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Abstract

A framework for gestational development tracking using 1D-Doppler ultrasound
signals in rural Guatemala

By Camilo Ernesto Valderrama Cuadros

Guatemala shoulders the burden of one of the highest perinatal mortality rates in
Latin America, particularly among rural indigenous (Mayan) communities. This the-
sis aims to develop a fetal monitoring system for a highland community in Chimate-
nalgo, Guatemala, by designing methods to analyze one-dimension Doppler ultra-
sound signals (1D-DUS) recorded with a low-cost mobile health system piloted in the
same community.

To that end, signal processing and machine learning techniques were used to ad-
dress issues found in the pilot and initial randomized control trial of the mobile health
system. In particular, four related pieces of research were undertaken. First, a signal
quality method was developed to asses the utility of the 1D-DUS, achieving an F1-
score higher than 90% to classify the signals into five distinct types of error. Then, an
autocorrelation-based method to estimate fetal heart rate (FHR) from 1D-DUS was
developed using a dataset simultaneously recorded with a fetal electrocardiogram.
The method was shown to be generalizable, accurately estimating FHR for two in-
dependent datasets, including one collected in the Guatemalan highland community
that is the focus of this study. Third, estimation of birth weight from observed post-
natal weight was performed as a proxy to identify small-for-gestational-age births,
achieving similar results to those provided by the Guatemalan government for the
region of study. Fourth, fetal heart rate variability indices were combined with ma-
ternal blood pressure readings to estimate gestational age using a supervised support
vector regression approach. The estimations resulted in a mean absolute estimation
error of 0.8 months, which is comparable to previous works developed in industrial-
ized environments while requiring only an inexpensive transducer and a self-inflating
blood pressure device.

This thesis provides low-cost approaches for identifying high-quality 1D-DUS sig-
nals, estimating FHR, and in turn, estimating gestational age in order to identify po-
tential cases of Low Birth Weight, Small for Gestational Age, or Intrauterine Growth
Restriction. The work empowers traditional birth attendants with a decision support
system to identify patients with possible pregnancy-related abnormalities requiring
professional medical assistance.
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Chapter 1

Introduction

This thesis contributes to approaches for fetal monitoring in low- and middle-income

countries (LMICs) by developing methods to analyze one-dimension Doppler ultra-

sound (1D-DUS) signals recorded with a low-cost mobile health (mHealth) system,

previously introduced in a rural highland community in Chimatenalgo, Guatemala

[354]. These functionalities were defined based on issues identified during pilot re-

search and a randomized control trial (RCT) in rural Guatemala [232, 231, 354, 351,

354].

1.1 Motivation

In LMICs, perinatal death is an alarming burden, accounting for around 98% of

total perinatal deaths [408]. Among LMICs, Guatemala suffers one of the highest

perinatal morbidity and mortality rates in Latin America, particularly affecting the

Mayan population [367, 367]. This high burden is a result of barriers, such as economic

status, language, and culture, that limit the access to professional medical care and

routine perinatal screening. Due to these barriers, pregnant indigenous Guatemalan

women are usually attended by lay midwives, or traditional birth attendants (TBAs),

who lack the training to identify abnormal fetal development [177, 231].
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One sign of abnormal development commonly associated with perinatal death is a

low birth weight (LBW) (≤ 2.5 Kg) [205]. In LMICs, around 60% of LBW newborns

are due to intrauterine growth restriction (IUGR), preventing the fetus from reaching

its full growth potential [205], and associated with lower neurodevelopmental scores

and other negative sequelae [258, 207]. IUGR accounts for 52% of stillbirths [340],

and has a prevalence of between 9-11% in LMICs [89, 205].

In high-income countries, obstetricians detect suspicious cases of IUGR by Doppler

sonography [213]. However, Doppler imaging requires specialized medical profession-

als and expensive equipment, thus limiting its use in LMICs [399].

One alternative method to detect IUGR is monitoring fetal heart rate (FHR), from

which a nonstress test can be performed [289]. For example, a lack of accelerations

indicates possible cases of IUGR [226]. In more detailed approaches, indexes derived

from fetal heart rate variability (fHRV) analysis can be used to identify heart rate

accelerations associated with normal fetal growth [15].

The potential of detecting IUGR cases with fHRV has been shown in recent works.

Specifically, Stroux et al. [355] analyzed a total of 1,163 IUGR cases and 1,163 healthy

controls using fHRV indexes derived via computerized cardiotocography (CTG). The

comparison yielded significant differences between the two groups, achieving an area

under the receiver operator curve (AUC) of 76% for predicting IUGR cases. Similarly,

Signorini et al. [333] achieved an accuracy rate of 90% in discriminating between 60

IUGR and 60 healthy fetuses using a random forest trained on twelve time, spectral,

and nonlinear indices extracted from CTG signals.

Due to the potential of fHRV analysis to identify possible IUGR cases, Stroux et

al. [354] introduced an affordable project aimed to provide fetal monitoring to a

Guatemalan rural community. This project introduced, in collaboration with a lo-

cal non-governmental organization (Wuqu’ Kawoq | Maya Health Alliance), an intu-

itive smartphone-based decision support system designed for low-literacy TBA. This
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mHealth fetal monitoring system consists of a low-cost 1D Doppler device connected

to a smartphone running a mobile application, and a standard oscillometric blood

pressure monitor. The app guides the user to find the fetus and to record fetal car-

diac activity by using the Doppler transducer. The app also guides the user through a

check-list - the Pregnancy Risk Assessment Monitoring System (PRAMS) [64]. This

is presented to the TBA through culturally appropriate pictures, and audio prompts

in the local language to help to identify concerning signs and symptoms during preg-

nancy. User responses are combined with the results of the blood pressure readings

and Doppler recording analysis to identify concerning signs and symptoms during

pregnancy, and then provide an alert to a healthcare worker for decisions on appro-

priate interventions or referral to an appropriate healthcare facility, if needed.

This mHealth technology has provided TBAs with decision support, and through

cellular connectivity, has linked their traditional procedures with a formal healthcare

referral process [232, 231, 354, 351]. Although the technology has so far proven to be

feasible in a Guatemalan highland community, it needs some refinements to reduce

noise and adapt the prediction algorithms to the Guatemalan population using the

low-cost Doppler transducer [354, 232].

1.2 Aim of this thesis

This thesis aims to provide a method for identifying clean DUS data, estimating

fHRV, and in turn, estimating gestational age in order to identify potential LBW,

SGA, or IUGR. To that end, signal processing and machine learning techniques were

used, with a focus on inexpensive computational techniques that can be transferred

to the mHealth perinatal screening system introduced in [232, 231, 354, 351].

In order to achieve our final aim, the following novel research was performed:

• A method to ensure the quality of 1D-DUS at the point of care was developed.
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During the first two release cycles of the app, around 40% of the recordings

were of low quality. Low-quality signals can distort fetal well-being analysis

[353, 220]. Therefore, the quality of recorded 1D-DUS signals should be assessed

at the point of care so that users can either discard or retake poor quality

recordings.

• A method for extracting fetal heart rate from 1D-DUS signals was then devel-

oped. Commercial CTG companies have not disclosed the source code used

for extracting FHR from Doppler ultrasound. However, as FHR is needed to

monitor fetal well-being, the second goal was to provide the mHealth system

with a method to estimate FHR from 1D-DUS signals.

• A method for estimating birth weight from observed postnatal weights was then

developed. This estimation was necessary as the first postpartum visit could

happen either days or weeks after birth, thereby making the identification of

possible LBW newborns problematic. By providing a method to estimate birth

weight based on postnatal weight, cases of LBW may be identified. These LBW

infants were then labeled as such to improve the training data for estimating

gestational age.

• A method for estimating gestational age from 1D-DUS and maternal blood

pressure recordings was then developed. Gestational age estimation is essential

to identify growth restriction, assess fetal well-being, and determine the timing

of delivery. By providing an estimation of gestational age from 1D-DUS and

maternal blood pressure recordings, non-medically trained operators may be

equipped with an objective metric to assess fetus gestational development.
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1.3 Thesis outline

This thesis comprises seven chapters besides this introduction, all of which (except

for the conclusion) have been published or are under review in key journals in the

field (see section 1.4).

Chapter 2 presents the background of this thesis. The chapter first presents tech-

niques used for assessing fetal well-being, focusing on fetal heart monitoring. Then,

the chapter describes the challenges LMICs face for providing fetal monitoring. The

chapter concludes by presenting the potential of mobile health applications to over-

come LMICs barriers and provide antenatal care.

Chapters 3 and 4 introduce approaches for assessing the quality of 1D-DUS signals

recorded with a Doppler transducer. Chapter 3 presents the first approach, building

on the work of Stroux et al. [353], to classify 1D-DUS signals as usable (good)

or unusable (poor) quality. Chapter 4 extends this method to data collected in an

LMIC by introducing an approach to classify 1D-DUS signals into five quality classes

observed in rural Guatemalan communities during pilot testing.

Chapter 5 provides an autocorrelation-function (AC)-based method for estimating

fetal heart rate from the 1D-DUS signals. FHR estimation is an essential step for

assessing fetal well-being as it is crucial for calculating fHRV indices.

The remainder of the thesis is focused on estimating abnormalities in gestational

growth. Chapter 6 explores the issue of assessing the birth weight to identify small-

for-gestational-age (SGA) births. Since it is not always possible to record weight on

the day of birth, and weight loss/gain in the following days is nonlinear, a regression-

based approach to estimating birth weight from postnatal weight is described. The

births identified as SGA were then excluded from the analysis in the final research

chapter.

Chapter 7 then presents a supervised machine learning approach to estimate ges-

tational age based on fHRV indexes extracted from 1D-DUS as well as metrics derived
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from maternal blood pressure.

Finally, Chapter 8 presents a summary of contributions, limitations, and possible

future work.

1.4 List of publication

Work in this thesis has been published in the following journals and conference:

• Valderrama C. E., Katebi, N., Marzbanrad, F., Clifford G. D. A review of fetal
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Measurement. Under review
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• Valderrama, C. E., Marzbanrad F., Stroux L., Clifford, G. D. (2017). Template-

based quality assessment of the Doppler ultrasound signal for fetal monitoring,

Frontiers in Physiology. 2017 Jul 18; 8, 1-10. doi: https://doi.org/10.3389/

fphys.2017.00511 [373]

(This publication appears in its entirety in Chapter 3)
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Chapter 2

Background

2.1 Abstract

Little evidence exists for the utility of fetal monitoring during pregnancy, particularly

during labor. Current practices in high-income countries are mostly determined by

consensus ‘best practices’ from obstetric and gynecology professional societies. Pro-

tocols are often driven by the desire to be as safe as possible, at least at the moment,

avoid litigation, and to detect any abnormalities or anomalies, regardless of the cost

of downstream treatment. In high-resource settings, where there is no absence of

overwhelming evidence to contradict standard practices, there may be an argument

for this approach. In low-resource settings, action can be costly and lead to negative

outcomes, both in the short and long term. It is, therefore, important to consider the

evidence base and cost of fetal monitoring, particularly in the context of treatment

and care in low-to-middle income counties.

This paper reviews the common methods for fetal monitoring, focusing on fetal

cardiac assessment, which has shown to be a reliable indicator for assessing fetal well-

being. It also presents the current situation of fetal monitoring in low-to-middle in-

come counties, presenting the problems challenging the perinatal care access. Finally,
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the paper presents how mobile technology can help to reduce barriers for accessing

perinatal in poor-resource setting care.

2.2 Introduction

Complications during pregnancy and birth account for 40% of the worldwide perinatal

and maternal deaths. In order to reduce the occurrence or severity of these fetal

complications, obstetricians recommend fetal monitoring throughout pregnancy and

at delivery [402, 213]. Antenatal fetal well-being assessment should be provided to

both low-risk and high-risk pregnancies during perinatal care visits [226].

Fetal monitoring includes different techniques developed in the last four decades

[213]. These techniques encompass biophysical methods that assess fetal growth and

physiological function, as well as biochemical tests that assess endocrine functions of

the placenta unit [226]. However, despite the widely use of fetal monitoring methods,

there is still not enough evidence to prove the utility of them for improving perinatal

outcomes [330].

2.3 Common pregnancy complications

Complications during pregnancy can affect maternal and fetal health. The most com-

mon pregnancy complications include, but are not limited to, the following: intrauter-

ine growth restriction (IUGR) [205], as well as, maternal high blood pressure and

preclampsia, gestational diabetes, infections, preterm birth, pregnancy loss/miscarriage,

and stillbirth [259].
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2.3.1 Intrauterine growth restriction

IUGR is a pathological process inhibiting the fetus to achieve its genetic growth

potential. IUGR complicates approximately 5-10% of the total pregnancies [122],

and is associated with a high risk of postnatal mortality and a high morbidity rate,

thereby affecting the infant’s development [202].

Causes of IUGR include genetics factor, maternal malnutrition, fetal infection,

uterine and placenta problems [260]. Among the causes, the most common is the

capacity of the placenta to transport nutrients to the fetus, and permitting the release

of fetal waste [260]. In detail, the placenta is expected to parallel grow with the

fetus to allow for a normal vascularization [5]. However, when the placenta does not

properly grow, placental function is compromised, thus affecting fetal-placenta flow.

IUGR can affect fetuses before, during, and after delivery. Its consequences include

stillbirths, asphyxia or intrauterine hypoxia, meconium aspiration, and intrauterine

fetal demise. Moreover, IUGR is linked to cognitive delay in childhood [24], and to

cardiovascular diseases and diabetes in adulthood [34, 277].

2.3.2 Preeclampisa and high blood pressure

Preeclampsia is a two-stage pregnancy complication characterized by hypertension

and proteinuria in the third trimester of pregnancy. The first stage of preeclampsia

is abnormal placental perfusion resulting in placental insufficiency and the release

of excessive amounts of placental materials into the maternal blood circulation. The

first stage leads to the second stage, which is maternal hypertension and preeclampsia

[150].

According to international standards [165], preeclampsia is defined as new-onset

hypertension (systolic blood pressure >140 mmHg, or diastolic blood pressure >90

mmHg) and proteinuria on urine dipstick at least two occasions 4 hrs apart, or new-

onset hypertension with/without proteinuria but with at least one other significant
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symptom of end-organ dysfunction (e.g., visual changes, altered mental status, severe

headache, severe abdominal pain, pulmonary edema, low platelets, elevated creati-

nine).

It has been reported that 10% of women have high blood pressure during preg-

nancy, and preeclampsia complicates 2% to 8% of pregnancies [101]. In low- and

middle-income countries, results showed that 10% to 15% of direct maternal deaths

are associated with preeclampsia [182, 101]. Essential factors in developing preeclamp-

sia include genetic, immunologic, and environmental factors [325]. Hypertension com-

plications are associated with increased rates of adverse maternal and fetal outcomes,

including placental abruption, preterm delivery, fetal growth restriction, stillbirth,

maternal death secondary to stroke and eclampsia, as well as future risk of hyperten-

sion, diabetes mellitus, and cardiovascular disease [17].

2.3.3 Gestational diabetes

Pregnant women can develop diabetes during gestation due to the hormonal changes.

Thus, the body cannot properly digest glucose, thus accumulating it on the blood.

Gestational diabetes has a prevalence around 13% worldwide [164].

Gestational diabetes can lead to preeclampsia, as well as increase the size of the

fetus, which increases the risk for cesarean delivery [16].

2.3.4 Infections

Pregnant women are more likely to be affected for influenza, hepatitis E, herpes

simplex, malaria, coccidioidomycosis, measles, smallpox, and varicella [190]. These

infections need to be treated because they can cause serious consequences, such as:

pregnancy loss/miscarriage and stillbirhts, ectopic pregnancy, preterm labor and de-

livery, low birth weight, birth defects, and maternal health complications [135].

Sexually transmitted infections (STIs) also affect maternal and fetal health. Medi-
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cal assistants should early test STIs on pregnant patients to provide timely treatment,

and therefore, reduce STIs complications [57].

2.3.5 Preterm birth

Preterm labor is a delivery before the 37th week of gestation. Preterm labor is a risky

event as fetal lung and brain functions are not completed developed until the 39-40

weeks [259].

Preterm birth can be a cause of infections, developing a shortened cervix, or

previous preterm births [272]. The risk of developing a preterm birth can be reduced

by taking progesterone, which has shown to reduce preterm births in around 30% of

high risk pregnancies [245].

2.3.6 Pregnancy loss/miscarriage

Pregnancy miscarriage are fetal deaths occurring before the 20th week of gestation,

however approximately 80% of miscarriages occur in the first twelve weeks [118]. The

prevalence of miscarriage ranges from 10-25%, but the risk increases by maternal age

[18]. The common signs associated with miscarriage are vaginal bleeding, or fluid or

tissue passing from the vagina [118].

The main cause of miscarriage are chromosomal abnormalities [371]. Other causes

of miscarriage includes maternal lifestyle (smoke, alcohol, obesity), maternal age,

previous miscarriage, diabetes, and thyroid problems [118, 273].

2.3.7 Stillbirths

Fetal deaths after the 20th gestational week are stillbirths. Common causes of still-

birth are preeclampsia, poor fetal growth, placenta unit problems, umbilical problems,

birth defects, infections, and maternal lifestyle [203].
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Approximately half of the stillbirths occurred at intrapartum, particularly in de-

veloping countries [87]. At intrapartum, the most leading cause of death is asphyxia,

which can be due to maternal preeclampsia, placental abruption, or umbilical cord

accident [204, 387, 385, 133].

2.4 Traditional physical exams

2.4.1 Fundal height

Fundal height is one of the simplest methods. The distance between the upper border

of the pubic symphysis and the uterine fundal is taken. The measurement is then

compared with a reference value based on gestational age. This method has shown

an adequate sensitivity and specificity for low birth weight fetuses; however, its use

for fetal surveillance is limited [226].

2.4.2 Fetal movement counting

In this method, a pregnant mother registers the time at which she noticed more than

ten movements [251]. Although this method is simple, it is not well recommended as

it is prone to subjectivity[226], and is affected by several factors including movement

type, anterior placenta, and nulliparity [249], thus challenging its capacity to prevent

antepartum death. In fact, Neldam [262] reported that stillbirths did not statistically

significantly differ between trained women and control groups. Furthermore, Man-

gesi et al.[227], reported that although fetal moving counting was able to identify

fetuses at risk in five conducted studies, this identification did not translate into a

significant reduction of stillbirths.
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2.4.3 Maternal blood pressure monitoring

Hypertension disorders are major contributors to perinatal morbidity and mortality

[257]. Hypertension is generally the earliest physical abnormality and the most impor-

tant clinical symptom observed in preeclampsia. The diagnosis of gestational hyper-

tension still relies on conventional clinic blood pressure measurements [28]. Therefore,

blood pressure monitoring in pregnancy is one of the essential components of ante-

natal care, and the optimal and appropriate measure of blood pressure can not be

overemphasized.

However, not all blood pressure devices have been adequately validated. In fact,

Bello et al. reviewed 32 studies validating the accuracy of blood pressure of ambula-

tory, home, and clinic devices, founding that only 34% of the studies did not violate

the medical validation protocols [40]. Thus, the authors concluded that medical pro-

fessionals need to be aware of this limitation and use medical devices that have been

validated for their target population.

2.5 Biochemical tests

Biochemical tests aim to measure the physiological changes of pregnancy, focusing

on the woman’s renal function, carbohydrate and protein metabolism, and hormonal

patterns [363]. These methods are commonly not used as they required biochemical

expertise and expensive lab equipment. Moreover, their sensitivity is not enough to

detect the majority of pregnancy with an abnormal outcome [226]. As biophysical

methods have less false-positive and false-negative than biochemical tests and are less

costly, the use of biochemical tests has become redundant [226].
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2.5.1 Estriol assays

The test is performed on a blood sample or in a 24-hour-period urine collection. The

high variation in plasma estriol levels between time to time difficult the interpretation

of this test [102]. A ratio below the 10th percentile (<14 g/mL) is associated with

fetal distress in labor. However, evidence has not shown any benefit for using estriol

assays, and therefore it is rarely used [226].

2.5.2 Human placental lactogen

The test measures the serum found in the placenta. During pregnancy, serum rises

from 3 g/mL at 10-14 weeks to 10 g/mL at the 36th week. The serum acts as a human

growth hormone, and therefore a low value indicates a possible risk[226]. However,

human placental lactogen is not used for high-risk maternal surveillance.

2.6 Fetal cardiac assessment

Fetal cardiac activity is a reliable indicator of fetal well-being, being one of the most

widely used methods [289]. By monitoring fetal heart rate, clinicians access useful

information to identify non-reassuring fetal status, thereby allowing them to initiate

intervention to avoid fetal distress or stillbirth [225].

2.6.1 Fetal cardiac circulation

Human cardiac development takes place within the first sixth gestational weeks [129],

being functional by the eighth week [25]. The development starts with a primary

heart tube, which evolves into the four-chamber heart structure composed of two

atria and two ventricles.

Although the fetal heart has four chambers, fetal circulation is different from the

adult circulation. This difference is mainly because, in the fetus, the oxygenated
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blood comes from the placenta rather than the lungs[349].

In detail, the oxygenated blood coming from the umbilical vein is channeled to

the liver and inferior vena cava via the ductus venosus. The majority of this well-

oxygenated blood flows directly from the right atrium to the left atrium through the

foramen ovale, and subsequently to the left ventricular to be pumped to the aorta

[349, 121]. On the other hand, the remaining oxygenated blood passes from the right

atrium to the right ventricular and subsequently is pumped to the pulmonary vein.

As lungs are not functional in fetuses, a significant percentage of the blood in the

pulmonary vein is passed to the aorta using the ductus arteriosus [349]. The blood in

the aorta is channeled to oxygenate the fetal brain and tissues. Finally, deoxygenated

blood is moved to the placenta via two umbilical arteries [121].

After birth, the foramen ovale closes. This occludes the ductus venosus and ar-

teriosus, resulting in a separation of the pulmonary and circulatory functionalities

[349].

2.6.2 Control of fetal heart rate

The fetal heart rate (FHR) represents the reciprocal of the interval between two

successive fetal beats. Fetal beats are controlled by the sinoatrial (SA) node, the

autonomic nervous system (ANS), and the baroreceptors and chemoreceptors.

The SA node, also called the pacemaker, is located in the right atrium. SA

initiates the action potential, resulting in a contraction of the atriums during the

beginning of the systolic phase [274]. Then, the action potential is propagated via

the atrioventricular node (AV) to the bundle branches and the Purkinje fibers on the

ventricular walls [274]. This impulse contracts the ventricles, pumping the blood to

the pulmonary veins and the aorta, thus finishing the systolic phase [274]. Then,

the impulse leaves the ventricles, starting the ventricular diastolic phase in which the

ventricular walls are repolarized [274].
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The electrical and mechanical events of a heart contraction generate the cardiac

cycle, which is measured as the number of beats per minute. The pace of the cardiac

activity is controlled throughout pregnancy by the ANS [121]. At fifteen weeks of

gestation, the average FHR is 160 BPM. However, this rate decreases as the ANS

matures. Specifically, the ANS is composed of the sympathetic and parasympathetic

nervous systems. The sympathetic system accelerates the trigger rate of the SNA,

thereby increasing the speed of the depolarization transmission to ventricles, and caus-

ing a faster FHR. The parasympathetic system, on the other hand, has the opposite

capacity of reducing the FHR.

The balance between the sympathetic and parasympathetic systems sets the base-

line of the heart rate. However, as the sympathetic system matures first than the

parasympathetic one, the FHR is higher in the first months of gestation. As pregnancy

advances, the parasympathetic system matures, and therefore the FHR becomes bal-

ance. The normal FHR during pregnancy is between 110 to 160 BPM [291].

The other two components controlling fetal heart rate are the baroreceptors and

chemoreceptors. Barocepters are located in the aortic arch, carotid arteries, and brain

stem. When blood pressure increases, baroreceptors stimulate the vagal nerve to slow

the heart rate, thereby causing a reduction in the blood pressure. On the other hand,

when blood pressure is decreased, baroreceptors reduces the parasympathetic tone to

increase the fetal heart rate and blood pressure.

Similarly, the chemoreceptors, found in the aorta, carotid artery, and brain stem,

also affect the fetal heart rate based on oxygen level sensing. Particularly, when the

oxygen level decreases, the FHR is accelerated to increase the oxygen input rate from

the placenta. However, when the reduction of the oxygen level is abrupt (hypoxemia),

the chemoreceptors trigger a vagal response, resulting in a reduction of heart rate and

an increment of the blood pressure.
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2.6.3 Fetal heart monitoring techniques

Fetal heart monitoring can be performed by different technologies, which can be

categorized into intermittent auscultation (IA) and electronic fetal monitoring (EFM)

methods. IA techniques focus on verifying the fetal life or cardiac performance by

counting the number of beats over short periods. The EFM, on the other hand,

provides continuous information of the FHR for period longer than 10 minutes, but

usually not longer than an hour. The aim of EFM is to provided indications of a fetal

stress or distress based on FHR variability, commonly performed via cardiotocography

(CTG)[247].

Blix et al.[51] performed an extensive revision in IA techniques, finding that the

most common methods on this category are Pinard fetoscope, DeLee fetoscope, and

hand-held Doppler devices. FHR estimations based on intermittent techniques differ

from those of CTG because CTG machines use autocorrelation to frequently average

FHR rather than counting beats during a specific period [233].

EFM techniques can be categorized into invasive and non-invasive methods. In

the invasive mode, fetal electrocardiogram (fECG) is taken directly from the fetal

scalp [32]. Although the invasive technique is more accurate than non-invasive ones,

its use is limited to intrapartum when the membranes are ruptured. In contrast, non-

invasive methods can be applied during the antenatal period. Non-invasive methods

widely described in the literature are CTG [394, 30], abdominal fECG [317], phono-

cardiography (fPCG) [3], fetal magnetocardiography (fMCG) [123].

Fetal phonocardiogram

Fetal phonocardiogram (fPCG) is the electronic extension of Pinard and DeLee stetho-

scope. Similar to the stethoscope, fPCG is an IA technique in which a microphone

is placed on the maternal abdomen to listen to fetal heart sound [317]. The audi-

ble heart sounds correspond to the closure of the fetal valves during the heart cycle
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[191]. Thus, the closure of the mitral and tricuspid valves generate a sound called S1,

whereas the closure of the semilunar valves (pulmonary and aorta) generates a sound

called S2.

Both sounds, S1 and S2, have low acoustic energy and are affected by noise. The

noise includes environmental noise, as well as other maternal and fetal physiological

sounds, such as breathing, fetal moving, and maternal circulation [381].

fPCG can be used during the antepartum phase (gestational week ≥ 24) [381]. Al-

though fPCG is an alternative to the traditional ultrasound used in perinatal control,

it is not common in clinical practice as there are not enough commercial providers

[143, 351].

Adithya et al.[3], in a revision of fPCG, showed that method is underutilized and

has challenges related to the acquisition and processing of the signal. Nevertheless, the

authors pinpointed the capacity of fPCG for extracting cardiac timing and intensity of

fetal heart sounds, thereby providing useful information for diagnostic. More research

needs to be conducted to improve fPCG before can compete with standard fetal

monitoring methods, namely, CTG and ultrasound imaging.

One-dimension Doppler ultrasound

One-dimension Doppler ultrasound (1D-DUS) estimates FHR by measuring the Doppler

shift between transmitted and received ultrasound beams due to the heart mechanical

movement and blood flow. The Doppler magnitude frequency shift fD, is described

as [189]:

fD =
2fo
c
V cos θ, (2.1)

where fD is the measured change in frequency (Hz), fo the frequency of emitted

ultrasound transducer in Hz, c the speed of sound in soft tissue in m/s, V the velocity

of the reflecting interface in m/s and θ is angle the between ultrasound beam and the

surface in radians.
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In detail, the transmitted beam has to travel across various anatomical structures

between maternal abdominal and the fetus’s heart. The propagation starts with

the maternal skin and subcutaneous tissue, then reaching the uterine muscles and

amniotic sac to find the fetal heart finally [230]. The movement of the fetal heart

reflects the ultrasound beam, thus propagating the ultrasound in the reverse order.

The distance between the DUS transducer and fetal heart depends on the maternal

phenotype, thus varying among nationalities [398], and socio-economic status and

body mass index [252].

The shifted Doppler frequency is usually demodulated using phase-quadrate de-

modulation, in which the receiving signals is mixed with the carrier signals sin 2πfot

and cos 2πfot [106]. The demodulated signal is used to estimated FHR by detecting

its periodicity, which is considered as the time between heartbeats [327].

Doppler ultrasound includes two different modes: the continuous wave (CW)

Doppler and the pulsed-wave (PW) Doppler. CW is found mainly in hand-held

Doppler transducers, which provide an intermittent measurement to identify the fe-

tal heart rate during a specific time. PW, on the other hand, is a continuous FHR

recording used in standard CTG machines.

Doppler ultrasound can be used during intrapartum and antepartum after the

20th gestational week. It is an intermittent auscultation method to detect heart rate

variability metrics to assess fetal well-being. Mahomed et al.[222], in a randomized

control trial, showed that fetal monitoring using Doppler transducers can detect fetal

distress. Previous studies have also shown that the use of Doppler ultrasound for

fetal monitoring can identify a comparable number of fetal abnormalities than car-

diotocography [155]. In fact, a randomized control study showed that intermittent

auscultation methods, as one-dimension Doppler ultrasound or hand-held Doppler

devices, are as safe as cardiotocography in low-risk pregnancies [92]. However, in

high-income countries, Doppler transducers are used more as home-fetal monitoring



21

rather than a primary clinical method.

Cardiotocography

Cardiotocography (CTG) is the simultaneous recording of continuous fetal heart rate

(FHR) and uterine contractions (UC). CTG is a standard method to provide fetal

well-being assessment, aiming to reduce fetal mortality and morbidity and to estimate

optimal time for delivery [140]. In order to record the FHR, the medical assistant

applies a gel on the maternal abdomen and ultrasound transducer. The transducer is

then moved across the maternal abdomen while listening to the Doppler signal [121].

CTG can be applied during antepartum starting at the 20th week of gestation

[93]. However, CTG is most commonly provided after the 28th gestational week

[322]. Although CTG is widely used, it has a high intra-and inter variability among

interpreters [362], resulted in a low specificity. To reduce this subjectivity, CTG has

been shifting from visual observation to computerized version to detect fetal abnor-

malities [84]. In a Cochrane revision [140], computerized CTG showed to significantly

reduced perinatal deaths in comparison to traditional CTG. Furthemore, computer-

ized CTG has been used in recent years to develop artificial intelligence methods to

detect abnormal FHR patterns [70, 390], as well as critical diseases, such as IUGR

[355, 333].

Although CTG is a common method for fetal monitoring in high-income countries,

previous control trials have shown a lack of evidence for benefits associated with CTG,

reporting an increment of 20% in cesarean interventions without improving fetal out-

come [92]. In fact, CTG has not statistically significant improved perinatal outcomes

in comparison to the use of traditional intermittent auscultation methods [179, 244].

Moreover, CTG machines are costly (> $ 450) [403] and require maintenance, sup-

plies, and training for staff in their use and interpretation, thereby complicating CTG

use in low-resource settings [402].
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The FHR monitoring via CTG is usually performed by the nonstress test (NST).

However, variations of the NST, such as the contraction stress test and acoustic

stimulation, are also performed for FHR monitoring.

The nonstress test The nonstress test (NST) aims to find acceleration patterns on

the FHR that are associated with fetus movement, and therefore to fetal well-being

[226]. NST monitors the fetal heart rate patterns for at least 20 minutes without

adding any stress for inducing any contraction. This test calculates the fetal baseline,

which is later used to measure long-term and short-term variance, episodes of high and

low variation, acceleration, and decelerations. A reactive output is found when more

than two accelerations occurred within 20 minutes of observation, whereas a non-

reactive one is when at most one acceleration occurred within a 40-minute period

[15]. The NST has a low false-negative (0.3%), but a high false-positive (%50) rate

[103].

Contraction stress test The contraction stress test (CST) is based on the premise

that contractions induce a hypoxic state [330]. A healthy fetus could tolerate this

hypoxic state, whereas a hypoxic fetus will demonstrate decelerations on his FHR

[226].

During the test, contractions are induced using oxytocin or nipple stimulation

[226]. Although this method has a low false-negative rate (0.04%) [120] and lower

false positive rate than NST (30% vs. 55%) [15], CST has some disadvantages. These

disadvantages include the need for an intravenous intervention, the risk of causing

fetal hypoxia, and the induction of preterm birth [226].

Acoustic stimulation Acoustic stimulation is a substitution of the classical NST.

Specifically, before starting the NST, the fetus is stimulated with an artificial larynx

over the head for 3 seconds [226]. The artificial larynx produces a vibratory stimulus
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of 80 Hz that makes a healthy fetus to move, thereby generating an acceleration in

the FHR. The advantage of the acoustic stimulation is that the NST timing test can

be decreased to 10 minutes [72], as well as reduce the number of non-reactive stated

provided by regular NST without affecting readability [339, 338].

When a non-reactive state is found, the acoustic test is repeated in five minutes.

If the test is still non-reactive, a fetal biophysical profile or CST is performed [226].

Fetal Electrocardiogram

Fetal electrocardiogram (fECG) measures the electrical activity of the fetal heart rate,

recording the complex electrical signal of the heart. The ECG signal is composed of

five components: P, Q, R, S, and T [274]. The P wave represents the depolarization

of the atria and is followed by the atrial contraction (atrial systole). The atrial

contraction is extended until the QRS complex, in which the atria are relaxed and

repolarized. The complex QRS corresponds to the depolarization of the ventricles,

in which ventricles are contracted when the peak R is reached. The QRS peak is

followed by ventricle relaxation until the T wave. Finally, the T wave corresponds to

the repolarization of the ventricles. fECG can be provided in an invasive manner at

intrapartum or in a non-invasive manner since antepartum.

Morphology and beat-to-beat heart rate variability estimated from fECG have

been shown to provide biomarkers for preeclampsia and growth restriction. Lakhno

conducted a study on the effect of pre-eclampsia on FHRV recorded from 106 patients

(30 healthy, 44 mild pre-eclampsia and 32 severe pre-eclampsia subjects) at 34-40

weeks of gestation. In this study, the modulated FHR variability indices captured

the suppression of fetal biophysical activity and the development of fetal distress in

severe preeclampsia [196]. The same author showed that preeclampsia cases exhibited

shortening of fetal PQ and QT and increased T/QRS ratio was observed [195]. Also,

in order to assess the effect of IUGR on parameters extracted from abdominal fECG
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Velayo et al performed the study on 20 controls and 15 IUGR singleton pregnancies

[382]. Clear P-QRST complexes were recognized in all cases and they demonstrated

that in the IUGR fetuses, the QT intervals were significantly prolonged.

Invasive fetal Electrocardiogram Invasive fetal electrocardiogram (invasive-fECG)

requires a rupture of the membrane to introduce electrodes via the cervix and place

them on fetal scalp [152, 153, 154]. This technique filters the recorded signal, allowing

visualizing the P and T waves, as well as the QRS complex.

