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Abstract

Protecting Locations of Individual Movement under Temporal Correlations
By Yonghui Xiao

Concerns on location privacy frequently arise with the rapid development
of GPS enabled devices and location-based applications. In this dissertation,
we study how to protect the locations of individual movement under temporal
correlations. First, we propose two types of privacy notions, location privacy
and customizable privacy. Location privacy is used to protect the true location
of a user at each timestamp; Customizable privacy means the user can config-
ure personalized privacy notions depending on different demand. Second, we
investigate how to preserve these privacy notions. We show that the traditional
`1-norm sensitivity in differential privacy exaggerates the real sensitivity, and
thus leads to too much noise in the released data. Hence we study the real sen-
sitivity, called sensitivity hull, for the data release mechanism. Then we design
the optimal location release mechanism for location privacy. We show that the
data release mechanism has to be dynamically updated for the customizable
privacy to guarantee the privacy is protectable, which is measured by a notion
of degree of protection. Third, we implement these algorithms on real-world
datasets to demonstrate the efficiency and effectiveness.
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Chapter 1

Introduction

1.1 Motivation

With the technology advances in smartphones with localization capabilities,

location based applications have been tremendously popular in people’s lives.

Location-based services (LBS) [13, 33] range from searching points of interest

to location-based games and location-based commerce. Location-based social

networks allow users to share locations with friends, to find friends, and to

provide recommendations about points of interest based on their locations.

Geospatial crowdsourcing [1, 34] allows individual users equipped with mobile

devices collect and contribute location-dependent data about phenomena of

common interest.

One major concern of location based applications is the location exposure

[4]. In a survey [22] about location privacy, 78% smartphone users among 180

participants believe that apps accessing their location pose privacy threats.

On the other hand, with the escalated fear of privacy exposure, there is not

much users can do to protect themselves except turning off the location based
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applications thoroughly. The reason is that to use these applications, users

have to provide their locations to the respective service providers or other

third parties. Moreover, since users’ whereabouts contain sensitive information,

e.g. the occupation, religion and even the relationship between users, it may

cause serious troubles for users, like unwanted location based spams/scams,

blackmails or even physical danger.

To tackle the privacy concerns and facilitate the location based applications,

we investigate how to protect users’ movement with state-of-the-art privacy no-

tion, differential privacy (DP) [14]. DP was originally proposed to protect ag-

gregated statistics of a dataset by bounding the knowledge gain of an adversary

whether a user opts in or out of a dataset. Applying DP for location protection

is still at an early stage. In particular, several works (e.g. [10, 20, 31, 53]) have

applied DP on location or trajectory data but in a data publishing or data ag-

gregation setting. In this setting, a trusted data publisher with access to a set

of location snapshots or user trajectories publishes an aggregate or synthetic

view of the original data while guaranteeing user-level DP, i.e. protecting the

presence of a user’s location or entire trajectory in the aggregated data. In

contrast, in our setting, the protection needs to be enforced on the fly for a

single user.

Next we describe several challenges on personal movement. First, a rigorous

notion is needed for location privacy while accounting for temporal correlations.

Second, users may have varying privacy preferences and utility requirements.

Thus a flexible privacy notion is necessary for such scenario. In the following, we

introduce two privacy notions on location in details, including location privacy

and customizable privacy.
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1.1.1 Location Privacy

We first consider the straightforward privacy, location privacy, which means to

protect the exact location of a user at a single timestamp. An intuitive method,

called location obfuscation, is to transform the exact location of a user to an

area or a perturbed location (location perturbation) (e.g. [2,23]). For example,

in Figure 1.1, the user is at the “‹” position. Then a circle containing the

“‹” can be used as the noisy location of the user. However, there are several

shortcomings about this approach. We use the example in Figure 1.1 to explain

this.

• Suppose a user moved from school to the cafeteria (where “‹” is) in Figure

1.1 (left). Three perturbed locations were released by selecting a point

probabilistically in each of the three circles (by some spatial cloaking

methods). Even though the individual locations were seemingly protected

at each timestamp, considering them together with road constraints or

the user’s moving pattern will enable an adversary to accurately figure

out the user is in the cafeteria, resulting in privacy breach.

• Suppose a user’s location “‹” is protected in a circle as shown in Figure

1.1 (right). If by estimation based on previous locations the user can

only be in the five places at current timestamp as shown in the figure,

then the obfuscated location actually exposes the true location. Thus

technically, the radius of the circle (in location obfuscation) should be

subject to temporal correlations.

We can see that to protect the location privacy, temporal correlations have

to be considered, in both the privacy notion and the location release mecha-

nism. While such temporal correlations can be commonly modeled by Markov
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(East)

(North) ?

1

2

3

(East)

(North)

?

Figure 1.1: Examples of privacy breach caused by temporal correlations of user
locations

chain [27, 43, 57], and few works have considered such Markov models [27, 57],

it remains a challenge to provide rigorous privacy protection under temporal

correlations for continual location sharing.

1.1.2 Customizable Privacy

Next we consider how to customize the location privacy for personal privacy

demands by extending the Blowfish privacy [32]. Specifically, we treat every

state in Markov model as a node, and construct a graph, in which edges rep-

resent “indistinguishability” between the connecting nodes, to represent the

privacy policy. We use an example to explain the customization of privacy.

Figure 4.3a shows the Markov model of a moving user with 6 states, denoted

by ts1, ¨ ¨ ¨ , s6u. If the user prefers to hide her state in 3 categories, i.e., cafe-

teria, school and grocery (the octagon, circle and square in Figure 4.3a), the

privacy customization can be achieved by the graph in Figure 4.3b. Then if

the user is at state s5, the graph ensures that ts4, s5, s6u are indistinguishable.

The customized privacy can improve both privacy and utility. First, by

customization, users can achieve their own privacy requirements, which can
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(East)

(North)
s1 s2 s3

s4 s5

s6

(a)

s1 s2 s3

s4 s5

s6

(b)

Figure 1.2: (a): protecting a state in its category (the octagon, circles or
squares); (b): the policy graph connecting all nodes in a category.

vary dramatically. For example, a patient may want to prevent the exposure

that she went to a hospital; while a doctor who works in the hospital may want

to share that she is working at the hospital. Such customization can be achieve

by our customizable privacy notion. Second, the utility of released location can

also be boosted. In existing location release mechanisms, a location is usually

perturbed as a circle. It is obvious that the circle can be either too small or

too big for the user. For example, if a user only needs to hide her location

in a category “restaurants”, then other places in the circle are redundant for

the preference. Through customization, we only hide the location in necessary

candidates, which improves the utility.

1.2 Overview

we describe the setting of our method as follows. First, we define the privacy

notions with differential privacy. Then we design algorithms to protect the

privacy and release the perturbed locations. The utility of release location

will be formally proven to be optimal under the privacy notions. At last, we
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consider the impact of temporal correlations to quantify the overall protection.

Setting As shown in Figure 1.3, we consider a moving user with sensitive

location stream who needs to share her locations to an untrusted location-

based application host or other parties. A user’s true locations are only known

by the user. The “sanitized” locations released by the privacy mechanisms are

observable to the service providers, as well as adversaries. To enable private

location sharing, we address (and take advantage of) the temporal correlations,

which can not be concealed from adversaries and hence are assumed to be

public. Our goal is to develop the privacy mechanism to preserve the privacy.

timet
1

t
2

t
3

t
4

Location Based Applications

Privacy Mechanisms

Perturbed

location

Perturbed

location

True

location

True

location

True

location

True

location

True

location

untrusted

user

t
5

Figure 1.3: Problem setting

Location Release Mechanism To release a private location, a differentially

private mechanism is used to perturbed the true location. Most existing works

use Laplace mechanism, which injects independent Laplace noise to the true

data. However, we prove that Laplace mechanism is just a special case of K-

norm mechanism [29], and provides no better utility than K-norm mechanism.
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Based on K-norm mechanism, we study the optimal mechanism to achieve the

lower bound of differential privacy.

1.2.1 Contributions

Our contributions are summarized as follows.

Location Privacy. For location privacy at single timestamp, we first propose

a “δ-location set” based differential privacy to protect the true location. In our

problem, location changes between two consecutive timestamps are determined

by temporal correlations modeled through a Markov chain [27,57]. Accordingly

the “δ-location set” is intended to include all probable locations (where the user

might appear). Intuitively, to protect the true location, we only need to “hide”

it in the δ-location set in which any pairs of locations are not distinguishable.

Second, we show that the well known `1-norm sensitivity in standard differen-

tial privacy fails to capture the geometric sensitivity in multidimensional space.

Thus we propose a new notion, sensitivity hull, to capture the geometric mean-

ing of sensitivity. We also prove that the lower bound of error is determined by

the sensitivity hull. Third, we present an efficient location perturbation mecha-

nism, called planar isotropic mechanism (PIM), to achieve δ-location set based

differential privacy. To our knowledge, PIM is the first optimal mechanism that

can achieve the lower bound of differential privacy.We also implement PIM on

real-world datasets, showing that it preserves location utility for location based

queries and significantly outperforms the baseline Laplace mechanism (LM).

Customizable Privacy. First, we propose a rigorous and customizable DPHMM

notion by extending the Blowfish privacy [32]. Specifically, we treat every state

in Markov model as a node, and construct a graph, in which edges represent
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“indistinguishability” between the connecting nodes, to represent the privacy

policy. In this way, the DPHMM notion guarantees that the true state is al-

ways protected in its connecting “neighbors”. Second, we formally analyze the

privacy risk under the constraint of temporal correlations. We show that the

original graph may be reduced to a subgraph under the constraint, possibly

with disconnected nodes. To detect the information leakage of the discon-

nected nodes, we define degree of protection (DoP) based on the graph to

capture the protectability of a graph (if a graph is not protectable, then the

disconnected nodes will be exposed). We also quantify the overall protection

of Blowfish privacy in terms of differential privacy. Third, we develop a data

release mechanism to achieve DPHMM. To tackle the detected information

leakage, we study how to re-connect the disconnected nodes and find the opti-

mal protectable graph based on the existing graph. We formulate the problem

of building a minimum protectable graph with lowest error bound. Then we

show that the problem is #P-hard and propose a fast greedy algorithm to solve

it. We also implement and evaluate the data release mechanism on real-world

datasets, showing that privacy and utility can be better tuned with customized

policy graph. Finally, we thoroughly study the privacy guarantee of DPHMM

framework. Besides comparing DPHMM with other privacy notions, we present

the privacy composition results when multiple queries were answered over mul-

tiple timestamps. We also prove that the adversarial knowledge is bounded for

adversaries with different prior knowledge.

1.3 Publications from this dissertation

The content of this dissertation is based on the following publications:
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• Chapter 3 is based on the results presented in the paper Protecting

Locations with Differential Privacy under Temporal Correla-

tions [62]. Yonghui Xiao, Li Xiong. CCS, 2015 and LocLok: Location

Cloaking with Differential Privacy via Hidden Markov Model.

Yonghui Xiao, Li Xiong, Si Zhang, Yang Cao. (submitted)

• Chapter 4 is based on the results presented in the paper DPHMM:

Customizable Data Release with Differential Privacy via Hidden

Markov Model. [61] (submitted).
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Chapter 2

Related Works

2.1 Location Privacy

There is a rich set of literature related to location privacy. A few recent books

and surveys [24,39] provide an up-to-date review of Location Privacy Preserving

Mechanisms (LPPMs).

LPPMs can be roughly categorized into PIR-based methods and spatial

transformation methods, as well as hybrid methods that combine the two ap-

proaches. PIR based methods (e.g. [25, 49, 52, 60]) guarantee cryptographic

privacy by allowing data retrieval from a database without revealing any in-

formation to the database server about the retrieved item. However, such

techniques tend to be expensive and impractical, especially for applications

with large sets of points of interest and for dynamic geospatial applications

that require continuous and dynamic location sharing. Spatial transforma-

tion methods generally use obfuscation methods, such as spatial cloaking, cell

merging, location precision reduction or dummy cells, to achieve anonymity

based privacy or uncertainty based privacy. However, anonymity or ad hoc
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uncertainty based techniques do not always provide sufficient privacy protec-

tion [38, 57]. Most spatial transformation techniques proposed so far rely on

syntactic privacy models such as k-anonymity, or ad-hoc uncertainty models,

and do not provide rigorous privacy. Many of them only consider static sce-

narios or perturb the location at single timestamps without considering the

temporal correlations of a moving user’s locations, and hence are vulnerable

to various inference attacks. The recent work [2] proposed a notion of geo-

indistinguishability which extends differential privacy. However, a drawback of

the privacy notion is that neighboring pairs are defined based on a radius and

it does not consider the temporal correlations of multiple locations.

Several works use Markov models for modeling users’ mobility and infer-

ring user locations or trajectories [43,54]. [27] proposed an insightful technique

with a provable privacy guarantee to filter a user context stream even if the

adversaries are powerful and have knowledge about the temporal correlations

but it used suppression instead of perturbation. [57] investigated the question

of how to formally quantify the privacy of existing LPPMs and assumed that

an adversary can model users’ mobility using a Markov chain learned from a

population.

