftt(dt)
2, we now check the term (dX)2),

(dX)2 = [adt+ σdB]2 = a2(dt)2 + 2aσdBdt+ σ2(dB)2 = σ2dt,

based on fundamental multiplication rule of Wiener process:

dB dt
dB dt 0
dt 0 0

Table 1: Fundamental Multiplication Rule of Wiener Process[14], because (dt)2 and dBdt
are non linear with respect to dt and dX[11].

Now, we have,

dF = {Ft + aFx + 1
2
σ2Fxx}dt+ σFxdB,

where:

Ft = ∂F
∂t
, Fx = ∂F

∂x
, Fxx = ∂2F

∂x2

This is called Itô’s Lemma. We will use this equation later to derive the finite difference

system for the Lévy process.

Let F (S) = log S. Since dS = µSdt+ σSdB, and

Ft = 0, FS = 1
S
, FSS = − 1

S2 ,
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Thus, we have,

dF = d(logS) =
dS

S
= {0 + µ

1

S
+

1

2
σ2(− 1

S2
)}dt+ σ

1

S
dB

d logS = (µ− 1

2
σ2)dt+ σdB.

After integrating between 0 and t, we have,

logSt = logS0 + (µ− 1
2
σ2)t+ σB(t).

Since µ and σ are constant, Y = logS must follow a generalized Wiener process, with a drift

at µ − 1
2
σ2 and constant variance rate at σ2. Therefore, Y has a normal distribution with

mean logS0 +(µ− 1
2
σ2)t and variance σ2t. Clearly, the density of S is a lognormal density.

2.3.3 The Black-Scholes Equation

The Black-Scholes Equation has the following hypothesis[11]:

1. S follows a lognormal law;

2. The volatility σ is constant and known;

3. There are no transaction costs or dividends;

4. It is possible to buy or sell any number of the underlying asset;

5. There is an interest rate r ¿ 0, for riskless investment;

6. The market is arbitrage free.

The fifth assumption implies that, at time t = T from the prospect of t = 0, the value

of $1 = erT . The sixth assumption is important. Under the assumption of risk neutral and

no-arbitrage markets, the value of an option should be matched with its synthetic portfolio,

which is created by buying (for call) ∆ shares of underlying stock and borrowing Π dollars

at riskless rate,

V = S∆ + Π,−→ Π = V − S∆,
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where, dΠ = rΠdt, due to no-arbitrage principle. Starting from the Itôs Lemma, we calculate

the return of the evolution of V (S, t), the value function. We have,

dS = µSdt+ σSdz̄, dV = Vt + µSVs + 1/2σ2S2Vssdt+ σSVsdB.

And,

dΠ = dV −∆dS

= {Vt + µSVS +
1

2
σ2S2VSS}dt+ σSVSdB −∆(µSdt+ σSdB)

= {Vt + µSVs +
1

2
σ2S2VSS − µS∆}dt+ σS(VS −∆)dB.

Instead of fully integrating the stochastic component (the dB term), the Black-Scholes model

eliminates this term by letting,

VS = ∆; then,

dΠ = {Vt + 1
2
σ2S2VSS}dt

Since dΠ = rΠdt according to no-arbitrage principle,

dΠ = {Vt + 1
2
σ2S2VSS}dt = rΠdt,

Vt + 1
2
σ2S2VSS − rΠ = 0.

Since Π = V − S∆ and VS = ∆,

Vt + 1
2
σ2S2VSS + rSVS − rV = 0.

Substituting

Π = V − S∆ = V − VSS,

we obtain,

LV = Vt + 1
2
σ2S2VSS + rSVS − rV = 0.
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This is the Black-Scholes Equation. We notice that the Black-Scholes model simply

gets rid of the stochastic component, which gives rise to partial integro-differential equation

(PIDE). This assumption renders the accuracy of the Black-Scholes model on the true move-

ments in the underlying assets. However, the Lévy model retains this term and becomes

more realistic to the financial market than the Black-Scholes model.

Since our focus is not Black-Scholes model, we just give the solution. Based on final

payoff function C(S, T ) = (S −K)+ and boundary conditions of European call option, this

problem can be derived into:

For call option, V (S, t) = SN(d1)− PV (K)N(d2);

For put option, V (S, t) = −SN(−d1) + PV (K)N(−d2);

where,

d1 =
log(S/K)+(r+ 1

2
σ2)t

σ
√
t

, d2 = d1 − σ
√
t.

We will use this solution in Section 5, to compare our model’s result of option price to that

of the Black-Scholes.

Remark: the Black-Scholes model has stock price which does not go up or down more than

the current expected value. However, in the reality, stock price does increase or decrease

out of expectations based on the riskless rate. Thus, in the real financial market, stock price

moves within expectation most of time, and jumps. Later, this paper discusses the Lévy

process, which allows a semi-martingale environment.
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3 Lévy Processes

The Black-Scholes model is based on smooth function in continuous time range, not allowing

jumps in stock movements. However, in actuality, stock price does jump, and some risks

cannot be handled within continuous-path models[4,5,13]. The Exponential Lévy model

is a choice to include jumps allowing more accurate representation of the market movements.

Lévy process tenders a more realistic model of price dynamics than Black-Scholes model.

It also allows greater flexibility to calibrate the model to implied volatility smile in option

markets. Furthermore, because of its mathematical tractability, the Lévy model has become

popular since the late 1990s and early 2000s.

On the other hand, Lévy process is much more complicated to implement. The Poisson

process and the Wiener process (also interpreted as Brownian motion, as discussed in the

previous section) are fundamental components of Lévy processes. This section introduces

basic facts about Lévy processes, and use finite difference and trapezoidal quadrature approx-

imation to develop an explicit-implicit time-stepping scheme to approach the no-arbitrage

exponential Lévy model. Then, we will present a detailed implementation of the finite dif-

ference scheme in the next section.