As fetal surveillance, scalp fECG has been used as a complementary technique

during intrapartum FHR monitoring [14, 269]. To this aim, the morphology of the

ST waveform is analyzed (STAN) to find patterns associated with uterine complica-

tions [200, 199]. The use of STAN has shown to be effective for reducing neonatal

encephalopathy [268, 269]. STAN can be provided since the 36th gestational week

and is provided to high-risk pregnancies when a non-reactive CTG is obtained, or

labor is induced by oxytocin.

Non-invasive fetal Electrocardiogram Non-invasive fECG measures the elec-

trical fetal heart signal by placing electrodes on the maternal abdomen [194, 317].

Abdominal fECG can be provided since the 18th gestational week and can be pro-

vided both in antepartum and intrapartum.

The main purpose of the extracted fECG is to identify R peaks, and therefore

perform beat-to-beat variability analysis [317]. Although abdominal fECG has low

amplitude, abdominal fECG is able to estimate comparable or higher accurate fetal

heart rate variability indexes than CTG, thus providing suitable FHR baseline, short-

and long-term variations, and accelerations and decelerations [176, 76, 174].
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Fetal Magnetocardiography

Fetal magnetocardiography (fMCG) uses a sensible superconducting sensor to mea-

sure the magnetic field of the fetal heart rate activity [289, 317]. fMCG obtained a

comparable waveform to that of fECG. In fact, fMCG PQRST waveform is considered

of high quality, and can be used to classify arrhythmia and detect congenital heart

diseases [289].

fMCG can be used from the 20th gestational week. The procedure extraction is

short and the patient has to be in a quiet state. However, fMCG is not routinely

provided in perinatal care because it is expensive, needs a shielded room for mea-

surement, and required highly skilled personnel [289]. On the other hand, alternative

methods, such as the abdominal fECG or the hand-held Doppler devices, can be taken

at any time during pregnancy, even at home by the patients themselves [289].

2.7 Imaging

Imaging has become a crucial tool in obstetrics since the last thirty years, particularly

using ultrasound imaging [114], including two, three and four-dimensional Ultrasound

[91].

2.7.1 Ultrasound imaging

Ultrasound imaging is the gold standard in fetal monitoring in high-income countries

[403, 213]. It is used to evaluate fetal growth, fetal cardiac structure and function, as

well as the blood circulation in the fetus, uterus, and placenta.

Ultrasound is usually provided during the second trimester, after the 20th gesta-

tional week. WHO, based on a Cochrane revision [392], recommends an ultrasound

scan at early pregnancy ( ≤ 24 weeks) [403, 402]. Ultrasound imaging has shown to

be effective for assessing the viability of the pregnancy, estimating gestational age,
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detecting multiple pregnancies, and checking placental position [392]. However, there

is not a strong evidence of the benefits of ultrasound scan on reducing perinatal mor-

tality [100, 261]. Nevertheless, ultrasound imaging contributes to validate suspicious

diagnosis without invasive and dangerous interventions, reduce labor induction for

post-term pregnancy, and detect fetal malformation [392]. Moreover, ultrasound has

shown potential in proper change of clinical management in at least 30% of cases

[141].

There exist multiple parameters derivable from ultrasound scan of uteroplacental

flow to identify pregnancies at risk. Previous studies demonstrated the impact of

parameters related to placental perfusion, including resistance index, pulsatility index,

or systolic/diastolic ratio from uterine artery [59, 305], fetal heart rate responses, and

uteroplacental flows [157].

There is not total agreement regarding how often ultrasound scan should be pro-

vided throughout pregnancy. Some obstetricians recommend at least four ultrasound

scans for normal pregnancies, whereas others recommend just one before the 24th

gestational week [278]. When four visits are provided, the first one is given between

the 10-14 to validate the pregnancy and estimate gestational age. Then, during the

18-22 week, anomaly scan and gestation age confirmation are provided. At the third

scan, during 30-34 weeks, fetal growth is assessed, and finally, the last scan between

36 and 38 weeks focuses on the fetal weight and the position, helping to determine

the optimal delivery mode. Ultrasound imaging equipment costs around $ 10,000,

and requires additional expenses for maintenance, supplies, replacement batteries,

and staff training [399]. Given these high expenses, ultrasound scan has limited use

in low-income countries [402].

The most common method for antenatal monitoring based on ultrasound imaging

are Doppler velocimetry, Amniotic fluid volume, or Fetal biophysical profile.
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Fetal biometry

Ultrasound imaging allows obstetricians to measure different fetal organs to estimate

gestational age and fetal weight. To this aim, the most common measures are Bipari-

etal Diameter (BDP), Femur Length (FL), Head Circumference (HC), Crown Rump

Length (CRL), and Abdomen Circumference (AC) [226]. Using a combination of

these measurements, it is expected to estimate fetal weight within 5% of the actual

weight in 50% of the time, and within 10% in 80% of the time [122]. Fetal biometry

measurements, however, are shown to be more effective during the first trimester.

During the last two trimesters, fetal measurements are affected by genetic and nutri-

tional factors, thus challenging the comparison with the reference values [298].

Fetal biometry measurements can differentiate between fetuses that are IUGR and

those that are constitutionally small (SGA) [345]. Specifically, when an estimated

weight is below the 10th percentile for gestational age, the fetus is considered as a

growth-restricted based on the guidelines of the American College of Obstetricians

and Gynecologists (ACOG) [370]. However, there is not a total agreement in the low-

estimated weight percentile. Indeed, a previous study, conducted by the Prospective

Observational Trial to Optimize Pediatric Health (PORTO), found that only 2% of

fetuses whose estimated birth weight was within the 3rd and 10th percentile, had an

adverse perinatal outcome, thus concluding that the threshold should be below the 3rd

percentile [369]. Furthermore, fetal biometry measurements ignore the fact that 10%

of normal population are genetically predisposed to be small, thus increasing the false

positive rate [122]. Hence, fetal biometry should be combined with methods assessing

the fetal ANS physiology to increase the accuracy in detecting IUGR cases [122].

When IUGR is detected, the pregnancy is categorized as high-risk because this disease

has long-term consequences. Therefore, in high-risk pregnancies, fetal surveillance is

conducted to timing the delivery and reduced adverse perinatal outcomes.
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Doppler velocimetry

Doppler velocimetry is used to evaluate pregnancies at risk of fetal compromise [364],

such as growth restriction [8] or cardiovascular abnormalities [47]. This method as-

sesses the blood flow in the umbilical arteries and vein to evaluate fetal reactions to

placental insufficiency [336]. Healthy pregnancies rely on the placenta and fetus cir-

culation as this is the way for transferring oxygen and nutrients, and for eliminating

fetal waste products [226]. Healthy fetuses have a forward flow in the umbilical arter-

ies during the cardiac cycle. In contrast, a fetus with increasing vascular resistance

has low diastolic flow.

To asses umbilical flow, different indexes are determined, such as systolic and

diastolic ratio, pulsatility index, and resistance index [15]. Higher indexes indicate a

significant vascular resistance, thus implying that fetal health is on risk [47, 330].

The resistance indexes are mainly measured on the umbilical artery (UA), the

middle cerebral artery (MCA), and the ductus venosus (DV) [250]. From these three

areas, the UA Doppler is the only having randomized control trials that support its

feasibility for fetal surveillance in high-risk pregnancies [9].

The UA Doppler measures the resistance in fetoplacental circulation flow, provid-

ing a pulsatility index (PI). In a healthy fetus, UA has a forward flow. However, an

increment in the placental resistance obliterates the muscular arteries in the placental

villi, resulting in a reduced diastolic flow [47]. This reduction causes an absent, and

finally, a reverse of the fetoplacental circulation flow. Both absent and the reverse

end-diastolic flows are visualized in the Doppler images. In the case of the absent

end-diastolic flow (AEDF), the pronounced systolic peak is followed by an interrup-

tion, whereas in the reversed end-diastolic flow (REDF), the systolic peak is followed

by a negative peak that indicates blood flow moving in the opposite direction. In fetal

growth-restricted pregnancies with AEDF or REDF, the delivery is recommended at

the 32nd gestational week [311].
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In a fetus with restricted growth, an UA PI greater than the 95th percentile

indicates a perinatal adverse outcome in previous randomized control trials [369, 275].

Likewise, the use of UA Doppler has also shown to be effective in reducing perinatal

deaths, as well as to reduce induced deliveries [9].

MCA flow can detect problems caused by fetal hypoxemia in IUGR. A hypoxic

state supplies the majority of oxygenated blood to the brain, heart, adrenal glands,

thus affecting the peripheral circulation [370]. This phenomenon is called brain-

sparing reflex and is observable in the waveform of the MCA Doppler. MCA Doppler

is also a reliable indicator of anemia. Moreover, the ratio MCA PI/UA PI can detect

adverse perinatal outcome [229], which are related to an increment of the diastolic

flow due to hypoxia [253].

DV flow can detect a cardiac failure in IUGR, particularly in cases of early-onset

fetal growth restriction [35]. It is a reliable marker to identify acidemia and stillbirth

[35], caused by absent or reversed end-diastolic pressure at the ductus venosus. Al-

though DV flow measurement has a moderate accuracy in detecting fetal compromise,

previous works suggest that DV Doppler is not able to provide fetal surveillance itself

[311]. Furthermore, DV Doppler does not provide any additional benefit than the use

of traditional CTG for fetal monitoring [206]. Nevertheless, delaying delivery until

finding an abnormality using DV flow could prevent neurological impairment in the

long-term [124]. However, randomized control trials are needed to assess the benefits

of DV flow measurement more accurately.

Other areas useful to manage fetal growth-restricted pregnancies are the blood

flow measurements of the uterine artery, the aortic isthmus, umbilical vein, and the

atrioventricular valves [250]. The uterine artery flow has shown the capacity to iden-

tify pre-eclampsia, and small-for-gestational-age neonates in high-risk pregnancies

[311]. Aortic isthmus measures the balance between the impedance of the brain

and systemic circulation, indicating a cardiac dysfunction when there is an abnor-
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mal balance[81]. Umbilical vein measures fetal venous circulation, and a high value

indicates an increased venous pressure that results in right-sided heart failure and

myocardial hypoxia [266].

2.7.2 Fetal echocardiography

Fetal echocardiography is a noninvasive technique to assess fetal cardiac by using

ultrasonography to examine fetal cardiac anatomy and function [132]. The primary

use of fetal echocardiography is for detecting congenital heart disease (CHD), which

is the most common abnormality in fetuses, with a prevalence of around 8 to 9 per

1,000 live births [151].

The accuracy and speed of fetal cardiac assessment have improved in the last

decades by using advance techniques such as color Doppler [94]. During the assess-

ment, obstetricians examine the heart structure, as well as direction, pattern, and

velocity of the flow, and the volume flow [10]. The basic visualization of the cham-

bers can be extended to include also the blood flow circulation among the chambers,

in a technique called ‘five chambers views’. This extension has allowed increasing the

sensitivity for detecting CHD cases in 5%, achieving a final sensitivity rate of 65%

[11].

Fetal echocardiography also provides pulse wave Doppler, which is recommended

for a complete evaluation of the fetal heart. The pulse wave shows the blood flow

among atrioventricular, mitral, and tricuspid valves [2]. These valves have a dual-peak

Doppler waveform: E-wave that is the passive diastolic filling, and the A-wave that is

active diastolic filling (”atrial kick”) [2]. Healthy fetuses have A-waves greater than

E-waves; however, E-waves amplitude increases throughout gestation. A higher in-

crease of the E-wave/A-wave ratio is a sign of IUGR or congenital cystic adenomatoid

malformation, causing, in some cases, mitral or tricuspid regurgitation [229, 224].

Modern techniques for echocardiography include three dimensional (3D) and four-
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dimensional (4D) fetal heart assessment [91]. These techniques allow for real-time

examination of the heart rate function, allowing a more accurate assessment of the

heart structures to identify risk for cardiac anomalies [42, 68, 167].

Although fetal echocardiography is considered one of the most relevant techniques

for fetal cardiac assessment, fetal echocardiography is an expensive method requiring

qualified specialists to perform examinations [62]. Therefore, fetal echocardiography

is only provided when maternal and fetal conditions indicate the need for it.

Amniotic fluid volume

The technique aims to measure the amniotic fluid, which is an indicator of the fetal

physiological state. This fluid increases throughout pregnancy, passing from 60 mL

to 900 mL. A decrease of amniotic fluid volume can be a cause of hypoxemia [330].

The most common method for estimating amniotic fluid volume is the 4-quadrant

amniotic fluid index (AFI) [290, 312]. This method is measured using 2D-ultrasound

as follows:

• Divide uterus in four quadrants using the umbilicus and linea negra as reference.

• Place the ultrasound transducer at each quadrant.

• Measure at each quadrant the vertical dimension of amniotic fluid pocket.

The summation of all the quadrant is defined as the amniotic fluid index and is

compared with the Phelon’s criteria [312], as:

• 5 cm or less: oligohydramnios.

• 5-8 cm: bordeline AFI (low).

• 8-24 cm: normal AFI.

• ≥ 25 cm: polyhydramnios.
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Oligohydramnios is associated with fetal hypoxia and may lead to preterm birth,

growth restriction, or stillbirth. Polyhydramnios, on the other hand, is associated

with gastrointestinal obstruction, maternal diabetes, Rh incompatibility, or syphilis.

The AFI, however, has low sensitivity for predicting both oligohydramnios and poly-

hydramnios, namely 10% and 29%, respectively [219].

Fetal biophysical profile

The fetal biophysical profile (BPP) combines five different biophysical variables into

a single score. This score takes into account:

• Fetal breathing movement.

• Fetal movement.

• Fetal tone.

• Fetal reactivity.

• Fluid amniotic volume.

Each of these variables receives a value of at most 2 points, having a total max-

imum score of 10. A total score higher than 8 indicates normality in the fetus, 6

indicates an equivocal state, and lower than 4 indicates an abnormality in the fe-

tus [15, 213]. As BPP combines different independent methods, its specificity and

sensitivity for detecting abnormal fetus are higher than those of NST [226].

2.7.3 Fetal Magnetic Resonance Imaging

Fetal Magnetic Resonance Imaging (fMRI) aims to assess fetal abnormalities when a

valid medical reason is found after sonographic screening [131, 119, 56, 208, 294].

The fMRI measures the magnetic moments of hydrogen nuclei in cells and tissue.

Different components of the tissues translate into a different level of contrast in the
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fMRI images, being water and fat the most contrast components [33]. The fMRI

images are classified as weighted images (T1) and diffusion-weighted images (T2). In

T1, fat has the highest contrast. On the other hand, water has the highest contrast

in T2. The facilitation or restriction water movements describe the behavior of some

pathological disorders that can be identified with T1 and T2 images.

The fMRI is taken in a supine position and has a duration between 10 to 35

minutes. The exam has to be guided by a radiologist and can be taken after the 18th

week of gestation [162, 90].

As a complementary exam for sonography, fMRI provides useful information for

the diagnosis, timing delivery, and counseling [26, 77, 63]. The primary indications

of fMRI include:

• Central nervous system (CSN) is the most widely studied by fMRI. This includes

assessment of congenital anomalies of the brain or skull [344, 343, 301], vascular

brain problems [41, 58, 88], and spine abnormalities[130].

• Thoracic abnormalities. The fetal lung is filled with fluid and is easily observable

in diffusion-weighted images. Therefore, by using fMRI any lung malfunction

can be detected [161, 242].

• Gastrointestinal tract. Meconium can be visualized using either T1 or T2 fMRI

images. The fMRI images allow examining the intestinal anatomy, measuring

the level of meconium and amniotic fluid [314]. This measurement helps to

detect bowel pathology and the level of obstruction.

• Genitourinary system. T2 fMRI images are relevant for visualization renal

parenchyma and excretion system. fMRI has comparable results to detect renal

abnormalities than ultrasound technology; however, fMRI is the only option

when oligohydramnios or anhydramnios renders ultrasound is unreliable [293,

63].
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• Fetal surgery assessment. fMRI can assist the planning of surgical interventions

provided to the fetus during pregnancy [137]. Moreover, fMRI can be used to

assess the fetus’s status before and after the surgery.

Although fMRI has shown potential for fetal well-being assessment, it is still

not commonly used for several reasons [60]. Firstly, sonography is satisfactory for

routinely fetal screenings, thus relegating the use of fMRI. Secondly, obstetricians can

not take the fMRI directly as it needs to be taken by a radiologist, thereby creating

a personal logistic barrier. Finally, fMRI requires specialized medical equipment,

making this technique more costly than CTG or sonography.

2.8 Summary of fetal heart monitoring techniques

Table 2.1 shows a summary of the fetal heart monitoring techniques. The table

is sorted from the most affordable medical equipment to the most expensive one.

For each technique, a timeline displays the gestational weeks in which it can be

provided. The color and thickness of the timeline represent the needed operator skills

and the evidence, respectively. The code color for required training time is: low

(green), moderate (blue), considerable (cyan), high (red), and extreme (magenta).

For the thickness, a wider line indicates more evidence for using the method as fetal

monitoring.
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Table 2.1: Summary of available fetal heart monitoring methods. The cost column represents the
medical equipment cost from low ($) to extremely high ($$$$$). Thickness of the lines indicate the
evidence (accuracy) and color indicates the time required for training operators (green: low; blue:
moderate; cyan: considerable; red: high; magenta: extreme)

Cost Mode

Stage in pregnancy
Antepartum Intrapartum

Gestational Week
Delivery1-

5
5-
10

10-
15

15-
20

20-
25

25-
30

30-
35

35-
40

$ fPCG *

$
1D-Doppler
ultrasound †

$
Hand-held
Doppler ‡

$$ CTG §

$$
Abdominal

fECG ¶

$$
Scalp
fECG ‖

$$$
Doppler
imaging **

$$$$ fMCG ††

$$$$$ fMRI ‡‡

* GA ≥ 24 weeks [381].
† GA ≥ 20 weeks [289].
‡ GA ≥ 20 weeks [289].
§ GA ≥ 20 weeks [140].
¶ GA ≥ 18 weeks [317].
‖ Intrapartum (GA ≥ 36 weeks) [269].
** GA ≥ 20 weeks [402].
†† GA ≥ 20 weeks [289].
‡‡ GA ≥ 18 weeks [162].

2.9 Perinatal mortality and fetal monitoring in low-

and middle income countries and resource-constrained

region

Low-and middle-income countries (LMICs) account for around the 90% of total births,

and 98% of the total perinatal deaths [50, 389, 395, 320]. Perinatal mortality rate,

defined as the number of stillbirths and deaths in the first seven days of life per

1000 births, was 19 in 2018 in LMICs, being Sub-Saharan African and South-Asian
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countries the most affected, with a rate of 28 and 26, respectively [368]. These figures

could be even higher since, in LMICs, the registration of the number of deaths and

births, as well as causes of deaths, is precarious [281, 215].

The alarming perinatal death rates were similar in high-income countries (HIC)

at the beginning of the twentieth century. HICs reduced stillbirth and perinatal

death rates by expanding antenatal care coverage, extending indication for cesarean

sections, and introducing perinatal screening technologies (CTG, ultrasound, am-

nioscopy, amniocenthesis, and pH-metry) [100, 136, 204, 117]. Moreover, the perina-

tal care services were organized in a regional network with neonatal intensive care

units [283]. This network categorizes hospitals into three levels, in which pregnant

women start from the basic services, and are referred to a higher category hospital

when needed. However, due to the constraint of resources, LMICs have had a slow

progress in implementing similar medical practices [283, 411].

In LMICs, perinatal deaths are mainly consequence of the lack of antenatal care

visits. Experts recommend at least four perinatal visits to monitor the pregnancy ac-

curately [402]. However, in LMICs, for various reasons, pregnant women do not attend

prenatal visits. Finlayson and Downe [113] found that pregnant women are affected

by both religion/cultural and economic aspects to attend perinatal visits. Within the

women’s beliefs, those in rural areas perceive pregnancy as a health status rather than

a risky event. In respect of the economic aspects, the poor road infrastructure and

the shortage of public transportation make it difficult to commute to health centers.

Furthermore, Finlayson and Downe [113] reported that when pregnant women make

an effort to attend prenatal care, the low-quality and unprofessional service provided

by the health workers discourage the continuation of the perinatal care program.

Given the relevance of the service quality provided by the antenatal care providers,

Simkhada et al.[334] recommend training midwives and nurses to be aware of the

barriers women have to access to antenatal care, thus being sensitive to the women’s
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beliefs and socioeconomic situation. This awareness would be able to crucial to im-

prove antenatal care services and expand its coverage in LMICs. Otherwise, antenatal

coverage will be remained affected by factors such as the pregnant woman and hus-

band education, pregnant woman’s age, household income, availability of access to

medical centers, and quality of perinatal care service [334].

The most causes of global perinatal death are preterm birth complications (35%),

intrapartum related events (24%), and sepsis (15%) [367]. Studies conducted in

LMICs have reported similar patterns, being prematurity, birth asphyxia, mater-

nal hypertensive disorders, and septicemia, the most common causes [221, 12]. Fetus

and newborns are also affected by infections, including syphilis, malaria, and animal

and vector-borne diseases, [144, 135].

At intrapartum, the most leading cause of death is asphyxia [204, 387, 385, 133].

Asphyxia is related to obstruction on the placental blood flow, which can be due

to maternal preeclampsia, placental abruption, or umbilical cord accident. The high

death rate associated with asphyxia is mainly to poor delivery management. Asphyxia

signs can be identified using fetal heart rate monitoring [112]. Detection of asphyxia

can reduce irreversible organ damage, and identify cases requiring rapid deliveries

[135]. However, this procedure is not often provided in LMICs.

In the majority of the reported perinatal deaths, low birth weight (LBW) is a

common factor, with a prevalence between 70-80 % of the deaths [221, 12, 202]. LBW

could be a consequence of either preterm births (< 37 weeks) or small-for-gestational-

age (SGA). However, in LMICs, around 60% of low birth weight newborns are SGA

[205]. The main reason for SGA in LMICs is IUGR, which has a prevalence of

between 9-11% in LMICs [89, 205]. It can appear during pregnancy as a consequence

of maternal vascular problems, malnutrition, or placental malfunction [407].

One approach contributing to reducing perinatal deaths is fetal heart rate moni-

toring. Fetal monitoring allows identifying non-reactive states associated with IUGR,
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hypoxia, or intrapartum asphyxia [112]. By identifying antepartum or intrapartum

risks, timely interventions can be performed.

In LMICs, fetal heart rate monitoring is usually provided by CTG or intermittent

auscultation (IA), being the latter the most available. Although CTG is the standard

of care in HICs, Housseine et al.[155] in a review of 37 studies carried on in LMICs

found that CTG did not improve fetal outcomes in comparison to IA and performing

CTG resulted in more cesarean rates without any benefit. In fact, a large historical

reduction in perinatal deaths occurred with IA using a fetoscope [387].

Within IA methods, the Pinard stethoscope is the most available in resource-

constrained regions due to its low cost[170]. At the labor ward, midwives used a

stethoscope to listen to fetal heart rate for ten minutes every half hour [222]. How-

ever, auscultation with the stethoscope may be uncomfortable for both patients and

practitioners, as well as being unsatisfactory to hear fetal beats due to the environ-

mental noise [222].

Hand-held Doppler devices are also simple and inexpensive to use in LMICs. The

hand-held Doppler allows providers to quickly assess fetal heart rate, to able to detect

more fetal abnormalities than with Pinard stethoscopes [222]. In fact, Plotkin et

al.[292] compared the performance of Doppler and Pinard devices for fetal monitoring

in intrapartum by reviewing 19 studies conducted in India and African LMICs. The

comparison showed that Doppler accurately detected more fetal abnormalities than

the Pinard stethoscope. However, there was no statistically significant improvement

in perinatal outcomes when an abnormality was detected. The authors suggested

that the lack of improvement was due to the poor clinical management and protocol

referral of abnormality events. The revision also found that both patients and medical

providers preferred Doppler devices than Pinard, thereby justifying the integration of

Doppler in fetal monitoring protocols for LMICs.

In addition to CTG and IA methods, few previous works showed the limited
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use of Doppler imaging in LMICs. Seffah and Adanu[324] reported that detecting

maternal and fetal anomalies using Doppler imaging is not very common in developing

countries. Even if the device is available, usually there is a shortage of specialized

physicians to provide the monitoring, and therefore short courses are provided to the

medical staff. However, the training courses are not as adequate, standardized, and

rigorous as those provided in HICs, thus challenging the use of ultrasound imaging

[193]. Moreover, the Doppler imaging services are also affected by the frequent power

outages, which affect the life span of the machines. Given the high cost of ultrasound

imaging machines and the lack of evidence in improving perinatal outcomes at HICs,

previous works have made questionable its use in developing countries [127, 126].

The use of fetal heart rate monitoring, coupled with cesareans, has shown the

potential to prevent stillbirth and perinatal deaths [387]. In fact, according to Gold-

enberg et al.[134], any LMICs can reduce perinatal deaths by developing a prenatal

care system to perform fetal heart rate monitoring, cesareans, if needed, or/and refer

patients to advanced hospitals when complications are identified. However, the de-

velopment of high-quality medical centers is a long-term solution requiring political

will to make a significant investment in resources and facilities[411].

In the meanwhile, other alternatives, taking into account the LMICs’ socioeco-

nomic situation, are needed. According to Drazancic[100], one of the most significant

contributors to reduce perinatal deaths is the number of antenatal care visits to assess

fetal well-being. Although increasing the number of antenatal visits is challenging in

LMICs, particularly in rural areas, expanding mobile technology can help to overcome

this problem [44].

2.9.1 Mobile technology for perinatal care

In recent years, mobile health applications have been developed to provide maternal

and fetal monitoring. These applications are possible due to high penetration of
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mobile telecommunications in LMICs, in which around 90% of population has a mobile

device [44]. This high coverage of mobiles can be used to overcome perinatal care

access barriers that LMICs suffers, such as low literacy level, poor road infrastructure,

and lack of medical professionals and equipment [107, 342, 145].

The relevance of mHealth mobile apps to improve antenatal care was presented by

Feroz et al.[110] after reviewing 14 cases conducted in Sub-Saharan Africa, Southeast

Asia, and Middle-East countries. The authors found that mHealth solutions can

improve perinatal care services by increasing the percentage of women attending the

minimum perinatal visits recommended by the World Health Organization (WHO).

Feroz et al.[110] remarked that the most effective mobile apps used client education

and behaviour change communication via SMS, as well as patient tracking that allows

community health workers to follow-up on subsequent visits.

Relevant mobile phone solutions help community healthcare volunteers (CHV)

to identify risks. Maitra and Kuntagod[223] developed an Android-based mobile

application to help CHV to detect maternal mortality risks in an Indian community.

The risk was calculated based on 35 questions ranging 12 different domains, such

as demography, alcohol or drug usage, and past medical records. When a risk was

identified, the patient was referred to a hospital for professional treatment. This

app showed to be effective for assessing patients’ health risk and reducing hospital

workload. Similarly, an Android-based mobile app developed by Bakibinga et al.[31]

guided CHV to identify maternal health risk in a sub county of Nairobi, Kenya.

The mHealth application used WHO specifications to identify risks, thus referring a

patient to a medical facility when needed. The patient’s information sent from the

mobile app to the hospital allowed them to easily identify referrals and provide timely

treatment.

Mobile application can also be used for providing fetal monitoring. Although

the initial implementation phases of these apps are usually developed in high-income
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countries for home monitoring care, the majority of them have the potential to be used

in LMICs. In a review of telemonitoring in obstetrics, Alves et al.[13] found that 92%

of the reviewed mobile apps performed maternal and fetal monitoring by connecting

the cellphone to external devices, such as electrodes, body sensors, and thermometers.

External devices for maternal monitoring measured blood pressure, uterine contrac-

tions, changes in urine, and heart and respiratory rate. For fetal monitoring, on the

other hand, external devices measured fetal heart rate. The used external devices al-

lowed the digitalization of data, which later can be analyzed by medical professionals

or artificial intelligence techniques to detect abnormalities. These mobile applications

for fetal monitoring can focus on developing algorithms to detect fetal measurements

from ultrasound images, as well as prototypes to provide fetal monitoring in an af-

fordable manner. Within the algorithmic solutions, Jatmiko et al.[169] developed

methods for smartphones to localize fetus from an ultrasound image. The algorithms

were tested with images taken in a public hospital in Indonesia, achieving an accuracy

of 93% for detecting fetal head and abdomen. Similarly, Khan et al.[183] developed

algorithms to calculate the mean abdominal diameter (MAD) from an ultrasound

image. The mobile app prototype was tested with ultrasound images recorded by

professional midwives in a Norwegian hospital, resulting in a correlation coefficient of

0.96, mean error of -0.06 mm and a 95% confidence interval of -14.80 to 14.68 mm.

In respect of fetal monitoring prototypes, Awiti et al.[27] developed an android

based digital fetoscope. The fetal heart sounds are acquired using a Pinard horn and

a microphone, and are sent to a smartphone via Bluetooth. In the smathphone, the

audio signals are processed to display the the heartbeat. The system is in a prototype

phase and was tested on adults, comparing the measurements with those provided

by a standard electronic sphygmomanometer. The android based digital fetoscope

achieved a root mean square error of 7.23 beats with a standard deviation of 5.44

beats.
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Tapia et al.[358] introduced a maternal-fetal monitoring in a resource-poor and

educationally challenged community in Mexico. The project aimed to evaluate the

feasibility to provide remote antenatal care. To that end, staff of a rural medical

center were trained to use a mobile fetal monitoring composed of a fetal ultrasound

heart monitor and a uterine tocodynamometer, as well as to use additional tools for

recording maternal blood pressure, blood glucose, and urinary protein values. One-

hundred fifty-five volunteers were equally split into control and study groups. The

study group received perinatal care at the local medical center using the mHealth

system, whereas the control group received standard perinatal care at the main pub-

lic hospital. Tapia et al.[358] observed that volunteers using the mHealth system

were more than twice as likely than those using the standard of care to adhere to the

antenatal care monitoring. Moreover, there were not any statistically significant dif-

ference in adverse perinatal outcomes between the two groups, thus suggesting that

the prototype technology can be use in the rural community without compromise

maternal and fetal health.

Stroux et al.[354] also introduced a fetal monitoring prototype in a Guatemala

rural community. The introduced mHealth system consists of a low-cost Doppler

transducer and blood pressure device connected to a smartphone running an app de-

signed for low-literacy traditional birth attendants (TBA). TBAs were trained to use

the mHealth system for home visits. When a TBA visited a patient, the app guided

the TBA to find the fetus and record a Doppler recording of the heart beats. The app

also guided her through basic questions presented through appropriate pictures and

audio prompts to identify concerning signs and symptoms during pregnancy. In case

a risk was identified, the app connected the TBA to appropriate medical care, either

locally or remotely, to provide decision support and onward referral to appropriate

healthcare if needed. The first release cycles showed that mHealth monitoring system

is feasible to be used in the Guatemala rural areas [232, 231]
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2.10 Discussion and Conclusion

Fetal monitoring is performed with different techniques, being CTG and ultrasound

imaging the gold standard in high-income countries. Although, up to now, there is

little evidence supporting the utility of these techniques to reduce perinatal mortality

[92, 261], their use is still beneficial throughout pregnancy. Specifically, CTG can

detect signs of hypoxia requiring cesarean delivery [140]. Ultrasound scan, on the

other hand, used at early pregnancy (≤ 24) can help to date the gestation properly,

and detect multiple pregnancies and fetal malformations [392, 141].

However, in resource-constrained settings, these techniques are scarce due to their

high cost and requirement of specialized operators [100]. Moreover, socioeconomic,

religious, and political aspects complicate the access of perinatal care to pregnant

women in LMICs [113, 334]. All these factors have contributed to a high perinatal

death rate in LMICs.

Experts recommend reducing perinatal death in LMICs using similar approaches

to HICs, which had similar rates in the 30’s [134]. Therefore, experts recommend

organizing the health system in a regionalized network, in which patients can receive

fetal monitoring, and provide cesarean when needed. However, this solution requires

political will and costly investment, making it an unfeasible solution in the short-term

[411].

One of the relevant indicators to reduce perinatal deaths is to increase the num-

ber of antenatal care visits [402]. An affordable solution to that aim is to use mobile

technology and telemedicine [44]. Mobile technology allows bringing perinatal care

services to rural communities, avoiding long commutes complicated by poor road in-

frastructure. The mobile applications can provide fetal monitoring by the cellphone

to Doppler transducers, which have shown to be comparable to CTG for providing

fetal heart rate monitoring in LMICs [155, 92], and which are widely available in

those regions [37]. Moreover, as shown in Table 2.1, Doppler transducers have a no-
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tably balance among cost, evidence, and time required for training operators, thereby

making its use feasible. In addition to fetal monitoring, mobile applications can also

record maternal symptoms and maternal recordings, such as blood pressure, glucose

level, and urine protein levels.

The feasibility of these mHealth mobile applications has been shown in previous

work conducted in LMICs [355, 110, 358]. The mHealth mobile applications emerged

as a decision support system, are able to process recorded maternal and fetal informa-

tion either by artificial intelligent functionalities or by sending the information to a

centralized medical center via the cloud to be analyzed by trained medical staff. The

feedback provided by the mHealth system may help to identify high-risk pregnant

patients who need to be referred to principal public hospitals for further treatment.

Therefore, the mHealth systems have the potential to provide perinatal care remotely,

removing many barriers that pregnant women have to deal with in LMICs, and help-

ing to avoid possible fetal complications.
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Chapter 3

Signal quality method for assessing

1D-DUS in a clinical environment

3.1 Abstract

One dimensional Doppler Ultrasound (DUS) is a low cost method for fetal auscul-

tation. However, accuracy of any metrics derived from the DUS signals depends on

their quality, which relies heavily on operator skills. In low resource settings, where

skill levels are sparse, it is important for the device to provide real time signal quality

feedback to allow the re-recording of data. Retrospectively, signal quality assessment

can help remove low quality recordings when processing large amounts of data. To

this end, we proposed a novel template-based method, to assess DUS signal quality.

Data used in this study were collected from 17 pregnant women using a low-cost

transducer connected to a smart phone. Recordings were split into 1990 segments of

3.75 seconds duration, and hand labeled for quality by three independent annotators.

The proposed template-based method uses Empirical Mode Decomposition (EMD)

to allow detection of the fetal heart beats and segmentation into short, time-aligned

temporal windows. Templates were derived for each 15-second window of the record-
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ings. The DUS signal quality index (SQI) was calculated by correlating the segments

in each window with the corresponding running template using four different pre-

processing steps: (i) no additional preprocessing, (ii) linear resampling of each beat,

(iii) dynamic time warping (DTW) of each beat and (iv) weighted DTW of each beat.

The template-based SQIs were combined with additional features based on sample

entropy and power spectral density. To assess the performance of the method, the

dataset was split into training and test subsets. The training set was used to obtain

the best combination of features for predicting the DUS quality using cross valida-

tion, and the test set was used to estimate the classification accuracy using bootstrap

resampling. A median out of sample classification accuracy on the test set of 85.8%

was found using three features; template-based SQI, sample entropy and the relative

power in the 160 Hz to 660 Hz range. The results suggest that the new automated

method can reliably assess the DUS quality, thereby helping users to consistently

record DUS signals with acceptable quality for fetal monitoring.

