Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

William Francis Tracy

Date

Leveraging Catalysis to Enable the Asymmetric Synthesis of Novel Cereblon E3 Ligase Modulatory Drug Cores

By

William F. Tracy Doctor of Philosophy

Chemistry

Huw M. L. Davies, Ph.D.

Advisor

Frank E. McDonald, Ph.D.

Committee Member

William M. Wuest, Ph.D.

Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D, MPH Dean of the James T. Laney School of Graduate Studies

Date

Leveraging Catalysis to Enable the Asymmetric Synthesis of Novel Cereblon E3 Ligase Modulatory Drug Cores

By

William F. Tracy

B.A., University of North Carolina at Chapel Hill, 2020

Advisor: Huw M. L. Davies, Ph.D.

An abstract of

A dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry, 2025

Leveraging Catalysis to Enable the Asymmetric Synthesis of Novel Cereblon E3 Ligase Modulatory Drug Cores

By

William F. Tracy

Glutarimide-containing compounds, particularly immunomodulatory imide drugs (IMiDs), are an exceptional class of compounds that can degrade previously "undruggable" proteins of interest. The glutarimides ubiquitous in the class modulate Cereblon (CRBN), an E3 ubquitin ligase receptor. The synthetic challenges surrounding these structures such as hydrolytic instability, sensitive stereochemical elements, and insolubility make the development and adaptation of new methods for their preparation of high value. Rhodium carbene chemistry, catalyzed by chiral dirhodium complexes, is a powerful method for use in medicinally relevant contexts. Herein, we develop a new adaptation of the Suzuki-Miyaura cross-coupling to enable the synthesis of diverse and stereodefined IMiDs via asymmetric rhodium cyclopropanation and cyclopropenation. These novel and bioactive IMiDs comprise a study demonstrating the subtle interplay of regiochemistry and stereochemistry in neosubstrate degradation. Further exploration of the impact of rhodium carbenes on the study of IMiDs lead to the development of carbene precursors containing CBRN-modulatory cores, which are capable of not only effective cycloaddition chemistry but also selective C-H functionalization, for the creation of stereodefined molecular glue-like compounds and bioactive bifunctional degrader compounds. This work expands the current understanding of how catalysis—especially rhodium catalysis—can impact drug discovery efforts via the facile generation of different kinds of structural complexity, enhance the tools available to medicinal chemists, and by doing so develop further knowledge of the subtleties of rhodium carbene chemistry.

Chapter 1: This chapter will discuss the challenges associated with derivatizing IMiD cores via Suzuki-Miyaura cross-couplings, and the discovery of highly effective reaction conditions for introducing alkenetype trifluoroborates in an enantioretentive manner. This reaction also seems to proceed by a mechanism distinct from that of typical Suzuki-Miyaura reactions, and a computational investigation of the mechanism will be discussed briefly.

Chapter 2: This section will explore the effectiveness of dirhodium-catalyzed asymmetric cyclopropanation and cyclopropenation of alkene- and alkyne-derivatized IMiD cores. The resulting stereoenriched derivatives have distinct biological properties based on both stereochemical and regiochemical factors.

Chapter 3: The final chapter will discuss the development of IMiD-like cores as aryldiazoacetate carbene precursors for rhodium carbene-mediated transformations. These aryldiazoacetates, in combination with chiral catalysts, enable high-yielding and highly diastereoselective C-H functionalization and cyclopropanation reactions for the creation of bioactive bifunctional protein-degrading compounds and complex structures with potentially cereblon-modulating cores.

Leveraging Catalysis to Enable the Asymmetric Synthesis of Novel Cereblon E3 Ligase Modulatory Drug Cores

By

William F. Tracy

B.A., University of North Carolina at Chapel Hill, 2020

Advisor: Huw M. L. Davies, Ph.D.

A dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry, 2025

Acknowledgements

Huw, thank you for all of your support over the past few years. Starting a PhD program during a pandemic wasn't easy. Even though we had to do our rotations on Zoom I had a feeling that I would find a good place in the Davies lab, and that feeling was confirmed time and again during my PhD. Thank you for your kindness and support all the way through, and the opportunities you gave me to grow as a scientist.

Frank and **Bill**, thank you for your support and encouragement over the years. I valued the helpful discussions that we had during my yearly milestones.

Jack, your mentorship and friendship carried me through the first three years of graduate school. I'm sure I annoyed you with countless questions about anything and everything in lab, but I learned so much from you as a chemist. You helped to set me on a trajectory that ended up being a major reason for my success at Emory, and I can't thank you enough.

Robert, your mentorship when I was just starting in the Davies group was invaluable. The way you do chemistry heavily influenced how I approached the rest of my PhD work.

Brock and Josh, thank you for being great officemates and friends. You guys always cheered me up. **Geraint**, **Emily**, and **Jesus**, you were such great collaborators and mentors. I grew a lot working with you over 2+ years, and our work together, as you will see, makes up the core and substance of my PhD work. It wouldn't have been possible without your help.

Andrew, you're the chemist that got me fascinated by synthesis in the first place. I spent a lot of grad school asking myself, "what would Andrew Perkowski do?" Your habits and attitude in the lab made a major contribution to how I do and think about chemistry. **Jeff**, thank you for giving a junior transfer student a chance to do chemistry in your lab at UNC. I wouldn't be here without that chance.

To my family—thank you for your support and encouragement all the way through.

To **Megan**, my wife, I wouldn't have made it through grad school without you. I've been complaining to you about everything from my second-year exam onward, and you were there every day to support me and listen to me. Love you.

Table of Contents

Introduction	1
References1	4
Chapter 1: Development of an Anhydrous and Stereoretentive Fluoride-Enhanced Suzuki- Miyaura Reaction for the Synthesis of Derivatized Cereblon E3 ligase Modulatory Drug Cores.	
	2
Introduction	2
Results and Discussion	4
Conclusions	6
References	7
Chapter 2: Asymmetric Dirhodium-Catalyzed Cyclopropanation and Cyclopropenation of Cereblon E3 Ligase Modulatory Drug Cores and their Biological Evaluation	-0
Introduction	0
Results and Discussion	2
Conclusions	5
Reference	6
Chapter 3: Adapting Cereblon E3 Ligase Modulatory Drug Cores as Rhodium Carbene Precursors for C-H Functionalization and Cyclopropanation	9
Introduction	9
Results and Discussion	1
Conclusions7	4
References7	6

Appendix A: Supporting Information for Chapter 1	A-1
Section 1: Supplemental Figures	A-1
Scheme S2-1: Attempts at generation of 1.4a and 1.4c using literature and pate conditions	ent A-1
Scheme S2-2: Limitations of the substrate scope	A-2
Section 2: General Information	A-3
Figure S2-1: Aryl halides used in this study	A-3
Figure S2-2: Aryl halides used in this study	A-3
Section 3: Synthetic Procedures and Compound Characterization	A-3
General Synthetic and Characterization Information	A-3
General procedure A for reaction optimization.	A-4

General procedure B-1 for the cross-coupling of potassium trifluoro(viny and aryl halides.	l)borates A-4
General procedure B-2 for the cross-coupling of potassium trifluoroborat bromides	es and aryl A-5
General Procedure B-3 for the 1 mmol-scale cross-coupling of potassium trifluoro(vinyl)borate and 5-bromo-2-(2,6-dioxopiperidin-3-yl)isoindolind dione	e-1,3- A-5
General Procedure C for the stereoretentive cross-coupling of potassium trifluoroborates and thalidomide derivatives.	A-6
Compound Synthesis and Characterization	A-6
Section 4: Computation Details	A-19
Potassium (vinyl)trifluoroborate Association Complexes	A-19
Potassium (vinyl)trifluoroborate π -Association Complexes	A-25
Transmetalation structures III-V	A-31
Potassium (phenyl)trifluoroborate Association Complexes	A-38
Potassium (phenyl)trifluoroborate π -Association Complexes	A-44
Heterocyclic trifluoroborate π -complexes	A-50
Section 5: Spectroscopic Data	A-54
¹ H NMR Spectra	A-54
¹³ C NMR Spectra	A-67
Section 6: Chromatographic Data	A-78
Section 7: References	A-80
Appendix B: Supporting Information for Chapter 2	B-81
Section 1: DoE Study Details	B-81
Table S2-1: DoE Reaction Parameters and Yields	B-82
Figure S2-1: DoE Reaction Analysis—Pareto Chart	B-82
Figure S2-2: DoE Reaction Analysis—Calculated Best Conditions	B-83
Section 2: General Information	B-83
Figure S2-3. Aryl alkenes used in this study	B-83
Figure S2-4. Aryl alkynes used in this study	B-8 4
Section 3: Synthetic Procedures and Compound Characterization	B-8 4
General Synthetic and Characterization Information	B-84
Compound Synthesis and Characterization	B-85
Synthesis of Starting Materials	B-85
Preparation of Aryldiazoacetates.	B-90
Figure S2-5. Aryldiazoacetates used in this study	B-90

