
Distribution Agreement

In presenting this dissertation as a partial fulfillment of the requirements for an advanced
degree from Emory University, I hereby grant to Emory University and its agents the non-
exclusive license to archive, make accessible, and display my dissertation in whole or in part
in all forms of media, now or hereafter known, including display on the world wide web. I
understand that I may select some access restrictions as part of the online submission of this
dissertation. I retain all ownership rights to the copyright of the dissertation. I also retain
the right to use in future works (such as articles or books) all or part of this dissertation.

Signature:

Alysa V. Shcherbakova Date



Essays in Empirical Finance: Evaluating Risk in Financial Markets.

By

Alysa V. Shcherbakova
Doctor of Philosophy

Economics

Richard Luger, Ph.D.
Advisor

Hugo M. Mialon, Ph.D.
Committee Member

Mahmut Yasar, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the Graduate School

Date



Essays in Empirical Finance: Evaluating Risk in Financial Markets.

By

Alysa V. Shcherbakova
Master of Arts, Economics

Master of Business Administration
Bachelor of Arts, Mathematics and Economics

Advisor: Richard Luger, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the Graduate School of Emory University

in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in Economics.

2009



Abstract

Essays in Empirical Finance: Evaluating Risk in Financial Markets.

By

Alysa V. Shcherbakova

This dissertation is comprised of two parts, each addressing an important type of financial

risk. The first part is composed of an essay discussing Market Risk. This essay exam-

ines a causal relationship between the series of securities returns and traded volumes in

high-frequency data. Linear and nonlinear Granger causality tests are used to evaluate a

causal relationship between the series of volumes and returns of various investment vehicles

within the parametric and the non-parametric frameworks, and for trading and calendar

time specifications.

The second part contains two essays, each addressing a specific aspect of Firm Risk. The

first essay focuses on estimating obligor credit rating migration probabilities. Short- and

long-run relationships between asset quality and obligor ratings are modeled and quantified.

The use of a continuous-record model addresses the problems of data sparsity and control

for resulting estimation errors; while the implementation of a methodology allowing us to

to precisely identify the stages of the business cycle enables us to determine the incremen-

tal impact of idiosyncratic and systematic risk factors on rating transitions probabilities,

resulting in more precise estimates of credit rating migration trends.

The second essay tests theoretical predictions about the relationship between leverage

and firm performance set forth by the corporate finance literature. The dynamic relationship

between firm performance and leverage is examined empirically using the Difference GMM

method of econometric estimation. Multiple measures of performance and leverage are

utilized, controlling for idiosyncrasies associated with each particular definition and allowing

us to generate inferences about the practical relationship between firm performance and debt.
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Chapter 1

Tests of Informational Efficiency in
Financial Markets: A Granger
Causality Approach

In this study we examine a causal relationship between the series of securities returns
and traded volumes in high-frequency data. Our analysis is based on the methodol-
ogy of Ghysels, Gouriroux and Jasiak (2000), who develop a qualitative framework
in which the dynamics of financial series are restricted to transitions between a finite
number of states, represented by Markov chains with specific transition probabil-
ities. Linear and nonlinear Granger causality tests are used to evaluate a causal
relationship between the series of volumes and returns of various investment vehi-
cles within the parametric and the non-parametric frameworks, and for trading and
calendar time specifications. Results demonstrate evidence of three causality types,
unidirectional from volumes to returns and vice versa, and instantaneous causal-
ity. The frequency with which causal relationships are observed increases rapidly
as the transaction grid becomes finer, allowing us to infer that while informational
efficiency of financial markets can not be rejected, opportunities for economic gains
may exist at high-frequencies.

1.1 Introduction

Early empirical research examining the relationship between stock prices and traded vol-

umes focused on the contemporaneous nature of the two series (see, for example, Clark

1973, Karpoff 1987, Gallant, Rossi, and Tauchen 1992). The introduction and subsequent

implementation of electronic trading systems increased availability of high-frequency data,

and new avenues of investigation for applied research emerged. The focus of current empir-
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ical literature has shifted from examining a purely contemporaneous relationship between

the two series, to testing linear and nonlinear causality between volumes and returns of

various investment vehicles (see Tauchen and Pitts 1983, Hiemstra and Jones 1994, Ghysels,

Gouriéroux, and Jasiak 2000).

The body of theoretical literature asserting a relationship between securities returns and

traded volumes is rooted in the work of Osborne (1959), who introduced the idea that price

changes can be modeled according to a diffusion process, the variance of which depends

on the quantity of transactions associated with a particular securities issue (see Sun 2003).

Following the seminal work of Osborne, financial literature has grown to include models of

market microstructure as potential sources of the relationship between volumes and securities

returns. The general idea of market microstructre models is that trades are driven by key

factors, more notable of which are liquidity and information.

Initially, market liquidity was considered to be the factor generating the price-volume

relationship. Liquidity theory suggests that a transaction involving significant volume, even

when that transaction is not motivated by specific information release, may affect the price

of a stock. This adjustment in price can be attributed to opportunity cost (see Black 1976).

More recently, preferences shifted toward microstructure models that analyze dynamics

of securities trading within the framework of asymmetric information. Prominent among

these are the mixture of distributions models of Clark (1973) and Epps and Epps (1976).

In Clark’s model, traded volume serves as a proxy for the speed of information flow. The

author asserts that information is a latent factor, common to volumes and securities returns;

thus, there exists a contemporaneous relationship between the two series. The mixture

model introduced by Epps and Epps (1976) suggests that traders constantly adjust their

reservation price based on the arrival of new information into the market. In this model,

traded volume is used as a measure of disagreement among traders. Greater disagreement

concerning prices of securities implies higher volumes traded in the market, where increased

trading drives securities prices to some equilibrium.

Other theories consider the relationship between traded volumes and returns within
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the framework of sequential information arrival, based on the models of Copeland (1976)

and Jennings et al. (1981). These models of asymmetric information are based on the

assumption that new information flows into the market, where it is disseminated to investors

one at a time. This pattern of information arrival produces a sequence of momentary

equilibria, consisting of various security price-volume combinations before the final, complete

information equilibrium is achieved (see Hiemstra and Jones 1994).

Asymmetric information models assume the existence of investors who are better in-

formed than the rest of the market participants, given a specific time period and environ-

ment. Well-informed traders attempt to take advantage of private information available

to them by selecting appropriate trading strategies; however, in the order driven market,

their actions are observed by market makers and other investors. Thus, the uninformed in-

vestors infer from the trading behavior of the informed investors about the content of their

private information and implement trading strategies consistent with this new information.

Asymmetric information models suggest that due to this sequential flow of information in

the market, it is feasible that lagged traded volume could have predictive power for current

absolute stock returns, and lagged absolute stock returns could have predictive power for

current traded volume (see Ghysels et al. 2000).

This study extends the current empirical literature by utilizing linear and nonlinear

Granger causality tests to examine the dynamic relationship between the series of returns

and traded volumes in high-frequency data available through the NYSE TAQ database. We

analyze a sample of 30 individual securities included in the Dow Jones Industrial Index,

as well as an equally weighted aggregate portfolio comprised of the aforementioned stocks.

We rely on individual securities analysis, in addition to the aggregated approach, as inves-

tigation of individual securities, compared to that of a portfolio, may reveal characteristics

which tend to be hidden when aggregate indexes are analyzed. Informational efficiency of

financial markets is tested in an effort to assess the quality of contribution that knowledge

of past volume movements has in terms of improving short-run forecasts of current and

future movements in securities prices, and vice versa. Weak-form informational market ef-
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ficiency is evaluated in high-frequency data context, and unidirectional and instantaneous

non-causality hypothesis for individual securities and the aggregated portfolio are tested for

trading and calendar time specifications.

The empirical strategy used in this study is based on the methodology of Ghysels et

al. (2000), who introduce an innovative approach, controlling for limitations of earlier em-

pirical research. We begin by assuming that the dynamics of the series of traded volumes

and returns are restricted to transitions between a finite number of states, represented by

Markov chains with specific transition probabilities. First, dynamics of the return series

for individual securities and the portfolio are examined within the univariate framework,

impact of state specification on temporal dependence is determined, and weak-form market

efficiency is evaluated at varying time-frequencies. Second, our analysis is extended beyond

the weak-form market efficiency. A bivariate framework is introduced, allowing us to inves-

tigate co-movements between traded volumes and transaction prices, and test for Granger

(statistical) causality between the two series.

Our analysis produces stylized facts about the intertemporal relationship between secu-

rities returns and traded volumes, allowing us to generate inferences regarding informational

efficiency of financial markets. Empirical evidence suggests that causality directions vary in

time and depend on the sampling scheme, such as the trading or calendar time specifica-

tions. Results demonstrate that instances of observed causality increase as the calendar grid

becomes finer, suggesting that while informational efficiency of financial markets can not be

rejected, opportunities for economic gains may exist at high-frequencies. In trading time,

observed instances of causality are greatest for instantaneous causality. This result changes

for calendar-time specifications where we observe unidirectional causality from volumes to

returns more frequently than other causality types.

The remainder of the paper is organized as follows. In Section 2, we define the con-

cept of Granger causality, describe traditional linear tests for its presence, and motivate the

non-parametric approach introduced by Ghysels et al. (2000). In Section 3, we consider

a univariate series of stock returns; a state selection yielding uncorrelated qualitative price
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process is discussed; and weak-form informational market efficiency is tested within the em-

pirical framework presented. In Section 4, we develop the econometric methodology allowing

us to extend the univariate approach presented in Section 3 to a bivariate framework; rela-

tionship between multivariate state transition probabilities and coefficients of a multivariate

SUR model is determined; and, Granger causality tests appropriate within the bivariate

framework are proposed. In Section 5, we discuss the results of the empirical estimation.

Section 6 concludes.

1.2 Granger Causality

In 1969, Granger introduced the concept of statistical non-causality, which allows one to

evaluate whether a particular time series is useful in predicting values of another time series.

A formal definition of Granger causality follows.

Consider two arbitrary dynamic series, {Xt} and {Yt}. Let F (Xt∣It−1) denote the con-

ditional probability distribution of Xt given a bivariate information set It−1 consisting of an

LX -length lagged vector of Xt and LY -length lagged vector of Yt, such that

Xt−LX ≡ (Xt−1,Xt−2, . . . ,Xt−LX ), (1.1)

and

Yt−LY ≡ (Yt−1, Yt−2, . . . , Yt−LY ). (1.2)

Given lags LX and LY , the time series {Yt} does not strictly Granger cause {Xt} if

F (Xt∣It−1) = F (Xt∣(It−1 − Yt−LY )), t = 1,2, . . . , T. (1.3)

That is, if the conditional probability distribution of Xt given the bivariate information

set It−1 equals the conditional probability distribution of Xt given the univariate information

set It−1 − Yt−LY , where It−1 consists only of an LX -length lagged vector of Xt and does not

contain any information about Yt. If the equality in Eq.(1.3) does not hold, knowledge of
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past Y values helps predict current and future values of X, and Y is said to strictly Granger

cause X.

Similarly, a lack of instantaneous Granger causality from Y to X implies that

F (Xt∣It−1) = F (Xt∣(It−1 + Yt)), (1.4)

where the bivariate information set is modified to include the current value of Y . If the

equality in Eq.(1.4) does not hold, then Y is said to instantaneously Granger cause X.

To summarize, strict Granger causality refers to the ability of past values of one time

series to influence the present and future values of another time series. Similarly, instanta-

neous Granger causality relates to the ability of present values of one time series to influence

the present values of another time series.

1.2.1 Parametric Approach

Typically, empirical tests of bivariate Granger causality rely exclusively on estimating a liner

vector autoregressive (VAR) model of the following form (e.g. Hiemstra and Jones 1994)

Xt = A(L)Xt +B(L)Yt +UX,t, (1.5)

Yt = C(L)Xt +D(L)Yt +UY,t,

where t = 1,2, . . . , T ; A(L), B(L), C(L), and D(L) denote polynomials of some order in the

lag operator L such that given P ∈ {A,B,C,D}, P (L) = L0−L1−L2−⋅ ⋅ ⋅−LP and LPVt = Vt−P ,

with roots outside the unit circle and no roots in common. 1 The regression errors, {UX,t}

and {UY,t}, are assumed to be mutually independent and identically distributed (i.i.d.),

with zero mean and constant variance.

To test for strict Granger causality from Y to X in this linear framework, a standard

joint F -test is used to determine whether lagged Y has significant linear predictive power

for current values of X. The null hypothesis that Y does not strictly Granger cause X is
1In this particular framework P is restricted such that P > 0 and P (L) = L1

−L2
− ⋅ ⋅ ⋅ −LP .
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rejected if the coefficients on the elements in B(L) are jointly significantly different from

zero. Bidirectional causality exists if Granger causality runs in both directions, in which

case, the coefficients on the elements in both B(L) and C(L) are jointly different from zero.

A significant limitation of the parametric approach is the unrealistic assumption about

the distribution of the error terms, particularly in applications to financial time-series data.

The empirical literature demonstrates that financial time-series frequently exhibit time-

varying volatility (see, for example, Himestra and Jones 1994, Campbell, Lo, and MacKinlay

1997, Luger 2001). In the presence of exogenous shocks, financial markets react “nervously,”

causing the prices of financial assets to fluctuate (Straumann 2005) In statistical terms, this

implies that the conditional variance given the past, V ar[Xt∣Xt−1,Xt−2, . . . ] is not constant

over time, and the underlying stochastic process {Xt} is conditionally heteroskedastic. That

is, the error terms of financial series are neither independent, no identically distributed.

Summary statistics for series of securities returns and traded volumes are available in Tables

1.1 and 1.2, respectively.

The presence of heteroskedastic error terms leads to poor estimates under the standard

parametric approach. Although in presence of heteroskedasticity the ordinary lease squares

(OLS) estimators remain unbiased, the estimated standard errors are not exact, resulting

in imprecise confidence intervals and unreliable hypotheses tests. In the following section,

we test the financial data for autoregressive conditional heteroskedasticity (ARCH) effects,

motivating the importance of the non-parametric approach to follow.

1.2.2 Testing for ARCH Effects

In a pioneering paper, Engle (1982), introduced the autoregressive conditional heteroskedas-

ticity model that assumes a non-constant variance of the error terms

σ2
t = α0 +

q

∑
i=1

αiσ
2
t−iη

2
t−i. (1.6)

Specifically, the proposed model suggests that the variance of the error terms at time t is a

function of the variances of the error terms of the previous time period t − i (i = 1, . . . , q).

8



To test for the presence of ARCH effects, Engle proposed a Lagrange Multiplier (LM)

test where, considering the model in Eq.(1.6), the hypothesis of homoskedasticity is defined

as H0 ∶ α1 = ⋅ ⋅ ⋅ = αq = 0.

Engle’s LM test assumes conditionally normally distributed data and is computed using

an auxiliary regression (Raunig 2008). Empirically, in testing for ARCH(q) effects, one

regresses the squared residuals of the fitted model, û2
t , on their first q lags, û2

t−i (i = 1, . . . , q),

and a constant. The Engle test statistic is given by TR2, where T is the sample size and R2 is

the coefficient of determination in the auxiliary OLS regression, and is asymptotically χ2(q)

under the null hypothesis of no ARCH. If TR2 is greater than a critical χ2 value we reject

the null hypothesis of conditional homoskedasticity in favor of the alternative hypothesis.

Table 1.3 presents χ2(q)(q = 1), statistics for the returns series of individual securities

and the aggregated portfolio used in this study. We observe clear evidence of ARCH effects

in these financial time-series for both the individual securities and the aggregated portfolio.

It is also evident that these effects become stronger as sample frequency increases. We

conclude that the error terms in the financial time-series do not meet the homogeneity

assumption characteristic to the parametric approach (e.g. Dickey and Fuller 1979, Lo and

MacKinlay 1988, Breitung and Gouriroux 1997, Dufour and Kiviet 1998, Dufour and Torrès

2000), potentially resulting in unreliable hypothesis tests, over-rejecting the null.

Taylor (1984) argues that the accuracy of the hypotheses tests relies on the specification

of financial series with error terms that have reasonably homogeneous conditional variances.

While we clearly demonstrated that the financial time-series used in this study exhibits

clear heteroskedastic tendencies, it may be argued that due to the large sample size, the

error terms may be asymptotically homogeneous. The empirical literature demonstrates

that in the presence of heteroskedastic error terms, hypothesis tests are not exact even then

the sample size is large (see Luger 2003 and Kim, Nelson, and Startz 1998). Specifically,

under the parametric approach, the null is rejected too often, depending on the degree of

heterogeneity in the conditional variances.

Luger (2005) suggests that sign statistics are the only statistics which can produce valid
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tests for hypotheses under sufficiently general distributional assumptions, allowing for pos-

sibly heteroskedastic observations. In what follows, we introduce the non-parametric frame-

work of Ghysels, Gouriéroux, and Jasiak (2000) as a superior approach to tests for Granger

causality. This non-parametric approach has an advantage over the parametric approach in

that transforms a quantitative financial series into a qualitative one of sign changes, allowing

us to relax the assumption about the distribution of the error terms and thereby resulting

in more robust estimates.

Consider the observed process {yt}, generated according to

yt = φyt−1 + εt, for t = 1, . . . , T. (1.7)

Under the null hypothesis of informational market efficiency φ = 0, simplifying Eq.(1.7) to

yield yt = εt, for t = 1, . . . , T . Consider the first-difference ∆yt = yt − yt−1 for t = 1,2, . . . , T .

We define a sign function as s[y] = 1 if ∆y > 0, and s[y] = 0 if ∆y ≤ 0. Note that the

differences ∆yt are not necessarily independent. It is mathematically correct to generalize

that while the error terms of a qualitative process of sign changes are i.i.d. even when the

error terms of a quantitative process used to generate it are not (see Luger 2003, Lemma

0.1 and Theorem 0.1; Randal and Wolfe 1979, Theorem 1.3.7, Lemma 2.4.2)

1.3 Non-Parametric Approach: Univariate

In this section we introduce a univariate framework that allows us to examine the dynamics

of a quantitative series of traded volumes and returns for individual securities, as well as a

market portfolio. For simplicity, consider a Markov chain, Zt, of order one that transitions

between two states, labeled zero and one, and where the transition probabilities depend

only on the preceding state. Following Ghysels et al. (2000), let us assume that these states

are defined according to some dichotomous qualitative features of our quantitative series of

prices and volumes such that
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A. Comparison of Price Modification:

Zt(c) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, if log(pt) − log(pt−1) = ∆pt > cp

0, otherwise
, (1.8)

where pt is the price at time t; cp is a threshold value. Note that when c is equal to

zero, we are effectively evaluating the direction of price evolution. When c is non-zero,

the model above allows us to compare price evolution relative to some specific bench-

mark, for example the behavior of the risk-free asset when c = log(1 + r) where r is

the risk-free rate.

B. Comparison of Volume Modification:

Zt(c) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, if vt > cv

0, otherwise
, (1.9)

where vt is volume at time t; and cv is a threshold value.

Having established the mapping sequence that allows us to transform a quantitative

series into a qualitative one, we define the implied transition probabilities of a first-order

Markov chain Zt by

P (Zt = i∣Zt−1 = j) = Πij , where i = 0,1 and j = 0,1. (1.10)

Equivalently, the dynamics of a univariate series can be estimated using linear regres-

sions. That is, the expected value of Zt given the information available at time t− 1 can be

expressed as

E[Zt∣Zt−1] = P [Zt = 1∣Zt−1] = Π11Zt−1 +Π10(1 −Zt−1). (1.11)
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Rewriting Eq.(1.11) as a linear regression yields

Zt = aZt−1 + b(1 −Zt−1) + ut = aZt−1 + b − bZt−1 + ut (1.12)

= b + (a − b)Zt−1 + ut

= b + λZt−1 + ut,

where the error terms, ût, are i.i.d.; λ = a − b and denotes the speed of adjustment, and

current state is a function of the state directly preceding it.

1.3.1 Uncorrelated States Specification

In the univariate framework specification, we took the threshold value c as given. However,

it is important to consider that in general, a Markov chain Zt(c0) does not remain Markov

for state selection threshold c ≠ c0 (Ghysels et al. 2000). That is, specific characteristics of

a Markov chain, such as serial correlation, are threshold dependent. In this sub-section we

investigate the dependence of a dynamic chain on the selected threshold value.

There exists empirical evidence suggesting that even if returns exhibit some temporal

dependence when analyzed as a quantitative process, the serial correlation may disappear

in a qualitative series of sign change indicators (Ghysels et al. 2000). Thus, to effectively

capture the characteristics of a quantitative series within the qualitative transformation we

want to select a threshold value c such that the autocorrelation properties of our qualitative

series are identical to those of the original quantitative series of returns.

By specifying a relationship between c and the first order autocorrelation as a function of

c, we can determine the extent to which serial correlation of the underlying series is altered

by imposing a qualitative representation. Following Ghysels et al. (2000), we define the new

threshold estimator as

ĉT,k =mincρ
2
T,k(c), (1.13)

where ρ2
T,k(c) is the first-order autocorrelation coefficient. Empirically, the estimate ĉ is

found by performing a grid search over the domain of c. Specifically, ĉ approximates the
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value of c that produces the lowest absolute value of the first-order autocorrelation in the

returns series.

1.3.2 Testing Weak-Form Market Efficiency

The increased availability of high-frequency data motivates current empirical research aimed

at understanding return characteristics of securities and other financial vehicles. In partic-

ular, researchers seek to detect any evidence of informational inefficiency in the financial

markets that could be profitably exploited for economic gain (Poshakwale 2002). In this

sub-section, we apply the univariate approach described above to test the weak-form infor-

mational efficiency of financial markets as it relates to individual securities and an equally

weighted portfolio of socks comprising the Dow Jones Industrial index.

It is of importance to reiterate that serial correlation is sensitive to transformations of

a quantitative series. While results are too numerous to report here, we compare auto-

correlograms of quantitative series of returns, for each of the individual securities and the

aggregated portfolio, to their transformed, qualitative series autocorrelograms corresponding

to three threshold specifications: mean, approximately zero; 10th; and 95th percentiles. For

all securities, we observe a significant negative first order autocorrelation, consistent with

the bid-ask effect. In the quantitative autocorrelogram, beyond the bid-ask bounce, higher

order autocorrelations are not significant, a pattern matched closely by the zero threshold

qualitative process. Computing ρ2 we conclude that zero is a particular threshold where

correlation is minimized. Further examination reveals that when zero is the threshold, value

Zt resembles white noise. Hence, we use zero as a threshold for our return series both here

and in the joint causality analysis to follow.

The issue of intraday dependence in stocks is important because it has implication over

the efficient market hypothesis; see Fama (1970), Campbell, Lo and MacKinley (1997). If

the market is efficient in processing incoming information, current prices should not be

predictable by their previous values. In addition to testing the efficiency of financial mar-

kets, empirical evaluation of intraday price dependence has important practical applications.
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Specifically, if the dependence pattern of a financial series is economically significant, it might

be used to construct profitable trading strategies in the stock market.

Traditionally analysts and investors assumed stock market efficiency because in a com-

petitive market, prices reflect all available information. In a seminal paper, Fama (1970)

classified market efficiency according to thee types: weak form, semi-strong form, and strong

form. A market is considered to be efficient in the weak form if stock price changes cannot be

predicted based on past returns alone. In statistical terms, this means that changes in stock

returns are both independent and random. Here we evaluate the weak-form informational

efficiency of financial markets within the parametric and the non-parametric frameworks

presented.

We test the following martingale specification

∆Pt = γ0 +
n

∑
i=1

γi∆Pt−i + εt, (1.14)

where ∆Pt is the continuously compounded return. Consistent with the model specification

developed in the beginning of this section, we impose a restriction of n = 1 thereby estimating

the following model

∆Pt = γ0 + γ1∆Pt−1 + εt. (1.15)

Under the null hypothesis, if changes in daily stock prices are independent of the previ-

ously available information, parameter γi is expected to be equal to zero.

Tables 1.4 and 1.5 present the estimation results. We conclude that at high-frequencies

data does not exhibit market efficiency. That is, for both parametric and non-parametric

specifications the efficiency hypothesis is rejected for trading and calendar times, when a one

minute grid is applied. This result extends to both individual securities and the aggregated,

equally weighted portfolio.

First, consider the case of individual securities, Table 1.4. The entry in each cell of

the table denotes the number of firms in the sample for which efficient market hypothesis

was rejected. For simplicity purposes, we can establish a threshold, say 50%, where, in a
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sample of 30 firms, observed causality for at least 15 firms implies a rejection of the efficient-

market hypothesis. Under the parametric approach, efficient-market hypothesis is rejected

in trading time, as well as at one- and five-minute calendar time specifications. Under the

non-parametric approach, the efficient-market hypothesis is rejected only in trading time and

at a one-minute sampling frequency in calendar time. Generally speaking, results indicate

that while market efficiency exhists, it is not complete. While this finding is implicit of

opportunities where informational inefficiency can be sxploited for economic gains, these

opporunities exist only at high-frequencies.

Results of the aggregated portfolio analysis are presented in Table 1.5, where zero signi-

fies an inability to reject weak-form market efficiency hypothesis for a particular sub-sample

and one signifies hypothesis rejection. We observe that under the parametric approach, we

reject market efficiency in trading time and at the one-minute sampling frequency. Within

the non-parametric framework, market-efficiency hypothesis is rejected only in trading time.

We conclude that while it is feasible to develop profitable short-term trading strategies, gains

are much more difficult to achieve when aggregating across securities.

Figure 1.1, Panels A-E, show changes in observed instances of weak-form market ef-

ficiency hypothesis rejection across time for the parametric and the non-parametric ap-

proaches. It is clear that as time-frequency decreases, we note a decline in the observed in-

stances of the null hypothesis rejection for individual securities and the aggregated portfolio.

Overall, the differences between the results of the two frameworks are quite clear. Specifi-

cally, within the linear parametric framework, efficient market hypothesis is over-rejected for

all calendar-time specifications, further emphasizing the superiority of the non-parametric

approach over the standard parametric one.

Figure 1.2, Panels A and B, show changes in observed instances of hypothesis rejection

for different time specifications. Again, we observe that frequency with which weak-form

market efficiency hypothesis is rejected decreases rapidly as trading intervals grow farther

apart.
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1.4 Non-Parametric Approach: Bivariate

In this section we extend the univariate approach introduced in Section 2 to a bivariate

framework, where we examine a causal relationship between two financial series, returns

and traded volumes. Consider again the qualitative state transformations for Markov chains

Zt and Yt,

Zt(cp) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if log(pt) − log(pt−1) > cp

0 otherwise
,

Yt(cv) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if vt ≥ cv

0 otherwise
.

(1.16)

Here Zt denotes the state of the return series at time t; Yt denotes the state of the volume

series at time t; cp is the threshold value associated with the return series, set to equal zero;

and cv is the threshold value associated with the volume series, here set to equal the sample

mean.