2.2 Inferences on Location

Various inference attacks can be carried out based on location information and

external information such as moving patterns. These include: re-identification

of a user, location disclosure of a user, probabilistic privacy breach of certain

types of information such as presence in an area, trajectory during certain

period, and so on. Several work showed (re)identification attacks based on
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location information. [5] evaluated the risk of re-identifying a user even if the

user identity is not explicitly released because the geo-localized history of user-

requests can act as a quasi-identifier. [12] showed how to identify a user from

the records of cellular network based on previous movements. [38] conducted

an inference attack against obfuscation techniques and showed that a small

fraction of users can be identified and home addresses of a big fraction of users

were exposed.

Other works attempted to infer a user’s actual location through modeling

user’s mobility and to define how to quantify location privacy (not just the

identity). [57] investigated the question of how to formally quantify the privacy

of existing LPPMs. An adversary can model users’ mobility using a Markov

process learned from a population. It then clarified three metrics related to lo-

cation inference including accuracy, certainty and correctness, and argued the

last one should be used as a privacy metric. [43] used a hierarchical Markov

model to learn and infer a user’s trajectory based on the places and temporal

patterns they visited. [54] used the Continuous Time Bayesian Networks to pre-

dict uncertain trajectories of moving objects. [63] proposed a Sub-Trajectory

Synthesis algorithm to learn the transition matrix of Markov chain and to

predict a user’s destination. Although these work were not in the context of

privacy protection, the inspiration to us is that we should also assume adver-

saries have the ability to learn user’s moving pattern and make the inference.

Complicated inferences, like spatio-temporal queries, can also be derived with

matrix computations. With the Markov model and uncertain locations of mov-

ing objects, [18] proposed a modified matrix computation method to efficiently

compute the probability of a user appearing in certain region during certain

time period.
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In conclusion, location privacy has received a lot of attention. Although

many LPPMs and related inference attacks have been proposed, they either

did not protect a reliable privacy or proposed other adversary models which

are not so trustworthy. To our knowledge, none of existing work has provided

differential privacy in the presence of the strong adversary who can model a

user’s mobility through a Markov process. Because temporal correlations are

the key characteristic of geospatial data, a privacy notion has to incorporate it

for rigorous protection of individual movement.

2.3 Differential Privacy

While differential privacy [15] has been accepted as a standard notion for pri-

vacy protection, most works used Laplace mechanism [16] to release differen-

tially private data. Based on Laplace mechanism, Li et al. proposed Matrix

mechanism [40] to answer a batch of queries by factorizing a query matrix to

generate a better “strategy” matrix that can replace the original query matrix.

Other mechanisms, such as Exponential mechanism [47] and K-Norm mecha-

nism [29], were also proposed to guarantee differential privacy. We refer readers

to [30] for a comparative study of the mechanisms. A variety of differentially

private applications [9, 19, 35] can also be found in literature. Several recent

works have applied differential privacy to publish aggregate information from a

large volume of location, trajectory or spatiotemporal data (e.g. [10,20,42,53]).

Because the concept of standard differential privacy is not generally appli-

cable, several variants or generalizations of differential privacy, such as induced

neighbors privacy [36], and δ-neighborhood privacy [21], have been proposed.

Among these variants, Blowfish privacy [32] is the first generic framework with
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customizable privacy policy. It defines sensitive information as secrets and

known knowledge about the data as constraints. By constructing a policy

graph, which should also be consistent with all constraints, Blowfish privacy

can be formally defined.

Optimal query answering under differential privacy has been studied re-

cently. Hardt and Talwar [29] studied the theoretical lower bound for any

differentially private mechanisms and proposed K-norm mechanism. Bhaskara

et al [6] studied another K-norm based method to project the sensitivity hull

onto orthogonal subspaces. Nikolov et al [50] also improved the efficiency of

K-norm mechanism by finding the minimal enclosing ellipsoid to release mul-

tivariate Gaussian noises. So far the best utility of existing mechanisms can be

logpdq approximately optimal.
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Chapter 3

Differential Privacy on Location

Set

In this chapter, we first define δ-location set based on temporal correlations of a

user’s moving pattern. Then we study how to guarantee the differential privacy

on the δ-location set by proposing the sensitivity hull and the planar isotropic

mechanism. Our algorithm is then evaluated in the experiment section.

3.1 Preliminaries

We denote scalar variables by normal letters, vectors by bold lowercase letters,

and matrices by bold capital letters. We use || ¨ ||p to denote the `p norm, xris

to denote the ith element of x, Epq to denote the expectation, xᵀ to denote

the transpose of vector x. Table 4.1 summarizes some important symbols for

convenience.
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si a cell in a partitioned map, i “ 1, 2, ¨ ¨ ¨ ,m

u, x location in state and map coordinates
u˚, x˚ true location of the user

z the released location in map coordinate
p´t prior probability (vector) at timestamp t
p`t posterior probability (vector) at timestamp t
∆X δ-location set
K sensitivity hull

Table 3.1: Notations in Chapter 3

3.1.1 Two Coordinate Systems

We use two coordinate systems, state coordinate and map coordinate, to rep-

resent a location for the Markov model and map model respectively. Denote

S the domain of space. If we partition S into the finest granularity, denoted

by “cell”, then S “ ts1, s2, ¨ ¨ ¨ , smu where each si is a unit vector with the ith

element being 1 and other m ´ 1 elements being 0. Each cell can represent a

state (location) of a user. On the other hand, If we view the space as a map

with longitude and latitude, then a 2ˆ1 vector can be used to represent a user’s

location x with two components xr1s and xr2s. Figure 3.1 shows an example

using these two coordinate systems. If a user is in s7, the state coordinate and

map coordinate are shown as follows. Note that the two coordinate systems

can be transformed to each other. We skip how to transform them and treat

u and x interchangeable.

u “ s7 “

„

0 0 0 0 0 0 1 0 ¨ ¨ ¨ 0



x “ r2, 4sᵀ with xr1s “ 2 and xr2s “ 4

As time evolves, the trace of a user can be represented by a series of locations,

x1,x2, ¨ ¨ ¨ ,xt in map coordinate or u1,u2, ¨ ¨ ¨ ,ut in state coordinate.
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Figure 3.1: Two coordinate systems

3.1.2 Mobility and Inference Model

Our approach uses Markov chain [27,43,57] to model the temporal correlations

between user’s locations. Other constraints, such as road network, can also be

captured by it. However, we note that Markov model, as well as any mobility

models, may have limits in terms of predicability [58]. And we will discuss our

solution to address these limits later.

In our problem setting, a user’s true locations are unobservable, i.e. only

known by the user. The “sanitized” locations released by the perturbation

mechanism are observable to the service provider, as well as adversaries. Thus

from an adversarial point of view, this process is a Hidden Markov Model

(HMM).

At timestamp t, we use a vector pt to denote the probability distribution

of a user’s location (in each cell). Formally,

ptris “ Prpu˚t “ siq “ Prpx˚t “ the coordinate of siq

where ptris is the ith element in pt and si P S. In the example of Figure

3.1, if the user is located in cells ts2, s3, s7, s8u with a uniform distribution, the
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probability vector can be expressed as follows.

p “

„

0 0.25 0.25 0 0 0 0.25 0.25 0 ¨ ¨ ¨ 0



Transition Probability. We use a matrix M to denote the probabilities that

a user moves from one location to another. Let mij be the element in M at ith

row and jth column. Then mij represents the probability that a user moves

from cell i to cell j. Given probability vector pt´1, the probability at timestamp

t becomes pt “ pt´1M. We assume the transition matrix M is given in our

framework.

Emission Probability. If given a true location u˚t , a mechanism releases a

perturbed location zt, then the probability Prpzt|u
˚
t “ siq is called “emission

probability” in HMM. This probability is determined by the release mechanism

and should be transparent to adversaries.

Inference and Evolution. At timestamp t, we use p´t and p`t to denote the

prior and posterior probabilities of a user’s location before and after observing

the released zt respectively. The prior probability can be derived by the poste-

rior probability at previous timestamp t´ 1 and the Markov transition matrix

as p´t “ p`t´1M. Given zt, the posterior probability can be computed using

Bayesian inference as follows. For each cell si:

p`t ris “ Prpu˚t “ si|ztq “
Prpzt|u

˚
t “ siqp

´
t ris

ř

j

Prpzt|u˚t “ sjqp
´
t rjs

(3.1)

The inference at each timestamp can be efficiently computed by forward-

backward algorithm in HMM, which will be incorporated in our framework.
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3.1.3 Differential Privacy and Laplace Mechanism

Definition 3.1 (Differential Privacy). A randomized mechanism Apq satisfies

ε-differential privacy if for any output z, PrpApx1q“zq
PrpApx2q“zq ď eε where neighboring

databases x1 and x2 satisfies

• (Unbounded DP) x2 can be obtained from x1 by adding or removing a

tuple.

• (Bounded DP) x2 can be obtained from x1 by replacing a tuple.

Laplace mechanism [16] is commonly used in the literature to achieve dif-

ferential privacy. It is built on the `1-norm sensitivity, defined as follows.

Definition 3.2 (`1-norm Sensitivity). For any query fpxq: x Ñ Rd, `1-norm

sensitivity is the maximum `1 norm of fpx1q ´ fpx2q where x1 and x2 are any

two instances in neighboring databases.

Sf “ max
x1,x2P neighboring databases

||fpx1q ´ fpx2q||1

where || ¨ ||1 denotes `1 norm.

A query can be answered by fpxq ` LappSf{εq to achieve ε-differential pri-

vacy, where Lappq P Rd are i.i.d. random noises drawn from Laplace distribu-

tion.

3.1.4 Utility Metrics

To measure the utility of the perturbed locations, we follow the analysis of

metrics in [57] and adopt the expected distance (called “correctness” in [57])
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between the true location x˚ and the released location z as our utility metric.

Error “
b

E||z´ x˚||22 (3.2)

In addition, we also study the utility of released locations in the context of

location based queries such as finding nearest k Points of Interest (POI). We

will use precision and recall as our utility metrics in this context which we will

explain later in the experiment section.

3.1.5 Convex Hull

Our proposed sensitivity hull is based on the well studied notion of convex hull

in computational geometry. We briefly provide the definition here.

Definition 3.3 (Convex Hull). Given a set of points X “ tx1,x2, ¨ ¨ ¨ ,xnu, the

convex hull of X is the smallest convex set that contains X.

Note that a convex hull in two-dimensional space is a polygon (also called

“convex polygon” or “bounding polygon”). Because it is well-studied and im-

plementations are also available [51], we skip the details and only use ConvpXq

to denote the function of finding the convex hull of X.

3.2 Privacy Definition

To apply differential privacy in the new setting of continual location sharing, we

conduct a rigorous privacy analysis and propose δ-location set based differential

privacy in this section.
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3.2.1 δ-Location Set

The nature of differential privacy is to “hide” a true database in “neighboring

databases” when releasing a noisy answer from the database. In standard

differential privacy, neighboring databases are obtained by either adding or

removing a record (or a user) in a database. However, this is not applicable in

our problem. Thus we propose a new notion, δ-location set, to hide the true

location at every timestamp.

Motivations. We first discuss the intuitions that motivates our definition.

First, because the Markov model is assumed to be public, adversaries can

make inference using previously released locations. Thus we, as data custo-

dians in a privacy mechanism, can also track the temporal inference at every

timestamp. At any timestamp, say t, a prior probability of the user’s current

location can be derived, denoted by p´t as follows.

p´t ris “ Prpu˚t “ si|zt´1, ¨ ¨ ¨ , z1q

Similar to hiding a database in its neighboring databases, we can hide the user’s

true location in possible locations (where p´t ris ą 0). On the other hand, hiding

the true location in any impossible locations (where p´t ris “ 0) is a lost cause

because the adversary already knows the user cannot be there.

Second, a potential shortcoming of Markov model is that the probability

distribution may converge to a stationary distribution after a long time (e.g. an

ergodic Markov chain). Intuitively, a user’s possible locations can eventually

cover the entire map given enough time. Hiding a location in a large area may

yield a significantly perturbed location that is not useful at all.

According to [26], moving patterns of human have a “high degree” of tem-
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poral and spatial regularity. Hence if people tend to go to a number of highly

frequented locations, our privacy notion should also emphasize protecting the

more probable locations in Markov model.

δ-Location Set. With above motivations, we define δ-location set at any

timestamp t, denoted as ∆Xt. Essentially, δ-location set reflects a set of prob-

able locations the user might appear (by leaving out the locations of small

probabilities).

Definition 3.4 (δ-Location Set). Let p´t be the prior probability of a user’s

location at timestamp t. δ-location set is a set containing minimum number of

locations that have prior probability sum no less than 1´ δ.

∆Xt “ mintsi|
ÿ

si

p´t ris ě 1´ δu

For example, if p´t “ r0.3, 0.4, 0.05, 0.2, 0.03, 0.02s corresponding to rs1, s2, s3,

s4, s5, s6s, then ∆X “ ts2, s1, s4u when δ “ 0.1; ∆X “ ts2, s1, s4, s3u when

δ “ 0.05.