3.2 Introduction

Although medical care has reduced mortality rates across the globe, birth has still

remained an event of extreme risk. Approximately 2.6 million stillbirths and 2.8 mil-

lion early neonatal deaths occur each year [401, 400]. Different factors contribute

to this high burden, such as the lack of specialized medical professionals and the

high cost of the medical devices, mainly affecting low and middle income countries

(LMICs). Leading causes for perinatal mortality include Intrauterine Growth Re-

striction (IUGR) and congenital abnormalities of which, Congenital Heart Disease

(CHD) is the most common [125, 203, 377]. These abnormalities are currently being

detected using ultrasound imaging and more specifically, fetal echocardiography is

performed for CHD diagnosis. However, these techniques are expensive and can only
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be performed by trained sonographers or physicians; hence, their use is limited in

LMICs [243].

Due to the high incidence and fatal consequences of these abnormalities in low-

resource settings, affordable perinatal monitoring solutions are required. One of the

most widely used, yet affordable methods for perinatal screening is fetal heart rate

(FHR) monitoring. This technique has contributed to reduce perinatal and maternal

risks through identification of non-reassuring fetal status [29]. Moreover, FHR has

the potential for detecting IUGR [111, 267], as well as CHD complications [43, 82].

FHR monitoring is commonly performed through Cardiotocography (CTG) based

on one dimensional Doppler Ultrasound (DUS), that is also used in low cost (un-

der $17) hand-held devices which can be operated by nonexperts. This DUS-based

low-cost device has been used to develop affordable perinatal monitoring systems,

thus facilitating screening in LMICs. Stroux et al. (2016) introduced a mobile-health

monitoring system, based on a low-cost transducer and operated by illiterate birth

attendants, to detect fetal compromise, such as IUGR, in rural Guatemala [354, 351].

DUS can also provide more information beyond the FHR, such as the cardiac valve

function, which can further facilitate detection of CHDs and assessment of the fetal

development [234, 235].

Despite the benefits of 1D-DUS, it is susceptible to noise affecting its quality,

and it is non-stationary due to the fetal movements, which can complicate the FHR

monitoring. Since the quality of the recorded signals is critical to properly detect

FHR abnormalities, the assessment of the signal quality is an essential part of the

recording process. Stroux and Clifford reported that the accuracy of FHR analysis

depends on the signal quality, hence the quality should be ensured during the data

collection [353]. Magenes et al. (2001) also showed the necessity of removing CTG

signals with low quality before applying methods for detecting fetal anomalies [220].

The quality assessment process, enables providing feedback to the operator during
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data collection, allowing them to retake or exclude the low-quality signals.

To date, little work has been published concerning the quality assessment of the

DUS signals. Stroux and Clifford proposed a method to validate the quality of DUS

signals recorded using a hand-held device connected to a smart phone [353, 351]. For

this purpose, they extracted features based on sample entropy, wavelet decomposition

coefficients, and the phone’s triaxial accelerometer output. To assess the quality,

a logistic regression and a support vector machine (SVM) were trained to classify

the recordings into noisy and clean categories. The logistic regression model was

able to classify the signal quality with an accuracy of 95.14% on test data, while

the SVM achieved an accuracy of 94.44%. Marzbanrad et al. (2015) proposed an

automated method to assess the DUS signal quality for the application of fetal valve

motion identification [238, 234]. In their method, DUS signals were segmented into

cardiac cycles using non-invasive fetal electrocardiogram (fECG) as reference. Then,

12 features including power, statistical and entropy-based measures, were extracted

from a frequency range associated with the fetal cardiac valve motion. Using these

features, the signals collected from 57 fetuses were classified as good and poor quality,

using a na ive Bayes model. The accuracy of the classification was 86% using 10-fold

cross validation.

In the current paper, to improve the quality assessment for perinatal monitoring,

we propose a simpler template-based method using only the DUS signal recorded by

a low cost device, thus facilitating its implementation in LMICs.

3.3 Methods

3.3.1 Database

The DUS database used in this paper was collected at the John Radcliffe Hospital

in Oxford as a part of the study presented in [353, 351]. The study was approved
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by the NHS Health Research Authority, REC reference: 12/SC/0147 and written

consent was obtained from each study subject prior to data collection. Each subject

received detailed information on the study protocol and their right to withdraw from

the study at any stage of the recording session. This database contained 1D-DUS

signals recorded from 17 subjects at a sampling frequency of 44.1 KHz using a hand

held transducer (AngelSounds Fetal Heart Detector, Jumper Medical Co., Ltd.) with

an ultrasound frequency of 3.3 MHz. Subjects were women with singleton pregnancy,

over the age of 18, who were scheduled for a routine CTG. The duration of recording

per subject is shown in Figure 3.1.

Figure 3.1: Duration in minutes of the total number of records per subject.

3.3.2 Segment selection

Each of the 1 minute-length DUS signals were labeled by three different annotators

who had relevant experience in analyzing cardiac audio recordings for quality. Each

reviewer independently labeled each second of the record as good or poor quality.

After labeling, each record was split into segments of 3.75 with a 3 second sliding

window (i.e. a 0.75 second overlap). The duration of 3.75 was fixed since it is the usual

length for computerized analysis of fetal non-stress tests based on the Dawes/Redman
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criteria [279, 85]. To ensure that each segment belongs to only one class, only the

segments with all their samples of the same class were kept. These segments were

assigned to 4 different classes as follows:

• Good Quality: Three annotators labeled all the segment as good quality.

• Mostly clean: Two annotators labeled all the segment as good and one labeled

all the segment as poor quality.

• Mostly noisy: One annotator labeled all the segment as good and two labeled

all the segment as poor quality.

• Poor Quality: Three annotators labeled all the segment poor quality.

A total of 1,990 segments (430 good, 1062 poor, 292 mostly clean, and 206 mostly

noisy quality) were identified. Figure 3.2 illustrates the balance of segments across

patients. Note that the quality of the recorded signals varies from one patient to

another and may change over a single recording session because we observed that for

some recordings there are both good and bad quality segments.

The classifier in this work was only trained using poor and good quality segments.

The rationale behind this stems from the fact that segments on which one or more

experts cannot agree are not meaningful in reporting statistics, since we cannot cat-

egorize them in a single class. However, after training the classifiers, the optimal

classifier was also evaluated with the mostly clean and mostly noisy segments to

determine its capacity for detect intermediate quality segments.

3.3.3 Preprocessing

The DUS signals were resampled at 4000 Hz using a least-square linear phase anti-

aliasing filter. This downsampling does not affect the information content of the

signal, since the fetal heart activity corresponds to the DUS signal frequencies below
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Figure 3.2: Number of poor and good quality 3.75 s segments for each of the subjects for
which all three annotators agreed on labels.

1650 Hz for a transducer of 3.3 MHz [327]. Hence, the Nyquist-Shannon sampling

criterion was satisfied after downsampling.

3.3.4 Template-based quality assessment of 1-D Doppler Ul-

trasound

To assess the quality of the DUS segment, a template-based algorithm was developed.

This method consists of 4 stages (Figure 3.3). First, the beats of the DUS signals were

estimated using Empirical Mode Decomposition (EMD). Then, using the estimated

beats, templates for windows of 15 seconds were derived. These templates were then

optimized in stage 3, and finally, the quality index of the DUS segment was calculated

in stage 4. These stages are illustrated in Figure 3.3 and explained in the following

sections.

This method, as all the remaining methods of this work, were implemented in

Matlab and executed in a machine with a standard processor (Intel(R) Xeon(R)
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CPU E5-2660 v2 @ 2.20GHz).
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Figure 3.3: Overview of the template-based quality method for the Doppler signal

Beat Detection

Individual cardiac cycles (or beats) were detected using EMD, based on a method

presented in [240]. EMD is an empirical method for decomposing non-stationary and

non-linear signals into a set of components called Intrinsic Mode Functions (IMFs).

It is a data-driven method that is able to adapt to the signal properties without
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requiring a basis function, unlike other time-frequency decomposition methods [158].

This characteristic allows EMD to properly analyze non-linear and non-stationary

natural processes.

Each extracted IMF satisfies 2 properties: firstly, the number of maxima and

minima and the number of zero crossing should differ at most by 1; secondly, the

mean value between the envelope of the local maxima and the envelope of the local

minima must be zero at any point. To obtain the IMFs, EMD uses an intuitive

algorithm called ”sifting procedure”. It is an iterative procedure, which finds all the

IMFs of the signal until the difference between output and the input of the sifting

procedure becomes a monotonic function. More details of the method can be found

in [159].

To find the beats from the DUS signals an algorithm was developed to allow

switching between the first four IMFs, which were obtained over 4 second windows.

For each of these IMFs, the peaks were detected based on the positive first derivative

and negative second derivative criteria. Then, using the identified peaks, the IMFs

were enveloped to obtain four IMF envelopes for each window. To detect the best

envelope for segmentation, a metric based on the standard deviation of the peak to

peak intervals (PPIs) was applied. Namely, the IMF with the minimum average of

the standard deviation of PPIs was selected as the optimum IMF. To deal with the

possible mismatching of the selected IMFs in adjacent windows, a short overlapping

window of 1 second was used to correct missing or double identified peaks. The peaks

of the optimum IMFs were selected as possible beat locations. These peak locations

were further corrected through a moving windows of 5 PPIs, replacing the middle

PPI by the average of the rest in the window, if they differed by more than 20% [236].

The corrected peaks were set as beat location, and were used to segment the 1D-DUS

signal into Beat to Beat Intervals (BTBI).

Continuous Wavelet transform (CWT) was then applied to the DUS signal over
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25 second windows. In this work, the CWT was applied using second order complex

Gaussian function as Wavelet mother. Moreover, only the signal decomposed at scale

3 was selected since it was found that the 3rd level is the most relevant for detecting

value movement. This scale contained frequencies below 1000 Hz, which mainly reflect

the fetal heart activity; valve motion is around 990Hz for a transducer of 3.3 MHz

[256], and wall velocities between 257 and 429 Hz for a transducer of 3.3 MHz [327].

After applying the CWT, the envelope of the absolute value of the decomposed

signal was estimated by interpolating the maxima. This envelope was then smoothed

using a low pass filter and segmented into cardiac cycles using the estimated beat

locations. Each segment was normalized by subtracting its mean and dividing by its

standard deviation. These normalized segment were used to generate the templates

for the signal quality assessment.

Initial template generation

Using the normalized cardiac cycle segments, the initial templates were calculated

using a window of 15 seconds. The length (L) of the template was calculated as the

average of BTBIs in each 15-second window. The initial template of the window was

determined by averaging the segments starting at the beat location and lasting at

length L. This procedure was repeated for each window, thereby obtaining an initial

template for each window of 15 seconds.

Updating templates

The initial template of each window was updated based on the correlation function.

For each window, the correlation of the template and the segments starting in a beat

location and lasting at length L was calculated. The window template was updated

by averaging only the segments with a correlation (r) greater than or equal to 0.6. In

case the initial template of a window did not have a correlation of r ≥ 0.6 for at least
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20% of the beats, the template was assumed as invalid, and replaced by the one from

the previous window. If the initial template of the previous window was invalid, the

one from the next window was selected.

Signal quality metrics

After updating templates for each window, the quality indices were calculated as the

correlation of the segments with the template in their corresponding window. The

correlations was calculated in four ways:

• Direct matching SQI. The segments of each 15-second window, beginning at

the beat location and ending at the length of the template (L) were used to

calculate the correlation coefficient with the template and this was denoted as

SQI1. If the segment was shorter than L, it was padded by zeros.

• Linear resampling SQI. Each estimated beat of the window was linearly

stretched or compressed, if the length of the beat was shorter or longer than L,

respectively. Then, the correlation coefficient with the template was denoted as

SQI2.

• Dynamic time warping SQI. Using Dynamic Time Warping (DTW), the

segments were transformed to the length L (as performed in our earlier work

[209]) and the correlation with templates was denoted as SQI3.

• Weighted dynamic time warping SQI One drawback of DTW is that it

gives too much freedom to the segment to adapt to the template. This was

addressed by Jeong et al. (2011) who introduced the weighted DTW (wDTW)

[172]. This method penalizes points with higher phase from the reference tem-

plate by applying weights, thereby minimizing the distortion caused by out-

liers. In the current work, the parameter controlling the penalty was optimized

through cross-validation to achieve the highest accuracy. The best value was
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found to be 0.02. The correlation of the transformed segments in the window

with the corresponding template, was denoted SQI4.

For all methods, any negative values of these SQI (negative correlation) were set to

zero.

3.3.5 Sample Entropy and Power Spectrum Density (PSD)

In addition to the Template-based SQIs, two other key features were estimated from

the DUS signals. The first one was sample entropy (Hs), which has shown a promising

potential for discriminating between good and poor quality DUS segments [353].

Sample entropy measures the regularity of a signal by finding reoccurring patterns in

it. To this end, three parameters are defined: the length of the signal N , the pattern

length m and the matching tolerance r. Sample entropy is defined as the negative

logarithm of the probability that a time series of length N with reoccurring pattern

of length m within a set tolerance of r, also has reoccurring patterns of length m+ 1

under the same tolerance constraint. In this work, the sample entropy was calculated

setting the parameters m = 2, and r as 0.1 times the standard deviation of the input

time series. The entropy was calculated using the procedure described in [303].

The second additional feature extracted was the Power Spectrum Density (PSD)

ratio. This feature was used in order to the evaluate the power of the DUS signals at

different frequency ranges. The range for calculating the ratio was determined using a

grid search. Since cardiac movements are associated with a Doppler frequency range

of 100 Hz to 600 Hz using a 2MHz transducer [391], which translate to a scaled range

of 165 Hz to 990 Hz for 3.3 MHz transducer, the ranges of values of the grid search

were fixed from 80 Hz to 400 Hz and from 580 Hz to 900 Hz for the low and high

frequency interval limits, respectively. For each possible pair of values, the capacity

for discriminating between good and poor quality segments was measured using the

earth mover’s distance. The range with the highest earth mover’s distance between
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the distribution of the ratios of good and poor classes was found to fall in the range

160 Hz - 660 Hz. Thus, the PSD ratio of each DUS segment was calculated by dividing

the power spectrum contained in the interval [160 Hz − 660 Hz] by the total power,

thereby measuring the percentage of power associated with cardiac movements.

3.3.6 Feature Vectors

Applying the template-based method resulted in four different SQIs for each estimated

beat of the segment, thus obtaining a total of 4Nb indices by segment, where Nb is

the number of beats of the segment. As the number of beats varied for each segment,

we selected the median value of each quality index of the segment as the final SQI.

Thus each segment had only one value for SQI1, SQI2, SQI3, and SQI4. Finally, the

sample entropy and the PSD ratio were added to the feature vector, thereby obtaining

a total of six features for each segment.

3.3.7 Classification

The above features were used to train an SVM classifier. SVM is a classifier that

finds the best hyperplane that maximizes the margin between two classes. When the

data are not linearly separable, a kernel function is used to transform the data to a

different space in which the data can be separated. In this work, a Gaussian radial

basis function kernel was used:

k(xi, xj) = exp

(
−|xi − xj|2

2σ2

)
, (3.1)

where xi and xj are feature vectors, and σ is a free parameter of the kernel. A large

value of σ increases the bias but reduces the variance of the classifier and a small

value causes the opposite effect. To find the best value for a given training set, σ is

usually tunned using heuristic methods or a brute force search.
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The class prediction, y, of a given feature vector, x, is calculated using the dual

representation of SVM as:

y = sgn

(
N∑
i=1

αiyik(xi, x) + b

)
, (3.2)

where xi is the i-th feature vector of the training set and yi = [−1, 1] is its class; α ≥ 0

are Lagrange coefficients obtained by quadratic optimization; b is the intercept of the

margin; and k(xi, xj) is the kernel function (eq. 3.1). The α coefficient is only greater

than 0 for those points that are in the margin. These points are called support vectors.

In addition to the parameters of equation 3.2, SVM has a hyperparameter called

the soft margin constraint (C). This parameter regularizes the margin allowing the

cost function to ignore some points to establish an adequate margin for the training

set. More details concerning the SVM can be found in [1]. In this work, the SVM

parameters C and σ were optimized using five-fold cross-validation and a grid search

on the training set. The grid search was defined by C ∈ {2−3, 2−1, ..., 25} and σ ∈

{2−5, 2−2, ..., 22}.

3.3.8 Method performance assessment

To assess the performance of the method proposed here, the dataset was split into two

equal subsets; the training and test sets. The the training set was used to determine

the combination of features most relevant for assessing the quality of DUS segments.

The test set provides an assessment of the accuracy on an independent dataset.

To split the dataset into two equal subsets (training and test sets), the subjects

were ranked based on their number of good segments in descending order. Then, the

data of each of the subjects were alternately assigned to the subsets. In other words,

the first subject’s samples were assigned to the training subset, the second ones to

the test subset, the third one to the training subset, and so on. As the number of
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patients was odd (17), the samples of the last subject were assigned to the subset

with the lowest number of segments.

The best combination of features was found by calculating the accuracy of all

possible feature combinations on the training set. Since the dataset presented an

imbalance among classes (Figure 3.2), the accuracy was calculated using stratified

five-fold cross validation with bootstrapping. Specifically, the accuracy of each feature

combination was determined as follows: subjects of the training set were split into

5 folds. For each fold, 120 signals (60 per class) samples from the subjects of the

fold were randomly selected using sampling with replacement (bootstrapping). The

selection was performed in proportion to the subjects’ sample quantity in each fold.

The rationale behind this validation process is that the bootstrap applied to the

cross validation folds adjusts the class imbalances, which is a critical factor for SVM

classifiers [69]. Moreover, as the cross validation did not assign samples of the same

subject to different folds, it provided an unbiased accuracy estimation. To obtain

a more reliable accuracy, the described validation process was repeated 100 times,

assigning subjects into different folds at each repetition.

For each iteration of the five-fold cross validation, the training set was normalized

by subtracting the mean of the respective feature vector and dividing by its standard

deviation. The test set was normalized using both mean and standard deviation

derived from the training data. The cross validation accuracy of each iteration was

averaged by selecting the median of the 5 accuracy values of the folds. Likewise, the

accuracy of the 100 repetitions was selected as the median of the 100 accuracy values.

This procedure was performed for each combination of features.

In addition to the overall accuracy of the classifiers, the sensitivity and speci-

ficity were also estimated. Sensitivity was defined as the proportion of good quality

segments properly classified, whereas specificity denoted the portion of poor quality

segments correctly classified.
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To determine the capacity of the method for predicting intermediate quality seg-

ments, a SVM classifier was trained with the good and poor segments of the test

set using the most common parameters C and σ for the 100 bootstrap repetitions.

Once the best combination of features was determined (maximising accuracy, then

specificity), the classifier was fixed and assessed on the test using the same bootstrap

cross-validation validation procedure used for the training set. Finally, the probabil-

ity of belonging to good class was also estimated for the mostly noisy, and mostly

clean segments without retraining to assess the performance of the classifier on all

data.

3.4 Results

3.4.1 Feature Selection

Table 3.1 presents the median accuracy, sensitivity and specificity of the best combi-

nation of input features for up to 6 possible features. As can be seen, the classifier was

able to classify the quality of a DUS segments with up to 85.8% accuracy using either

the combination SQI2 and sample Entropy (HS), or the combination SQI2, PSD ratio

and HS. The accuracy of these two combinations of features resulted in a statisti-

cally significant improvement over the use of only one feature, HS (p<0.05, one-sided

Wilcoxon rank-sum test). The results for all possible combination of features are

presented in the appendix A (Table A.1).

It can also be seen from Table 3.1 that the sensitivity tended to decrease with an

increase in the number of features, whereas specificity steadily increase until three

features were used. Since the combination of both two and three features leads to

equivalent accuracy, the combination SQI2, PSD ratio and HS was chosen to be

evaluated on the test set, since this maximizes specificity, and reduces the chances

that a poor quality segment is labeled as good quality.
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Table 3.1: Median classification performance of the 100 five-fold cross validation balanced
with bootstrapping. IQR indicates inter-quartile range; ‡ indicates a significant improve-
ment (Wilcoxon rank-sum test, P<0.05) of a given feature combination compared to using
a combination with one less feature.

Feature Combination
Median Median Median

Accuracy ± IQR (%) Sensitivity (%) Specificity (%)

Hs 84.2 ± 5.8 100.0 78.3
SQI2,Hs ‡ 85.8 ± 5.0 93.3 80.0
SQI2,PSD,Hs 85.8 ± 5.0 83.3 90.0
SQI2,SQI4,PSD,Hs 85.0 ± 8.3 85.8 88.3
SQI1,SQI2,SQI4,PSD,Hs 84.7 ± 5.0 85.0 86.7
SQI1,SQI2,SQI3,SQI4,PSD,Hs 83.8 ± 6.7 81.7 86.7

3.4.2 Test Set Performance

Table 3.2 displays the accuracy, sensitivity and specificity of the combination of the

SQI2, PSD ratio and HS features. The median accuracy of this classifier using this

combination was similar to the highest median accuracy achieved on the training

set. However, the interquartile range for the test set was almost twice than that for

the training set, indicating that the test set may exhibit a higher heterogeneity of

features. Both sensitivity and specificity exceeded 90%.

Table 3.2: Performance of the classifier averaged over 100 five-fold cross validation runs
balanced with bootstrapping for the test set (with ) using SQI2, PSD ratio, and sample
entropy (SQI2,PSD,Hs) as features.

Measure
Minimum 1st Quantile Median 3rd Quantile Maximum

(%) (%) (%) (%) (%)

Accuracy 65.8 79.2 85.8 90.0 96.7
Sensitivity 71.7 85.0 91.7 96.7 100.0
Specificity 61.7 89.3 91.7 95.0 98.3

3.4.3 Performance of classifier on intermediate quality seg-

ments

The classes of the mostly clean and mostly noise segments of the test set were also

predicted using the same classifier (using SQI2, PSD ratio and sample entropy (HS)
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as features). Note that these segments were not used in training. Figure 3.4 shows

the relative distribution of output probabilities from the classifier of belonging to

the good quality class for all four types of segments. The classifier established a

probability threshold of 0.5575 for distinguishing between good quality and poor

quality segments. The percentage of segments which lay above the threshold for good

quality and mostly clean segments were 86.53% and 69.06%, respectively. On the

other hand, the percentage of segments that lay below the threshold for poor quality

and mostly noise segments were 96.50% and 63.69%, respectively.

Figure 3.4: Distributions of classifier probability outputs for DUS segments of test set for
each of the four classes (n.u. stands for normalized units). The threshold of belonging to the
Good class was fixed at 0.56 for the classifier. The majority of the distribution of the Good
and Mostly Clean classes lies above this threshold, whereas the majority of Poor and Mostly
Noise classes lies below this threshold, as was expected. The probability distributions were
smoothed using a normal kernel function [53].

3.5 Discussion

The results presented here suggest that it is possible to accurately classify the DUS

quality using SQIs derived from DUS signals alone. Among the extracted features,

sample entropy and PSD ratio provided suitable discrimination between good and

poor quality segments, which is consistent with previous works [238, 353]. However,

the addition of our proposed template-based method, particularly after linear resam-

pling of the beats to match the running template (SQI2), provided a statistically

significant improvement in accuracy (see Table 3.1). Either combinations SQI2 and
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Hs or SQI2, PSD ratio and Hs resulted in a statistically significant accuracy; never-

theless, in order to maximize specificity, the combination of SQI2, PSD ratio and Hs

was selected for assessing the classifier on the test set.

The selected features achieved an accuracy of 85.8% on the test set, thus sug-

gesting that this metric is suitable for quality assessment based only on DUS signals.

Although this feature combination exhibited more variance on the test set than on

the train set, the achieved accuracy indicates that the model was not overfitted, and

its complexity of three features is viable for assessing DUS quality. Furthermore, the

balance towards specificity provided by the three chosen features (SQI2, PSD ratio,

and sample entropy) ensures a high number of good quality segments is preserved, as

well as small number of false-positive segments.

The best combination of features also showed an adequate capacity for classifying

segments associated with intermediate quality zones (mostly noisy and moistly clean

segments). Although both mostly clean segments and mostly noisy segments exhib-

ited a mostly flat distribution, their centers where more closer to the good quality

center and poor quality centers, respectively as it was expected. Specifically, al-

most 70% of the mostly clean probabilities laid above the SVM prediction threshold,

whereas higher than 63% of the mostly noise probabilities laid below the SVM pre-

diction threshold. This discrimination ability for the two ambiguous classes indicates

the potential of the approach outlined in this work.

Regarding the template-based SQIs, the EMD-based approach appeared to fa-

cilitate identification of beat intervals, since the correlation with each template was

generally high. Small offsets in the relative start and end point of each beat were

mitigated by the use of resampling prior to correlation. The segmentation facili-

tated beat-by-beat quality assessment, which is the first step towards detecting fetal

abnormalities from DUS signals. The template optimization process obtained repre-

sentative templates for quality assessment since the initial template was only averaged
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with those segments which exhibited a moderate or strong correlation (r ≥ 0.6) with

the initial template (average of first N beats).

Although Stroux and Clifford reported a higher accuracy (95.14%) on the same

database [353], their work cannot directly compared to the current work since dif-

ferent statistical validation approaches were used. Specifically, Stroux and Clifford

trained on two thirds of the data set and held out one third for testing, with no cross

validation. In this work, stratified five-fold cross validation was used with bootstrap-

ping (repeated 100 times), with subject stratification across different folds in each

repetition. The accuracy obtained in this work cannot directly compared to that of

Marzbanrad et al. (2015)[238] since they tested their method with a different dataset.

However, our method can be compared to the aforementioned previous works by an-

alyzing the effect of adding the index SQI2 to common features of the other works,

namely, sample entropy. As was previously showed in Table 3.1, by using the SQI2

feature in addition to sample entropy, the accuracy statically significantly increased.

Another advantage of our method over previous works is that the proposed method

does not need additional sources, such as accelerometer data [353] or an fECG signal

[238] to assess the DUS quality. A key advantage of using only DUS signal is that the

recording process is simple, facilitating the use of this technology by non-experts in

low-resource settings. Finally, using only one source for quality assessment reduces

health screening costs, facilitating its use in LMICs.

Despite the promising results, one limitation of the current method is that it

was only tested using DUS signals recorded by professional midwives in hospital set-

tings. The LMIC context is often severely resource constrained and there is a lack

of widespread training for midwives, particularly in the use of technology. Conse-

quently, signal quality is likely to be lower in recordings taken in LMICs. The noise

content may also be different if the audio cable is not incorrectly inserted, intro-

ducing ambient sounds such as animals, extreme weather, and interference from non
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hospital electronics. Nevertheless, the template-based method proposed here could

be adjusted to specific conditions with a relevant training set.

Another possible limitation may be that the introduced method was only tested

using one database labeled by three annotators. As DUS quality annotation is prone

to inter-observer variability, testing the method with datasets annotated by differ-

ent experts may reduce the accuracy. However, the high accuracy achieved by the

combination of sample entropy, PSD ratio and SQI2 used in this work, provides opti-

mism for the use of the template-based method for different datasets, especially with

retraining.

3.6 Conclusion

The work presented in this article proposed a template-based method to assess the

quality of 1D-DUS signals recorded by a low cost device. The introduced template-

based indices provided a simpler method based on only DUS signals, thus facilitating

its implementation in LMICs. The approach described in this work can provide the

operator with an accurate and timely feedback on the quality of the recordings, to

allow discarding the low quality signals in real time and prompt users to re-record

data. Therefore, this quality assessment technique could potentially facilitate reliable

fetal monitoring by non-experts towards reducing perinatal health burdens.
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Chapter 4

Data capture errors in the

1D-DUS recorded in the field

4.1 Abstract

The scalability of medical technology in low resource settings requires a higher level

of usability and clear decision support compared to conventional devices, since users

often have very limited training. In particular, it is important to provide users with

real time feedback on data quality during the patient information acquisition in a

manner that enables the user to take immediate corrective action.

In this work, we present an example of such a system, which provides real time

feedback on the source of noise and interference on a low cost Doppler device con-

nected to a smart-phone used by traditional birth attendants (TBAs) in rural Guatemala.

A total of 195 fetal recordings made from 146 singleton pregnancies in the second and

third trimester were recorded over 8 months by 19 TBAs. The resulting 33.7 hours of

data were segmented into 0.75 s epochs and independently labeled by three trained

researchers into one of five noise or quality categories that dominated the data.

A two-step classifier, composed of a logistic regression and a multiclass support
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vector machine, was then trained to classify the data on epochs from 0.75 s to 3.75 s.

After feature selection the highest micro-averaged test F1 score was 96.8% and macro-

average F1 test score was 94.5% for 3.75 s segments using 23 features. A reduced real

time model with 17 features produced comparable micro- and macro-averaged test

F1 scores of 96.0% and 94.5% respectively.

The code is portable back to a low-end smartphone to run on such a device in

real time (under 400 ms) in order to provide an audiovisual cue for the TBAs via

the smartphone. Future work will evaluate the classifier presented here as part of

a decision support system for data quality improvement in an ongoing randomized

control trial in Guatemala.

4.2 Introduction

Low and middle income countries (LMICs) account for approximately 98% of all

reported perinatal deaths world-wide [412]. Every year, around 2.6 million stillbirths

and 2.8 million early neonatal deaths occur in these countries [401, 400]. One of the

leading causes of these high mortality rates is Intrauterine Growth Restriction (IUGR)

with a prevalence of around 11% in LMICs [48, 89]. IUGR is usually prevented in high

income countries by performing routine perinatal screening and appropriate medical

referral; however, this procedure is not appropriately followed in LMICs, due to the

limited number of trained physicians and healthcare professionals and the high cost

of medical equipment, particularly in rural areas.

One of the LMICs dealing with this challenge is Guatemala, where the perinatal

morbidity and mortality rates are the highest in Latin America [404, 367]. This is

particularly marked in the Maya indigenous communities where women face a range

of barriers to access health services. Their pregnancies, if monitored at all, are likely

to be attended by lay indigenous midwives, or traditional birth attendants (TBAs),
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who often lack access to adequate equipment and training for identification of fetal

health risks.

Recent work has focused on reducing the high burden of perinatal deaths using

a smartphone-mediated affordable perinatal screening system, which addresses many

cultural requirements for use in rural Guatemala [351, 354, 232]. The system allows

the monitoring of fetal heart rhythm, which is commonly used by clinicians to identify

non-reassuring fetal status for timely intervention [29]. A low-cost One-Dimensional

Doppler Ultrasound (1D-DUS) transducer, connected to a smart phone, was intro-

duced into rural communities in collaboration with Wuqu’ Kawoq — Maya Health

Alliance, an NGO aiming to provide health care solutions for Guatemala’s indigenous

communities. Indigenous TBAs were trained to use the approach for monitoring fetal

well-being during pregnancy [351, 354, 232].

The mHealth technology has provided TBAs with decision support, and through

cellular connectivity, has linked their traditional procedures with a formal health-care

referral process. Although the technology has so far proven effective [352, 351, 354,

232], the need of some refinements has been identified. One critical requirement is

to ensure the quality of the 1D-DUS recordings. Indeed, during the first two release

cycles of the app, around 40% of the recordings were low quality [232]. Despite the

quality improvements by retraining the birth attendants and fixing the device con-

nections, the signal quality still needs to be automatically evaluated to identify users

who are making habitual mistakes or to identify equipment malfunctions. The low

quality of recordings can distort the posterior fetal health analysis and complicate fe-

tal abnormality detection. Since fetal heart rate (FHR) analysis is key to detection of

IUGR in our population, and its accuracy depends on the DUS quality, the exclusion

of poor quality DUS records before performing any analysis is important for reducing

false positives [353, 220].

Related work on signal quality can be found in the domain of heart sound analysis
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[347] and other physiological monitoring such as the electrocardiogram [75, 39, 74],

blood pressure waveform [210, 357] and photoplethysmogram [209]. Similar to these

modalities, DUS signals are characterized by a high and fluctuating SNR ratio, as well

as to be non-stationary due to the movement and angle of the probe against the skin.

However, despite these issues, good quality DUS segments clearly exhibit a relative

periodicity of fetal heart beats. Based on this periodicity, previous works have pro-

posed to assess DUS quality by evaluating the presence of reoccurring signal patterns.

Specifically, Stroux and Clifford et al. (2014) [353] first introduced a Signal Qual-

ity Index (SQI) using sample entropy, energy percentage of wavelet coefficients and

the smartphone’s triaxial accelerometer to asses DUS recorded with same affordable

1D-DUS device used here. A logistic regression classifier was then trained to dif-

ferentiate high from low quality expert-annotated data with an accuracy of 95.14%.

Subsequently, Valderrama et al. (2017) [373] introduced a template-based method

for segmenting DUS into their beat to beat intervals, calculating four SQIs for each

beat. The SQIs were added to sample entropy and a power spectrum density ratio in

the interval [160 Hz − 660 Hz], achieving an accuracy of 85% for classifying expert-

annotated data. In addition to these works, a similar work for assessing quality of

DUS recorded with a different transducer was performed by Marzbanrad et al. (2015)

[238]. That work proposed an automated method to assess the DUS signal quality

for a more specific application of fetal valve motion identification. To that end, 12

features including power, statistical and entropy-based features were extracted. The

signals collected from 57 fetuses were classified as good and poor quality, using a

näıve Bayes model, with 86% accuracy using 10-fold cross validation.

However, these earlier works were conducted on data recorded in hospital envi-

ronments by skilled users and were not optimized to run on a smartphone. In the

LMIC setting, noise and interference is likely to manifest in different ways, and gen-

erally present a more challenging problem. In preliminary analyses of the data used
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in this study, substantial differences in noise content and errors in device use were

discovered between the original hospital data and the field data. In particular, it was

noticed that the following key issues were prevalent: 1) incorrect cable connections

introducing ambient sounds such as those of animals, extreme weather and human

speech, or just leading to a low volume/silent recording and 2) interference from elec-

tronics, such as mobile phones. Many of these problems cannot be mitigated with

post processing and therefore a point-of-care system for suggesting ways to improve

quality at the moment of data collection is imperative.

In this article, a system is presented for identifying the type of noise present in the

DUS at the point of collection which is portable back to a smartphone to run in real

time and provide an audiovisual cue for TBAs (Figure 4.1). This real time feedback

would endow the mHealth monitoring system with a key crucial building block to

discard low quality recordings and suggest re-recording of data, which is vital before

identification of any fetal abnormality through 1D-DUS.

Figure 4.1: mHealth monitoring scenario. Providing traditional birth attendants (TBAs)
with signal quality feedback at point of data collection is crucial for adequate referral,
diagnosis and treatment.
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Figure 4.2: Illustration of the Doppler-mobile phone recorder used for data acquisition.
The smartphone is completely audio- and pictogram-driven for low literacy populations. It
attaches to an ultrasound device for recording, which in turn attaches to a low cost speaker
so that the user has immediate audio feedback of the fetal heartbeat.