Let [Zt(a), Yt(c)]
′ be the qualitative bivariate process of securities returns and traded

volumes. Extending the univariate framework, we define bivariate transition probabilities

as

P (Zt = i, Yt = j∣Zt−1 = k, Yt−1 = l) = Πij∣kl, for i, j, k, l = 0,1. (1.17)

1.4.1 SUR Representation of the Markov Chain

The bivariate state specifications in Eq.(1.17), can be equivalently represented by the system

of regressions

ZtYt = β11 + α11∣11Zt−1Yt−1 + α11∣10Zt−1(1 − Yt−1) + α11∣01(1 −Zt−1)Yt−1 + u11t, (1.18)

Zt(1 − Yt) = β10 + α10∣11Zt−1Yt−1 + α10∣10Zt−1(1 − Yt−1) + α10∣01(1 −Zt−1)Yt−1 + u10t,

(1 −Zt)Yt = β01 + α01∣11Zt−1Yt−1 + α01∣10Zt−1(1 − Yt−1) + α01∣01(1 −Zt−1)Yt−1 + u01t.
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These equations represent the Seemingly Unrelated Regression (SUR) system of equations

introduced by Zellner (1962), where the elements of the transition matrix in Eq.(1.18) are

directly related to the coefficients in the SUR model.

1.4.2 Non-Causality Hypothesis

Recall the definition of Granger causality introduced in Section 2. We say that Y does not

Granger cause Z if the density of Zt conditional on both Yt−1 and Zt−1 is equal to the density

of Zt when we condition on Zt−1 alone.

In this study, we focus on three types of causal relationships: (i) unidirectional causality

from returns (Z) to volumes (Y ), (ii) unidirectional causality from volumes (Y ) to returns

(Z), and (iii) instantaneous causality between returns (Z) and volumes (Y ), which we test

by deriving a set of constraints involving the parameters of the SUR model in Eq.(1.18).

Suppose we are interested in testing whether traded volumes Granger cause securities

returns. That is, we are interested in all specifications for which Zt = 1, that is, the first two

regressions in Eq.(1.18). We transform the equations as follows

Zt = β11 + β10 + (α11∣11 + α10∣11)Zt−1Yt−1 (1.19)

+ (α11∣10 + α10∣10)Zt−1(1 − Yt−1)

+ (α11∣01 + α10∣01)(1 −Zt−1)Yt−1

+ u11t + u10t.

By definition, Y does not Granger cause Z when information contained in Yt−1 does not

affect the quality of our prediction of Zt. Then in this particular framework, we define the

null hypothesis of non-causality as

H0
Z↛Y ∶ {α11∣01 + α10∣01 = 0, α11∣11 + α10∣11 − α11∣10 − α10∣10 = 0}. (1.20)
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Similarly, the null hypothesis of non-causality from Z to Y is expressed as follows

H0
Z↛Y ∶ {α11∣10 + α01∣10 = 0, α11∣11 + α01∣11 − α11∣01 − α01∣01 = 0}. (1.21)

The null hypothesis of instantaneous non-causality between Z and Y is satisfied when

the deterministic part of ZtYt is the product of the deterministic parts of Zt and Yt. This

can be represented as a system of four constraints which define the null hypothesis H0
Y↮Z :

β11−α11∣11 − α11∣10 − α11∣01 = (1.22)

{β11 + β10 − (α11∣11 + α10∣11) − (α11∣10 + α10∣10) − (α11∣01 + α10∣01)}

{β11 + β01 − (α11∣11 + α01∣11) − (α11∣10 + α01∣10) − (α11∣01 + α01∣10)},

α11∣11 = (α11∣11 + α10∣11)(α11∣11 + α01∣11),

α11∣10 = (α11∣10 + α10∣10)(α11∣10 + α01∣10),

α11∣01 = (α11∣01 + α10∣01)(α11∣01 + α01∣01).

1.4.3 Re-parameterization of Non-Causality Hypothesis

The application of the empirical approach presented above is rather complicated. Here we

provide a simplified econometric framework for the evaluation of the three non-causality

hypotheses specified in the previous sub-section.

1.4.3.1 Unidirectional Causality from Returns to Volumes

In order to simplify the regression in Eq.(1.19), we specify the regression equation that

relates traded volumes at time t with observed traded volumes and returns at time t − 1:

Yt = β1. + α1.∣1.Yt−1 + α1.∣.1Zt−1 + α1.∣11Yt−1Zt−1 + u1.,t. (1.23)
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The hypothesis of non-causality from Z to Y can now be states as

H0
Z↛Y ∶ {α1.∣.1 = α1.∣11 = 0}. (1.24)

If the null hypothesis is rejected, we can further determine whether the rejection is due to

the presence of uniquely linear dependencies. That is, we can test if α1.∣11 = 0 and α1.∣.1 ≠ 0.

1.4.3.2 Unidirectional Causality from Volumes to Returns

Similarly, we specify a regression equation that relates returns at time t with observed

returns and traded volumes at time t − 1

Zt = β.1 + α.1∣1.Yt−1 + α.1∣.1Zt−1 + α.1∣11Yt−1Zt−1 + u.1,t. (1.25)

The hypothesis of non-causality from Y to Z corresponds to the following constraints

H0
Y↛Z ∶ {α.1∣.1 = α.1∣11 = 0}. (1.26)

Similar to unidirectional causality form Z to Y , in case of hypothesis rejection, we can further

determine whether the rejection is due to the presence of uniquely linear dependencies. That

is, we can test if α.1∣11 = 0 and α.1∣.1 ≠ 0.

1.4.3.3 Instantaneous Causality between Volumes and Returns

Unlike unidirectional non-causality, instantaneous non-causality has to do with the absence

of influence of current value of Zt in the conditional distribution of Yt, given Zt, Yt−1, Zt−1.

The regression corresponding to the conditional distribution is thus specified as

Yt = γ1 + δ1..Zt + δ.1.Yt−1 + δ..1Zt−1 + δ11.ZtYt−1 + δ1.1ZtZt−1 (1.27)

+ δ.11Yt−1Zt−1 + δ111ZtYt−1Zt−1 + v1,t.
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The null hypothesis of non-causality becomes

H0
Y↮Z ∶ {δ1.. = δ11. = δ1.1 = δ111 = 0}. (1.28)

A rejection of the null hypothesis in this case may be either due to lack of a linear relationship

between Yt and Zt or higher order interactions between the model variables.

1.5 Empirical Results

We examine returns and volumes of stocks included in the Dow Jones Industrial index and

traded on NYSE (NASDAQ for Intel and Microsoft) during December 2005 - June 2007 time

period. Consistent with empirical literature, opening trades were deleted prior to estimation.

We investigate high-frequency data using parametric and non-parametric frameworks

and test linear and nonlinear causality in transaction and calendar times for individual

securities and an aggregated portfolio. A unitary increment in transaction time is set by a

trade arrival, disregarding the length of the waiting time between transactions. A unitary

increment in calendar time corresponds to an integer multiple of one minute and is arbitrarily

selected to correspond to 1-minute, 5-minute, 15-minute and 1-hour grids.

Results demonstrate that both unidirectional and instantaneous causality is time and

sample dependent. The rest of the section discusses observed stylized facts about the causal

relationship between traded volumes and securities returns.

1.5.1 Preliminary Results

Tables 1.6a-1.6c, Panels A and B, report observed instances of unidirectional and instan-

taneous causality for individual securities and across time. Each cell entry represents the

aggregate of securities for which a causal relationship was recorded. Tables 1.7a-1.7c, Panels

A and B, report observed instances of causality for the equally-weighted, aggregate portfolio

of the aforementioned securities. As in the efficient market hypothesis, one denotes observed

causality while zero signifies the lack of a statistically causal relationship between the two
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series.

Results suggest that on average, greater frequencies of causality are observed under

the non-parametric approach as compared to the parametric one. Furthermore, instances

of observed causality decline as the calendar grid becomes coarser. Finally, in trading

time, causality is observed most frequently for the instantaneous causality-type. This result

changes for calendar-time causality, where unidirectional causality from traded volumes to

returns is observed more frequently than other causality types.

To summarize, results of the parametric approach demonstrate that on average, observed

instances of causality decline with decreased frequency of trades. That is, the non-causality

hypothesis holds more frequently at coarser time intervals. When it comes to unidirectional

causality from volumes to returns, causality is relatively strong in both transaction and

calendar times, specifically at the one-minute frequency. Averaged across the sample time

period, causality is established for approximately 15 out of 30 stocks in trading time and

16 securities in calendar time, Table 1.6a. Unidirectional causality from returns to volumes,

and instantaneous causality, are more frequently observed in trading time than for any

calendar time specification. On average, unidirectional causality is observed for 10 firms and

instantaneous causality is observed for 25 firms in trading time, while observed instances of

causality drop to 3 and 8 firms when a one-minute grid is utilized, Tables 1.6b and 1.6c.

Under the non-parametric approach, observed instances of causality are relatively similar

in transaction time and a one-minute grid in calendar time for instantaneous (on average 30

and 23 firms show causality, Table 1.6c) and unidirectional causality from volume to returns

(27 and 28 firms, Table 1.6a). When it comes to unidirectional causality from returns to

volumes, on average, we reject the non-causality hypothesis is rejected for 23 firms in trading

time and 10 firms in calendar time, Table 1.6b.

Figures 1.3, 1.4 and 1.5, Panels A - E, further emphasize the differences between the

parametric and the non-parametric approaches employed. Figure 1.3 shows instances of

observed causality from traded volumes to returns; Figure 1.4 shows instances of observed

causality from returns to traded volumes; and Figure 1.5 demonstrates instances of observed
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instantaneous causality between the two series. Two conclusions emerge. First, it is clear

that at high-frequency, causality is observed more frequency under the non-parametric ap-

proach than under the parametric one. The differences disappear as the time grid becomes

coarser. Second, under both approaches, instances of observed causality decline rapidly in

low-frequency data. This result is consistent with informational efficiency of financial mar-

kets, as it effectively precludes arbitrage. Specifically, we conclude that information enters

into, and is absorbed by the market almost instantaneously, signaling efficiency.

Figures 1.6 and 1.7, Panels A - E, illustrate the differences in frequencies of observed

causality across the types of causal relationships: univariate from volumes to returns, Y → Z;

univariate from returns to volumes, Z → Y ; and instantaneous, Z ↔ Y . Figure 1.6 illustrates

the results of he parametric approach, while Figure 1.7 illustrated the results of the non-

parametric one. We note that instantaneous causality occurs most frequently in trading

time. Within the calendar time specification, causality from volumes to returns is the most

common. This is evidence supporting the theories of sequential information. The market

consists of informed and uninformed investors. The informed investors act on information

available to them by choosing specific trading strategies, while the uninformed investors

judge the quality of information available to them, and select their trading strategies based

on their evaluation of observed behavior. Thus, volume is said to Granger cause returns

since a movement in trading volume leads to increased/decreased demand which results in

higher/lower prices and hence, higher/lower returns.

Results suggest that financial market are efficient in the sense that unidirectional and

instantaneous causality rapidly declines in time aggregation under both, the parametric and

the non-parametric frameworks approaches, since causality is observed consistently only at

very fine time intervals, frequency of 10th of a second and higher, it is difficult to successfully

exploit it for economic gain.
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1.5.2 Extending Model Specifications

Recall the consistent over-rejection of the weak-form market efficiency hypothesis in Section

3. Results demonstrated the inferiority of the linear parametric approach with respect to

the non-parametric approach. Results presented in the previous sub-section indicate that

within the bivariate framework, it is the non-parametric approach that rejects non-causality

more frequently. One reason for this may be the ability of the non-parametric framework to

account for nonlinear relationships between the financial series.

In their 1994 paper, Hiemstra and Jones assert an important problem in causality test-

ing is the limited power which the linear parametric approach has in detecting certain kinds

of nonlinear causal relationships. Empirical financial literature documents extensive evi-

dence of significant nonlinear dependence in stock returns (see Hinich and Patterson 1985,

Scheinkman and LeBaron 1989, Hsieh 1991). Furthermore, Hiemstra and Jones (1992) doc-

ument significant nonlinearities in aggregate trading volume. Extending previous empirical

findings, we conclude that the univariate nonlinear dependence in the series of volumes and

returns is likely to result in a nonlinear causal relationship between stock returns and traded

volume.

To test this theory, we augment the simple bivariate parametric model introduced in

Section 2 to include nonlinear interaction terms of the two variables of interest. Granger

causality between the two financial series is tested under the nonlinear parametric approach,

and results are compared to the previous findings. Figures 1.8a-1.8c, Panels A and B, illus-

trate the differences across the types of model specifications. We find that the results gen-

erated under the nonlinear parametric framework are similar to those of the non-parametric

approach, providing further evidence supporting the importance of nonlinear relationships

in financial analysis.
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1.6 Conclusions and Extensions

This paper examines the dynamics of the quantitative and the qualitative series of returns

and volumes of securities included in the Dow Jones Industrial index and traded on NYSE

(NASDAQ for Intel and Microsoft) during December 2005 - June 2007 time period. We test

informational efficiency of financial markets in an effort to assess the quality of contribution

that knowledge of past volume movements has, in terms of improving short-run forecasts of

current and future movements in securities prices, and vice versa. We analyze a sample of 30

individual securities as well as an equally weighted portfolio comprised of the aforementioned

stocks. Aggregated and disaggregated approaches in testing Granger causality between series

of returns and volumes are utilized as investigation of individual securities, compared to that

of a portfolio, may reveal characteristics which tend to be hidden when aggregate indexes

are analyzed. Weak-form market efficiency is tested in the high-frequency data context, and

the unidirectional and instantaneous non-causality hypothesis for individual securities and

a market portfolio are tested for trading and calendar time specifications.

Empirical results indicate that causality directions vary in time and depend on the sam-

pling scheme, such as the real or calendar time scales. Results show that observed causality

increases as calendar grid becomes finer, suggesting that while informational efficiency of

financial markets holds, opportunities for economic gains may exist at high-frequencies. In

trading time, observed instances of causality are greatest for instantaneous causality. This

result changes in calendar causality, where we observe unidirectional causality from volumes

to returns more frequently than other causality types.
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Table 1.1: Returns Series Sample Statistics

Panel A: Individual Securities
Mean Std. Dev. Interval Zt = 1 Zt = 0

3M Co. MMM -2.61E-08 0.000155 -0.0065374, 0.0064640 1,608,171 437,748
Alcoa Inc. AA -2.30E-08 0.000241 -0.0076764, 0.0087540 2,204,246 479,245
Altria Group MO -4.73E-08 0.000133 -0.0107203, 0.0183372 2,415,629 591,050
American Express Co. AXP 5.01E-08 0.000156 -0.0086107, 0.0083356 1,840,779 407,677
American International Group Inc. AIG -9.20E-08 0.000138 -0.0072832, 0.0076871 2,417,530 558,300
AT&T Inc. T 7.09E-08 0.000182 -0.0147500, 0.0147500 2,942,219 495,175
Boeing Co. BA -5.63E-08 0.000166 -0.0065885, 0.0085940 1,880,382 570,548
Caterpillar Inc. CAT -3.13E-08 0.000171 -0.0124054, 0.0063291 2,033,451 544,875
Citigroup Inc. C -3.97E-08 0.000139 -0.0067542, 0.0106230 3,064,248 609,122
Coca-Cola Co. KO 6.00E-08 0.000160 -0.0060704, 0.0080760 1,972,350 431,080
E.I. DuPont de Nemours & Co. DD 9.48E-08 0.000184 -0.0089793, 0.0126688 1,698,410 386,043
Exxon Mobil Corp. XOM 3.32E-08 0.000118 -0.0075145, 0.0089316 5,014,672 1,131,411
General Electric Co. GE 2.01E-08 0.000164 -0.0075023, 0.0077622 3,031,561 529,956
General Motors Corp. GM -6.65E-08 0.000285 -0.0225348, 0.0198462 2,100,670 453,715
Hewlett-Packard Co. HPQ 3.18E-07 0.000183 -0.0162604, 0.0085325 2,533,995 481,025
Home Depot Inc. HD 5.49E-08 0.000186 -0.0059636, 0.0070138 2,420,558 512,004
Honeywell International Inc. HON 7.78E-08 0.000199 -0.0087104, 0.0087104 1,699,998 374,424
Intel Corp. INTC -1.45E-08 0.000167 0.0272143, 0.0272143 18,441,805 1,059,540
International Business Machines IBM 2.14E-07 0.000134 -0.0063930, 0.0063930 2,437,753 666,873
Johnson & Johnson JNJ -4.49E-08 0.000131 -0.0071063, 0.0061450 2,389,470 567,534
JPMorgan Chase & Co. JPM 1.12E-07 0.000150 -0.0077519, 0.0087252 2,647,061 515,605
McDonald’s Corp. MCD 1.71E-07 0.000175 -0.0076046, 0.0062947 1,841,167 365,850
Merck & Co. Inc. MRK 1.55E-07 0.000181 -0.0156779, 0.0137932 2,334,773 497,727
Microsoft Corp. MSFT 1.68E-08 0.000127 -0.0350122, 0.0353820 17,637,422 988,758
Pfizer Inc. PFE 4.55E-08 0.000223 -0.0125887, 0.0083859 2,876,443 499,489
Procter & Gamble Co. PG 1.42E-07 0.000139 -0.0125527, 0.0084281 2,543,087 541,291
The Walt Disney Company DIS 2.08E-07 0.000212 -0.0093312, 0.0083683 1,830,986 352,296
United Technologies Corp. UTX -3.41E-08 0.000183 -0.0090017, 0.0091324 1,702,396 446,324
Verizon Communications Inc. VZ -1.30E-08 0.000188 -0.0103660, 0.0106819 2,188,691 424,178
Wal-Mart Stores Inc. WMT -1.89E-09 0.000153 -0.0048406, 0.0058365 2,691,090 587,689

Panel B: Portfolio
Mean Std. Dev. Interval Zt = 1 Zt = 0

Equally Weighted Portfolio 3.68E-11 0.000009 -0.0006704, 0.0009966 39,106,256 5,860,781
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Table 1.2: Traded Volumes Series Sample Statistics

Panel A: Individual Securities
Mean Std. Dev. Interval Yt = 1 Yt = 0

3M Co. MMM 5.448 0.904 4.605, 13.122 948,043 1,098,272
Alcoa Inc. AA 5.698 1.068 4.605, 13.528 1,205,509 1,478,378
Altria Group MO 5.682 1.054 4.605, 14.208 1,320,692 1,686,383
American Express Co. AXP 5.568 1.007 4.605, 13.415 915,672 1,333,180
American International Group Inc. AIG 5.670 1.038 4.605, 14.509 1,325,226 1,651,000
AT&T Inc. T 6.014 1.237 4.605, 14.403 1,586,731 1,851,059
Boeing Co. BA 5.396 0.889 4.605, 12.264 1,113,540 1,337,786
Caterpillar Inc. CAT 5.547 0.973 4.605, 13.484 1,114,202 1,464,520
Citigroup Inc. C 5.926 1.183 4.605, 14.761 1,778,502 1,895,264
Coca-Cola Co. KO 5.743 1.091 4.605, 14.663 1,070,149 1,333,677
E.I. DuPont de Nemours & Co. DD 5.608 0.988 4.605, 13.305 892,826 1,192,023
Exxon Mobil Corp. XOM 5.993 1.079 4.605, 14.914 2,918,562 3,227,917
General Electric Co. GE 6.182 1.334 4.605, 15.262 1,718,644 1,843,269
General Motors Corp. GM 5.951 1.211 4.605, 17.148 1,189,136 1,365,645
Hewlett-Packard Co. HPQ 5.937 1.173 4.605, 15.320 1,440,669 1,574,747
Home Depot Inc. HD 5.871 1.168 4.605, 16.118 1,335,058 1,597,900
Honeywell International Inc. HON 5.558 0.971 4.605, 14.144 912,803 1,162,015
Intel Corp. INTC 5.974 1.000 4.605, 16.151 9,817,431 9,684,310
International Business Machines IBM 5.536 0.969 4.605, 13.816 1,331,934 1,773,088
Johnson & Johnson JNJ 5.714 1.094 4.605, 14.077 1,308,435 1,648,965
JPMorgan Chase & Co. JPM 5.863 1.128 4.605, 14.400 1,517,175 1,645,887
McDonald’s Corp. MCD 5.707 1.080 4.605, 14.649 952,984 1,254,429
Merck & Co. Inc. MRK 5.811 1.117 4.605, 14.093 1,270,388 1,562,508
Microsoft Corp. MSFT 5.922 0.996 4.605, 16.628 17,637,422 988,758
Pfizer Inc. PFE 6.288 1.378 4.605, 14.797 1,584,886 1,791,442
Procter & Gamble Co. PG 5.680 1.074 4.605, 14.422 1,332,266 1,752,508
The Walt Disney Company DIS 5.879 1.211 4.605, 14.039 987,459 1,196,219
United Technologies Corp. UTX 5.498 0.931 4.605, 14.250 957,154 1,191,962
Verizon Communications Inc. VZ 5.943 1.177 4.605, 13.945 1,248,628 1,364,637
Wal-Mart Stores Inc. WMT 5.898 1.185 4.605, 14.343 1,496,812 1,782,363

Panel B: Portfolio
Mean Std. Dev. Interval Yt = 1 Yt = 0

Equally Weighted Portfolio 6.603 1.346 4.605, 17.148 21,498,645 23,468,788
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Table 1.3: ARCH effects in Returns Series

Panel A: Individual Securities
χ2 Statistic

Trading Time 1m Grid 5m Grid 15m Grid 1h Grid

3M Co. MMM 56,289*** 6,934*** 1,432*** 443*** 31.183***
Alcoa Inc. AA 84,070*** 8,128*** 1,735*** 255*** 54.705***
Altria Group MO 223,138*** 14,496*** 133*** 77*** 43.192***
American Express Co. AXP 60,957*** 8,270*** 1,310*** 529*** 6.806***
American International Group Inc. AIG 135,124*** 6,516*** 3,229*** 309*** 15.698***
AT&T Inc. T 374,193*** 9,195*** 1,940*** 156*** 81.575***
Boeing Co. BA 47,174*** 7,840*** 1,790*** 322*** 36.898***
Caterpillar Inc. CAT 31,158*** 6,126*** 1,589*** 334*** 60.774***
Citigroup Inc. C 170,937*** 6,738*** 2,049*** 264*** 26.230***
Coca-Cola Co. KO 161,048*** 19,683*** 1,155*** 165*** 9.668***
E.I. DuPont de Nemours & Co. DD 63,325*** 10,222*** 1,056*** 534*** 20.370***
Exxon Mobil Corp. XOM 40,205*** 5,387*** 629*** 122*** 16.375***
General Electric Co. GE 199,288*** 5,512*** 1,015*** 127*** 25.090***
General Motors Corp. GM 28,249*** 9,363*** 410*** 152*** 4.881**
Hewlett-Packard Co. HPQ 38,335*** 11,187*** 1,137*** 362*** 23.645***
Home Depot Inc. HD 81,280*** 7,483*** 1,367*** 211*** 32.515***
Honeywell International Inc. HON 106,075*** 8,101*** 1,096*** 763*** 43.778***
Intel Corp. INTC 184,370*** 10,586*** 804*** 334*** 9.671***
International Business Machines IBM 103,275*** 8,488*** 953*** 161*** 8.018***
Johnson & Johnson JNJ 112,057*** 9,674*** 1,297*** 325*** 64.112***
JPMorgan Chase & Co. JPM 222,455*** 2,534*** 1,185*** 328*** 11.262***
McDonald’s Corp. MCD 47,950*** 13,903*** 943*** 122*** 9.799***
Merck & Co. Inc. MRK 64,829*** 12,324*** 1,145*** 482*** 8.610***
Microsoft Corp. MSFT 225,420*** 10,434*** 606*** 245*** 37.285***
Pfizer Inc. PFE 153,019*** 5,795*** 2,799*** 492*** 16.118***
Procter & Gamble Co. PG 79,086*** 9,669*** 1,640*** 813*** 5.621**
The Walt Disney Company DIS 103,908*** 7,784*** 3,219*** 150*** 3.226*
United Technologies Corp. UTX 34,035*** 7,101*** 959*** 279*** 6.455**
Verizon Communications Inc. VZ 86,606*** 12,459*** 3,059*** 722*** 57.610***
Wal-Mart Stores Inc. WMT 94,936*** 8,842*** 724*** 103*** 23.565***

Panel B: Portfolio
χ2 Statistic

Trading Time 1m Grid 5m Grid 15m Grid 1h Grid

Equally Weighted Portfolio 42,485*** 6,610*** 1,063*** 179*** 17.278***

* significant at 10%
** significant at 5%
*** significant at 1%
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Figure 1.1: Observed Returns Series Dynamics

Panel A: Trading Time

Panel B: Calendar Time, 1m Grid

Panel C: Calendar Time, 5m Grid
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Figure 1.1: Observed Returns Series Dynamics - Continued

Panel D: Calendar Time, 15m Grid

Panel E: Calendar Time, 1h Grid
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Figure 1.2: Observed Returns Series Dynamics

Panel A: Parametric Approach

Panel B: Non-Parametric Approach
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Figure 1.3: Observed Instances of Causality, Volumes to Returns

Panel A: Trading Time

Panel B: Calendar Time, 1m Grid

Panel C: Calendar Time, 5m Grid
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Figure 1.3: Observed Instances of Causality, Volumes to Returns - Continued

Panel D: Calendar Time, 15m Grid

Panel E: Calendar Time, 1h Grid
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Figure 1.4: Observed Instances of Causality, Returns to Volumes

Panel A: Trading Time

Panel B: Calendar Time, 1m Grid

Panel C: Calendar Time, 5m Grid
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Figure 1.4: Observed Instances of Causality, Returns to Volumes - Continued

Panel D: Calendar Time, 15m Grid

Panel E: Calendar Time, 1h Grid
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Figure 1.5: Observed Instances of Causality, Instantaneous

Panel A: Trading Time

Panel B: Calendar Time, 1m Grid

Panel C: Calendar Time, 5m Grid
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Figure 1.5: Observed Instances of Causality, Instantaneous - Continued

Panel D: Calendar Time, 15m Grid

Panel E: Calendar Time, 1h Grid
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Figure 1.6: Observed Instances of Causality, Parametric Approach

Panel A: Trading Time

Panel B: Calendar Time, 1m Grid

Panel C: Calendar Time, 5m Grid
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Figure 1.6: Observed Instances of Causality, Parametric Approach - Continued

Panel D: Calendar Time, 15m Grid

Panel E: Calendar Time, 1h Grid
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Figure 1.7: Observed Instances of Causality, Non-Parametric Approach

Panel A: Trading Time

Panel B: Calendar Time, 1m Grid

Panel C: Calendar Time, 5m Grid
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Figure 1.7: Observed Instances of Causality, Non-Parametric Approach - Continued

Panel D: Calendar Time, 15m Grid

Panel E: Calendar Time, 1h Grid
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Figure 1.8a: Observed Instances of Causality, Volumes to Returns

Panel A: Trading Time

Panel B: Calendar Time, 1m Grid
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Figure 1.8b: Observed Instances of Causality, Returns to Volumes

Panel A: Trading Time

Panel B: Calendar Time, 1m Grid
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Figure 1.8c: Observed Instances of Causality, Instantaneous

Panel A: Trading Time

Panel B: Calendar Time, 1m Grid
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Part II: Firm Risk
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Chapter 2

Credit Ratings Migration:
Quantifying Obligor Risk

This study focuses on estimating obligor credit rating migration probabilities us-
ing a continuous-record approach while controlling for the effects of idiosyncratic
and systematic risk factors. Short- and long-run relationships between asset quality
and obligor ratings are modeled and quantified using Moody’s Default Risk Ser-
vice (DRS) data on long-term bonds, rated during the 1970-2007 time period. The
contribution to existing risk management literature is two-fold: first, the use of a
continuous-record model addresses the problems of data sparsity and control for
resulting estimation errors; second, the implementation of a methodology allowing
us to precisely identify the stages of the business cycle enables us to determine the
incremental impact of idiosyncratic and systematic risk factors on rating transitions
probabilities, resulting in more precise estimates of credit rating migration trends.
Results confirm the previous empirical finding in that obligor characteristics and
business cycle stages have a strong effect on the dynamics of credit ratings, with a
stronger effect observed in longer-horizon models. The importance of the business
cycle effect on credit ratings is further illustrated by computing a forecast content
for the business cycle variable in our model.