Synthesis of Final Compounds	B-91
General Cyclopropanation Procedure (GP 1)	B-91
General Cyclopropenation Procedure (GP 2)	B-92
Synthetic References	B-107
Section 4: Crystallographic Information	B-107
Figure S2-6 Crystal Structure of (<i>R</i>)-2.17a	B-108
Figure S2-7. A thermal ellipsoidal representation of the asymmetric un crystal structure (50% probability) which consists of one whole molect atoms in this structure are: C9(R), C14(S), and C15(R)	nit in the cule. The chiral B-110
Figure S2-8: Diffraction Data	B-110
Figure S2-9: Refinement and Data	B-111
Table S2-1: Fractional Atomic Coordinates (×10 ⁴) and Equivalent Iso Displacement Parameters (Å ² ×10 ³) for WT-05-553. U_{eq} is defined as of the orthogonalised U_{ij} .	tropic 1/3 of the trace B-112
Table S2-2: Anisotropic Displacement Parameters (×10 ⁴) for WT-05-2 anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times +2hka^* \times b^* \times U_{12}]$	553. The U_{11} +
Table S2-3: Bond Lengths in Å for WT-05-553	B-114
Table S2-4: Bond Angles in ° for WT-05-553	B-114
Table S2-5: Torsion Angles in ° for WT-05-553	B-115
Table S2-6: Hydrogen Fractional Atomic Coordinates (×10 ⁴) and Equ Isotropic Displacement Parameters (Å ² ×10 ³) for WT-05-553. U_{eq} is de the trace of the orthogonalised U_{ij} .	ivalent efined as 1/3 of B-1
Citations for crystallographic work	B-1
Section 5: Spectroscopic Data	B-2
¹ H NMR Spectra	B-2
¹³ C NMR Spectra	B-14
Section 6: Chromatographic Data	B-27
Chiral SFC Chromatograms	B-27
Purity Chromatograms	B-51
Section 7: Assay Protocols	B-68
Table S2-7: Cell Cultures and Assay Details	B-69
Section 8: Biological Data Tables	B-70
Table S2-8: Fluorescence Resonance Energy Transfer-Based Cereblor Assay Data	1 Binding B-70
Table S2-9: Neosubstrate Degradation Assay Data*	B-70
Appendix C: Supporting Information for Chapter 3.	C-1

Section 1: General Information
Figure S3-1. Aryl iodides used in this study C-3
Section 2: Synthetic Procedures and Compound Characterization
Synthesis of Starting Materials
Synthesis of Final CompoundsC-8
General Procedure 1 (GP1)C-8
General Procedure 2 (GP2)C-8
General Procedure 3 (GP3)C-8
General Procedure 4 (GP4)C-9
General Procedure 5 (GP5)C-9
General Procedure 6 (GP6)
General Procedure 7 (GP7)C-9
General Procedure 8 (GP8)C-10
Section 3: Computation Details
Figure S3-2. ONIOM Partitioning and the solid-state Structure of studied catalyst. The blue-highlighted atoms were modeled with QM layer (B3LYP), the rest was modeled with MM layer (UFF)
Analysis of the metal-carbene complex with Rh ₂ (OAc) ₄ C-37
Figure S3-3. Study of Rh ₂ (OAc) ₄ -carbene complexes with isomers resulted from the rotation around the carbene-aryl bond
Figure S3-4 Structure of metal-carbene model study for Rh ₂ (S-tetra-pBrPPTTL) ₄ . C-38
Figure S3-5. Optimized structure of metal-carbene complex. A. structure was optimized at ONIOM(B3LYP:UFF) with highlighted structure included in QM level while the rest in MM level. B. structure was optimized at ONIOM(B3LYP:UFF) with highlighted structure included in QM level while the rest in MM level. C. Structure was optimized at B3LYP-D3(BJ)/6-31G(d,p) (C,H,N,O,Br,Cl) – Lan2ldz (Rh). The reported bond length is Rhodium-carbene length
Figure S3-6 Comparison between structures obtained from ONOIM approach and normal QM approach. a) an overlay between structure A (colorful) and A-SI-2 (green). b) an overlay between structure A-SI-1 (colorful) and A-SI-2 (green). Layering structures were generated by Vesta program. Root-Mean-Squares Deviation (RMSD) was calculated by Pymol using align function
Analysis of the metal-carbene complexes with Rh ₂ (<i>S-tetra</i> -Br-TPPTTL) ₄ and Rh ₂ (<i>R-tetra</i> -Br-TPPTTL) ₄
Figure S3-7 Illustration of the side of approach during C-H insertion reaction C-40

Figure S Rh ₂ (R-1 enthalp	S3-8. Structure of metal-carbene complex from Rh ₂ (S-te tetra-BrTPPTTL) ₄ with I and II configuration. The reporties and free energy are in kcal/mol unit and relative to st	tra-BrTPPTTL) ₄ and ted relative ructure A C-40
Tables	of energies	
Table S thermal Gibbs f D3(BJ)	3-1. zero-point correction (ZPE), thermal correction to e correction to Gibbs free energy (TCG), energies (E), energies (G) (in Hartree) of the structures calculated +CPCM(CH2Cl2) level of theory	enthalpy (TCH), thalpies (H), and at the B3LYP- C-40
Table S thermal Gibbs f ONION	3-2 zero-point correction (ZPE), thermal correction to end correction to Gibbs free energy (TCG), energies (E), end free energies (G) (in Hartree) of the structures calculated <i>A</i> [B3LYP:UFF]+CPCM(CH ₂ Cl ₂) level of theory follower	nthalpy (TCH), thalpies (H), and at the ed Figure S3-1 C-41
Cartesia	an coordinates for calculated structure	C-41
Section 4:	Spectroscopic Data	C-79
¹ H NM	R Spectra	C-79
¹³ C NM	IR Spectra	C-97
Suppler	mentary NMR Spectra	C-114
Section 5:	Chromatographic Data	C-118
Chiral S	SFC Chromatograms	C-118
Section 6:	Assay Protocols	C-146
Section 7:	Results of the High-Throughput Screen for the Diazo C	ross-Coupling C-147
Section 8:	References	C-150

List of Abbreviations

IMiDs: Immunomodulatory imide drugs **TPD**: Targeted protein degradation **PROTAC**[®]: Proteolysis action targeting chimera LDD: Ligand directed degrader **CRBN**: Cereblon **CELMoD**: Cereblon E3 Ligase Modulator CRL4^{CRBN}: CUL4–RBX1–DDB1–CRBN CUL4: Cullin-4 protein **RBX1**: RING-box protein 1 **DDB1**: Damage-Specific DNA Binding Protein 1 **API**: Active pharmaceutical ingredient **HFIP**: 1,1,1,3,3,3-hexafluoroisopropanol SFC: Supercritical Fluid Chromatograph, Supercritical Fluid Chromatography **DFT**: Density Functional Theory **SAR**: Structure-and-reactivity **UMAP**: Uniform Manifold Approximation and Projection **IKZF3**: Ikaros family zinc finger protein 3

CK1a: Casein Kinase 1 alpha **GSPT1**: G1 to S phase transition 1 SALL4: Spalt-like Transcription Factor 4 **DoE**: Design of Experiment **ECFP4**: Extended Connectivity Fingerprints, Radius = 2**UMAP**: Uniform Manifold Approximation and Projection **PMI**: Principal Moments of Inertia **HTRF**: Homogenous Time-Resolved Fluorescence **IC**₅₀: Half-maximal Inhibitory Concentration **EC**₅₀: Half-maximal Effective Concentration **PDB**: Protein Database **SP**: Standard Precision **MOE**: Molecular Operating Environment **BRD4**: Bromodomain 4