Note that if δ “ 0 the location set contains all possible locations. Thus

0-location set preserves the strongest privacy.

Drift. Because δ-location set represents the most probable locations, a draw-

back is that the true location may be filtered out with a small probability

(technically, Prpx˚ R ∆Xq “ δ). Same situation may also occur if the Markov

model is not accurate enough in practice due to its limit in predicability, as

we mentioned earlier. Therefore, we denote this phenomenon as “drift” and

handle it with the following surrogate approach.

Surrogate. When a drift happens, we use a surrogate location in ∆X as if it
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is the “true” location in the release mechanism.

Definition 3.5 (Surrogate). A surrogate x̃ is the cell in ∆X with the shortest

distance to the true location x˚.

x̃ “ argmin
sP∆X

distps,x˚q

where function distpq denotes the distance between two cells.

Note that the surrogate approach does not leak any information of the true

location, explained as follows. If x˚ P ∆X, then x˚ is protected in ∆X; if not,

x̃ is protected in ∆X. Using surrogate does not reveal whether x˚ is in ∆X or

not. Because in any location release mechanisms x˚ is treated as a black box

(oblivious to adversaries), replacing x˚ with x̃ is also a black box. We formally

prove the privacy guarantee in Theorem 3.6.

In some cases, a surrogate may be far from the true location. Then the

released location may not be useful. Therefore, we also measure the distance

between released location and true location in our experiment to reflect the

long-term effect of surrogate.

3.2.2 Differential Privacy on δ-Location Set

We define differential privacy based on δ-location set, with the intuition that

the released location zt will not help an adversary to differentiate any instances

in the δ-location set.

Definition 3.6 (Differential Privacy). At any timestamp t, a randomized mech-

anism A satisfies ε-differential privacy on δ-location set ∆Xt if, for any output
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zt and any two locations x1 and x2 in ∆Xt, the following holds:

PrpApx1q “ ztq

PrpApx2q “ ztq
ď eε (3.3)

Above definition guarantees the true location is always protected in δ-

location set at every timestamp. In another word, the released location zt

is differentially private at timestamp t for continual location sharing under

temporal correlations. For other application settings, like protecting the trace

or trajectory of a user, we defer the investigation to future works.

3.2.3 Adversarial Knowledge

In reality, there may be a variety of adversaries with all kinds of prior knowl-

edge. Accordingly, we prove that for the problem of continual location sharing

differential privacy is equivalent to adversarial privacy, first studied in [55].

Definition 3.7 (Adversarial Privacy). A mechanism is ε-adversarially private

if for any location si P S, any output z and any adversaries knowing the true

location is in ∆X, the following holds:

Prpu˚t “ si|ztq

Prpu˚t “ siq
ď eε (3.4)

where Prpu˚t “ siq and Prpu˚t “ si|ztq are the prior and posterior probabilities

of any adversaries.

We can show Definition 3.6 is equivalent to adversarial privacy for continual

location sharing, which can be derived from the PTLM property [55].

Lemma 3.1. For the problem of continual location sharing, the following prop-

erties hold:
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I There exists only one true location at a timestamp:

Prpu˚ “ sX u˚ “ s1q “ 0, for any locations s, s1 P S

II Let S Ď S be an area and PrpSq be the probability that the user is in S.

For any two areas S and S1,

PrpSqPrpS1q ě PrpSX S1qPrpSY S1q

Theorem 3.1. For the problem of continual location sharing, Definition 3.6 is

equivalent to Definition 3.7.

Definition 3.7 limits the information gain for adversaries knowing the con-

dition x˚t P ∆X. If x˚t R ∆X, our framework reveals no extra information

due to the surrogate approach. Thus adversarial knowledge can be bounded,

discussed as follows.

Standard Adversary. For adversaries who have exactly the same Markov

model and keep tracking all the released locations, their knowledge is also the

same as our model (with location inference in Section 3.4.3). In this case, dif-

ferential privacy and adversarial privacy are guaranteed, and we know exactly

the adversarial knowledge, which in fact can be controlled by adjusting ε.

Weak Adversary. For adversaries who have little knowledge about the user,

the released locations may help them obtain more information. With enough

time to evolve, they may converge to standard adversaries eventually. But their

adversarial knowledge will not exceed standard adversaries.

Strong Adversary. For adversaries who have additional information, the
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released location from differential privacy may not be very helpful. Specifically,

a strong adversary with auxiliary information may have more accurate prior

knowledge. However, if the adversary cannot identify the true location so that

Prpu˚ “ siq “ 1 for any si P S, Definition 3.7 is always satisfied. On the other

hand, if an “omnipotent” adversary already knows the true location, then no

mechanism can actually protect location privacy.

3.2.4 Comparison with Other Definitions

Differential Privacy. Since the concept of neighboring databases is not gen-

erally applicable (as discussed earlier), induced neighborhood [36], metric based

neighborhood [8] and δ-neighborhood [21] were proposed. The general idea is

that the neighborhood can be formulated by some constraints of data or dis-

tance (metric) functions instead of adding or removing a record. However,

applying these neighborhood based differential privacy is not feasible in our

model because there is only one sole tuple (location) at each timestamp with-

out any “neighbors”. Hence we define δ-location set to extend the notion of

“neighborhood”.

Geo-indistinguishability. Another closely related definition is the Geo-

indistinguishability [2], which protects a user’s location within a radius (circle)

with a “generalized differential privacy” guarantee. In other words, the neigh-

borhood is defined with Euclidian distance. Nevertheless, such spatial pertur-

bation technique may not be reasonable in reality. For example, as shown in

Figure 1.1, the “generalized differential privacy” can still be breached given

the road network constraint or user’s moving pattern (which is represented

by Markov model). Thus location privacy must be protected under temporal

correlations.
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Blowfish privacy. Our privacy definition shares the same insight as the un-

constrained Blowfish privacy framework [32] in statistical data release context,

which uses secret pairs and privacy policy to build a subset of possible database

instances as “neighbors”. We show that δ-location set based differential pri-

vacy can be instantiated as a special case of unconstrained Blowfish privacy at

each timestamp.

Theorem 3.2. Let S be the domain of all possible locations. Let G be a com-

plete graph where each node denotes a location in S. Let ∆X be a condi-

tion such that x˚ P ∆X. At each timestamp, Definition 3.6 is equivalent to

tε, tS, G,∆Xuu-Blowfish privacy.

3.2.5 Discussion

Learning Markov Model. Existing methods such as the knowledge con-

struction module in [57] or EM method in HMM can be used to acquire the

transition matrix M, which will not be discussed in this dissertation. However,

depending on the power of adversaries, two typical M can be learned.

I Popular M can be learned from public transit data.

II Personal M can be derived with personal transit data1.

No matter which M is adopted in our framework, the adversarial knowledge

is always bounded, as discussed before. However, the usefulness of released

locations may vary for different adversaries. We also compare the two models

in our experiments.

1For example, mobile apps, like Google Now, may have a user’s location history to derive
the user’s moving pattern.
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When Markov Model is not Accurate. When the location data does not

exactly follow a Markov model or the learned Markov model is not accurate

enough, our framework still guarantees differential privacy, but may generate

more error. For example, when a user starts to go to a new place for the

first time, which has not been reflected in the learned Markov model, a drift

happens. In this case, our mechanism still works because we can handle the

drift case. Nevertheless, the utility may be downgraded, especially when the

new place is far from the “probable” locations.

Composibility. Since we only need to release one perturbed location at a

timestamp, the sequential composition [46] is not applicable. Otherwise, for

multiple releases at a timestamp the composition of ε holds. On the other hand,

given a series of perturbed locations tz1, z2, ¨ ¨ ¨ , ztu released from timestamp 1

to t, a new problem is how to protect and measure the overall privacy guarantee

of the entire trace. We defer this to future work.

3.3 Sensitivity Hull

The notion of sensitivity indicates the differences between any two query an-

swers from two instances in neighboring databases. However, in multidimen-

sional space, we show that `1-norm sensitivity (in Definition 3.2) fails to capture

the exact sensitivity. Thus we propose a new notion, sensitivity hull. Note that

sensitivity hull is an independent notion from the context of location privacy

and can be plugged in any data-independent perturbation mechanisms.
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3.3.1 Sensitivity Hull

To derive the meaning of sensitivity, let us consider the following example in

traditional setting of differential privacy.

Example 3.1. Assume we have an employee table T with attributes gender

and income. Then we answer the following query workload f :

f1 : Select countp˚q from T where gender “ “female”

f2 : Select countp˚q from T where income ą 50000

Let x1 and x2 be neighboring databases so that x1 is equal to x2 adding

or removing a random user. Suppose fpx2q “ r10, 20sᵀ. Then the possible

answers for fpx1q could be one of the following columns, from which ∆f can

be derived.

fpx1q “

»

–

11 10 10 11 9 9 10

21 21 20 20 20 19 19

fi

fl

∆f “ fpx1q ´ fpx2q “

»

–

1 0 0 1 ´1 ´1 0

1 1 0 0 0 ´1 ´1

fi

fl

Sf “ max||∆f ||1 “ 2 p`1-norm sensitivityq

In Figure 3.2, the dashed lines form the set of ||∆f ||1 “ 2 because the

`1-norm sensitivity is 2. However, ∆f only consists of all the “‚” points.

It is obvious that the `1-norm sensitivity exaggerates the “real sensitivity”.

To capture the geometric representation of ∆f in multidimensional space, we

define sensitivity hull (the solid lines in Figure 3.2) as follows.

Definition 3.8 (Sensitivity Hull). The sensitivity hull of a query f is the
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Figure 3.2: Sensitivity hull of Example 3.1. Solid lines denote the sensitivity
hull K; dashed lines are the `1-norm sensitivity.

convex hull of ∆f where ∆f is the set of fpx1q ´ fpx2q for any pair x1 and x2

in δ-location set ∆X.

K “ Conv p∆fq

∆f “ Y
x1,x2P∆X

pfpx1q ´ fpx2qq

Theorem 3.3. A sensitivity hull K is centrally symmetric: if v P K then

´v P K.

Theorem 3.4. If data x is in discrete domain, then for any f : x Ñ Rd, the

sensitivity hull of f is a polytope in Rd.

3.3.2 Error Bound of Differential Privacy

We extend the error bound of differential privacy in database context [29] to

our location setting using sensitivity hull.

Lemma 3.2. Suppose F : RN Ñ Rd is an aggregate function. When neighbor-

ing databases are obtained by changing an attribute, the sensitivity hull K of F

is a polytope FBN
1 where BN

1 is the N-dimensional unit `1 ball.
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Proof. Because the true data x P RN , any change (by changing an attribute)

of xN will result in a ˘1 operation in one of the N dimensions. Thus the

convex hull for x changes is BN
1 . The changes in x will cause variations in

output domain by FBN
1 . Because linear transformations keep the convexity,

then K “ FBN
1 .

Lemma 3.3 ( [29]). 2 To answer a linear function F : RN Ñ Rd under Defi-

nition 3.1, every ε-differentially private mechanism must have

Error ě Ω

˜

d

ε

ˆ

VolpKq

VolpBd
2q

˙1{d
¸

where Volp¨q is the Volume and Bd
2 is the unit `2 ball.

Then we can derive the lower bound of dynamic differential privacy as

follows.

Theorem 3.5 (Lower Bound). Let K be the sensitivity hull of δ-location set

∆X. To satisfy Definition 3.6, every mechanism must have

Error ě Ω

ˆ

1

ε

a

AreapKq

˙

where AreapKq is the area of K.

Proof. Because x is in discrete domain (from Markov states), K is a polygon

(two-dimensional polytope). The number of vertices must be an even number

2N because K is symmetric. There must be a matrix F P R2ˆN that satisfies

K “ FBN
1 where BN

1 is the N -dimensional unit `1 ball. Therefore, answering

F is the same problem as locating a point from K, which is our geometric

2To check the correctness, we refer readers to the latest version of [29] at http://mrtz.

org/papers/HT10geometry.pdf.

http://mrtz.org/papers/HT10geometry.pdf
http://mrtz.org/papers/HT10geometry.pdf
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location problem. In our setting, the output domain is two-dimensional. The

volume also becomes area of K. Then we obtain above lower bound.

3.4 Location Release Algorithm

3.4.1 Framework

The framework of our proposed location release algorithm is shown in Algo-

rithm 1. At each timestamp, say t, we compute the prior probability vector

p´t . If the location needs to be released, we construct a δ-location set ∆Xt.

Then if the true location x˚ is excluded in ∆Xt (a drift), we use surrogate to

replace x˚. Next a differentially private mechanism (like Algorithm 2 which

will be presented next) can be adopted to release a perturbed location zt. In

the meantime, the released zt will also be used to update the posterior prob-

ability p`t (in the equation below) by Equation (3.1), which subsequently will

be used to compute the prior probability for the next timestamp t ` 1. Then

at timestamp t` 1, the above process is repeated.

p`t ris “ Prpu˚t “ si|zt, zt´1, ¨ ¨ ¨ , z1q

Theorem 3.6. At any timestamp t, Algorithm 1 is εt-differentially private on

0-location set.