2.1 Introduction

Conventionally, credit risk is captured in obligor credit ratings, which are used as subjective

measures of solvency and prospects of a debt issuer (see Koopman 2006). Credit ratings

are computed by credit rating agencies (CRAs) and represent an overall assessment of the

creditworthiness of a firm. Ratings are non-quantitative in nature, which makes their ap-

plication in risk management complicated as it is difficult to precisely enumerate the risk
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associated with a particular issuer. To mitigate this inefficiency, a trend emerged in recent

financial literature establishing a framework in which rating migration trends, and default

risks, of long-term bond issuers are quantified in transition probabilities matrices.

It is widely accepted in risk management literature that credit rating distributions vary

across time and issuer types (Nickell et al. 2000). It follows that, credit ratings transition

probabilities are dependent on various sources of obligor risk. Ignoring these dependencies

may lead to inaccurate assessments of firm creditworthiness, resulting in inefficient portfolio

allocation and other financially suboptimal outcomes. In this paper, we examine rating

migration dynamics of long-term bond issuers by quantifying the dependence of rating tran-

sition probabilities on idiosyncratic and systematic risk factors.

The first empirical credit rating migration model was developed by Jarrow et al. (1997)

who use firm data to construct a matrix of credit rating transitions probabilities (see McBride

2006). The Jarrow et al. matrix is based on a discrete-time homogeneous Markov chain,

where each element represents the frequency of a particular rating migration. Simply put,

each entry of the matrix represents the probability of a specific rating transition, and is

calculated by dividing the number of companies that moved from one state to another by

the total number of companies in the initial rating category.

Current models describing rating migration trends have shifted away from implied firm

homogeneity to focus on sources of observed heterogeneity of obligors, expanding model

specification to include a number of idiosyncratic and systematic risk factors. Empirical

literature provides extensive evidence to support the assumption of obligor heterogeneity.

Kadam and Lenk (2008), Frydman and Schuermann (2007), Figlewski, Frydman, and Liang

(2006), Bangia et al. (2002), and Nickell, Perraudin, and Varotto (2000) demonstrate that

rating migration probabilities are highly correlated with issuer characteristics such as the

industry of activity and domicile. Furthermore, recent studies by Figlewski et al., Bangia

et al. and Nickell et al. indicate the presence of a link between rating migration trends

and certain macroeconomic indicators, such as the stages of the business cycle. The notion

that default probability is sensitive to macroeconomic factors is further supported by studies
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conducted by Duffie (2005), Couderac and Renault (2004), and Kavvathas (2001).

We complement and extend existing empirical literature by incorporating a continuous-

record model, which allows us to mitigate problems of data sparsity and control for resulting

estimation errors. We account for heterogeneity of obligors, and introduce a methodology

to precisely identify and control for stages of the business cycle, enabling us to quantify

the incremental impact of idiosyncratic and systematic risk factors on rating transition

probabilities, resulting in more precise estimation of credit rating migration trends.

Our empirical strategy is based on a methodology proposed by Nickell et al. (2000), who

use an ordered probit estimation technique to compute the incremental impact of obligor

characteristics on migration patterns of credit ratings. Our results confirm the previous

empirical findings suggesting that obligor characteristics and business cycle stages have a

strong impact on credit rating migration and, further, observe a stronger business cycle

effect in longer-horizon models. We illustrate the importance of the business cycle effects

on the dynamics of credit ratings by computing a forecast content for the business cycle

variable in our model, emphasizing the importance of idiosyncratic risk factors in precise

assessment of obligor risk.

Results identify a clear ordering of issuer default probabilities across domiciles, with

Japanese firms being least likely to default on their long-term obligations during economic

expansions and contractions, and firms domiciled in the Lower-Middle Income countries

(such as Georgia and the Philippines) demonstrating the greatest risk of default across all

rating categories and business cycle stages. We observe that, on average, issuers in the Bank-

ing industry are most likely to experience an upgrade; obligors active in the Transportation

sector are the riskiest in terms of default for sub-investment-grade rating categories; and,

Industrial sector issuers have the highest probability of recovery following a default.

Our analysis of default instances demonstrates a clear trend, common to all countries,

where the length of time for which an issuer received a rating is directly related to the

probability of default for non-Caa ratings categories. That is, the probability of default

increases with each additional year during which a firm receives its rating from a CRA.
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When it comes to the Caa credit rating category, the probability of default increases during

the first three years of the issuer’s rating period and declines thereafter, indicating that

older, insolvent firms have greater associated likelihoods of meeting their financial obligations

compared to younger, less experienced firms.

The remainder of the paper is organized as follows. In Section 2 we provide a brief

review of theoretical and empirical literature on credit rating migration and risk modeling.

In Section 3 we describe the dataset and variable construction methodology. Sections 4

and 5 give detailed descriptions of our empirical methodology; Section 4 develops a rigorous

methodology for identifying country-specific stages of the business cycle, while Section 5

details the methodology for quantifying effects of idiosyncratic and systematic risk factors

on transition probabilities of obligor credit ratings. In Section 6 we discuss the paper’s

central findings. We conclude and offer suggestions for further research in Section 7.

2.2 Conceptual Background

Firm creditworthiness is generally modeled using the structural or the reduced form ap-

proach (see Figlewski et al. 2006). Structural models, first introduced by Merton (1974),

consider the evolution of a firm’s value over time and assume that a transition between

rating categories occurs when a firm’s value shifts between some known thresholds. In this

framework, Default is defined as the inability or unwillingness by the issuer to meet its

financial obligations, an event which occurs when the value of the firm’s assets falls below a

specific threshold level.

In the lender-borrower framework, in order to secure external financing, a firm must

offer some asset, V , the value of which evolves over time. As the market’s valuation of the

firm’s asset changes, so does the issuer’s ability to pay off the financial obligations backed

by this particular asset. Within this framework, structural models assume that default is

endogenously determined, and that the market has complete knowledge of the firm’s financial

situation, consequently asserting that default is predictable (Jarrow and Potter 2004).

In contrast to structural models, reduced form models treat a credit ratings change as

59



a random event that has a positive probability of occurrence for any firm, at any time. In

the reduced form framework, a transition from one credit rating to another corresponds to a

jump in a Poisson process with some predetermined hazard rate. Here, Default is assumed

to be exogenously determined and thus, is not predictable (see Gndz and Uhrig-Homburg

2005).

This study assumes that changes in a firm’s asset value are related to two types of risk

factors: idiosyncratic, factors related to individual obligor characteristics; and systematic,

factors affecting the creditworthiness of all obligors. That is, firm creditworthiness is both

endogenously and exogenously determined. We model the relationship between a firm’s

value and factors affecting it as follows

∆Vj,t = αjXj,t + ηjZt + σjεj,t, (2.1)

where ∆V denotes a change in asset value of firm j at time t; X is a vector of idiosyncratic

risk factors; Z is a vector of systematic risk factors; αj and ηj are correlations of changes

in a firm’s asset value with changes in risk factors X and Z; σj denotes the magnitude

of residual volatility in asset value that is not explained by either internal or external risk

factors; and εj is an independent, normally distributed random shock.

Assuming a normal distribution of changes in a firm’s asset value, the creditworthiness

of an obligor can be expressed as a continuum of states. In this framework, a firm’s default

probability is the probability of a standard normal variable falling below some critical value,

and transitions to other states can be characterized by some predetermined corresponding

threshold values.

Asset-value thresholds can be equivalently modeled as asset-return thresholds (Bangia

et al. 2002). Consider a scenario where the asset-value corresponds to a specific state on

the continuum of credit ratings, C to Aaa; where C is the lowest possible rating, denoting

obligor’s inability to meet financial obligations, and Aaa indicates complete financial sol-

vency. If ∆Vj is below some threshold, kN−1, the obligor is assigned a rating of C. If ∆Vj

is below some threshold k1, but above another threshold, k2, the firm is assigned a rating of
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Aa, etc. The decision rule is as follows

Rating = C

⋮

Rating = Aa

Rating = Aaa

if

⋮

if

if

∆Vj ≤ kN−1,

⋮

k2 < ∆Vj ≤ k1,

k1 < ∆Vj ,

(2.2)

where N is the number of categories in which the dependent variable may fall.

Figure 2.1 illustrates the decision rule in Eq.(1.2). Standard implementation of the

approach introduced by Merton (1974) suggests that changes in asset-value are normally

distributed with mean µ and standard deviation σ. Following the existing finance literature,

assume that the firm’s asset-returns are distributed according to a standard normal, with

mean zero and standard deviation of one. In this framework, the firm’s asset-returns are

represented as a continuum of states, and can take on both positive and negative values. If

a firm’s actual asset-return, ∆Vj , falls below two asset return thresholds ki and ki+1, such

that ki+1 < ki and where i+1 is the credit class below i, the company’s rating in period t+1

will be i. specifically, if a firm’s asset-return is positive, indicating a strengthening financial

position, then for an asset-return large enough, a firm is likely to receive a rating upgrade.

If the asset return is negative a rating downgrade is likely to follow.

Given the assumption of normality and the frequency of occurrence of each migration

combination, it is possible to compute every asset return threshold corresponding to a specific

credit rating

Pr{Rating = C} = Φ(kN−1),

⋮ ⋮

Pr{Rating = Aa} = Φ(k2) −Φ(k1),

P r{Rating = Aaa} = 1 −Φ(k1),

(2.3)

where Φ[⋅] is the cumulative distribution function of the standard normal distribution.
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2.2.1 Preliminary Results

Before proceeding with conditional estimates of the continuous-record credit ratings migra-

tion matrices, we consider their unconditional parameters, presented in Table 2.1, Panel

A.

We observe a clear, high probability load on the diagonal, characteristic of transition

probabilities matrices described in the empirical literature to date. Diagonal dominance

implies that obligors are most likely to maintain their current credit rating rather than

move up or down in the ratings categories. We further conclude that, given an initial rating,

the second largest probabilities are generally found in a direct neighborhood to the diagonal

(Bangia et al. 2002). To summarize, ratings categories farther away from the diagonal are

associated with decreasing probabilities of occurrence, which is consistent with monotonicity

of migration described in Bangia et al.. That is, given some initial credit rating in time

period t, it is most likely that an obligor’s financial situation in t + 1 will not have changed

drastically, resulting in the monotonicity of credit ratings.

It is important to note that strict monotonicity need not necessarily hold. Some empirical

studies, including Nickell et al. (2000), found that Caa rating category violates monotonicity

as a Caa-rated obligor is much more likely to Default than be downgraded to a Ca or

a C rating, thus jumping categories. One explanation for this inconsistency is noise in

the observed data. In their paper, Bangia et al. (2002) explain that recent studies have

challenged the assumption of strict monotonicity as unreasonable specifically when it comes

to the Caa rating category. That is, rating agencies consider Caa rated obligors to be

exceptionally volatile, and the risky nature of these issuers manifests itself in high probability

occurrence of two specific states: Default and significant rating upgrade (Lando 1998).

Results presented in Table 2.1, Panel A, demonstrate increased probabilities of default

and higher migration volatility for lower-quality grades of investment. We generalize that

the likelihood of default increases rapidly with a decreasing creditworthiness. Also, we note

a reversion to the mean for investment-grade bonds, bonds with a rating of Baa and above.

Specifically, higher-rated bonds have an increased probability of experiencing a downgrade
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then an upgrade; while lower-rated bonds tend to experience upgrades more frequently then

downgrades. Our preliminary results are consistent with findings of previous, discrete- and

continuous-time studies, summarized in Panel B of Table 2.1.

2.3 Data Description

This study uses Moody’s Default Risk Service (DRS) database of ratings and defaults for

issuers of long-term bonds during the 1970-2007 time period. Schuermann and Jafry (2003)

argue that Moody’s rating approach incorporates some judgment of recovery in the event

of default. Thus, we assume the credit ratings published in the DRS to represent an overall

assessment of an issuer’s creditworthiness.

In order to account for each legal entity separately, we track an issuer’s senior, unsecured,

long-term debt rating over the sample time period. This rating serves as a measure of a

firm’s credit quality for as long as that rating is outstanding. As is common practice in the

empirical literature, we exclude municipal debt issuers from the sample. Following Nickell

et al. (2000), we restrict our sample to obligor ratings as of December 31st of each observed

year, removing multiple ratings for a given issuer during a particular year in an effort to

reduce noise in the data.

We further refine our sample by excluding withdrawn ratings. The treatment of rating

withdrawals is an important issue in the literature on credit rating migration. There are a

variety of reasons for which a credit rating may be withdrawn, ranging from bond maturity

to discontinuing payments of Moody’s required rating fee by the obligor. It is this lack of

information associated with a rating withdrawal that leads some researchers to infer that a

withdrawal implies negative information about a firm. However, according to Carty (1997),

deterioration in the firm’s credit quality can be correlated with a mere one percent of the

withdrawal cases. Since few rating withdrawals are actually correlated with changes in issuer

creditworthiness we simply exclude them from the sample.

The final dataset contains credit ratings histories for 13,335 obligors, with a total of

121,776 observations. The following sections discuss the changes in the composition of our
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dataset over the sample time period.

2.3.1 Changes in Domicile Composition

Consistent with increased international financial activity, Moody’s coverage of long-term

bond issuers has expanded to include international obligors. Specifically, the portion of

rated issuers domiciled in the United States has declined from 96% in the 1970s, to 58% in

2007, signaling increasing role played by international firms in the global market. Figure 2.2

details the composition of firms in our database according to domicile at the start of each

decade since 1970, and in 2007.

The corporate bonds covered by Moody’s span a broad range of income groups, from High

Income countries such as the United States and Japan, to Lower-Middle Income countries

such as Georgia and the Philippines. According to Kadam and Lenk (2008), economic,

legal and political differences are a source of potentially significant variation in the domicile

effect on the dynamics of obligor credit ratings. In this study we account for the national

wealth effects on credit ratings of obligors located on both ends of the wealth spectrum. We

use the World Bank’s Income classification to distinguish between two country types: High

Income countries, countries with 2006 Gross National Income (GNI) per capita of $11,116

and above; and Lower-Middle Income countries, countries with recorded $906 - $3,595 GNI

per capita in 2006. Specifically, we focus on modeling differences in credit rating transition

probabilities between United States, United Kingdom, Japan, and a group of Lower-Middle

Income countries. Detailed income statistics for our sub-sample are available in Table 2.2.

To further motivate the importance of domicile effects to the dynamics of credit ratings

we use the DRS database to model implicit country premia for our sub-sample. The most

straight-forward way of computing country premium is to consider credit rating movements

of sovereign bonds. Due to data limitations, we approximate country risk premium by

considering ratings associated with long-term corporate bonds of issuers domiciled in a

particular region. The corporate bond market is much deeper, in terms of the number

of market participants, than the sovereign bond market, and thus, is less volatile on a
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period by period basis (see Damodaran 1999). At the same time, while ratings assigned

by Moody’s are intended to measure default risk, corporate bonds, to a certain extent,

internalize the risk factors associated with specific domiciles, such as stability of a country’s

currency and its legal and economic environments. By using long-term corporate bond

ratings we overcome the data limitations associated with sovereign bonds, while implicitly

identifying comparative financial positions and riskiness of a particular domicile.

In calculating the implicit country premium, we focus on investment-grade bonds, ratings

of Baa and higher, excluding speculative-grade bonds from our analysis. We exclude junk-

bonds as speculative investments serve as indicators of investor risk tolerance, rather than

the financial stability of overall economy. That is, speculative-grade investments tend to

fluctuate with states of the economy; increasing during an economic expansion and declining

in availability during an economic recession.

We define an implicit country rating for a given year to be the rating category where

most observations occur; that is, the mode of the sample for a specific year. The implicit

country premium is determined by comparing the implicit country ratings across domiciles,

and is presented in Figure 2.3.

Results demonstrate that, on average, United Kingdom is the most creditworthy of

domiciles included in our sample. In contrast, Lower-Middle Income countries appear to

be the least creditworthy, with Default category being the mode in 2001. Our results

illustrate a trend among High Income countries where ratings have effectively converged

to a single implicit country rating category, A. At the same time, Lower-Middle Income

countries remain relatively risky, with an implicit rating of Baa, the lowest rating category

for investment-grade bonds.

2.3.2 Changes in Sector Composition

Industrial composition of firms with Moody’s rated debt has also shifted throughout the

sample time period. While the importance of the Transportation and the Industrial sectors

has visibly declined over the decades, the Banking sector has experienced rapid growth. In
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1970, Transportation, Industrial, and Banking sectors made up 13%, 57%, and 0% of the

rated issuers respectively. By the end of 2007, the three sectors accounted for 2%, 47%, and

16% of all issuers rated by Moody’s. Figure 2.4 details industrial composition of Moody’s

rated corporate issuers according to industry.

Consistent with existing empirical literature this study focuses on the Banking, Indus-

trial, and Transportation sectors of the economy.

2.3.3 Changes in Moody’s Rating Methodology

In 1982 Moody’s rating methodology was revised and its rating definitions expanded, re-

sulting in a more precise firm classification system. In this study we condense more recent

rating categories. That is, we focus on Aaa, Aa, A, Baa, Ba, B, Caa, and Ca/C rating

categories to monitor firm credit rating migration over time. In using the original rating

methodology we are able to extend our sample to include observations recorded prior to

1982, allowing for maximum sample size. Following Moody’s Universal Rating system, we

assign ratings of one through eight to ratings categories Aaa through Ca/C respectively.

Consistent with Moody’s assessment of Ca/C-rated obligors as being on the brink of,

or in, default we check our Ca/C category against the master default database available

through DRS. Moody’s defines Default as any missed or delayed payment of interest and/or

principal, bankruptcy, or distressed exchange, Hamilton and Berthault (2000). Thus, we

allow the Default rating category to be rather broad, including a variety of financial distress

scenarios. In our database, Default signifies obligors that are considered by Moody’s to be

in default as of December 31st of a particular year for which the rating is given, and are

assigned a rating of eight, thereby absorbing the Ca/C rating category.

2.4 Estimating Business Cycle Chronology

Recent studies by Duffie (2005), Couderac and Renault (2004), Bangia et al. (2002), Kav-

vathas (2001), and Nickell et al. (2000) provide evidence suggesting that issuer creditworthi-

ness is correlated with real economic activity of the country in which the firm is domiciled.
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As such, transition probabilities of credit ratings are assumed to fluctuate with changes in

the state of the national economy. In this section we introduce a methodology widely relied

upon in the macroeconomic literature (see Beaudry and Koop 1993, Hess and Iwata 1997,

Garcia and Luger 2005, Milas and Rothman 2008), which we use to generate a business cycle

chronology for each country represented in the sample using a methodology widely relied

upon in

The empirical literature is rich with complex mathematical models used to forecast

economic activity. More recently, however, simple economic and financial indicators have

proven effective in predicting economic recessions. Here we test the usefulness of these two

types of indicator variables in forecasting the probability of U.S. recessions.

A number of macroeconomic and financial variables have been tested in the business cycle

forecasting literature. When it comes to financial variables, there is a consensus among

researchers on the usefulness of interest-rate term spreads as reliable predictors of future

economic activity. The spread is related to a forward interest rate, and can be broken down

into a real and an inflationary component. While the expected real rate accounts for current

outlook on monetary policy, the expected inflationary rate provides insight into the future

real growth. Estrella and Mishkin (1998), who analyze U.S. economic activity form 1959

to 1995, find that the term spread is a good predictor of future recessions. Along with the

spread, we also test the short-term interest rate, which is believed to have some predictive

ability in characterizing business cycles (see Garcia and Luger 2005).

While financial variables appear to be reliable indicators of future economic activity,

they are often difficult to obtain. To this extent, we must also evaluate the effectiveness of

attainable macroeconomic indicators in forecasting probabilities of recession. Beaudry and

Koop (1993) explain that the use of macroeconomic data in economic recession forecasting

is rooted in the assumption that future output is related to the current level of output.

Hess and Iwata (1997) apply the Beaudry-Koop model to U.S. economic data, generating

a business cycle chronology which closely resembles that of the NBER, thereby confirming

the effectiveness of macroeconomic variables as predictors of future real activity. Therefore,
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along with the interest rate and the term spread, we utilize the framework developed by

Beaudry and Koop, and analyze the predictive power of two economic variables constructed

from country-level GDP data, current depth of recession (CDRt), and current length of

recession (CLRt).

We construct the CDRt and CLRt following methodology described in Garcia and Luger

(2005), where the current depth of recession, CDRt, is defined as the gap between the current

level of output and the economy’s historical maximum level of output:

CDRt =max{Yt−j}j≤0 − Yt. (2.4)

In this context, we consider the economy to be in recession when CDRt > 0, and in

expansion when CDRt = 0. We define the current length of recession, CLRt, by setting the

variable equal to h when CDRt−j > 0 for j = 0,1, . . . , h. The level of output and the CDRt

variable for the U.S. are plotted in Figure 2.5.

The effectiveness of our indicator variables in predicting future economic recessions is

evaluated using a probit model, where the dependent variable, Ut, is a recession indicator.

Specifically, we assume an unobserved variable U∗
t , for which there exists a realization of an

indicator variable Ut, denoting the occurrence of a recession. Suppose

Ut = 1 if CDRt > 0,

Ut = 0 if CDRt = 0.
(2.5)

We express U∗
t , which represents the state of the economy at time t, as being related to

lagged values of the current depth and length of recession, where U∗
t , takes on the following

form

U∗
t = βXt−1 + γ1CDRt−1 + γ2CLRt−1 + εt, (2.6)

where Xt−1 is a vector containing lagged values of all macroeconomic and financial variables

(other than CDR and CLR) believed to have predictive ability for future recessions; CDRt−1

and CLRt−1 capture recession intensity and duration dependence; and error terms, εt, are
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assumed to be independent and follow a standard normal distribution.

The model in Eq.(2.6) implies that

Pr[Ut = 1∣Xt−1, Ut−1] = Φ[βXt−1 + γ1CDRt−1 + γ2CLRt−1], (2.7)

where Φ[⋅] is the cumulative distribution function of the standard normal distribution.

2.4.1 Data

We estimate our model using the U.S. macroeconomic and financial data for the 1953-2007

time period. The reason we focus on U.S. data is that business cycle chronology is readily

available through the NBER, providing us with a benchmark against which to evaluate the

quality of our model. The data used to estimate our model include the three-month Treasury

bill rate (Short), the yield spread (Spread), the difference between the interest rates on the

ten-year Treasury note and the three-month Treasury bill, and U.S. GDP data. The model

is estimated on a quarterly basis, where quarterly rates are calculated by averaging the

corresponding monthly rates.

2.4.2 Estimation Results

Estimation results for our model are reported in Table 2.3. In our estimation, we address

three specifications of the model in Eq.(2.6). All three specifications include CDRt−1 and

CLRt−1 economic variables. When it comes to financial indicators, Specification 1 includes

only lags of the short rate, Specification 2 includes only lags of the yield spread, and Specifi-

cation 3 includes both the Short and the Spread. It is clear from Table 2.3 that, in predicting

economic recessions, CDRt−1 dominates other variables, for all three specifications. This

result allows us to rely on CDRt−1 and CLRt−1 variables to obtain an accurate business

cycle chronology for each country in our sample.

In addition to reporting results of the probit estimation we include a matrix of model hits

and misses for each of the three specifications (see Table 2.4). The matrix reports how close

the model comes to being able to predict actual recessions and expansions. The matrices are
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generated using a 50% threshold criterion. If the predicted probability is less than 50%, the

model signals an expansion since an expansion is a more likely outcome than a recession. If

the probability is above 50%, a recession is more likely.

Finally, Figure 2.6 serves as a graphical representation of the effectiveness of our model

in capturing business cycle chronology reported by NBER.

2.5 Empirical Methodology

The goal of this study is to quantify the dependence of credit ratings transition probabilities

on a specific set of obligor characteristics, focusing on idiosyncratic and systematic sources

of risk. To do so, we define a model relating obligor credit ratings at time t + 1, to issuer

characteristics and the state of the economy during the previous time period, t. The model

is specified as follows

Ratingt+1 = f(Domicilei,t, Industryj,t,CDRt,CLRt) + εt+1, (2.8)

where Rating takes on one of eight possible credit rating values at time t + 1; Domicile

is a dummy variable indicating obligor’s home country i, where i ∈ {U.S., U.K., Japan,

MLow Income; all other countries are included in the reference category}; Industry is a

dummy variable indicating an obligor’s main sector of activity j, j ∈ {Banking, Industrial,

Public Utilities, Transportation, Sovereign; all other industries are included in the reference

category}; CDR and CLR indicate the state of the economy at time t; and ε is the error

term.

A common approach to estimating the dynamic properties of credit ratings migrations is

based on the assumption that, for a given sample, the probability of a transition from credit

rating p to credit rating q is a constant parameter λpq. Specifically, for a given initial rating,

transitions to different possible future ratings can be estimated by taking the fraction of

occasions in the sample (or sub-sample) for which an obligor starts the year in state p and

ends it in q (see Nickell et al. 2000). While this approach is useful in providing a general idea
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of credit migration trends, it has limited predictive ability when the sample is small, making

it difficult to generate inferences about rating transitions for very specific sub-samples.

To correct for the disadvantages associated with this simple approach we estimate

Eq.(2.8) using a discrete choice model. Specifically, we implement an ordered probit es-

timation technique described in Long (1997), which allows us to partially pool information

from different sub-samples and calculate fitted transition probability matrices for specific

obligor categories, without sacrificing predictive ability. The econometric approach used

here closely follows the methodology of Nickell et al. (2000) and is executed as follows.

Consider the sub-sample of obligor ratings which are observed at times t and t + 1.

Assume that the initial ratings at t are identical but that at t + 1 a given issuer may be in

any one of N different terminal states (eight in our model specification), with one Default

rating category and N − 1 non-default ratings categories. An obligor’s credit rating at time

t + 1 is determined by observed and unobserved events, where we define the unobserved

events as Y ∗
t+1. We model the realization of Y ∗

t+1 as

Y ∗
t+1 = β

′Xt + εt+1, (2.9)

where t is the time subscript, X is a vector of firm characteristics and states of the economy;

β is a vector of parameters to be estimated; and ε denotes the error term, where errors

are assumed to be independent and, consistent with financial empirical literature, follow a

standard normal distribution.

While can not be directly observed, given k1, . . . , kN−1 cutoff points for possible rating

categories, it is related to the observed firm rating, Yt+1, as follows

Yt+1 = N

Yt+1 = N − 1

⋮

Yt+1 = 1

if

if

⋮

if

kN−1 < Y
∗
t+1,

kN−2 < Y
∗
t+1 ≤ kN−2,

⋮

Y ∗
t+1 ≤ k1.