Table of Figures

Figure I-1: Archetypal CELMoDs used in the clinic today
Figure I-2: A. General mechanism of TPD via LDDs featuring an LDD in the clinic. B. General
mechanism of TPD via IMiDs featuring an IMiD in the clinic
Figure I-3: A. Hydrolysis products of thalidomide. B. Hydrogen-bonding dimers of the
enantiomers of thalidomide
Figure I-4: A. Spectrum of reactivity and selectivity in diazo compounds. B. Examples of
production of carbenes via diazo compounds. C. Representative examples of dirhodium catalysts
used
Figure 1-1. Mechanistic Examples of Transmetalation of Trifluoroborates Under Anhydrous
Conditions
Figure 1-2. Computed structures of association and rearrangement complexes of the
trifluoroborate. ΔG demonstrates the favorability of this transformation for potassium
vinyltrifluoroborate salts
Figure 1-3. Computed structures of productive and non-productive association and
rearrangement complexes of phenylborate. ΔG as well elongated π -bonding interactions
demonstrate that this transformation for phenylborate salts is less favorable
Figure 1-4. Computed structures of association for a more hindered isoxazoleborate and
furanborate reveal the ability to form vinyl-like association complexes despite aromaticity or
increased steric demand
Figure 2-1. Conception of the project: Adapt rhodium-catalyzed [2+1] cycloadditions to prepare
regio- and stereochemically diverse IMiD derivatives
Figure 2-2. Catalysts Used in the Optimization Study
Figure 2-3. SFC trace showing retention of stereochemistry in the cyclopropanation of
enantionriched vinyl IMiDs
Figure 2-4. Representation of chemical and structural space accessed by the novel IMiDs relative
to literature precedence (18,175 compounds). (A) 2-dimensional UMAP projection from 2048 bit
ECFP4 fingerprints. (B) Principal moments of inertia analysis. Both plots depict the new IMiDs
shown in orange relative to existing compounds shown in blue
Figure 2-5. Biological activity and trends. (A) Correlation of CRBN binding (HTRF IC ₅₀) to
neosubstrate degradation (Y_{min}). (B) Trends in neosubstrate activity with EC ₅₀ (concentration
required to achieve 50% of total degradation effect) reported in μM and boxes colored by Y_{min}
(with red showing weak depth of degradation and green showing strong depth of degradation);
data reported as an average of $N \ge 3$ test occasions
Figure 3-1. Chiral Catalysts Used in this Study
Figure 3-2. DFT-optimized structures of 8a as a carbene complex with Rh ₂ (S-tetra-pBrPPTTL) ₄
(A) and $Rh_2(R-tetra-pBrPPTTL)_4(B)$

Table of Schemes

Scheme I-1. A. Examples of IMiDs Currently in Clinical Development. B. Examples of Metho	ods
Used to Prepare IMiD Intermediates.	5
Scheme I-2. Examples of C-C bond-forming transformations used for IMiD synthesis	6
Scheme I-3. A. Rare Example of Method for Preparing Enantioenriched Glutarimides. B. Late	-
Stage Technique for Unveiling an Enantioenriched Glutarimide. C. Alternative Glutarimide	
"Deprotection" Technique	8
Scheme I-4. Primary Rhodium Carbene Reactions Explored by the Davies Group	. 10
Scheme I-5. Generalized Mechanism of Dirhodium Carbene Reactions	. 10
Scheme I-6. A. Synthesis of Novel Tropane Derivatives Using Formal [4+3] Cycloadditions. H	3.
Cycloadditions Used for Diversity-Oriented Synthesis. C. Application of Cyclopropanation in	
the Synthesis of Beclabuvir. D. Additives Enable Cyclopropanation for the Generation of	
Valuable API	. 12
Scheme I-7. HFIP Enables Cyclopropanation Despite the Presence of Nucleophilic Catalyst	
Poisons	. 13
Scheme I-8. Selected Applications of Rhodium-Catalyzed C-H Functionalization in Medicinal	
Contexts	. 13
Scheme 1-1. The Starting Material Problem	. 22
Scheme 1-2. Potential Routes Towards a Vinylated Thalidomide Derivative.	. 22
Scheme 1-3. Optimization of Reaction Conditions	. 25
Scheme 1-4. Scope of IMiD-Type Compounds	. 27
Scheme 1-5. Optimization of an Enantioretentive Reaction	. 28
Scheme 1-6. Scope of Heteroaryl Bromides	. 29
Scheme 1-7. Scope of Potassium Trifluoroborates	. 30
Scheme 1-8. Investigation of Alternative Nucleophiles	. 34
Scheme 1-9. Investigation of Alternative Additives	. 35
Scheme 2-1. Finding the Best Chiral Catalyst for Cyclopropanation	. 43
Scheme 2-2. Cyclopropanation of Vinyl IMiD Derivatives	. 44
Scheme 2-3. Cyclopropenation of Ethynyl IMiD Derivatives	46
Scheme 2-4. Stereoretentive cyclopropanation of (S)- and (R)-3-(1-oxo-5-vinylisoindolin-2-	
yl)piperidine-2,6-dione	47
Scheme 2-5. Introduction of Further Complexity via the Arene Portion of the Diazo	49
Scheme 2-6. Introduction of Further Complexity via the Ester Portion of the Diazo	49
Scheme 3-1. Unsuccessful C–H Functionalization of 5-Methylthalidomide	61
Scheme 3-2. Synthesis of Carbene Precursors 3.6	63
Scheme 3-3. Synthesis of Carbene Precursors 3.7	64
Scheme 3-4. Optimization of the C-H Functionalization Reaction with Ring-Closed Diazo	65
Scheme 3-5. Optimization of the C-H Functionalization Reaction with Ring-Opened Diazo	67
Scheme 3-6. Scope of the C–H Functionalization of Cyclohexane	69
Scheme 3-7. Scope of the Cyclopropanation of Styrene	70
Scheme 3-8. Stereoretentive Ring-Closure of 3.10b	71
Scheme 3-9. Scope of C-H Functionalization with 3.6a	72
Scheme 3-10. Synthesis of LDDs with Stereodefined Cereblon Modulating Components	73

Introduction

Thalidomide (**Figure I-1**, **I.1**) was a morning sickness drug approved in Germany in the 1950s that gained infamy after physicians began noting severe teratogenic effects.¹ Following discovery of its activity against erythema nodosum leprosum in 1965, researchers discovered the utility of thalidomide in the treatment of a panoply of oncological and autoimmune diseases and disorders in the following decades.² Intensive study of the properties of thalidomide along with efforts to reduce its side effects in oncological contexts led to the discovery and eventual clinical approval of two important and far more potent derivatives, lenalidomide (**I.2**) and pomalidomide (**I.3**) (**Figure I-1**).³ These drugs are exceptionally valuable in the clinic, especially for the treatment of myelomas.⁴

Figure I-1: Archetypal CELMoDs used in the clinic today

The activity of thalidomide and its related compounds, described as immunomodulatory imide drugs or IMiDs, have only been linked more recently to their ability to induce degradation of proteins within the body. This degradation of proteins—often highly specific—is termed targeted protein degradation (TPD), and novel IMiDs are highly sought after for their capability to degrade previously "undruggable" proteins implicated in disease.^{2, 4-5} While not limited to one cellular degradation pathway, TPD was first conceptualized in the context of ubiquitin ligases, which tag proteins, or neosubstrates, with ubiquitin. This tag signals for destruction of the associated neosubstrate by the proteasome.⁶ The initial iteration of TPD utilized larger molecules

containing a ligand for ubiquitin ligase linked to a ligand selective for the desired protein

(**Figure I-2A**). These bifunctional or bivalent degraders are commonly called PROTACs[®] (proteolysis action targeting chimeras) or LDDs (ligand directed degraders). One current example is bavdegalutamide(**I.4**),⁷ which contains a thalidomide-like core with a disubstituted arene (pink, ubiquitin ligase ligand), linked to an androgen receptor ligand (blue) via a linker (black). LDDs are distinct from IMiDs. IMiDs are monovalent molecules that stabilize the protein-protein interactions between ubiquitin ligases and neosubstrates instead of relying on separate moieties to induce proximity between neosubstrate and ligase (**Figure I-2B**). For example, in the case of golcadomide (**I.5**)⁸ the molecule has no native affinity for the zinc-finger family proteins which it degrades; instead, the only initial affinity is that which exists between golcadomide and the ubiquitin ligase. IMiDs and many LDDs interact with an E3 ubiquitin ligase adapter called Cereblon (CRBN), which is the substrate receptor for an endogenous enzyme known as CUL4–RBX1–DDB1–CRBN, or CRL4^{CRBN} (depicted in **Figure I-2**).⁹

Figure I-2: A. General mechanism of TPD via LDDs featuring an LDD in the clinic. B. General mechanism of TPD via IMiDs featuring an IMiD in the clinic.