Recall the Black-Scholes equation:

LV = Vt + 1
2
σ2S2VSS + rSVS − rV = 0.

The equation for a Lévy process is as following,

Vt + 1
2
σ2S2VSS + rSVS − rV +

∫
R

(V (Sey, t)− V − S(ey − 1)VS)ν(y)dy = 0.

While the Black-Scholes model simplies the option pricing problem by eliminating the

stochastic process term, the Lévy process adds it back. Through this section, we will see

how the equation for Lévy process evolves.
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3.1 Basic facts

Definition: A Lévy Process is a stochastic process Xt with stationary independent incre-

ments which is continuous in probability, satisfying[1,4]:

1. X0 = 0;

2. Independent increments: for any u ≤ s < t,Xt −Xs is independent of Xu;

3. Stationary increments: for any s, t > 0, Xs+t −Xs has the same distribution as Xt −X0.

3.1.1 Simulating Lévy processes

This section explores approach to simulate Lévy process for the readers interest. As we

know, Lévy process includes Brownian and Poisson processes. There are many simulation

methods available for different Lévy process, for instance, simulation with variance gamma

and normal inverse Gaussian. In this paper, we will generate an algorithm and use it to

simulate compound Poisson process with Excel. Then, we will use Wolfram Demonstrations

Project[15] to present several Mertons Jump Diffusion with different inputs.

(a) Simulation of compound Poisson process

Compound Poisson process can be simulated exactly and the computational time grows

linearly with intensity. We make some assumptions, in order to make the simulation sim-

plified and satisfied the Poisson process. A Poisson process is a counting process, which

satisfies the following properties[4,7,12]:

1. X(t) ≥ 0, X(0) = 0;

2. X(t) is integer-valued;

3. X(s) < X(t) if s < t;

4. X(t)−X(s) equals the number of events that have occured in the interval (s, t).

We consider the jump size distribution is standard normal, T is 1, the drift is 3 and the

jump intensity is equal to 10. The algorithm is as following,
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1. Generate a random variable N from Poisson distribution with parameter λ ∗ T , which

yields 6 in our case. N is the total number of jumps on [0,T ];

2. Set t = 0 and X = 0;

3. Generate U, which is uniformly distributed on [0,T ];

4. Generate jump size Y with standard normal distribution and law ν(dx)/λ, which in our

case is ln(U)/10;

5. Update new location X: X = bt+ Y ;

6. Go back to Step 3 and continues, until we have
∑N

i=1 ti ≥ T .

The trajectory of our compound Poisson process is as shown below. The places of vertical

arrows represent jumps in our process. This graph tenders an idea of Poisson process: it is

discontinuous, and has smaller and larger jumps randomly.

Figure 5: Poisson Process Simulation

(b) Simulation of Mertons jump diffusion model

A Lévy process of jump-diffusion type has the following form:

Xt = γt+ σWt +
∑Nt

i=1 Yi,
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where (Nt)t ≥ 0 is the Poisson process counting the jumps of X and Yi are jump sizes.

Figure 6: Lévy Process with Merton’s Model 1

Figure 7: Lévy Process with Merton’s Model 2

In the Merton model, it keeps X following the Poisson distribution and assumes that

Yi has a Gaussian distribution. The factors influencing this motion are the jump intensity,

jump mean size and jump standard deviation. A sketch of algorithm is as following,
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1. Simulate N independent centered Gaussian random variables;

2. Simulate the compound Poisson part as discussed in the previous section;

3. Update the trajectory with

X(ti) = bti +
∑i

k=1Gk +
∑N

j=1 1Ui<tiYj.

Figure 8: Lévy Process with Merton’s Model 3

Figure 9: Lévy Process with Merton’s Model 4
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This trajectory of a Lévy process is with Mertons jump diffusion model. Here jump size

is normally distributed with mean at 0 and standard deviation at 0.5. The number of jumps

is 5, jump intensity is 10, the diffusion volatility is 1 and the drift is 0.1. If we change the

drift to 1, we have Figure 7. The increase in the drift makes the process to have a higher

trend of rising in general. Back to the original graph, if we change the diffusion volatility

from 1 to 0.01, we have Figure 8. The change in diffusion volatility has smoothed out this

process, and makes it have an appearance of the compound Poisson process (Figure 9).

3.1.2 Characteristic function of a Lévy process

Let (Xt)t ≥ 0 be a Lévy process on Rd. There exists a continuous function ψ : Rd → R

called the characteristic exponent of X, such that:

E[eizXt ] = etψ(z), z ∈ Rd.

The classic Lévy model assumes St = ert+Xt , where Xt indicates the Lévy process. This

model combines Brownian motion and Poisson process. According to the Lévy-Khintchine

formula[1,4], it has the following characteristic function of Xt:

E[eizXt ] = e−tψ(z)

= exp{t(−σ2z2

2
+ iγz +

∫ +∞
−∞ (eixz − 1− izx1|x|≤1)ν(dx))},

where σ > 0 and γ are real constants, and ν is a positive measure verifying

∫ +1

−1
(x2ν(dx)) < +∞,

∫
|x|>1

ν(dx) < +∞.

where, the measure ν is called the Lévy measure of X. In the characteristic function, we can

see that the integral part in the exponential is compound Poisson process and the rest two

terms presents Brownian motion. Thus, X is a collection of Brownian motion and Poisson

processes. x denotes the jump size, and ν(dx) is the intensity of jumps of size x.
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Since we use finite difference method to approximate the Lévy processes, we do not need

to take small jumps in account. Thus, we can eliminate the term of the Lévy-Khinchin

representation can be reduced to

E[exp{izXt}] = exp{t(−(σ2z2)/2 + iγ0(ν)z +
∫ +∞
−∞ (eizx − 1)ν(dx))},

Also, since Lévy process is Markov process, its infinitesimal generator LX : f → LXf is an

integro-differential operator as following,

LXf(x) = limt→0
E[f(x+Xt)]−f(x)

t

= σ2

2
∂2f
∂x2

+ γ ∂f
∂x

+
∫
ν(dy)[f(x+ y)− f(x)− y1|y|≤1

∂f
∂x

(x)].