Proof. It is equivalent to prove adversarial privacy on 0-location set, which

includes all possible locations. If x˚t P ∆Xt, then zt is generated by x˚t . By

Theorem 3.8, zt is εt-differentially private. So
Prpu˚t “si|ztq

Prpu˚t “siq
ď eε. When x˚t R
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Algorithm 1 Location Release Framework

Require: εt, δ, M, p`t´1, x˚t
1: p´t Ð p`t´1M; Ź Markov transition

2: if location needs to be released then
3: Construct ∆Xt; Ź δ-location set

4: if x˚t R ∆Xt then Ź a drift

5: x˚t Ð surrogate;
6: end if
7: zt ÐAlgorithm 2(εt, ∆Xt, x˚t ); Ź release zt

8: Derive posterior probability p`t by Equation (3.1);
9: end if

10: return Algorithm 1(εt`1, δ, M, p`t , x˚t`1); Ź go to next timestamp

∆Xt, then a surrogate x̃t replaces x˚t . Then

Prpu˚t “ si|ztq

Prpu˚t “ siq
“

ř

k Prpu
˚
t “ si|x̃t “ skqPrpx̃t “ sk|ztq

ř

k Prpu
˚
t “ si|x̃t “ skqPrpx̃t “ skq

ď eε

Therefore, by equivalence (Theorem 3.1) Algorithm 1 is εt-differentially private

on 0-location set.

Laplace Mechanism. With the `1-norm sensitivity in Definition 3.2, Laplace

mechanism (LM) can be adopted in Line 7 of Algorithm 1. The problem of

this approach is that it will over-perturb a location because `1-norm sensitivity

could be much larger than the sensitivity hull, as discussed in Section 3.3. We

use LM with δ-location set as a baseline in our experiment.

3.4.2 Planar Isotropic Mechanism

Because we showed (in Lemma 3.2) that the sensitivity hull of a query matrix

is a polytope (polygon in our two-dimensional location setting), the state-of-art

K-norm based mechanism [6,29,50] can be used.

Definition 3.9 (K-norm Mechanism [29]). Given a linear function F : RN Ñ
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Rd and its sensitivity hull K, a mechanism is K-norm mechanism if for any

output z, the following holds:

Prpzq “
1

Γpd` 1qVolpK{εq
exp p´ε||z´ Fx˚||Kq (3.5)

where Fx˚ is the true answer, || ¨ ||K is the (Minkowski) norm of K, Γpq is

Gamma function and Volpq indicates volume.

However, standard K-norm mechanism was designed for high-dimensional

structure of sensitivity hull, whereas in our problem a location is only two-

dimensional. Thus we can further optimize K-norm mechanism to achieve the

lower bound of differential privacy. We propose a Planar Isotropic Mechanism

(PIM) based on K-norm mechanism as follows.

Rationale. The rationale of PIM is that in two-dimensional space we efficiently

transform the sensitivity hull to its isotropic position3 so that the optimality

is guaranteed.

Theorem 3.7. [29] If the sensitivity hull K is in C-appro-ximately isotropic

position, then K-norm mechanism has error OpCqLBpKq where LBpKq is the

lower bound of differential privacy.

From Theorem 3.7, we know that K-norm mechanism would be the optimal

solution if the sensitivity hull K is in isotropic position, denoted by KI . Al-

though in high-dimensional space transforming a convex body to its isotropic

position is extremely expensive, it is feasible in two-dimensional space. To this

end, we need the following corollary (which can be derived from [45,56]).

3We refer readers to [3, 48] for a detailed study of isotropic position.
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Corollary 3.1 (Isotropic Transformation). For any convex body K in R2, any

integer p ě 1, there is an absolute constant c such that if l ě 4cp2, with

probability at least 1´ 2´p, KI “ TK is in isotropic position.

T “

˜

1

l

l
ÿ

i“1

yiy
ᵀ
i

¸´ 1
2

(3.6)

where y1,y2, ¨ ¨ ¨ ,yl are independent random points uniformly distributed in K.

Therefore, the isotropic transformation of any sensitivity hull K can be

fulfilled by sampling, which is a trivial task in two-dimensional space. For

instance, a hit-and-run algorithm [44] only takes Oplog3p1{δqq time where δ

is an error parameter. We skip the sampling details and refer readers to the

survey paper of Santosh Vempala [59] for a complete study.

?

K ′ v1

v2

v3

v4

v5

(a)

o

K

�
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�
�

∆
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∆

∆

(b)

o

z′

KI

(c)

Figure 3.3: (a) Convex hull of ∆X. (b) Finding the sensitivity hull K. (c)
Transform K to isotropic position KI . Sample a point z1.

Algorithm. As an overview, PIM involves the following steps:

(1) Compute sensitivity hull K from ∆X;

(2) Transform K to isotropic position KI ;

(3) generating a noise in the space of KI by K-norm mechanism;

(4) Transform to the original space.

We first describe how to compute sensitivity hull K. Suppose we have a
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δ-location set ∆X at a timestamp. We can first derive the convex hull of ∆X,

denoted by K 1 “ Convp∆Xq. For example, in Figure 3.3a, the convex hull K 1

is shown by the black lines given δ-location set as “‚” and “‹” where “‹” is

the true location. Denote v1,v2, ¨ ¨ ¨ ,vh the vertices of K 1. Then we use a set

∆V to store vi ´ vj for any vi and vj from the vertices of K 1 as the equation

below. In Figure 3.3b, for instance, the polygon “4 ¨ ¨ ¨4” denotes vi ´ v1 for

all vi. Then Convp∆Vq will be the sensitivity hull K of the δ-location set, as

shown by the polygon with solid lines in Figure 3.3b.

K “ Convp∆Vq

∆V “ Y
v1,v2P vertices of K1

pv1 ´ v2q

Next we transform K to its isotropic position KI . We sample y1,y2, ¨ ¨ ¨ ,yl

uniformly from K. Then a matrix T can be derived by Equation (3.6). To

verify if T is stable, we can derive another T1. If the Frobenius norm ||T1
´T||F

is small enough (e.g. ă 10´3), then we accept T. Otherwise we repeat above

process with larger l. In the end, KI “ TK is the isotropic position of K, as

shown in Figure 3.3c.

Next a point z1 can be uniformly sampled from KI . We generate a random

variable r from Gamma distribution Γp3, ε´1q. Let z1 “ rz1. Then we transform

the point z1 to the original space by z1 “ T´1z1. The released location is

z “ x˚ ` z1.

Algorithm 2 summarizes the process of PIM. Lines 5„6 can be iterated

until T is stable, whereas the computational complexity is not affected by

the iterations because the number of samples is bounded by a constant (by

Corollary 3.1).
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Algorithm 2 Planar Isotropic Mechanism

Require: ε, ∆X, x˚

1: K 1 Ð Convp∆Xq; Ź convex hull of ∆X

2: ∆V ÐÝ Y
v1,v2P vertices of K1

pv1 ´ v2q;

3: K Ð Convp∆Vq; Ź sensitivity hull

4: Repeat lines 5,6 with larger l if T is not stable:
5: Sample y1,y2, ¨ ¨ ¨ ,yl uniformly from K;

6: T Ð

´

1
l

řl
i“1 yiy

ᵀ
i

¯´ 1
2
;

7: KI “ TK; Ź isotropic transformation

8: Uniformly sample z1 from KI ;
9: Sample r „ Γp3, ε´1q;

10: return z “ x˚ ` rT´1z1; Ź release z

Privacy and Performance Analysis. We now present the privacy property,

complexity, and the error of PIM.

Theorem 3.8. Algorithm 2 is ε-differentially private on δ-location set ∆X.

Proof. The isotropic transformation is a unique R2 Ñ R2 mapping. In the

space of KI , it is easy to prove that the probability distribution of z1 is equal

to Equation (3.5) in which KI is in place of K. Therefore, Algorithm 2 is

ε-differentially private.

Theorem 3.9. Algorithm 2 takes Opnlogphq ` h2logphqq time where n is the

size of ∆X and h is number of vertices on Convp∆Xq.

Proof. Line 1 takes time Opnlogphqq where n is the size of ∆X and h is number

of vertices on Convp∆Xq. Line 3 takes time Oph2logphqq. Because the number

of samples is bounded by a constant, lines 4„6 need Op1q time. Thus the

overall complexity is Opnlogphq ` h2logphqq.

Theorem 3.10. Algorithm 2 has error O
´

1
ε

a

AreapKq
¯

at most, which

means it achieves the lower bound in Theorem 3.5.
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Proof. From Equation (3.5), we can obtain the following error in the isotropic

space

Error2
“

ż

x

Prpxq||x||22dx “
12detpT´1

q

ε2AreapKIq
E

xPKI

||x||22

where detpT´1
q is the determinant of T´1. By the isotropic property,

Error2
“

12L2
KI

ε2
detpT´1

qAreapKIq

where LKI
is the isotropic constant of KI . After transforming back to the

original space, it is easy to show that detpT´1
qAreapKIq becomes AreapKq.

Therefore, Algorithm 2 has error at most Op1
ε

a

AreapKqq, which is the lower

bound in Theorem 3.5. Hence Algorithm 2 is optimal.

3.4.3 Location Inference

The inference of line 8 in Algorithm 1 is a general statement because inference

methods depend on specific release algorithms. To implement the inference for

PIM, we need to transform the location si and the released location zt to the

isotropic space of KI . Then in Equation (3.1), the probability Prpzt|u
˚
t “ siq

can be computed as follows. This completes the whole algorithm.

Prpzt|u
˚
t “ siq “

ε2

2AreapKIq
expp´ε||z1t ´ s1i||KI

q

z1t “ Tz; s1i “ Tsi
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3.5 Experimental Evaluation

In this section we present experimental evaluation of our method. All algo-

rithms were implemented in Matlab on a PC with 2.9 GHz Intel i7 CPU and

8 GB Memory.

Datasets. We used two real-world datasets.

I Geolife data. Geolife data [64] was collected from 182 users in a period

of over three years. It recorded a wide range of users’ outdoor move-

ments, represented by a series of tuples containing latitude, longitude and

timestamp. The trajectories were updated in a high frequency, e.g. every

1 „ 60 seconds. We extracted all the trajectories within the 3rd ring of

Beijing to train the Markov model, with the map partitioned into cells of

0.34ˆ 0.34 km2.

II Gowalla data. Gowalla data [11] contains 6, 442, 890 check-in locations of

196, 586 users over the period of Feb. 2009 to Oct. 2010. We extracted

all the check-ins in Los Angeles to train the Markov model, with the map

partitioned into cells of 0.89ˆ 0.89 km2. Because check-ins were logged in

a relatively low frequency, e.g. every 1 „ 50 minutes, we can examine the

difference of the results from Gowalla and Geolife.

Metrics. We used the following metrics in our experiment, including two in-

ternal metrics: size of ∆X, drift ratio, and two sets of utility metrics: distance,

precision and recall. We skip the runtime report because most locations were

released within 0.3 second by PIM.

I Since our privacy definition is based on δ-location set ∆X, we evaluated

the size of ∆X to understand how ∆X grows or changes.
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Figure 3.4: Performance over time: (a) The true (original) trace; (b)(c) Re-
leased traces; (d) Size of ∆X over time; (e) Drift ratio over time; (f) Distance
over time.

II The definition of ∆X and the potential limit of Markov model may cause

the true location to fall outside ∆X (drift). Thus we measured the drift

ratio computed as the number of timestamps the true location is excluded

in ∆X over total number of timestamps.

III We measured the distance between the released location and the true lo-

cation, which can be considered as a general utility metric independent of

specific location based applications.

IV We also run k nearest neighbor (kNN) queries using the released locations

and report its precision and recall compared to the true kNN set using

the original location. Suppose the true kNN set is R, the returned k1NN

set (we set k1 ě k) is R1, precision is defined as |R X R1|{k1, and recall is

defined as |R XR1|{k.
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Figure 3.5: Impact of parameters on GeoLife data with popular M: (a)(d)
Impact of ε and δ on size of ∆X; (b)(e) Impact of ε and δ on drift ratio; (c)(f)
Impact of ε and δ on distance.
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Figure 3.6: Impact of parameters on GeoLife data with personal M: (a)(d)
Impact of ε and δ on size of ∆X; (b)(e) Impact of ε and δ on drift ratio; (c)(f)
Impact of ε and δ on distance.



42

0.2 0.4 0.6 0.8 1
7.8

8

8.2

8.4

8.6

8.8

ε

S
iz

e 
of

 ∆
X

 

 

LM
PIM

(a) Size vs. ε

0.2 0.4 0.6 0.8 1
0.38

0.4

0.42

0.44

0.46

0.48

ε

D
rif

t R
at

io

 

 

LM
PIM

(b) Drift Ratio vs. ε

0.2 0.4 0.6 0.8 1
10

20

30

40

50

ε

D
is

ta
nc

e 
(k

m
)

 

 

LM
PIM

(c) Distance vs. ε

−3 −2.5 −2 −1.5 −1

5

10

15

20

25

log
10

(δ)

S
iz

e 
of

 ∆
X

 

 

LM
PIM

(d) Size vs. δ

−3 −2.5 −2 −1.5 −1

0.3

0.4

0.5

0.6

log
10

(δ)

D
rif

t R
at

io
 

 

LM
PIM

(e) Drift Ratio vs. ε

−3 −2.5 −2 −1.5 −1
6

8

10

12

14

16

log
10

(δ)

D
is

ta
nc

e 
(k

m
)

 

 

LM
PIM

(f) Distance vs. δ

Figure 3.7: Impact of parameters on Gowalla data with popular M: (a)(d)
Impact of ε and δ on size of ∆X; (b)(e) Impact of ε and δ on drift ratio; (c)(f)
Impact of ε and δ on distance.