The general mechanism of degradation by IMiDs was discovered retroactively, using a combination of proteomics and crystal structures of IMiDs bound to CUL4^{CRBN, 5b, 10} The CRBNbinding portion of IMiDs is the glutarimide portion of the core structure.^{10b, 11} Interestingly, the degradation efficacy of IMIDs is not linked to the affinity of the glutarimide-containing compound for CRBN.^{10b} Instead, effects on protein degradation are due to the aforementioned stabilization of proximity-inducing protein-protein interactions caused by the binding of an IMiD to CRBN. In the case of lenalidomide-mediated degradation of CK1 α , a protein indicated in mechanisms of myelodysplastic syndromes,¹² structural changes induced by the binding of lenalidomide to CRBN lead to interactions.¹³ This induced proximity of the E2–ubiquitin portion of CRL4^{CRBN} to CK1 α is followed by ubiquitination and subsequent degradation by the proteasome.¹³ The structural origins of IMiD activity vary between neosubstrates even when the same IMiD is used, highlighting the complexity of IMiD–CUL4^{CRBN}-mediated TPD.^{5b}

In 2022, Woo and coworkers published a seminal study linking the affinity of CRBN for the glutarimides in IMiDs to endogenous processes.¹¹ Native asparagine and glutamine residues undergo post-translational modifications (e.g. deamidation),¹⁴ which in the case of glutamine produces the glutarimide. CRBN recognizes the glutarimide, initiating ubiquitination of the associated protein.¹¹ This mechanism is hypothesized to facilitate protein clearance during the ageing process,^{11, 15} and without an ubiquitin ligase, the accumulation of post-translationally modified proteins and their hydrolysis products is associated with several degenerative diseases.¹⁶ Glutarimides undergo rapid hydrolysis and racemization under physiological conditions,¹⁷ although Woo provides evidence that endogenous hydrolysis is slow enough in some cases to allow CRBN recognition.¹¹

This inherent instability makes IMiDs difficult to modify without ring-opening of the glutarimide. In even slightly basic solutions the glutarimide in thalidomide ring-opens to multiple products (**Figure I-3A**).^{17c} Contributing to the synthetic difficulty of working with glutarimide-containing compounds like thalidomide is the facile racemization of the glutarimide stereogenic center both in solution and in vitro,^{17d, 18} and the acidity of the imide N-H.¹⁹ Glutarimides readily form hydrogen-bonding dimers (**Figure I-3B**), exacerbating insolubility in the case of racemic thalidomide and perhaps contributing to the notable insolubility of thalidomide-like compounds in common organic solvents.²⁰

Figure I-3: A. Hydrolysis products of thalidomide. B. Hydrogen-bonding dimers of the enantiomers of thalidomide.

As a result of the synthetic challenges surrounding IMiDs, clinically successful compounds often share disconnections derived from simple transformations; benzylic substitutions and reductive aminations dominate structures found in IMiDs currently in clinical development (**Scheme I-1A**).²¹ A cavalcade of further derivatives and intermediates in the academic literature have been developed beyond benzylic substitutions and reductive aminations based around chemistries that make connections to IMiD cores containing an anilinic (as in **I.5**) or phenolic (as in **I.10**) element

or to form a C-heteroatom bond (**Scheme I-1B**).^{19, 22} Beyond these, only a handful of examples demonstrate the formation of carbon-carbon bonds between IMiD cores and substituents, *Scheme I-1. A. Examples of IMiDs Currently in Clinical Development. B. Examples of Methods Used to Prepare IMiD Intermediates.*

including the Sonogashira, Heck, and Suzuki-Miyaura couplings of halogenated cores,²³ although isolated examples of novel methods used to prepare IMiD derivatives such as decarbonylative cross-electrophile coupling exist (**Scheme I-2**).²⁴

None of these existing methods are particularly amenable to producing stereochemically enriched structures distal to the IMiD core, and as a result publicly available IMiD structures are almost entirely either achiral or contain chiral elements introduced to the core rather than chiral elements generated because of an enantioselective reaction with the IMiD core. Overall, the challenges of working with glutarimides have produced a space in which only a limited number of methods are available for preparing novel IMiDs, especially those with stereochemically enriched distal functionality.

One final complication with the synthesis of IMiDs exists; that is, the preparation of derivatives with an enantioenriched glutarimide stereogenic center. Many synthetic methods only address the synthesis of derivatives of IMiDs with undefined (i.e., racemic) stereocenters (see Scheme I-1B, Scheme I-2). Very few methods exist to create or preserve this stereocenter; one recent example by Reisman and coworkers is an enantioselective reductive arylation of glutarimides (Scheme I-3A). The reason for this is, as mentioned previously, the proton at the glutarimide stereogenic center is highly labile and therefore unlikely to retain its enantioenrichment in many synthetic methods.^{17d, 18} Despite this, study of enantioenriched derivatives is valuable due to the differential effects of the glutarimide enantiomers in biological systems.^{20a, 21b, 25} Often, these enantiomeric derivatives are isolated by chiral separation, or by preparing the molecule with any complex functionality prior to installation of the glutarimide.^{19,} ^{21b, 26} One increasingly common method of preserving both the glutarimide and its stereocenter through a synthesis is by carrying the enantioenriched glutarimide as a ring-opened *tert*-butyl ester, which is subjected to an acid-mediated ring-closure only at the end of the synthetic sequence (Scheme I-3B).²⁷ The drawback to this method is that the ring-closure reaction must be carefully monitored to prevent racemization.^{27b} Other available methods used for the late-stage unveiling of glutarimides are insufficient as they do not provide any level of stereocontrol (Scheme I-3C).²⁸ The development of methods designed to address these challenges is highly significant. We propose that the full adaptation of novel synthetic technologies—not merely as

an afterthought or an application, but with full modification to the difficulties of working with glutarimides—would allow impactful expansion of the knowledge of how novel and biologically effective IMiDs can be developed.

Scheme I-3. A. Rare Example of Method for Preparing Enantioenriched Glutarimides. B. Late-Stage Technique for Unveiling an Enantioenriched Glutarimide. C. Alternative Glutarimide "Deprotection" Technique

One of the synthetic technologies with potential for impact on the development of IMiDs is dirhodium–catalyzed carbene chemistry. Rhodium carbene chemistry—especially its asymmetric variant—is a powerful technique for the rapid introduction of chemical and special complexity, and with the right components is highly chemo, regio, and stereoselective. The primary components of a successful dirhodium-catalyzed carbene reaction are twofold: a carbene precursor with the right balance of selectivity and reactivity, and a chiral dirhodium catalyst. The most prevalent carbene precursor useful for formation of a metal-carbene bond is the diazo compound, which can take several forms. An electron-withdrawing group attached to a diazomethyl core will make the ensuing carbene more highly electron-deficient and thus more reactive, while an electron-donating substituent will decrease the electrophilicity and thus make the carbene more difficult to react with (**Figure I-4A**). Donor/acceptor carbenes balance these trends by including both kinds of groups to make a carbene that is both reactive and selective, as in compounds **I.28** and **I.30**, which have been used by the Davies group as highly selective

carbene precursors in an array of contexts.²⁹ Donor/acceptor diazo compounds can be induced to form carbenes by different methods; when exposed to light, a donor/acceptor carbene like **I.28** extrudes nitrogen, releasing a free carbene **I.29** (**Figure I-4B**).³⁰ In the presence of a dirhodium catalyst, this nitrogen extrusion is mediated by rhodium, producing a rhodium-carbene intermediate (**I.31**, **Figure I-4B**).³¹

Figure I-4: A. Spectrum of reactivity and selectivity in diazo compounds. B. Examples of production of carbenes via diazo compounds. C. Representative examples of dirhodium catalysts used.

The rhodium catalyst mediates the reactions of the carbene, and in the case of chiral dirhodium catalysts (**Figure I-4C**), the resulting reaction is highly enantio-, regio-, and diastereoselective depending on the nature of catalyst and substrate. While the scope of transformations available to rhodium carbenes is quite large, two classes of reaction have been greatly improved by donor/acceptor rhodium carbenes and have been the subject of much research by the Davies group: C–H functionalization reactions and [2+1] cycloadditions (**Scheme I-4**).³² Whether via [2+1] cycloaddition with an alkene or alkyne in cyclopropanation or cyclopropenation, or insertion into a C–H bond, the general mechanisms of these transformations follow the same general mechanism depicted in **Scheme I-5**.