Also, similar to the Black-Scholes model, we assume that the underlying asset St has a

exponential of a Lévy process: St = S0e
rt+Xt . Xt is a Lévy process with characteristic triplet

(σ, γ, ν).

3.2 No-arbitrage condition

Definition: Let f(x) be a probability density and h be a real number. Its Esscher trans-

form[4] is defined as

f(x;h) = ehxf(x)∫+∞
−∞ ehxf(x)dx

= ehxf(x)
E[ehxf(x)]

.

The flexibility of Lévy model allows us to obtain a variety of measures by changing the

distribution of jumps, by altering the gamma-function, which is one of the three character-

istics of the Lévy random process as stated in the previous section.

In the book Financial Modelling with Jump Processes by Roma Cont and Peter Tankov,

if the exponential Lévy model is arbitrage-free, if the trajectories of X are neither almost

surely increasing nor almost surely decreasing. Also, there exists a probability measure Q

equivalent to P such that (e−rtSt)t∈[0,T ] is a Q-martingale, where r is the interest rate.

Applying the Esscher transform, we have
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dQ|Ft
dP |Ft

= eθXt

E[eθXt ]
= eθXt+γ(θ)t

where γ(θ) = −lnE[eθX1 ] is the log of the moment generating function of X1, given by the

characteristic exponent of the Lévy process X. This is called the Radon-Nikodym derivative

corresponding to the Esscher transform. It entails the following properties in order for an

exponential Lévy model to be no-arbitrage:

1. X has a nonzero Gaussian component: σ > 0;

2. X has infinite variation
∫ +1

−1
|x|ν(dx) = +∞;

3. X has both positive and negative jumps;

4. X has positive jumps and negative drift or negative jumps and positive drift.

This proposition can be justified by intuition. If there surely exists increase or decrease

in stock price, based on the theory of Efficient Market, investors will behave accordingly in

the same direction to absorb the current values without embedded risk in the future, which

is clearly an arbitrage opportunity phenomenon.

According to Rama Cont and Peter Tankov [5], the properties above present the following

conditions to a no-arbitrage exponential Lévy model,∫
|y|>1

(dy)ey < +∞,

γ = γ(σ, ν) = −σ2

2
−
∫

(ey − 1− y1|y|≤1)ν(dy).

Thus, the infinitesimal generator, in the previous sub-section, becomes,

LXf(x) = σ2

2
[∂

2f
∂x2
− ∂f

∂x
] +

∫
ν(dy)[f(x+ y)− f(x)− (ey − 1)∂f

∂x
(x)].

Thus, for Yt = rt+Xt, the infinitesimal generator of Yt is,

Lf = LXf + r ∂f
∂x

.

For Lévy process: St = S0e
rt+Xt ,

Vt + 1
2
σ2S2VSS + rSVS − rV +

∫
R

(V (Sey, t)− V − S(ey − 1)VS)ν(y)dy = 0.



3 LÉVY PROCESSES 21

3.3 Explicit-implicit finite difference scheme

Method Advantages Drawbacks
Multinomial tree/lattice Monotonicity, ease of imple-

mentation
Inaccurate representationof
jumps, slow convergence

Analytic method of lines Fast when feasible Needs closed form Wiener-
Hopf factor

Explicit/Implicit finite
difference scheme

Fast, simple to implement,
monotone, handles barriers
efficiently

Collocation method: solu-
tion is computed only in
some points

Crank-Nicholson/FFT Fast Boundary conditions not
handled efficiently

Finite elements Extends to American op-
tions

Mathematical formulation
is more difficult

Wavelet-Galerkin Extends to American op-
tions

Implementation is difficult

Table 2: Numerical Methods for Partial Integro-Differential Equations [4](Rama Cont and
Peter Tankov, 2004), and edited by Dr. Veneziani - Cont and Tankov originally stated that
the drawback to finite elements method was dense matrix to solve. Dr. Veneziani asserted
that this is not usual for finite elements method that are the contrary featuruing sparse
matrices. He also added that in this case of solving Lévy processes, there is the integral that
in principle may lead to a full matrix. This in practice doesn’t happen because we truncate
the integral, thanks to its exponential decay. For this reason, we have modified the table by
Cont and Tankov.

As listed above in the chart, this paper uses explicit-implicit finite difference scheme to

solve the exponential Lévy model, because it works fine without too many difficulties to

implement. We start with the European call value function:

C(t, S) = E[e−r(T−t)(ST −K)+|St = S].

For numerical reason, we replace time t by the time to maturity. We assume τ = T−t, x =

ln(S/S0) and St = S0e
x, then,

(1) move the erτ part into the expectation function, and (2) since St = Serτ+Xt by definition;

(3) by our assumption; let the payoff function H(ST ) = (ST − K)+ for call and H(ST ) =
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(K − ST )+ for put option, h(x) = H(S0e
x)) and Yτ = rτ +Xτ , then

u(τ, S) = erτC(T − τ, S0e
x)

= erτE[e−r(T−t)(ST −K) + |St = S]

= E[(ST −K)+|St = S]

= E[H(Serτ+Xτ )]

= E[H(S0e
x+rτ+Xτ ]

= E[h(x+ Yτ )].