3.5.1 Performance Over Time

In order to show the performance of a release mechanism as a user moves over

time, including how ∆X changes, how often drift happens and how accurate

is the perturbed location, we first run a set of experiments for a single test

trajectory with popular M learned from all users. We selected a random test

trajectory from Geolife dataset consisting of 500 timestamps. We tested both

PIM and LM at each timestamp with ε “ 1 and δ “ 0.01. Each method

was run 20 times and the average is reported. Figure 3.4a shows the original

trajectory in map and state (grid) coordinates; Figures 3.4b and 3.4c show the

released (perturbed) locations at each timestamp. We can see that the released

locations of PIM is closer to the true location, compared with LM.

Size of ∆X. From Figure 3.4d we see that the size of ∆X does not increase

dramatically, instead it maintains at stable level after a few timestamps. The
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reason is that by selecting the δ-location set the inference mechanism only boost

probabilities of locations in ∆X. Then the probabilities of other locations decay

gradually. Thus a stable δ-location set can be maintained.

Drift Ratio. In Figure 3.4e, the peak of drift ratio happened in timestamp

200 „ 300. This can be explained by the fact that the true trajectory has a

turning corner as in Figure 3.4a, and the transition probability of making this

right turn is relatively small in the Markov model.

When a drift happens, we use surrogate for release mechanisms. Because

the surrogate is the nearest cell to the true location in ∆X and the release

mechanism is based on the surrogate, the posterior probability of the surrogate

will be boosted. Consequently, in the next timestamp the probability that ∆X

includes the previous true location rises. This “lagged catch-up” can be verified

by Figures 3.4f, 3.4b and 3.4c.

Distance. The distance is reported in Figure 3.4f. We can see that PIM

provided more accurate locations than LM for two reasons. First, because PIM

is optimal, the posterior probability distribution is more accurate than LM.

Second, with such distribution a better (Bayesian) inference can be obtained,

making ∆X more accurate for the coming timestamp.

3.5.2 Impact of Parameters

Since the performance may vary for different trajectories, we chose 100 trajec-

tories from 100 users, each of which has 500 timestamps, to evaluate the overall

performance and the impact of parameters. The default values are ε “ 1 and

δ “ 0.01 if not mentioned. The average performances for both datasets are

reported in Figures 3.5 (on GeoLife data with popular M), Figure 3.6 (on Ge-
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oLife data with personal M) and Figure 3.7 (on Gowalla data with popular

M).

Size of ∆X vs. ε. In Figures 3.5a and 3.6a (Geolife data), size of ∆X

shrinks with larger ε because the inference result is enhanced by big ε. On

the other hand, impact of ε would be negligible in Gowalla data because one-

step transition in Markov model has limited predictability (check-ins are not

frequent), as in Figure 3.7a.

Size of ∆X vs. δ. Size of ∆X is mainly determined by δ as shown in Figures

3.5d, 3.6d and 3.7d. Note that LM and PIM have similar size of ∆X, meaning

the true location is hidden in the similar size of candidates. When δ grows, size

of ∆X reduces dramatically because more improbable locations are truncated.

However, δ cannot be too large because it preserves nearly no privacy if size of

∆X is close to 1. Thus we use δ “ 0.01 by default, which guarantees the sizes

of ∆X are larger than 4 in the three settings.

Drift Ratio vs. ε. Figures 3.5b and 3.7b show that drift ratio declines with

larger ε, which is easy to understand because larger ε provides more accurate

release. However, the impact of ε is not obvious in Figure 3.6b. The reason is

that the size of ∆X is already small as in Figure 3.6d, hence the increase of ε

does not help much in improving the accuracy of the inference.

Drift Ratio vs. δ. Figures 3.5e, 3.6e and 3.7e show that drift ratio rises

when δ increases due to reduced ∆X, and PIM is slightly better than LM.

However, due to the phenomenon of “lagged catch-up”, we will see next that

the accuracy of the released locations was still improved with increasing δ.

Distance vs. ε. Figures 3.5c, 3.6c and 3.7c show the distance with varying

ε. We can see that PIM performed better than LM. In Gowalla data, because
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check-in locations are far away from each other, the distance is larger than

Geolife.

Distance vs. δ. Because bigger δ will result in less candidates in δ-location

set, the distance declines when δ increases. Figures 3.5f, 3.6f and 3.5f show

that PIM achieves better accuracy than LM. However, from 10´1.5 to 10´1, the

improvement on distance is very small while privacy guarantee drops signifi-

cantly as in Figures 3.5d, 3.6d and 3.7d. Especially in Figure 3.6d, size of ∆X

is 1 when δ “ 0.1. Therefore, choosing a high value of δ (like δ ą 0.03) does

not provide the best trade-off of privacy and utility.

Impact of Markov model. Comparing Figures 3.5 on popular M and Figure

3.6 on personal M, we can see the impact of different Markov model. With more

accurate (personal) model, better utility can be achieved, including smaller size

of ∆X, lower drift ratio and less distance. However, the same privacy level (ε-

differential privacy) is maintained (on different ∆X) regardless of M.

3.5.3 Utility for Location Based Queries

To demonstrate the utility of released locations, we also measured the precision

and recall of kNN queries at each of the 500 timestamps in the 100 trajectories

with popular M. The average results of kNN from original locations and k1NN

from released locations are reported in Figure 3.8 with ε “ 1 and δ “ 0.01.

In Figures 3.8a and 3.8d, we show the precision and recall with k “ k1.

Note that in this case precision is equal to recall. We can see that when k

grows precision and recall also increase because the nearest neighbors have to

be found in larger areas. PIM is consistently better than LM.

Next we fixed k “ 5 and varied k1. Figures 3.8b and 3.8e show the precision
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Figure 3.8: kNN results: (a)(d) precision and recall under k “ k1; (b)(e)
precision vs. k1; (c)(f) recall vs. k1.

drops when k1 rises because of a larger returned set. On the other hand, Figures

3.8c and 3.8f indicate recall increases with large k1. Overall, PIM has better

precision and recall than LM.

3.6 Conclusion Remarks

In this chapter we proposed δ-location set based differential privacy to protect

a user’s true location at every timestamp under temporal correlations. We

generalized the notion of “neighboring databases” to δ-location set for the new

setting and extended the well known `1-norm sensitivity to sensitivity hull in

order to capture the geometric meaning of sensitivity. Then with sensitivity

hull we derived the lower bound of δ-location set based differential privacy. To

achieve the lower bound, we designed the optimal planar isotropic mechanism

to release differentially private locations with significantly high efficiency and

utility.
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Chapter 4

Customizable Privacy in Hidden

Markov Model

Although location privacy can be preserved by Chapter 3, another important

factor is that privacy requirements are highly individualized for personal loca-

tion protection. For example, if a user is at a restaurant, she may prefer to hide

her true location but reveal that she is at one of the many restaurants 1. Such

privacy preference cannot be achieved by existing privacy notions. In static ag-

gregate data release context, Kifer et al. [37] proposed a Pufferfish framework

to protect secrets of databases among indistinguishable pairs. He et al. [32]

further developed a Blowfish framework by generating a policy graph where

a node represents a secret to be protected, and an edge represents indistin-

guishability between the two connected nodes. While the Blowfish framework

works well in the static aggregate data release setting with its deterministic

constraints, it is not clear how the model can be extended for dynamic data

streams where the temporal correlations described by Markov model can be

1This is different from k-anonymity because the number of restaurants can be much larger
than k, and the released data can still be differentially private.
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S domain of states in Markov model
si, sj, sk a state in Markov model

s˚ the true state
C constraint (set)

Table 4.1: Notations in Chapter 4

considered as dynamic and probabilistic constraints.

In this chapter, we first extend the Blowfish notion to a DPHMM notion

under temporal correlations. Then we show that the policy graphs in the

customizable privacy can be reduced to smaller graphs. To ensure the privacy

guarantee, we investigate whether the new graphs also preserves the privacy,

measured by a notion of DoP (degree of protection). We study how to generate

the optimal graph based on the new graphs with minimum error. The algorithm

is then evaluated in the experiment section.

4.1 Preliminaries

We use operators Y and X to denote union and intersection of sets; | ¨ | to

denote the number of elements in a set; || ¨ ||p denotes `p norm; ab denotes a

line connecting points a and b. Table 4.1 summarizes some important symbols

for convenience.

4.1.1 Blowfish Privacy

Unlike differential privacy which protects all neighboring databases together,

Blowfish privacy only protects the connected secrets in its policy graph.

Definition 4.1 (Blowfish Neighbors [28]). Given a graph G and a set of con-

straints C, two databases D1 and D2 are neighbors if they satisfy the constraint

C, and



49

• (Unbounded Blowfish) D2 can be obtained by adding a tuple to or removing

a tuple from D1 if the tuple (secret) is connected to a “null” node in G.

• (Bounded Blowfish) D1 and D2 only differ one tuple, whose values in D1

and D2 are connected in G.

A randomized mechanism Apq satisfies ε-Blowfish privacy if for any output z,

PrpApD1q“zq
PrpApD2q“zq

ď eε.

For example, Figure 4.1a is a patients’ table where each row is a secret

indicating the patient’s disease e.g., secrets s3 and s4 are “Bob has cancer”

and “Bob has diabetes” respectively. For bounded Blowfish privacy, it uses

a policy graph to enforce the indistinguishability between the secrets, which

can be regarded as edge protection in the graph. For instance, Figure 4.1b

ensures adversaries cannot distinguish whether Bob has cancer or diabetes by

connecting s3 and s4. For unbounded Blowfish privacy, it uses a policy graph to

disguise the existence of secrets. For example, Figure 4.1c connects all secrets

to a “null” node, which represents the non-existence of these nodes. Thus the

adversaries cannot know whether a secret is real or not. Furthermore, the

bounded and unbounded Blowfish privacies can also be combined in one graph

by adding the null node into the graph of bounded Blowfish.

4.1.2 Hidden Markov Model

We denote the domain of states by S, S “ ts1, s2, ¨ ¨ ¨ , sNu where each si is a

unit vector with the ith element being 1 and other N ´ 1 elements being 0.

We denote s˚ the true state at each timestamp. For privacy protection, s˚ is

unobservable to (hidden from) any adversaries. Thus it is an HMM. At times-

tamp t, we use a vector pt P r0, 1s
1ˆN to denote the probability distribution of
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s1 Alice cancer
s2 Alice asthma
s3 Bob cancer
s4 Bob diabetes
s5 Chad cancer
s6 Chad diabetes

(a)

s1 s2

s5

s3 s4

s6

(b)

s1 s2

s5

s3 s4

s6

null

(c)

Figure 4.1: (a): a table showing patients’ diseases with each row being a secret;
(b): a policy graph of bounded Blowfish; (c): a policy graph of unbounded
Blowfish.
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Figure 4.2: (left) a Markov model with transition probabilities; (right) its
measurement query in Example 4.2.

true state. Formally, ptris “ Prps˚t “ siq where ptris is the ith element in pt

and si P S.

Example 4.1 (Running Example). The example in Figure 4.3a is described

by a random-walk Markov model in Figure 4.2 (left) where each state denotes

a location on the map, if the true state at timestamp t is s1, then s˚t “ s1 “[1

0 0 0 0 0], pt “[1 0 0 0 0 0].

Measurement Query. At each timestamp, a measurement query f : S Ñ Rd

about current state is evaluated. We denote the space containing all possible

outputs of f by measurement space.

Example 4.2 (Measurement Query). Let f : S Ñ R2 be two quantities about
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the true state in Figure 4.2:

f1 : temperatue of current state

f2 : noise level of current state

Then f can be expressed as fpsq “

»

—

–

1 2 3 0 4 1

0 1 0 1 2 2

fi

ffi

fl

sᵀ where each column

corresponds the answer of a state, e.g. fps1q “ r1, 0s
ᵀ, fps2q “ r2, 1s

ᵀ. Above

answer can be denoted in measurement space, as in Figure 4.2 (right).

4.2 Problem Statement

We describe the problem and discuss the challenges when applying the Blowfish

framework in the new setting of hidden Markov model.

Relationship of policies. Although the Blowfish policy works well individu-

ally, the relationship of different policies has not been studied so far. Consider

the following examples.

• Given the policy graph in Figure 4.1b which protects s1 „ s4, are secrets

s5 and s6 also protected? Since they are disconnected in the graph, shall

we assume they are disclosed? If so, is it necessary to connect them to a

null node, or connect them to other nodes (and which)?