Scheme I-4. Primary Rhodium Carbene Reactions Explored by the Davies Group

Scheme I-5. Generalized Mechanism of Dirhodium Carbene Reactions

In [2+1] cycloadditions, the decomposition of the diazo compound into a rhodium-bound carbene is the rate-determining step,³³ while in C–H functionalization, the C–H insertion step is rate-determining.³⁴

Both C-H functionalization and cyclopropanation have been applied in biologically relevant contexts such as the total synthesis of natural products.^{32b, 35} Cyclopropanation has been an exceptional tool for rhodium catalysis as applied to medicinal chemistry contexts (Scheme I-6). Although formally a [4+3] cycloaddition, one of the Davies group's first forays into medicinal chemistry was the tandem cyclopropanation/Cope rearrangement reaction of rhodium vinyl carbenoids with pyrroles to produce novel tropane derivatives like **I.42** (Scheme I-6A).³⁶ These were used as a tool to probe biological systems for the mechanisms of cocaine addiction.³⁷ A 2013 collaboration between the Davies and Spring groups generated an array of cyclopropanation and cyclopropenation products, among others, which were then subjected to further derivatization in a diversity-oriented synthesis program to help identify cellular mitosis modulators (Scheme I-6B).³⁸ Somewhat more recently, Bristol Myers Squibb applied a largescale cyclopropanation of a styrene derivative (1.47) with $Rh_2(S-DOSP)_4$ (I.49) to produce a key intermediate in the process synthesis of beclabuvir (I.51, Scheme I-6C).³⁹ A collaboration between the Davies group and Abbvie found that 2-chloropyridine could significantly enhance the enantioselectivity of cyclopropanations with *ortho*-substituted aryldiazoacetates,⁴⁰ which enabled the development of a flow process to produce **I.55** as an intermediate in the synthesis of an API (active pharmaceutical ingredient) (Scheme I-6D).⁴¹

Scheme I-6. A. Synthesis of Novel Tropane Derivatives Using Formal [4+3] Cycloadditions. B. Cycloadditions Used for Diversity-Oriented Synthesis. C. Application of Cyclopropanation in the Synthesis of Beclabuvir. D. Additives Enable Cyclopropanation for the Generation of Valuable API.

The use of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as a water-sequestration additive in the flow process led to an important discovery that varying amounts of HFIP in a cyclopropanation reaction can rescue both the yield and enantioselectivity of the reaction in the presence of nucleophilic components that poison the rhodium catalyst (**Scheme I-7**).⁴²

Scheme I-7. HFIP Enables Cyclopropanation Despite the Presence of Nucleophilic Catalyst Poisons

While C–H functionalization has yet to see the same scope of application in medicinal chemistry as cyclopropanation, it has been applied in contexts relevant to medicinal chemistry such as the C–H functionalization of bicyclo[1.1.1]pentanes⁴³ and the synthesis of methylphenidate (i.e., Ritalin[®]) analogues (**Scheme I-8**).⁴⁴

Scheme I-8. Selected Applications of Rhodium-Catalyzed C-H Functionalization in Medicinal Contexts

Rhodium catalysis, whether centered around cyclopropanation or C–H functionalization, has had a significant impact on changing the way chemists think about preparing complex, medicinally relevant products. Cyclopropanes are key motifs in many medicinally relevant compounds and introduce potentially valuable Csp³-rich elements, as do C–H functionalization products.^{39, 45} The introduction of increasingly complex and challenging contexts has had the effect of generating valuable advances in how rhodium-catalyzed reactions are designed and conducted,^{35, 40-42, 46} generating valuable and medicinally applicable molecules as a result.^{37b, 39}

Questions in this space remain in terms of how these methods can be more directly applied to medicinally relevant scaffolds, rather than just as methods to generate intermediates, and how recent advances in the use of additives like HFIP can be used to enable these applications. One of these potentially productive applications—leveraging rhodium catalysis to enable the synthesis of novel IMiD drugs—is the primary focus of this work (**Chapters 2-3**). We hypothesized that rhodium catalysis could enable (1) the systematic biological study of IMiDs, (2) the synthesis of novel, stereochemically enriched IMiDs and IMiD cores while being mild enough to maintain the sensitive glutarimide stereogenic center, and (3) provide potentially valuable Csp³-rich and diverse motifs to an important class of drug compounds.^{45b, 47} To enable this exploration, we also developed an adaptation of the Suzuki-Miyaura cross-coupling, which expands the synthetic methods available for work on IMiDs and highlights the impact of transition-metal catalysis in general in a valuable medicinal chemistry context (**Chapter 1**).

References

(1) (a) Lenz, W., Thalidomide and congenital abnormalities. *Lancet* **1961**, *1*, 45; (b) McBride, W. G., Thalidomide and congenital abnormalities. *Lancet* **1961**, *2*, 1358.

(2) Bartlett, J. B.; Dredge, K.; Dalgleish, A. G., The evolution of thalidomide and its IMiD derivatives as anticancer agents. *Nat. Rev. Cancer* **2004**, *4*, 314-322.

(3) Hernandez-Ilizaliturri, F. J.; Reddy, N.; Holkova, B.; Ottman, E.; Czuczman, M. S., Immunomodulatory Drug CC-5013 or CC-4047 and Rituximab Enhance Antitumor Activity in a Severe Combined Immunodeficient Mouse Lymphoma Model. *Clin. Cancer Res.* **2005**, *11*, 5984-5992.

(4) Fuchs, O., Targeting cereblon in hematologic malignancies. *Blood Rev.* 2023, 57, 100994.

(5) (a) Chirnomas, D.; Hornberger, K. R.; Crews, C. M., Protein degraders enter the clinic — a new approach to cancer therapy. *Nat. Rev. Clin. Oncol.* **2023**, *20*, 265-278; (b) Tsai, J. M.; Nowak, R. P.; Ebert, B. L.; Fischer, E. S., Targeted protein degradation: from mechanisms to clinic. *Nat. Rev. Mol. Cell Biol.* **2024**, *25*, 740-757.

(6) Sakamoto, K. M.; Kim, K. B.; Kumagai, A.; Mercurio, F.; Crews, C. M.; Deshaies, R.
J., Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. *Proc. Natl. Acad. Sci.* 2001, *98*, 8554-8559.

(7) (a) Snyder, L. B.; Neklesa, T. K.; Willard, R. R.; Gordon, D. A.; Pizzano, J.; Vitale, N.; Robling, K.; Dorso, M. A.; Moghrabi, W.; Landrette, S.; Gedrich, R.; Lee, S. H.; Taylor, I. C. A.; Houston, J. G., Preclinical Evaluation of Bavdegalutamide (ARV-110), a Novel PROteolysis TArgeting Chimera Androgen Receptor Degrader. *Mol. Cancer Ther.* 2024; (b) Shore, N. D.; Shen, J.; Devitt, M. E.; Lu, H.; Alicea, J.; Parameswaran, J.; Chirnomas, D.; Gao, X.; McKean, M., Phase 1b study of bavdegalutamide, an androgen receptor PROTAC degrader, combined with abiraterone in patients with metastatic prostate cancer. *J. Clin. Oncol.* 2022, *40*, TPS5106-TPS5106.

(8) Hsu, C.-C.; Zhao, J.; Polonskaia, A.; Bjorklund, C. C.; Ortiz Estevez, M.; Gandhi, A.
K.; Hagner, P. R., Golcadomide-Mediated Degradation of Aiolos/Ikaros Synergizes with BET
Inhibitors through Bidirectional Restructuring of the Directly Regulated Epigenetic Environment
in DLBCL. *Blood* 2024, *144*, 2739-2739.

(9) Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H., Identification of a Primary Target of Thalidomide Teratogenicity. *Science* **2010**, *327*, 1345-1350.

(10) (a) Fischer, E. S.; Böhm, K.; Lydeard, J. R.; Yang, H.; Stadler, M. B.; Cavadini, S.;
Nagel, J.; Serluca, F.; Acker, V.; Lingaraju, G. M.; Tichkule, R. B.; Schebesta, M.; Forrester,
W. C.; Schirle, M.; Hassiepen, U.; Ottl, J.; Hild, M.; Beckwith, R. E. J.; Harper, J. W.;
Jenkins, J. L.; Thomä, N. H., Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with
thalidomide. *Nature* 2014, *512*, 49-53; (b) Chamberlain, P. P.; Lopez-Girona, A.; Miller, K.;
Carmel, G.; Pagarigan, B.; Chie-Leon, B.; Rychak, E.; Corral, L. G.; Ren, Y. J.; Wang, M.;
Riley, M.; Delker, S. L.; Ito, T.; Ando, H.; Mori, T.; Hirano, Y.; Handa, H.; Hakoshima, T.;
Daniel, T. O.; Cathers, B. E., Structure of the human Cereblon–DDB1–lenalidomide complex

reveals basis for responsiveness to thalidomide analogs. *Nat. Struct. Mol. Biol.* **2014**, *21*, 803-809.

(11) Ichikawa, S.; Flaxman, H. A.; Xu, W.; Vallavoju, N.; Lloyd, H. C.; Wang, B.; Shen,
D.; Pratt, M. R.; Woo, C. M., The E3 ligase adapter cereblon targets the C-terminal cyclic imide degron. *Nature* 2022, *610*, 775-782.

(12) Jiang, S.; Zhang, M.; Sun, J.; Yang, X., Casein kinase 1α: biological mechanisms and theranostic potential. *Cell Commun. Signal* **2018**, *16*, 23.

(13) Petzold, G.; Fischer, E. S.; Thomä, N. H., Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase. *Nature* **2016**, *532*, 127-130.