4.3 Methods

4.3.1 Data acquisition

The data collected in this work was part of a randomized controlled trial, conducted

in rural highland Guatemala in the vicinity of Tecpán, Chimaltenango, between the

13th of May 2016 and the 20th of December 2016. The study was approved by the

Institutional Review Boards of Emory University, the Wuqu’ Kawoq I Maya Health

Alliance, and Agnes Scott College (Ref: IRB00076231 - ‘Mobile Health Intervention

to Improve Perinatal Continuum of Care in Guatemala’) and registered as a clinical

trial (ClinicalTrials.gov identifier NCT02348840). TBAs were trained to use a low

cost (US$17) 1D-DUS device, connected to a smartphone and external speaker (Figure

4.2). Additionally, the TBAs were given a self inflating blood pressure device (Omron

M7) and bespoke software on the smartphone to guide them through the performance

of a series of tasks. The app served several functions, including compiling responses

to a checklist of serious issues, which would trigger contact with medical personnel at
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appropriate points, capturing medical data and ultrasound recordings, and uploading

data via SMS, GPRS and WiFi to Amazon Web Services. Each TBA was trained to

use the Doppler device for a few hours over the course of a week, and had subsequent

access to a project nurse for later support.

An agile approach was taken to the app design and implementation of the software,

with programmers making periodic visits to the study sight in Guatemala. More

details on the design and implementation of the data collection system, and the

training of the TBAs can be found in Stroux et al. (2016) [354] and Martinez et al.

(2017) [232].

4.3.2 Description of data

The DUS recordings used in this work were recorded by 19 different TBAs using a

hand held DUS device (AngelSounds Fetal Doppler JPD-100s, Jumper Medical Co.,

Ltd., Shenzhen, China) with an ultrasound transmission frequency of 3.3 MHz and

a digitization sampling frequency of 44.1 kHz. A total of 146 mothers with singleton

pregnancies were monitored, all indigenous Maya women between the second and third

trimester of pregnancy. From these subjects, 195 DUS recordings were extracted. The

median number of recordings per TBA was 9 with an interquartile range (IQR) of

9.25. More recordings were made in the third trimester (a median of 7 (IQR 5.75)

versus 1 (IQR 3.75) in the second trimester. See Figure 4.3. The median duration of

the recordings over all TBAs was 10.18 minutes with an IQR of 1.21 minutes.

4.3.3 Preprocessing

Each ultrasound recording was down-sampled to 4 kHz using a least-square linear

phase anti-aliasing filter. This satisfied the Nyquist-Shannon sampling criteria as the

information content of fetal heart activity in Doppler signals has been observed in

frequency ranges up to 1 kHz with a 2 MHz transducer, which is equivalent to 1650



73

Figure 4.3: Box plots (median ± IQR) of number of recordings by TBAs in the second
and third trimesters, and over both the latter trimesters. By design, no recordings were
performed in the first trimesters.

Hz for a 3.3 MHz device [327].

4.3.4 Class annotation

Three independent annotators listened, visually inspected and labeled all the 195 DUS

recordings using a Matlab (MathWorks, Natick, MA, USA) graphical user-interface

(GUI) interface ( Figure 4.4). The GUI split recordings into segments of 0.75 s

(seconds), allowing to annotate each of them as one of the following six categories:

• Interference. The epoch contains electrical interference, typically manifesting

as short bursts of a buzzing sound.

• Silent. The epoch is silent or is barely audible.

• Talking. The epoch may contain audible heart beats but also human voices or

noises from the environment generated by animals (e.g. dog barking).

• Poor Quality. The epoch contains noise but not any of the other classes.

• Unsure. The epoch contains a mixture of sounds, which was challenging to

assign to a specific class, or the annotator was unsure of which class it belonged

to.
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Figure 4.4: GUI used for assessing DUS recordings quality. The blue tracing represents two
contiguous strips of 3.75 s raw audio file, each broken into five 0.75 s segments. The entire
7.5 s segment could be played back in real time or at fractional speeds (with pitch-preserving
frequency shifting), paused or looped. The green and red crosses indicate the start and end
of each ‘heart beat’ as determined by an automated algorithm [351], which were used only
for guidance. Using ‘Sennheiser HD 202 II Professional’ headphones, each segment of 0.75
s was labeled by three trained researchers, acting independently, as either Good Quality,
Poor Quality, Interference, Silent,Talking, or Unsure.

• Good Quality. The epoch contains audible heart beats with no significant pres-

ence of any of the above categories.

In previous works, the window for assessing DUS quality had been fixed at 3.75 s

because it is the usual length for computerized analysis of fetal non-stress tests based

on the Dawes/Redman criteria [279, 85]. However, in this work, the DUS quality was

assessed for different window lengths to find which is more appropriate for this aim.

Thus, after quality annotation, five different possible segments were built using as

window length a multiple of 0.75 s; namely, the defined window length were: 0.75,

1.50, 2.25, 3.00, and 3.75 s. In order to identify such windows, only contiguous

windows of a given class were used to create the windows longer than 0.75 s, creating

fewer examples for longer windows. To maximize data availability, one 0.75 s could
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Table 4.1: Number of segments per class for each window length after annotation, and
adjudication.

Segment length (s) Good Poor Interference Talking Silent Unsure
0.75 26,090 14,738 2,832 8,718 18,580 2,356
1.50 25,074 13,062 2,478 7,744 18,261 1,871
2.25 24,086 11,775 2,163 6,966 17,993 1,589
3.00 23,147 10,813 1,888 6,409 17,775 1,376
3.75 22,263 10,008 1,647 5,974 17,579 1,200

appear more than once in a longer window. The number of segments obtained after

keeping homogeneous segments are displayed in Table 4.1.

4.3.5 Feature extraction

To extend earlier work for binary classification (good vs. poor) of the 1D-DUS data,

several new features were added, which were specific to the four subsets of noise

observed in the data.

Template-based features

Following Valderrama et al. (2017) [373], four SQIs were calculated for each estimated

beat to beat interval (BTBI). To estimate the BTBIs, the DUS signal was decom-

posed into its Instantaneous Mode Functions (IMFs) by applying Empirical Mode

Decomposition (EMD) [158]. Then, the IMFs’ envelopes were detected using their

peaks, identified based on the positive first derivative and negative second derivative

criteria. The IMF with the smallest average of standard deviation of the peak to peak

intervals was used to find the beat locations from its peaks. These beat locations were

used to segment the high frequency components of DUS corresponding to the fetal

heart activity, which were found by using Continuous Wavelet Transform (CWT)

with a mother Wavelet second order complex Gaussian function at scale three. This

scale contained frequencies below 1000 Hz (pseudo-frequency), which mainly reflect

the fetal heart activity; valve motion is around 990 Hz [255], and wall velocities be-
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tween 257 and 429 Hz [327]. The higher frequency components of the the DUS were

then segmented and normalized.

Initial templates for each window were calculated by averaging over all segmented

beats in the first 15 s. The initial template was updated by averaging it with seg-

mented beats that exhibited a correlation, r > 0.6, with the running template. Al-

though this weights the current beat as much as all previous beats, the requirement

to have a modest correlation with the running template, balances adaptation and

preservation of information. This value of r was optimized in an earlier work on DUS

recorded in a hospital environment with the same device [373]. Finally, using the

optimal templates, four different SQI were calculated as:

• SQI1: Direct matching SQI. An optimal template was correlated with each

DUS components and this was denoted as SQI1. If the DUS component was

shorter than length of the optimal template (L), it was padded by zeros. On

the other hand, if DUS component was longer, only the first L samples were

correlated with the template.

• SQI2: Linear resampling SQI. Each DUS component was linearly stretched

or compressed to the length of the optimal template. Then, the correlation

coefficient with the template was denoted as SQI2 calculated.

• SQI3: Dynamic time warping SQI. Using Dynamic Time Warping (DTW),

each DUS component was transformed to the length of the optimal template (as

performed in Li et al. (2012)[209]) and then, the correlation with the optimal

template was calculated.

• SQI4: Weighted dynamic time warping SQI. Due to the fact that DTW

gives too much freedom to a segment to adapt to the target segment, DUS com-

ponent was transformed using the weighted DTW (wDTW) [172]. This method

penalized points with higher phase difference from the reference template by ap-
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plying weights, thereby minimizing the distortion caused by outliers. To obtain

an adequate penalty, cross-validation was performing into DUS recorded with

the same device presented here, resulting in a best penalty value of 0.02 [373].

The correlation of the transformed DUS component with the optimal template

was then calculated.

For all methods, any negative values of these SQI (negative correlation) are set to

zeros.

Since this method extracts four SQI for each DUS component contained in a

defined window length, the number of SQIs for a window length varies. The median

value of each SQI was therefore calculated for each window. Thus, each window had

only four SQIs (SQI1, SQI2, SQI3, and SQI4).

Sample entropy features

Sample entropy measures the regularity of a signal by finding reoccurring patterns.

Three parameters need to be defined: signal length N , pattern length m and matching

tolerance γ. Using these parameters, the sample entropy Hs is defined as the negative

logarithm of the probability that a length N time series, that has repeated itself for

data points of length m within set tolerance γ, will also repeat itself for m + 1 data

points within the same tolerance constraints [303]. For this work, the parameter were

set m = 2, and γ as 0.1 times the standard deviation of the input time series since

these value obtained promising results for DUS signals recorded with the same device

[353]. The entropy was calculated using the procedure described in Richman and

Moorman (2000) [303].

Wavelet features

Wavelet analysis is often described as an alternative to the short-term Fourier trans-

form and particularly suited to the analysis of localized power within non-stationary
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Table 4.2: Wavelet frequency decomposition. Level 1 and 2 contain valve activities, reported
to be in the range 990-3300 Hz for the ultrasound transducer used here [255]. Level 3
corresponds to wall velocities, which are located at range of 257-429 Hz, given the Doppler
transducer used in this work [327]. Level 4 included frequency that is partly associated with
fetal body movement [405]

Level Frequency range (Hz) Coefficients Fetal event
1 1000-2000 d1 valve activities
2 500-1000 d2 valve activities
3 250-500 d3 wall velocities
4 125-250 d4 fetal body movement

signals, as it has simultaneously high temporal and frequency resolution [306]. The

frequency resolution can be performed in the discrete domain by using multi-resolution

analysis, in which the signal is filtered with high and low-pass filters to separate the

frequency content into frequency bands of the same width. Each decomposition step

halves the frequency bandwidth (doubles the frequency resolution) while its output

is downsampled by a factor of two (thus halving the temporal resolution).

To select a sensible frequency range for DUS signals, the velocity ranges of the fetal

myocardium were reviewed. Peak axial cardiac wall velocities have been measured

between 60 and 100 mm/s [327], which translates to a frequency range of 257-429

Hz, given the Doppler transducer used in this work. Similarly, valve motions have

been reported to be around higher frequencies [239, 296]. Specifically, Murata and

Martin (1974) [255] described the use of a 600-2000 Hz bandpass filter to monitor

valve activity, which translates to a 990-3300 Hz range for the ultrasound transducer

used in this study. Using these frequency ranges as reference, the DUS recordings

were decomposed into 4 levels using the Discrete Wavelet multi-resolution analysis

(Table 4.2). The reverse biorthogonal wavelet rbio3.9 was selected as the mother

wavelet since it was able to correctly classify more good and poor quality segments

than other mother wavelets for DUS recordings made with the same transducer used

in this study [353, 351].

As a feature, the percentage of energy content at each decomposition level was
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computed as follows:

Ed(k) = 100

∑Nk

i=1 ck(i)
2

Et
, (4.1)

where k denotes the level of decomposition, ck(i) the i− th detail coefficient at level

k, Nk the number coefficient at level k, and Et the sum of the squared coefficients

over all levels.

Statistical features

Two SQI’s based on the DUS statistical characteristics were also calculated. The

first SQI was the variance, measuring total power or by how the signal varied about

its mean. This feature was included specifically to deal with the silent class, whose

amplitude is relatively low, thereby creating vanishingly small variances.

The second SQI was calculated based on the autocorrelation function, which has

been used for assessing quality of other types of cardiac sound signals [346, 192, 212,

211]. Specifically, to classify noise segments, the kurtosis of the autocorrelation was

calculated. Noise segments tend to follow a Gaussian distribution, and therefore, it

is expected that their kurtosis be close to 3. On the other hand, good quality signals

are likely to have larger kurtosis values since they consist of large excursions with

little time around the baseline, provoked by strong audible heart sounds.

Power spectrum density (features)

Following work presented in Valderrama et al. (2017) [373], a series of power spectral

density (PSD) ratios associated with cardiac movements and key spectral contami-

nants were implemented. As noted, cardiac movements generally manifest within a

Doppler frequency range of 100 Hz to 600 Hz when a 2 MHz transducer is used [391],

which translates to a scaled range of 165 Hz to 990 Hz for 3.3 MHz transducer. Per

earlier work [373], a ratio of the power contained in the interval [160 Hz − 660 Hz]

over the power of the entire signal was included as key feature for identifying normal



80

Figure 4.5: Power spectrum of the DUS segments. Electrical interference presents pro-
nounced peaks around 217 and in its harmonics (i.e. 434 Hz, 651 Hz, 868 Hz, etc) which
are associated to the radio protocol GSM-TDMA [21]. There is also a pronounced peak
around 800 Hz, which is a frequency associated with audio distortion caused by amplifiers
[4].

activity.

In addition to this cardiac movement PSD ratio, other PSD ratios were also in-

cluded to detect interference segments. To define the frequency PSD intervals for

electronic interference class, the average PSD of the DUS segments was calculated

per class (Figure 4.5). Two different obvious spectral of peaks were identified in

the interference class. The first key peak is associated with the GSM-TDMA radial

protocol, which appears around 217 Hz and in its harmonics (i.e. 434, 651, 868 Hz,

etc) [21]. The other pronounced energy peak was identified to be around 800 Hz, a

frequency associated with audio distortion caused by amplifiers [4]. Based on these

locations, three PSD ratios were calculated; two for the largest peaks of the GSM

protocol, and the remaining for the amplifier distortion peak. These PSD ratios were

calculated as:

Pr =

∑pr+20
i=pr−20 Pi∑pr+100
i=pr−100 Pi

, (4.2)

where pr is one of the locations of the peaks (217 Hz, 434 Hz, and 800 Hz).
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Speech detection features

Two types of features associated with speech were included: the estimation of fun-

damental frequency and Mel-Frequency Cepstral Coefficients (MFCCs). The value

of F0 was estimated using the cepstrum method. The real cepstrum was applied to

each segment using framing of 25 ms with a hamming window and a sliding window

of 10 ms (15 ms overlap), which are the most common window’s length for speech

recognition [160]. For each frame, the F0 was estimated by taking the inverse of

the quefrency within 50 and 1000 Hz with the highest peak. After the F0 was es-

timated for each possible window of the segment, all the values were distributed in

a histogram, calculating the number of bins from the average provided by Sturgis’

[356] and Rice’s [197] rules. The F0 of a segment was defined as the center of the

histogram bin with the highest absolute frequency.

To calculate the MFCCs, a standard algorithm [408] was used, which is summa-

rized as:

1. Accentuate the key spectral band of the signal using a first-order high pass filter

with an α of 0.95.

2. Frame the window using a hamming window and a window length of 25 ms with

a sliding window of 10 ms.

3. Calculate the periodogram (power magnitude of FFT) of each frame.

4. Apply the MEL filters to each periodogram.

5. Apply log function to the output of MEL filters.

6. Apply the Discrete Cosine Transformation (type 2) to keep most relevant coef-

ficients (2-13). The other coefficients are discarded since they represent rapid

changes which are irrelevant for speech recognition.
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7. De-emphasize higher frequency Mel coefficients using sinusoidal liftering (filter-

ing in MEL domain) with a parameter of 22.

After calculating the MFCCs for a DUS segment, a feature matrix of dimension

12 by F , where F is the total frames of a segment, was obtained. The final MFCC

coefficients for a segment were calculated using the strategy described by Zaidan and

Salam (2016) [409], where six features are extracted for each coefficient. That is, the

min, max, mean, median, mode, and variance of each coefficient in each frame. As a

result, a total of 72 (6×12) features are obtained for each DUS segment.

4.3.6 Feature selection

Given that the feature vector contained 88 features per segment, a feature selection

technique was used to reduce redundancy, classification error and computation time.

The maximum Relevance Minimum Redundancy (mRMR) algorithm was chosen for

this purpose. This algorithm was performed using a two-stage algorithm proposed in

[285], which first uses filter techniques based on maximal relevance D and minimal

redundancy R to find the compact set of features, calculated as:

maxD(S, c), D =
1

|S|
∑
xi∈S

I(xi, c) (4.3)

minR(S, c), D =
1

|S2|
∑

xi,xj∈S

I(xi, xj), (4.4)

where S is the feature set, xi and xj are individual features, I is the mutual infor-

mation and c is the target class. Optimizing for maximal relevance D and minimal

redundancy R simultaneously, mRMR is denoted as:

maxφ(D,R), φ = D −R. (4.5)
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Once the compact set was found, a wrapping technique was applied to further

reduce the number of features. Specifically, backtracking selection was performed,

thereby iteratively excluding the less significant features of the compact set until

improvement was steady.

4.3.7 Classification

A two-step approach was developed to classify the DUS quality. The first step aimed

to remove silent segments of data by using only variance as feature, which should

always be a very small value for silent segments. A binary logistic regression classifier

was trained using silent vs non-silent segments (all classes except silent).

The second step involved the use of a Support Vector Machine (SVM), which

was shown to be reliable for classifying between good and poor classes recorded with

the same device used in earlier related work [373, 351]. In this new work, the SVM

was multiclass (four classes: Good Quality, Poor Quality, Interference and Talking)

using the one-vs-one approach, which creates a total of n(n−1)
2

classifiers, classifying

a sample based on class vote counting. This approach was implemented using the

LibSVM suite [66]. A Gaussian radial basis function was chosen for the kernel which

is parameterized by σ. Together with the soft margin hyperparameter (C), it was

optimized using a grid search and five-fold cross-validation on the training set. The

grid search was defined by C ∈ {2−3, 2−1, ..., 25} and σ ∈ {2−5, 2−2, ..., 22}.

The test and training sets were normalized by subtracting the mean of the respec-

tive feature vector and dividing it by its standard deviation computed in the training

data only.

4.3.8 Performance assessment

To assess the classification system presented here, the dataset was split into two

equal subsets; the training set contained 107 recordings from 73 subjects and test set
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Figure 4.6: Durations of recordings taken from each subject (pregnant mother) in the data
set. Subjects are grouped by the TBA who made the recordings ordered by the quantity of
data recorded. For each TBA, subjects are ranked by total quantity of recording time.

contained 88 recordings belonging to the remaining 73 subjects. To avoid any bias

between the training and test set, the subjects were randomly distributed, and then

the rank sum test was performed to ensure the absence of any statistically significant

differences in blood pleasure, heart rate, gestational age, and TBAs’ number of years

of experience, between subjects in the two sets.

For the nested five-fold cross validation, subjects were stratified - i.e. distributed

to one out of five possible folds, thus ensuring that features belonging to a given sub-

ject were present only in one fold. However, since the number of classes per subject

was different in the training set (See Figure 4.6), the data set was class-unbalanced.

To address this problem, a similar strategy as that presented in Valderrama et al.

(2017) [373] was used; the number of classes for each fold was balanced using sam-

pling with replacement (bootstrapping). For each fold, 10 samples per class per

feature were randomly selected from the fold subjects’ samples using sampling with

replacement. The selection was performed in proportion to the relative contribution

of each subject’s data in each fold. Using the balanced folds, the pair of parameters

C and σ with the highest recall was selected. Using this parameter pair, the final

model was trained using all the balanced training data.

To asses the performance of the classifier on the test set, the logistic regression
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model (for silent vs. non-silent classification) was first applied. Those samples clas-

sified as non-silent were then input to the multiclass SVM. A confusion matrix was

calculated for the final result. This process was repeated 100 times, randomly se-

lecting different samples in the sampling with replacement procedure. Likewise, this

process was repeated for each of the possible window length (0.75, 1.50, 2.25, 3.00 and

3.75 s). In addition to the confusion matrix, global recall, precision, and the F1 score

were calculated using micro-averaging and macro-averaging for the individual recall

and precision of each class. Micro-averaging pools per-document decisions across

classes, and then computes an effectiveness measure on the pooled contingency table.

Macro-averaging computes a simple average over classes - the difference between the

two can be large.

Micro-averaged precision (µPr), recall (µRe) and the geometric average of the two

metrics, micro-averaged F1 (µF1), were calculated as:

µPr =

∑5
i=1 TPi∑5

i=1 TPi +
∑5

i=1 FPi
, (4.6)

µRe =

∑5
i=1 TPi∑5

i=1 TPi +
∑5

i=1 FNi

, (4.7)

µF1 = 2
Prmicro ×Remicro
Prmicro +Remicro

, (4.8)

where i is the index of each of the five classes ( Good Quality, Poor Quality, Interfer-

ence, Silent and Talking); TP is the true positive of the i− th class, FP is the false

positive of the i− th class; and FN is the false negative of the i− th class.

Similarly, the macro-averaged Pr, Re and F1 (MPr, MRe, and MF1) metrics

were calculated as:

MPr =
1

5

5∑
i=1

TPi
TPi + FPi

, (4.9)

MRe =
1

5

5∑
i=1

TPi
TPi + FNi

, (4.10)
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MF1 = 2
Prmacro ×Remacro
Premacro +Remacro

. (4.11)

After calculating the performance of the classifier, the same performance eval-

uation procedure was repeated for the best window length using only the features

obtained with the mRMR feature selection algorithm.

4.3.9 Processing time

A final experiment was performed taking into account the processing time for feature

extraction. Specifically, features were removed from the final model in order of the

slowest to fastest processing time, and then the classifier was retrained and tested at

each step to evaluate the performance of any ensemble of feature which cumulatively

can be run under a second on a standard processor (an Intel(R) Xeon(R) CPU E5-

2660 v2 @2.20GHz, on which we report all results here).

As a final step, mRMR was again applied to the real time features to determine if

a small subset of them could perform almost as well as all the real time features. This

was to ensure real time performance on even a weak smartphone processor. In our

field work, we use a 1 GHz dual-core ARM Cortex-A9 running on Android 4.0, which

is considerably slower [270]. To estimate the ratio of computational speed between the

two processors (and hence make a reasonable estimate about whether the algorithms

presented here could run in real time on the field device), we evaluated a standard

FFT library [108] on both devices. An arbitrary 3.75 s DUS segment was presented

to the FFT library 100 times, and the compute time was recorded and averaged.
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Figure 4.7: Error bars (median +/- IQR) per-class recall as a function of window length
over 100 iterations of balanced bootstrap resampling of the unbalanced data.

Figure 4.8: Error bars (median +/- IQR) per-class precision as a function of window length
over the 100 iterations.

4.4 Results

4.4.1 Model performance

Figure 4.7 and Figure 4.8 respectively illustrate the per-class recall and precision as

a function of window length. Precision was acceptable for all window sizes for all

classes except ‘interference’. Recall was acceptable for all classes except ‘talking’. In

general, a window size of between 1.5 s and 2.25 s gave best results, although there

was not a large window size effect. However, it is notable that the IQR decreased as

the window length increased.
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Table 4.3: Confusion matrix of the classifier assessed on test data for window length of
3.75 s, and repeated 100 iterations. At each iteration, the data are sampled randomly with
replacement, balancing the classes of the training set.

Actual
Good Quality Poor Quality Interference Talking Silent Total

P
re

d
ic

te
d

Good Quality 932,613 13,226 1,505 901 0 948,245
Poor Quality 36,144 383,326 3,308 5,942 297 429,017
Interference 0 0 42,899 189 0 43,088
Talking 9,043 32,848 22,888 212,168 750 277,697
Silent 0 0 0 0 951,053 951,053

Total 977,800 429,400 70,600 219,200 952,100 2,649,100

Table 4.4: Median global metrics of classifier on DUS segments (assessed on test data),
based on 100 iterations. Recall, precision, and F1 score were aggregated for all classes using
both micro-average and macro-average approaches.

Metric (%)
Window length (second)

0.75 1.50 2.25 3.00 3.75
µRe 93.9 95.3 95.5 95.9 96.3
µPr 93.0 94.3 94.4 94.8 95.2
µF1 93.5 94.8 94.9 95.3 95.7
MRe 87.5 88.7 88.6 88.5 88.4
MPr 91.0 92.6 92.3 92.4 92.8
MF1 89.3 90.7 90.4 90.4 90.5

Table 4.3 presents the confusion matrix of the resultant classifier on the test data

for window length of 3.75 s. (Confusion matrices of other window lengths are omitted

for brevity). Correct classification of the majority of ‘talking’ segments was achieved,

but a considerable number of other classes were also labeled as ‘talking’. Specifically,

approximately 32% of interference segments were classified as talking, thus reducing

the recall of this latter class. Similarly, precision of talking is affected because of the

large number of interference segments classified as talking.

To provide an overall metric of the classifier presented here, a global precision,

recall, and F1 score were calculated using both micro-average (eqs. 4.6, 4.7, 4.8) and

macro-average approaches (eqs. 4.9, 4.10, 4.11). As can been seen from Table 4.4,

both approaches (micro and macro) provide a global F1 score higher than 90%. Also,

for both approaches, global recall, precision, and F1 score increased as window length

increases, with only a marginal effect on window size.



89

Table 4.5: Cumulative performance when adding individual features selected by the mRMR
algorithm ranked in order of execution time on a Intel(R) Xeon(R) CPU E5-2660 v2
@2.20GHz processor for a 3.75 segment of DUS with individual computation times. The
final column indicates the performance of the classifier using the feature and all features
above it in the table. (Note that due to rounding, the cumulative execution time is not
exactly the sum of the individual times.)

Feature Computation (& Cumulative) time (ms) µF1 MF1
Wavelet energy percentage level 1 (1000-2000 Hz) 0.03 (0.03) 68.2 56.5
Wavelet energy percentage level 2 (500-1000 Hz) 0.01 (0.04) 77.0 60.5
MFCCs using max function coeff 5, 11, 12, 13 8 (8) 80.2 68.0
MFCCs using mean function coeff 6, 11 0.05 (8) 87.2 79.5
MFCCs using min function coeff 3,13 0.05 (8) 91.9 86.7
MFCCs using median function coeff 2, 8 0.27 (8) 93.3 88.7
MFCCs using std function coeff 9, 11, 12, 13 0.05 (8) 93.5 88.8
PSD ratio 4 (800 Hz) 11 (19) 95.6 93.1
PSD ratio 2 (217 Hz) 0.12 (19) 95.6 92.9
PSD ratio 3 (434 Hz) 0.13 (20) 95.8 93.9
F0 (fundamental frequency) 21 (40) 95.9 93.9
SQI 2 (linear resampling autocorrelation) 1028 (1068) 96.3 94.3
SQI 3 (DTW) 3061 (4129) 96.5 94.4
SQI 4 (wDTW) 4851 (8980) 96.8 94.5

Table 4.6: Median performance obtained on the held out test data by the retrained classifier
using the selected features by the mRMR algorithm for a window length of 3.75 s, based
on 100 bootstrap iterations.

Metric Good Quality Poor Quality Interference Talking Silent
Re 96.6 92.8 94.8 89.5 99.9
Pr 97.3 89.2 88.7 95.8 100.0

4.4.2 Feature selection and real time performance

Table 4.5 provides the 23 features selected by the mRMR algorithm and ranked

based in the median computation time for extracting them from a DUS segment of

3.75 s. Cumulative compute time and held out F1 score are also provided. Those

features which prevent the real-time execution of the routine are italicized. Figure 4.9

illustrates the F1 global scores obtained as a function of number of features (backward

selection, removing the slowest feature each time) and compute time. Table 4.6

summarizes test set performance per class on the reduced feature vectors (for real

time operation). Note that recall and precision for Talking and Interference improved.

After applying the mRMR algorithm to the 83 features corresponding to features

with executions time lower than 100 ms, a total of 17 features were selected (see

Table 4.7 and Figure 4.10). Using this reduced features set, a µF1 score of 96.0 and
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Figure 4.9: Median F1 scores (± IQR) of µF1 (dashed blue line) and MF1 (dashed red line)
for the different combinations of the mRMR-selected features. Black solid line represents
the corresponding median computation time required for extracting the features from a
DUS segment of 3.5 s. All results are for 100 bootstrap iterations.

Table 4.7: Optimize feature vector selected by the mRMR algorithm applied to those fea-
tures whose median computation time for extraction from a 3.75 second segment is less
than 100 ms. The features are ranked based on the individual execution time. τ is the
cumulative time to compute the features in the corresponding row and all the features in
the preceding rows. G, P, I, T, and S represent Good Quality, Poor Quality, Interference,
Talking and Silent segments of data respectively.

Feature
τ

µF1 MF1
Recall Precision

(ms) G P I T S G N I T S
Wavelet % energy at (1000-2000 Hz) 0.03 74.5 58.4 89.7 11.2 51.1 16.0 99.9 87.8 50.9 10.5 25.0 100.0
Wavelet % energy percentage at (500-1000 Hz) 0.03 80.7 63.7 85.0 54.1 52.8 31.0 99.9 89.0 62.0 16.9 46.1 100.0
Wavelet % energy percentage at (250-500 Hz) 0.04 82.9 65.2 89.8 60.2 45.3 33.5 99.9 90.7 69.4 16.7 47.5 100.0
MFCCs using max function coeff 5, 12, 13 7.91 84.0 67.4 90.0 60.3 45.0 43.7 99.9 91.9 67.0 17.7 58.2 100.0
MFCCs using mean function coeff 6 7.93 91.4 83.4 96.3 80.1 86.4 63.0 99.9 93.8 86.5 48.8 80.1 100.0
MFCCs using median function coeff 2, 8 8.20 94.4 89.4 95.9 86.1 89.2 82.3 99.9 95.7 87.3 68.7 89.4 100.0
MFCCs using std function coeff 9, 11, 12, 13 8.25 95.0 90.6 96.6 87.7 90.1 83.7 99.9 96.2 87.7 72.3 92.7 100.0
PSD ratio 4 (800 Hz) 19.20 95.6 93.2 96.5 89.5 95.8 87.3 99.9 96.1 88.2 85.5 94.8 100.0
PSD ratio 2 (217 Hz) 19.30 95.7 93.5 96.4 89.8 95.3 87.9 99.9 96.2 87.6 87.3 95.1 100.0
PSD ratio 3 (434 Hz) 19.46 95.8 94.2 96.3 90.2 94.7 88.4 99.9 96.2 86.8 96.1 94.8 100.0
F0 (fundamental frequency) 40.01 96.0 94.5 96.4 90.6 97.2 88.9 99.9 96.2 88.6 92.8 95.9 100.0

MF1 score of 94.5 were obtained, which are comparable to that using the 23 features

selected using mRMR on all 88 features. Computational times for extracting features

to a DUS segment of 3.75 seconds was reduced to 40 ms from 8980 ms. Moreover,

recall and precision for each remained greater than or equal than 88.9% using the

selected 17 features. We note that no individual feature gave a µF1 score of 75.4 and

MF1 score of 62.1, demonstrating that the multivariate model provided a significant

improvement of any individual features.

The FFT benchmark test resulted into an averaged time of 1.88 ms for the pro-
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Figure 4.10: Median µF1 (dashed blue line) and MF1 (dashed red line) scores (± IQR)
for increasing numbers of features in the classifier. Only 85 features were considered, with
individual execution time of less than 100 ms, and only 17 features were selected using
mRMR. Black solid line represents the corresponding median computation time required
for extracting the features from a DUS segment of 3.5 s. All results represent averages over
100 bootstrap iterations.

cessor on the Samsung S3 mini and 0.21 ms for the faster server processor on which

all results presented here were derived. This suggests that the smartphone processor

will compute metrics nine times slower than the times reported here. In other words,

the time needed for extracting the 17 features presented above for a 3.75 seconds is

approximately 360 ms. However, we note that some of the features other than the

FFT-based ones, may lead to small differences in timing, since the chip architectures

are significantly different in terms of cache and threading. Moreover, other demands

from the operating system may lead to variance in compute time.

4.5 Discussion

The results presented here indicate that is possible to accurately classify different

types of DUS recordings quality by their etiology in real-time, and thereby provide

an instantaneous feedback system to healthcare workers using a DUS device. As for

every application, the trade-off between keeping a low quality recording or discarding

a good quality recording is always the issue. In this work, these issues were balanced;
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however, it may make more sense to adjust the operating point through time.

Among the DUS quality categories, acceptable classification performance for Good

Quality data was achieved for the real time classifier (Pr= 96.2% and Re=96.4%),

ensuring that only a low percentage of good segments are discarded, thereby reduc-

ing the unnecessary retaking of the recordings and creating annoyance for the end

user. Even though the number of classes in this work was increased from two to

five, compared to previous works [373, 353, 351], high performances were seen across

categories, with µF1=96.0 and MF1=94.5.

While the results on optimizing the temporal window length indicate that there

is no clear window size that provides an optimal classification, in our work the 3.75

second window appears to present no large disadvantage. This length agrees with

that defined for the Dawes/Redman approach [85] for computerized fetal analysis.

Furthermore, a 3.75 second window length exhibited a lower IQR for all classes.

Reducing the number features from 88 to 17, greatly reduced computation time

from almost 10 seconds to 40 ms on the training platform (equating to 360 ms on

the low cost field smartphone, , which will allow the implementation of a real time

quality feedback system). The feature reduction also increased the recall for classi-

fying Talking segments and the precision for Interference segments. This indicates

that the values of some of the original 88 features for the Talking and Interference

classes overlapped significantly, and that the overlap was reduced after feature selec-

tion. Although when using the 17 feature real-time version of the classifier, the lowest

Pr for Talking and Re for Interference segments compared to other segments, the im-

provement after feature selection is notable. The high real-time F1 scores indicate

the potential of the method presented here, which is essential for informing the TBA

of the reason for low DUS quality, thus providing a simple method for the TBAs to

remediate the problem at source.

Finally we note that the features chosen are unlikely to be dependent on geographic
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location, because they are general to human speech, but not language specific. How-

ever, if used in a different non-rural context, retraining may be required for noises

such as electromechanical interference from surgical equipment, industrial ambient

noise masking speech, or other industrial noise pollutants such as car alarms. Never-

the-less, these are likely to be misclassified as the wrong noise type, rather than as

good quality data.