(2.10)
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Estimating the parameters of the ordered probit model in Eq.(2.10) by maximum likeli-

hood, we obtain the probability of a firm falling into each rating category

Pr{Yt+1 = 1} = Φ(k1 − β
′Xt),

P r{Yt+1 = 2} = Φ(k2 − β
′Xt) −Φ(k1 − β

′Xt),

⋮ ⋮

Pr{Yt+1 = N} = 1 −Φ(kN−1 − β
′Xt),

(2.11)

where Φ[⋅] is the cumulative distribution function of the standard normal distribution. Fig-

ure 2.7 provides a visual representation between the latent and coded credit rating variables

characterized above.

2.6 Empirical Results

Results of our empirical estimation are presented in Table 2.5a. Due to the increasing

nature of the ordered classes, the interpretation of this model’s parameters is as follows. If

the coefficient βm, m = 1, . . . ,M , is significantly positive, we infer that an increase in xm

increases the probability of a firm’s migration from a particular rating category to another.

In other words, the parameter estimate βm indicates the sign and significance of the effect

of variable xm on the probability of an issuer receiving a particular rating. For some sub-

samples of a particular initial rating, the sample did not contain any observations (i.e., there

were no issuers from Lower-Middle Income countries, MLow Income, that Moody’s rated

Aaa), these are indicated by a dash.

As is characteristic of a point-in-time model, the variance of the unobserved variable Y ∗

is not constant. As we add more observations, our estimation of the probability that Y ∗

will take on a specific value will continuously improve, resulting in greater variability of the

estimates, Williams (2005). Therefore, in order to be able to accurately compare coefficients

across model specifications, for each parameter βm we compute Y -standardized coefficients.

Following Yasar et al. (2007), let σY be the unconditional standard deviation of our

72



realized variable Y . We define the Y -standardized coefficient for xm as

βSY
m =

βm

σY
. (2.12)

The new coefficient βSY
m indicates that for a unit increase in xm, holding other variables

constant, Y is expected to increase by βSY
m standard deviations.

The parameter estimates presented in Tables 2.5a and 2.5b provide some insight into

the impact of obligor characteristics on the dynamics of credit ratings migrations by allow-

ing us to compare a large number of obligor categories. As discussed previously, estimated

coefficients illustrate the significance and direction of the relationship between the depen-

dent and independent variables. The magnitude of this relationship is quantified in the

Y -standardized coefficients.

In Table 2.5a, β is the parameter estimate, with corresponding standard errors presented

in brackets underneath and asterisks indicating statistical significance at 10%, 5%, and

1% significance levels. Table 2.5b reports βSY , the Y -standardized coefficients for each

independent variable in the model.

Lower part of Table 2.5a lists monotonically increasing cutoff points k1, . . . , kN−1, that

determine our rating transitions. For some sub-samples of a particular initial rating the

sample did not contain enough observations to identify the cutoff point parameters, these

are indicated by a dash.

2.6.1 Transition Matrices

Using the model estimation results, we compute rating transitions probabilities matrices

for different business cycle stages. Specifically, we compute three distinct types of matrices,

based on economic expansion, a mild, and severe economic recessions. Here, a mild recession

is computed according to average values of CDR and CLR variables for each domicile in our

sub-sample, while a matrix consistent with a severe economic recession is calculated based

on maximal CDR and CLR values.
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2.6.1.1 Comparison Across Domiciles

Fitted one-year transition matrices implied by out model for obligors domiciled in the U.S.,

U.K., Japan ad Lower-Middle Income countries are presented in Tables 2.6a - 2.6c. Table

2.6a produces results consistent with an economic expansion, Table 2.6b shows effects of

a mild recession, and Table 2.6c gives transitions probabilities matrices consistent with a

severe economic recession.

From Table 2.6a we can see that during an economic expansion, Japan has the least, and

Lower-Middle Income countries greatest, instances of default. Furthermore, the probability

that an issuer in any rating category will experience an upgrade is highest for Japanese

firms. The probability of an issuer retaining its current credit rating in the following period

is highest for U.S. domiciled obligors. There are no Aaa rated obligors in Lower-Middle

Income countries group but, compared to other domiciles, they have the greatest probability

of experiencing a downgrade for all other rating categories, for example, 9.22% for Aa firms

as compared to 5.87% for U.S. obligors and 6.79% and 7.62% for firms domiciled in the U.K.

and Japan respectively.

Compared to an expansion, dynamics of obligor credit ratings change only slightly during

a mild recession, Table 2.6b. On average, downgrade probabilities increase for all domiciles

and across all rating categories; although frequency of default does not changed significantly.

Japan still has the least, and Lower-Middle Income countries the greatest, frequency of

default. The probability that an issuer in any rating category will experience an upgrade is

still the highest for Japanese firms. The probability of an issuer retaining its current credit

rating in the following period is highest for U.S. domiciled obligors. Compared to other

domiciles, Lower-Middle Income countries have the greatest probability of experiencing a

downgrade for all observed rating categories.

In contrast to a mild economic recession, a severe recession leads to significant changes

in the dynamics of credit ratings migrations, Table 2.6c. The dramatic differences between

matrices presented in Table 2.6c and those shown in Tables 2.5 and 2.6 vividly illustrate

the effect of macroeconomic conditions on firm creditworthiness. Specifically, firms are less
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likely to retain their current rating during a severe recession than they are during a mild

one, or an economic expansion. At the same time, firms are much more likely to remain

in default at t + 1, given they were in a Default rating during the previous time period t.

Here, changes in transitions probabilities are most noticeable for investment-grade bonds

and are much more subtle for speculative-grade bonds. The dynamics of credit ratings of

Lower-Middle Income group of countries during a severe recession is of particular interest.

While performance of firms with investment-grade credit ratings declines considerably, we

observe little change in performance of speculative-grade bonds, which actually demonstrate

greater potential for an upgrade than during either expansion or a mild recession. A possible

explanation for this phenomenon could be an increased flow of international aid and loan

forgiveness, which is common for developing nations to receive in times of economic distress.

The differences in credit rating migrations across domiciles and stages of the business

cycle are dramatic. Results presented here serve as a vivid example of the importance of both

idiosyncratic and systematic risk factors in accurate estimation of risk and its application

in modern finance.

2.6.1.2 Comparison Across U.S. Industries

Tables 2.7a, 2.7b, 2.7c show model-implied, one-year transition probabilities matrices for

issuers domiciled in the U.S. Table 2.7a produces results of an economic expansion; Table

2.7b shows implications of a mild economic recession; and Table 2.7c illustrates ratings

dynamics during with a severe economic recession.

We observe that during an economic expansion, Table 2.7a, issuers active in the Trans-

portation sector are much more likely to default than issuers in other sectors, and have the

highest probability of retaining their current credit rating in the following time period. Ex-

amining direction of movements for the three sectors, we see that, compared to other sectors,

Banks are more likely to experience an upgrade in their credit rating, while issuers in the

Industrial and Transportation sectors are more likely to have their rating revised down.

Results presented in Table 2.7b, illustrating a mild economic recession, are similar to
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transitions probabilities matrices estimated during an economic expansion. We observe

marginally increased instances of default and downgrade probabilities. These results are

consistent with previous empirical literature establishing counter-cyclicality of corporate

bond defaults and pro-cyclicality of recovery rates on those bonds (Cheng and Kitsul 2008).

Comparing credit migration probabilities across industries we note that issuers in the

Transportation sector have the highest probability of retaining their credit rating in the fol-

lowing time period. They are also most likely to default for sub-investment grade categories.

Issuers in the Industrial sector are least likely to remain in Default, 60.39% as compared to

90.16% and 89.82% for Banks and Transportation firms. Banks are least likely to default for

all ratings categories, although they are also unlikely to exit default once in dire financial

situation. Comparing up- and down-ward rating migration movements for the three sectors

we observe that Banks are much more likely to experience an upgrade in credit rating for all

categories, with the exception of Aaa, while Industrial and Transportation are more likely

to experience a downgrade. Also, it is noteworthy to observe that Banks rated Aaa are more

likely to experience a downgrade than Banks currently holding a Caa rating are to default

on their financial obligations.

Table 2.7c presents transition probabilities for U.S. Banking, Industrial and Transporta-

tion sectors when economy is experiencing a severe recession. We observe that Aaa rated

firms are most susceptible to credit rating downgrades during severe economic downturns.

On average, probability of default and downgrade increases across all economic sectors. Com-

paring credit migration probabilities across industries we note that issuers in the Industrial

sector are most affected by economic recessions. Specifically, we observe that the probabil-

ity that an Industrial firm will retain its Default rating during a recession increases by 8%

compared to an economic expansion, while Banks and Transportation firms will experience

approximately a 3% increase in probability of retaining a default rating.

Results presented here further demonstrate the importance of precise estimation of eco-

nomic fluctuations by illustrating that business cycles affect ratings dynamics not only across

domiciles, but also across industries within a particular country.
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2.6.2 Extending Model Horizon

When modeling credit risk, it is of use to be aware of default probabilities for specific obligor

characteristics over different time horizons. Figures 2.8a - 2.8c show default probabilities

for obligors of different initial ratings grouped by Domicile and Industry over one-, three-,

and five-year horizons. Following Galbraith and Tkacz (2007), we expect predictive power

of macroeconomic variables to decline with increased length of time-horizon, thus default

probabilities presented here are not conditioned on business cycle effects.

We observe significant differences in obligor default probabilities across industries and

domiciles. Specifically, compared to High Income countries, Lower-Middle Income countries

tend to default with greater probability for all industries and across time horizons. When

it comes to specific industries, obligors active in the Transportation sector are prone to

experience greater instances of default than Banks or Industrials.

In general, over longer horizons, issuers in the Lower-Middle Income category behave

similarly to obligors domiciled in High Income countries. Results suggest a common trend

across countries where the length of time during which an issuer received a rating is directly

related to the probability of default for non-Caa credit ratings. That is, the probability of

default increases with each additional year during which a firm receives a rating from a CRA.

When it comes to Caa credit rating category, the probability of default increases during the

first three years of the issuer’s rating period, it declines thereafter indicating that currently

insolvent firms that have been in business longer, have greater associated likelihoods of

meeting their financial obligations. Essentially there appears to be some sort of a reversion

to the mean, where probability of default increases with time for investment-grade obligors

and declines with time for speculative-grade obligors.

We aggregate rating migration probabilities across countries in the sub-sample to gen-

erate average defaults over one-, three-, and five year horizons, presented in Figure 2.9.

Generally, total default for non-Caa rated obligors increases as the time-horizon increases,

which is consistent with Altman (1998), who found that newly rated firms are less likely to

default as compared with older, more seasoned firms of the same rating class. Our results
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also support the research of Figlewski et al. (2006), who demonstrate that the length of

time since a firm’s first rating is positively correlated with the likelihood of obligor default,

referred to as the “aging effect.”

2.6.2.1 Two-Year Horizon

Having established the sensitivity of issuer default to the length of time-horizon, we consider

time-dependence of the dynamics of credit ratings transitions probabilities. Assuming that

it takes longer than one period for the economy to adjust to business cycle fluctuations, we

specify the following model

Ratingt+2 = f(Domicilei,t, Industryj,t,CDRt,CLRt) + εt+2, (2.13)

where Rating takes on one of nine possible credit rating values at time t + 2; Domicile is

a dummy variable indicating an obligor’s home country i, where i = 1, . . . , I; Industry is a

dummy variable indicating an obligor’s main industry of activity j, j = 1, . . . , J ; CDR and

CLR indicate state of the economy at time t; and ε is the error term.

Model in Eq.(2.13) is estimated using the ordered probit methodology described in Sec-

tion 5, with estimation results presented in Tables 2.8a and 2.8b. As discussed previously,

estimated coefficients of explanatory variables illustrate the significance and direction of the

relationship between the dependent and independent variables. Lower part of Table 2.8a

lists monotonically increasing cutoff points k1, . . . , kN−1, that determine our rating transi-

tions. For some sub-samples of a particular initial rating the sample did not contain enough

observations to identify the cutoff point parameters, these are indicated by a dash. The

magnitude of this relationship is quantified in the Y -standardized coefficients, Table 2.8b.

Results confirm that statistical significance of economic variables, CDR and CLR, in-

creases as the time horizon increases, suggesting that adjustment of credit ratings to states

of economy is slow. To quantify the effect of macroeconomic variables on credit rating

migrations we compute a forecast content for the business cycle effect.

78



2.6.2.2 Business Cycle Effect - Content Horizon

Galbraith and Tkacz (2007), demonstrate that the information content associated with

conditioning models on macroeconomic variables tends to decline as the forecast horizon

increases. We define a content horizon as the maximum horizon beyond which forecasts

conditional on the macroeconomic variable are not significantly different from the uncon-

ditional forecasts. In this section, we estimate the content horizon for our CDR indicator

variable, characterizing the pattern of decay of the influence of our macroeconomic variable

of interest on credit ratings as we project farther into the future. That is, we model the rate

at which the effect of current economic activity on credit migration diminishes over time.

To model the CDR content horizon we consider two matrices, A and B, where A is

a matrix conditional on current economic activity, as measured by CDR, and B is an

unconditional matrix of rating transition probabilities. We generate our matrices using the

ordered probit model described in Section 4. That is, matrices A and B are defined by

estimating the following two equations

Ratingt+1 = f(Domicilei,t, Industryj,t,CDRt) + εt+1, (2.14)

and

Ratingt+1 = f(Domicilei,t, Industryj,t) + εt+1, (2.15)

where Rating takes on one of nine possible credit rating values at time t + 1, . . . , t + N ;

Domicile is a dummy variable indicating an obligor’s home country i, where i = 1, . . . , I;

Industry is a dummy variable indicating an obligor’s main industry of activity j, j = 1, . . . , J ;

CDR indicates the state of the economy at time t; and ε is the error term.

As mentioned previously, we define a content horizon as the additional predictive ability

resulting from conditioning the model on macroeconomic variables representing business

cycle effects. Mathematically, the concept of forecast content is formulated using probability

theory. Suppose we have some variable y such that Pr[y ≥ c] = E[I{y ≥ c}], where I is

an indicator variable and c is some threshold value. If x and y are independent, then
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E[y∣x] = E[y].

Applying above to our model we have

E[I{Ratingt+n ≥ c}∣CDRt] = E[I{Ratingt+n ≥ c}]. (2.16)

Empirically, the forecast content is calculated by defining transition probability matrices

for each equation for the two model specifications presented in Eq.(2.16). We then normalize

the difference between each element of the resulting matrices using the Euclidean norm such

that

∥C∥ = ∥A −B∥p = (
m

∑
i=1

n

∑
j=1

∣aij − bij ∣
p
)

1
p , (2.17)

where aij is ijth element of the conditional matrix A; bij is ijth element of the unconditional

matrix B; and p = 2.

Estimated forecast content of economic fluctuations for U.S. obligors is presented in

Figure 2.10 and is limited to seven consecutive years. We observe that the difference between

the two model specifications is approaching zero as time horizon increases, signaling a decline

in the effect of current economic activity on future credit rating of an obligor. Our analysis

shows that business cycle effect peaks during the second period, that is, at t + 2, which

implies that fluctuations in real economic activity have a lasting impact on long-term bond

issuers.

2.7 Conclusions and Extensions

Credit ratings play an important role in the field of risk management by serving as an

overall assessment of the solvency and prospects of a debt issuer. This paper focuses on

understanding dynamic behavior of credit ratings, accurate modeling of which has become

increasingly important in the field of modern risk management, especially so in light of the

revised framework for capital measurement and capital standards, BCBS (2004), known as

Basel II.
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Using a continuous-record model and a sample of 121,776 rating transitions available

through Moody’s Default Risk Service database over the 1970-2007 time period, we verify

the importance, and quantify the incremental impact of idiosyncratic and systematic factors

on credit rating migrations of long-term bond issuers. Our results confirm that obligor

characteristics and business cycle stages have a strong effect on credit rating migration,

with a stronger effect observed in longer-horizon models. We further show the importance

of business cycle effect on credit ratings by computing the forecast content for the business

cycle variable in our model. Finally, we derive implicit country premium for domiciles

represented in Moody’s DRS database, further emphasizing the importance of idiosyncratic

risk factors to precise risk estimation.

While this work represents a comprehensive study of the behavior of credit ratings, im-

provements can still be made to better understand the dynamics of ratings migration across

different obligor types. Recent empirical studies emphasize the superiority of continuous-

time Markov chain approach over the discreet-time models. Consistent with this trend, it

would be of use to quantify issuer heterogeneity and business cycle effects within a Bayesian

framework. Furthermore, improvements can be made in regards to increasing the accuracy

of modeling business cycle chronologies for domiciles of rated obligors.
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Table 2.1: Unconditional Transition Matrices

Panel A: Moody’s ratings 1970-2007
Aaa Aa A Baa Ba B Caa Default

Aaa 93.10% 6.35% 0.55% 0.00% 0.00% 0.00% 0.00% 0.00%
Aa 1.38% 91.91% 6.45% 0.18% 0.04% 0.01% 0.00% 0.01%
A 0.07% 2.88% 91.76% 4.80% 0.36% 0.09% 0.02% 0.02%
Baa 0.05% 0.23% 5.21% 89.20% 4.34% 0.68% 0.16% 0.14%
Ba 0.01% 0.05% 0.39% 6.15% 83.78% 8.20% 0.74% 0.68%
B 0.01% 0.05% 0.20% 0.43% 6.16% 82.94% 6.40% 3.82%
Caa 0.00% 0.00% 0.08% 0.23% 0.80% 11.58% 74.86% 12.46%
Default 0.00% 0.08% 0.00% 0.25% 1.16% 9.43% 17.70% 71.38%

Panel B: Previous Studies
Kadam and Lenk (2008) Aaa Aa A Baa Ba B C Default

Aaa 90.15% 6.76% 0.88% 0.02% 0.00% 0.00% 0.00% 0.00%
Aa 0.52% 89.55% 6.54% 0.26% 0.04% 0.04% 0.00% 0.00%
A 0.04% 2.65% 90.19% 3.92% 0.26% 0.05% 0.00% 0.00%
Baa 0.05% 0.60% 6.88% 83.65% 4.31% 0.44% 0.06% 0.03%
Ba 0.01% 0.28% 1.98% 8.95% 74.98% 7.45% 0.95% 0.15%
B 0.03% 0.06% 0.35% 2.38% 10.78% 67.62% 10.29% 1.56%
C 0.01% 0.00% 0.05% 0.81% 1.42% 5.32% 72.44% 13.71%
Default 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

Carty (2003) Aaa Aa A Baa Ba B Caa-C Default

Aaa 92.18% 6.51% 1.04% 0.25% 0.02% 0.00% 0.00% 0.00%
Aa 1.29% 91.62% 6.11% 0.70% 0.18% 0.03% 0.00% 0.07%
A 0.08% 2.50% 91.36% 5.11% 0.69% 0.11% 0.02% 0.14%
Baa 0.04% 0.27% 4.22% 89.16% 5.25% 0.68% 0.07% 0.31%
Ba 0.02% 0.09% 0.44% 5.11% 87.08% 5.57% 0.46% 1.25%
B 0.00% 0.04% 0.14% 0.69% 6.52% 85.20% 3.54% 3.87%
Caa-C 0.00% 0.02% 0.04% 0.37% 1.45% 6.00% 78.30% 13.81%

Bangia et al. (2002) Aaa Aa A Baa Ba B Caa Default

Aaa 91.93% 7.46% 0.48% 0.08% 0.04% . . . . . . . . .
Aa 0.64% 91.81% 6.75% 0.10% 0.06% 0.12% 0.03% . . .
A 0.07% 2.27% 91.69% 5.11% 0.56% 0.25% 0.01% 0.04%
Baa 0.04% 0.27% 5.56% 87.88% 4.83% 1.02% 0.17% 0.24%
Ba 0.04% 0.10% 0.61% 7.75% 81.48% 7.89% 1.11% 1.01%
B . . . 0.10% 0.28% 0.46% 6.95% 82.80% 3.96% 5.45%
Caa 0.19% . . . 0.37% 0.75% 2.43% 12.13% 60.45% 23.69%

Sources: Carty (2003), discrete-time model, Moody’s ratings for 1920-1996 time period; Bangia et al. (2002),
discrete-time model, S&P’s ratings for 1981-1998 time period; Kadam and Lenk (2008), continuous-time model,
Moody’s ratings for 1970-2005 time period.

Data for results in Panel A are long-term unsecured bond ratings between 1970 and 2007, measured on December
31st of each year.
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Table 2.2: Model Implied Domicile Statistics

Panel A: High Income Countries included in Model Specification
Number of Observations 1970 GNI per capita ($) 2006 GNI per capita ($)

United States 84,517 5,000 44,970
United Kingdom 7,152 . . . 40,180
Japan 4,254 1,920 38,410

Panel B: Lower-Middle Income Countries included in Model Specification
Number of Observations 1970 GNI per capita ($) 2006 GNI per capita ($)

Azerbaijan 1 . . . 1,850
Bolivia 13 300 1,100
Bosnia and Herzegovina 1 . . . 2,980
China 262 120 2,010
Colombia 93 . . . 2,740
Dominican Republic 11 . . . 2,850
Ecuador 13 310 2,840
Egypt 10 210 1,350
El Salvador 10 320 2,540
Fiji 9 400 3,300
Georgia 1 . . . 1,560
Guatemala 19 . . . 2,640
Honduras 15 270 1,200
Indonesia 209 80 1,420
Iran 3 370 3,000
Jordan 10 . . . 2,660
Marshall Islands 2 . . . 3,000
Micronesia 14 . . . 2,380
Moldova 7 . . . 1,100
Morocco 10 270 1,900
Nicaragua 10 330 1,000
Peru 19 520 2,920
Philippines 122 230 1,420
Thailand 146 210 2,990
Tunisia 13 270 2,970
Ukraine 59 . . . 1,950

Total: 1,082 Average: 281 Average: 2,218

Classification consistent with World Bank. Economies are divided according to 2006 GNI per capita, calculated
using the World Bank Atlas method. The groups are: low income, $905 or less; lower middle income, $906-$3,595;
upper middle income, $3,596-$11,115; and high income, $11,116 or more.
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Table 2.3: Estimation Results for the probit Model

Specification 1 Specification 2 Specification 3

Constant -0.918 -0.553 -0.378
(0.328)*** (0.200)*** (0.396)

Shortt−1 0.085 . . . -0.342
(0.318) (0.386)

Shortt−2 0.702 . . . 1.182
(0.525) (0.656)*

Shortt−3 -0.589 . . . -0.881
(0.523) (0.675)

Shortt−4 -0.270 . . . -0.016
(0.333) (0.419)

Spreadt−1 . . . 0.144 0.285
(0.276) (0.322)

Spreadt−2 . . . -0.604 -0.785
(0.402) (0.473)*

Spreadt−3 . . . 0.067 0.155
(0.347) (0.396)

Spreadt−4 . . . -0.241 -0.221
(0.250) (0.270)

CDRt−1 0.055 0.040 0.045
(0.014)*** (0.012)*** (0.014)***

CLRt−1 -0.200 -0.145 -0.106
(0.168) (0.187) (0.182)

Observations 215 215 215

Standard errors in parentheses

* significant at 10%
** significant at 5%
*** significant at 1%
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Table 2.4: Forecasting Hits and Misses

Panel A: Specification 1
Predicted

Ut=0 Ut=1 Total

Actual Ut=0 168 3 171
Ut=1 23 21 44

Total 191 24 215

Panel B: Specification 2
Predicted

Ut=0 Ut=1 Total

Actual Ut=0 167 4 171
Ut=1 21 23 44

Total 188 27 215

Panel C: Specification 3
Predicted

Ut=0 Ut=1 Total

Actual Ut=0 168 2 171
Ut=1 18 26 44

Total 186 29 215
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Table 2.5a: One-year Horizon Model, Raw Coefficients, β̂

Aaa Aa A Baa Ba B Caa Default

United States -0.053 0.043 0.042 0.093 0.054 0.000 0.047 -0.300
(-0.077) (-0.038) (-0.029) (0.033)*** -0.039) (-0.038) (-0.078) (0.145)**

United Kingdom 0.081 0.119 -0.004 0.02 0.061 0.025 0.221 0.149
(-0.116) (0.054)** (-0.044) (-0.055) (-0.078) (-0.078) (-0.169) (-0.306)

Japan 0.287 0.182 -0.035 -0.041 -0.243 -0.469 0.039 7.174
(0.144)** (0.078)** (-0.056) (-0.056) (0.077)*** (0.137)*** (-0.731) (-1800091)

MLow Income . . . 0.290 1.099 0.566 0.429 0.237 0.448 0.450
(-0.352) (0.166)*** (0.120)*** (0.093)*** (0.112)** (0.189)** (-0.340)

Banking 0.252 -0.029 -0.245 -0.445 -0.257 -0.555 -0.388 0.548
(0.107)** (-0.047) (0.038)*** (0.052)*** (0.073)*** (0.096)*** (-0.263) (0.289)*

Industrial 0.077 0.161 0.198 0.187 0.194 0.079 0.082 -0.480
(-0.104) (0.046)*** (0.032)*** (0.036)*** (0.045)*** (-0.061) (-0.130) (0.169)***

Public Utilities 0.032 0.216 0.055 0.031 -0.236 -0.544 -0.482 -0.239
(-0.124) (0.054)*** (-0.037) (-0.040) (0.056)*** (0.093)*** (0.201)** (-0.268)

Transportation -0.199 0.078 0.068 -0.007 0.090 0.13 0.173 0.528
(-0.252) (-0.092) (-0.058) (-0.054) (-0.071) (-0.086) (-0.159) (0.189)***

Sovereign -0.532 -0.554 -0.422 -0.116 0.060 0.135 -0.383 -0.841
(0.125)*** (0.071)*** (0.074)*** (-0.103) (-0.108) (-0.128) (-0.270) (0.310)***

CDR 0.012 -0.002 0.000 0.000 0.000 -0.001 0.001 0.002
(0.002)*** (0.001)* (-0.001) (-0.001) (-0.001) (-0.001) (-0.002) (-0.003)

CLR 0.001 0.109 0.021 -0.042 -0.006 -0.024 0.002 -0.006
(-0.067) (0.036)*** (-0.021) (0.015)*** (-0.011) (0.010)** (-0.022) (-0.049)

k1 1.522 -2.201 -3.203 -3.257 -3.655 -3.767 . . . . . .
k2 2.683 1.591 -1.855 -2.707 -3.117 -3.259 . . . . . .
k3 . . . 2.909 1.716 -1.489 -2.502 -2.807 -3.091 -3.638
k4 . . . 3.293 2.692 1.775 -1.38 -2.468 -2.658 -3.44
k5 . . . 3.541 3.114 2.495 1.472 -1.469 -2.192 -2.885
k6 . . . 3.709 3.472 2.913 2.365 1.322 -1.033 -1.82
k7 . . . . . . 3.662 3.15 2.64 1.828 1.274 -1.043