Applying Itô formula to u(t,Xt) on (0,T), we have

∂u
∂τ

= Lu on (0, T )R, (Cauchy Problem)

where the initial-boundary is u(0, x) = h(x), for x ∈ R. Now we have a starting point,

∂u
∂τ
≈ un+1−un

∆t
by finite difference. We still need to explore how Lu can be interpreted.

Recall the infinitesimal generator function. Since Xt is a Lévy process, Yt = rt+Xt has

the infinitesimal generator as, Lf = LXf + r ∂u
∂x

. Thus,

Lu = LXu+ r ∂u
∂x

= σ2

2
[∂

2u
∂x2
− ∂u

∂x
] +

∫
ν(dy)[u(τ, x+ y)− u(x)− (ey − 1)∂u

∂x
(x)] + r ∂f

∂x
.

Another thing we know about the Lévy model is that it involves integration of an un-

bounded area; however, in numerical aspect, we cannot provide an exact solution to problems

involves infinity. We assume O is an open interval (a, b) ⊆ R, and g ∈ C+
p ([0, T ]xR). Then,

we have an initial boundary condition: u(0,x) = h(x) for x ∈ O, and u(τ, x) = g(τ, x) if

x /∈ O.

We would like to divide this equation into explicit and implicit parts (in time), and use

a finite difference scheme to find a solution. First, we need to truncate the integral.
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Remark: Here, we substitute u(τ, S) into the infinitesimal generator, which has another ad-

vantage. u(τ, S) is the forward value of a European option defined by u(τ, S) = E[h(x+Yτ )].

u(τ, S) is the unique viscosity solution of the Cauchy problem ∂u
∂τ

= Lu on (0, T )× R, if we

can prove the payoff function H(ST ) is Lipschitz and h(x) has quadratic growth at infin-

ity. Read Appendix 1 for more discussion on existence, uniqueness and errors of this solution.

3.3.1 Truncate integral

As stated in the previous section, we need to truncate the integral into a bounded region

in order to numerically approximate the solution. Here, we ignore the small jumps in the

Lévy processes and focus on the truncation of large jumps. Assume Bl is the left-hand

boundary and Br is the right-hand boundary. We now define a new process X̄τ with the

Lévy characteristic triplet (γ̄, σ, ν1x∈[Bl,Br]), such that

γ̄ = −σ2

2
−
∫ Br
Bl

(ey − 1− y1|y|≤1ν(dy)),

which still keeps ert+X̄t the status of a martingale and the properties of no-arbitrage expo-

nential Lévy models.

We are using the following density function to approximate,

ν(x) = 0.1 e
−x2/2
√

2π

which is a Merton model with Gaussian jumps. We would like to choose two boundaries Bl

and Br in such way that,

|
∫∞
∞ f(x)dx−

∫ Br
Bl

f(x)dx| < ε,

where ε is a given tolerance. Since the probability measure ν(x) converges very fast towards

to infinity, we focus on the interval, where,

ν(x) ≥ ε ⇐⇒ −
√
−2 log(10ε

√
2π) ≤ x ≤ +

√
−2 log(10ε

√
2π).
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Thus, Br = +
√
−2 log(10ε

√
2π), and Bl = −Br. We will talk more about bounds on error

later Section 3.4.

3.3.2 Divide Lu into explicit and implicit parts

Recall, we have

Lu =
σ2

2
[
∂2u

∂x2
− ∂u

∂x
] +

∫
ν(dy)[u(τ, x+ y)− u(x)− (ey − 1)

∂u

∂x
(x)] + r

∂f

∂x

=
σ2

2

∂2u

∂x2
− (

σ2

2
− r)∂u

∂x
+

∫ Br

Bl

ν(dy)[u(τ, x+ y)− u(x)− (ey − 1)
∂u

∂x
(x)].

Let v(R) = λ < +∞ and α =
∫ Br
Bl

ν(dy)(ey − 1), then

Lu = σ2

2
∂2u
∂x2
− (σ

2

2
− r + α)∂u

∂x
− λu+

∫ Br
Bl

ν(dy)u(τ, x+ y).

We define Lu = Du+ Ju, then,

Du = σ2

2
∂2u
∂x2
− (σ

2

2
− r + α)∂u

∂x
− λu, Ju =

∫ Br
Bl

ν(dy)u(τ, x+ y)− u(τ).
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4 Numerical Approximation and Its Implementation

4.1 Explicit-implicit finite difference scheme

Finite Difference Method is numerical approach to use Taylor series to approximate deriva-

tives. For example,

u′(x) ≈ u(x+ h)− u(x)

h
,

u′(x) ≈ u(x+ h)− u(x− h)

2h
.

The second one is also called as Centered Difference Approximation. It has O(h2), which

is considered to be smaller than that of the first method which has O(h). However, for

numerical purpose, we use the first method to implement our finite difference scheme. We

introduce a uniform grid on [0, T ]x[−A,A] : τn = n∆t, n = 0, ...,M, xi = −A + i∆x, i =

0, ..., N . Then, ∆t = T/M and ∆x = 2A/N . Let uni be the solution of the numerical

scheme. Then,

Du =
σ2

2

∂2u

∂x2
− (

σ2

2
− r + α)

∂u

∂x
− λu, and numerically,

Dui =
σ2

2

ui+1 − 2ui + ui−1

(∆x)2
− (

σ2

2
− r + α)

ui+1 − ui
∆x

− λu,

where α =
∫ Br
Bl

ν(dy)(ey − 1).