• If tε, Gu-Blowfish privacy is preserved where G is the graph in Figure

4.1b, what is the privacy guarantee for all the secrets ts1 „ s6u, i.e., what

is the relationship between Blowfish privacy and differential privacy?

We will answer above questions in Example 4.4, followed with theoretical result.
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4.2.1 Probabilistic Constraint

Next we discuss how the above problems emerge in our setting of hidden Markov

model. We can first try to apply Blowfish privacy in Markov model potentially.

For example, Figure 4.3a shows the Markov model of a moving user with 6

states, denoted by ts1, ¨ ¨ ¨ , s6u. If the user prefers to hide her state in 3 cat-

egories, i.e., cafeteria, school and grocery (the octagon, circle and square in

Figure 4.3a), the privacy customization can be achieved by the graph in Figure

4.3b. Then if the user is at state s5, the graph ensures that ts4, s5, s6u are

indistinguishable.

A main difference between Blowfish framework and our framework is the

constraint type. In Blowfish framework, the constraints are deterministic,

which leads to the NP-hard complexity [32]. Whereas the constraints in Markov

model are probabilistic. For example, in Blowfish framework, Bob can have

cancer and diabetes at the same time, or no disease at all. However, in Markov

model, there has to and can only exist ONE state, which means the existence

of one state excludes all other states. Such rigid constraints pose higher privacy

risk than in Blowfish framework.

At any timestamp t, the prior probability p´t can be derived as

p´t ris “ Prps˚t “ si|zt´1, ¨ ¨ ¨ , z1q

Clearly, with p´t the states can be divided into two sets: p´t “ 0 and p´t ą 0,

leading to the following consequences: (1) For the non-existing states (p´t ris “

0), the unbounded Blowfish privacy is meaningless. (2) For the possible states

(p´t ris ą 0), unbounded Blowfish becomes bounded Blowfish privacy auto-

matically. (3) Bounded Blowfish privacy only holds for the possible states
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because all edges connecting the non-existing states disappear in the policy

graph. Therefore, we focus on the bounded Blowfish, which means a state is

mixed with other states in the graph.

Without ambiguity, we define the constraint of Markov model as the set of

states with p´t ą 0.

Definition 4.2 (Constraint). Let p´t be the prior probability at timestamp t.

Constraint Ct consists of all states satisfying the constraint p´t ris ą 0.

Ct :“ tsi|p
´
t ris ą 0, @si P Su

Under the constraint Ct, the policy graph may be reduced. In Figure 4.3,

assume the user moved from s1 to s5. If an adversary infers by temporal cor-

relations that the true state can only be ts2, s3, s5u, the shaded area in Figure

4.3c, is the graph in Figure 4.3b still applicable? In this case, although s5 is

connected to s4 and s6, the adversary can eliminate s4 and s6 with the knowl-

edge (constraint). In consequence, the original edges s4s5 and s5s6 disappear,

as shown in Figure 4.3d. Then the following questions arise: is s5 still pro-

tected? If not, how to re-generate a new graph to protect s5 based on the

current graph? We will answer these questions in Examples 4.6 and 4.7.

4.2.2 Problem Statement

We summarize our problem as follows. Given an initial state (or probability), a

Markov model and a customizable policy graph, how to answer a measurement

query f : S Ñ Rd at each timestamp under the HMM assumptions? First,

the Markov model can be known to any adversaries. Second, all the previously

released answers (observable) can be accessed by adversaries to make inference
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(East)

(North)
s1 s2 s3

s4 s5

s6

(a)

s1 s2 s3

s4 s5

s6

(b)

(East)

(North)

s1 s2 s3

s4 s5

s6

(c)

s1 s2 s3

s4 s5

s6

××
×

(d)

Figure 4.3: Running example. (a): protecting a state in its category (the
octagon, circles or squares); (b): the policy graph connecting all nodes in a cate-
gory; (c): an adversary estimated that the true location can only be ts2, s3, s5u;
(d): the reduced graph from (b) with the constraint in (c).

about the true state. Third, the data release mechanism is transparent to

adversaries. The released answer zt should have the following properties: (1)

it guarantees a privacy notion to protect the true state; (2) it minimizes the

error, measured by the `2 distance Error “
a

E||zt ´ fps˚t q||22 between the

released answer zt and the true answer fps˚q.

Learning the Markov Model. A Markov model can be learned from publicly

available data or perturbed personal data using standard methods, such as EM

algorithm. Even if an adversary can obtain such a model, we still need to

protect the true state. In the DPHMM, we assume the Markov model has been

learned, and is also known to any adversaries.
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Incomplete Model. Depending on the power of adversaries, an incomplete

(inaccurate) Markov model can be used by adversaries. In this case, the pri-

vacy is still guaranteed while the inference result may be downgraded for the

adversary (Section 4.5.3).

4.3 Privacy Definition

To derive the meaning of DPHMM, we extend Blowfish privacy from [28, 32].

Related privacy notions are also discussed in this section.

4.3.1 Policy Graph

Policy Graph without Constraint. We first study the problem in the whole

domain S without any constraint. Given the true state s˚ at a timestamp, a

user may prefer to hide s˚ in a group of candidate states, denoted by N ps˚q

as neighbors of s˚ where N ps˚q Ď S. Intuitively, the more neighbors a state

has, the more privately it is protected. For simplicity, we assume si P N psiq

for all states si because it is straightforward that si is hidden in its neighbor

set N psiq.

We can represent the privacy policy by a undirected graph where a node

represents a state and an edge connects an indistinguishable pair of states. The

graph has to be undirected for the following reason. When the true state is si,

we can draw edges from si to all sj P N psiq. The edge sisj means si and sj

are indistinguishable given true state si. On the other hand, when true state is

sj, the indistinguishability sjsi also has to hold. Otherwise an adversary may

infer that si and sj are only connected when si is the true state. Therefore, the

edge sisj is undirected, meaning it holds for both si and sj.
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(a) Gcplt (b) Gcateg (c) Gutil

s4

s2 s3s1

s5 s6

(d) Gtrs

Figure 4.4: Examples of policy graphs without constraint. (a): all states
are connected; (b): states in a category are connected; (c): nearby states
are connected; (d): transition protection for Example 4.1. To protect a one-
step transition si Ñ sj , we can require all pairs of states sj and sk to be
indistinguishable if they can be transited from the same previous state si.
Gtrs :“ tG|sjsk P E iff mij ą 0 and mik ą 0,@i, j, ku. Note that with Gtrs
even if s˚t were exposed, s˚t`1 would still be protected.

Definition 4.3 (Policy). A policy is an undirected graph G “ pS, Eq where S

denotes all states (nodes) and E represents indistinguishability (edges) between

states.

Definition 4.4 (Neighbors). Let s be a state in S. The neighbors of s, denoted

by N psq, is the set of nodes connected with s by an edge, including s itself.

N psq :“ tsu Y ts1|ss1 P E , s1 P Su

To better adjust utility and privacy for any particular applications, how to

design policy graph is not a trivial task. We briefly discuss some policy graphs

in Figure 4.4. In DPHMM, we assume a policy graph is given.

Policy Graph with Constraint. With the constraint Ct (Definition 4.2),

the policy graph G has to be built on Ct at each timestamp t. Then the policy

graph becomes a subgraph with the nodes in Ct and the residual edges in G,

denoted by constrained policy graph GX Ct. It is intuitive that with different

Ct graphs may be different over time.
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(a) Gcplt X C1 (b) Gcateg X C1 (c) Gutil X C1

s4

s2 s3s1

s5 s6

(d) Gtrs X C2

Figure 4.5: Policy graphs of Figure 4.4 with constraints C1 and C2, denoted by
the black points in the graphs.

Example 4.3 (Constrained Policy Graph). Figure 4.5 shows the policy graphs

of Figure 4.4 with the constraint sets. The black points indicate the constraint

sets. The gray points and their edges are removed from the original graph.

4.3.2 DPHMM

With policy graph G and any constraint Ct, tε, G, Ctu-DPHMM can be defined

as follows with the intuition that at any timestamp the true state cannot be

distinguished from its remaining “neighbors” under the constraint.

Definition 4.5 (tε, G, Ctu-DPHMM). Let G be the policy graph, Ct be the con-

straint at timestamp t. An tε, G, Ctu-DPHMM algorithm Apq generates an out-

put zt such that for any zt and any state sj P Ct, the following condition is

satisfied:

"

@sk P N psjq X Ct, if sj is connected to sk in GX Ct;

Dsk P Ct, if sj is disconnected in GX Ct;

e´ε ď
PrpApsjq “ ztq

PrpApskq “ ztq
ď eε (4.1)

In above definition, if sj is connected with any sk in Ct, then sj and sk are
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indistinguishable by Equation (4.1); However, if sj is disconnected, sj may be

exposed 2. To protect sj in this case, we have to connect sj to another node

sk in Ct (such new graph is called protectable graph in Section 4.4.2) to form a

new edge of indistinguishability between sj and sk. The user has the choice to

specify which sk to use to protect sj
3. We also discuss how to find the optimal

sk in Section 4.5.1.

4.3.3 Comparison with Other Definitions

Among the variant definitions of differential privacy [32, 36, 37, 62] we briefly

compare some closely related definitions as follows.

δ-Location Set based Differential Privacy. Chapter 3 defined differential

privacy on a subset of possible states (locations) derived from Markov model.

The indistinguishability is ensured among any two locations in the δ-location

set, which can be viewed as a new constraint. Thus it is a special case of

DPHMM with complete graph.

Theorem 4.1. δ-location set based ε-differential privacy is equivalent to tε, Gcplt, C 1tu-

DPHMM where Gcplt is a complete graph and C 1t “ mintsi|
ř

si
p´t ris ě 1´ δu.

Blowfish Framework. There are three differences between DPHMM and

Blowfish framework. (1) The constraints in Blowfish are deterministic; while

constraints in Markov model are probabilistic. (2) The graph in Blowfish is

static; while in Markov model the graph can be reduced. When there are

disconnected nodes in the reduced graph, privacy risk needs to be tackled. (3)

2 The exposure consists of two scenarios: (1) an adversary knows sj is the true state. (2)
an adversary knows sj is not the true state.

3We do not hide the policy information (e.g. sj and sk are connected). DPHMM ensures
that an adversary cannot distinguish whether sj or sk is the true state.
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We quantify the privacy guarantee of Blowfish in terms of differential privacy

(Section 4.4.1).

Theorem 4.2. tε, G, Ctu-DPHMM is equivalent to tε, tS,Gt, Ctuu-Blowfish pri-

vacy where S is the domain of states in a Markov model, Gt is the set of graphs

satisfying the condition in DPHMM and Ct is the constraint.

4.4 Privacy Risk

Given a constrained policy graph GXCt, when a node si is disconnected (with-

out neighbors), one may conclude that si will be disclosed. However, we show

that this may not be the case. We first quantify the privacy risk given the

static Blowfish policies. Then we formalize the privacy risk and define degree

of protection (DoP) to measure the risk.

4.4.1 Blowfish Analysis

Let us continue with the example in in Figure 4.1a.

Example 4.4 (Laplace Exposure). Given the table T in Figure 4.1a and the

graph in Figure 4.1b, let f be a two-dimensional query:

f1 : select count(*) from T where disease=“cancer”

f2 : select count(*) from T where disease=“diabetes”

W.l.o.g, for a database D we assume the answer to the query is fpDq “

r10, 20sᵀ. Then fpD Y s1q “ r11, 20sᵀ, fpD Y s2q “ r10, 20sᵀ, fpD Y s3q “

r11, 20sᵀ, fpDYs4q “ r10, 21sᵀ. ∆f “ ˘ rfpD Y s1q ´ fpD Y s2q, fpD Y s3q ´ fpD Y s4qs “



60

»

—

–

1 ´1 ´1 1

0 1 0 ´1

fi

ffi

fl

ᵀ

where each column is a data point of the differences be-

tween connected nodes. Then `1-norm sensitivity Sf “ 2. Assume tε, Gu-

Blowfish privacy is preserved where G is the graph in Figure 4.1b. For s5,

fpDYs5q “ r11, 20sᵀ. fpDYs5q´fpDq “ r1, 0s
ᵀ. Because ||r1, 0sᵀ||1 “ 1 ă Sf ,

it is protected by Laplace mechanism. Similarly for s6, fpD Y s6q ´ fpDq “

r0, 1sᵀ. Thus s6 is also protected by Laplace mechanism since ||r0, 1sᵀ||1 “ 1 ă 2.

Based on above example, can we claim s5 and s6 are always protected by

Blowfish policy in Figure 4.1b? The answer is no because the real protection

is provided by data release mechanisms. Next we analyze the risk in above

example by K-norm mechanism.

-1-2

-2

2

2

`1-norm

K

-1

1

Figure 4.6: Sensitivity hull K in Example 4.5.

Example 4.5 (K-norm Exposure). We can derive the sensitivity hull K “

Convp∆fq in Figure 4.6. Then secret s5 is protected with both Laplace mech-

anism and K-norm mechanism because fpD Y s5q ´ fpDq “ r1, 0s
ᵀ P K; while

secret s6 is not by K-norm mechanism because fpDYs6q´fpDq “ r0, 1s
ᵀ R K.