Observations 4550 13499 25271 19768 13134 12701 2606 1176

Standard errors in parentheses

* significant at 10%
** significant at 5%
*** significant at 1%

Table 2.5b: One-year Horizon Model, Standardized Coefficients, β̂SZ

Aaa Aa A Baa Ba B Caa Default

United States -0.050 0.042 0.041 0.092 0.054 0.000 0.047 -0.268
United Kingdom 0.076 0.116 -0.004 0.020 0.060 0.024 0.220 0.133
Japan 0.270 0.178 -0.035 -0.041 -0.240 -0.464 0.039 6.399
MLow Income . . . 0.283 1.080 0.558 0.423 0.234 0.445 0.402
Banking 0.237 -0.028 -0.241 -0.439 -0.254 -0.549 -0.385 0.489
Industrial 0.072 0.157 0.195 0.184 0.192 0.078 0.081 -0.428
Public Utilities 0.030 0.212 0.054 0.031 -0.233 -0.538 -0.479 -0.213
Transportation -0.187 0.076 0.067 -0.007 0.089 0.128 0.172 0.471
Sovereign -0.501 -0.541 -0.415 -0.115 0.059 0.134 -0.381 -0.750
CDR 0.011 -0.002 0.000 0.000 0.000 -0.001 0.001 0.002
CLR 0.001 0.107 0.021 -0.042 -0.006 -0.024 0.002 -0.006
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Table 2.6a: Model-Based Transition Matrices, by Domicile, Expansion

Panel A: United States
Aaa Aa A Baa Ba B Caa Default

Aaa 94.24% 5.45% 0.31% . . . . . . . . . . . . . . .
Aa 1.24% 92.68% 5.87% 0.15% 0.03% 0.01% 0.01% . . .
A 0.06% 2.83% 92.40% 4.31% 0.30% 0.08% 0.02% 0.01%
Baa 0.04% 0.21% 5.43% 89.68% 3.82% 0.58% 0.13% 0.11%
Ba 0.01% 0.07% 0.45% 7.05% 84.61% 6.77% 0.56% 0.49%
B 0.01% 0.05% 0.19% 0.43% 6.41% 83.60% 5.93% 3.38%
Caa . . . . . . 0.09% 0.26% 0.92% 12.73% 75.01% 10.99%
Default . . . . . . 0.04% 0.04% 0.40% 5.95% 16.44% 77.13%

Panel B: United Kingdom
Aaa Aa A Baa Ba B Caa Default

Aaa 92.52% 7.01% 0.46% . . . . . . . . . . . . . . .
Aa 1.02% 91.93% 6.79% 0.19% 0.04% 0.01% 0.02% . . .
A 0.07% 3.14% 92.52% 3.92% 0.26% 0.07% 0.01% 0.01%
Baa 0.05% 0.27% 6.25% 89.46% 3.30% 0.48% 0.10% 0.09%
Ba 0.01% 0.06% 0.44% 6.96% 84.61% 6.85% 0.56% 0.50%
B 0.01% 0.04% 0.18% 0.40% 6.13% 83.51% 6.15% 3.57%
Caa . . . . . . 0.05% 0.15% 0.59% 9.69% 74.90% 14.62%
Default . . . . . . 0.01% 0.01% 0.10% 2.33% 9.21% 88.34%

Panel C: Japan
Aaa Aa A Baa Ba B Caa Default

Aaa 89.17% 10.00% 0.83% . . . . . . . . . . . . . . .
Aa 0.86% 91.20% 7.62% 0.23% 0.05% 0.02% 0.02% . . .
A 0.08% 3.36% 92.56% 3.68% 0.24% 0.06% 0.01% 0.01%
Baa 0.07% 0.32% 7.01% 89.14% 2.91% 0.40% 0.09% 0.07%
Ba 0.03% 0.17% 0.99% 11.58% 82.90% 3.86% 0.26% 0.20%
B 0.05% 0.21% 0.71% 1.31% 13.57% 80.48% 2.58% 1.08%
Caa . . . . . . 0.09% 0.26% 0.94% 12.89% 74.98% 10.84%
Default . . . . . . 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

Panel D: MLow Income
Aaa Aa A Baa Ba B Caa Default

Aaa . . . . . . . . . . . . . . . . . . . . . . . .
Aa 0.64% 89.70% 9.22% 0.31% 0.08% 0.03% 0.03% . . .
A 0.00% 0.16% 72.98% 21.30% 3.36% 1.31% 0.36% 0.52%
Baa 0.01% 0.05% 1.94% 86.66% 8.66% 1.74% 0.46% 0.49%
Ba 0.00% 0.02% 0.15% 3.36% 81.64% 12.20% 1.29% 1.35%
B 0.00% 0.02% 0.09% 0.23% 4.06% 81.71% 8.31% 5.58%
Caa . . . . . . 0.02% 0.07% 0.32% 6.51% 72.64% 20.43%
Default . . . . . . 0.00% 0.00% 0.04% 1.12% 5.61% 93.23%
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Table 2.6b: Model-Based Transition Matrices, by Domicile, Mild Recession

Panel A: United States
Aaa Aa A Baa Ba B Caa Default

Aaa 93.53% 6.10% 0.37% . . . . . . . . . . . . . . .
Aa 1.21% 92.61% 5.97% 0.15% 0.04% 0.01% 0.01% . . .
A 0.06% 2.81% 92.39% 4.33% 0.30% 0.08% 0.02% 0.01%
Baa 0.04% 0.22% 5.50% 89.67% 3.77% 0.57% 0.13% 0.11%
Ba 0.01% 0.07% 0.45% 7.04% 84.61% 6.77% 0.56% 0.49%
B 0.01% 0.05% 0.20% 0.44% 6.53% 83.63% 5.84% 3.31%
Caa . . . . . . 0.08% 0.25% 0.90% 12.62% 75.03% 11.11%
Default . . . . . . 0.04% 0.04% 0.39% 5.83% 16.26% 77.44%

Panel B: United Kingdom
Aaa Aa A Baa Ba B Caa Default

Aaa 91.96% 7.52% 0.52% . . . . . . . . . . . . . . .
Aa 0.94% 91.61% 7.16% 0.21% 0.05% 0.02% 0.02% . . .
A 0.07% 3.09% 92.50% 3.97% 0.27% 0.07% 0.01% 0.01%
Baa 0.06% 0.28% 6.41% 89.40% 3.21% 0.46% 0.10% 0.08%
Ba 0.01% 0.06% 0.45% 6.97% 84.61% 6.84% 0.56% 0.49%
B 0.01% 0.05% 0.19% 0.42% 6.26% 83.56% 6.04% 3.48%
Caa . . . . . . 0.05% 0.15% 0.59% 9.61% 74.88% 14.73%
Default . . . . . . 0.01% 0.01% 0.10% 2.30% 9.13% 88.45%

Panel C: Japan
Aaa Aa A Baa Ba B Caa Default

Aaa 87.90% 11.11% 0.99% . . . . . . . . . . . . . . .
Aa 0.86% 91.19% 7.63% 0.23% 0.05% 0.02% 0.02% . . .
A 0.08% 3.35% 92.56% 3.69% 0.24% 0.06% 0.01% 0.01%
Baa 0.07% 0.32% 7.07% 89.11% 2.88% 0.40% 0.08% 0.07%
Ba 0.03% 0.17% 0.99% 11.57% 82.91% 3.87% 0.26% 0.20%
B 0.05% 0.22% 0.72% 1.34% 13.75% 80.32% 2.54% 1.06%
Caa . . . . . . 0.09% 0.26% 0.92% 12.77% 75.01% 10.96%
Default . . . . . . 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

Panel D: MLow Income
Aaa Aa A Baa Ba B Caa Default

Aaa . . . . . . . . . . . . . . . . . . . . . . . .
Aa 0.32% 85.41% 13.42% 0.57% 0.15% 0.06% 0.07% . . .
A 0.00% 0.13% 71.48% 22.30% 3.65% 1.45% 0.41% 0.59%
Baa 0.01% 0.06% 2.41% 87.83% 7.52% 1.43% 0.37% 0.37%
Ba 0.00% 0.02% 0.16% 3.44% 81.81% 12.00% 1.26% 1.31%
B 0.00% 0.02% 0.11% 0.26% 4.53% 82.34% 7.73% 5.00%
Caa . . . . . . 0.02% 0.07% 0.31% 6.43% 72.54% 20.62%
Default . . . . . . 0.00% 0.00% 0.04% 1.15% 5.70% 93.11%
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Table 2.6c: Model-Based Transition Matrices, by Domicile, Severe Recession

Panel A: United States
Aaa Aa A Baa Ba B Caa Default

Aaa 62.24% 30.71% 7.05% . . . . . . . . . . . . . . .
Aa 1.20% 92.55% 6.04% 0.16% 0.04% 0.01% 0.01% . . .
A 0.05% 2.61% 92.26% 4.63% 0.33% 0.09% 0.02% 0.02%
Baa 0.05% 0.27% 6.35% 89.43% 3.25% 0.47% 0.10% 0.09%
Ba 0.01% 0.06% 0.44% 6.90% 84.60% 6.91% 0.57% 0.50%
B 0.02% 0.09% 0.33% 0.68% 8.78% 83.47% 4.41% 2.23%
Caa . . . . . . 0.05% 0.18% 0.66% 10.42% 75.07% 13.62%
Default . . . . . . 0.02% 0.02% 0.21% 3.76% 12.49% 83.51%

Panel B: United Kingdom
Aaa Aa A Baa Ba B Caa Default

Aaa 85.56% 13.12% 1.32% . . . . . . . . . . . . . . .
Aa 0.48% 88.10% 10.83% 0.40% 0.10% 0.04% 0.04% . . .
A 0.06% 2.73% 92.35% 4.44% 0.31% 0.08% 0.02% 0.02%
Baa 0.08% 0.38% 7.87% 88.66% 2.54% 0.34% 0.07% 0.06%
Ba 0.01% 0.07% 0.46% 7.08% 84.61% 6.74% 0.55% 0.48%
B 0.01% 0.06% 0.25% 0.54% 7.48% 83.71% 5.17% 2.78%
Caa . . . . . . 0.04% 0.13% 0.53% 9.01% 74.65% 15.64%
Default . . . . . . 0.01% 0.01% 0.09% 2.06% 8.48% 89.37%

Panel C: Japan
Aaa Aa A Baa Ba B Caa Default

Aaa 55.13% 35.00% 9.87% . . . . . . . . . . . . . . .
Aa 0.77% 90.69% 8.18% 0.25% 0.06% 0.02% 0.02% . . .
A 0.07% 3.10% 92.51% 3.97% 0.26% 0.07% 0.01% 0.01%
Baa 0.09% 0.40% 8.12% 88.51% 2.44% 0.32% 0.07% 0.05%
Ba 0.03% 0.17% 0.97% 11.43% 83.01% 3.93% 0.26% 0.20%
B 0.09% 0.35% 1.06% 1.84% 16.84% 77.30% 1.83% 0.69%
Caa . . . . . . 0.06% 0.19% 0.71% 10.83% 75.12% 13.10%
Default . . . . . . 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

Panel D: MLow Income
Aaa Aa A Baa Ba B Caa Default

Aaa . . . . . . . . . . . . . . . . . . . . . . . .
Aa 0.00% 5.92% 34.45% 15.19% 9.55% 5.99% 28.91% . . .
A 0.00% 0.02% 51.91% 32.79% 7.88% 3.84% 1.25% 2.31%
Baa 0.37% 1.28% 16.37% 81.04% 0.83% 0.08% 0.01% 0.01%
Ba 0.00% 0.03% 0.23% 4.50% 83.41% 9.94% 0.96% 0.93%
B 0.05% 0.21% 0.70% 1.31% 13.54% 80.51% 2.59% 1.09%
Caa . . . . . . 0.01% 0.05% 0.23% 5.29% 70.76% 23.65%
Default . . . . . . 0.00% 0.00% 0.05% 1.30% 6.23% 92.42%
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Table 2.7a: Model-Based Transition Matrices, United States, Expansion

Panel A: Banking
Aaa Aa A Baa Ba B Caa Default

Aaa 90.71% 8.64% 0.65% . . . . . . . . . . . . . . .
Aa 1.34% 92.92% 5.55% 0.14% 0.03% 0.01% 0.01% . . .
A 0.14% 4.79% 92.32% 2.56% 0.14% 0.03% 0.01% 0.01%
Baa 0.18% 0.74% 11.86% 85.54% 1.45% 0.17% 0.03% 0.02%
Ba 0.03% 0.15% 0.90% 10.89% 83.34% 4.19% 0.29% 0.22%
B 0.07% 0.28% 0.88% 1.57% 15.24% 78.94% 2.17% 0.86%
Caa . . . . . . 0.30% 0.73% 2.18% 21.21% 70.26% 5.32%
Default . . . . . . 0.01% 0.01% 0.08% 1.85% 7.90% 90.16%

Panel B: Industrial
Aaa Aa A Baa Ba B Caa Default

Aaa 93.30% 6.31% 0.39% . . . . . . . . . . . . . . .
Aa 0.81% 90.92% 7.93% 0.24% 0.06% 0.02% 0.02% . . .
A 0.03% 1.78% 91.19% 6.29% 0.51% 0.14% 0.03% 0.03%
Baa 0.02% 0.12% 3.71% 89.40% 5.41% 0.92% 0.22% 0.21%
Ba 0.00% 0.03% 0.26% 4.87% 83.77% 9.34% 0.87% 0.84%
B 0.01% 0.04% 0.15% 0.35% 5.54% 83.23% 6.67% 4.02%
Caa . . . . . . 0.06% 0.20% 0.75% 11.24% 75.14% 12.60%
Default . . . . . . 0.21% 0.18% 1.37% 13.16% 24.68% 60.39%

Panel C: Transportation
Aaa Aa A Baa Ba B Caa Default

Aaa 96.20% 3.63% 0.17% . . . . . . . . . . . . . . .
Aa 1.01% 91.92% 6.81% 0.19% 0.04% 0.01% 0.02% . . .
A 0.05% 2.42% 92.11% 4.93% 0.36% 0.09% 0.02% 0.02%
Baa 0.04% 0.22% 5.50% 89.67% 3.77% 0.57% 0.13% 0.11%
Ba 0.01% 0.05% 0.35% 5.97% 84.42% 7.89% 0.69% 0.63%
B 0.00% 0.03% 0.13% 0.30% 5.02% 82.85% 7.18% 4.48%
Caa . . . . . . 0.05% 0.15% 0.59% 9.70% 74.90% 14.60%
Default . . . . . . 0.01% 0.01% 0.08% 1.94% 8.15% 89.82%
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Table 2.7b: Model-Based Transition Matrices, United States, Mild Recession

Panel A: Banking
Aaa Aa A Baa Ba B Caa Default

Aaa 89.69% 9.54% 0.77% . . . . . . . . . . . . . . .
Aa 1.31% 92.85% 5.64% 0.14% 0.03% 0.01% 0.01% . . .
A 0.13% 4.76% 92.33% 2.58% 0.15% 0.03% 0.01% 0.01%
Baa 0.19% 0.75% 11.98% 85.43% 1.43% 0.16% 0.03% 0.02%
Ba 0.03% 0.15% 0.90% 10.88% 83.34% 4.19% 0.29% 0.22%
B 0.07% 0.28% 0.90% 1.61% 15.44% 78.75% 2.12% 0.84%
Caa . . . . . . 0.29% 0.72% 2.16% 21.06% 70.39% 5.39%
Default . . . . . . 0.00% 0.01% 0.07% 1.80% 7.77% 90.34%

Panel B: Industrial
Aaa Aa A Baa Ba B Caa Default

Aaa 92.51% 7.03% 0.47% . . . . . . . . . . . . . . .
Aa 0.79% 90.81% 8.05% 0.25% 0.06% 0.02% 0.02% . . .
A 0.03% 1.77% 91.16% 6.32% 0.51% 0.14% 0.03% 0.03%
Baa 0.02% 0.12% 3.76% 89.43% 5.35% 0.90% 0.21% 0.20%
Ba 0.00% 0.03% 0.26% 4.87% 83.77% 9.35% 0.88% 0.84%
B 0.01% 0.04% 0.16% 0.36% 5.64% 83.29% 6.57% 3.93%
Caa . . . . . . 0.06% 0.20% 0.74% 11.13% 75.14% 12.73%
Default . . . . . . 0.21% 0.17% 1.34% 12.96% 24.53% 60.79%

Panel C: Transportation
Aaa Aa A Baa Ba B Caa Default

Aaa 95.69% 4.11% 0.20% . . . . . . . . . . . . . . .
Aa 0.99% 91.82% 6.91% 0.19% 0.05% 0.02% 0.02% . . .
A 0.05% 2.40% 92.09% 4.96% 0.36% 0.10% 0.02% 0.02%
Baa 0.04% 0.22% 5.58% 89.65% 3.72% 0.56% 0.12% 0.11%
Ba 0.01% 0.05% 0.35% 5.97% 84.41% 7.89% 0.69% 0.63%
B 0.01% 0.03% 0.14% 0.31% 5.12% 82.93% 7.08% 4.38%
Caa . . . . . . 0.05% 0.15% 0.58% 9.60% 74.87% 14.74%
Default . . . . . . 0.01% 0.01% 0.08% 1.89% 8.02% 90.00%
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Table 2.7c: Model-Based Transition Matrices, United States, Severe Recession

Panel A: Banking
Aaa Aa A Baa Ba B Caa Default

Aaa 52.37% 36.50% 11.13% . . . . . . . . . . . . . . .
Aa 1.29% 92.80% 5.71% 0.14% 0.03% 0.01% 0.01% . . .
A 0.12% 4.45% 92.44% 2.78% 0.16% 0.04% 0.01% 0.01%
Baa 0.24% 0.91% 13.41% 84.08% 1.19% 0.13% 0.02% 0.02%
Ba 0.03% 0.15% 0.87% 10.69% 83.46% 4.28% 0.30% 0.23%
B 0.12% 0.46% 1.34% 2.25% 19.02% 74.83% 1.46% 0.52%
Caa . . . . . . 0.20% 0.52% 1.66% 18.17% 72.58% 6.87%
Default . . . . . . 0.00% 0.00% 0.03% 1.04% 5.32% 93.60%

Panel B: Industrial
Aaa Aa A Baa Ba B Caa Default

Aaa 59.29% 32.56% 8.15% . . . . . . . . . . . . . . .
Aa 0.78% 90.73% 8.13% 0.25% 0.06% 0.02% 0.02% . . .
A 0.03% 1.63% 90.84% 6.72% 0.56% 0.16% 0.03% 0.04%
Baa 0.03% 0.16% 4.39% 89.67% 4.67% 0.75% 0.17% 0.16%
Ba 0.00% 0.03% 0.25% 4.76% 83.67% 9.52% 0.90% 0.87%
B 0.01% 0.07% 0.26% 0.56% 7.69% 83.70% 5.03% 2.68%
Caa . . . . . . 0.04% 0.14% 0.54% 9.11% 74.69% 15.48%
Default . . . . . . 0.10% 0.09% 0.78% 9.21% 20.85% 68.97%

Panel C: Transportation
Aaa Aa A Baa Ba B Caa Default

Aaa 69.53% 25.74% 4.74% . . . . . . . . . . . . . . .
Aa 0.97% 91.76% 6.99% 0.20% 0.05% 0.02% 0.02% . . .
A 0.04% 2.22% 91.90% 5.29% 0.40% 0.11% 0.02% 0.02%
Baa 0.06% 0.28% 6.43% 89.40% 3.20% 0.46% 0.10% 0.08%
Ba 0.01% 0.05% 0.34% 5.84% 84.37% 8.05% 0.71% 0.65%
B 0.01% 0.06% 0.23% 0.49% 7.04% 83.71% 5.46% 3.01%
Caa . . . . . . 0.03% 0.10% 0.42% 7.78% 73.91% 17.76%
Default . . . . . . 0.00% 0.00% 0.04% 1.09% 5.51% 93.36%
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Table 2.8a: Two-year Horizon Model, Raw Coefficients, β̂

Aaa Aa A Baa Ba B Caa Default

United States 0.023 0.078 0.039 0.115 0.041 0.000 -0.029 -0.142
(-0.065) (0.034)** (-0.026) (0.030)*** (-0.038) (-0.039) (-0.092) (-0.179)

United Kingdom 0.136 0.151 -0.014 0.065 -0.017 0.017 -0.025 0.405
(-0.100) (0.048)*** (-0.039) (-0.051) (-0.076) (-0.081) (-0.207) (-0.367)

Japan 0.419 0.245 0.059 -0.028 -0.281 -0.605 0.095 . . .
(0.125)*** (0.068)*** (-0.049) (-0.050) (0.072)*** (0.134)*** (-1.145)

MLow Income . . . 0.378 1.258 0.649 0.493 0.334 0.777 0.679
(-0.321) (0.158)*** (0.111)*** (0.090)*** (0.114)*** (0.216)*** (-0.433)

Banking 0.386 -0.036 -0.194 -0.502 -0.484 -0.452 -0.443 0.755
(0.095)*** (-0.042) (0.034)*** (0.048)*** (0.069)*** (0.096)*** (-0.279) (0.300)**

Industrial 0.204 0.097 0.246 0.261 0.152 0.253 0.183 -0.319
(0.091)** (0.041)** (0.029)*** (0.032)*** (0.042)*** (0.063)*** (-0.141) (0.188)*

Public Utilities 0.178 0.153 0.097 0.054 -0.385 -0.570 -0.591 -0.362
(0.105)* (0.048)*** (0.033)*** (-0.036) (0.052)*** (0.093)*** (0.210)*** (-0.283)

Transportation -0.511 -0.701 -0.495 -0.112 -0.044 0.274 -0.587 -0.587
(0.108)*** (0.062)*** (0.064)*** (-0.093) (-0.101) (0.126)** (0.285)** (0.334)*

Sovereign -0.079 0.045 0.088 0.027 0.038 0.298 0.263 0.844
(-0.210) (-0.080) (0.050)* (-0.048) (-0.065) (0.085)*** (-0.168) (0.206)***

CDR 0.009 -0.002 -0.002 -0.001 0.001 -0.002 0.000 0.004
(0.002)*** (0.001)* (0.001)** (-0.001) (0.001)* (-0.001) (-0.002) (-0.003)

CLR 0.039 0.090 -0.020 -0.043 -0.021 -0.020 0.009 -0.056
(-0.054) (0.033)*** (-0.020) (0.015)*** (0.011)* (0.011)* (-0.023) (-0.057)

k1 1.261058 -1.99355 -2.95091 -2.96005 -3.43121 -3.3946 . . . . . .
k2 2.422296 1.188602 -1.53421 -2.39611 -3.0062 -2.95375 . . . . . .
k3 3.325148 2.430081 1.392537 -1.0841 -2.30089 -2.49462 -2.78879 -3.27645
k4 3.389494 2.940009 2.325851 1.52386 -1.10055 -2.00706 -2.23007 -2.83608
k5 . . . 3.273004 2.785911 2.199927 1.035368 -0.96537 -1.7482 -2.17189
k6 . . . 3.670116 3.176118 2.626812 1.906392 1.1901 -0.60221 -1.20371
k7 . . . 3.827298 3.348677 2.92934 2.207645 1.747192 1.159438 -0.48555

Observations 4211 11885 22569 17654 11428 10010 1783 868

Standard errors in parentheses

* significant at 10%
** significant at 5%
*** significant at 1%

Table 2.8b: Two-year Horizon Model, Standardized Coefficients, β̂SZ

Aaa Aa A Baa Ba B Caa Default

United States 0.021 0.076 0.038 0.113 0.040 -0.001 -0.029 -0.124
United Kingdom 0.126 0.146 -0.014 0.064 -0.016 0.017 -0.025 0.355
Japan 0.388 0.238 0.058 -0.027 -0.275 -0.595 0.094 . . .
MLow Income . . . 0.366 1.234 0.636 0.482 0.329 0.765 0.595
Banking 0.357 -0.035 -0.190 -0.491 -0.473 -0.444 -0.436 0.662
Industrial 0.189 0.094 0.241 0.256 0.148 0.249 0.181 -0.280
Public Utilities 0.165 0.148 0.095 0.053 -0.377 -0.561 -0.582 -0.318
Transportation -0.474 -0.680 -0.486 -0.110 -0.043 0.269 -0.578 -0.514
Sovereign -0.073 0.043 0.086 0.026 0.037 0.293 0.259 0.740
CDR 0.009 -0.002 -0.002 -0.001 0.001 -0.002 0.000 0.003
CLR 0.036 0.088 -0.019 -0.042 -0.020 -0.020 0.009 -0.049

96



Figure 2.1: Probability Distribution
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Figure 2.2: Moody’s Issuer Domicile Composition, 1970-2007
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Figure 2.3: Implicit Country Premium
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Figure 2.4: Moody’s Issuer Industry Composition, 1970-2007
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Figure 2.5: U.S. GDP (top panel) and Current Depth of Recession (bottom panel)
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Figure 2.6: Business Cycle Chronology, NBER vs. probit Forecasting Model
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Figure 2.7: Relationship Between Latent and Coded Credit Ratings Variables
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Figure 2.8a: Probabilities of Default over Different Horizons, Banking Sector

Panel A: One-Year Horizon

Panel B: Three-Year Horizon

Panel C: Five-Year Horizon
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Figure 2.8b: Probabilities of Default over Different Horizons, Industrial Sector

Panel A: One-Year Horizon

Panel B: Three-Year Horizon

Panel C: Five-Year Horizon
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Figure 2.8c: Probabilities of Default over Different Horizons, Transportation
Sector

Panel A: One-Year Horizon

Panel B: Three-Year Horizon

Panel C: Five-Year Horizon
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Figure 2.9: Average Probabilities of Default over Different Horizons
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Figure 2.10: Forecast Content for the Business Cycle Effect
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Chapter 3

Performance and Capital Structure:
A Study of Firm Dynamics

This study tests theoretical predictions about the relationship between leverage and
firm performance set forth by the corporate finance literature. We empirically exam-
ine a dynamic relationship between firm performance and leverage using Difference
GMM method of econometric estimation, based on a sample of 5,357 firms, for the
1988-2002 time period. We utilize multiple measures of performance and leverage,
thereby controlling for idiosyncrasies associated with a particular definition, which
allows us to generate inferences about the practical relationship between firm per-
formance and debt. Results suggest that forward looking measures of performance
such as Tobin’s q and firm Market Value are positively related to the debt-equity
ratio. We argue that this provides evidence to support the signaling nature of debt,
as higher levels of debt are interpreted as a credible signal of future performance.
We also find that Return on Equity, Profitability, and Total Factor Productivity are
negatively related to the debt-equity ratio, supporting agency costs theories, where
additional debt is associated with inefficient allocation of existing resources. De-
composition of short- and long-run effects of leverage on performance demonstrates
the persistent nature of the effect over time.

3.1 Introduction

Theoretical literature in the field of corporate finance suggests that there exists a relationship

between a firm’s financial structure and its performance. While much attention has been

devoted to the characterization of capital structure-performance interaction, improvements

can still be made to better understand the real-world features of this relationship. In this

study we use a flexible approach to model the impact of debt on performance, allowing us to
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accommodate a broader spectrum of theoretical predictions. While the standard empirical

approach permits debt to manifest only its immediate effect on performance, the empirical

strategy presented here allows us to distinguish between long- and short-run implications of

this relationship.