(14) Serra, A.; Gallart-Palau, X.; Wei, J.; Sze, S. K., Characterization of Glutamine Deamidation by Long-Length Electrostatic Repulsion-Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry (LERLIC-MS/MS) in Shotgun Proteomics. *Anal. Chem.* **2016**, *88*, 10573-10582.

(15) Takata, T.; Oxford, J. T.; Demeler, B.; Lampi, K. J., Deamidation destabilizes and triggers aggregation of a lens protein, βA3-crystallin. *Protein Sci.* **2008**, *17*, 1565-1575.

(16) (a) Li, M.; Ogilvie, H.; Ochala, J.; Artemenko, K.; Iwamoto, H.; Yagi, N.; Bergquist, J.; Larsson, L., Aberrant post-translational modifications compromise human myosin motor function in old age. *Aging Cell* 2015, *14*, 228-235; (b) Sadakane, Y.; Kawahara, M., Implications of Metal Binding and Asparagine Deamidation for Amyloid Formation. *Int J Mol Sci* 2018, *19*;
(c) Gallart-Palau, X.; Serra, A.; Sze, S. K., Chapter Four - Uncovering Neurodegenerative Protein Modifications via Proteomic Profiling. In *Int. Rev. Neurobiol.*, Hurley, M. J., Ed. Academic Press: 2015; Vol. 121, pp 87-116.

(17) (a) Schumacher, H.; Smith, R. L.; Williams, R. T., The Metabolism of Thalidomide: The Fate of Thalidomide and Some of its Hydrolysis Products in Various Species. *Br. J. Pharmacol.* 1965, *25*, 338-351; (b) Schumacher, H.; Smith, R. L.; Williams, R. T., The Metabolism of Thalidomide: The Spontaneous Hydrolysis of Thalidomide in Solution. *Br. J. Pharmacol.* 1965, *25*, 324-337; (c) Reist, M.; Carrupt, P.-A.; Francotte, E.; Testa, B., Chiral Inversion and Hydrolysis of Thalidomide: Mechanisms and Catalysis by Bases and Serum Albumin, and Chiral Stability of Teratogenic Metabolites. *Chem. Res. Toxicol.* 1998, *11*, 1521-1528; (d) Knoche, B.; Blaschke, G., Investigations on the in vitro racemization of thalidomide by high-performance liquid chromatography. *J. Chromatogr. A* 1994, *666*, 235-240. (18) (a) Wnendt, S.; Finkam, M.; Winter, W.; Ossig, J.; Raabe, G.; Zwingenberger, K., Enantioselective inhibition of TNF- α release by thalidomide and thalidomide-analogues. *Chirality* **1996**, 8, 390-396; (b) Nishimura, K.; Hashimoto, Y.; Iwasaki, S., (*S*)-form of α methyl-N(α)-phthalimidoglutarimide, but not its (*R*)-form, enhanced phorbol ester-induced tumor necrosis factor- α production by human leukemia cell HL-60: implication of optical resolution of thalidomidal effects. *Chem. Pharm. Bull.* **1994**, *42*, 1157-1159.

(19) Sosič, I.; Bricelj, A.; Steinebach, C., E3 ligase ligand chemistries: from building blocks to protein degraders. *Chem. Soc. Rev.* **2022**, *51*, 3487-3534.

(20) (a) Tokunaga, E.; Yamamoto, T.; Ito, E.; Shibata, N., Understanding the Thalidomide Chirality in Biological Processes by the Self-disproportionation of Enantiomers. *Sci. Rep.* 2018, 8, 17131; (b) Thalidomide. In *The Merck Index Online*, The Merck Index Online database, 2013.

(21) (a) Matyskiela, M. E.; Zhang, W.; Man, H.-W.; Muller, G.; Khambatta, G.; Baculi,
F.; Hickman, M.; LeBrun, L.; Pagarigan, B.; Carmel, G.; Lu, C.-C.; Lu, G.; Riley, M.;
Satoh, Y.; Schafer, P.; Daniel, T. O.; Carmichael, J.; Cathers, B. E.; Chamberlain, P. P., A
Cereblon Modulator (CC-220) with Improved Degradation of Ikaros and Aiolos. *J. Med. Chem.* **2018**, *61*, 535-542; (b) Hansen, J. D.; Correa, M.; Nagy, M. A.; Alexander, M.; Plantevin, V.;
Grant, V.; Whitefield, B.; Huang, D.; Kercher, T.; Harris, R.; Narla, R. K.; Leisten, J.; Tang,
Y.; Moghaddam, M.; Ebinger, K.; Piccotti, J.; Havens, C. G.; Cathers, B.; Carmichael, J.;
Daniel, T.; Vessey, R.; Hamann, L. G.; Leftheris, K.; Mendy, D.; Baculi, F.; LeBrun, L. A.;
Khambatta, G.; Lopez-Girona, A., Discovery of CRBN E3 Ligase Modulator CC-92480 for the
Treatment of Relapsed and Refractory Multiple Myeloma. *J. Med. Chem.* 2020, *63*, 6648-6676;
(c) Anton, M. S. C.; Buchholz, T. J.; Lopez-Girona, A.; Narla, R. K.; Pourdehnad, M. Methods of treating non-hodgkin lymphoma using 2-(2,6-dioxopiperidin-3-yl)-4-((2-fluoro-4-((3-morpholinoazetidin-1-yl)methyl)benzyl)amino)isoindoline-1,3-dione. US20220324855A1, 2024.

(22) (a) Xiao, D.; Wang, Y.-j.; Wang, H.-l.; Zhou, Y.-b.; Li, J.; Lu, W.; Jin, J., Design and synthesis of new lenalidomide analogs via Suzuki cross-coupling reaction. *Arch. Pharm.* 2020, *353*, 1900376; (b) Hayhow, T. G.; Borrows, R. E. A.; Diène, C. R.; Fairley, G.; Fallan, C.; Fillery, S. M.; Scott, J. S.; Watson, D. W., A Buchwald–Hartwig Protocol to Enable Rapid Linker Exploration of Cereblon E3-Ligase PROTACs. *Chem. Eur. J.* 2020, *26*, 16818-16823; (c) Lohbeck, J.; Miller, A. K., Practical synthesis of a phthalimide-based Cereblon ligand to enable PROTAC development. *Bioorg. Med. Chem. Lett.* 2016, *26*, 5260-5262.

(23) (a) Stewart, S. G.; Braun, C. J.; Ng, S.-L.; Polomska, M. E.; Karimi, M.; Abraham, L. J., New thalidomide analogues derived through Sonogashira or Suzuki reactions and their TNF expression inhibition profiles. *Bioorg. Med. Chem. Lett.* **2010**, *18*, 650-662; (b) Stewart, S. G.; Spagnolo, D.; Polomska, M. E.; Sin, M.; Karimi, M.; Abraham, L. J., Synthesis and TNF expression inhibitory properties of new thalidomide analogues derived via Heck cross coupling. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 5819-5824.

(24) Wang, J.; Ehehalt, L. E.; Huang, Z.; Beleh, O. M.; Guzei, I. A.; Weix, D. J.,
Formation of C(sp²)–C(sp³) Bonds Instead of Amide C–N Bonds from Carboxylic Acid and
Amine Substrate Pools by Decarbonylative Cross-Electrophile Coupling. *J. Am. Chem. Soc.*2023, *145*, 9951-9958.

(25) (a) Yamamoto, T.; Tokunaga, E.; Nakamura, S.; Shibata, N.; Toru, T., Synthesis and Configurational Stability of (*S*)- and (*R*)-Deuteriothalidomides. *Chem. Pharm. Bull.* 2010, *58*, 110-112; (b) Mori, T.; Ito, T.; Liu, S.; Ando, H.; Sakamoto, S.; Yamaguchi, Y.; Tokunaga, E.; Shibata, N.; Handa, H.; Hakoshima, T., Structural basis of thalidomide enantiomer binding to cereblon. *Sci. Rep.* 2018, *8*, 1294.

(26) Qian, Y.; Crew, A.; Crews, C.; Dong, H.; Hornberger, K. R.; Wang, J. Modulators of Estrogen Receptor Proteolysis and Associated Methods of Use. US 237418 A1, 2018.

(27) (a) Zacuto, M. J.; Traverse, J. F.; Bostwick, K. F.; Geherty, M. E.; Primer, D. N.;
Zhang, W.; Zhang, C.; Janes, R. D.; Marton, C., Process Development and Kilogram-Scale
Manufacture of Key Intermediates toward Single-Enantiomer CELMoDs: Synthesis of
Iberdomide·BSA, Part 1. *Org. Process Res. Dev.* 2024, 28, 46-56; (b) Zacuto, M. J.; Traverse, J.
F.; Geherty, M. E.; Bostwick, K. F.; Jordan, C.; Zhang, C., Chirality Control in the KilogramScale Manufacture of Single-Enantiomer CELMoDs: Synthesis of Iberdomide·BSA, Part 2. *Org. Process Res. Dev.* 2024, 28, 57-66.