The remaining problem is how to numerically approximate the integrations. We use the

trapezoidal quadrature rule with the equalized step sizex. Let Kl, Kr be such that

[Bl, Br] ⊂ [(Kl − 0.5)∆x, (Kr + 0.5)∆x]. Then,

Ju ≈
∫ Br
Bl

ν(dy)u(τ, x+ y)− u(τ) ≈
∑Kr

j=Kl
νj(ui+j − ui),

where νj =
∫ (j+1/2)∆x

(j−0.5)∆x
ν(dy). Thus, α =

∫ Br
Bl

ν(dy)(ey − 1) ≈
∑Kr

j=Kl
νj(e

yj − 1).
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4.2 A sketch of algorithm

Initialization:

u0
i = h(xi), for i = 0, ..., N ;

u0
i = g(0, xi), fori 6= 0, ..., N.

Build matrix D and J. For n = 0,..., M - 1:

Solve:

(I −∆tD)un+1 = (I + ∆tJ)un;

Where

(Dun+1)i = [
σ2

2(∆x)2
− 1

∆x
(
σ2

2
− r + α)]un+1

i+1 − [
σ2

(∆x)2
+

1

∆x
(
σ2

2
− r + α)]un+1

i +
σ2

(2(∆x)2
un+1
i−1 ,

(Jun)i =
Kr∑
j=Kl

νju
n
i+j − λuni .

Continue until reach stopping criteria.

4.3 MATLAB code

Need to solve: (I −∆tD)un+1 = (I + ∆tJ)un

Example on how to use this algorithm:

Ao = 10;

T = 1;

M = 50;

N = 100;

sigma = 0.15;

r = 0.05;

S0 = 100;

K = 100;
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>> [l,bs] = LevyMerton(Ao, T, M,N,S0,K,sigma,r,0);

To compute the prices:

function [ Levy, BS ] = LevyMerton...

( Ao, T, M, N, S0, K, sigma, r, CallOrPut, hFun)

%

% This function takes inputs initialized by the user, and uses

% an implicit-explicit finite difference scheme of Levy process

% to calculate the price of call; also gives a comparison to

% the Black-Scholes

% model’s result.

%

% Input

% Ao: the order of truncated upper bound on x of the grid

% T: maturity date

% M: the number of subintervals of time

% N: the number of subintervals of x movements

% sigma: the volatility of the underlying stock

% r: risk-free rate

% hx: vector of initial conditions

% S0: initial stock price

% K: strike price

% CallOrPut: 0 for Call, 1 for Put

% hFun: initial conditions, if not passing hFun, default

% will be h(x) = (1 - e^x)+

% Output

% Levy: our result by the Levy processes with Merton’s model

% BS: result by the Black-Scholes model

%------------------------------------------------------------------------

% How to use this algorithm?

%

% We need to initialize some values.

% Here since we implement the Merton’s model for probability

% measure, we have,

% Initial conditions: h(x) = (1 - e^x)+; (by default)

% g(tao, x) = 0;

% Probability measure:v(x) = 0.1 * exp(-x .* x * 0.5) / sqrt(2*pi)

%------------------------------------------------------------------------

% 1.

% Initial values

myFun = @(x) x .* x .* (0.1 * exp(-x .* x * 0.5) / sqrt(2*pi));
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A = Ao * sqrt(T * (sigma * sigma + quadgk(myFun,-inf, inf)));

dx = 2 * A / N;

dt = T / M;

if nargin == 9

if CallOrPut == 0

hFun = @(x) exp(x) - 1;

else if CallOrPut == 1

hFun = @(x) 1 - exp(x);

end

end

end

hx = zeros(N+1,1);

x = zeros(N+1,1);

t = linspace(0,T,M+1)’;

for i = 1:(N+1)

x(i) = -A + i * dx;

hx(i) = max(0, hFun(x(i)));

if hx(i) < 0

hx(i) = 0;

end

end

% 2.

% localization conditions

% ep: given tolerance

% Bl: left hand truncation of the integral

% Br: right hand truncation of the integral

% Without losing generality, Bl < -1, Br > 1, and

% ep needs to be smaller than 1/sqrt(2*pi).

%

ep = 1e-3;

Bl = -sqrt(-2*log(10*ep*sqrt(2*pi)));

Br = - Bl;

% Since [Bl, Br] is part of [(Kl - 0.5)dx, (Kr + 0.5)dx],

Kl = max(floor(Bl / dx + 0.5),-N);

Kr = - Kl;

% 3.

% Simulate vectors u with function BuildU.m

[u, C] = BuildU( A, T, M, N, Kl, Kr, sigma, r, hx,K,S0 );
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% 4.

% Calculate the expected price of C.Price is desired calculated price.

sumC = sum(sum(C));

Levy = sumC / N / M;

d1 = (log(S0/K) + (r + sigma*sigma / 2) * T) / (sigma * sqrt(T));

d2 = d1 - sigma * sqrt(T);

PV_K = exp(-r*T) * K;

if CallOrPut == 0

BS = S0 * normcdf(d1,0,1) - PV_K * normcdf(d2,0,1);

else if CallOrPut == 1

BS = PV_K * normcdf(-d2,0,1) - S0 * normcdf(-d1,0,1);

end

end

end
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To construct the un+1 updating system:

function [ u, C, flag ] = BuildU( A, T, M, N, Kl, Kr, sigma, r, hx, K, S0 )

% function BuildU

%

% This algorithm builds the vectors u_i one by one and compact

% into a matrix u. First, we use function BuildD and BuildJ to

% build left-hand and right-hand sides of this equation:

% (I - dt*D) u_(n+1) = (I + dt*J) u_n.

% Since this linear system involves large assymmetric and sparce

% matrix on both sides, we use GMRES iteration to solve it.