In this paper we introduce three innovations. First, we do not restrict the performance

measure to a single definition. Instead, we employ different standards of quantifying perfor-

mance, each consistent with accounting, financial and economic literature. Specifically, we

concentrate on Return on Equity, Profitability, Tobin’s q, Market Value, and Total Factor

Productivity measures of firm performance. Second, we define three variations of leverage,

thus controlling for idiosyncrasies associated with each particular definition. Finally, we

incorporate dynamics into the model, allowing us to distinguish between short- and long-

run effects of leverage on firm performance. These innovations allow us to characterize the

real-world relationship between performance and debt, and reconcile empirical results with

existing corporate finance theory.

Results suggest that debt is positively associated with current and future performance

when firm performance is measured in a forward-looking fashion; that is, when investor

sentiment is present. To be precise, after controlling for idiosyncratic time and industry

effects, as well as relative corporate size, R&D expenditures, and growth opportunities,

we find that higher levels of debt in a firm’s capital structure serve as a strong signal of

firm potential. At the same time, the “leverage effect” becomes negative when performance

measure is based strictly on firm fundamentals and past performance, such as Return on

Equity, Profitability and Total Factor Productivity. That is, the immediate effect of taking

on additional debt is a decrease in both current profitability and efficiency of the firm.

Results show that capital structure-performance interactions are highly persistent, and

increase in magnitude over time. This finding is intriguing as it implies that while the

market has a positive perception of corporate borrowing, the actual effect of increase in

debt is reduced firm efficiency, resulting in hindered financial performance.

We study the relationship between firms’ financial structure and their productivity based
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on a large, detailed panel of U.S. Manufacturing firms, for the 1988-2002 time period. The

model is estimated using a number of econometric approaches, focusing on Difference-GMM

method of econometric estimation, which addresses our concerns that unobservable, time-

varying industry effects could bias the estimation coefficients.

The remainder of the paper is organized as follows. In Section 2 we discuss the body

of corporate finance literature relevant to our research question, and implied predictions for

the relationship between firm financing and performance. Section 3 describes our data and

variable construction methodology. Section 4 discusses our model and the empirical testing

design. Section 5 contains the paper’s central empirical findings regarding the interaction

between capital structure and performance outcomes. Section 6 concludes.

3.2 Literature Review

The relationship between leverage and corporate performance was first addressed by Modigliani

and Miller (1958) who suggested that financial structure of a corporation has no influence on

its value. A number of theoretical works have since contested the accuracy of the Modigliani-

Miller "irrelevance proposition," arguing in favor of non-neutrality of financial structure, and

concluding that a distinct relationship between the performance of a firm and its capital

structure can be characterized. In analyzing the leverage-performance interaction, this paper

focuses on two of the competing groups of theories, agency costs and information asymmetry.

3.2.1 Agency Costs

Agency costs are costs that arise due to conflicts of interest. In 1976, Jensen and Meckling

described two categories of agency conflicts: conflicts of interest between managers and

shareholders, and conflicts of interest between equity- and debt-holders.

3.2.1.1 Manager-Shareholder Conflicts

Manager-shareholder conflicts arise as a result of an incentive problem. That is, while

managers bear the full cost of operating activities of a firm, they do not capture the entire
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gain resulting from their activities. Rather, shareholders are entitled to some portion of

positive cash-flow from operations and investment activities. This means that managers

have a lesser incentive to invest fully into managing firm resources, and a greater incentive

to use some resources for their personal benefit, i.e., as corporate perks. This incentive

divergence creates inefficiency, as managerial behavior is suboptimal from the shareholder

point of view, but is, in fact, optimal from the managerial perspective.

Under the manager-shareholder conflict theory, increasing ratio of debt in a firm’s capital

structure has an ambiguous effect on firm performance. Although debt can aid in aligning

managerial and shareholder goals, significant increases in debt can lead to a reduction in

overall efficiency of the firm, hindering performance.

One way in which debt can help mitigate manager-shareholder conflict is by reducing

resource constraints, rooted in the fact that managers respond to incentives, Jensen and

Meckling (1976). As previously discussed, using equity to finance operations will reduce

the amount of resources available for incentives that are necessary to entice management to

closely monitor firm performance. Issuing debt frees up resources that would not have been

available otherwise, avoiding sacrificing incentive intensity associated with equity financing.

Since managers can internalize the benefits of superior performance to a greater degree,

debt financing provides managers with appropriate incentives (i.e. bonuses) to work hard.

However, an increase in debt means managers commit the firm to payments which, in the

long run, can intensify the resource constraint problem, leading to a reduction in efficiency

and decline in firm performance.

Debt can also reduce manager-shareholder conflict by serving as a monitoring tool. First,

since debt commits the firm to pay out cash, the amount of cash available to managers

for discretionary spending and personal misuse is reduced, ensuring that managers behave

in a value-maximizing manner. That is, managers have less temptation and, therefore,

concentrate their resources on improving firm performance. Second, debt increases outside

monitoring of firm activities. Corporate debt is generally issued by large banks, the superior

monitoring abilities of which should keep managers in check, reducing moral hazard problems
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associated with agency. Thus an increase in debt will increase the value of the firm by

reducing the incentive for managers to behave sub-optimally and through increased external

monitoring of firm activities.

3.2.1.2 Debt-holder and Equity-holder Conflicts

The relationship between a firm’s performance and its capital structure can also be explained

in terms of conflicts between debt- and equity-holders. These conflicts arise because a debt

contract gives equity-holders an incentive to invest sub-optimally. That is, if an investment

generates returns greater than the face-value of debt, equity-holders will capture most of

the gain. However, if an investment fails it will be debt- and not equity-holders who bear

the consequences of the loss. Thus, equity-holders have an incentive to invest in high-risk

projects, as they will benefit if the project succeeds, and will not loose if the project fails.

This creates a problem of overinvestment described by Stulz (1990).

The overinvestment problem has ambiguous implications for the relationship between

leverage and firm performance. While more investment projects are likely to be undertaken

by the firm, it is difficult to predict whether, on average, the effect on performance will be

positive or negative.

Conflicts between debt- and equity-holders can also result in an underinvestment prob-

lem. Myers (1977) observes that for highly levered, poorly performing firms, equity-holders

have little incentive to contribute new capital to investment projects even if these projects

are value-increasing. The reasoning is as follows, while equity-holders bear the entire cost of

the investment, debt-holders will capture most of the returns, providing little incentive for

equity-holders to invest. Underinvestment not only prevents firms from investing in prof-

itable projects, but also hinders current firm productivity and efficiency by interfering with

firm’s operating activities. We can, therefore, infer that this type of conflict is likely to lead

to a negative relationship between leverage and performance, since high amounts of debt

actually prevent managers from investing in value-increasing projects.
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3.2.2 Information Asymmetry

Information theories discussed in this section are theories which are based on the premise

that firm insiders possess some private information about the firm’s characteristics that are

unavailable to outsiders. These capital structure theories can be divided into two sub-groups:

pecking order and signaling theories.

3.2.2.1 Pecking Order Theory

In 1984, Myers and Majluf suggested that capital structure helps mitigate inefficiencies

caused by information asymmetries. That is, if investors are less informed than insiders

about characteristics and opportunities of the firm, then it is very likely that securities is-

sued by the firm in the market will be mispriced. This mispricing may lead to rejection of

an investment project with positive net present value (NPV) because only new investors will

be able to profit from it, leaving nothing to the existing shareholders and thus creating an

underinvestment problem. The underinvestment, however, can be avoided if managers can

fund investment projects using less risky securities such as debt, which involve no under-

valuation. An increase in leverage, therefore, implies that the firm is unable to finance its

activities with equity, suggesting a negative relationship between debt and firm performance.

Myers (1984) formalized the notion of information costs associated with valuation of

debt and equity issue in the pecking order theory. The pecking order of corporate financing

is such that firms prefer internal funds over all other financing options, followed by debt, and

finally, equity as a last resort. That is, due to information costs, internal funding is the most

inexpensive way to finance investment activities. However, if internal funds are insufficient to

adequately finance some project, then debt is preferred over equity as a source of financing.

Only if the market is able to price equity fairly accurately, does it become optimal as means

of financing.

The pecking order theory would suggest a negative relationship between leverage and

firm performance as higher levels of debt provide much needed funds, allowing currently

cash-strapped firms to pursue profitable investment opportunities. Thus, according to the

114



theory, most profitable firms tend to borrow less simply because they do not need the external

financing. Less profitable firms issue debt because they do not have sufficient internal funds

to pursue investment opportunities and debt costs lower than equity issues.

3.2.2.2 Signaling with Debt

While pecking order theory deals with firms’ inability to finance investment opportunities,

another category of models considers debt as a signal of private information. Ross (1977)

proposed that if two firms have prospects that are known to management but not to investors,

debt can be used to signal the fact that prospects differ, and create expectations about the

quality of those prospects.

Information asymmetries between lenders and borrowers lead to adverse selection prob-

lems, and the inability of lenders to accurately price a loan according to borrower quality

results in imperfect pricing and credit rationing, as suggested by Weill (2003) and Stiglitz

and Weiss (1981).

High quality borrowers have an incentive to reveal their quality; however, they need

a credible signal to provide this private information, a signal that cannot be imitated by

low quality borrowers. Signaling literature suggests that debt can be used as such a signal.

Ross (1977) argues that investors interpret larger levels of debt as a signal of higher quality.

The reasoning behind his argument is as follows. Debt is a contractual obligation to repay

principal and interest. Failure to make payments can lead to bankruptcy, a sub-optimal

outcome for both the firm and its managers. In contrast, equity is much easier to manage

as managers have some flexibility in adjusting dividend payouts and can decrease them in

times of financial distress. Therefore, higher levels of debt in the capital structure of a firm

can be interpreted as a credible signal of future performance. Lower quality firms will not

be able to imitate high quality firms by taking on debt because of high bankruptcy costs

associated with any level of debt. Accordingly, Ross concludes that investors take higher

levels of debt as a signal of firm’s higher quality, generating a positive relationship between

leverage and performance.
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3.2.3 Summary

Theoretical literature is specific in asserting a relationship between a firm’s capital structure

and its performance. However, after much research, the exact nature of this relationship

remains unclear. Theoretical models suggest conflicting outcomes. A set of theories argues

that agency and bankruptcy costs drive better performers toward higher leverage ratios,

implying a positive relationship between leverage and performance. That is, bankruptcy

costs decline as profitability increases, allowing firms to borrow larger amounts cheaper,

thereby creating an incentive to finance projects with debt. Also, higher leverage ratios help

mitigate inefficiency associated with the agency problem by increasing outside monitoring

[see Jensen and Meckling (1976), Jensen (1986)]. Signaling hypothesis, introduced by Ross

(1977), corroborates the positive direction of the relationship between leverage and perfor-

mance, considering higher levels of debt as a managerial tool intended to signal an optimistic

future for the firm.

On the other hand, pecking order theory predicts that higher earnings should result in

lower leverage ratios. Myers (1984) argues that costs associated with information asymme-

tries can prevent firms from issuing equity. That is, under information asymmetries, it may

be cheaper, and therefore optimal, for firms to take on debt rather than finance activities

by issuing equity. As investor sentiment toward a particular firm improves, it becomes un-

necessary for the firm to take on debt and cheaper to issue equity. Thus, leverage ratio is

expected to decline as corporate performance improves.

3.3 Data Description

This study is based on a sample of firm-level data collected for U.S. manufacturing firms

listed in Full COMPUSTAT Annual (Industrial) database over the 1988-2002 time period.

The reason we focus on this particular time period is that deflators necessary for accurate

estimation of our model are readily available from NBER-CES Manufacturing Industry

Database. Also, by allowing for a sufficiently long time period, we are able to incorporate
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dynamics into the model while retaining maximum number of observations.

The sample is composed of 5,357 U.S. manufacturing firms, SIC code 2000-3999. To

keep the sample as large as possible we retain all firms, including those with some missing

observations for some years, resulting in an unbalanced panel data set. Omitting years for

which a firm has zero observations leaves us with a panel of 78,560 observations.

3.3.1 Proxies for Performance

Performance can be, and is, measured in different ways. This, perhaps, is the greatest

contributor to the lack of consensus among empirical works addressing the nature of the

relationship between performance and capital structure. While some studies rely on basic

accounting principles to measure performance, such as Majumdar and Chhibber (1999) who

use return on net worth (RONW), others employ more sophisticated methods, such as the

economic concept of total factor productivity, first introduced into the corporate structure-

performance analysis by Pushner (1995), or the efficiency frontier analysis implemented by

Weill (2003).

In this study we expand our definition of performance by focusing on three categories

of performance indicators: (i) accounting, (ii) financial, and (iii) economic. Accounting

measures of performance used here are Return on Equity (ROE) and Profitability; financial

measures of performance are Tobin’s q and Market Value; and economic measure of perfor-

mance employed is the Total Factor Productivity (TFP) analysis. The following sub-sections

provide a complete discussion of the five performance indicators.

3.3.1.1 Accounting Performance

The selection of accounting measures of performance is based on the notion that perfor-

mance can be adequately captured by return on equity (ROE) and profitability. Accounting

profitability is the most straight-forward measure of performance, and is calculated as the

ratio of operating income to total assets. When profitability goes up, performance improves

and vise versa. On the other hand, ROE is a more sophisticated measure of performance.
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Simply put, ROE reveals the portion of profits that were generated using funding obtained

from shareholders, signaling to investors the efficiency with which their investment was being

utilized by the firm.

While both profitability and ROE are indicative of firm performance, it is important

to note that there is a difference in what the two variables actually measure. That is,

since profitability and ROE are measured using different financial line items, it is possible

that the nature of the relationship between leverage and each of the performance measures

is different. Specifically, ROE measures how efficient a company is at utilizing investor

resources. In this study ROE is defined following Barth, Beaver and Landsman (1998),

and is calculated as the ratio of net income (or loss) to the book value of equity. We note

that given this particular definition, return on equity can be inflated by reducing common

shareholder equity, which generally involves issuing debt. Although debt can increase for

a variety of reasons, it can be argued that generally, managers increase debt in an effort

to pursue projects that would improve corporate performance in the future. Thus, in the

long-run, debt can lead to improved performance even if it is damaging to ROE ratio in the

short-term.

Table 3.1 and Figure 3.1 report sample summary statistics for the ROE accounting

measure of performance. While Table 3.1 presents average sample statistics, Figure 3.1

illustrates the evolution of ROE over time for small, medium and large firms, as well as for

the average company.

Profitability captures the current financial state of a company. Thus, it is reasonable to

conclude that as profitability increases, the firm has more resources at its disposal, allowing

it to be less reliant on leverage and so, the relationship between the two is expected to be

negative.

Table 3.2 and Figure 3.2 report sample summary statistics for the profitability accounting

measure of performance. Table 3.2 presents average sample statistics, while Figure 3.2

illustrates the evolution of profitability over time for small, medium and large firms, as well

as for the average company.
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3.3.1.2 Financial Performance

Traditionally, financial economists relied on Tobin’s q to provide a valid measure of corporate

performance. The reason we include Tobin’s q as one of our performance measures is that it

takes into account the future profit stream of a corporate entity, capturing not only present

moment scenario, but also allowing us some insight into the future growth opportunities

available to the firm. In this sense, Tobin’s q delivers the total value of a corporation at

a particular moment, where a higher q ratio is taken to imply greater potential, and thus,

better performance.

We generate a simple approximation of Tobin’s q following the methodology of Chung

and Pruitt (1994), where q is measured as the sum of book value of debt and market value

of equity divided by the book value of total assets. Although simple in its calculation,

authors show that a q constructed using their approximation successfully explains 96.6% of

variability of Tobin’s q constructed using the more complete and theoretically correct model

of Lindenberg and Ross (1981). Because Tobin’s q takes into account future performance

of a firm, we can conclude that it will be positively related to leverage as, consistent with

the signaling theory, greater amount of debt should imply that a firm is anticipating future

growth opportunities.

Table 3.3 and Figure 3.3 report summary statistics for Tobin’s q financial measure of

performance. Table 3.3 presents average sample statistics and Figure 3.3 illustrates the

evolution of Tobin’s q over time for small, medium and large firms, as well as for the average

company.

Another measure of financial performance used in this study is firm market value. Mar-

ket value is an important reference point as it characterizes the market’s valuation of the

firm, providing an accurate impression of investor sentiment as it pertains to a particular

corporation. In our model, market value is measured as the sum of market equity, value of

preferred stock, long-term debt, and debt in current liabilities.

As the name suggests, market value as a performance measure includes more than just

the current financial position of the company but also investor sentiment; that is, how the
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company and its future opportunities are perceived by investors. A greater market value

should imply better opportunities in the future, which may require financing in the current

time period. And, similar to Tobin’s q, we expect market value of a firm to be positively

related to its leverage ratio.

Table 3.4 and Figure 3.4 report sample statistics for the market value financial measure

of performance. Table 3.4 presents average sample statistics, while Figure 3.4 illustrates time

dependence of market value for small, medium and large firms, as well as for the average

company.

3.3.1.3 Economic Performance

A study by Nucci et al. (2005) suggests that there exists an equilibrium relationship between

a firm’s share of intangible assets and its financial structure. Firms involved in innovative

activities typically invest in specialized equipment and intangible assets such as patents and

human capital. Ultimately, as described by Griliches and Lichtenberg (1984), differences in

propensity to innovate are likely to translate into different total factor productivity (TFP)

levels for firms, where more innovative firms should experience higher productivity and,

therefore, better performance.

The economic measure of total factor productivity is a comprehensive measure of firm

performance, allowing us to assess the degree of technological advancement of a particular

company, Sampat (2005). TFP is formally described as a portion of the increase in output

that can not be attributed to an increase in inputs. Intuitively, total factor productivity

measures how efficient a company is at producing output; which is an indicator of competi-

tiveness and thus is a comprehensive measure of performance.

Output growth can be attributed to one of two events: increased magnitude of factor

inputs, or improvement of production technology. We thus infer that an increase in TFP

is associated with increased amount of output that can be produced from a given level of

inputs; or, that a smaller quantity of input is required to produce a given level of output.

We conclude that growth of total factor productivity is desirable as it implies that more
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output can be produced utilizing limited resources. The law of diminishing returns suggests

that in the long-run, increased use of inputs does not lead to increased output; so it will

be precisely the advancements in TFP that will allow firms to lower costs and improve

quality of their products, facilitating competitiveness and thus, allowing them to improve

their performance.

Plant-level estimates of total factor productivity are computed econometrically using

Olley and Pakes (1996) approach. A detailed description of our methodology is available in

the Technical Appendix. Table 3.5 and Figure 3.5 report sample summary statistics for the

TFP economic measure of performance. Table 3.5 presents average sample statistics, while

Figure 3.5 illustrates the evolution of TFP over time for small, medium and large firms, as

well as for the average company.

3.3.2 Capital Structure Proxies

Before we begin our discussion, it is important to define exactly what is meant by the term

“capital structure.” Generally, capital structure refers to the way in which a corporation

finances its activities. For the purposes of this study, we take the term to mean a combination

of different types of securities (i.e., long vs. short-term debt, common vs. preferred stock)

issued by a company in order to finance its operations. In this context, a company is said

to be “levered” if it carries debt in its capital structure, and a firm is said to be “unlevered”

if it has accrued zero debt. Thus, leverage is synonymous with capital structure.

It may be of some use to note that there exist two types of leverage, operational and

financial, Song (2005). Operational leverage refers to a firm’s operating costs and is associ-

ated with business risk. Financial leverage refers to a firm’s cost of taking on debt, and is

associated with financial risk of a corporation. In this study, we are concerned with financial

leverage and its effect on a firm’s performance.

Since Modigliani and Miller (1958) published their seminal paper detailing the irrele-

vance proposition, a large body of literature focused on analyzing capital structure and its

determinants. As a result, there now exist many different measures of leverage, where each
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measure itself can be measured in different ways. Generally speaking, we broadly classify

leverage measures into two categories: those based on the market value of equity, and those

based on its book value, Lf (2004). The question then becomes: should leverage be calcu-

lated as the ratio of book or market value of equity? Titman and Wessels (1988) refer to a

study by Bowman (1980), who demonstrates that the cross-sectional correlation between the

book value and market value of debt is very large. Furthermore, Fama and French (2000)

argue that most of the theoretical predictions apply to book leverage, as book ratios better

reflect management’s target debt ratios and market value of equity is dependent on a number

of factors which are out of direct control of a corporation. Therefore, using market values

may not reflect the underlying alterations within the firm. In fact, according to Drobetz

(2003), corporate treasurers often explicitly claim to use book ratios to avoid “distortions”

in their financial planning caused by the volatility of market prices. In this study we focus

only on book value leverage ratios.

In choosing an appropriate measure of leverage as the dependent variable of interest we

follow Rajan and Zingales (1995), concentrating on three alternative definitions of leverage.

First, we define leverage as the ratio of total (non-equity) liabilities to total assets, denoted

Lev1. This leverage ratio serves as a proxy for what is left for shareholders if firm assets are

suddenly liquidated. It must be noted that this particular measure is not a good indicator of

whether the firm is at risk of default in the near future. Also, since the accounting definition

of total liabilities includes items indicating transactions, along with financing activities, this

particular definition may overestimate the actual amount of leverage attributable to a firm.

Second, we define financial leverage as the ratio of total debt (both short term and long

term) to total assets, denoted Lev2. This measure of leverage covers only interest-bearing

debt and excludes provisions that were a potential source of bias in the first definition of

leverage. However, as with the first definition of leverage, this measure has some drawbacks.

Specifically, it fails to account for assets which are offset by specific, non-interest bearing

debt liabilities, such as trade credit.

Finally, we define leverage as the ratio of total debt to capital, where capital is defined
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as total debt plus equity, denoted Lev3. This measure of leverage considers the actual

capital employed by the firm, and thus provides the best representation of the effects of past

financing decisions.

Table 3.6 reports summary statistics for the three definitions of leverage for each year

in the sample time period. We observe a negative mean for Lev3 definition of leverage for

years 1995 and 2001. Given the definition of total debt, we infer that a negative sign is

consistent with a firm carrying negative equity. That is, during 1995 and 2001, an average

company was exhibiting signs of financial distress. These dates are consistent with two

stock market crashes: a stock market crash of January 1994 - June 1994 as reported by

Pagen and Sossunov (2003) and a stock market crash of August 2000 - December 2001 as

reported by Mishkin and White (2002). This interpretation of the data is further supported

by the fact that the median in years 1995 and 2001 is positive, and not significantly different

from average median; that is, only a few firms in the sample experienced extreme financial

distress.

Figure 3.6 provides a visual representation of leverage ratios throughout time. Again,

we see a drop in the comprehensive leverage measure, Lev3, in 1995 and 2001, consistent

with abnormally poor performance associated with stock market crashes as reported during

those time periods. On the other hand, Lev1 and Lev2 experience peaks during those same

time periods, which is also consistent with stock market underperformance. In general, firms

incur debt and liabilities during periods of economic downturn as it allows them to pursue

positive NPV projects and investment opportunities in times of limited cash flow.

3.3.3 Factors Correlated with Performance

We base our selection of independent variables on current empirical models relating lever-

age and firm performance, as well as a meta-analysis of statistical results in the literature

on industry and firm financial performance, relating results of 320 published studies of

dependence between environmental, strategic and organizational factors and financial per-

formance. The following is a discussion of factors correlated with performance and reasons
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for their inclusion in the model.

A. Equity:

Equity is an important indicator of performance. For the purposes of this study, we

create a dummy variable which is equal to one if firm equity is below zero, that is,

the firm is in financial distress, and is equal to zero otherwise. Because the issue of

negative equity specifically affects the third measure of leverage, we also create an

interaction variable of our equity dummy with Lev3.

B. Age:

Age of a firm is a determinant of its performance. As a firm continues to operate in

a market, it gains learning-based experience and can avoid many liabilities associated

with being an inexperienced start-up. However, according to Majumdar and Chhibber

(1999), older firms are also likely to under-perform. Authors point out that with age,

inertia and rigidities in adaptability set in, potentially leading to decreased perfor-

mance. In this study, we use the number of years since first link to CRSP database

as a proxy for a firm’s age.

C. Tangibility:

The physical asset structure of the firm is expected to have a significant influence on its

performance. In the real world there exist certain contractual imperfections that lead

creditors to seek collateral in exchange for financing. The amount of external financing

that can be supported by contracts with outside creditors is, therefore, correlated with

those creditors’ valuation of the firm’s transferable assets in liquidation, the firm’s asset

tangibility.

Following Jensen and Meckling (1976) and Harris and Raviv (1991), conflicts be-

tween lenders and shareholders create incentives for shareholders to invest in a subop-

timal way; therefore, lenders take actions to protect themselves by requiring tangible

assets as collateral. If a firm has an excess of tangible assets that it can use as collateral

it is expected to have open access to lending markets, allowing it greater opportunity

to undertake value-increasing projects.
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The proxy for asset tangibility is borrowed from Campello (2003) and is based on

the work by Berger, Ofek and Swary (1996). Using data on proceeds from discontinued

operations reported by a sample of COMPUSTAT firms over 1984-1993 time period,

Berger et al. (1996) find that during liquidation, on average, a dollar invested produces

72 cents for total receivables, 55 cents for inventories, and 54 cents for fixed assets.

Here, the proxy is intended to estimate the expected resale value of firm’s assets in

liquidation.

D. Uniqueness:

Uniqueness can be an indicator of success of a corporation. In this paper, we measure

uniqueness as a ratio of a firm’s research and development (R&D) expenses to its

capital expenditures. Higher R&D spending implies more innovative processes and

improved product, which is likely to advance the performance of the firm. In addition,

we construct a uniqueness dummy to control for differences between firms that allocate

resources to R&D activities and those that do not. Here, the uniqueness dummy is

equal to one if R&D spending is greater than zero, and is equal to zero otherwise.

E. Growth Opportunity:

Unprofitable firms generally do not have excess resources and, as such, rarely seek to

expand. Thus, it is reasonable to expect that firms with significant growth opportuni-

ties are good performers. We define growth opportunity as a bundle of capital assets

that add value to a firm but cannot be collateralized, and measure it as a ratio of

capital expenditures to total assets.

F. Size:

Firm size can be an important determinant of performance. Larger firms have a greater

variety of capabilities and resources available to them then do smaller firms. They are

also in a position to enjoy economies of scale. All these factors can positively impact

performance. Table 3.7 shows correlation coefficients for the five types of performance

measures implemented in this study for small, average, and large firms, as well as the

average correlations coefficients for all firms in the sample. It becomes quite clear that
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the direction of the correlation coefficient is firm size-dependent.

Size can also be regarded as a proxy for information asymmetry between firm

insiders and the capital markets. Large firms are more closely observed by analysts

and, therefore, have more incentive to perform well. On the other hand, according

to Williamson (1967), larger firms are prone to experience problems of coordination,

which can negatively influence performance.

In this study, we use two approaches to capture firm size. First, following Majum-

dar and Chhibber (1999), we measure size as the natural log of sales. The logarithmic

transformation accounts for the conjecture that small firms are particularly affected

by a size effect. Second, we create a size categorical dummy variable, where size is

measured as gross fixed assets. The dummy is constructed in such as way as to allow

us to see what happens to very small and very large companies. That is, we create

three categories where we sort all firms according to size of their gross fixed assets.

The fist category represents small firms in the sample; it is composed of firms that are

in the lowest 25th percentile of fixed assets as compared to the sample. The second

category contains the bulk of the companies; they are firms with assets between 25th

and 75th percentiles. The last category is composed of the largest firms, those firms

whose gross assets are greater than 75th percentile as compared to the sample.