4.6 Conclusions

This work presents an approach to assessing DUS signal quality captured by TBAs

with minimal training in the use of the equipment (a low-cost Doppler device con-

nected to a smarthphone). By extracting various signal features over short windows

and using a cascaded classification approach (a binary logistic regression and a mul-

ticlass SVM), this article demonstrates that it is possible to effectively differentiate

between high quality 1D-DUS recordings and the key noises encountered in the chal-

lenging environment of the Guatemalan rural setting. The method presented here

would be portable back to our smartphone app used by TBAs, thereby providing

them with a tool to identify sources of error during recording. Ensuring quality in

the recordings captured by TBAs should facilitate a reliable fetal monitoring system

in LMIC settings for use by non-experts and potentially contribute to reducing the

burden of perinatal health issues.
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Chapter 5

Fetal heart estimation from

1D-DUS signal

5.1 Abstract

Objective: Open research on fetal heart rate (FHR) estimation is relatively rare, and

evidence for the utility of metrics derived from Doppler ultrasound devices has his-

torically remained hidden in the proprietary documentation of commercial entities,

thereby inhibiting its assessment and improvement. Nevertheless, recent studies have

attempted to improve FHR estimation; however, these methods were developed and

tested using datasets composed of few subjects and are therefore unlikely to be gen-

eralizable on a population level. The work presented here introduces a reproducible

and generalizable autocorrelation (AC)-based method for FHR estimation from one-

dimensional Doppler ultrasound (1D-DUS) signals.

Approach: Simultaneous fetal electrocardiogram (fECG) and 1D-DUS signals gen-

erated by a hand-held Doppler transducer in a fixed position were captured by trained

healthcare workers in a European hospital. The fECG QRS complexes were identified

using a previously published fECG extraction algorithm and were then over-read to
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ensure accuracy. An AC-based method to estimate FHR was then developed on this

data, using a total of 721 1D-DUS segments, each 3.75 s long, and parameters were

tuned with Bayesian optimization. The trained FHR estimator was tested on two

additional (independent) hand-annotated Doppler-only datasets recorded with the

same device but on different populations: one composed of 3938 segments (from 99

fetuses) acquired in rural Guatemala, and another composed of 894 segments (from

17 fetuses) recorded in a hospital in the UK.

Main results : The proposed AC-based method was able to estimate FHR within

10% of the reference FHR values 96% of the time, with an accuracy of 97% for

manually identified good quality segments in both of the independent test sets.

Significance: This is the first work to publish open source code for FHR estimation

from 1D-DUS data. The method was shown to satisfy estimations within 10% of the

reference FHR values and it therefore defines a minimum accuracy for the field to

match or surpass. Our work establishes a basis from which future methods can be

developed to more accurately estimate FHR variability for assessing fetal well-being

from 1D-DUS signals.

5.2 Introduction

During pregnancy, fetal cardiac monitoring is a common method for identifying fetal

abnormalities in the second and third gestational trimesters [318]. This identification

process is performed by examining fetal heart rate (FHR) variations in signals between

10 to 60 minutes, using epochs of 3.75 s as is described in the Dawes/Redman system

[279, 85]. Based on the observable variations, physicians and midwives attempt to

identify abnormal patterns indicative of stress or adverse outcomes, in theory facili-

tating timely intervention if required [280, 246, 142].

The most common method to monitor FHR and uterine contractions is using
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Doppler ultrasound devices. These devices use a transducer to measure the change in

frequency of a reflected acoustic wave from an object moving relative to the acoustic

source. In the case of FHR monitoring, the change of frequency is caused by cardiac

wall and valve movements, and sometimes blood flow. These physical movements are

recorded as a one-dimensional ultrasound (1D-DUS) signal, which is demodulated into

an audio recording so that the operator of the device can hear the resultant heart beat

changes in the range of human hearing. This ‘sound’ can then be analyzed to estimate

FHR, much like any other cardiac signal. To achieve this, Doppler ultrasound devices

use autocorrelation (AC)-based approaches, in an attempt to identify the dominant

frequency in a given band (or delay window).

Although Doppler ultrasound devices have been widely used for decades to esti-

mate FHR, one of their limitations is that commercial monitoring companies have

not disclosed the details of the algorithms such that ‘someone skilled in the art’ could

actually reproduce the exact approach [241]. Therefore, the accuracy of Doppler-

based FHR estimation systems remain unknown and replication or improvement of

such approaches is entirely inhibited.

Despite the difficulty of accessing the FHR estimation source code, relatively lit-

tle research has been published concerning improving Doppler-based FHR estima-

tion [173, 175, 288, 308]. The majority of publications on this topic that do exist

were aimed at improving FHR estimations by comparing the proposed method to

estimations provided by direct scalp fECG taken from the fetal head during labor.

Although these methods used an accepted reference methods with which to compare

their results, they had some limitations. Specifically, they developed and tested their

methods using only one dataset composed of only a few patients (between 1 to 15)

[173, 175, 288, 308], optimizing parameters for their specific dataset without holding

out data for validation, making it highly unlikely that the developed algorithms would

have any generalizability beyond the small number of individuals studied [214].
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In addition to AC-based methods, in recent years, researchers have also proposed

a different approach to estimate FHR from 1D-DUS signals. Specifically, Al-Angari

et al. (2017) proposed the use of empirical mode decomposition (EMD) of the 1D-

DUS signals and the kurtosis of the instantaneous mode function (IMF) as a measure

of FHR [6]. This method was trained using abdominal fECG as a reference. The

method was developed using a total of 44 1D-DUS signals of one-minute length each

individually extracted from healthy single pregnant women within 24 and 42 gesta-

tional weeks. The authors presented evidence that the EMD-kurtosis method achieved

higher accuracy than AC-based methods, specially for low SNR signals. However, the

parameters of this method, such as the number of IMFs and the window size to calcu-

late kurtosis, were optimized using all of the dataset, again leading to likely overfitting

on the limited data used.

Therefore, the aim of this work is to develop a reproducible and generalizable

AC-based method able to accurately estimate FHR from 1D-DUS taken with an

inexpensive hand-held transducer [351, 354] from subjects of different populations.

Although AC-based methods are affected by the inherent smoothing or averaging of

the autocorrelation (ACF) [176, 201, 65], an AC-based FHR estimator remains a com-

putationally inexpensive approach and, if it is confirmed to be accurate to estimate

FHR, it can be a valuable first indicator for fetal well-being in itself. Moreover, a

recent work has shown that an accurate AC-based estimator can be the basis of more

advanced analysis to segment 1D-DUS into beat-to-beat segments [351], from which

FHR variability analysis can be performed.

To ensure an accurate FHR estimation, the method was optimized by comparing

to FHR obtained from a simultaneously recorded abdominal fECG as a benchmark.

After the method was optimized, it was tested on two independent datasets and

different populations, and over the second and third trimesters in order to test any

dependency on gestational age.
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5.3 Methods

5.3.1 Databases

This work used three different 1D-DUS databases collected over a period of four

years. All signals were acquired using a hand-held 1D-DUS device (AngelSounds Fetal

Doppler JPD-100s, Jumper Medical Co., Ltd., Shenzhen, China) with an ultrasound

transmission frequency of 3.3 MHz and a digitization sampling frequency of 44.1 kHz,

captured using a Samsung S4, S3 mini or S4 mini and stored as uncompressed WAV

files at 7056 Kbps (16 bits).

Leipzig University Hospital Database

This dataset, used for training the FHR estimation algorithm in this study, was

collected at the Leipzig University Hospital (LUH) in Germany, as part of the study

presented in [23]. The database included data from 16 volunteers with pregnancies be-

tween the 20th and 27th week of gestation, including pathological cases such as Inter-

uterine growth restriction (IUGR), premature rupture of membranes, or fetal heart

failures. The study was approved by the Leipzig University Hospital ethics commit-

tee (record 348-12-24092012), and written informed consent was obtained from each

patient. For each subject, indirect abdominal fECG, a maternal ECG reference and

a 1D-DUS signal were simultaneously recorded by clinicians. The fECG recordings

were acquired from 7 abdominal channels using a 16bit commercial ADC using the

ADInstruments ML138 Octal Bio Amp and ADInstruments PowerLab 16/30 (ADIn-

struments, Dunedin, NZ), and stored at a sampling frequency of 1000 Hz. Spectral

filtering was also performed in the hardware by a mains filter (cutoff frequency at 50

Hz) and a first-order high-pass filter (cutoff at 1 Hz).
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Oxford JR Database

This dataset was collected at the John Radcliffe (JR) Hospital in Oxford, UK.

The study was approved by the NHS Health Research Authority (REC reference:

12/SC/0147) and written consent was obtained from each study subject prior to data

collection. Each subject received detailed information on the study protocol and their

right to withdraw from the study at any stage of the recording session, which was

carried out by professional midwives. The dataset included 1D-DUS signals from 17

healthy pregnant women, who bore singletons between 20 and 38 weeks of gestation.

This database has also been used in previous related 1D-DUS studies [353, 351, 373].

Guatemala RCT Database

This dataset was collected as part of a randomized controll trial, conducted in rural

highland Guatemala in the vicinity of Tecpán, Chimaltenango. The study focused

on the use of the Doppler device, and an accompanying app with data capture and

decision support software built-in, to improve the continuum of care for indigenous

women of the target region. The study was approved by the Institutional Review

Boards of Emory University, the Wuqu’ Kawoq I Maya Health Alliance, and Agnes

Scott College (Ref: IRB00076231 - ‘Mobile Health Intervention to Improve Perinatal

Continuum of Care in Guatemala’) and registered as a clinical trial (ClinicalTrials.gov

identifier NCT02348840). All 1D-DUS signals were recorded by traditional birth

attendants (TBAs), who were trained to use the hand-held device. Before recording

the signals, the TBA also entered the gestational age in months and the maternal

heart rate, measured using a self inflating blood pressure device (Omron M7), into

the same mobile application designed to record the 1D-DUS.

In a recent study on 1D-DUS signal quality assessment we found that quality is

critical for the estimation of fetal heart rate [374]. Since processing low quality data

would lead to spurious comparisons with incorrect heat rates, only 1D-DUS signals
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that had been manually annotated as “good quality” were used. In total, there were

195 1D-DUS signals recorded from 146 pregnant women, who were carrying singletons

between the fifth and ninth month of gestation.

5.3.2 Manual Heart Rate Estimation

To evaluate the performance of automatic FHR estimation algorithms, it was neces-

sary to manually annotate the heart rate in each database. This was performed on

a temporal sequence of overlapping 3.75 s windows of 1D-DUS data, and in the case

of the Leipzig University Hospital database, on the simultaneous fECG windows as

well.

Annotation of the Leipzig University Hospital(LUH) Database

For the LUH database the fECG channels were visually inspected to locate beats

in both the Doppler and fECG recordings. Since the fECG was recorded from the

maternal abdomen, the first step was to remove the maternal components. To do

this, a previously validated fECG extraction method based on an extended Kalman

smoother was used [38]. Then, the filtered fECG and the 1D-DUS signal were resam-

pled to 4 Khz, and were displayed in a graphical user-interface (GUI) (Figure 5.1),

using a window size of 3.75 s, written in Matlab (MathWorks, Natick, MA, USA). The

3.75 s window was chosen because it is the usual length for computerized analysis of

fetal non-stress tests based on the Dawes/Redman criteria [279, 85]. Furthermore, in

our previous work this window length was shown to be suitable for assessing 1D-DUS

quality acquired with the same hand-held device used in this study [374]. In addi-

tion to the fECG and 1D-DUS signals, the Matlab GUI also displayed the estimated

times of the QRS peaks from both maternal and fetal ECG using algorithms in the

FECGSYN toolbox [38]. These estimated fECG QRS peak times were taken as guide

for locating the beats in the 1D-DUS signal.
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Figure 5.1: GUI used to annotate LUH database. The first seven channels correspond to abdominal
fECG after filtering maternal components using an extended Kalman smoother and peak detection
of fetal (black circles) and maternal beats (red crosses, upper plot) [38]. The last channel in the
plot is the 1D-DUS signal re-sampled at 4 kHz. Using buttons on the right of the GUI, and the
automatic detection as a preliminary guide, two independent annotators provided quality of fECG
and 1D-DUS. For good quality 1D-DUS, fECG beats are located (green circles in the upper part of
each fECG subplot).

Two independent annotators used the Matlab GUI to assess the quality of 1D-DUS

and fECG channels, and to place the beat time location based on fECG channels.

For each 3.75 s segment, annotators listened to the ultrasound recording and noted

the number of audible beats, and labeled the 1D-DUS quality using the same class

hierarchy described in [374], namely, good, poor, electrical interference, talking, silent,

or unsure. Since 1D-DUS quality may affect the FHR estimation [351], only 1D-DUS

segments with good quality were retained for heart rate estimation. After labeling

the 1D-DUS quality, annotators labeled each fECG channel as:

• A: All QRS complexes can be seen (although not necessarily in the same chan-
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nel)

• B: Some QRS might be missing or some extra beats

• C: Lots of noise and absent signal/dropout but see at least two neighboring

beats

• D: Almost completely noise

• E: Unsure

To annotate the beat time location, the visible peaks contained in the good quality

fECG channels were used. As an initial estimate, the location provided by automatic

fECG QRS detection was used; however, annotators were able to correct those lo-

cations using the GUI. To avoid confusing maternal breakthrough for fetal peaks,

annotators used visual inspection of the maternal ECG and detected peaks, provided

in the upper subplot of the GUI (red crosses in Figure 5.1), thus discarding any peak

when it was aligned to a maternal peak and out of sequence. Observation across all

fECG channels was used to improve the accuracy of beat time locations.

After finishing the annotation process for all the 1D-DUS and fECG channels and

retaining segments with simultaneous high quality fECG and 1D-DUS, 5 of the 16

subjects were included, the remaining were eliminated due to high noise levels in

either of the channels. (Data were collected serendipitously as part of another study

in which 1D-DUS recording quality was not prioritized.)

To ensure that beat time locations were consistent, the difference in seconds, δ, of

fECG peak times between the two annotators was compared. Figure 5.2 shows that

for 95% of annotated beats, the difference between pairs of annotations was less than

50 ms. Therefore, a high level of trust was ensured in the fECG annotations.

The reciprocal of the median of the interval between fECG peak times in a 3.75 s

segment (scaled by 60) was used to estimate the reference FHR. The median is highly

robust to missing or extra peaks [73].
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Figure 5.2: Histogram of time differences between beat time locations from two independent anno-
tators. The horizontal axis, δ, is the difference in seconds of the two annotations for the fECG peak
timing. The vertical axis represents a logarithmic scale of the count (n) of each difference. Note
that 95% of the annotations differed by at most 0.05 s.

Annotation of Oxford JR Database

Each of the 1 minute-length 1D-DUS signals were labeled by three different expert

annotators using a Matlab GUI. Each reviewer independently labeled the quality of

each second as:

• Noise: No information available in the signal.

• Poor: The signal may contain heartbeats, but it is too ’noisy’ to identify them.

• Intermediate: Difficult to hear heartbeats, but can be done with some effort.

Heart rhythm detection may be possible.

• Good: Some background noise, but heartbeats can be heard clearly. Heart

rhythm detection is possible.

• Excellent: Almost no background noise, heartbeats are easy to identify, heart

rhythm detection is possible.

These categories defined the signal quality of the 1D-DUS segments. Furthermore,

while annotators were listening to the 1D-DUS segment, they clicked a mouse to

indicate the temporal location of each beat that they heard.
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After labeling all the segments, one-minute segments were split into 3.75 s with no

overlap. Only segments in which at least two annotators labeled the same class were

used. The manual FHR was estimated by first aligning the points that annotators

clicked for the beat sound. The closer points were grouped and their median was

taken as initial beat location. These locations were corrected using the homomorphic

envelope of the 1D-DUS segment. Starting from the last beat location of the segment,

the closest peak was searched in a window starting one interval prior to the annotation

and ending 1/4 interval thereafter. Then, using reverse iteration, each peak time was

corrected by finding the maximum peak in a window of ± 15 BPM from the last

corrected peak. More description of the method can be found in [351].

Similar to the LUH dataset, for the Oxford JR dataset, the manual FHR was

estimated as FHR = 60/median(I) BPM, where I is a vector containing the difference

in seconds between two corrected adjacent peaks.

Annotations of Guatemala RCT Database

For this dataset, only segments that had been manually classified as good quality

in our earlier work [374] were used. Since in Doppler ultrasound each cardiac cycle

is represented by a combination of cardiac wall and valve movements [327], it is ex-

tremely complicated to mark one specific point as a beat location, thereby producing

a large variation among annotators. Listening to the data and attempting to hit a

button when a beat is heard is also problematic since human reactions, keyboard

delays, etc., add in large variable time delays [354]. To address this problem, we

designed a Matlab GUI (Figure 5.3) to count the number of audible beats in each

3.75 s segment. The beat counting was performed by three independent annotators.

The median number of beats over all three annotators, b, was used to define the FHR

estimate as FHR = 60b/3.75 BPM.
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Figure 5.3: GUI used to manually annotate the number of beats in the Guatemala RCT dataset.
Annotators listened to each 3.75 s segment, counting and recording the number of audible beats.

Table 5.1: Summary of final datasets used for developing fetal heart rate estimator. The Leipzig
dataset was used for optimizing the parameters since it contains simultaneously recorded fECG, a
validated reference technique used for fetal cardiac monitoring. The remaining two dataset were
used as independent test sets. For the Oxford dataset, the number of good and excellent quality
segments are shown in parenthesis.

Database Number of subjects Number of 3.75 s segment GA range (weeks) Additional recordings Use
Leipzig (LUH) 5 721 20-27 fECG, maternal ECG Training

Oxford JR 17 894 (482) 20-38 1D-DUS quality labels Testing
Guatemala RCT 99 3938 20-40 blood pressure, maternal HR Testing

5.3.3 Datasets

The number of 1D-DUS segments obtained for each dataset after the manual FHR

estimation process are displayed in Table 5.1.

Figure 5.4 shows the distribution of the manual FHR estimations of the three

datasets used in this work. Note that they form very different distributions, hav-

ing been derived from datasets with different gestational ages. The LUH dataset

contained subjects with lower gestational ages (generally less than 27 weeks) than

the Oxford and Guatemala RCT datasets and FHR is known to be higher earlier at

earliers stages of pregnancy [166]. Accordingly, the histogram of the Leipzig manual
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FHR estimations had a peak around 150 BPM, whereas the other two datasets had a

peak around 135 BPM. Note also that the majority of FHR estimated values are found

concentrated into in the 110 to 160 BPM normal interval [291]. The LUH and Oxford

JR datasets appear to have continuous distributions since manual annotations were

performed based on the timing of the peak. On the other hand, the Guatemala RCT

dataset contained a much more pronounced quantization because the annotation of

this dataset was based on the number of audible beats in a 3.75 s window, ranging

between 112 to 192 BPM (7 to 12 beats in 3.75 s).

5.3.4 Heart rate estimator

The following subsections describe our AC-based method to estimate FHR from 1D-

DUS signals. The corresponding source code is available from a public repository

[376] under a BSD Clause 2 license.

Noise removal

As extreme noise affects the estimator prediction, noise spikes were removed, using

the algorithm presented in [321]. This algorithm splits the 1D-DUS segment into

windows of a specified interval. In this work, the interval was defined to be 0.75 s

to contain at least one beat based on a heart rate of 80 BPM, which is the lower

bound on a normality interval [291]. For each of the windows, the maximum absolute

amplitude (MAA) was calculated. Then, windows whose MAA value was higher than

a threshold, defined as three times the median MAA of the segments, were marked

as containing spikes. To remove spikes, the marked window with the greatest MAA

was selected, defining the spike interval as the first zero-crossing before and after

the MAA. That interval was set to zero. After this, the median windows MAA and

threshold were recalculated, and the procedure was repeated until there were not

windows with MAA greater than the threshold.
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(a)

(b)

(c)

Figure 5.4: Manual FHR (FHRm) estimations for datasets: (a) Leipzig dataset; (b) Oxford dataset;
(c) Guatemala RCT dataset. The solid (red) lines represent the probability distributions smoothed
using a normal kernel function [53]. The Leipzig and Oxford datasets appear to have continuous
distributions, while the Guatemala RCT contained a much more pronounced quantization.

Frequency range of interest

The cardiac frequency range for the device used here was estimated from observations

in the current literature. For instance, Tutschek et al. (2003)[365] found that from
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the 12th gestational week, the peak cardiac wall velocities could be measured by

tissue Doppler echocardiography. This finding suggests that cardiac wall movement,

in particular ventricular motion, may be present in any acquired 1D-DUS signal.

According to the authors, the axial cardiac wall velocities of the right and left ventricle

are described by the following second order data fitting models:

VRV = 0.017x2 + 0.5944x+ 9.0522,

VLV = 0.009x2 + 0.2104x+ 5.0742,

(5.1)

where VRV and VLV , in cm/s, are the axial cardiac wall velocities of the right and left

ventricle, respectively; and x is the gestational age in weeks.

To define the cardiac frequency range, the empirical models of the cardiac wall

velocities (Eq. 5.1) were combined with the equation of Doppler magnitude frequency

shift fD, defined as [189]:

fD =
2fo
c
V cos θ, (5.2)

where fD is the measured change in frequency (Hz), fo the frequency of emitted

ultrasound transducer in Hz, c the speed of sound in soft tissue in m/s, V the velocity

of the reflecting interface in m/s and θ is angle the between ultrasound beam and the

surface in radians.

The hand-held Doppler ultrasound device used in this work has an fo of 3.3 MHz.

The speed of sound in human tissue (c) in standard-compliant ultrasound machines

is 1540 (m/s) [104]. The maximum fD is achieved when θ is 0 rad, whereas it

is minimum when θ is π/2 rad. Using a gestational range interval from 20 to 40

weeks, the maximum and minimum values for measured change in frequency (Hz)

were estimated (see Table 5.2). Based on Table 5.2, the cardiac frequency range was

extracted using a 25-600 Hz bandpass filter. Low frequencies (below 25 Hz) were
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removed to reduce disturbances introduced by fetal or device movement.

Table 5.2: Expected minimum and maximum values for measured change in frequency (Hz) from
over a gestational age ranging from 20 to 40 weeks. RV and LV stands for right and left ventricular,
respectively.

Variables RV LV RV LV
GA [weeks] 20 40

V [m/s] 0.04 0.04 0.12 0.11
fDmin [Hz] 0 0 0 0
fDmax [Hz] 169.89 191.41 534.69 473.92

Homomorphic envelope

Given the capacity of complex homomorphic filtering to extract envelopes from phys-

iological processes [302], such as electromyographic or respiratory signals, in this work

we applied this method to the 1D-DUS segments. The rationale behind this technique

is to assume that physiological processes are generated by a multiplicative system as:

s(t) = Am(t) cos(wct), (5.3)

where Am(t) is the modulating signal carrying the information, and cos(wct) is the

carrier signal oscillating at a frequency of wc. However, since the carrier frequency,

wc, is unknown, the demodulation is not straightforward. It can however, be achieved

by transforming the modulation process into a system of linear filters. Although this

transformation can be performed as:

log(s(t)) = log(Am(t)) + log(cos(wct)), (5.4)

applying it directly to real signals can cause a major concern since logarithm has a

singularity at zero. Nevertheless, this problem is alleviated by using the analytical

signals as is presented in [302]. Specifically, the Hilbert transform is used, which
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converts the real function, s(t), into an analytical function as:

z(t) = s(t) + is̃(t), (5.5)

where s̃(t) is the Hilbert transform of s(t). The analytical function, z(t), has the

advantage that its magnitude, |z(t)|, is equivalent to that of the message signal in

the amplitude modulation process. Thus, the magnitude, |z(t)|, is decomposed into

amplitude and oscillating components by using Eq. 5.4. Then, the amplitude com-

ponents are kept by using a low-pass filter. Finally, taking the exponential of the

low-pass filter output, the homomorphic envelope of s(t) is extracted.

Automatic Fetal Heart Rate Estimation

The FHR was estimated by applying the ACF to the homomorphic envelope of the

1D-DUS signal. The ACF was estimated in time-domain using a rectangular window

from lag 0 to the length of the 1D-DUs segment (i.e. 3.75× 4000 = 15000 samples).

As described in Box et al. (2015)[54], the k− th lag correlation, rk, of a sequence y[n]

was calculated as:

rk =
ck
c0
, (5.6)

where c0 is the sample variance of y[n], and ck is:

ck =
1

T

T−k∑
i=0

(y[i]− ȳ)(y[i+ k]− ȳ), (5.7)

where ȳ is the mean of y[n], and T the length of y[n].

The envelope periodicity was determined from the ACF using the algorithm shown

in Figure 5.5 and in Appendix B. This algorithm found peaks within a window range

of possible FHR values, which was defined by a lower interval value within 0.25-0.3

s (200-240 BPM) to an upper interval value within 0.8-1.0 s (60-75 BPM). Since the
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Figure 5.5: Flow diagram of algorithm used for finding the peak in the ACF to determine the heart
rate period. Pseudocode for this flow diagram is provided in in Appendix B.

maximum window length using these values could be 0.75 s, the window may include

at most two prominent peaks in the ACF.

of the 1D-DUS segments in the training data contained harmonics within this

region. In case the peaks are harmonics, the temporal value (lag) of the first peak is

selected as that which represents the periodicity. Otherwise, the first peak is selected

only if the amplitude ratio between the peaks, ζ, is greater than a threshold, which

was determined by parameter optimization described in the following section.

For instance, Figure 5.6 shows an example for one of the 1D-DUS segments. As

can be seen, there are two peaks inside the search window. In this case, if the highest

amplitude peak were selected without comparison to the lower amplitude peak, it

would lead to an incorrect estimate of the heart rate period (i.e a period of 0.749 s or
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Figure 5.6: ACF for a 3.75 1D-DUS segment. Vertical dashed and dotted lines indicates the
respective start and end points of the window within which a search is made for the peak related
to the heart rate period. Peaks inside the window search are compared using algorithm showed in
Figure 5.5 to find the right time location for the signal period.

80.1 BPM). The first peak correctly corresponds to a period of 0.382 s (157.3 BPM).

The ratio of the peaks, γ, is 0.382/0.749, which is close to 0.5, indicating the second

peak is a harmonic and should be ignored.

Once the algorithm selects a peak time, the FHR of the 1D-DUS segment (i.e.

periodicity) is determined as FHR = 60/l BPM, where l is the time location in second

of the selected peak.

Parameter optimization

There are four parameters that must be optimized to estimate the FHR. The first

is the cut-off frequency of the low-pass filter used to extract the envelope from the

complex signal. The second (τ) and third (υ) parameters are the lower and upper

bounds of the interval of the window used for finding peaks in the autocorrelation.

The fourth parameter, φ, is the threshold used for comparing the peaks amplitude

within the search window.

The four FHR estimator parameters were determined using Bayesian optimization

with 1000 iterations over the training set (a subset of the Leipzig dataset). The pa-

rameter search space was defined as shown in Table 5.3. The Bayesian optimization

used the mean square error (MSE) of the difference between the manual FHR anno-
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tation and the FHR estimations of the training subjects (MSEm−t) as the objective

function to be optimized. In detail, given a parameter tuple within a search space

bounds, the objective function first calculated the MSEm−t of each training subject,

and then averaged the individual MSEm−t values.

At the beginning, the Bayesian optimization algorithm defined a Gaussian pro-

cess (GP) for the objective function with mean 0 and covariance kernel defined by the

Automatic Relevance Determination (ARD) Matérn 5/2 kernel [341]. At each itera-

tion, the GP was updated using the posterior probability of the new evaluated tuple.

The tuple to evaluate at each iteration was selected using the expected-improvement

acquisition function (EI) [128]. This function selected the tuple that maximized the

expected improvement on the objective function based on the associated GP. The

parameter expectation ratio of the acquisition function was set to 0.5 to avoid being

stuck at local maxima, thus giving the same weight to explore and exploit parameter

tuples in the solution space. After the 1000 iterations, the parameter tuple with the

minimum value of the objective function was selected as the parameters for the FHR

estimator.

Table 5.3: Parameter intervals used in the Bayesian optimization process.
Parameter Lower bound Upper bound

Cut-off frequency (Hz) 2 15
Minimum Period (s) 0.25 0.3
Maximum Period (s) 0.8 1.0

Threshold 0.55 0.99

5.3.5 Performance assessment

Since the LHU dataset contained both 1D-DUS signals and simultaneous abdominal

fECG, it provided the most accurate reference point from which to start. We trained

our FHR estimator using 60% of this dataset so that the fECG annotations were

used as the primary reference. The remaining 40% of the LHU dataset was used as

validation to reduce the chances of model overfit. The trained model was then tested
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with the Oxford JR and the Guatemala RCT datasets to evaluate generalizability

performance. It is important to note that these two datasets were excluded from

the training procedure because these latter two datasets contained no fetal ECG as

a reference and including all of the populations in the training data would lead to

overfitting [214]. This process is somewhat similar to that of the commercial device

setting, in which algorithms are trained on relatively few recordings, but are expected

to work on a large variety of populations.

Training process

The Leipzig dataset was stratified by subject into training and validation sets, en-

suring that manual FHR values between the two groups did not differ significantly

(p-value > 0.05, Wilcoxon rank sum test). Thus, the training set contained a total

of 430 3.75 s segments from three subjects, while the validation set contained 291

segments of 3.75 s from the remaining two subjects.

After optimizing parameters on the 1D-DUS segments of the training subjects,

the FHR estimator was tested on the segments of the validation subjects. As well

as ensuring a good out of sample optimization, the validation set was also used to

check that the method did not estimate the maternal heart rate (MHR) rather than

FHR. To this end, the automatic FHR estimations were compared to the maternal

heart rate to ensure that the method was indeed estimating the fetal cardiac cycle.

(The MHR was calculated using the maternal ECG simultaneously recorded with the

1D-DUS signals).

Testing process

Using the optimal parameters obtained from the Leipzig dataset, the fetal heart

rate estimator was tested on the Oxford and Guatemala RCT datasets separately

to see if the algorithm generalized to multiple different populations. For both test
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datasets, the automatic FHR estimations were compared to those manually estimated

by the annotators. To perform this comparison two methods were used. First, we

defined a positive percentage of agreement (PPA) as a FHR estimation that are

within 10% of a manual FHR. This bound was deviated from previous works, which

have performed comparison to asses the equivalence in success rate, reliability and

accuracy between FHR measurements obtained from ultrasound CTG and abdominal

fetal ECG [299, 300]. This PPA has been also used to compare ultrasound CTG and

abdominal fetal ECG fetal scalp ECG [105, 78]. Second, to show the bias and the

level of agreement of our FHR estimator, Bland-Altman plots [49] were created.

In the Oxford dataset, FHR estimation was also calculated according to quality

classes in the dataset. For the Guatemala RCT dataset, additional stratification by

gestational age (GA) was performed to check if this variable was a confounder for

FHR estimation. GA comparison was performed comparing all possible pairs of the

available months (5 to 9 months). The significance level (α = 0.05) of the hypothesis

test performed on the 10 possible pairs,
(
5
2

)
, was corrected using the Bonferroni

technique (α/10 = 0.005).

Comparison between Oxford JR and Guatemala RCT datasets

As datasets have different distributions (see Figure 5.4), we performed a two-sided

Wilcoxon rank sum test to determine if the median of the errors between the Oxford

JR and the Guatemala RCT datasets were significantly different. (A one sample

Kolmogorov-Smirnov test was first applied to confirm that the error distributions were

not normally distributed.) Only good quality 1D-DUS segments of both datasets were

used so that meaningless comparisons between spurious estimates were not made. A

total of 3934 and 479 segments for the Guatemala and Oxford datasets, respectively,

were available for analysis.
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Figure 5.7: Error (ε) (difference) between manual FHR (hfm) and automatic FHR (hfa) of the LHU
validation set. Shaded area shows the 10% PPA bounds (error no greater than 10 percent of the
hfm). N stands for the number of segments in the validation set, and in parenthesis is the percentage
of segment satisfying the PPA. The red line is the robust least square fit of ε along the manual FHR
estimations (ε = −0.571 + 0.04hfm; r2 = 0.99).

5.4 Results

5.4.1 Optimized parameters and validation stage

Table 5.4 shows the best parameters obtained through the Bayesian optimization

process. Window search was found to range between 0.29 s to 0.84 s, which was

equivalent to 71.5 and 208.8 BPM, respectively.

Table 5.4: Best tuple of parameters found by the Bayesian optimization process.
Cut-off frequency (Hz) Minimum Period (s) Maximum Period (s) Threshold

14.8 0.287 0.839 0.650

Figures 5.7 and 5.8 show the performance of the trained FHR estimator on the

validation set. As can been seen, 99% of the segments were within the PPA bounds,

whereas the difference between the manual (hfm) and automatic FHR (hfa) was close

to zero with a RSME of 3.68 BPM. The low bias suggests that optimized parameters

were not overfitted, and therefore the resulting algorithm may be appropriate to other

unseen data.

In addition, to further evaluate the performance on the validation set, the auto-

matic FHR was also compared to MHR (Figure 5.9). Only 1 out of 291 estimations

was in the maternal range, thus suggesting that the 430 Doppler segments used for
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Figure 5.8: Bland-Altman plots for the LHU validation set. Mean (µ) and standard deviation (σ)
of ε were 0.34 and 3.67 BPM, respectively. Limit of agreements (µ+2σ) was [−7, 7.68] BPM. RSME
was 3.68 BPM

Figure 5.9: Maternal-Fetal difference in heart rate, for the validation set. This quantity was defined
as the difference between maternal heart rate (hmm) and automatic FHR (hfa) estimation. The shaded
area represents bounds in which automatic HR estimation is considered maternal instead of fetal
based on the PPA (hfa estimation within 10% of the recorded hmm). Only one estimation out of the
291 was within the shaded area, indicating a possible maternal recording (from maternal arteries).

training the estimator indeed corresponded to fetal rather than maternal cardiac ac-

tivity.

5.4.2 Oxford dataset

Using the optimal parameters, the fetal heart rate estimator was applied to the 1D-

DUS segments of the Oxford JR dataset, which included data of different quality

levels. Figure 5.10 shows the difference between the manual FHR and the automatic

FHR discriminated by quality class. For all the signal quality classes, the FHR
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Figure 5.10: Error (ε) in fetal heart rate estimation discriminated by signal quality for the Oxford
dataset: (a) poor quality, (b) intermediate quality, (c) good quality, (d) excellent quality. ε was
defined as the difference between manual FHR (hfm) and automatic FHR (hfa) estimations. Shaded
area shows the PPA error bounds (error no greater than 10 percent of the hfm). N stands for the
number of segments in that signal quality class, and in parenthesis is the percentage of segment
within the tolerance error bounds. The red line is the robust least square fit of ε along the manual
FHR estimations (r2 was 0.995, 0.997, 0.997, and 1.0 for poor, intermediate, good, and excellent
quality, respectively).

estimation algorithm satisfied the PPA bounds over 87% of the time for data of

intermediate or better quality.

Likewise, Table 5.5 shows the bias and variance of the difference between manual

and automatic FHR estimations. As 1D-DUS quality increased, the bias and the

variance decreased, thereby suggesting that signal quality category is critical for FHR

estimation from 1D-DUS signals.

Table 5.5: Mean and standard deviation, level of agreement, and RSME of the Bland-Altman
analysis for the Oxford dataset discriminated by signal quality class.

Quality class Mean (BPM) Standard deviation (BPM) Level of agreement (BPM) RSME (BPM)
Poor 4.72 21.28 [-37.84, 47.28] 21.36

Intermediate 1.08 14.31 [-27.54, 29.69] 14.33
Good 0.52 4.62 [-8.72, 9.76] 4.65

Excellent 0.62 0.12 [0.38, 0.86] 0.63

5.4.3 Guatemala RCT dataset

Figure 5.12 shows the estimator performance for all the Guatemala RCT segments.