(28) Min, J.; Mayasundari, A.; Keramatnia, F.; Jonchere, B.; Yang, S. W.; Jarusiewicz, J.; Actis, M.; Das, S.; Young, B.; Slavish, J.; Yang, L.; Li, Y.; Fu, X.; Garrett, S. H.; Yun, M.-K.; Li, Z.; Nithianantham, S.; Chai, S.; Chen, T.; Shelat, A.; Lee, R. E.; Nishiguchi, G.; White, S. W.; Roussel, M. F.; Potts, P. R.; Fischer, M.; Rankovic, Z., Phenyl-Glutarimides: Alternative Cereblon Binders for the Design of PROTACs. *Angew. Chem. Int. Ed.* **2021**, *60*, 26663-26670.

(29) (a) Guptill, D. M.; Davies, H. M. L., 2,2,2-Trichloroethyl Aryldiazoacetates as Robust Reagents for the Enantioselective C–H Functionalization of Methyl Ethers. *J. Am. Chem. Soc.* **2014**, *136*, 17718-17721; (b) Davies, H. M. L., Finding Opportunities from Surprises and Failures. Development of Rhodium-Stabilized Donor/Acceptor Carbenes and Their Application to Catalyst-Controlled C–H Functionalization. *J. Org. Chem.* **2019**, *84*, 12722-12745.

(30) Jurberg, I. D.; Davies, H. M. L., Blue light-promoted photolysis of aryldiazoacetates. *Chem. Sci.* **2018**, *9*, 5112-5118.

(31) Ren, Z.; Musaev, D. G.; Davies, H. M. L., Key Selectivity Controlling Elements in Rhodium-Catalyzed C–H Functionalization with Donor/Acceptor Carbenes. *ACS Catal.* **2022**, *12*, 13446-13456.

(32) (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B., Stereoselective
Cyclopropanation Reactions. *Chem. Rev.* 2003, *103*, 977-1050; (b) Davies, H. M. L.; Denton, J. R., Application of donor/acceptor-carbenoids to the synthesis of natural products. *Chem. Soc. Rev.* 2009, *38*, 3061-3071; (c) Davies, H.; Morton, D., Recent Advances in C–H
Functionalization. *J. Org. Chem.* 2016, *81*, 343-350; (d) Davies, H. M. L.; Lian, Y., The
Combined C–H Functionalization/Cope Rearrangement: Discovery and Applications in Organic
Synthesis. *Acc. Chem. Res.* 2012, *45*, 923-935; (e) Briones, J. F.; Hansen, J.; Hardcastle, K. I.;
Autschbach, J.; Davies, H. M. L., Highly Enantioselective Rh₂(*S*-DOSP)₄-Catalyzed
Cyclopropenation of Alkynes with Styryldiazoacetates. *J. Am. Chem. Soc.* 2010, *132*, 17211-17215; (f) Briones, J. F.; Davies, H. M. L., Rh₂(*S*-PTAD)₄-catalyzed asymmetric
cyclopropenation of aryl alkynes. *Tetrahedron* 2011, *67*, 4313-4317.

(33) Wei, B.; Sharland, J. C.; Lin, P.; Wilkerson-Hill, S. M.; Fullilove, F. A.; McKinnon,
S.; Blackmond, D. G.; Davies, H. M. L., In Situ Kinetic Studies of Rh(II)-Catalyzed
Asymmetric Cyclopropanation with Low Catalyst Loadings. *ACS Catal.* 2020, *10*, 1161-1170.

(34) Wei, B.; Sharland, J. C.; Blackmond, D. G.; Musaev, D. G.; Davies, H. M. L., In Situ Kinetic Studies of Rh(II)-Catalyzed C–H Functionalization to Achieve High Catalyst Turnover Numbers. *ACS Catal.* **2022**, *12*, 13400-13410.

(35) Bosse, A. T.; Hunt, L. R.; Suarez, C. A.; Casselman, T. D.; Goldstein, E. L.; Wright, A. C.; Park, H.; Virgil, S. C.; Yu, J.-Q.; Stoltz, B. M.; Davies, H. M. L., Total synthesis of (–)-cylindrocyclophane A facilitated by C–H functionalization. *Science* **2024**, *386*, 641-646.

(36) Davies, H. M. L.; Young, W. B.; Smith, H. D., Novel entry to the tropane system by reaction of rhodium(II) acetate stabilized vinylcarbenoids with pyrroles. *Tet. Lett.* **1989**, *30*, 4653-4656.

(37) (a) Davies, H. M. L.; Gilliatt, V.; Kuhn, L. A.; Saikali, E.; Ren, P.; Hammond, P. S.;
Sexton, T.; Childers, S. R., Synthesis of 2β-Acyl-3β-(substituted naphthyl)-8azabicyclo[3.2.1]octanes and Their Binding Affinities at Dopamine and Serotonin Transport
Sites. *J. Med. Chem.* 2001, 44, 1509-1515; (b) Davies, H. M. L.; Kuhn, L. A.; Thornley, C.;
Matasi, J. J.; Sexton, T.; Childers, S. R., Synthesis of 3β-Aryl-8-azabicyclo[3.2.1]octanes with
High Binding Affinities and Selectivities for the Serotonin Transporter Site. *J. Med. Chem.* 1996, 39, 2554-2558.

(38) Ibbeson, B. M.; Laraia, L.; Alza, E.; O' Connor, C. J.; Tan, Y. S.; Davies, H. M. L.; McKenzie, G.; Venkitaraman, A. R.; Spring, D. R., Diversity-oriented synthesis as a tool for identifying new modulators of mitosis. *Nat. Commun.* **2014**, *5*, 3155.

(39) Bien, J.; Davulcu, A.; DelMonte, A. J.; Fraunhoffer, K. J.; Gao, Z.; Hang, C.; Hsiao,
Y.; Hu, W.; Katipally, K.; Littke, A.; Pedro, A.; Qiu, Y.; Sandoval, M.; Schild, R.; Soltani,
M.; Tedesco, A.; Vanyo, D.; Vemishetti, P.; Waltermire, R. E., The First Kilogram Synthesis of Beclabuvir, an HCV NS5B Polymerase Inhibitor. *Org. Process Res. Dev.* 2018, *22*, 1393-1408.

(40) Sharland, J. C.; Wei, B.; Hardee, D. J.; Hodges, T. R.; Gong, W.; Voight, E. A.; Davies, H. M. L., Asymmetric synthesis of pharmaceutically relevant 1-aryl-2-heteroaryl- and 1,2-diheteroarylcyclopropane-1-carboxylates. *Chem. Sci.* **2021**, *12*, 11181-11190.

(41) Lathrop, S. P.; Mlinar, L. B.; Manjrekar, O. N.; Zhou, Y.; Harper, K. C.; Sacia, E. R.; Higgins, M.; Bogdan, A. R.; Wang, Z.; Richter, S. M.; Gong, W.; Voight, E. A.; Henle, J.; Diwan, M.; Kallemeyn, J. M.; Sharland, J. C.; Wei, B.; Davies, H. M. L., Continuous Process to Safely Manufacture an Aryldiazoacetate and Its Direct Use in a Dirhodium-Catalyzed Enantioselective Cyclopropanation. *Org. Process Res. Dev.* **2023**, *27*, 90-104.

(42) Sharland, J. C.; Dunstan, D.; Majumdar, D.; Gao, J.; Tan, K.; Malik, H. A.; Davies,
H. M. L., Hexafluoroisopropanol for the Selective Deactivation of Poisonous Nucleophiles
Enabling Catalytic Asymmetric Cyclopropanation of Complex Molecules. *ACS Catal.* 2022, *12*, 12530-12542.

(43) Garlets, Z. J.; Sanders, J. N.; Malik, H.; Gampe, C.; Houk, K. N.; Davies, H. M. L., Enantioselective C–H functionalization of bicyclo[1.1.1]pentanes. *Nat. Catal.* **2020**, *3*, 351-357.

(44) Liu, W.; Babl, T.; Röther, A.; Reiser, O.; Davies, H. M. L., Functionalization of Piperidine Derivatives for the Site-Selective and Stereoselective Synthesis of Positional Analogues of Methylphenidate. *Chem. Eur. J.* **2020**, *26*, 4236-4241.