G. Industry and Trend:

In addition to determinants described above, a full set of industry (at the two-digit

SIC level) and time dummies is included in the model. By introducing industry and

time dummies we account for performance shifts across different industries and over

time.

The computational methodology for each variable is available in Table 3.8a. Table 3.8b

reports summary statistics for the dependent and independent variables included in our

model.
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3.4 Empirical Methodology

The objective of this study is to determine the direction of the relationship between a

specific type of financing and firm performance; and, to establish whether this interaction

is significant and persistent. To do so, we develop a dynamic empirical model relating firm

performance and capital structure over a number of firms and years. The use of a dynamic

model allows us to first, evaluate the persistence of the dependent variable and second,

identify short- and long-run effects of our independent variables on the dependent variable

of interest.

A common approach to estimating the impact of capital structure on firm performance

consists of simply regressing the performance measure on a leverage variable. It is important

to note that within the context of our model, this regression can be misspecified due to the

presence of unobserved firm heterogeneity. To control for this heterogeneity we extend the

model to include a firm-specific shock ωi which accounts for the fact that firm performance

is a function of internal factors in addition to external shocks.

Here, external shocks are events that can be observed by the firm as well as the econo-

metrician analyzing its performance; the internal shocks are only visible to the firm itself.

To better understand the impact that shocks have on regression coefficients consider the

role of manager in firm operations. In anticipation of some macro shocks to the economy,

a manager will adjust production to better reflect future demand, thereby directly affecting

a firm’s performance. While this internal adjustment is known to the manager, and thus

the firm itself, it is unobservable to the econometrician, affecting the validity and reliability

of estimates generated from an underspecified model. In order to yield precise estimates,

the model must be specified in such as way as to account for the possibility of firm-specific

shocks.
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The model, in its general form, is as follows

Performanceq,i,t = β0 + β1Performanceq,i,t−1 + β2Leveragep,i,t (3.1)

+ β3Equity Dummyi,t + β4Leverage*Equityi,t

+ β5Tangibilityi,t + β6Growth Opportunityi,t

+ β7Uniquenessi,t + β8Uniqueness Dummyi,t

+ β9Agei,t + β10Sizei,tβ11Size Dummyi,t

+ δIndustry Dummyi,t + γTrendi,t + ωi + ηi,t,

where q ∈ {ROE, Profit, Tobin’s q, lnMV, lnTFP} indicates a specific performance measure

for firm i at time t, t ∈ {1,15}; p ∈ {Lev1, Lev2, Lev3} indicates a specific leverage measure;

Equity Dummy and Leverage3*Equity are only included for the 3rd definition of leverage;

β, δ and γ are our variable coefficients to be estimated; ω represents some firm-specific shock;

and η is the error term.

We estimate out model using a variety of econometric techniques, emphasizing results

obtained using general Methods of Moments technique for estimating dynamic panel data

models with endogenous variables developed by Arellano and Bond (1991). The advantage

of using this method lies in its efficient use of instruments. Konings and Roodhoft (1997),

show that since levels of the dependent variable in time period t− 2 are not correlated with

the differenced error term in year t, they are valid instruments in year t. Table 3.9 shows

how the number of available instruments increases as the panel progresses.

Arellano and Bond (1991) demonstrate that first difference-GMM (FD-GMM) results in

efficient, consistent and unbiased estimates for a dynamic, panel-data model. Consider a

reduced form representation of our model in Eq.(3.1)

yq,i,t = β0 + β1yq,i,t−1 + β2xp,i,t + λZi,t + ωi + ηi,t. (3.2)

The first difference transformation removes both the constant term and the individual
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effect, eliminating the omitted-variable bias

∆yq,i,t = ∆β1yq,i,t−1 +∆β2xp,i,t +∆λZi,t +∆ηi,t. (3.3)

We can now specify the model as a system of equations, one for each time period, allowing

the instruments for each equation to vary. Here, the instruments include lags of the levels

of the endogenous variable that enter the equation in a differenced form, as well as the

strictly exogenous regressors. Arellano and Bond (1991) show that the FD-GMM approach

produces efficient results by using all available lagged levels of the dependent variable and

explanatory variables as instruments. The validity of the additional instruments is based on

orthogonality between lagged values of the dependent variables and the error terms.

To check for the validity of our instruments we use specification tests proposed by Arel-

lano and Bond (1991) and Arellano and Bover (1995). First, we apply the Hansen test of

over-identifying restrictions to check for correlation between our instruments and the error

terms. An instrument is considered to be valid if no correlation is present; that is, the

instruments and the error terms are independent. Second, we test for second order serial

correlation in the error terms of the differenced equation. While we expect that the differ-

enced error term may be first order serially correlated, consistency of the GMM estimator

is dependent on the error terms of the first-differenced equation being second-order serially

uncorrelated, Yasar et al. (2003). That is, absence of second-order serial correlation would

indicate that the error term in the levels equation is white noise, Konings and Roodhoft

(1997). Thus, a test of second-order serial correlation is reported.

3.5 Empirical Results

In this section we present results of our econometric estimation for all five performance vari-

ables and three definitions of leverage. Consistent with empirical methodology presented in

Section 4, we emphasize estimates generated using the difference GMM method of econo-

metric estimation. Main results of our estimation are summarized below.
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We observe in Table 3.10 that all five performance variables are persistent, consistent with

the notion that performance today is to some extent correlated with yesterday’s performance.

The main results are such that leverage appears to have a positive relationship with forward

looking measures of performance such as Tobin’s q and Market Value; the relationship is

statistically significant for Tobin’s q measure of performance. We observe a negative and

statistically significant relationship when performance is measured by ROE, Profitability

and Total Factor Productivity. More generally, preliminary evidence suggests that debt

appears to have a variety of performance implications for firms.

Comparing effects of leverage across performance measures we observe that an increase

in debt in a firm’s capital structure has the greatest impact on the firm’s ROE and the least

impact on the immediate financial state of the corporation. That is, change in debt has very

clear implications for the managerial efficiency of the firm but not necessarily it’s immediate

financial position.

By decomposing the effect of leverage on performance into short- and long-run compo-

nents we observe that long-run effect of leverage carries the same sign as a short-run effect

but is, in general, much larger in magnitude. This finding carries several interesting implica-

tions. First, our results suggest that the market attributes positive characteristics to debt as

a fraction of firm’s capital structure. That is, consistent with signaling hypothesis, investors

perceive higher levels of debt to be indicative of positive future performance. Second, while

the market believes debt to be beneficial to corporate performance, our results show that in

both the short- and the long- run, debt adversely affects firm efficiency, thereby hindering

corporate performance.

We check consistency of our results by adjusting the panel for outliers. Outliers are elim-

inated following methodology presented in Seo (2006), using adjusted boxplot procedure for

skewed distributions developed by Huberg and Vandervieren (2006). Results generated using

this new panel are similar to results obtained using the full panel, and differ in magnitude

only.
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3.5.1 Regression Results

Results presented in this section aim at understanding the immediate relationship between

capital structure and various measure of firm performance. Using ordinary least squares,

fixed effects and FD-GMM estimation techniques, we find that the direction of the relation-

ship between debt and performance does not change depending on the definition of leverage

used, only the magnitude of the coefficient. The following sub-sections discuss main results

for each of the dependent variables.

3.5.1.1 Return on Equity

Table 3.11 presents the results of various alternative specifications for Return on Equity

measure of firm performance. Results show that leverage has a negative and statistically

significant relationship with Return on Equity for all definitions of leverage. In particular,

when using FD-GMM approach, the estimated coefficients associated with leverage are (-

2.296), (-2.415), and (-2.202), for Lev1, Lev2, and Lev3 respectively.

To understand this result it is of use to reiterate what is actually measured by Return on

Equity. In accounting, ROE measures how efficient the firm is in using resources acquired

through equity issues. As firm efficiency is a function of resources available to a corpora-

tion, it is clear that higher levels of debt can lead to diminishing efficiency by creating an

overabundance of resources. That is, availability of additional funds can result in adverse

behavior by management, the outcome of which is that the same level of performance may

have been achieved with fewer resources. This result is consistent with agency cost theories

of corporate finance in that management has an incentive to borrow in an effort to alle-

viate resource constraints faced by the firm, thereby avoiding having to sacrifice incentive

intensity.

3.5.1.2 Profitability

Table 3.12 presents results of various alternative specifications for the accounting measure of

Profitability. Results demonstrate that leverage has a negative and statistically significant
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relationship with performance as measured by accounting Profitability. This relationship

holds across all definitions of leverage.

When performance is measured based on firm financials alone, higher levels of debt in a

company’s capital structure imply decreased performance. This result can be attributed to

the fact that a short-term increase in debt generally occurs as a result of resource constraints.

That is, if a firm does not currently have the funds necessary to support its operating or

investment activities it is obvious that an immediate relationship between leverage and per-

formance should be a negative one. On the other hand, increased borrowing implies increased

payouts in both principal and interest, which in the long-run eat away at corporate profits,

resulting in reduced profitability, thereby perpetuating the negative long-run relationship

between leverage and firm performance.

When we use difference GMM approach to econometric estimation, the estimated co-

efficients associated with leverage are (-0.242), (-0.305), and (-0.055), for Lev1, Lev2, and

Lev3 respectively. The estimates generated using simple OLS and fixed effect estimators,

are still negative and significant, although smaller in magnitude than those generated using

FD-GMM approach. The coefficient on the FE estimate is smaller, in absolute value, indi-

cating that the cross-sectional differences in the financial structure across firm play a more

important role in explaining performance than the time series variability.

3.5.1.3 Tobin’s q

Table 3.13 presents results of various alternative specifications based on Tobin’s q measure

of firm performance. Results show that leverage has a positive and statistically significant

relationship with our dependent variable across all definitions of leverage. In particular, un-

der FD-GMM approach, estimated coefficients associated with leverage are (-0.844), (0.652),

and (0.241), for Lev1, Lev2, and Lev3 respectively. The estimates generated using simple

OLS and fixed effect estimators are also positive and significant. The fact that the coeffi-

cient on the fixed effects estimates is greater indicates that the cross-sectional differences

across firms in the financial structure play a lesser role in explaining performance than the
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time series variability. Still, the positive estimated coefficient on the fixed effects specifi-

cation suggests that, for the same firm, an increase in leverage is associated with a higher

performance.

Although a change in firm’s q over time may simply reflect changes to the valuation of

future growth opportunities that arise in part from factors exogenous to managerial decisions,

industry dummies and trend in the regression help control for these. Overall, results suggest

that investors view increased borrowing as indicative of future growth opportunities for the

firm. That is, consistent with signaling theory, debt serves as a credible signal to separate

firms with solid fundamentals and desirable future projects, from firms with poor prospects.

As debt is costly to accrue and higher levels of debt are associated with increased outside

monitoring of borrower activities, the market tends to assign a greater value to firms which

are highly levered.

3.5.1.4 Market Value

Table 3.14 presents results of various alternative specifications based on firm Market Value

measure of performance. Results show that leverage has a positive and statistically signifi-

cant relationship with the dependent variable across all definitions of leverage. In particular,

FD-GMM estimated coefficients associated with leverage are (-1.205), (2.911), and (0.222),

for Lev1, Lev2, and Lev3 respectively. Note, that while the coefficient on LEV1 generated

using FD-GMM methodology is negative it is not statistically significant; therefore we can

not say that the relationship between leverage and performance in this case is, in fact, nega-

tive. The estimates generated using simple OLS and fixed effect estimators, are still positive

for Lev1, Lev2, and Lev3 respectively. That is, for a particular firm, an increase in leverage

is associated with higher performance.

Similar to Tobin’s q measure of firm performance, signaling and monitoring capabilities

of debt make it possible for investors to assign greater value to highly levered firms as they

associate higher levels of debt with future performance.
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3.5.1.5 Total Factor Productivity

Table 3.15 presents results of various alternative specifications based on economic efficiency

(TFP) measure of firm performance. When it comes to the effect of debt on firm perfor-

mance, results show that firms with lower leverage are, on average, more productive. In

particular, FD-GMM estimated coefficients associated with leverage are (-0.393), (-0.213),

and (-0.219), for Lev1, Lev2, and Lev3 respectively. FE coefficients are also negative and

equal to -0.012, -0.032, and -0.003 for Lev1, Lev2, and Lev3 respectively.

A reduction in efficiency is associated with higher levels of debt in a firm’s capital struc-

ture, can be explained by the fact that firms take on debt when internal cash is not available;

that is, when there exists some resource constraint. It follows that an immediate effect of

debt is decreased firm performance and thus, lower efficiency. In the long-run, increased bor-

rowing obligates management to principal and interest payouts, which means that less of the

profits are available to invest back into firm activities. That is, resulting resource constraints

prohibit firms from investing internally, further hindering productivity and efficiency.

3.5.2 Dynamic Decomposition Results

The dynamic component of the model allows us to differentiate between short- and long-run

effects of independent variables on various performance measures. Since in this study we

are interested in the effect of debt on firm performance, we limit our analysis to leverage

variables.

Consider our model

Performanceq,i,t = β0 + β1Performanceq,i,t−1 (3.4)

+ β2Leveragep,i,t + λZi,t + ωi + ηi,t,

where q ∈ {ROE, Profit, Tobin’s q, lnMV, lnTFP} indicates a specific performance measure

for firm i at time t, t ∈ {1,15}; p ∈ {Lev1, Lev2, Lev3} indicates a specific leverage measure; β

and λ are our variable coefficients to be estimated; Z is a vector representing the explanatory
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variables as outlined in section 3.4; ω represents some firm-specific shock; and η is the error

term.

The short-run effect of leverage on the dependent variable of interest is given by the

coefficient on leverage, β2. The long-run effect of leverage on performance is calculated as a

ratio of the coefficient of our independent variable, β2, over one minus the coefficient of our

lagged performance variable, (1 − β1). That is

Short-run effect = β2, (3.5)

Long-run effect =
β2

(1 − β1)
.

Table 3.16 summarizes the results of our analysis of short- and long-run effects of lever-

age on performance. We observe that, in general, long-run effect of leverage on performance

is of the same sign as a short-run effect, but is larger in magnitude. This result is puzzling

in the theoretical context as it implies that performance is both positively and negatively

affected by increases in debt. A possible answer can be found in the definitions of perfor-

mance measures themselves. Investor sentiment is an intrinsic factor in computation of our

financial measures of performance, Tobin’s q and Market Value. Therefore, markets are

likely to overvalue highly levered firms, consistent with the signaling theory of debt. On the

other hand, measures based on efficiency and firm fundamentals suggest that debt hinders

performance as it serves as a long-run resource constraint preventing the firm from efficiently

utilizing available resources.

A possible explanation could be found in the effect which the amount of external financing

could have on firm performance. A study by Campello (2003) suggests that it is possible

for debt financing to both boost and hurt firm performance, implying that it is not debt as

such that hinders efficiency, but rather its level in the capital structure of the firm. The next

logical step in determining the effect of financing decisions on business performance should

involve the decomposition of sample by debt size.

Finally, a key to the puzzling relationship between different measures of firm performance
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and leverage could be the size of the firm itself. As mentioned previously, different measures

of performance demonstrated differing time-dynamics for small, medium, and large firms.

While this study focuses on estimating the "average" effect of increased amount of debt on

firm performance, it is possible that this effect is actually different for different size firms.

3.6 Conclusions and Extensions

While much of theoretical literature has focused on the characterization of capital structure-

performance interaction, improvements can still be made to better understand the practical

features of this relationship. Research presented in this paper provides new insight into the

relationship between leverage and corporate performance. Here, we use a flexible approach

to model the impact of debt on performance, which allows us to accommodate a broader

spectrum of theoretical predictions. While the standard empirical approach permits for debt

to manifest only its immediate effect on performance, we adopt an empirical strategy which

allows us to distinguish between long- and short-run effects of this relationship.

Results imply that debt is positively associated with current and future performance

when performance is measured in a forward-looking fashion; that is, when investor sentiment

is present. To be precise, after controlling for idiosyncratic time and industry effects, as well

as relative corporate size, R&D expenditures and growth opportunities, we find that higher

levels of debt in firm’s capital structure serve as a strong signal of firm potential. However,

the “leverage effect” becomes negative when corporate performance is based strictly on firm

financials and past performance, such as Return on Equity, Profitability and Total Factor

Productivity. That is, immediate effects of taking on additional debt lead to a decrease in

both current profitability and efficiency of the firm.

Results also suggest that capital structure-performance interactions are highly persistent

and increase in magnitude over time. This finding is puzzling as it allows us to conclude

that while the market has a positive perception of an increase in a firm’s leverage ratio, in

reality, an increase in debt is likely to reduce firm efficiency, thereby hindering corporate

performance. While this work is based on sound econometric theory, we stress that one
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must interpret our results with care as there are limitations to any empirical work.
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Table 3.1: Descriptive Statistics, ROE Measure of Performance, by Year

Mean Median Std. Dev. Min Max Observations

1988 -0.228 0.098 24.221 -519.412 880.000 2,027
1989 -0.036 0.086 3.362 -49.817 42.761 1,970
1990 0.093 0.079 11.992 -156.323 490.909 1,971
1991 -0.277 0.067 7.914 -124.000 201.792 2,034
1992 0.092 0.070 9.212 -204.500 223.000 2,175
1993 0.048 0.076 3.729 -103.551 59.936 2,296
1994 -0.410 0.097 9.964 -405.778 17.930 2,383
1995 0.148 0.102 7.505 -102.512 263.203 2,629
1996 0.177 0.088 20.442 -526.683 906.778 2,677
1997 -0.160 0.084 8.804 -382.241 157.486 2,570
1998 0.174 0.074 14.002 -113.500 494.750 2,614
1999 5.568 0.070 286.061 -263.333 14416.000 2,541
2000 -0.420 0.052 18.493 -865.250 158.494 2,417
2001 -0.199 0.017 5.510 -107.562 78.554 2,261
2002 -0.011 0.021 8.368 -111.567 261.512 2,160
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Table 3.2: Descriptive Statistics, Profitability Measure of Performance, by Year

Mean Median Std. Dev. Min Max Observations

1988 0.016 0.106 0.388 -7.992 0.765 2,031
1989 0.013 0.107 0.420 -7.365 0.873 1,972
1990 0.015 0.105 0.361 -3.863 3.098 1,972
1991 0.010 0.101 0.437 -8.128 1.009 2,033
1992 0.014 0.107 0.457 -12.800 1.744 2,176
1993 0.016 0.106 0.376 -4.763 1.685 2,294
1994 0.000 0.116 0.533 -11.593 0.885 2,379
1995 -0.075 0.115 1.931 -76.727 0.807 2,630
1996 -0.019 0.109 0.745 -28.590 0.749 2,673
1997 -0.025 0.105 0.501 -11.264 2.041 2,569
1998 -0.119 0.089 0.934 -26.049 0.965 2,617
1999 -0.105 0.084 0.841 -18.429 4.780 2,552
2000 -0.114 0.082 0.975 -24.908 13.334 2,440
2001 -0.188 0.058 1.416 -50.400 4.305 2,275
2002 -0.231 0.060 2.575 -100.000 1.070 2,193
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Table 3.3: Descriptive Statistics, Tobin’s q Measure of Performance, by Year

Mean Median Std. Dev. Min Max Observations

1988 0.561 0.498 0.511 0.008 12.197 1,740
1989 0.590 0.510 0.677 0.008 15.916 1,656
1990 0.579 0.502 0.726 0.007 18.985 1,617
1991 0.548 0.471 0.639 0.011 16.569 1,653
1992 0.512 0.450 0.648 0.011 21.317 1,751
1993 0.494 0.429 0.568 0.017 14.160 1,895
1994 0.510 0.437 1.142 0.017 47.244 1,968
1995 0.596 0.440 2.659 0.020 120.544 2,193
1996 0.527 0.415 1.061 0.009 41.635 2,383
1997 0.594 0.431 1.775 0.018 59.118 2,381
1998 0.660 0.474 1.159 0.021 21.755 2,319
1999 0.693 0.481 1.491 0.027 42.274 2,233
2000 0.681 0.454 1.755 0.007 53.571 2,226
2001 0.851 0.445 6.301 0.014 278.551 2,095
2002 0.827 0.443 3.163 0.017 108.814 1,966
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Table 3.4: Descriptive Statistics, lnMV Measure of Performance, by Year

Mean Median Std. Dev. Min Max Observations

1988 8.958 9.041 2.987 -1.457 18.315 1,740
1989 9.013 9.070 3.082 -0.623 18.389 1,656
1990 9.031 9.116 3.157 -1.343 18.411 1,618
1991 8.981 9.029 3.154 -1.586 18.418 1,652
1992 8.913 8.915 3.125 -2.300 18.440 1,750
1993 8.864 8.796 3.102 -0.391 18.564 1,893
1994 8.898 8.939 3.168 -2.393 18.716 1,964
1995 8.868 8.761 3.138 -1.476 18.824 2,188
1996 8.821 8.704 3.186 -0.227 18.889 2,374
1997 8.931 8.936 3.199 -1.173 18.949 2,373
1998 9.123 9.118 3.277 -1.761 18.706 2,312
1999 9.264 9.217 3.239 -4.249 18.846 2,227
2000 9.216 9.211 3.288 -0.468 18.929 2,221
2001 9.208 9.202 3.391 -1.120 18.940 2,089
2002 9.104 9.113 3.547 -2.022 19.124 1,960
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Table 3.5: Descriptive Statistics, lnTFP Measure of Performance, by Year

Mean Median Std. Dev. Min Max Observations

1988 2.329 2.675 1.782 -3.391 6.014 1,643
1989 2.345 2.708 1.786 -5.217 5.405 1,612
1990 2.359 2.662 1.775 -2.521 5.482 1,618
1991 2.402 2.826 1.769 -2.517 5.759 1,686
1992 2.426 2.842 1.758 -2.914 5.454 1,800
1993 2.428 2.771 1.762 -2.663 5.933 1,853
1994 2.424 2.726 1.759 -4.167 5.759 1,934
1995 2.399 2.758 1.773 -3.381 6.077 2,050
1996 2.421 2.88 1.787 -3.891 5.529 2,048
1997 2.412 2.938 1.786 -3.975 5.739 1,951
1998 2.385 2.922 1.794 -4.686 5.381 1,901
1999 2.368 2.911 1.821 -3.7 5.617 1,859
2000 2.298 2.849 1.86 -3.573 7.332 1,811
2001 2.341 2.947 1.853 -5.052 6.769 1,730
2002 2.329 2.675 1.782 -3.391 6.014 1,643
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Table 3.6: Descriptive Statistics, Leverage Variables, by Year

Lev1 Lev2 Lev3

Mean (%) Median (%) Mean (%) Median (%) Mean (%) Median (%)

1988 57.231 52.372 28.679 23.999 48.102 32.098
1989 58.745 53.890 29.836 24.728 42.512 32.322
1990 59.513 53.380 29.943 23.934 18.041 30.673
1991 59.471 50.753 28.950 21.431 3.801 27.027
1992 56.559 49.696 26.699 19.495 27.575 25.132
1993 53.926 47.334 24.426 17.130 20.146 22.455
1994 55.712 47.757 23.736 16.864 25.641 21.165
1995 70.760 47.197 31.954 17.061 -12.391 20.483
1996 52.292 44.145 24.119 15.736 32.522 19.636
1997 52.913 44.053 24.311 15.518 17.642 19.036
1998 58.540 47.330 27.580 18.192 28.398 21.832
1999 60.284 47.758 27.914 18.755 37.558 22.492
2000 62.350 46.367 30.260 17.367 36.731 21.783
2001 75.610 46.051 31.105 17.159 -10.086 19.867
2002 67.032 45.406 30.513 16.260 37.394 17.471

Observations 35,041 35,014 34,782
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Table 3.7: Performance Measures Correlation Coefficients

Panel A: Full Sample
ROE Profitability Tobin’s q lnMV lnTFP

ROE 1
Profitability -0.01 1
Tobin’s q 0.009 -0.399 1
lnMV 0.009 0.157 0.099 1
lnTFP -0.001 0.073 -0.034 -0.104 1

Panel B: Small Firms
ROE Profitability Tobin’s q lnMV lnTFP

ROE 1
Profitability -0.015 1
Tobin’s q 0.009 -0.394 1
lnMV 0.024 -0.036 0.227 1
lnTFP 0 0.177 -0.091 -0.086 1

Panel C: Medium Firms
ROE Profitability Tobin’s q lnMV lnTFP

ROE 1
Profitability 0.005 1
Tobin’s q 0.009 -0.206 1
lnMV 0.002 0.085 0.496 1
lnTFP -0.002 0.128 -0.043 -0.022 1

Panel D: Large Firms
ROE Profitability Tobin’s q lnMV lnTFP

ROE 1
Profitability 0.016 1
Tobin’s q 0.015 -0.218 1
lnMV 0.001 -0.087 0.468 1
lnTFP 0.001 0.094 0.045 -0.051 1
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Table 3.8a: Variable Definitions and Sources

Below, variable definitions and sources are reported for all variables used in the regression estimations. The data are collected from
COMPUSTAT Annual (Industrial) database.

Panel A: Performance Variables
Return On Equity Net income (COMPUSTAT item #172) divided by book value of equity, where book value of

equity is measured as total common equity (item #60) + deferred tax (item #35) − liquidation
value of preferred stock (item #10).

Profitability Ratio of operating income before depreciation (item #13) over total assets (item #6).
Tobin’s q Sum of book value of debt and market value of equity, divided by total assets; where book value

of debt is total assets minus book value of equity, and market value of equity is the number of
common shares outstanding (item #25) multiplied by fiscal year closing price (item #199).

Market Value Market value of equity plus preferred stock, plus long term debt (item #9) plus debt in current
liabilities (item #34).

Total Factor Productivity Total Factor Productivity is calculated using the Olley and Pakes (1996) estimation method; we
then generate the final variable form by performing a log-transform. Details are available upon
request.

Panel B: Leverage Variables
Lev1 Liabilities (COMPUSTAT item #181) over total assets (item #6).
Lev2 Ratio of total debt, calculated as the sum of long term debt (item #9) and debt in current liabilities

(item #34), over assets.
Lev3 Total debt over capital, where capital is total debt plus book value of equity, calculated as total

common equity (item #60) + deferred tax (item #35) − liquidation value of preferred stock (item
#10).

Panel C: Main Regression Variables
Equity Dummy Variable is equal to 1 if total common equity (COMPUSTAT item #60) is below zero, and is 0

otherwise.
Age Age is calculated from the date of first link to CRSP until current time period.
Tangibility Weighted sum of cash holdings, accounts receivables, inventories, and net fixed capital, divided

by total assets ([ item #1 + (0.715 × item #2) + (0.547 × item #3) + (0.535 × item #8)] divided
by item #6).

Uniqueness Ratio of R&D expense (item #46) over capital expenditures (item #128).
Uniqueness Dummy Variable is equal to 1 if R&D expense is greater than 0, variable is equal to 0 otherwise.
Growth Opportunity Capital expenditures divided by total assets (item #6).
Size Log-transform of net sales (item 12).
Size Dummy Size is measured as gross fixed assets; we create three categories in which we sort the firms

according to the size of their gross fixed assets. The fist category represents the small firms in the
sample; it is composed of firms which are in the lowest 25th percentile of fixed assets as compared
to the sample. The second category contains the bulk of the companies; they are the firms with
assets between 25th and 75th percentiles. The last category is composed of the largest firms,
those firms whose gross assets are greater than the 75th percentile as compared to the sample.