As can be seen, 97% of the automatic FHR estimations fit the PPA bounds. Since

the difference between two adjacent values of hfm is 16 BPM, ε increased in 4.48 BPM
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Figure 5.11: Bland-Altman plots for the fetal heart rate estimation discriminated by signal quality
for the Oxford dataset: (a) poor quality, (b) intermediate quality, (c) good quality, (d) excellent
quality. Mean and standard deviation, level of agreement, and RSME for each class are shown in
Table 5.5.

(0.28× 16) as hfm goes from one available value to the next one.

Figure 5.12: Error (ε) measured as the difference between manual (hfm) and automatic FHR (hfa)
estimations for Guatemala RCT dataset. The shaded area represents the PPA bound, defined as no
greater than 10 percent of the hfm. S stands for the number of segments, and in parenthesis is the
percentage of segment satisfying the PPA bounds. Red line is the robust least square of ε along the
manual FHR estimations (ε = −38.63 + 0.28hfm; r2 = 0.9962).

Figure 5.13 shows a Bland-Altman analysis of the manual and automatic esti-

mates of FHR in the Guatemalan RCT database. The mean difference between FHR

estimates was close to zero, whereas the RSME was 6.64 BPM. The low bias and

variance indicate that the FHR estimator can also achieve accurate estimations for

datasets with a completely different distribution than that of the training set (see

Figure 5.4).

Figure 5.14 shows the results for the different GA found in the dataset. As can
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Figure 5.13: Bland-Altman plots for the Guatemala RCT dataset. Mean (µ) and standard deviation
(σ) of ε were -0.17 and 6.63 BPM, respectively. Limit of agreements (µ + 2σ) was [-13.44, 13.10]
BPM. RSME was 6.64 BPM

Figure 5.14: Box plot of the error (ε), defined as the difference between manual heart rate (hfm)
and automatic FHR (hfa), for Guatemalan RCT dataset grouped by gestational age in months. N
indicates the number of segments in the GA group and in parenthesis is the percentage of segments
satisfying the PPA 10% error tolerance. FHR estimations did not statistically significantly differ
among any possible pair of gestational months (Bonferroni corrected p-value of 0.005 (0.05/10);
two-sided Wilcoxon rank sum test).

be observed, FHR estimation errors did not differ significantly statistically between

gestational months (Bonferroni corrected p-value 0.005 (0.05/10); Wilcoxon rank sum

test).

5.4.4 Comparison between Oxford JR and Guatemala RCT

datasets

The medians of the distributions of the errors between hfm and hfa were not statistically

significant (p=0.44; two-sided Wilcoxon rank sum test). Therefore, it seems that the
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distribution type did not affect the performance of the FHR estimator.

5.5 Discussion

5.5.1 Interpretations of Findings

The performance of the AC-based method presented here indicates that FHR can

be reliably estimated from 1D-DUS signals, particularly when coupled with a signal

quality metric. Specifically, our method were able to estimate FHR within 10% of the

manual estimated FHR, achieving these estimations with a low bias and variance. It

is notable that our method accurately estimates FHR using autocorrelation, which is

an inexpensive technique requiring few computational steps and little memory, thus

saving cost and execution time. Presented results suggest that our method is a simple

option able to achieve comparable FHR values to those provided by fECG, which is

considered a validated reference.

In comparison with previous methods which reported a correlation coefficient, r,

of 0.977 [288], and 0.992 [175] between estimated FHR and fECG measurements, our

presented AC-method obtained an r coefficient of 0.9226 and 0.8319 for the good

quality segments of the two test datasets (Oxford and Guatemala RCT). Although

our values were lower, it should be noted that the methods cannot be directly com-

pared since they were not tested on the same dataset. In fact, the methodology

used here to train and test the FHR estimator indicates that parameters found with

Bayesian optimization seem to be generalizable to other datasets. In contrast, previ-

ous methods were tested with few patients [175] or with recordings of a single patient

[288]. Regarding the recently proposed EMD-Kurtosis method that claims to give

more accurate estimations than standard AC-based methods [6], our method did not

optimize the parameters on data used for both training and testing, thus making

generalizability much more likely.
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Our AC-based method demonstrated its robustness to the acquisition environ-

ment. Although the Leipzig and Oxford datasets were recorded in hospital environ-

ments, performed by medical professionals, the method also achieved equivalently

satisfactory results for the Guatemala RCT dataset, which was acquired in rural ar-

eas by non-medically trained users. Likewise, on the Guatemala dataset, the FHR

estimator achieved similar results for pregnancies with GAs greater than 20 weeks (5

months), thus suggesting that gestational age is not a confounding variable for the

estimator (and indicating its promise for future work on predicting GA and growth-

related problems). Moreover, unlike previous research that used data at intrapartum

stages and direct fECG for training there methods [173, 175, 288], here we showed

that FHR estimation from 1D-DUS is also possible for antepartum stages. Finally,

based on MHR comparisons performed for the validation set of the Leipzig dataset,

it is evident that the method presented here estimates fetal heart rate using fetal

cardiac activity rather than maternal one.

The optimized parameters trained over the 60% of the LHU subjects were able to

extend to the other two datasets (Oxford JR and Guatemala RCT) regardless of the

fact that their distributions of the fetal heart rates were different in the other datsets

(see Figure 5.4). Indeed, there was no statistically significant difference estimations

of FHR on the test datsets.

Although the AC-based method obtained accurate estimations for all tested datasets,

it is important to note that since the Guatemala dataset is more quantized than the

Oxford dataset, there is a larger quantization error for the former dataset. Indeed,

since the difference between two possible reported values over 3.75 s windows was 16

BPM (∆=16), the method has a quantization error of ± 8 BPM (∆/2=8), whereas the

Oxford dataset did not have such as coarse quantization error.
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5.5.2 Study Limitations

As previous research has reported, signal quality has been shown to be a relevant

issue for heart rate estimation using AC-based methods [351, 6]. In fact, for the

Oxford dataset, in which segments of different quality were available, the accuracy of

the estimation depended on the 1D-DUS quality. This low accuracy for poor quality

signals is explained by the fact that the ACF fails to provide a reliable determination

of the signal periodicity when it contains additional spikes caused by noise. Neverthe-

less, the AC-based FHR estimation method presented here has been shown to be an

accurate method across multiple datasets, mapping closely to industrial guidelines,

for data of intermediate or better quality. We do not expect any system to provide

good heart rate estimation when data are heavily corrupted, and in fact it is more

important at that point to not report heart rate, but to report that the data are

non-analyzable. In our earlier works, [353, 351, 373, 374], we demonstrated accurate

methods for separating low from good quality data, and even identifying the etiology

of the noise. Therefore, coupling these works together may lead to a robust system

that could be used in an automatic or semi-automatic manner.

Although all the datasets used here were acquired with the same hand-held device

introduced in [351, 354], all datasets were recorded and manually annotated by in-

dependent volunteers, thereby reducing or eliminating any dependency among them.

Future work should evaluate the performance of the method presented here using

1D-DUS acquired with different devices; however, promising results obtained here

suggest that the method would estimate suitable results with minimal adjustment.

One of these adjustments could be the frequency ranges for filtering the cardiac wall

velocities since the ultrasound frequency might be different for other devices, thus

modifying values presented in Table 5.2.

One limitation of our implementation was the small number of simultaneously

acquired Doppler and fECG recordings available for training. The dataset was col-
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lected by a partner group as an ancillary study to a larger study, and we had no

control over it [23]. As a consequence, the quality was variable, and some recordings

were discarded as the quality of fECG was not high enough to manually identify fe-

tal heartbeats. Nevertheless, the promising results obtained on the two independent

datasets suggest the potential for the method introduced here to estimate FHR from

1D-DUS signals.

This study was not intended for assessment of FHR during labor and delivery,

but rather for hand-held point of care devices. However, we also note that we see no

theoretical reasons that the conclusions reached in this paper would not hold during

labor and delivery outside of the period of contractions (where the data are well

known to be very noisy).

Based on parameters shown at Table 5.4, the AC-based method introduced in this

work could detect FHR values ranging from 71.5 to 208.8 BPM. The lower bound at

71.5 BPM could be a drawback for the detection of some bradycardia abnormalities,

which are associated with lower FHR values. Nevertheless, the upper bound to detect

bradycardia is different among the most common fetal monitoring guidelines [319].

In particular, the International Federation of Gynecology and Obstetrics defines fetal

bradycardia as a heart rate under 80 BPM, whereas the American College of Obste-

tricians and Gynecologists and the United Kingdom National Institute for Health

and Care Excellence use 100 BPM and 110 BPM, respectively. Therefore, since our

method is able to detect FHR estimations between 71.5 and 110, some bradycardia

cases could be detected. We also note that the data used here is not relevant for labor,

which is out of scope and not relevant to this research. For labor and delivery, the

ECG has been shown to be superior [316]. We are specifically interested in tracking

heart rate during the second and third trimesters before labor. Finally we note, that

by definition, our data is representative of the patient population and encompasses

the majority of heart rates we would encounter.
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5.5.3 Future Directions

The rationale for the current research was to present a baseline for future FHR esti-

mation methods. This serves several future directions of research and device design.

For instance, the AC-based FHR estimation method presented in this work could

help with the assessment of the accuracy of commercial Doppler transducers, which

appear to use similar, but black-box AC-based methods. This work could improve the

quality of regulatory submission and provide consumers with a more objective insight

into the performance of a DUS FHR device. Furthermore, per [351], the method de-

scribed in this paper could serve as an auxiliary method for initializing more accurate

FHR and FHR variability estimators.

5.6 Conclusion

This work presents a simple but promising method to estimate FHR from 1D-DUS

signals acquired using a hand-held Doppler transducer, obtaining estimations within

10% of the reference FHR values. The presented method is generalizable, in contrast

to other methods presented in literature, and robust to the recording environment

and operator skill. Therefore, the described AC-based method is valuable in itself as

an estimator of FHR in all sorts of applications, including outside of the controlled

hospital environment. By ensuring accurate estimation of FHR, a basis for fetal

cardiac monitoring is provided, establishing a basis from which future methods can

be developed to estimate FHRV more accurately for assessing fetal well-being from

1D-DUS signals. We encourage benchmarked contributions to our source code, which

is freely available from a public repository [376] under a open source (BSD Clause 2)

license.
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Chapter 6

Estimating birth weight from

postnatal weights

6.1 Abstract

Objective: Low birth weight is one of the leading contributors to global perinatal

deaths. Detecting this problem close to birth enables the initiation of early interven-

tion, thus reducing the long-term impact on the fetus. However, in low-and middle-

income countries, sometimes newborns are weighted days or months after birth, thus

challenging the identification of low birth weight. This study aims to estimate birth

weight from observed postnatal weights recorded in a Guatemala highland commu-

nity.

Approach: With 918 newborns recorded in postpartum visits at a Guatemalan

highland community, we fitted traditional infant weight models (Count’s and Reeds

models). The model that fitted the observed data best was selected based on typi-

cal newborn weight patterns reported in medical literature and previous longitudinal

studies. Then, estimated birth weights were determined using the weight gain per-

centage derived from the fitted weight curve.
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Main results : The best model for both genders was the Reeds2 model, with a mean

square error of 0.30 Kg2 and 0.23 Kg2 for male and female newborns, respectively.

The fitted weight curves exhibited similar behavior to those reported in the literature,

with a maximum weight loss around three to five days after birth, and birth weight

recovery, on average, by day ten. Moreover, the estimated birth weight was consis-

tent with the 2015 Guatemalan National survey, no having a statistically significant

difference between the estimated birth weight and the reported survey birth weights

(two-sided Wilcoxon rank-sum test; α = 0.05).

Significance: By estimating birth weight at an opportune time, several days after

birth, it may be possible to identify low birth weight more accurately, thus providing

timely treatment when is required.

6.2 Introduction

Guatemala suffers the highest perinatal morbidity and mortality rates in Latin Amer-

ica, particularly affecting Mayan indigenous women in highland rural areas [404]. This

high burden is a result of barriers, such as economic status, language, and culture,

that limit the access to professional medical assistance for performing routine peri-

natal screening and medical referral. Due to these barriers, pregnant Guatemalan

indigenous women are usually attended by traditional birth attendants (TBA), who

lack access to adequate medical equipment and sufficient training for the identification

of abnormal fetal development.

Low birth weight (LBW) is one of the leading contributors to global perinatal

death rates, being the second cause after premature birth [86, 361]. LBW could be a

consequence of either preterm birth (< 37 weeks) or intrauterine growth restriction

(IUGR). However, the former is more common in industrialized countries, whereas

the latter commonly occur in low-and middle-income (LMICs) [295, 384], in which



128

around 60% of LBW newborns are due to IUGR [205]. In fact, IUGR has a prevalence

of around 11% in LMICs [89].

In an attempt to address IUGR in Guatemala, we have developed a smartphone-

mediated affordable perinatal screening system in rural highland Guatemala [354,

231, 232]. This monitoring system allows Traditional Birth Attendants (TBAs), with

minimal training, to use a pictogram- and audio-guided mobile application to as-

sess the maternal and fetal well-being during perinatal visits. In these visits, TBAs

ask standard symptom questions, take maternal blood pressure, and record One-

Dimensional Doppler Ultrasound (1D-DUS) with a low-cost transducer connected to

the smartphone.

During postpartum visits, TBAs register the newborn weight, among other pa-

rameters. A birth weight lower than 2500 g is an indicator of LBW. Therefore, in

countries such as Guatemala, in which recent studies reported an LBW prevalence

between 13% [52] and 14.6% [254], measuring birth weight is an absolute necessity.

Thus, LBW newborns can start early treatment to alleviate short-and long-adverse

consequences [86].

Unfortunately, in the Guatemalan rural highland areas is not always possible to

register a newborn weight within a few days after birth due to the difficulties in

following-up on patients [366]. Indeed, in our clinical trial, monitoring over 1000

women over two years [231], some of the postpartum visits were performed days or

even weeks after birth. Moreover, the natural drop in body weight in the first week or

two after birth, followed by the restoration of birth weight, makes the use of recorded

weight problematic. One solution to this challenge is to translate the weight recorded

after birth into an estimated birth weight using standardized infant weight charts

or curves. However, standard weight charts have been constructed using populations

from industrialized countries and may be inaccurate for an LMIC or rural population,

particularly of non-European descent [264].
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The work presented here introduces an approach for estimating newborn birth

weights in Guatemalan highland using observed weights recorded days and weeks

after birth. To this end, previously reported weight curve models were optimized to

fit the observed weights of postpartum visits by using metrics based on infant weight

development. The fitted model allows for the characterization of the weight loss and

gain behavior of the population used in this study, as well as estimating birth weight.

6.3 Background

6.3.1 Infant weight development

After birth, newborns lose weight within the first days due to physiological diuresis

and low initial enteral intake [217, 67, 378]. This weight loss is universal regardless

of the feeding method [115] or the initial birth weight [326]. However, the maximum

percentage of weight loss is not a total agreement, ranging among 7% to 10% [98].

After the occurrence of the maximum loss, the weight steady increases during the

first months of life (see Figure 6.1 ).

Figure 6.1: Expected infant weight curves as reported by [19], showing a maximum loss weight
around the third to fifth days after birth. After this nadir, the weight steady increases during the
first months of life.

In order to characterize infant weight patterns, different longitudinal studies have
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been carried out among different countries. DiTomasso et al. (2018)[97] measured

weight behavior of 134 newborns in a Rhode Island hospital, observing an average

weight loss percentage of 8% around the third and fourth day, whereas the birth

weight was recovered by the twelfth day. Likewise, Paul et al. (2016)[282] tracked the

weight behavior of a large sample, 143,889 newborns, recorded in California. They

found a range for percentage weight between 5.9% and 7.1%, occurring around the

61st and 65th hours after birth. After the loss weight nadir, the weight increased at

a rate of 35 to 40 g/day, recovering the birth weight by day 10.

Although no study has been conducted for the Guatemalan population, some

studies carried on Latin American LMICs have also reported similar findings than

those previously mentioned [410, 80, 19, 276]. The reported average weight loss

percentage for these studies was around 8% on the third or fourth day after birth.

However, there was a variability for the recovery day and the weight increment rate,

ranging between 5.7 to 19 days and between 13.9 to 40 g/day, respectively. All details

of the previous infant weight development studies are shown in Table 6.1.

Table 6.1: Detail of infant weight development reported by previous published studies.

Study Location Sample size
Weight loss

percentage (%)
Weight loss day

Recovery
day

Weight
rate (gr/day)

[97] Rhode Island 134 [6-9] [3-4] [10-12] 39
[282] California 143889 [5.9-7.1] [2.5-2.8] [9-10] [35-40]
[410] Mexico 101 [4.1-13.1] [2.5-5.9] [5.7-16.1] [13.9-21.7]
[80] Argentina 810 8 3 [8-10]
[19] Brazil 340 [5.9-9.7] [4-5] [16-19] [22.8-35.99]
[276] Uruguay 148 [8-9] [2-3] [8-10] [30-40]

6.3.2 Weight curve models

Since the middle of the twentieth century, different non-linear models have been in-

troduced for weight gain in infants and children [146]. The first introduced model

was the Jenss [171], an exponential model, which showed suitable results for describ-

ing head-circumference and length growth, but not for describing the irregularity of

weight patterns occurred in the first days after birth.
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In addition to the Jenss model, three other non-linear models have been also

used for fitting infant weight data. The first one was the Count’s model (Eq. 6.1 )

proposed by Count (1942)[79] and modified by Shohoji and Sumiya (2001)[329]. The

other two models, Reeds1 (Eq. 6.2) and Reeds2 (Eq. 6.3), were extensions of the

Count’s model developed by Berkey and Reed (1987) [46]. All these models were

represented by several parameters, including the regression coefficients (a, b, c, d, e);

age in months (t); and weight in Kg (y).

y = a+ bt+ c ln(t+ 1) (6.1)

y = a+ bt+ c ln(t+ 1) +
d

t+ 1
(6.2)

y = a+ bt+ c ln(t+ 1) +
d

t+ 1
+

e

(t+ 1)2
(6.3)

The weight curve models have been used in different studies to fit collected weight

data. Within these studies, the Count’s model has been the most commonly used.

Thus, Peter et al. (2001)[286] fitted the Count’s model for a sample of 1931 neonates

collected between 1982 and 1990. Similarly, the Count’s model was used in Brazil

for describing the weight behavior of 340 newborns from birth to 12 weeks of life

Anchieta et al. (2004)[19], as well as in Taiwan for examining the weight growth of

infants exposed to some specific nutritional and ecological conditions [186].

All the models have also been compared to assess their fitting performance for

weight data. Initially, Berkey (1982)[45] compared Jenss and Count’s, reporting that

Jenss performed better than Count’s model as the latter challenged to fit data when

it was spanned over six years. However, in another study, Peerson et al. (1993)[284]

observed that any of these two models were able to fit weight recorded from 70 infants

at the University of California Davis during their first 24 months. Nevertheless, in

a more extensive study including five different models, Simondon et al. (1992)[335]

found that the first-order Reed model was the best model for fitting weight data
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collected from 95 infants from birth to 13 months of age in rural Congo.

In recent studies, quantile regression has been used over the traditional non-linear

weight curve models. Indeed, the majority of weight models fitting after the 2010s

applied non-linear quantile regression provided in modern programming languages

[248, 282, 116, 393]. However, these models assume that the input is a longitudinal

dataset, in which multiple samples are recorded for each patient along time.

6.3.3 Birth weight in Guatemala

Previous works have shown that the average birth weight in Guatemala is lower than

the 3.5 Kg of European heritage newborns [168]. In fact, in a global maternity health

registry study, Bose et al. (2015)[52] reported an average birth weight of 2,983.2 g

(SD = 469.1 g) for a total of 30,262 deliveries. The total percentage of LBW newborns

for that sample was 13%.

Similarly, in the Guatemalan national maternal and infant health survey [254],

the averaged birth weight from 5,604 female newborns was 3,046.6 g (SD = 568.3 g),

whereas for 6,071 male was 3,146.5 g (SD = 593.8 g). The percentage of LBW among

rural and urban areas was similar, being 14.8% and 14.2%, respectively.

6.4 Methods

6.4.1 Database

Data used in this work was collected as a part of a perinatal care program con-

ducted in rural highland Guatemala in the vicinity of Tecpan, Chimaltenango. This

program was approved by the Institutional Review Boards of Emory University, the

Wuqu’ Kawoq | Maya Health Alliance, and Agnes Scott College (Ref: IRB00076231 -

‘Mobile Health Intervention to Improve Perinatal Continuum of Care in Guatemala’)

and registered as a clinical trial (ClinicalTrials.gov identifier NCT02348840). In the
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program, traditional birth attendants (TBA) were trained to use a mobile app to

record perinatal information during regular visits. More details on the design and

implementation of the data collection system, and the training of the TBAs can be

found in [354] and [231, 232].

For this work, data recorded from 918 newborns in postpartum visits were used.

For each newborn’s weight measurement was only performed once. These visits oc-

curred on different postnatal days for each case, with an average at 31.36 days after

birth (SD=32.86). In addition to measuring the weight, the TBAs also recorded

the newborn’s birth date and gender. Moreover, in some cases, TBAs recorded the

maternal age at birth, and the number of previous pregnancies (gravity). Table 6.2

shows available demographic information for the data used in this work.

As all data used in this work were recollected in the same rural community, preg-

nant women and newborns shared maternal nutrition, and delivery and feeding meth-

ods among them.

Table 6.2: Average demographics for the data used in this study. For each metric, the standard
deviation and the number of samples avaliable for that variable are shown in parenthesis.

Demographic variable Total
Postnatal visit (days) 31.36 (SD= 32.86; N= 918)
Neonatal weight (Kg) 3.93 (SD= 2.73; N= 918)
Maternal age (years) 26.69 (SD= 8.18; N=903)

Gravidity (count) 3.24 (SD= 2.64; N=683)
Gender(male/female) 467/451

6.4.2 Preprocessing

As weight recordings were taken manually, prepossessing steps were carried out to

ensure that neither measurement errors nor typos were considered into the analysis.

The first preprocessing step was to remove unrealistic observed weights (e.g., 10

Kg). To this end, observed weights higher than the 99th percentile reported in the

WHO Growth charts[396] were removed (See Table 6.3).
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Table 6.3: Maximum weights for each month based on the WHO child growth chart [396].

Month Days after birth
Maximum weight (kg)
Male Female

1st 0 to 30 5.7 5.4
2nd 31 to 60 7.0 6.5
3rd 61 to 90 7.9 7.4
4th 91 to 120 8.6 8.1
5th 121 to 150 9.2 8.7

After removing unrealistic values, the next step was to exclude outliers that could

affect the regression fitting. Two different outlier problems were identified in this case.

Firstly, as the majority of postnatal visits were done in the first days after birth, the

local density of all observed weights after 100 days was low. These points with low

density were removed using the local outlier factor (LOF), which was calculated as

described in [55]. Then, using a backtracking search, the last observed point to be

considered in the analysis was set as that whose LOF was lower than 1.5.

The second outlier filtering was to remove bivariate extreme points. These outliers

were detected using Mahalanobis distance, in which the input matrix was composed of

the observed weights and the visit days. The threshold value was set as the chi-square

value with a significance level of 0.001 and a degree of freedom of two, χ2
0.999(2) =

13.82. Thus, any row with a Mahalanobis distance higher than the threshold was

removed.

6.4.3 Fitting models

Models were fitted for different window lengths (number of days after birth) to find

that one that fits the data best. The tested range was from 20 to 150 weeks, increasing

by five weeks. For each window length, models were fitted using a two-stage process.

In the first stage, the Count’s (Eq. 6.1), Reeds1 (Eq. 6.2), and Reeds2 (Eq. 6.3)

models were applied using non-linear robust regression. For each model, nine different

robust weighting functions were used to fit the model, namely: Andrews, bisquare,
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Cauchy, fair, Huber, logistic, OLS (no weights), Talwar, and Welsch. Consequently,

there were a total of 27 regressions, nine per each model.

The assessment of the resulted regression was based on five metrics derived from

previous research showed in Table 6.1. These metrics were: i) the day in which the

maximum weight loss occurred (nadir); ii) the maximum percentage of weight loss;

iii) the birth weight recovery day; iv) the trend of the fitted model after recovering

birth weight, and v) the rate at which weight increases after recovering birth weight.

Based on the average metrics of the Table 6.1, the reference nadir was set in 3.45

days; the percentage of weight loss in 7.817%; the recovery day in 11.15 days; the

trend as monotonically increasing; and the angle at 42.26◦ (0.9087 Kg/month).

On the other hand, for each regression, the nadir was obtained using the first

derivative. The loss percentage was calculated by comparing the origin and nadir

weights. The recovery day was set as the day surpassing the origin weight. The trend

after weight recovery was set as increasing if the first derivative was positive from that

point to the end. Finally, the curve angle was calculated by applying the arc-tangent

function to the growth rate.

The comparison between the fitted and reference vectors was performed using

mean square error (MSE). Before calculating the MSE, the two vectors were normal-

ized to avoid scale comparison problems. For each model, the weighting function with

the lowest MSE was selected.

In the second stage, to reduce the effects of high individual variability reported in

longitudinal studies [45, 326], the coefficients selected in the first stage were further

optimized using non-linear quantile regression. The quantile regression was performed

using an interior point algorithm proposed by Koenker and Park (1996)[188], setting

the percentile as the median (i.e., 50th percentile), and the initial point as the coef-

ficients found at the first stage.
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6.4.4 Comparison with other models

The obtained fitted curves were compared against those obtained using parameters

reported in three previous studies: Kim and Pollit (1997)[186] and Berkey (1992)[45]

for Count’s model, and Simondon et al. (1992)[335] for Count’s, Reeds1 and Reeds2

models. Specifically, as these previous studies fitted a curve for each individual (lon-

gitudinal studies), the average value of their parameters was used for generating a

curve from the data used in this work.

Additionally, the curves were also compared to the WHO growth charts [396],

which includes newborns’ data from the cities of Davis, California, USA; Muscat,

Oman; Oslo, Norway; and Pelotas, Brazil; and wealthy neighborhoods of Accra,

Ghana, and South Delhi, India. Thus, the fitted curve of each model was plotted

against the 5th, 15th, 25th, 50th, 75th, and 95th percentiles of the WHO weight

curves. This comparison allowed checking that the fitted model was growing with an

inclination within the WHO percentiles.

6.4.5 Estimating birth weight

The weight gain or loss percentage function was calculated for each fitted models as:

g(t) =
f(t)− f(0)

f(0)
, (6.4)

where f(t) was the fitted weight value at the t − th week and f(0) was the fitted

weight value at birth (t = 0). Then, the birth weight for each newborn was estimated

as follows:

b(i) =
o(i)

1 + g(t(i))
, (6.5)

where o(i) was the observed weight for the i−th newborn recorded in the postpartum

visit occurred at t(i) weeks, and g(·) is the gain/loss function (Eq. 6.4).
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6.4.6 Comparison of the estimated birth weight

The estimated birth weights were compared to the Guatemalan national maternal

and infant health survey [254]. However, as the data used here came from a rural

community located in Tecpán, Chimatenalgo, only data with similar characteristics

was used for the comparison. Therefore, only 306 birth weights from rural Chimate-

nalgo newborns, reported in the survey, were considered. From these newborns, 168

were male, whereas 138 were female.

6.4.7 Identification of low birth weight

A newborn is defined by the WHO to have LBW if the weight at birth is below

2500 g [397]. We applied this definition to the Guatemalan national maternal survey,

specifically for rural Chimaltenalgo (the region of relevance in our study) [254]. We

found that the lowest 14.3% of male newborns and 16.33% of female newborns satisfied

this weight criterion.

6.5 Results

6.5.1 Preprocessed data

Figure 6.2 shows datasets before and after removing unrealistic recorded weights and

outliers. In total, 17 and 28 observed weights were discarded for male and females

newborns, respectively. For fitting the weight models, male newborns had a total

of 450 observed weight ranging from 0 to 3.43 months (103 days), whereas female

newborns had a total of 423 weights from 0 to 3.50 months (105 days). The ratio

between the retained male and female weight was 1.0638, which is consistent with the

1.06 natural gender ratio reported by [138].



138

Figure 6.2: Retained (open circle) and discarded (filled red circle) observed weights for (a) male
and (b) female newborns.

6.5.2 Fitted models

Post-processed data were fed into the two-stage model-fitting using different window

lengths (number of days after birth). Table 6.4 shows the window length that best

fitted the observed postnatal weights for each model. The percentage weight loss, the

day of lowest weight (nadir), the day at which the neonate recovered their original

weight and the rate of weight gain after the recovery day for each of these models were

encoded in a vector and compared with the corresponding average metrics reported

in previous studies (listed in Table 6.1) using the L1-norm (see final column in Table

6.4).

The Reeds2 model provided the best fit to the observations, using a window length

of 60 days for males, and 45 days for females. Both genders exhibited a nadir around

the fourth day after birth, with a maximum loss of 7.34% for males and 5.19% for

females. Both genders recovered birth weights around the tenth day.

Table 6.5 provides the coefficients derived for the three models being compared in

this work, as well as error in the regression (expressed as the MSE). For the Reeds2

model, the MSE between the fitted curve and the observed weights was 0.3 Kg2 for

males, and 0.2 Kg2 for females.
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Table 6.4: Details of the fitted curves on the observed postnatal weights, grouped by gender. The
window length in days and the samples of each fitted curve are provided. The final (9th) column
shows the L1-norm between a vector composed of the parameters of each model, (γ), and the target
vector given by average of the metrics provided in Table 6.1, (τ ), which corresponds to a nadir of
3.5 days; a weight loss at the nadir of 7.8%; a weight recovery duration of 11.2 days; and a weight
gain rate of 30.3 g/day

Gender Model
Analysis Window
(days since birth)

# Samples
Used

Weight Loss
at Nadir (%)

Nadir
(days since birth)

Recovery
Day

Weight Recovery
Rate (g/day)

||γ − τ ||1

Male
Count’s 20 209 1.40 0.12 0.25 26.4 24.50
Reeds1 25 258 4.87 4.52 10.37 32.5 6.84
Reeds2 60 407 7.34 4.33 11.40 35.2 5.89

Female
Count’s 25 229 1.48 0.13 0.28 27.7 23.07
Reeds1 62 374 2.23 4.00 8.90 29.1 9.47
Reeds2 45 332 5.19 3.98 10.38 29.1 5.12

Table 6.5: Coefficients for the fitted curves shown in Table 6.4. The final (10th) column shows the
MSE between the fitted curve and the observed postnatal weights.

Gender Model
Analysis Window
(day since birth)

# Samples
Used

Coefficients
MSE (Kg2)

a b c d e

Male
Count’s 20 209 2.9690 5.6691 -6.3642 0.2213
Reeds1 25 258 -20.5997 -6.5776 28.1120 23.6392 0.2316
Reeds2 60 407 112.8610 17.3626 -87.6400 -152.7991 43.0524 0.3018

Female
Count’s 25 229 2.8771 4.7744 -5.4227 0.2079
Reeds1 62 374 -8.6961 -2.3848 12.9260 11.5857 0.2485
Reeds2 45 332 116.3558 20.6091 -95.8732 -154.1696 40.7861 0.2277

6.5.3 Comparison to other models

Figure 6.3 shows the fitted Reeds2 models against previously reported coefficients

[186, 45, 335] for male and female newborns. For both genders, the fitted Reeds

models were more accurate than those models generated by coefficients reported in

previous research.

Likewise, Figure 6.4 compares the fitted models to those corresponding to the

weight percentiles of the WHO weight chart. For both genders, the Reeds models

grew along with the 25th percentile, which is expected as WHO weight chart includes

populations of industrialized countries, as well as affluent neighborhoods in India and

Ghana.

6.5.4 Estimation of birth weight and identification of low

birth weight

The Reeds2 models were used to estimated birth weight following steps presented

in subsection 6.4.5. Part (a) of the Figures 6.5 and 6.6 shows the distributions of
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(a)

(b)

Figure 6.3: Reeds2 models fitted for (a) male and (b) female newborns against models generated us-
ing coefficients reported by Kim and Pollit (1987)[186] in a Taiwanese population, Berkey (1992)[45]
in a Boston hospital sample, and Simondon et al. (1992)[335] in a Congo rural community.

.

estimated birth weight for male and female newborns, respectively. For both genders,

the majority of the estimated birth weights were close to 3 Kg, being lower for females.

Moreover, the corresponding LBW percentile threshold was located in the estimated

birth weights. For male newborns, the weight threshold was found at 2.64 Kg, whereas

for females, it was 2.57 Kg.

Additionally, Figures 6.5 and 6.6, in part (b), shows the distributions of estimated

birth weights and those reported in the 2015 Guatemalan national survey for rural

Chimatenalgo newborns [254]. Estimated weight distributions were similar to the

surveyed distributions. In fact, in Table 6.6, it is shown that for any gender, there
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(a)

(b)

Figure 6.4: Reeds2 models fitted for (a) male and (b) female in observed weights after birth
against WHO weight growth chart percentiles. The percentiles showed for the WHO weight dataset
corresponds to the 5th, 25th, 50th, 75th, and 95th.

was no statistically significant difference between the medians of the estimated birth

weights and the reported weights for rural Chimatenalgo newborns.

Table 6.6: Descriptive statistics of the estimated birth weights and the 2015 Guatemalan national
survey reported newborns of rural Chimatenalgo [254]. Last two columns show the p value of: (i) a
two-sample t-test; and (ii) a paired two-sided Wilcoxon signed rank test. Null hypothesis tests were
whether the two weight distributions have equal mean and median, respectively.

Gender Distribution
mean
(Kg)

standard
deviation (Kg) kurtosis skewness

t-test
p-value

Wilcoxon signed-rank
p-value

Male
Estimated birth weights 3.10 0.47 3.60 -0.32

0.3765 0.7479
2015 Guatemalan national survey 3.15 0.64 3.89 0.28

Female
Estimated birth weights 2.95 0.43 3.31 -0.32

0.1913 0.1495
2015 Guatemalan national survey 3.02 0.60 4.43 -0.19
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(a)

(b)

Figure 6.5: Male newborns’ birth weights estimated using the fitted second-order Reeds model. (a)
Histogram of estimated birth weights with the threshold for identifying low birth weight (vertical
dotted line), corresponding to the 14.29 percentile, or 2.64 Kg. (b) Comparison of the distribution
of estimated birth weights (red) with the measured birth weights in the 2015 Guatemalan national
survey for male newborns of rural Chimatenalgo (blue dashed line).