%

% Input: A: truncated upper bound on x of the grid

% T: maturity date

% M: the number of subintervals of time

% N: the number of subintervals of x movements

% sigma: the volatility

% r: risk-free rate

% hx: vector of initial conditions

%

% Output: u: a matrix containing u_i’s as column vectors

% Initialization:

dt = T / M;

dx = 2*A / N;

u = zeros(N+1, M);

C = zeros(N+1, M);

u(:,1) = hx;

C(:,1) = u(:,1);

% build J and D.

[J, alpha, lambda] = BuildJ(N, dx, dt, Kl, Kr);

D = BuildD(sigma, dx, dt, r, N, alpha, lambda);

flag = zeros(M,1);

tao = 0;

for n = 1:M

tao = tao + dt;

b = J * u(:,n);

[u(:,n+1), flag(n)] = gmres(D,b);

C(:,n+1) = u(:, n+1) * exp(-r*tao) * K / S0;

end

end
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To construct the left-hand side matrix:

function [ D ] = BuildD( sigma, dx, dt, r, N, alpha, lambda )

%

% function BuildD

%

% This function constructs the matrix D we use to pair with the

% u_n+1. And, we scale it by (I + dt*D). To computational purpose,

% we keep this matrix sparce; since it is tri-diagonal and asymmetric,

% we will use iterative methods such as GMRES to solve this problem.

%

% Input: sigma: the volatility constant

% dx: increment in step

% dt: increment in time

% r: risk-free rate

% n: size of the matrix

% alpha: coefficient for first order derivative

%

% Output: D: nxn desired sparce matrix

%

C = sigma * sigma / (2 * (dx * dx)) - (1/dx) * (sigma*sigma/2 - r + alpha);

B = sigma*sigma / (dx*dx) + (1/dx) * (sigma*sigma/2 - r + alpha) + lambda;

A = sigma * sigma / (2 * dx * dx);

v1 = A * ones(N, 1);

v2 = - B * ones(N+1, 1);

v3 = C * ones(N, 1);

Diag = [[v1;0], v2, [0;v3]];

D = speye(N+1, N+1) - dt * spdiags(Diag, [-1,0,1], N+1, N+1);

end
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To construct the right-hand side matrix:

function [ J, alpha, lambda ] = BuildJ( N, dx, dt, Kl, Kr )

% function BuildJ

%

% This algorithm build the matrix J which we need for the

% right-hand side computation. Here, we use the Merton’s

% model to construct the jump steps function v:

%

% vFun = @(x) 0.1 * exp(-x .* x * 0.5) / sqrt(2*pi);

%

% We then calibrate the matrix J into the complete right-

% hand side form: (I + dt * J).

%

% Input: N: the number of subintervals of x

% dx: movement step size

% dt: time step size

%

% Output: J: (N+1)x(N+1) matrix of the right-hand side

% information to update the vector u_n to u_n+1

% alpha: coefficient for localization of boundaries

%

vFun = @(x) 0.1 * exp(-x .* x * 0.5) / sqrt(2*pi);

v = zeros(Kr - Kl + 1, 1);

lambda = 0;

alpha = 0;

J = zeros(N+1,N+1);

for i = Kl : Kr

lower = (i - 0.5) * dx;

upper = (i + 0.5) * dx;

k =i + (1 - Kl);

y = Kl * dx;

v(k) = quad(vFun, lower, upper);

lambda = lambda + v(k);

alpha = alpha + (exp(y)-1)*v(k);

V = ones(N+1-abs(i),1) * v(k);

J = J + diag(V, i);

end

J = eye(N+1, N+1) + dt * J;

end
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4.4 Explanation of MATLAB code

The first algorithm gives an example on how to use those self-built MATLAB functions to

compute desired option prices. In the example, we have expiry date T as 1, the number of

time intervals M as 50, the number of movement intevals as 100, the volatility σ as 15% and

the riskfree rate as 5%.

Another term we need to initialize is ’Ao’, which stands for the order of A. ’A’ is the

truncation boundary as discussed in Section 3.3. ’The order of A’ means a ratio of the

domain size A to the standard deviation of the Lévy process XT ,

A = Ao
√
T (σ2 +

∫
y2ν(dy))

Since we use the Merton’s model with Lévy density,

ν(x) = 0.1 e
−x2/2
√

2π
,

we compute the domain size A with the following code (as shown in function LevyMerton),

myFun = @(x) x .* x .* (0.1 * exp(-x .* x * 0.5) / sqrt(2*pi));

A = Ao * sqrt(T * (sigma * sigma + quadgk(myFun,-inf, inf)));

The function LevyMerton also allows the user to pass in a different function for initial con-

dition, while the default is h(x) = 1− ex for put option.

The function BuildU implements the sketch of algorithm in Section 4.2. It calls func-

tion BuildD and function BuildJ to construct the left-and right-hand matrix of the finite

difference scheme. Then, since our system is a large sparce linear system, it uses gmres [8] to

update vector u of option payoffs at current time level to the next level. Since our algorithm

uses the idea of backward integration, thus, u is updated towards to the initial time.
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5 Numerical Results

We use the MATLAB codes as displayed in the previous section, to compute the European

put prices with our model, and compare them to that of the Black-Scholes model.

We assume it is an at-money European call option: S0 = K = 100, maturity of T at 1,

σ = 15%, r = 5%. The put price by the Black-Scholes model is 3.7146. The Implied

Volatility Error in % in our analysis is calculated by the Black-Scholes Implied Volatility

with MATLAB function blsimpv. For example,

[put,bs] = LevyMerton(Ao, T, Ms(i),N,S0,K,sigma,r,1);

vol(i) = blsimpv(S0, K, r, T, put,[],[],[],false);

where ”false” means Put option and ”true” means Call option. Then, we calculate the error

with the following code,

error = abs(vol-sigma)/sigma;

where ”sigma” is the pass-in volatility σ.