Industry Dummy Industry dummy at the two-digit SIC level.
Trend Variable is constructed by subtracting 1987 from current time period.

148



Table 3.8b: Sample Descriptive Statistics

Panel A: Summary statistics for performance measures variables
Mean Median Std. Dev. Min Max Observations

ROE 0.345 0.074 78.324 -865.25 14416 34,725
Profitability -0.055 0.0987 1.077 -100 13.334 34,806
Tobin’s q 0.619 0.459 2.236 0.007 278.551 30,076
lnMV 9.016 9.013 3.214 -4.249 19.124 30,017
lnTFP 2.383 2.838 1.79 -5.217 7.332 25,496

Panel B: Summary statistics for leverage variables, by firm size
Lev1 Lev2 Lev3

Mean (%) Median (%) Mean (%) Median (%) Mean (%) Median(%)

Small 94.609 50.082 41.913 17.572 16.618 12.252
Medium 45.137 39.356 21.399 13.683 16.32 16.763
Large 60.242 59.558 28.931 26.482 42.652 38.233

Observations 35,041 35,014 34,782

Panel C: Summary statistics for independent variables
Mean Median Std. Dev. Min Max Observations

Age 19.012 17 10.97 1 55 27,604
Tangibility 0.564 0.556 0.156 0 1 34,918
Uniqueness 2.92 0 37.966 0 7277.667 78,560
Growth Opportunity 0.057 0.041 0.06 0.001 2.2 34,297
Size 11.086 11.055 2.684 0 19.143 35,038
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Table 3.9: FD-GMM Instruments

Observation Year Instrument(s) Available

∆xp1990 xp1988
∆xp1991 xp1988, xp1989
∆xp1992 xp1988, xp1989, xp1990
∆xp1993 xp1988, xp1989, xp1990, xp1991

. . . . . .
∆xp2002 xp1988, . . . , xp2000
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Table 3.10: Partial Regression Analysis

Panel A: Debt-ROE Interactions, FD-GMM
Lev1 Lev2 Lev3

l.ROE 0.004 0.007 0.009
(0.001)*** (0.001)*** (0.001)***

lev -2.296 -2.415 -2.202
(0.191)*** (0.264)*** (0.169)***

LR lev -2.305 -2.432 -2.221

Panel B: Debt-Profitability Interactions, FD-GMM
Lev1 Lev2 Lev3

l.Profitability 0.253 0.138 -0.052
(0.037)*** (0.032)*** (0.019)***

lev -0.242 -0.305 -0.055
(0.035)*** (0.080)*** (0.017)***

LR lev -0.323 -0.4 -0.052

Panel C: Debt-Tobin’s q Interactions, FD-GMM
Lev1 Lev2 Lev3

l.Tobin’s q 0.287 0.270 0.189
(0.052)*** (0.081)*** (0.003)***

lev 0.844 0.652 0.241
(0.043)*** (0.157)*** (0.028)***

LR lev 1.183 0.893 0.297

Panel D: Debt-Market Value Interactions, FD-GMM
Lev1 Lev2 Lev3

l.lnMV 0.349 0.286 0.359
(0.143)** (0.100)*** (0.028)***

lev -1.205 2.911 0.222
(0.872) (0.703)*** (0.067)***

LR lev -1.85 4.077 0.346

Panel E: Debt-TFP Interactions, FD-GMM
Lev1 Lev2 Lev3

l.lnTFP 0.197 0.138 -0.219
(0.109)* (0.048)*** (0.066)***

lev -0.393 -0.213 -0.219
(0.096)*** (0.047)*** (0.081)***

LR lev -0.489 -0.247 -0.179

Standard errors in parentheses

* significant at 10%
** significant at 5%
*** significant at 1%
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Table 3.16: Short-run and Long-run Effects of Leverage on Performance

Lev1 Lev2 Lev3

OLS FE FD OLS FE FD OLS FE FD

ROE SR 0.138 0.469 -2.296 0.044 0.153 -2.415 -0.114 -0.037 -2.202
LR 0.139 0.446 -2.305 0.044 0.145 -2.432 -0.115 -0.035 -2.221
diff +/- 0.001 -0.023 0.009 0.000 -0.008 0.017 0.001 -0.002 0.019

Profitability SR -0.151 -0.171 -0.242 -0.155 -0.181 -0.305 -0.006 -0.005 -0.055
LR -0.289 -0.209 -0.323 -0.317 -0.227 -0.400 -0.012 -0.006 -0.052
diff +/- 0.138 0.038 0.081 0.162 0.046 0.096 0.006 0.001 -0.003

Tobin’s q SR 0.823 1.120 0.844 0.960 1.323 0.652 0.012 0.012 0.241
LR 2.579 1.842 1.183 3.779 2.468 0.893 0.136 0.035 0.297
diff +/- 1.756 0.722 0.339 2.819 1.145 0.241 0.124 0.023 0.056

lnMV SR 0.471 0.638 -1.205 ∧ 1.176 1.500 2.911 0.099 0.082 0.222
LR 1.938 1.348 -1.850 ∧ 4.111 2.946 4.077 0.447 0.183 0.346
diff +/- 1.467 0.710 0.645 ∧ 2.935 1.446 1.166 0.348 0.101 0.124

lnTFP SR -0.012 -0.012 -0.393 -0.018 -0.032 -0.213 -0.003 -0.003 -0.219
LR -0.110 -0.030 -0.489 -0.165 -0.082 -0.247 -0.027 -0.007 -0.179
diff +/- 0.098 0.018 0.096 0.147 0.050 0.034 0.024 0.004 -0.040

diff +/- refers to the difference between Long-run (LR) and Short-run (SR) effects of leverage on performance; if LR>SR then
we have a positive value, if LR<SR, then the difference value is negative.

∧ signifies statistical insignificance.
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Figure 3.1: ROE, Sample Dynamics over Time, by Firm Size
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Figure 3.2: Profitability, Sample Dynamics over Time, by Firm Size
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Figure 3.3: Tobin’s q, Sample Dynamics over Time, by Firm Size
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Figure 3.4: lnMV, Sample Dynamics over Time, by Firm Size
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Figure 3.5: lnTFP, Sample Dynamics over Time, by Firm Size

162



Figure 3.6: Leverage Ratios, Sample Dynamics over Time, by Firm Size
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Appendix

Firm-level estimates of total factor productivity (TFP) used in this study are computed

using ordinary least squares (OLS), fixed effects (FE), and Olley and Pakes (OP) method-

ologies. The following sections describe the OLS, FE and OP approaches to firm-level TFP

estimation. Advantages and disadvantages of each estimation technique are discussed.

A.1 Variable Definitions

In computing total factor productivity, we measure output (Y ) using log of net sales, deflated

by the two-digit SIC industry-level price index aggregated up from Bartelsman and Gray

(2001). Firm employment records are used to capture the labor (L) component. Materials

component (M) is calculated following Keller and Yeaple (2003), and is deflated using Bar-

telsman and Gray. Capital stock measure (K) is constructed using the Perpetual Inventory

Method, outlined in Olley and Pakes (1996)

Kt+1 = (1 − δ)Kt + It, (A.1)

where K is gross fixed assets deflated using Bartelsman and Gray; δ is the depreciation rate;

and I is the investment level, deflated using the Bartelsman and Gray index. We rely on

the assumption that current capital stock is a reflection of past investment and depreciated

capital form a prior time-period. In this study, depreciation rates are constructed at the

four-digit SIC industry-level using the U.S. Producer Price Index.

Definitions of key variables used to generate accurate estimates of firm-level TFP are

available in Appendix Table A.1a. Appendix Table A.1b provides summary statistics for

the key variables in our total factor productivity estimation.

A.2 OLS Estimation Approach

The most common technique used in productivity estimation is ordinary least squares (OLS).

The OLS approach can be reduced to a two-step process; the first step consists of estimat-
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ing output (Y ) as a function of inputs (K, L, M); the second step requires subtracting the

estimated output from the actual output, thereby generating a residual which captures the

productivity of a particular firm. Although attractive because of simplicity of its imple-

mentation, it has been shown that results generated using ordinary least squares estimation

technique are inconsistent, and the technique itself suffers from simultaneity (see Marshack

and Andrews 1944), and selection bias (see Olley and Pakes 1996).

Suppose we have a random sample of firms with information on output, capital, labor

and materials for each firm. Also, suppose that production technology is represented by a

production function of the following form

yi,t = βkki,t, + βlli,t + βmmi,t + ωi,t + ηi,t, (A.2)

where yi,t is the log-transformed measure of output for firm i at time t; li,t and mi,t, are logs

of freely variable inputs of labor and materials respectively; ki,t is the state variable, which

needs some time to adjust, and represents the log of capital inputs; ωi,t is the productivity

shock; and ηi,t is the measurement error, or unforeseeable productivity shock for which

inputs can not be immediately adjusted.

Estimating Eq.(A.2) allows us to calculate the total factor productivity, which is mea-

sured as follows

lnTFPi,t = yi,t − β̂kki,t − β̂lli,t − β̂mmi,t, (A.3)

where β̂x is the estimated coefficient of an input x, x ∈ {capital, labor, materials} indicates

a specific input for firm i at time t.

The firm specific shock ωi,t, Eq.(A.2), is the source of the simultaneity and selection

biases mentioned above. It is important to note that while both ωi,t and ηi,t are unobserved

shocks ωi,t is a state variable in the firm’s decision problem, while ηi,t is not. The term ωi,t

represents productivity shocks known to the firm but unobserved by the econometrician.

Since ωi,t is part of the firm’s decision making model it is a determinant of both liquida-

tion and input demand decisions. The error term ηi,t, on the other hand, represents all
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disturbances unknown to both the firm and the econometrician.

The empirical goal of this study is to analyze changes in firm-level productivity that

accompanied the firm-specific changes in capital structure, as discussed in the body of the

paper. To accomplish this we need to estimate the parameters of our production function,

introduced above in Eq.(A.2). To accurately estimate the parameters we must take into

account two factors: first, the cause of and pattern associated with entry and exit of firms

from the industry and our sample; second, the change in productivity which is related to

change in the quantities of inputs used by firms choosing to remain in production.

Consider again shock ωi,t discussed previously. In 1994, Marshack and Andrews empha-

sized that since inputs are chosen by the firm based on some optimizing behavior which is

not known to the econometrician, there exists endogeneity in the equation which the econo-

metrician is attempting to estimate. Authors argued that the nature of inconsistency of OLS

estimates comes from the fact that a firm chooses its inputs based on a model consistent

with some future goal, the firm’s output is thus determined by that model and is directly

correlated with its inputs in a way which is unobserved by the econometrician. Generally

speaking, while producers observe private information about their own productivity, this

information is unavailable to outside observers and as such, unknown to the econometrician.

This information asymmetry introduces a simultaneity bias since the information which is

unknown to the econometrician will, in a forward-looking firm, affect that firm’s labor poli-

cies and investment decisions such that a firm can alter its factor input decision in order to

compensate for anticipated shocks.

Suppose we have a firm which is productive, then that firm will have the resources

necessary to hire more workers and invest in capital in order to further improve performance.

The simultaneity, in this case, may cause ordinary least squares estimation of the production

function to generate upwardly biased coefficient estimates. This is because OLS treats factor

quantities as exogenous while we just demonstrated that it is likely that they are, in fact,

endogenously determined. Thus, we can say that the simple OLS estimates of the production

function may suffer from simultaneity bias and be inconsistent because the productivity of
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a firm could be correlated with its inputs.

The second problem with consistency of ordinary least squares estimates has to do with

the selection bias. The econometrician can only observe firms that stay in the market during

each time period and not of the ones that exit the industry. On the other hand, producers

make much more informed decisions based on information about their productivity and

current level of capital stock which allows the firm to adjust the quantity of inputs. This

lack of transparency creates a problem because if there exists a correlation between a firm’s

exit from the market and quantity of inputs used, then this correlation will result in a biased

coefficient for the input estimate.

Often, firm-level data sets are incomplete, where missing values can be attributed to

a firm exiting the market. If these firms are selected in a non-random manner, then the

sample may become biased. Suppose that total factor productivity is influenced by the

capital stock in such as way that low performing, low TFP firms generally have lower capital

stock levels. If firms which tend to exit more often are the ones with low levels of total

factor productivity then the selection bias in the ordinary least squares estimation will

overemphasize the coefficient on capital for non-exiting firms, generating an upward bias.

One way to avoid the simultaneity and selection bias associated with ordinary least

squares is to estimate the production function using fixed effects methodology. Suppose we

assume that the part of TFP that influences firm behavior, ωi,t, is a firm-specific attribute

and is invariant over time. In that case, we can include firm dummies into the regres-

sion, thereby creating a fixed-effect panel regression, mitigate the problem created by the

unobserved shock ωi,t, and derive consistent estimates of model parameters.

A.3 FE Estimation Approach

Consider again our log-transformed production function

yi,t = βkki,t, + βlli,t + βmmi,t + ωi,t + ηi,t, (A.4)
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where yi,t is the logarithm of output for firm i at time t; ki,t, li,t, and mi,t are the logs of

capital, labor and materials; and ωi,t and ηi,t are shocks.

The estimation of Eq.(A.4) without consideration of possible firm-specific effects can

generate misleading results for OLS regressions. That is, when the unobservable firm-specific

variables (shocks) are correlated with the included right-hand-side variables OLS estimation

produces inconsistent and biased estimates.

The problems associated with OLS estimation can be addressed by using the fixed effects

method of econometric estimation. Suppose that the error term ωi,t represents productivity

which is firm specific and is invariant over time such that ωi,t = ωi. Our model suggests

that we may have omitted firm-specific variables. To correct for the omission of firm-

specific variables we adjust all variables first by subtracting their respective means over

time. Since the unobserved firm-specific variables and the intercept are time invariant, the

adjustment drops these variables out of the regression equations. Estimating the resulting

model produces coefficients which are both unbiased and consistent.

It is important to note that while parameters generated using the FE methodology are

consistent and unbiased, the technique may still not produce the optimal results. Specifically,

in the model above we assume that ωi,t denotes firm specific productivity but here we are

interested in how firm productivity changes in relation to corporate financial structure; that

is change over time. Hence, assuming that ωi,t is constant over time would imply that the

results generated by using fixed effects estimation are invalid.

As an alternative to fixed effects estimation, Olley and Pakes (1996) develop a consis-

tent semi-parametric estimator which eliminates the simultaneity problem by using a firm’s

investment decision to proxy for unobserved productivity shocks (see Arnold 2005). In

essence, the Olley and Pakes approach relies on the theory of firm dynamics, which shows

that investment can be modeled as a positive and monotonically increasing function of the

productivity shock, ω, and capital (see Ericson and Pakes 1995). The investment function

is used to identify the productivity shock. Inverting the investment function allows the

productivity shock to be substituted out, which leads to consistent estimation of labor and
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materials coefficients. In each period, the firm decides whether to continue operations or

to exit, depending on the productivity shock it experiences. The introduction of the exit

decision into the estimation procedure allows Olley and Pakes to correctly determine the

coefficient on capital.

A.4 OP Estimation Approach

In their 1996 paper, Olley and Pakes use an innovative approach to estimate the effects

of restructuring on firm productivity, specifically addressing the issue of simultaneity and

the selection bias. Recall from our earlier discussion that the existence of firm-specific

productivity shocks which are unobserved by the econometrician can result in correlation

between the error term and the quantity of inputs used, leading to simultaneity, a problem

first addressed by Marshack and Andrews (1944). Olley and Pakes develop a model where

they use investment as a proxy to control for the correlation between the error term and

the quantity of inputs used, thereby mitigating the simultaneity problem. Authors obtain

consistent estimates of capital, and then use these estimates to generate survival probabilities

of each firm which, in turn, controls for the selection bias.

Consider again our production function, in its general form

yi,t = βkki,t, + βlli,t + βmmi,t + vi,t, (A.5)

where yi,t is the logarithm of output for firm i at time t; ki,t, li,t, and mi,t are the logs of

capital, labor and materials. The last term, vi,t, is the error term which represents all shocks

that prevent Eq.(A.5) form holding exactly. Assume the error term to have the following

form

vi,t = ωi,t, + ηi,t,. (A.6)

We further assume that ωi,t is a firm-specific shock; that is, it contains information

observable by the firm but unknown to the econometrician. On the other hand, ηi,t represents

a shock which is not known to either the firm or the econometrician. Conceptually, one
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can think about this is as if the term ηi,t, could be capturing unpredictable macro-related

shocks, while ωi,t could be measuring firm productivity. If ωi,t is known to the firm, the

optimal choice of inputs will be a function of ?it, and simple OLS estimation will result in a

simultaneity bias because of the correlation between the error term vi,t and variable inputs.

That is, E[vi,t∣Xi,t] ≠ 0, where X ∈ {ki,t, li,t,mi,t}.

Similarly, using fixed effects method of estimation will also result in poor estimates of

model parameters. Suppose the term ωi,t is constant over time such that ωi,t = ωi, for all t.

As discussed in Section A.2 of this appendix, performing fixed effects regression analysis can

lead to consistent parameter estimates. However, within our framework this strategy is not

optimal and although parameter estimates will be consistent they are likely to be invalid.

Because we assume that ωi,t denotes firm productivity and we are specifically interested in

how it changes in relation to corporate financial structure, assuming that ωi,t is constant

over time will lead to poor estimates. We can, however, following Olley and Pakes (1996)

methodology, construct ωi,t from the firm’s investment choices. Once we know ωi,t, the

simultaneity of input choices can be modeled and the bias avoided.

Having now discussed the methodology for addressing the problem of simultaneity, we

must turn to the selection problem. It is rational to assume that the firm maximizes the

expected discounted value of its future net cash flows. At the beginning of the period, the

firm learns its productivity, ωi,t, which is assumed to evolve according to some exogenous

Markov process. Then, the firm has to make three choices. First, it decides whether it wants

to stay in the market or exit. Second, the firm chooses some amount of its variable inputs,

in our case labor and materials. Finally, it has to make a decision about how much to invest

in capital. The Olley and Pakes approach generates an exit rule, which allows us to account

for the self-selection associated with the firm’s decision to exit, and avid the associated bias.

The following describes our methodology for econometric estimation of total factor pro-

ductivity coefficients based on OP approach.

In Eq.(A.5) and (A.6), we assume that labor and materials are variable inputs so that

their choice is affected by ωi,t, whereas capital ki,t is only determined by past values of ω, not
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the current one. Dropping the firm subscript for ease of notation let it be the firm’s optimal

investment choice at time t. Provided that it > 0, it is possible to show that investment is

strictly increasing in ωt for any kt. This means that the investment function can be inverted

to yield

ωt = h(it, kt). (A.7)

Substituting Eq.(A.6) and (A.7) into Eq.(A.5) gives

yi,t = βllt + βmmt + φt(it, kt) + ηt, (A.8)

with φt(it, kt) = β0 +βkkt +ht(it, kt). Because φt(⋅) contains the productivity term ωt = h(⋅)

that is the source of the simultaneity bias, Eq.(A.8) can be estimated to obtain consistent

estimates βl and βm on the variable inputs, labor and materials. We use a fourth-order

polynomial in investment and capital to capture the unknown function φt(⋅).

Having generated consistent estimates of βl and βm, we proceed to estimating the effect

of capital on output, βk, which is not identified in Eq.(A.8) because it is combined with

capital’s effect on investment. We assume for simplicity that kt is uncorrelated with the

innovation in ωt, ξt = ωt − ωt−1, or, ωt is a random walk. Substituting this into Eq.(A.8)

gives

yt − β̂llt − β̂mmt = β̂kkt + φ̂t−1 − βkkt−1 + ξt + ηt (A.9)

where φ̂t−1 comes from estimating Eq.(A.8), and φ̂t−1 − βkkt−1 is an estimate of ωt−1.

The probability of survival to period t depends on ωt−1 and ωt−1, the unobserved level

of productivity that would make a firm shut down its operations, which can be shown

to depend only on capital and investment at time t − 1. We generate an estimate of the

survival probability by running a probit regression on a fourth-order polynomial in capital

and investment (lagged by one period); the estimated survival probability is denoted by P̂t.

The final step is to estimate βk from the resulting equation

yt − β̂llt − β̂mmt = β̂kkt + g(φ̂t−1 − βkkt−1, P̂t) + ξt + ηt. (A.10)
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Here we approximate the unknown function g(⋅) by a fourth-order polynomial in φ̂t−1−βkkt−1

and P̂t; βk is then estimated non-linearly across all terms that contain it.

Using the estimates of coefficients of labor, materials, and capital, we estimate total

factor productivity as follows

TFPi,t = yi,t − β̂llt − β̂mmt − β̂kkt. (A.11)

The log-transformed TFP , lnTFP , becomes our measure of firm productivity.

Appendix Table A.2 compares the coefficients generated using OLS, FE and OP method-

ologies. We can observe from our results that Olley and Pakes (1996) econometric approach,

which allows for exit and entry, generates the “best” coefficients in terms of consistency with

existing literature. Note that the coefficient on the capital tends to be underestimated by

OLS and FE methods of econometric estimation since firms with higher capital stocks re-

main in the market even with a lower productivity shock. Appendix Table A.3 displays

estimates of labor, materials, and capital coefficients generated at the two-digit SIC level,

as well as by OLS, FE, and OP methodology.
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Table A.1a: Total Factor Productivity (TFP) Estimation Variables

Below, variable definitions and sources are reported for all variables used in total factor productivity (TFP) estimation, adapted from
Keller and Yeaple (2003). The data are collected from COMPUSTAT Annual (Industrial) database and Wayne Grays NBER-CES
Manufacturing Industry database.

Panel A: Sales
denoted Y Net sales (COMPUSTAT item #12); deflated by industry-level price index aggregated up from Bartelsman and

Gray (2001).

Panel B: Labor
denoted L Number of employees ( item #29).

Panel C: Capital
denoted K Value of property, plant and equipments, net of depreciation, from (item #8); deflators are from Bartelsman and

Gray (2001).

The construction of the actual capital variable (KOP ) follows perpetual inventory method as outlined in Olley and
Pakes (1996) such that next period capital is equal to (1− δ) multiplied by current capital plus current investment,
where d is depreciation rate constructed from the Producer Price Index at the 4-digit SIC code level, and investment
is capital expenditures (COMPUSTAT item #128); deflators are from Bartelsman and Gray (2001).

Panel D: Materials
denoted M Cost of goods sold (item #41), plus administrative and selling expenses (item #189) minus depreciation (item #14)

and wage expenditures.

Wage expenditures are calculated by multiplying L by average industry wage, from Annual Survey of Manufacturers;
deflators from Bartelsman and Gray (2001).

Table A.1b: Descriptive Statistics for Total Factor Productivity Variables

Mean Median Std. Dev. Min Max Observations

Output (Y) 1.06E+07 64216.69 1729474 0.856 4.51E+08 35,038
Capital (K) 949751.2 20892.83 5740441 0.879 1.54E+08 32,139
Labor (L) 6.222 0.43 28.069 0.000 775.1 32,031
Materials (M) 1015800 56428.75 5468138 8.842 1.22E+08 28,732
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Table A.2: Total Factor Productivity Coefficients, OLS, FE and OP Approach

Coef. Std. Err. t P > t [95% Conf. Interval]

OLS lnL 0.255 0.006 43 0.000 0.243 0.267
lnM 0.717 0.005 139 0.000 0.707 0.727

Observations = 25,496 lnKOP 0.088 0.005 19 0.000 0.080 0.097

Fixed Effects lnL 0.378 0.006 59.95 0.000 0.365 0.390
lnM 0.633 0.006 109.48 0.000 0.622 0.645

Observations = 25,496 lnKOP 0.034 0.005 7.150 0.000 0.025 0.044

Olley and Pakes lnL 0.243 0.006 40 0.000 0.232 0.255
(no age/with selection) lnM 0.718 0.005 134.03 0.000 0.708 0.729
Observations = 21,890 lnKOP 0.197 0.007 29 0.000 0.184 0.210
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Table A.3: Total Factor Productivity Coefficients

Coefficients below were estimated Using OLS, FE and OP Approach, computed by Two-Digit SIC Code.

OLS Fixed Effects Olley and Pakes Observations
(no age/with selection)

lnL lnM lnKOP lnL lnM lnKOP lnL lnM lnKOP OLS,FE(OP)

SIC 20 + SIC 21 0.237 0.648 0.079 0.305 0.576 0.002 0.229 0.639 0.048 951(815)
*** *** *** *** *** *** *** ***

SIC 22 0.218 0.760 0.022 0.202 0.801 -0.025 0.171 0.753 -0.054 358(315)
*** *** ** *** *** ** *** *** **

SIC 24 0.162 0.689 0.125 0.304 0.681 0.008 0.145 0.691 -0.005 286(253)
*** *** *** *** *** *** ***

SIC 25 0.294 0.681 -0.008 0.285 0.676 -0.037 0.261 0.645 -0.063 297(265)
*** *** *** *** *** *** *** **

SIC 26 0.374 0.412 0.207 0.542 0.377 0.016 0.354 0.408 0.298 442(384)
*** *** *** *** *** *** *** ***

SIC 27 0.155 0.709 0.114 0.441 0.584 -0.009 0.149 0.724 0.193 485(414)
*** *** *** *** *** *** *** ***

SIC 28 0.468 0.556 0.074 0.425 0.570 0.096 0.499 0.586 0.170 3,087(2,638)
*** *** *** *** *** *** *** *** ***

SIC 29 0.175 0.716 0.128 0.228 0.536 0.080 0.197 0.707 0.276 461(395)
*** *** *** *** *** *** *** *** ***

SIC 30 0.244 0.738 0.070 0.302 0.660 0.011 0.253 0.754 0.131 769(659)
*** *** *** *** *** *** *** ***

SIC 32 0.458 0.441 0.138 0.415 0.419 -0.027 0.502 0.411 0.150 205(175)
*** *** *** *** *** *** *** ***

SIC 33 0.279 0.631 0.094 0.406 0.584 0.031 0.261 0.623 0.143 800(696)
*** *** *** *** *** ** *** *** ***

SIC 34 0.219 0.726 0.096 0.221 0.758 0.011 0.223 0.703 -0.021 591(510)
*** *** *** *** *** *** *** **

SIC 35 0.082 0.958 0.030 0.315 0.815 0.000 0.082 0.947 0.146 3,900(3,345)
*** *** *** *** *** *** *** ***

SIC 36 0.160 0.600 0.197 0.410 0.600 -0.010 0.129 0.553 0.359 5,316(4,554)
*** *** *** *** *** *** *** ***

SIC 37 0.388 0.512 0.098 0.396 0.499 0.063 0.377 0.484 0.166 1,533(1,321)
*** *** *** *** *** *** *** *** ***

SIC 38 0.471 0.579 0.059 0.442 0.586 0.011 0.497 0.604 0.113 5,410(4,647)
*** *** *** *** *** *** *** *** ***

SIC 39 0.323 0.687 0.025 0.376 0.492 0.018 0.329 0.664 0.130 605(504)
*** *** *** *** *** *** ***

* indicates significance at the .10 level
** indicates significance at the .05 level
*** indicates significance at the .01 level
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