6.6 Discussion

The fitted weight curves presented here indicates that it is possible to estimate birth

weight from observed weight recorded days or months after birth. Notably, our two-

stage fitting steps were able to describe a typical newborn weight pattern in a dataset

composed of only one sample per newborn rather than multiple points per subject as

described in previous research works [248, 116, 393, 335, 45, 186, 97, 282, 410, 80, 19,

276]. This suitable fitted pattern it is likely explained by the homogeneity of subjects

used in this work, in which maternal nutrition, and delivery and feeding methods are
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(a)

(b)

Figure 6.6: Female newborns’ birth weights estimated using the fitted second-order Reeds model.
(a) Histogram of estimated birth weights with the threshold for identifying low birth weight (vertical
dotted line), corresponding to the 16.29 percentile, or 2.57 Kg. (b) Comparison of the distribution
of estimated birth weights (red) with the measured birth weights in the 2015 Guatemalan national
survey for female newborns of rural Chimatenalgo (blue dashed line).

common among them.

Within the infant weight models, the Reeds2 model fitted the observed data best,

thereby supporting the previous finding reported by Simondon et al. (1992)[335], in

which Reeds models resulted in the lowest residuals. As the Reeds2 model has two

inflection points [46], the curve was able to precisely adjust to the different infant

weight patterns than the other models.

In comparison with previous longitudinal (see Table 6.1), the Reeds2 model ob-

tained similar metrics for both genders, showing a maximum weight loss within the

third and fifth day, and recovery the birth weight by ten days after birth. Although
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the weight percentage loss was lower than the expected 7% for females, it can be

explained by the fact that the model was fitted for all subjects, thereby introducing

inter-variability in the fitted curve [282, 326]. Nevertheless, the achieved percent-

age loss, as well as the other model criteria, were within the full ranges reported in

previous studies.

The median quantile regression applied to the Reeds model allowed estimating a

more robust and less biased trend of the population. Specifically, the second-order

Reeds model grew with a feasible rate along with the 25th percentile of the WHO

growth chart (Figure 6.4). Although the fitted median quantile regression was lower

than the 50th CDC percentile, there is not any inconsistency as it is expected that

Guatemalan newborns have a lower weight than those of a well-equipped-resource

environment, such as the US, Norway, and high-income population in New Delhi

[264]. In fact, the WHO 50th quantile birth weight is close to 3.5 Kg, which is the

average for European-inheritance newborns.

The average of the estimated birth weights, for both male and female, was con-

sistent with the figures reported by the 2015 Guatemalan national survey in rural

Chimatenalgo [254], varying less than 20 g. Likewise, the estimated averages were

also close to the 2983.2 g reported by Bose et al. (2015)[52] for a Guatemalan sample

of 30262 deliveries. Therefore, for both gender, our approach estimated birth weights

in a feasible range (see Table 6.6).

Interestingly, by mapping rural Chimatenalgo LBW percentiles, we obtained a

weight threshold for identifying LBW in our estimations. This identification is rel-

evant for TBAs as they may be able to detect any potential LBW cases. Thus,

newborns could receive early treatment, thereby reducing short-and long-term com-

plications.

The main limitation of this work is that the observed dataset was not enough to

carry on a longitudinal study. Therefore, the weight pattern obtained is an approxi-
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mation and does not represent a complete characterization of the weight gain pattern

of the rural Guatemala population used here. Nevertheless, the simple method used

here provides a straightforward way to estimate birth weight, thus helping to identify

low birth weight newborns on late postpartum visits.

Future research should perform a longitudinal study by periodically weighing new-

borns from birth to one year old. Thus, the two-stage method introduced here could

be fitted for each newborn, resulting in a more accurate characterization of the new-

borns’ weight curve for the Guatemalan highland community.

6.7 Conclusion

In LMICs, timely recording of birth weight is often difficult. This work introduces a

simple approach for estimating birth weight from observations recorded after birth.

The estimations were consistent with infant weight patterns reported in previous

studies conducted in Guatemalan communities. By weighing infants several days

after birth, it may, therefore, be possible to identify LBW newborns and initiate

treatment to reduce short-and long-term complications. Nevertheless, we note that

the neonatal assessment needs to occur in the first few days of life to accurately

estimate a birth weight relevant for tracking neonatal health [205].
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Chapter 7

Estimating gestational age from

1D-DUS and maternal blood

pressure recordings

7.1 Abstract

In-utero progress of fetal development is normally assessed through manual mea-

surements taken from ultrasound images, requiring relatively expensive equipment

and well-trained personnel. Such monitoring is therefore unavailable in low- and

middle-income countries (LMICs), where most of the perinatal mortality and mor-

bidity exists. The work presented here attempts to identify a proxy for IUGR, which

is a significant contributor to perinatal death in LMICs, by determining gestational

age (GA) from data derived from simple-to-use, low-cost one-dimensional Doppler

ultrasound (1D-DUS) and blood pressure devices. A total of 114 paired 1D-DUS

recordings and maternal blood pressure recordings were selected, based on previously

described signal quality measures. The average length of 1D-DUS recording was 10.43

mins ± 1.41 mins. The min/median/max systolic and diastolic maternal blood pres-
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sures were 79/102/121 and 50.5/63.5/78.5 mmHg, respectively. GA was estimated

using features derived from the 1D-DUS and maternal blood pressure using a support

vector regression (SVR) approach and GA based on the last menstrual period as a

reference target. A total of 50 trials of five-fold cross-validation were performed for

feature selection. The final SVR model was retrained on the training data and then

tested on a held-out set comprising 28 normal weight and 25 low birth weight (LBW)

newborns. The mean absolute GA error with respect to the last menstrual period was

found to be 0.72 and 1.01 months for the normal and LBW newborns, respectively.

The mean error in the GA estimate was shown to be negatively correlated with the

birth weight.

Thus, if the estimated GA is lower than the (remembered) GA calculated from last

menstruation, then this could be interpreted as a potential sign of IUGR associated

with LBW, and referral and intervention may be necessary. The assessment system

may, therefore, have an immediate impact if coupled with suitable intervention, such

as nutritional supplementation. However, a prospective clinical trial is required to

show the efficacy of such a metric in the detection of IUGR and the impact of the

intervention.

7.2 Introduction

Estimation of fetal gestational age (GA) provides important information throughout

pregnancy, such as delivery scheduling, growth disorder detection, and preterm new-

borns management [7]. Thus, GA estimation can assist in detecting issues leading to

perinatal mortality and morbidity [304, 181]. This detection is particularly needed

in low-and middle-income countries (LMICs), which account for approximately 98%

of all reported perinatal deaths worldwide, largely due to gestational developmental

issues [412].
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In high-income countries, clinical teams generally use ultrasound images to esti-

mate GA, as well as any structural abnormalities [226]. These GA estimations are

based on a variety of fetal measurements, such as biparietal diameter (BD), crown-

rump length (CRL), head circumference, abdominal circumference, and femur length

[226]. However, in LMICs, the access to ultrasound imaging is limited, and almost

unavailable in rural areas, due to the high cost of the medical equipment, the expenses

for maintenance, and the requirement of skilled medical staff [399]. Hence, low-cost

alternative methods for dating gestation are used in LMICs.

A common low-cost method used for GA estimation is the last menstrual period

(LMP), in which a 28-day menstrual cycle is assumed. Although previous studies

have criticized LMP due to the inconsistency in the menstrual cycle length [95], and

the difficulty to recall the day of the last menstrual period [20], the LMP method

has shown to be a somewhat useful method for LMICs, particularly in rural areas

lacking medical equipment. In fact, [265] compared 171 GA estimations based on

LMP collected in rural Guatemala with GA estimations given by BD, reporting that

GA estimations by the LMP were within ± 14 days of the BD estimations for 94%

of the cases.

GA estimation can assist in the assessment of intrauterine growth restriction

(IUGR), which has a prevalence varying between 9 to 11% in LMICs [89, 205]. Specif-

ically, IUGR is assessed by comparing the estimate of GA with the symphysis-fundal

height (SFH) measurement [403]. For fetuses growing normally, from 24 weeks of ges-

tation, the SFH measurement (Lsfh) in centimetres should correspond to the number

of weeks of gestation ± 2 cm. When Lsfh < N − 2, where N is the number of weeks

since the last menstrual period, the fetus is suspected to be IUGR [287]. However,

the SFH method lacks significant evidence to recommend its widely use in LMICs

[403]. Moreover, previous studies have noted that the SHF has exhibited a large error

of ± 6 weeks for estimating GA [139]. New approaches are, therefore, still needed to
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provide repeatable and low-cost assessment for detecting abnormal growth in settings

in which ultrasound images, taken by trained operators, are not available.

In this work, we propose an alternative approach for GA estimation to provide

a proxy for assessing fetal development and identifying possible cases of IUGR for a

Guatemalan rural population, in which ultrasound imaging is not affordable and the

SFH is not accurate. Our approach estimates GA using fetal heart rate variability

(fHRV) indexes and maternal hemodynamics derived from one-dimensional Doppler

ultrasound (1D-DUS) and maternal blood pressure, respectively. Data were acquired

during routine perinatal check-up visits by traditional birth attendants (TBAs) using

a low-cost Doppler transducer and a self-inflating blood pressure device [354, 351, 232,

231]. These features were used to build a machine learning algorithm to estimate GA.

We hypothesized that if the estimated GA is lower than the GA calculated from last

menstruation, then this could be interpreted as a potential sign of IUGR based on

low birth weight (LBW), and referral and intervention may be necessary.

7.3 Background

Fetal heart rate is regulated by the Autonomic Nervous System (ANS) [323, 388],

which in turn modifies FHR dynamics over the course of pregnancy. In particular,

FHR variability evolves over the course of pregnancy and may reflect the maturity of

the ANS, and thus may indicate the fetal GA. [386] reported that fHRV, as observed

from traces taken from 61 pregnant women without complications, increases during

gestation. In particular, they noted that short term variability increased during the

last trimester, whereas long term variability exhibited the largest increases in the

early gestational period. Figure 7.1 shows an example of how FHR changes across

gestation, as reported in [386].

Based on FHR, previous studies have shown a correlation between GA and mark-
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Figure 7.1: Variation of the FHR from 22-38 weeks during pregnancy. Note that the vertical
axis has an arbitrary offset. Average FHR does not drop by such a large amount each week
during pregnancy, but rather it drops on average by about 15 BPM from week 25 to week
40 [180]. Adapted from [386]

ers derived from fHRV. Linear metrics such as the mean of R-R interval (mRR), the

standard deviation (sdRR) and root mean square of successive differences (rmssdRR)

positively correlated with GA for both genders [198]. Non-linear metrics, such as ap-

proximate entropy (ApEn), Lyapunov exponent, tone-entropy and generalized mutual

information, have also been linked to fetal maturation [380, 156, 184]. Additionally,

[379] and [332] reported that power in the 0.003-1.0 Hz frequency band vary during

pregnancy.

Initial works on GA estimation aimed to find a relation between GA and FHR-

based metrics using univariate regression [156]. More recently, some works have aimed

to improve the characterizing of FHR by incorporating multivariate and more complex

methods. In particular, [360] extracted features from 359 high resolution fetal mag-

netocardiographic (fMCG) recordings, lasting at least 20 minutes. The researchers

implemented an algorithm to extract non-active portions of the recording and calcu-

lated both linear and non-linear metrics of fHRV from the these quiet periods. Results

showed that entropy and skewness were more highly correlated with GA than those
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obtained by traditional linear HRV metrics. However, this approach requires high

temporal and spatial resolution data acquired from costly and non-portable equip-

ment, making its use in LMICs impractical.

In earlier work, [235] estimated GA for 57 fetuses using a step-wise regression

based on cardiac wall intervals derived from one-dimension Doppler ultrasound signal

(1D-DUS) and fECG signals recorded in a Japanese hospital. The estimated GAs

were compared to the GA derived from CRL, achieving a mean square error of 3.8

and 5.1 weeks for cardiac intervals and fHRV parameters, respectively. In further

work, [237] improved the estimation accuracy by incorporating 1D-DUS and fECG

quality assessment algorithms to filter poor quality signals. As a result, the step-wise

regression achieved a mean absolute error (MAE) of 4.7 weeks from fHRV parame-

ters, and 2.7 weeks when including the cardiac intervals metrics. Although this latter

method achieved comparable results to Doppler imaging based estimations, it re-

quired two sources, 1D-DUS and fECG signals, which increases costs and complicates

implementation, particularly in LMICs [354].

In addition to FHR indexes, maternal blood pressure is also a relevant metric for

GA estimation. Previous works have reported that maternal systolic and diastolic

blood pressure increases throughout pregnancy [348, 315, 178, 297]. However, despite

the correlation between GA and maternal blood pressure, no research has included

maternal blood pressure in regression models to estimate GA. We note that extreme

blood pressures may be indicative of pre-eclampsia, or other gestational issues. It is

therefore important to treat these separately.
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7.4 Methods

7.4.1 Databases

Collection of the data

Data used in this work were collected as a part of a randomized control trial conducted

in rural highland Guatemala in the vicinity of Tecpan, Chimaltenango. This program

was approved by the Institutional Review Boards of Emory University, the Wuqu’ Ka-

woq | Maya Health Alliance, and Agnes Scott College (Ref: IRB00076231 - ‘Mobile

Health Intervention to Improve Perinatal Continuum of Care in Guatemala’) and reg-

istered on ClinicalTrials.gov (identifier NCT02348840). In the trial, traditional birth

attendants were trained to use a mobile mHealth system to record perinatal infor-

mation during approximately monthly visits during the second and third trimesters.

More details on the design and implementation of the mobile mHealth system, and

the training of the TBAs can be found in [354, 351] and [232, 231].

The perinatal care program included both prenatal and postpartum visits. In

the prenatal visits, TBAs recorded GA in months by counting the number of whole

months since the last menstrual period. The GA was recorded in months instead of

weeks to reduce measurement errors since usually patients attended in this project

forgot the specific date of their last menstrual period, and very few received an early

obstetrical ultrasound for more accurate dating [232]. During the visit, the TBA

also recorded 1D-DUS signals and maternal blood pressure using the mobile mHealth

system [354, 351, 232, 231]. The 1D-DUS signals were recorded using a Doppler

transducer (AngelSounds Fetal Doppler JPD-100s, Jumper Medical Co., Ltd., Shen-

zhen, China) with an ultrasound transmission frequency of 3.3 MHz and a digitization

sampling frequency of 44.1 kHz. The maternal blood pressure was taken in a supine

position from both arms using a self-inflating blood pressure device calibrated for

pregnancy.



153

In the postpartum visits, TBAs recorded the newborn’s birth date, sex, current

weight, length, and head size. These postpartum visits could occur days or months

after birth since sometimes it was difficult to follow up on the patients. The birth

weight was then estimated using a Reed2 second-order model [46] fitted on 917 ob-

served postnatal weights using an approach we have previously described in [372].

A weight threshold was used to classify the estimated birth weights as low or nor-

mal. This threshold was defined by first finding the percentile corresponding to ≤

2.5 Kg in a Guatemalan national maternal survey for the region of relevance in our

study [254]. We found that the lowest 14.3% of male newborns and 16.33% of female

newborns satisfied this weight criterion. These percentiles were then located in our

estimated birth weight distribution to determine the corresponding LBW threshold.

This corresponded to 2.64 Kg for males and 2.57 Kg for females.

Assumption of the study

In this work, a newborn was considered as a possible case of IUGR if their estimated

birth weight was below the threshold discussed above. This assumption is based on

the fact that LBW could be a consequence of either preterm birth (< 37 weeks) or

small-for-gestational-age (SGA). However, in LMICs, around 60% of LBW newborns

are SGA [205], and the main reason for SGA in LMICs is IUGR [89, 205].

Data Inclusion Criteria

Prenatal visits were included if they contained both blood pressure pictures and 1D-

DUS recordings with some conditions. For the blood pressure, the numbers had to be

readable on the photograph of the blood pressure device. Also, the difference between

the right and left arm measurements had to be lower than 15 mmHg, thus discarding

any spurious measurements. Finally, possible preeclampsia patients were discarded

when systolic or diastolic blood pressure was higher than a threshold. This threshold
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was defined at 130 and 80 mmHg for SBP and DBP, as is suggested for measurements

taken in spine position [263, 187, 71].

The conditions for including the 1D-DUS recording were based on length and

quality. The minimum length was fixed at ten minutes since earlier work suggests that

this is the required length to extract fHRV indexes, such as baseline, accelerations,

and decelerations [99].

In addition to the length, the quality of a 1D-DUS recording was also consid-

ered as an inclusion criterion. The 1D-DUS quality was assessed using a window of

3.75 s and a sliding window of 250 ms. For each 3.75-second window, 16 features

were extracted, including Wavelet percentage energy in the range 250 to 2000 Hz,

Mel-frequency cepstral coefficients (MFFC), and power spectrum ratios on electrical

interference frequency ranges. The features were fed into a classifier composed of a

logistic regression and a multiclass support vector machine to classify the 3.75-second

window into good quality, interference, silence, talking in the background, or low

signal to noise ratio. More details of the quality assessment method can be found in

[373, 374].

Based on the length and quality criteria, a 1D-DUS recording was only included in

this present work if it lasted more than 10 minutes, and at least 50% of its 3.75-second

windows were labeled as good quality.

Final data set

After applying the inclusion criteria, the final dataset comprised 167 visits from 153

non-preeclampsia women who were pregnant with singleton fetuses. From these pa-

tients, 142 gave birth to normal weight singletons, whereas 24 gave birth to LBW

newborns, based on our thresholds defined for the study population [372] (see sub-

section 7.4.1).

Table 7.1 shows demographics of the patients. The male/female ratio was higher
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in the LBW group than in the normal birth weight group. On the other hand, the

maternal age and the number of previous pregnancies (gravidity) were higher in the

normal weight group.

Table 7.1: Average demographics for the data used in this study. For each metric, the
standard deviation and the number of patients available for that variable are shown in
parenthesis.

Variable Normal birth weight Low birth weight

Patients (count) 129 24
Newborn gender (male/female) 56/73 17/7
Birth weight (Kg) 3.1 (SD=0.3;N=129) 2.3 (SD=0.4;N=24)
Maternal age (years) 27.0 (SD=6.3;N=123) 24.5 (SD=6.7;N=22)
Gravidity (count) 3.4 (SD=2.5;N=96) 2.3 (SD=3.1;N=16)

Table 7.2 shows the distribution of the GA based on the last menstrual period

(LMP) method. Visits ranged from the sixth to the ninth month of pregnancy, fo-

cusing mainly on the third trimester.

Table 7.2: Number of visits per gestational age (GA) taken with the last menstrual period
(LMP) method.

Gestational age (months) Normal weight Low birth weight

6 9 3
7 38 7
8 37 5
9 58 10

total 142 25

7.4.2 Deriving the FHR signal

Extracting fetal heart rate from 1D-DUS

Each 1D-DUS recording was analyzed using a window of 3.75 s and a sliding window

of 0.25 s. The window length was set at 3.75 s since it is the usual length for

computerized analysis of fetal non-stress tests based on the Dawes/Redman criteria

[85, 279]. The selection of the sliding window was based on the desired sampling
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frequency, namely 4 Hz. This sampling frequency has been shown to be sufficient

for digital cardiotocography [309], and corresponded to a Nyquist frequency of 2 Hz,

thus allowing the extraction of spectral metrics in the range 0.03-1 Hz.

For each 3.75-second window, the fetal heart rate (FHR) was estimated auto-

correlation (AC)-based method, which we previously introduced in [375]. Specifically,

the method detects the fundamental period of the envelope of the 3.75-second window

by applying auto-correlation, and then the FHR is estimated by dividing 60 between

the fundamental period in seconds. More details of the FHR estimator are found in

[375].

In addition to estimate the FHR, the quality of the 3.75-second window was also

assessed and stored for further prepossessing steps. The quality was assessed using

the method presented in [374] (see subsection 7.4.1).

Preprocessing of estimated FHR signal

Since 1D-DUS recordings are prone to noise, any given 3.75-second window of Doppler

data may lead to an unreliable estimate. Two steps then assessed the reliability of

the extracted FHR. Firstly, as recommended in [271], we removed FHR estimates

that were not within the 65-175% range of the average of the previous two estimates.

Secondly, we removed 3.75-second windows classified as something else other than

good quality.

Each discarded value was replaced by the linear interpolation between its previous

point and the next stable segment. A stable segment was defined as a region of five

adjacent points for which the FHR estimate did not vary by more than ten beat per

minute (BPM).
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Calculation of the baseline, acceleration and deceleration

The baseline was determined using an algorithm proposed by [22], which is an im-

provement of those proposed by [83] and [228]. Specifically, a filter bank was applied

to the 4-Hz FHR time series to attenuate any accelerations or deceleration.

Following the work of [22], accelerations and decelerations were detected for each

valid one-minute segment of the baseline. A valid segment was determined by com-

puting a FHR histogram using a bin width of 10 BPM. If the most frequent bin of the

histogram contained more than 40% of the values, the one-minute baseline segment

was considered valid.

When a one-minute baseline segment was determined to be valid, acceleration

and deceleration intervals were identified following Dawes criteria [83]. Namely, an

acceleration was defined to be a section of data for which the FHR was higher than

the baseline for at least 15 s and at least one sample was 15 BPM or more above the

baseline. Similarly, a deceleration was defined where the FHR remained below the

baseline FHR for at least 15 seconds, and at least one sample was 15 BPM below the

baseline. More details of the algorithm can be found in [22].

7.4.3 Features used for gestational age estimation

Based on previous works presented in section 7.3, a total of 37 features relevant for

estimating GA were extracted from the 1D-DUS and blood pressure device captured

at the perinatal visits.

The features derived from 1D-DUS recording were calculated using the FHR time

serie (see section 7.4.2). Since the RR-interval sequence is necessary to estimate fHRV

metrics, the FHR series was converted into a interbeat sequence as:

T (i) = 60000/S(i), (7.1)
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where S(i) is the FHR at the i − th second. Using the FHR time serie and the

interbeat sequence, three different type of features were calculated, namely: linear,

non-linear and complexity, and spectral. From the maternal blood pressure and heart

rate, seven hemodynamics formulas were calculated.

Table 7.3 shows the total features extracted, discriminated by source and type.

Next subsections presents the calculation of all the features.

Table 7.3: Features used for GA estimation. The features included temporal features as
basal heart rate; STV; LTV; II; LTV; STV/LTV ratio; ACC; DCA; the number of ac-
celerations per minute; and the variance, mean, standard deviation, skewnnes, kurtosis,
PNN5, root mean square difference of successive interbeat sequence. Features also included
complexity features and spectral features as ApEn, fractal dimension, Lyapunov exponent,
LF, MF, HF, LF/(MF+HF) ratio, Tone-Entropy, and Generalized mutual entropy. Finally,
maternal hemodynamic formulas were also included.

Source Type Name

Doppler transducer

Linear

STV, LTV, II, LTI, basal FHR, STV/LTV,
ACC, DAC, #accelarations/minute

varIS, mIS, stdIS, rmssdIs,
skewnessIs, kurtosisIs, stdIS/rmssdIs, PNN5

Non-linear& Complexity
ApEn, Fractal Dimension, Lyapuno exponent

Entropy, Tone, GMI
Spectral LF, MF, HF, LF/(MF+HF)

Self-inflating blood
pressure device

Raw SBP, DBP, MHR
Hemodynamics formulas PP, MAP, CO, RPP,SI, MSI, SV

Linear features from the interbeat sequence

The baseline, acceleration, and deceleration were used to calculate variability metrics

previously reported to monitor fetus wellbeing during pregnancy [216, 109, 331].

Since commercial cardiotocography (CTG) devices calculate linear fHRV metrics

by buffering and averaging ten consecutive FHR readings [332], we also reduced the

sampling frequency to 0.4 Hz for linear fHRV metrics. To that end, for each minute,

the 240 FHR values were reduced to 24 by averaging ten consecutive values without

overlapping. The corresponding 24 FHR values per minute were converted to 24

interbeat sequence values using Eq. 7.1.
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Short term variability Short term variability (STV) quantifies variability within

a one-minute length window. Using the 24 interbeat sequence values of each minute,

the one-minute STV was calculated as:

STVj =

∑24
i=2 |Tj(i)− Tj(i− 1)|

23
, (7.2)

where Tj(i) is the i− th sample of the j − th minute of the interbeat sequence.

The STV of the total interbeat sequence was calculated by averaging the one-

minute STV, excluding those minutes in which decelerations occurred [83].

Interval Index The interval index (II) is an alternative index measuring long term

variation that takes into account the standard deviation of the interbeat sequence. It

was calculated for each minute as:

IIj =
std[|Tj(2)− Tj(1)|, |Tj(3)− Tj(2)|, ..., |Tj(24)− Tj(23)|]

STVj
, (7.3)

where std is the standard deviation of the absolute difference of successive values of

the j−th minute of the interbeat sequence. The one-minute Interval Index (II) values

were averaged to obtain the total value of the interbeat sequence.

Long term variability Long Term Variability (LTV) is the range between the

highest and the lowest interbeat sequence for each minute [99]. It was calculated for

each minute as:

LTVj = max[Tj]−min[Tj], (7.4)

where Tj is the j − th minute of the interbeat sequence. The one-minute LTV values

were averaged to obtain the total value of the interbeat sequence.
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Long Term Irregularity Long Term Irregularity (LTI) measures variability over

longer time scales. LTI was calculated for a window length of 3 minutes, as was

recommended by [331]. LTI is defined as the interquartile range of the following

distribution:

mk =

√√√√ 72∑
i=2

T 2
k (i) + T 2

k (i− 1), (7.5)

where Tk(i) is the i − th value of the k − th three-minute segment of the interbeat

sequence. Note that the summation index ranged from 2 to 72, as the length for

calculation was three minutes. The total LTI of the recording was taken as the mean

of the three-minute values.

Basal fetal heart rate The basal heart rate was estimated on the original FRH

sequence following the procedure explained in [22]. First, FHR segments in which

accelerations and decelerations occurred were discarded, and then, the kept FHR

values were used to compute a histogram. The center of the most frequent bin was

selected as the basal fetal heart rate.

Number of accelerations per minute As the acceleration of the heart rate is

associated with the maturity and fetal wellbeing [15], we also included the number of

accelerations per minute as a feature. This features was calculated by dividing the

total number of accelerations of the interbeat sequence over the length in minutes of

the sequence.

Acceleration average capacity and deceleration average capacity Accelera-

tion average capacity (AAC) and deceleration average capacity (DAC) were calculated

from the phase-rectified signal (PRSA) of the interbeat sequence by following steps

presented in [163]. To that end, two parameters were defined. The first parameter is

the filter condition, M , used to find anchor points. The second parameter is a time
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window (length 2L), used to define a window around the anchor points.

Here, the parameters, M and L, were both set to one, which we found to be the

optimal values for FHR derived from 1D-DUS signals in earlier work [354, 355].

For AAC, an anchor points was found when the average of M points is lower than

5% of the average of the M successive points. For DAC, an anchor point corresponded

to a decrease of more than 5% between successive averaged values. Thus, the AAC and

the DAC were obtained by aligning their corresponding anchor points and averaging

the windows. More details are found in [163].

Statistical movements of the interbeat sequence As reported by [198], the

mean (mIS), standard deviation (stdIS), variance (varIS), skewness (skewnessIS),

kurtosis (kurtosisIS), and root mean square of successive differences (rmssdIs) of

the interbeat sequence were calculated. We also calculated the ratio between the

standard deviation and root mean square of successive differences (stdIS/rmssdIs).

Additionally, the fraction of consecutive beats that differ by more than 5 mil-

liseconds (PNN5) was also calculated. PNN5 was calculated using an open source

cardiovascular toolbox introduced in [383].

Non-linear and complexity features

Non-linear and complexity metrics were also extracted from the FHR time series as

suggested in [380, 332, 156, 331, 184]. Six different features were calculated:

• Approximate entropy (ApEn). ApEn was calculated with the cardiovascular

toolbox [383], setting the m and r parameters in 2 and 0.1 of the standard

deviation of the input signal.

• Fractal dimension. The fractal dimension was calculated using the Higuchi’s

algorithm [148], setting the interval parameters as 5.
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• Lyapunov exponent. The Lyapunov exponent, previously reported to be nega-

tive correlated with GA [380], was calculated following steps presented in [310]

setting embedding dimension and lag parameters as 1 and 2, respectively.

• Entropy and Tone. Tone-entropy has shown to assess the development of ANS

throughout pregnancy [184]. Tone is the average of the percentile difference

of successive beat intervals (PI). Entropy is calculated by using the Shannon

formula [328] on the PI distribution.

• Generalized mutual information (GMI). The general mutual information was

calculated following steps in [156], setting dimension parameter at 3 and delay

parameter at 1.

Frequency features

Frequency were also extracted from the FHR time series as suggested in [379, 332,

331]. The power spectrum density of the FHR time series was averaged in three

frequency bands: the low, middle, and high bands. The ranges for these bands were

defined as 0.03-0.15 Hz for low frequency (LF), 0.15-0.5 Hz for medium frequency

(MF), and 0.5-1 Hz for high frequency (HF). These power spectral ratios were ex-

tracted using the open source cardiovascular toolbox [383].

Maternal blood pressure and hemodynamic formulae features

The maternal systolic blood pressure (SBP) and diastolic blood pressure (DBP), and

the maternal heart rate (MHR) measurements from the blood pressure device were

used as features, as well as hemodynamic formulas derived from them. Since the

SBP, DBP, and MHR were taken for both patient’s arms, these values were averaged

values. These were then used to calculate hemodynamic formulae (see Table 7.4),

which have been reported to vary throughout pregnancy [348, 315, 297, 178].
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Table 7.4: Detail of maternal hemodynamic formulae calculated using the SBP, DBP and
MHR taken with the self-inflating blood pressure device.

Metric name Formula Reference

Pulse pressure (PP) SBP −DBP [350]
Mean arterial pressure (MAP) (SBP +DBP × 2)/3 [350]

Cardiac output (CO) MHR× PP × 0.002 [149]
Rate pressure product (RPP) MHR× SBP [307]

Shock index (SI) MHR/SBP [337]
Modified Shock Index (MSI) MHR/MAP [337]

Stroke volume (SV) CO/MHR [350]

7.4.4 Estimation of gestational age

All of the features were extracted for both the 129 normal birth weight and 24 LBW

newborns at each stage of pregnancy for which data was available. The GA estimation

model was training only with visits of newborns with normal birth weights because

previous research has reported that LBW fetuses have discrepancies in their GA

estimations from fHRV [237]. However, the features derived from the recordings of

the LBW newborns were used later to test the model’s ability to estimate GA.

The 129 normal weight patients were split into training and test sets. The number

of patients for the test set was selected to be proportional to the LBW newborn set.

A Wilcoxon rank-sum hypothesis test (two-sided; α =0.05) was applied in order to

test whether there were statistically significant differences between the training and

test sets for all the values of the 37 features. (if a statistically significant difference

was found, the subjects were randomized again.)

The training set comprised 104 newborns, from which 95 had one visit, eight had

two visits, and one had three visits, giving a total of 114 visits. For the test set there

were a total of 25 normal birth weight newborns, for which 22 had one visit and three

had two visits, giving a total of 28 visits. Table 7.5 shows the number of visits for

each GA for the training and test sets.
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Table 7.5: Number of visits per gestational age (GA) for the 104 normal birth weight
training set, the 25 normal birth weight test set, and the 24 low birth weight test set.

Gestational age (months)
Training set

Normal birth weight
Test set

Normal birth weight
Test set

Low birth weight

6 6 3 3
7 28 10 7
8 32 5 5
9 48 10 10

total 114 28 25

Training/Validation methodology

The training and validation procedure was performed using a five fold-cross validation

with 50 trials (repetitions). At each trial, the patients were randomly assigned to

different folds, ensuring that visit features corresponding to the same patient were in

the same folder. By using 50 trials the variability of the models for estimating the

GA could be measured, and confidence intervals could be estimated.

Since folds were class unbalanced (see Table 7.2), at each iteration of the five-fold

cross-validation, the number of visits per GA was balanced on the training folds be-

fore constructing a model. To that end, we used the Adaptive Synthetic Sampling

(ADASYN) method, which has been reported to overcome the class imbalance prob-

lem in support vector machine models [36]. This method generates synthetic data for

the minority classes by taking the Euclidean distance between two data points and

then adding the difference scaled by a factor, between 0 and 1, to one of the minority

data points. In this study, the ADASYN was implemented as described in [147].

Before training a model, the balanced training set and the held-out fold set were

standardized by subtracting the mean of the respective feature vector and dividing it

by its standard deviation computed in the training data only. This standardization

method was selected as it has shown to be suitable for feature scaling in machine

learning methods [359].

The 50-trial five-fold cross-validation was assessed using three different regres-

sion m performed to asses three regression approaches: Elastic Net, Support Vector
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Regression (SVR), and Gradient Boosting Tree (GBT). At each iteration of the cross-

validation, the training folds were used to select the most relevant features for the

SVR and GBT models. For the SVR, features were selected using the maximum

relevance and minimum redundancy (mRMR) algorithm [285], which ranks the most

relevant features based on mutual information gain. For the GBT model, the features

were selected by training a GBT with 100 trees and learning rate of 1 on the training

folds, and then identifying the most relevant features by summing the feature weights

over all the weak learners.

To optimize each model’s hyperparameters, a nested cross-validation using a grid

search on the training folds was used for each model. The grid search for the three

models was defined as:

• Elastic Net. The linear penalty term, λ was defined as {0.1, 0.2, ..., 0.8, 0.9}.

The quadratic penalty term was given by 1−λ
2

. For each λ value, a set of 100

values of regularization parameters were tested. The regularization parameter

set was generated by first finding the largest value, θ, that gave a non-null

model (i.e. intercept 6= 0), and then the remaining 99 values were defined by

decreasing θ by 10−5, so that the ratio of the smallest to the largest value of

the set was 10−4.

• SVR. The grid search for the soft margin (C) and the margin of tolerance (ε)

were defined as: C ∈ {2−3, 2−1, ..., 28} and ε ∈ {2−10, 2−9, ..., 2−5}. The Gaus-

sian radial basis function parameter (γ) was analytically estimated as reported

in [61]. Namely, γ was derived by calculating the distribution of ||x− x′||2 be-

tween a subset containing 70% of the training set, and then taking the inverse

of the median of this distribution.

• GBT. The grid search for the learning rate was defined as {0.1, 0.25, 0.5, 1} and

the number of trees was defined as {100, 150, 200, ..., 500, 550}. The number of
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maximum splits (tree height) was defined as {1, 2, ..., log2(S − 1)}; where S is

the total number of visits of the training folds.

Analyzing the Training/Validation output

The 50 trial five-fold cross-validation resulted in 50 median absolute error (MAE)

vectors, and 250 selected feature vectors. From the 50 MAE vectors, the median,

interquantile range, and the lower and upper 95% confidence interval for the median

were determined. The median MAEs were compared to select which regression model

(Elastict Net, SVR, or GBT) to use in the test stage.

From the 250 selected feature vectors, the top twenty most relevant features were

identified. To that end, the features were ranked at each feature vectors, and the

mean rank was determined by averaging the ranking of each feature over the 250

feature vectors. This simple aggregation technique was used as it has shown to be

effective to combine different features sets in the medical application field [313, 406].

Using the top ten, top fifteen, and top twenty, the same validation/training pro-

cedure was repeated to identify the best performing feature set for estimating GA.