It can be proven that with K-norm mechanism the unbounded differential pri-

vacies for the existences of ts1, s2, s3, s4, s5, s6u are tε, 0, ε, 2ε, ε, 2εu respectively
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Mechanisms Risk Factor Risk Level
Gaussian Mechanism [41] `2-norm small
Laplace Mechanism [16] `1-norm medium
K-norm Mechanism [29] K-norm large

Table 4.2: Privacy risk when using different Mechanisms

(e.g. PrpApDYs6q“zq
PrpApDq“zq ď e2ε). Thus it is 2ε-unbounded-DP in total. This also

illustrates why we need to re-design a new optimal graph with less privacy loss

in Section 4.5.1.

Note that (1) the original bounded Blowfish privacy (i.e. the graph in Figure

4.1b) does not protect s6 in the first place. Hence the original Blowfish privacy

still holds; (2) although s4 is connected with s3, the existence of s4 is also at

risk (2ε-DP); (3) although s6 is not connected with s4, it is indistinguishable

with s4 by default.

In summary, the privacy risk of Blowfish policies depends on the data release

mechanisms, which have different sensitivity functions of ∆f . It can be proven

that with smaller sensitivity comes better utility but more risk with Blowfish

policies. In Table 4.2 we summarize the privacy risks for common mechanisms.

For Gaussian Mechanism [41], Laplace Mechanism [16] and K-norm Mechanism

[29], the sensitivities are the `2-norm, `1-norm and K-norm of ∆f . Because

`2-norm ą `1-norm ě K-norm, their privacy risks are small, medium and large

relatively. Because of the higher risk, we use K-norm mechanism to quantify

the privacy risk in the rest of this chapter.

Quantifying Blowfish. We quantify the overall protection of Blowfish pri-

vacy. First, it is intuitive that bounded Blowfish is weaker than (or equal to)

bounded DP, and unbounded Blowfish is also weaker than (or equal to) un-

bounded DP. For lack of space, below we quantify the protection of bounded
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Blowfish in terms of unbounded DP. It can be easily extended to other cases.

Definition 4.6 (tε, G, Cu-ConstrainedDP). Let G “ pS, Eq be the policy graph

in Blowfish privacy, and C be the instances satisfying the constraint in either

Markov model or database context. A randomized mechanism Apq satisfies

tε, G, Cu-constrained differential privacy if for any output z, one of the following

condition holds:

(1). in Markov model,
PrpApsjq“zq
PrpApskq“zq ď eε, @sj, sk P C;

(2). in database context, PrpApD1q“zq
PrpApD2q“zq

ď eε, @D1, D2, P C, D1can be obtained by

adding si to or removing si from D2, si P S.

Note that in Markov model, above definition is actually bounded DP be-

cause unbound DP becomes bounded DP by nature (Section 4.2.1).

Theorem 4.3 (Blowfish Protection). Let G be the policy graph, and C be the

instances satisfying the constraint in Blowfish privacy. With K-norm mecha-

nism, if tε, tS, G, Cuu-Blowfish privacy holds, then it satisfies

(1).

"ˆ

max
@sj ,skPC

||fpsjq ´ fpskq||K

˙

ε, G, C
*

-constrainedDP in Markov model;

(2).

"ˆ

max
@siPC

||fpsiq||K

˙

ε, G, C
*

-constrainedDP in database context, where K

is the sensitivity hull of query f .

Discussion. As shown in Chapter 3, `1-norm sensitivity is bigger than sensi-

tivity hull. Following this, we can further prove that Laplace mechanism is a

special case of K-norm mechanism and provides no better utility than K-norm

mechanism. Thus we use K-norm mechanism as a unifying mechanism in the

following analysis of this paper.

For standard Laplace mechanism, the answer for query workload F P RdˆN
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[16] is

z “ Fx˚ `
∆F

ε
ñ

where ∆F is the `1 norm sensitivity of F and ñ P Rd are i.i.d variables from

standard Laplace distribution with mean 0 and variance 1.

Lemma 4.1. Let fñpñq be the joint distribution of ñ P Rd where ñ1, ñ2, ¨ ¨ ¨ , ñd

are from i.i.d standard Laplace distribution. Then

fñpñq “
1

2d
exp p´||ñ||1q

Proof. For a scalar variable ñ from standard Laplace distribution, fñpñq “

1
2
expp´|ñ|q. Then for ñ “ rñ1, ñ2, ¨ ¨ ¨ , ñds

T ,

fñpñ “ rñ1, ñ2, ¨ ¨ ¨ , ñds
T
q

“
1

2
expp´|ñ1|q ¨

1

2
expp´|ñ2|q ¨ ¨ ¨ ¨ ¨

1

2
expp´|ñd|q

“
1

2d
exp p´||ñ||1q

Theorem 4.4. Let fzpzq be the probability distribution of z from standard

Laplace mechanism. Then

fzpzq “
εd

2d∆Fd
exp

´

´
ε

∆F
||z´ Fx˚||1

¯

Theorem 4.5. Laplace mechanism is a special case of K-norm mechanism

when K “ K♦Sf
where K♦Sf

is the cross polytope tx P Rd : ||x||1 ď Sfu and Sf

is the `1-norm sensitivity of f .
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Figure 4.7: (left) constrained policy graph; (right) the query results in mea-
surement space.

Proof. In Equation (3.5), let K “ K♦∆F. Then VolpK♦∆Fq “
2d

Γpd`1q
∆Fd. The

K♦∆F-norm of any z P Rd is ||z||1
∆F

. Then we can obtain

Prpzq “
εd

2d∆Fd
expp´

ε

∆F
||z´ Fx˚||1q

Corollary 4.1. Laplace mechanism provides no better utility than K-norm

mechanism because K♦Sf
always contains sensitivity hull K.

4.4.2 Degree of Protection

Under constraint, connectivity of policy graph is destructed. Thus the old

graph evolves to the new reduced graph. In the following example, we show

that with the new graph existing data release methods leads to exposure of

disconnected nodes.

Example 4.6 (Information Exposure). Given the query in Example 4.2 and

the graph in Figure 4.3b, assume at a timestamp t, the constraint set Ct “

ts2, s3, s5u. Then the constrained graph is shown in Figure 4.7 (left). We

use K-norm mechanism to answer the query in Example 4.2. Sensitivity hull

of the query f is Convpfps2q ´ fps3q, fps3q ´ fps2qq. For a K-norm based
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mechanism Apq, it means Aps2q and Aps3q are on the line of fps2qfps3q (dashed

line through fps2q and fps3q in Figure 4.7 (right)); Aps5q is on the dashed line

through fps5q in Figure 4.7 (right). We assume the released result z “ fps5q.

Then PrpAps3q “ fps5qq “ 0. Clearly, any z not on the line of fps2qfps3q

leads to complete exposure of s5.

Intuitively, given a disconnected node si in the constrained set Ct, if there

exists another node sj P Ct such that the difference fpsiq ´ fpsjq is contained

in the sensitivity hull K, then si is protected by sj. Otherwise, if no such

node sj exists, then si is exposed. Therefore, privacy risk can be measured by

sensitivity hull K as follows. If there is no sj such that fpsjq P fpsiq ` K,

then si is exposed, meaning that Equation (4.1) will not hold. To capture such

geometric meaning (i.e., fpsjq ´ fpsiq P K), we define degree of protection.

Definition 4.7 (DoP). At any timestamp t, the degree of protection (DoP)

of a state si is the number of states contained in fpsiq ` Kt where Kt is the

sensitivity hull.

DoPpsi, Ktq “ |tsj|fpsjq P fpsiq `Kt, sj P Ctu|

Because fpsiq is always in fpsiq `K, DoPpsi, Kq ě 1 for all si P Ct. Note

that not all disconnected nodes are exposed. For example, in Figure 4.8a, s2

is disconnected under constraint Ct “ ts2, s4, s5, s6u. However, DoPps2q “ 3

since fps2q `K contains fps4q and fps5q.

If all the nodes of a graph have DoP ą 1, we say it is protectable. Note that

a complete graph is always protectable because every two nodes are connected.

Definition 4.8 (Protectable Graph). A graph G is protectable if all its nodes

have DoP ą 1.
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Theorem 4.6 (Exposure Condition). With Laplace mechanism or K-norm

based mechanisms, a graph G cannot satisfy the DPHMM condition (Definition

4.5) iff G is not protectable.

Computation. The computation of protectability (i.e. DoP) is to check the

number of fpsjq inside a convex body fpsiq ` K for all sj P Ct. Because the

problem of checking whether a point is a convex body has been well studied in

computational geometry, we skip the discussion of details.
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Figure 4.8: (a): if Ct “ ts2, s4, s5, s6u, then s2 is also protected because fps4q P

fps2q `K and fps5q P fps2q `K; (b): if Ct “ ts3, s4, s5, s6u, then s3 is exposed;
(c): adding s3s4 to graph; (d): adding s3s6 to graph; (e): adding s3s5 to graph;
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4.5 Data Release Mechanism

If privacy risk is detected, we build a protectable graph as a supergraph of

existing graph 4. In this section, we first formulate the problem of building a

minimum protectable graph with lowest error bound. Next we show that this

problem is #P-hard, and propose a fast greedy algorithm. Then we present

the data release mechanism.

4.5.1 Minimum Protectable Graph

It is clear that a protectable graph satisfies the DPHMM condition in Definition

4.5. Therefore, when information is exposed, we need to build a protectable

graph by re-connecting the disconnected nodes so that they have DoP ą 1.

Next we formulate the problem of building a minimum protectable graph and

investigate its computational complexity, then propose a greedy algorithm to

this end.

Minimum Protectable Graph. Because the error bound of differential pri-

vacy is determined by the volume of sensitivity hull KpGtq [29] where Gt is

the graph under constraint at timestamp t, the optimal graph should have the

minimum volume of KpGtq for best utility. We define the optimal graph as

follows.

Given the policy graph G and the constraint set Ct at timestamp t, the

optimal graph pGt is a graph containing G X Ct with minimum volume Kp pGtq

4On the other hand, since the policy graph is customizable to users, the protectable graph
can also be created by users. In this case, it is not necessary to derive another minimum
protectable graph again.
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under the DPHMM condition (Definition 4.5):

pGt “ argmin
G

VolpKpGqq (4.2)

subject to: pGX Ctq Ď pGt, and pGt satisfies the DPHMM condition

Example 4.7 (Minimum Protectable Graph). Given the query in Example

4.2 and the graph in Figure 4.3b, Figure 4.8b shows the graph under constraint

Ct “ ts3, s4, s5, s6u. Then s3 is exposed because fps3q ` K contains no other

node. To satisfy the DPHMM condition, we need to connect s3 to another node

in Ct, i.e. s4, s5 or s6.

If s3 is connected to s4, then Figure 4.8c shows the new graph and its

sensitivity hull. By adding two new edges tfps3q ´ fps4q, fps4q ´ fps3qu to

∆f , the shaded areas are attached to the sensitivity hull. Similarly, Figures

4.8d and 4.8e show the new sensitivity hulls when s3 is connected to s6 and

s5 respectively. Because the smallest AreapKq is in Figure 4.8c, the optimal

graph pGt is GX Ct Y s3s4.

Complexity. We can see that to derive the optimal graph, minimum volume

VolpKq should be computed. For any query f : S Ñ Rd, K is a polytope in

Rd. However, the volume computation of polytope is #P-hard [17]. Thus it

follows that the computation of minimum volume is no easier than #P-hard.

Theorem 4.7. The problem of minimum protectable graph in Equation (4.2)

is #P-hard.

Greedy Algorithm. Due to the computational complexity, we propose a

greedy algorithm similar to minimum spanning tree. The idea is to connect

each disconnected node to its nearest (in measurement space) node. For other
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theoretical algorithms of volume computation with polynomial time bound,

please see [59]. Algorithm 3 shows the greedy algorithm, which takes OpN2q

time where N “ |V | is the number of nodes.

Algorithm 3 Protectable Graph

Require: G, Ct, f
1: Gt Ð GX Ct;
2: for all exposed node si P Ct do
3: sj Ð argmin

sPCt
||fpsq ´ fpsiq||2;

4: Gt Ð Gt Y sisj; Ź connect to nearest node

5: end for
6: return protectable graph Gt;

Discussion. It is possible to design fast algorithms in low dimensional space

to derive the minimum protectable graph. We propose a fast algorithm in

2-dimensional space.

In 2-dimensional space, it only takes Opmlogpmqq time to find a convex hull

where m “ |E | is the number of edges. Thus we can connect the disconnected

node si to the rest (at most 2m) nodes, generating at most 2m convex hulls. We

use
i“h
ř

i“1,j“i`1

detpvi,vjq to derive the area of a convex hull with clockwise nodes

v1,v2, ¨ ¨ ¨ ,vh where h is the number of vertices and vh`1 “ v1. By comparing

the area of these convex hulls, we can find the smallest area in Opnm3q time

where n is the number of exposed nodes.

Theorem 4.8. Algorithm 4 takes Opnm3q time where m “ |E | is the number

of edges and n is the number of exposed nodes.