5.1 Different parameters and implied volatility errors

First, we conduct a sensitive analysis with different orders of A. As shown,

Ao A put by Lévy put by Black-Scholes
5 1.40 91.3556 3.7146
7 2.10 13.9428 3.7146
9 2.80 5.5594 3.7146
11 3.85 3.2337 3.7146
13 4.55 2.2921 3.7146
15 5.25 1.7965 3.7146

Table 3: Put Price Results with Changed Order of A

The right graph in Figure 10, the put price is significantly influenced by the order of A.

Also, we can see the the order larger than 5 gives much better results.
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Figure 10: Results with Changed A - the left shows how the Black-Scholes implied volatility
changes with different order of A; the right shows how the put price changes with the order
of A.

The difference in put prices between by Lévy model and the Black-Scholes model can be

justified by the flexibility of the Lévy model on probability measure on jumps in asset price

dynamics. From the left graph in Figure 10, we recognize that 10 is a nice order of A to

compute the put price.

Then, we conduct a similar sensitive test with changed values of M , the number of time

intervals. As shown in Figure 11, the error can be effectively eliminated by the increase in

M . Also, we can see from the right graph in Figure 11, the put price is not heavily influenced

by the size of M . The difference is actually negligible compared to the changes dominated

by the order of A.

Again, we conduct a sensitive analysis based the put prices and the changed size of N ,

as shown in Figure 12. We expected the implied volatility error decreased with increasing

size of N , and the put price converged. Unfortunately, the error and the put price do not

behave as we expected.

One possible reason is that, the increased N tenders greater opportunity for random

jumps in price dynamics. This consequantially leads to an increase in the put prices and
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Figure 11: Results with Changed M - with the order of A at 8 and the number of asset
movements N at 100.

Figure 12: Results with Changed N

the implied volatility error. Another possible reason for such turn-out is that our boundary

condition g(xi, t) = 0 for i /∈ {0, 1, 2, ..., N} is not good enough. For further study, the

reader can design a better boundary condition. Due to time constraint, we assume dx = 2A
N

is between 0.06 to 0.2 with corresponding values of N ; i.e.,if A = 3, N is between 30 to 100.
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5.2 Results with comparison to the Black-Scholes Model

From the discussion of the previous sub-section, we notice that the order of A is a major
factor on our option pricing model. Thus, we conduct a sensitive analysis with comparison
to the Black-Scholes model. We use the following MATLAB code,

T = 1;

M = 80;

N = 100;

sigma = 0.15;

r = 0.05;

S0 = 100;

K = 100;

orderA = linspace(5,15,11)’;

for i = 1:11

[put(i),bs(i)] = LevyMerton(orderA(i),T,M,N,S0,K,sigma,r,1);

end

plot(orderA,put,orderA,bs,’--’)

ylabel(’the put price’),xlabel(’order of A’)

legend(’by Levy’,’by Black-Scholes’)

Figure 13: Results by Lévy compared to the Black-Scholes

As shown in Figure 13, the put prices by our model varies a lot at lower orders of A; how-

ever, it soon converges when the order of A is larger than 7. We consider the differences
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in the put prices by our model and by the Black-Scholes model are mainly caused by the

different considerations in volatility. Based on our results, the user can choose a put price

with his/her own aspects on the market volatility. For example, if the user forecasts there

will be a economic downturn within the duration of an option contract, he/she can choose

the price with the order of A at 9, which is slightly larger than the put price calculated by

the Black-Scholes model.
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6 Conclusion

As we have seen through the paper, the Lévy process model is more difficult to implement

and involves more computations compared to the Black-Scholes model. Thus, the question

is whether it is worth to implement a Lévy process model. We summarize that the Lévy

process model does have certain advantages over the Black-Scholes model:

1. Jumps in stock price: more realistic than the Black-Scholes model;

2. Flexibility: we can use different probability measures (or return innovation distribution)

to capture different return type;

3. Tranctability: our model can implement any tractable ψ(z) in the Lévy process charac-

teristic function. This can allow us to generate a Fourier transform for any price dynamics

problem;

4. Market coverage: using different jump probability measures, our model is capable to

capture some other market aspects such as defaults, sudden movements. For example, the

economic downturn starting in the end of 2008.

Based on the market expectation and risk aversion, the investors can wisely choose be-

tween the Lévy model and the Black-Scholes model. However, we should always keep in

mind that it is impractical to model the stock in truly reality, because it is inherent from

the incomplete market.
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7 Appendix

7.1 Existence/uniqueness and errors: exp. Lévy model

Accuracy is yielded in the way of numerical approximation. This section will talk about the

errors incurred during evaluation of the explicit-implicit exponential Lévy model.

7.1.1 Lipschitz Condition

Definition: the function f(t,y) satisfies the Lipschitz condition[8],

if for all t ∈ [a, b] and for all y and ŷ,

|f(t,ŷ)− f(t, y)| ≤ L|ŷ−y|, where L is a constant.

Remark: if ∂f
∂y

exists and is continuous, then |f(t,ŷ)− f(t, y)| ≤ |∂f
∂y

(t, ξ)||ŷ−y|, where ξ is

between ŷ and y.

The upper bound limit brought by the Lipschitz condition will help us find the limit of

errors incurred during our numerical approximation.

We consider a European call with maturity T and payoff H(ST ). Then,

H(ST ) = (ST −K)+, assume H has Lipschitz condition:

|H(ŷ)−H(y)| ≤ L|ŷ−y|, where L is a positive constant.