Testing methodology

The model selected with the best performing feature set were then used to train a final

model on the training set of normal birth weight patients. Before training the final

model, the training data were balanced using ADASYN [147], and the parameters

were optimized using grid search as explained in subsection 7.4.4. The final model

was then used to estimate the GA for both the 25 held-out normal birth weight and

the 24 LBW patients.

Since the final model depends on the nature of the synthetic data added to the

training dataset, the testing procedure was performed 100 times to evaluate the vari-

ability of the model’s performance. The median, interquantile range, and the lower
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and upper 95% confidence interval for the median were determined for the two test

groups. To determine if there was any difference in GA estimation distribution of

errors between the normal and LBW newborns, a two-sided Wilcox rank-sum test

hypotheses test was evaluated on the data.

Univariate sources

In order to assess the relevance of using a combination of 1D-DUS and maternal

blood pressure based features, the GA estimation procedure was repeated using fea-

tures from each source of data separately. To that end, the methods presented in

subsections 7.4.4, 7.4.4, and 7.4.4 were repeated for features extracted for each source.

In a manner similar to the training/validation procedure, the best feature set was

found for each monitoring modality. From the 27 1D-DUS based features, the top

twenty, fifteen, and ten features were identified in the training set. From the ten

maternal blood pressure-based features, the top ten, eight, and five features were

identified. Although an exhaustive search may have identified a better performing

set of features, we considered this process a reasonable trade off between overfitting

and parsimony.

The 100 MAE obtained using only features extracted from 1D-DUS and the 100

MAE obtained using only features derived from maternal blood pressure were com-

pared to the 100 MAE obtained using both types of features. The comparison was

performed using a one-sided Wilcox rank-sum test with the alternative hypothesis

that the median MAE of the individual source feature is lower than the median MAE

of combining features derived from both sources.

7.4.5 Detecting possibles cases of IUGR

Since we are assuming that IUGR cases are those with LBW, the estimated GA for

the test set were compared against birth weight. To that end, the GA error estimation
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was defined as the difference between the GA based on the LMP and the median GA

estimation over the 100 repetition. Then, a robust least square was fitted using the

birth weight as independent variable and the GA error estimation as the response

variable.

7.5 Results

7.5.1 Training/Validation performance

Table 7.6 shows the mean absolute error (MAE) for the 50 trial five-fold cross-

validation. For all the three regression models, the MAE of the seventh and eighth

gestational months were lower than those of the extreme months evaluated. The re-

gression model with the lowest the overall median MAE over the 50 trials was the SVR

with a value of 0.8 months. Furthermore, the SVR and Elastic Net were the models

with the lowest interquartile range for the MAE over the 50 trials, thus indicating a

lower variance of these to models in comparison to the GBT.

Table 7.6: Mean absolute errors (MAE) of the 50 trial five-fold cross validation for the
Elastic Net, SVR, and Gradient boosting tree. For each model, the median, interquantile
range, and the 95% confidence interval for the median of the MAE are provided.

Model Metric
Gestational age (months)

6 7 8 9 All

Elastic Net

Median 1.54 0.51 0.50 1.40 0.93
IQR 0.10 0.04 0.07 0.14 0.08
LCI 1.52 0.50 0.49 1.36 0.91
UCI 1.58 0.52 0.52 1.42 0.96

SVR

Median 1.57 0.51 0.43 1.15 0.80
IQR 0.17 0.09 0.10 0.11 0.06
LCI 1.54 0.48 0.40 1.11 0.79
UCI 1.65 0.54 0.47 1.17 0.83

Gradient boosting tree

Median 1.77 0.85 0.65 0.81 0.86
IQR 0.42 0.20 0.14 0.18 0.08
LCI 1.66 0.82 0.61 0.77 0.83
UCI 1.93 0.89 0.70 0.89 0.88
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7.5.2 Ranking the features

Table 7.7 shows the top twenty features for estimating GA based on the average rank-

ing of the 250 feature vectors for the SVR. Seven out of the ten top features were

derived from the 1D-Doppler ultrasound, being fHRV linear indexes the most com-

mon. Maternal blood pressure based features were also included in the top features,

being the MAP the most important feature of that group.

Table 7.7: Feature ranking obtained after averaging the individual 250 feature ranking
resulted in the 50 trial five-fold cross-validation.

Ranking Feature Type

Top10

Tone Non-linear and Complexity
#acc/min Linear

MAP Hemodynamic formula
ApEn Non-linear and Complexity

KurtosisIS Linear
CO Hemodynamic formula

STV/LTV Linear
SkewnessIS Linear

PP Hemodynamic formula
LTI Linear

Top15

stdIS/rmssdIS Linear
DBP Hemodynamic formula
RPP Hemodynamic formula
varIS Linear
stdIS Linear

Top20

GMI Non-linear and Complexity
II Linear

DAC Linear
MF Spectral

basal FHR Linear

Table 7.8 presents the results obtained by repeating the training/validation proce-

dure using the top10, top15, and top20 features. The top fifteen feature set achieved

the lowest median MAE over the 50 trials with a value of 0.76 months (95%CI =

0.75-0.78 months).
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Table 7.8: Mean absolute errors (MAE) of the 50 trial five-fold cross validation for the
SVR using the top10, top15, and top20 features. For each model, the median, interquantile
range, and the 95% confidence interval for the median of the MAE are provided.

Model Metric
Gestational age (months)

6 7 8 9 All

SVR
(top ten features)

Median 1.62 0.48 0.43 1.18 0.82
IQR 0.18 0.10 0.09 0.12 0.07
LCI 1.57 0.45 0.40 1.13 0.80
UCI 1.67 0.50 0.45 1.21 0.83

SVR
(top fifteen features)

Median 1.51 0.47 0.44 1.04 0.76
IQR 0.17 0.08 0.07 0.15 0.07
LCI 1.44 0.45 0.42 1.01 0.75
UCI 1.54 0.50 0.46 1.08 0.78

SVR
(top twenty features)

Median 1.56 0.45 0.43 1.16 0.81
IQR 0.15 0.10 0.08 0.09 0.05
LCI 1.52 0.42 0.40 1.14 0.79
UCI 1.60 0.47 0.44 1.20 0.81

7.5.3 Testing performance

Table 7.9 shows the performance of the 100 repetitions training an SVR with the top15

on the training set and testing on the held-out 25 normal birth weight newborns and

the 24 LBW newborns. The median MAE for each gestational month and the overall

was statistically significantly higher for the LBW newborns (two-sided Wilcox rank-

sum test; α = 0.05). The difference between the median MAE for the two groups was

increasing throughout the GA, resulting in a difference of 0.29 months for the overall

estimation.

Figure 7.2 shows the difference (δ) between GA based on the LMP and the median

estimated GA over the 100 repetitions for each visit. The LBW newborns’ (red

crosses) GAs were generally overestimated (LMP-GA < estimated GA) for the eighth

and ninth gestational months compared to the normal birth weight newborns (blue

circles). For the eighth and ninth gestational months, on the other hand, the LBW

newborns were generally underestimated (LMP-GA > estimated GA) comapred to

the normal birth weight newborns.
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Table 7.9: Mean absolute errors (MAE) of the 100 trials on the test (held-out) normal birth
weight and LBW newborns. For each type of newborns, the median, interquantile range,
and the 95% confidence interval for the median of the MAE are provided. A † indicates a
significant difference between the median GA estimations of the normal and LBW newborns
for the 100 repetitions (two-sided Wilcox rank-sum test; α = 0.05)

Newborn type Metric
Gestational age (months)

6 † 7 † 8 † 9 † All †

Normal birth weight

Median 1.06 0.53 0.33 0.99 0.72
IQR 0.25 0.05 0.07 0.07 0.05
LCI 1.03 0.52 0.32 0.98 0.71
UCI 1.08 0.54 0.35 1.00 0.72

Low birth weight

Median 1.26 0.73 0.68 1.32 1.01
IQR 0.11 0.05 0.09 0.06 0.03
LCI 1.24 0.72 0.67 1.30 1.01
UCI 1.29 0.74 0.69 1.33 1.02

For newborns with more than one visit, Figure 7.2 shows a line connecting the

median error across GA. For both normal and LBW newborns, the GA estimates

trended from overestimation to underestimations as GA increased. However, the

discrepancy was higher for the LBW newborn with a difference of around 2.5 months

between the seventh and the ninth gestational month. In contrast, the maximum

difference for normal birth weight newborns was approximately 0.75 months.

Figure 7.2: Median error of the 100 repetitions against GA provided by the LMP method
for the normal weight newborns (blue circles) and the LBW newborns (red crosses). For
newborns with more than one visit, a line connects the median error along with the GA.

Figure 7.3 shows the median of the estimated GA for each label of the LMP
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method. For all the gestational months, the LBW group resulted in a lower median

GA estimations than the normal birth weight group. The median difference between

normal and LBW newborns is greater for the last two months of pregnancy, thus

indicating a higher inconsistency in the features for GA estimation between the type

of newborns from the eighth month of gestation onward.

Figure 7.3: Median and interquartile range of the estimated GA for each label of the LMP
method for the normal weight newborns and the LBW newborns.

7.5.4 Comparing features for the estimation of GA

For the features derived from the 1D-DUS signals, the lowest validation median MAE

was achieved with a SVR using the DUS top ten features: tone, number of acceleration

per minute, Approximate entropy, STV/LTV ratio, SkewnessIS, stdIS/rmssdIS ratio,

KurtosisIS, LTI, varIS, and II. For the features derived from maternal blood pressure,

the lowest validation median MAE was achieved with a SVR using the maternal blood

pressure top eight features: PP, MAP, CO, DBP, RPP, SBP, and MHR.

Table 7.10 shows the median MAE for each source of features on the test data for

normal and low weight newborns. For the normal birth weight newborns, the features

derived from 1D-DUS signals obtained a statically significantly lower median MAE

for the seventh and eighth gestational month than using features derived from both
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sources. Using features based on maternal blood pressure, on the other hand, were

able to obtained significant lower MAE for the sixth gestational month. However,

any of the individual source features provided lower median MAEs for the ninth and

overall GA estimations.

Table 7.10: Median of the mean absolute errors (MAE) of the 100 trials on the test (held-
out) normal birth weight and LBW newborns using separately the one-dimension Doppler
ultrasound (1D-DUS) based features and maternal blood pressure (MBP) based features.
The median MAE of each source of feature were compared to the MAE of combining both
sources shown in Table 7.9. The comparison was performed using a one-sided Wilcox rank-
sum test with the alternative hypothesis that the median MAE of the individual feature
source is lower than the median MAE of combining features of both sources. ∗ indicates a
statistically significant difference regarding (left one-sided Wilcox rank-sum test; α = 0.05)

Newborn type
DUS-based features (SVR with top10) MBP-based features (SVR with top8)

Gestational age (months) Gestational age (months)
6 7 8 9 All 6 7 8 9 All

Normal birth weight 1.42 0.51* 0.26* 1.18 0.80 0.87* 0.78 0.79 1.15 0.92

Low birth weight 1.25* 0.52* 0.47* 1.38 0.95* 1.02* 0.65* 0.53* 1.64 1.07

For LBW patients, both sources of features (DUS and BP) obtained lower sig-

nificant MAEs for the sixth, seventh, and eighth gestational months. The features

derived from 1D-DUS signals led to a statically significantly lower median MAE for

the overall GA estimations.

7.5.5 GA estimation errors as a function of birth weight

Figure 7.4 shows the GA estimation errors over estimated birth weight for the tested

newborns. Robust least-square fits were performed for each type of newborn, as well

as for all the newborns as a whole. All the fits provided negative slopes and nega-

tive Pearson correlation values (ρ). The inverse relationship between GA estimation

error and birth weight indicates that there are more underestimations for newborns

with LBW. In fact, for the LBW newborns, fifteen visits achieved underestimations,

whereas ten visits obtained overestimations. For the normal weight newborns, the

fitted line was δNBW = 1.85 − 0.60wNBW (ρ = −0.15, P -value = 0.45). For the low
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weight newborns, the fitted line was δLBW = 0.82− 0.23wLBW (ρ = −0.06, P -value =

0.76). For all the newborns, the fitted line was δ = 1.12−0.35w (ρ = −0.13, P -value =

0.37).

Figure 7.4: Error in GA from 100 repetitions (δ) as the difference between GA based on
the LMP and the estimated GA. The median error of the 100 repetitions for each recording
(or visit) is displayed (triangles for LBW newborns; and circles for normal birth weight
newborns). Robust least square (RLS) fits are also shown.

7.6 Discussion

7.6.1 Interpretations of Findings

The results presented in this work indicate that it is possible to provide a proxy

for fetal growth assessment in a resource-constrained setting by using the difference

between GA estimated by LMP and the GA estimated from features extracted from

an inexpensive Doppler transducer and a blood pressure device.

This proxy fetal assessment relies on the GA estimation approach introduced

in this work, which using a pregnancy conversion factor of 40 weeks
9 months

resulted in a

median MAE of 3.2 and 4.5 weeks for the normal and LBW newborns, respectively.

Interestingly, these MAE values are comparable to those presented in [235] and [237]

of 2.7 to 5.1 weeks obtained using a step-wise regression using 1D-DUS and fECG

signals recorded by medical professionals in a high-resource / high-income country.
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Moreover, unlike [360], our work did not require high-resolution input signals, making

the implementation of the approach described here feasible in LMICs. Notably, our

GA estimations were lower than that at the six week point reported for the SFH

measurement method [139].

The higher GA estimation errors for the LBW newborns (see Table 7.9) indicate

that this type of patient has different patterns in the 1D-DUS and maternal blood

pressure features than normal birth weight newborns of the same GA. We note that

this difference is related to the birth weight (Figure 7.4), and therefore assuming that

LBW is a consequence of IUGR [205], a potential sign of IUGR can be detected when

the estimated GA is lower than the GA calculated from last menstruation period. This

provides evidence to indicate that our method is a low-cost alternative fetal growth

assessment to identify cases that need to be referred to further medical assistance in

LMICs, in which SFH measurement is not sufficiently accurate [403], and ultrasound

imaging is not available [399].

The longitudinal changes in the difference between GA estimations of low and nor-

mal birth weight newborns across gestation suggests that IUGR is progressive and is

more evident for the eighth and ninth gestational months (see Figure 7.3). There-

fore, our proxy method may be more effective in detecting fetal growth abnormalities

during the last two months of gestation, thus helping to identify fetuses that need

assistance during delivery to reduce adverse perinatal outcomes.

Another interesting finding was the selected features for estimating GA. The top15

features (Table 7.7) were consistent with features previous work for assessing gesta-

tional development [380, 379, 332, 386, 198, 185]. Specifically, linear, non-linear and

complexity features, such as tone, the number of accelerations per minute, approxi-

mate entropy, and statistical movements of the interbeat sequence, were the features

which provided the SVR with the highest performance boost. The feature selection

algorithm also demonstrated the potential of blood-pressure-derived features. This
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selection was relevant as little research has used this type of features for assessing fetal

maturity. Finally, the STV/LTV ratio, which previously has shown to be relevant for

detecting IUGR cases [355], was also relevant for GA estimation.

Notably, the combination of features from both sources (Doppler and blood pres-

sure) resulted in a lower MAE than estimating GA using features from only one

source. Based on the individual performance of 1D-DUS and maternal blood pres-

sure based features (Table 7.10), the maternal blood pressure-based features help to

reduce estimations errors in the sixth gestational month, whereas the 1D-DUS based

features contributed to reducing estimation errors in the seventh and eight gestational

months. Therefore, the inclusion of both source of features seems relevant to reduce

GA estimation error, as well as identify possible cases of LBW.

7.6.2 Study Limitations

It should be noted that in this work possible cases of IGUR were defined by newborns

birth weight. This assumption could not be validated as patients did not receive a

ultrasound imaging exam to detect IUGR based on obstetrician standards. Never-

the-less, this assumption was based on the fact that in LMICs around 60% of the

LBW is caused by IUGR [205].

The method presented here estimates GA using the LMP method as a reference.

As LMP is not a completely unbiased method for dating fetuses [20, 95], our results

may contain a bias. Moreover, since the errors in GA estimation provided by our

method were larger than two weeks (the estimation error recommended in the liter-

ature [218]), our method is not accurate enough to be used as a primary method for

dating GA. However, for rural areas in LMICS, in which there is a lack of ultrasound

imaging equipment and obstetricians, our method is a proxy to detect fetuses with

possible abnormalities (LBW or IUGR) that need to be referred for further medical

diagnosis and treatment. Superiority to the SFH measurement indicates that this
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method should be preferred.

Another limitation of this work was that the GA was recorded by the clinical team

in months rather than weeks [232]. However, as a month includes a variable number

of days, this introduces a quantization/rounding error - fetuses just a few days apart

that fall into different months will look similar but will be identified as different. This

decreases the accuracy of any model fitted to the data, resulting in larger absolute

errors for the sixth and ninth gestational months (Table 7.9).

This error can be thought of as a higher intra-class variance. When intra-class

variance is high, it is recommended to use a longitudinal approach rather than cross-

sectional one [96]. However, those models need multiple points per subject, in order

to be able to apply mixed models considering the random effects of each individual.

In this study we could not apply a longitudinal approach because the majority of

subjects contained only one valid visit. Nevertheless, the MAE values obtained for our

approach suggests that features and methods used here are promising for estimating

GA based on the LMP method, which is a low-cost, feasible method to date pregnancy

in LMICs [265].

Our study also included visits that were between the sixth and ninth months of

gestation. To fully assess the capacity of our approach to estimating GA, it should be

evaluate on metrics recorded in the first and second trimesters. Such an evaluation

would allow for the comparison of our GA estimation in a fetal development period

in which genetic and biological variability of fetal size is low, and in which Doppler

images methods estimate GA more accurately [298].

Finally, we note that the approach presented here did not consider fetal sex to

estimate GA. Although it may influence fHRV metrics used here for GA estimation,

we deliberately avoid gender because the aim is to avoid the use of imaging Doppler,

and sex determination, which present significant cost and social problems respectively.
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7.6.3 Future directions

Future research should focus on increasing the temporal resolution of the GA labels

(by recording the week of the LMP through community surveys perhaps), and use a

more accurate dating method such as expert-driven ultrasound imaging.

Future research should also evaluate the efficacy of the proxy presented here on

confirmed diagnoses of IUGR. This evaluation would allow a full end-to-end assess-

ment of how 1D-DUS and maternal blood pressure can contribute to detection fetal

growth abnormalities.

Moreover, future research should ensure the collection of multiple visits during

the course of pregnancy (and extending this to earlier gestational periods), so that

a longitudinal analysis can be performed that incorporates the individual dynamics

into the model.

7.7 Conclusion

This work introduced a proxy to detect possible cases of fetal growth retardation

for constrained-resource environments in which ultrasound imaging is not available,

and current low-cost methods are prone to error. The potential IUGR cases are de-

tected by comparing GA based on the last menstrual period with estimates obtained

1D-DUS and maternal blood pressure recordings collected with inexpensive devices,

usable with little training. The method is valuable to endow non-medically trained

operators with an objective metric to identify cases that need to be referred to fur-

ther medical assistance. The assessment system may, therefore, have an immediate

impact if coupled with suitable intervention, such as nutritional supplementation.

However, a prospective clinical trial is required to show the efficacy of such metrics

and intervention.
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Chapter 8

Conclusion

8.1 Summary and contributions

The work presented in this thesis addressed the issue of tracking gestational devel-

opment using a low-cost monitoring system appropriate for LMICs. Specifically, the

monitoring system collects 1D-Doppler ultrasound signals (1D-DUS) of fetuses by

means of a mobile health system previously introduced by Stroux et al. [351, 355] in

a Guatemalan highland rural community. Gestational development tracking is a cru-

cial issue in rural Guatemala, where perinatal and neonatal death rates are alarmingly

high [368]. A leading contributor to this burden is IUGR [205], which is a slowdown of

gestational development leading to low birth weight. Low birthweight, in turn, is as-

sociated with lower neurodevelopmental scores and other adverse sequelae [258, 207].

Critical cases of restricted-growth fetuses can be identified by developing methods

to assist Traditional Birth Attendants (TBAs), thus allowing for timely referrals and

interventions.

Since 1D-DUS are a primary source for the gestational tracking methods presented

in this thesis, the first relevant step was to ensure the quality of such collected signals.

Chapters 3 and 4 presented methods to assess the quality of 1D-DUS recorded with
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the inexpensive Doppler transducer used in the mHealth system. To that end, time,

spectral and non-linear features were extracted, and a supervised machine learning

approach was used to classify the 1D-DUS into five quality classes observed in the

first release cycles of the mHealth app. Taking into account computational time, a

final set of 17 features achieved an F1-score higher than 90% to classify the different

quality classes. Notably, the used feature set only requires approximately 360 ms to

be extracted from a 3.75-second 1D-DUS segment using a smartphone processor, thus

enabling the quality assessment functionality to be transferred to the mHealth app.

Functionality to track fetal gestational development was developed using FHR es-

timations. Chapter 7 described how linear, spectrum and complex features extracted

from FHR time-series were combined with maternal blood pressure features to esti-

mate gestational age. The method achieved a mean estimation error of 0.8 months,

which is comparable to those provided by previous works [235, 237] performed using

CTG and fECG recorded in a hospital environment. Therefore, the method provides

a proxy for assessing fetus development. For instance, a potential sign of IUGR can be

identified if the estimated GA is lower than the GA reported by the last menstruation.

The method also provides an interesting finding regarding the most relevant features

for gestational age estimation. In particular, maternal blood-pressure-derived fea-

tures were shown to be relevant; however, before this work, little research had used

them to assess fetus maturity.

Chapter 6 presented a gestational development tracking functionality, aimed at

postpartum visits. Given the high prevalence of low birth weight and delayed first

postnatal visit in LMICs, a regression model was developed to identify possible low-

birth-weight newborns based on observed postnatal weights up to 60 days after birth.

Birth weight estimations were consistent with figures reported by the Guatemalan

government for the region of study [254], thereby showing the proposed regression

model’s potential to estimate birth weight. It may be possible to identify LBW new-
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borns by weighing infants several days after birth, and, therefore, initiate treatment

to reduce short- and long-term complications.

In addition to contributing to fetal gestation tracking functionalities, this thesis

contributed to annotate datasets. Specifically, two 1D-DUS datasets and one ma-

ternal blood pressure dataset were annotated. The annotation process made all the

methods presented here possible. Moreover, the annotated datasets have sparked ad-

ditional related projects that seek to improve the mHealth system for providing fetal

monitoring to populations in LMICs.

8.2 Limitations

The work conducted has some limitations. The methods presented in Chapters 3 to 7

were developed and tested offline. The methods were not tested online at the point of

care because this work focused on the development of the functionalities rather than

in the implementation of them. Nevertheless, the obtained results were designed

and developed taking computational cost into consideration, thereby ensuring the

use of inexpensive computational methods that can be timely executed in a mobile

application.

Moreover, the functionalities presented in this work are in a prototype stage and

have not yet been implemented in the mobile application. Although computational

cost was considered as a factor in the development, it will be necessary to transfer

the functionalities to a smartphone to assess the real contribution to perinatal care

in Guatemala rural communities.

Another limitation regarding gestational tracking functionalities (Chapters 6 and

7) is that the methods were developed and tested with 1D-DUS and maternal blood

pressure recordings collected from 2016 to 2018 in rural Chimaltenango. The gesta-

tional age and birth weight estimations have not been tested with recordings collected
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after 2018 in Chimaltenango, nor with data collected from different LMICs around

the world. Therefore, the stability and accuracy of the features used for gestational

age and birth weight may not be generalizable to other populations. However, the ap-

proach presented here can be adjusted to new LMICS populations, thereby extending

the functionalities here to new populations.

This thesis aimed to develop functionalities to track fetal gestational development.

However, it should be noted that in this thesis possible cases of IGUR were defined

as those newborns whose birth weight was low. This assumption could not be vali-

dated as patients did not receive a Doppler imaging exam to detect IUGR based on

obstetrician standards.

Similarly, gestational age estimation regression was trained using the last men-

strual period as a standard. However, as previously reported in the literature, the

last menstrual period is not totally accurate, thereby introducing noise in the devel-

opment of the method presented in Chapter 7. Again, as Doppler imaging was not

available in the Guatemalan rural community, the gestational age labels were not

validated. The accuracy of the presented method may, therefore, be affected when

tested with a dataset labeled with different gestational age methods. Nevertheless,

the approach presented in Chapter 7 can be easily adjusted to a dataset with more

accurate gestational age labels such as those provided by Doppler imaging.

8.3 Future work

8.3.1 Online functionalities

All functionalities presented here were developed for offline processing. As the final

goal of the mHealth system is to function as a decision support system able to pro-

vide timely feedback to TBAs, it is necessary that all functionalities be processed

online. To that end, two options are possible. The first option is to implement all
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functionalities on the mobile application; thus, enabling the smartphone to process

all the 1D-DUS and maternal blood pressure recordings. The implementation of the

functionalities is feasible since low-cost computational techniques were used in the de-

velopment. The second option is to send the recorded data to be processed in a remote

server using a cellphone communication network. This option requires a cellphone

network plan with enough bandwidth to send and receive information. However, in

rural areas of LMICs, the signal is weak as geographical conditions interrupt the

transmission between smartphones and cellular antennas. Therefore, the first option

seems to be more viable than the second one since, in that case, the functionalities

would rely only on the smartphone and not on external factors, such as the cellphone

network.

8.3.2 Segmentation of 1D-Doppler ultrasound signals into

beat-to-beat intervals

Commercial hand-held and CTG devices use autocorrelation-based methods such

as that presented in Chapter 4 for estimating FHR from a 1D-DUS signal. How-

ever, previous works have shown that AC-based methods are affected by the inherent

smoothing or averaging of the autocorrelation [176, 201, 65]. This averaging char-

acteristic tends to limit the capacity of AC-based approaches to follow rapid FHR

decelerations. Indeed, by comparing the performance of AC-based methods to in-

direct fECG, Jezewski et al. [176] found statistically significant differences in fetal

heart rate variability indicators, such as decelerations and short term variability.

In order to overcome the problems of AC-based approaches, a 1D-DUS signal

should be segmented into beat-to-beat intervals. By segmenting the signal into inter-

vals, accurate estimations of heart rate variability metrics can be performed, similar

to those given by fECG. One approach to this was presented in Stroux et al. [351],

in which a Hidden Markov model-based (HMM) approach was used to segment beats
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in a 1D-DUS signal, achieving F1-scores of 91.8% and 98.4% to detect beat-to-beat

intervals in 1D-DUS signals of intermediate and good quality signals, respectively.

However, the HMM model needed annotations of the heartbeat locations to optimize

parameters. Such annotation is time-consuming and subject to high variability among

annotators. Future research should address this problem by combining unsupervised

methods with the models that improve the segmentation of beats, such as hidden

Markov models [347], thereby increasing the accuracy of HRV estimates.

8.3.3 Deep learning for improving gestational age estima-

tions and detection of IUGR cases

This thesis used classical machine learning supervised methods, particularly an SVM,

to estimate gestational age. Modern methods of Deep Learning (DL) were not used

as the dataset contained fewer than 200 patients (see Chapter 7). However, DL may

help to improve estimations of gestational age, as well as of other parameters, such

as IUGR. The advantage of DL is that the neural network structure facilitates the

identification of features beyond those hand-crafted by the programmer. In the case

of 1D-DUS signals, DL algorithms can learn from the raw data without using any

previous feature engineering process to determine which positions of a 1D-DUS signal

are relevant for the estimations. As the frequency and shape of a 1D-DUS signal de-

pend on the maturity and health of the fetus, DL may be able to associate gestational

age and health status labels with the input 1D-DUS signals. Therefore, future work

should evaluate the performance of DL in gestational development tracking on larger

datasets.
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Appendix A

Table of all feature combinations

for quality assessment

Table A.1: Median classification performance of the 100 five-fold cross validation balanced
with bootstrapping for all the possible feature combinations. The table is grouped for feature
vectors of the same length. For each combination of features, the median and interquartile
range of the accuracy rate of the 100 repetitions are shown.

Median Interquartile

Feature Combination
Accuracy Range

Hs 84.17% 5.83%

PSD 84.17% 6.67%

SQI4 64.17% 11.25%

SQI3 67.92% 5.00%

SQI2 74.17% 6.67%

SQI1 61.67% 10.42%

PSD,Hs 85.06% 5.00%

SQI4,Hs 84.58% 5.00%

SQI4,PSD 78.42% 15.42%

SQI3,Hs 83.33% 6.67%

SQI3,PSD 84.17% 12.92%

Continue in the next page
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Table A.1 – Continuation of the previous page

Median Interquartile

Feature Combination
Accuracy Range

SQI3,SQI4 65.00% 9.58%

SQI2,Hs 85.83% 5.00%

SQI2,PSD 84.65% 10.83%

SQI2,SQI4 69.17% 5.83%

SQI2,SQI3 73.33% 7.50%

SQI1,Hs 85.83% 5.46%

SQI1,PSD 81.67% 8.33%

SQI1,SQI4 61.67% 9.17%

SQI1,SQI3 62.50% 7.22%

SQI1,SQI2 71.67% 8.75%

SQI4,PSD,Hs 81.67% 8.75%

SQI3,PSD,Hs 85.00% 7.50%

SQI3,SQI4,Hs 81.67% 5.83%

SQI3,SQI4,PSD 80.83% 10.83%

SQI2,PSD,Hs 85.83% 5.00%

SQI2,SQI4,Hs 84.17% 5.00%

SQI2,SQI4,PSD 83.33% 8.33%

SQI2,SQI3,Hs 84.17% 5.47%

SQI2,SQI3,PSD 80.00% 9.58%

SQI2,SQI3,SQI4 67.50% 8.33%

SQI1,PSD,Hs 85.00% 6.67%

SQI1,SQI4,Hs 82.50% 6.25%

SQI1,SQI4,PSD 78.33% 12.92%

SQI1,SQI3,Hs 83.33% 5.00%

SQI1,SQI3,PSD 82.50% 14.58%

SQI1,SQI3,SQI4 65.00% 7.08%

Continue in the next page
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Table A.1 – Continuation of the previous page

Median Interquartile

Feature Combination
Accuracy Range

SQI1,SQI2,Hs 85.00% 5.83%

SQI1,SQI2,PSD 84.17% 8.33%

SQI1,SQI2,SQI4 69.17% 5.83%

SQI1,SQI2,SQI3 72.50% 6.67%

SQI3,SQI4,PSD,Hs 80.83% 7.50%

SQI2,SQI4,PSD,Hs 85.00% 8.33%

SQI2,SQI3,PSD,Hs 82.92% 5.83%

SQI2,SQI3,SQI4,Hs 83.33% 5.83%

SQI2,SQI3,SQI4,PSD 77.08% 9.17%

SQI1,SQI4,PSD,Hs 82.50% 7.83%

SQI1,SQI3,PSD,Hs 85.00% 10.83%

SQI1,SQI3,SQI4,Hs 79.17% 5.00%

SQI1,SQI3,SQI4,PSD 79.17% 12.50%

SQI1,SQI2,PSD,Hs 84.17% 6.25%

SQI1,SQI2,SQI4,Hs 82.50% 5.83%

SQI1,SQI2,SQI4,PSD 80.83% 7.15%

SQI1,SQI2,SQI3,Hs 82.92% 6.67%

SQI1,SQI2,SQI3,PSD 79.17% 8.75%

SQI1,SQI2,SQI3,SQI4 68.33% 7.08%

SQI2,SQI3,SQI4,PSD,Hs 80.83% 10.00%

SQI1,SQI3,SQI4,PSD,Hs 77.50% 10.83%

SQI1,SQI2,SQI4,PSD,Hs 84.65% 5.00%

SQI1,SQI2,SQI3,PSD,Hs 84.17% 6.67%

SQI1,SQI2,SQI3,SQI4,Hs 82.50% 5.00%

SQI1,SQI2,SQI3,SQI4,PSD 77.50% 8.33%

SQI1,SQI2,SQI3,SQI4,PSD,Hs 83.75% 6.67%
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Appendix B

Algorithm for determining

periodicity

FindingPeriodicity Algorithm for determining periodicity of 1D-DUS signal

procedure FindingPeriodicity
peaks← Peak amplitude of the AC window, sorted by location
locs← Sorted location of the AC window peaks

main:
if length(peaks) > 1 then . Are there more than 1 pronounced peaks?

ratio← locs[1]/locs[2] . Finding ratio between peak times
if ratio ≥ 0.48 and ratio ≤ 0.52 then

return loc[1] . In this case, peaks are harmonic
else

if peaks[1]/peaks[2] > threshold then
return loc[1]

else
return loc[2]

else
return loc[1]
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M. Burša. Assessment of features for automatic CTG analysis based on expert

annotation. In 2011 Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, pages 6051–6054. IEEE, 2011.

[71] G. Cicolini, C. Pizzi, E. Palma, M. Bucci, F. Schioppa, A. Mezzetti, and L. Man-

zoli. Differences in blood pressure by body position (supine, fowler’s, and sit-

ting) in hypertensive subjects. American Journal of Hypertension, 24(10):1073–

1079, 2011.

[72] S. Clark, P. Sabey, S. Minton, and R. Stoddard. Non-stress testing with acoustic

stimulation. In Seventh Annual Meeting of The Society of Perinatal Obstetri-

cians, Lake Buena Vista, FL, USA, 1987.

[73] G. D. Clifford, F. Azuaje, and P. McSharry. Advanced methods and tools for

ECG data analysis. Artech House Norwood, Norwood, MA, USA, 2006.

[74] G. D. Clifford, J. Behar, Q. Li, and I. Rezek. Signal quality indices and data

fusion for determining clinical acceptability of electrocardiograms. Physiological

Measurement, 33(9):1419, 2012.

[75] G. D. Clifford, D. Lopez, Q. Li, and I. Rezek. Signal quality indices and data

fusion for determining acceptability of electrocardiograms collected in noisy

ambulatory environments. In 2011 Computing in Cardiology, pages 285–288,

Hangzhou, China, Sept 2011.



200

[76] G. D. Clifford, I. Silva, J. Behar, and G. B. Moody. Non-invasive fetal ECG

analysis. Physiological Measurement, 35(8):1521, 2014.

[77] F. V. Coakley, H. Hricak, R. A. Filly, A. J. Barkovich, and M. R. Harrison.

Complex fetal disorders: effect of MR imaging on management—preliminary

clinical experience. Radiology, 213(3):691–696, 1999.

[78] W. R. Cohen, S. Ommani, S. Hassan, F. G. Mirza, M. Solomon, R. Brown, B. S.

Schifrin, J. M. Himsworth, and B. R. Hayes-Hill. Accuracy and reliability of

fetal heart rate monitoring using maternal abdominal surface electrodes. Acta

Obstetricia et Gynecologica Scandinavica, 91(11):1306–1313, 2012.

[79] W. Count. A quantitative analysis of growth in certain human skull dimensions.

Human Biology, 14(2):143–165, 1942.

[80] M. Covas, E. Alda, S. Ventura, S. Braunstein, G. Serralunga, and L. Yañez.
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