4.5.2 Data Release Mechanism

The data release mechanism is shown in Algorithm 5. At each timestamp

t, we compute the prior probability vector p´t . Under the constraint Ct, the
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Algorithm 4 2D Minimum Protectable Graph

Require: G, Ct, f : S Ñ R2

1: GtpV , Eq Ð GX Ct;
2: K Ð KpGtq;
3: for all exposed node si P V do
4: sk ÐH;
5: minAreaÐ 8;
6: for all other node sj P V do
7: K Ð KpGt Y sisjq; Ź Opm2q

8: Area “
i“h
ř

i“1,j“i`1

detpvi,vjq where vh`1 “ v1;

9: if Area ă minArea then
10: sk Ð sj;
11: minArea “ Area; Ź find minimum area

12: end if
13: end for
14: Gt Ð Gt Y sisk
15: K Ð KpGtq;
16: end for
17: return graph GtpV , Eq;

graph G becomes a subgraph G X Ct. To satisfy the DPHMM condition, we

derive a protectable graph Gt by Algorithm 3. Next a differentially private

mechanism can be adopted to release a perturbed answer zt. Then the released

zt will also be used to update the posterior probability p`t (in the equation

below) by Equation (3.1), which subsequently will be used to compute the

prior probability for the next timestamp t` 1.

p`t ris “ Prps˚t “ si|zt, zt´1, ¨ ¨ ¨ , z1q

Note that in line 4 zt can be released by any differentially private mecha-

nisms.

Theorem 4.9. Given policy graph G and query f , Algorithm 5 satisfies tε, G, Ctu-

DPHMM at any timestamp.
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Algorithm 5 Customizable Data Release Mechanism

Require: εt, G, f , M, p`t´1, s˚t
1: p´t Ð p`t´1M; Ź Markov transition

2: Ct Ð tsi|p
´
t ris ą 0u; Ź constraint

3: Gt Ð Algorithm 3(G, Ct, f); Ź protectable graph Gt

4: zt Ð K-norm based mechanism(fps˚t q, KpGtq);
5: Derive p`t by Equation (3.1); Ź inference

6: return Algorithm 5(εt`1, G, f , M, p`t , s˚t`1); Ź go to next timestamp

Theorem 4.10. Given policy graph G and query f , at any timestamp t, Algo-

rithm 5 satisfies

"ˆ

max
@sj ,skPCt

||fpsjq ´ fpskq||Kt

˙

ε, G, Ct
*

-constrainedDP (Def-

inition 4.6) where Ct is the constraint, Kt is the sensitivity hull of query f and

protectable graph Gt.

4.5.3 Adversarial Knowledge

There might be a variety of adversaries with different prior knowledge in re-

ality. Thus we consider the adversarial knowledge in this section. Similar to

existing works [55,62], we assume that the Markov model and the data release

mechanism, including the sensitivity hull K, is transparent to any adversaries,

meaning adversaries know how the query answers were released. If this as-

sumption does not hold, then adversarial knowledge can only be worse, leading

to less privacy disclosures.

We define constrained adversarial privacy as follows, with a similar adversary-

constraint CAt derived from the prior knowledge pA
t of any adversaries:

CAt :“ tsi|p
A
t ris ą 0, @si P Su

Definition 4.9 (tε, CAt u-ConstrainedAP). For adversaries with knowledge CAt ,

a mechanism is ε-adversarially private if for any output zt and any state si P
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CAt , Prpsi|ztq
Prpsiq

ď eε.

We discuss various adversarial knowledge as follows.

• Case I: CAt Ă Ct. When |CAt | “ 1, the adversary has already known the

true state. Then no privacy can be protected in this case. Otherwise,

GX CAt is a subgraph of GX Ct. Then tε, G, CAt u-DPHMM still holds.

• Case II: Ct Ă CAt . Similar to the analysis in Section 4.4.2, Algorithm 5

(using K-norm based mechanism) may not satisfy tε, G, CAt u-DPHMM if

any node in CAt has DoP “ 1, derived from KtpGtq in Algorithm 5.

•
"ˆ

max
@si,sjPCA

t XCt
||fpsiq ´ fpsjq||Kt

˙

ε, CAt X Ct
*

-cons-trainedAP holds in both

cases. Hence

"ˆ

max
@si,sjPCA

t XCt
||fpsiq ´ fpsjq||Kt

˙

ε, CAt X Ct
*

-constrainedDP

also holds.

4.6 Privacy Composition

In some cases, multiple queries need to be answered. Thus we analyze the

privacy composition for multiple data releases. Note that the parallel compo-

sition [46] is not applicable because there is only one state in Markov model.

We refer readers to [7] for the detailed study of privacy quantification.

Single-Time Multiple-Queries. At one timestamp, it is possible that

many queries should be answered. Then the privacy cost ε composes for all

queries.

Theorem 4.11. At timestamp t, an tε, G, Ctu-DPHMM mechanism released

multiple answers z1, z2, ¨ ¨ ¨ , zn for queries f1, f2, ¨ ¨ ¨ , fn with ε1, ε2, ¨ ¨ ¨ , εn, then

it satisfies t
řn
i“1 εi, G, Ctu-DPHMM and

"

n
ř

i“1

ˆ

max
@sj ,skPCt

||fpsjq ´ fpskq||Ki

˙

εi, G, Ct
*

-

constrainedDP where Ki denotes the sensitivity hull of fi.
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Multiple-Time Single-Query. If a query was answered over multiple

timestamps, then the privacy protection has to be enforced on the sequence.

Under the probabilistic constraint, we define differentially private sequence

with all possible sequences.

Definition 4.10. A constraint set of sequences Q “ tQ1,Q2, ¨ ¨ ¨ ,Qnu is a set

of n possible sequences with PrpQiq ą 0 for all Qi P St, i “ 1, 2, ¨ ¨ ¨ , n.

Definition 4.11 (tε,Qu-ConstrainedDPS). During timestamps 1, 2, ¨ ¨ ¨ , t in

an HMM, a randomized mechanism Apq generates tε,Qu-ConstrainedDPS if

for any output sequence z1, z2, ¨ ¨ ¨ , zt and any possible sequences Qj and Qk in

Q, the following holds

Pr
`

ApQjq “ pz1, z2, ¨ ¨ ¨ , ztq
˘

Pr pApQkq “ pz1, z2, ¨ ¨ ¨ , ztqq
ď eε

Theorem 4.12. During timestamps i “ 1, 2, ¨ ¨ ¨ , t in an tεi, G, Ciu-DPHMM

with policy graph G and constraints Ci “ tQjris|@Qj P Qu, the released sequence

z1, z2, ¨ ¨ ¨ , zt for a query f satisfies

"

t
ř

i“1

ˆ

max
@sj ,skPCi

||fpsjq ´ fpskq||Ki

˙

εi,Q
*

-

constrainedDPS where Ki denotes the sensitivity hull at timestamp i.

Above compositions can be combined for the case of multiple-time and

multiple-queries data releases. This completes our analysis of privacy compo-

sition over time.

4.7 Empirical Evaluation

We report the experimental evaluation in this section. All algorithms were

implemented in Matlab on a PC with 2.4GHz CPU and 4GB memory.
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Datasets. We used the two datasets, Geolife and Gowalla, with same config-

urations as Section 3.5. The Markov models were learned from the raw data.

From each dataset, 20 sequences, each of which contains 100 timestamps, were

selected for our experiment. Then the average result is reported.

Mechanisms. For better utility, we used the planar isotropic mechanism in

Chapter 3 (with δ “ 0.01) to release the locations of users. We denote the

notions by DPHMM and DPLS 5 respectively. The default value of ε is 1 if not

mentioned.

Application. For location data, a common application is to release the loca-

tion coordinates. Thus we use the measurement query f : S Ñ R2 that returns

a 2ˆ 1 vector of longitude and latitude.

Three policy graphs were adopted in our experiments: utility-oriented Gutil,

privacy-oriented Gtrs, as defined in Section 4.3.1, and k-neighbors graph Gknb.

• Gutil connects all nodes if their distances of locations are less than r;

• Gtrs guarantees that even if the previous states were completely exposed,

privacy can still be protected in the current timestamp.

• Gknb connects all nodes to k neighbors of nodes.

Because of different customizations of the three graphs, we can examine the

different results of them. In Gutil, the default values of r for GeoLife and

Gowalla are 1pkmq and 2pkmq respectively. In Gknb, the default value of k is 9.

Metrics. We used the following metrics in our experiment.

• To measure the efficiency, the runtime of data release method was evalu-

ated.

5Differential privacy on location set.
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Figure 4.9: Runtime.

• DoP represents the number of nodes that a node is hidden in. Hence to

reflect the privacy level of true states, DoP of true states was computed.

• The utility of DPHMM was measured by Error “ ||zt ´ fps
˚
t q||2 where

zt is the released answer and fps˚t q is the true answer.

4.7.1 Runtime

Figure 4.9 shows the runtime report on the two datasets. We can see that

the runtime of DPHMM is a little bit longer than DPLS. The reason is that

DPLS uses a tighter constraint than Ct, which in our setting became numerous

when Markov model converged to a stationary distribution gradually. Then

the computation of sensitivity hull took more time with larger graph. It is

also worth noting that sensitivity hull converges with Ct. As time evolves, the

runtime also converges with Markov model to a stable level.

4.7.2 Performance over Time

At each timestamp, the (smoothed) DoP and Error are shown in Figure 4.10.

As expected, Gtrs provides the strongest protection of privacy, while Gutil and
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Figure 4.10: Performance over time.

Gknb have the lower error on both datasets. With Gtrs, the true state was

protected in a set of 100 and 70 possible states for the two datasets. Provided

such strong protection, the error also rises. With Gutil and Gknb, the query error

was smaller than DPLS yet the DoP was even larger than DPLS. Therefore,

we can infer that customizable graph provides better trade-off between privacy

and utility.

4.7.3 Impact of Privacy Budget ε

We also measure the average performance over the 100 timestamps with dif-

ferent parameter ε in Figure 4.11. In Figures 4.11a and 4.11b, DoP stays the

same with different ε because the size of Ct does not change with ε. Again
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Figure 4.11: Impact of ε.

we see that Gtrs provides the largest DoP with little sacrifice of utility, com-

pared with DPLS. Figures 4.11c and 4.11d verifies that the larger ε, the smaller

Error, which is easy to understand because ε determines the shape of noise

distribution.

4.7.4 Tuning Privacy and Utility by Graphs

To better understand the trade-off between privacy and utility with different

graphs, we also tested the performance with different Gutilprq and Gknbpkq.

Different Gutil. Intuitively, with larger r comes stronger protection and bigger

Error, which is confirmed in Figures 4.12. However, the Error of DPHMM

is still lower than DPLS in most results, although it is expected that Error
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Figure 4.12: Tuning Gutil with r.

grows with bigger r.

Different Gknb. Figures 4.13 show varying privacy and utility with Gknb.

Similarly, both DoP and Error grow when k increases. Note that DoP is

larger than k because some states are implicitly protected by the graph, as

explained before. Therefore, we can conclude that with different policy graphs

privacy and utility can be better tuned in different scenarios.

4.8 Conclusion Remarks

In this chapter we proposed DPHMM, a rigorous and customizable privacy

framework to protect the true states in Markov model while allowing privacy-
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Figure 4.13: Tuning Gknb with k.

utilty tradeoffs in the released data, by embedding a differentially private data

release mechanism in hidden Markov model. DPHMM guarantees that the

true state in Markov model at every timestamp is protected by a customizable

policy graph. Under the temporal correlations, the graph may be reduced to

subgraphs. Thus we studied the consequential privacy risk by introducing the

notion of protectable graph based on the degree of protection. To prevent infor-

mation exposure we studied how to build an optimal protectable graph based

on the current graph. The privacy guarantee of DPHMM has also been thor-

oughly investigated, by comparing it with other privacy notions and studying

the composition results over multiple queries and timestamps.

DPHMM can be used in a variety of applications to release private data
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for purposes like data mining or social studies. Future works can also study

how to efficiently design and implement the policy graph for various privacy

requirements.
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Chapter 5

Conclusion

In this dissertation, we investigated how to protect the locations of individual

movement under temporal correlations. First, we proposed a notion of differen-

tial privacy based on δ-location set to protect the true location at each times-

tamp. We showed that the traditional `1-norm sensitivity in differential privacy

exaggerates the real sensitivity, and defined the real sensitivity as sensitivity

hull. Then we used the sensitivity hull in the PIM to release the noisy location

at each timestamp. We proved that the PIM achieves the lower bound of error,

thus it is an optimal data release mechanism. Second, we studied how to design

the customizable privacy notion for different scenarios. We demonstrated that

the privacy demand of individuals can be represented as policy graphs. How-

ever, under temporal correlations the graphs can be reduced to simpler graphs

with disconnected nodes. To enforced privacy, we defined DPHMM, and pro-

posed mechanisms to guarantee the privacy of DPHMM by re-generating the

protectable graphs based on the DoP. Future works can further study how to

design the policy graphs for various privacy demands.
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