Since we consider the option to be a European call with H(x) as (x−K)+, we can show

that

|H(ŷ)−H(y)| = |(ŷ−K)+ − (y −K)+|, assume ŷ > y

= |ŷ−y|, if ŷ, y > K;

= |ŷ−K|, if ŷ > K > y;

= 0 , if ŷ, y < K.
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Thus we have, |H(ŷ) − H(y)| < L|ŷ−y|, and L = 1. Since H is Lipschitz, C is also

Lipschitz,

|C(t, S1) < C(t, S2)| = |E[e−rτH(S1e
rτ +Xτ )]− E[e−rτH(S2e

rτ +Xτ )]|

= e−rτ |E[H(S1e
rτ +Xτ )]− E[H(S2e

rτ +Xτ )]|

≤ L|S1 − S2|

7.1.2 Viscosity solutions

Viscosity solution yields existence and uniqueness for jump models with finite variation.

This paper also uses viscosity solutions to determine the error between the true value and

approximation of payoff function.

A function is viscosity solution if this function is both a viscosity subsolution or super-

solution of the Cauchy problem, which means the difference between this function and any

test function has a global maximum and a global minimum at a given point, say at (τ , x).

Then, this function is also continuous on the entire domain of this problem.

The definition above implies that, if u is a subsolution in the upper semicontinuous with

an initial condition u0, and ν is a supersolution in the lower semicontinuous with initial

condition ν(0), then if u0 ≤ ν0, we can conclude that u is smaller or equal to ν at any point

on the given domain ]0, T ] × R. This proposition is also called as the Comparison Princi-

ple. It leads to another important principle in the financial interpretation, the Arbitrage

Inequality[4]:

If the terminal payoff of a European option dominates the terminal payoff of another one,

then their values should verify the same inequality.

In other words, if a call option C1 terminal payoff is greater than that of C2, then C1

should cost more than C2. Otherwise, arbitrage opportunity will occur. Since our model is

entirely based on no-arbitrage environment, the arbitrage inequality holds.
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7.1.3 Bound on approximation error

Since numerical computations can only be performed on finite domains, we need to reduce the

problem into a bounded domain, as discussed previously. We assume A to be a number large

enough in the exponential sence, so that (−A,A) is our desired artificial bounded domain

with limited error under our control. We have defined our finite difference grid based on this.

Since we add artificial bounds, we also need to create corresponding boundary conditions.

Here, we have,

u0
i = h(xi), i = 0, , N ;

u0
i = g(0, xi), i 6= 0, , N ;

uni = g((n+ 1), xi), i 6= 0, , N ;

We need to be careful with these boundary conditions, since nonlocality, brought in by

the integral part in our integro-differential equation, may destroy the regularity of our es-

tablished boundary of functions.

Proposition: Bound on localization error[4]

If ||h||L∞ <∞, and ∃α > 0,
∫
|x|>1

ν(dx)eα|x| < +∞ then

|u(τ, x)uA(τ, x)| ≤ 2Cτ,α||h||∞e−α(A−|x|).

where Cτ,α = EeαMτ , Mτ = supt∈[0,τ ] |Xt|.

Proof is shown in Appendix 2.

(sup(X) means the supremum or least upper bound of a set X, and sup(X).)

Proposition: Bound on errors of truncation of large jumps[4]

According to the Lipschitz condition, the error due to the truncation of large jumps can be

estimated as |u(τ, x)−˜u(τ, x)| ≤ ||h′||L∞τ(C1e
−αl|Bl| + C2e

−αr|Br|).
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As we observe from these two bounds on approximation errors, they contain negative

tails of those exponential components. The exponentially decreasing feature tells that the

approximation errors are exponentially small.
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7.2 Bound on localization error

Proof: recall u(τ, S) = E[h(x+ Yτ )]. Define, Mx
τ = supt∈[0,τ ] |Yt + x|. Then

u(τ, S) = E[h(x+ Yτ )]

uA(τ, S) = E[h(x+ Yτ )1Mx
τ <A]

or uA(τ, S) = E[h(x+ Yτ )1Mx
τ <A + h(Yθ(x) + x)1Mx

τ <A].

For g = 0, (condition function for out-of-boundary situation), according to the Lipschitz
condition:

|u(τ, S)− uA(τ, S)| = |E[h(x+ Yτ )(1− 1Mx
τ <A)]|

= |E[h(x+ Yτ )1Mx
τ <A]|

≤ ||h||∞Q(Mx
τ ≥ A)

For g = h(x),

|u(τ, S)− uA(τ, S)| ≤ |E[h(x+ Yτ )(1− 1Mx
τ <A)]|+ E[h(x+ Yθ(x))1Mx

τ ≥A]|
≤ 2||h||∞Q(Mx

τ ≥ A).

Also, we have Cτ,α = Ee(αM0
τ ) <∞. After applying Chebyshevs inequality, we have,

Q(M0
τ ≥ A) ≤ Cτ,αe

−αA

Since sup |Yt + x| ≤ sup |Yt|+ |x|, and sup |Yt + x| ≥ A and sup |Yt|+ |x| ≥ A, thus,

Q(Mx
τ ≥ A) = Q(sup |Yt + x| ≥ A) ≤ Q(sup |Yt|+ |x| ≥ A)

= Q(M0
τ ≥ A− |x|) ≤ Cτ,αe

−α(A−|x|).

Thus,

|u(τ, x)− uA(τ, x)| ≤ 2Cτ,α||h||∞e−α(A−|x|).
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tic Volatility Models Driven by Lévy Processes.” Biometrika 94.3 (2007): 627-46. Print.

Ornstein-Uhlenbeck stochastic processes driven by Lévy processes
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