(45) (a) Martin, S. F.; Dorsey, G. O.; Gane, T.; Hillier, M. C.; Kessler, H.; Baur, M.;
Mathä, B.; Erickson, J. W.; Bhat, T. N.; Munshi, S.; Gulnik, S. V.; Topol, I. A.,
Cyclopropane-Derived Peptidomimetics. Design, Synthesis, Evaluation, and Structure of Novel
HIV-1 Protease Inhibitors. *J. Med. Chem.* 1998, *41*, 1581-1597; (b) Lovering, F.; Bikker, J.;
Humblet, C., Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical
Success. *J. Med. Chem.* 2009, *52*, 6752-6756.

(46) Garlets, Z. J.; Boni, Y. T.; Sharland, J. C.; Kirby, R. P.; Fu, J.; Bacsa, J.; Davies, H. M. L., Design, Synthesis, and Evaluation of Extended C4–Symmetric Dirhodium Tetracarboxylate Catalysts. *ACS Catal.* 2022, *12*, 10841-10848.

(47) Szewczyk, S. M.; Verma, I.; Edwards, J. T.; Weiss, D. R.; Chekler, E. L. P., Trends in Neosubstrate Degradation by Cereblon-Based Molecular Glues and the Development of Novel Multiparameter Optimization Scores. *J. Med. Chem.* **2024**, *67*, 1327-1335.

Chapter 1: Development of an Anhydrous and Stereoretentive Fluoride-Enhanced Suzuki-Miyaura Reaction for the Synthesis of Derivatized Cereblon E3 ligase Modulatory Drug Cores.

Introduction

At the outset of the project, we wanted to investigate the cyclopropanation of vinyl thalidomide derivatives as a set of proof-of-concept reactions (**Scheme 1-1**). This would allow us to investigate the viability of the project vis-à-vis the compatibility of rhodium carbene chemistry with glutarimide-containing compounds.

Scheme 1-1. The Starting Material Problem

We considered several different methods of preparing a model 5-vinyl thalidomide derivative **1.4**, depicted in **Scheme 1-2**. Examples of Wittig olefination from **1.1** were unprecedented in the literature and we considered the stronger bases typically used in the reaction to be a potential *Scheme 1-2*. *Potential Routes Towards a Vinylated Thalidomide Derivative*.

liability. Preliminary studies of semi-reduction from **1.2** were ineffective, and since the aryl bromide **1.3** is widely commercially available, we elected to explore the cross-coupling approach to **1.4**.

While the vinylation of aryl halides is a well-researched reaction class,¹ examples of vinylation of glutarimide-containing compounds generally only exist in the patent literature.² As mentioned previously, there are only a few examples in the academic literature of any Suzuki-Miyaura cross-coupling with thalidomide-like compounds.³ We considered that the dearth of precedent for the preparation of these derivatives might be because of the synthetic problems surrounding IMiDs (vide supra). This can be brought further into perspective by considering the prototypical Suzuki-Miyaura reaction: a palladium catalyst, an organoboron nucleophile, and a solvent system that generally must include water and a base. This basic system is incompatible with glutarimide-containing compounds due to the degradation of either the glutarimide, or even cleavage of the core in phthalimide-containing variants.⁴ Other researchers have begun to address the issue of conducting Suzuki-Miyaura reactions with base-sensitive elements present. However, many of these solutions rely on stoichiometric reagents and additives that are not commercially available, such as neopentyl boronates in the case of Denamark's work,⁵ or a zincbased Lewis acid in the case of Niwa and coworkers' research.⁶ Methods developed for basesensitive substrates also rely on a single or small subset of usable solvents.⁶⁻⁷ In the course of finding a productive route for synthesizing **1.4a**, we developed a Suzuki-Miyaura coupling of potassium trifluoroborates that was effective for all regioisomers of the desired vinyl IMiD derivatives. These conditions utilize inorganic fluoride as an additive to enable a mild, anhydrous, and high-yielding reaction. We found that vinyl trifluoroborates were unusually

competent in the reaction when compared to other trifluoroborates, which effected a computation study of the role of inorganic fluoride in the reaction.

Results and Discussion

We began our efforts towards the synthesis of **1.4a** (**Scheme 1-3**) by assessing Suzuki-Miyaura conditions previously developed for use on thalidomide-like structures,³ as well as more general vinylation conditions (See the supporting information for Chapter 1 for more details).⁷⁻⁸ However, we found these to be generally ineffective. We had some success with conditions from the patent literature (entry 2),^{2a} which gave **1.4a** in 33% yield under anhydrous conditions, using cesium carbonate as a base. We did not know what the role of cesium carbonate would be in the reaction without water present, as hydroxide formation is understood to be key in the accepted mechanism of the Suzuki-Miyaura reaction under the most common conditions.⁹ Additionally, we were concerned that the cesium carbonate along with any adventitious water might be degrading the glutarimide.

We hypothesized that substituting cesium carbonate for a milder base might be more compatible with **1.3a** and substituted potassium fluoride, which gave an improved 44% yield. We were curious about the effects of fluoride in the reaction and screened several inorganic fluoride sources (entries 2-6). Regardless of the metal counterion, the enhancement effect remained and yields only slightly fluctuated. Silver fluoride and sodium fluoride seemed to perform slightly better than the others, and we elected to optimize further with sodium fluoride to eliminate any potential oxidative activity caused by the presence of a silver salt in the reaction.⁶ We next investigated the effects of different phosphine ligands in the reaction—both monodentate and bidentate (entries 7-9). The bulky, electron rich ligand P(^tBu)₃, used in Pd(0) form as Pd(P(^tBu)₃)₂, gave a large increase in yield (82%, entry 9). Owing to the instability of Pd(0) sources on the bench,¹⁰ we elected to attempt using P(${}^{t}Bu$)₃ Pd G4 as an alternative source of Pd-P(${}^{t}Bu$)₃.¹¹ Using a small amount of diisopropylamine to activate the precatalyst (entry 10), this source gave a decreased yield of 70%. The yield increased slightly to 74% using triethylamine in place of diisopropylamine (entry 11). An alternative precursor, P(${}^{t}Pu$) Pd(aretyl)Cl. parformed similarly. Noticing that the reaction quickly generated palledium

P(^{*t*}Bu)₃Pd(crotyl)Cl, performed similarly. Noticing that the reaction quickly generated palladium *Scheme 1-3. Optimization of Reaction Conditions*

		BF ₃ K 2.1 equiv 1.5 Pd catalyst (5-10 mol%) Base/Additive/Fluoride	1.4a	NH O
Entry	v Catalyst	Fluoride Source	Base/Additive	Yield 1.4a (%)
1 ^{a,b}	PdCl ₂ (dppf) (10 mol%)	_	Cs ₂ CO ₃ (2 equiv)	33
2	PdCl ₂ (dppf) (10 mol%)	KF (3 equiv)	—	44
3	PdCl ₂ (dppf) (10 mol%)	CsF (3 equiv)	—	45
4	PdCl ₂ (dppf) (10 mol%)	LiF (3 equiv)	—	41
5	PdCl ₂ (dppf) (10 mol%)	AgF (3 equiv)	—	50
6	PdCl ₂ (dppf) (10 mol%)	NaF (3 equiv)	—	53
7	Pd(amphos) ₂ Cl ₂ (10 mol%)	NaF (3 equiv)	—	55
8	dppf Pd G ₄ (10 mol%)	NaF (3 equiv)	_	19
9	Pd(P ^t Bu ₃) ₂ (10 mol%)	NaF (3 equiv)	—	82
10	P(^t Bu) ₃ Pd G4 (5 mol%)	NaF (3 equiv)	ⁱ Pr ₂ NH (10 mol%)	70
11	P(^t Bu) ₃ Pd G4 (5 mol%)	NaF (3 equiv)	Et ₃ N (10 mol%)	74
12	P(^t Bu) ₃ Pd(crotyl)Cl (5 mol%)	NaF (3 equiv)	Et ₃ N (10 mol%)	78
13	P(^t Bu) ₃ Pd G4 (5 mol%)	NaF (3 equiv)	Et ₃ N (15 mol%) P ^t Bu ₃ • HBF ₄ (5 mol%)	80 (56) ^c
14	$Pd(P(^{t}Bu)_{3})_{2}$ (5 mol%)	NaF (3 equiv)	Et ₃ N (15 mol%) P ^t Bu ₃ • HBF ₄ (5 mol%)	81 (60) ^c
15	(P(^f Bu) ₃)Pd(4-CF ₃ -C ₆ H ₄)(Br) (5 mol ⁶	%) NaF (3 equiv)	Et ₃ N (15 mol%) P ^t Bu ₃ ∙ HBF ₄ (5 mol%)	84 (60) ^c
16 ^e	Pd(amphos) ₂ Cl ₂ (2 mol%)	_	[(tmeda)Zn(OH)(OTf)]	₃ 85
17 ^d	P(^t Bu) ₃ Pd(crotyl)Cl (5 mol%)	NaF (3 equiv)	Et ₃ N (15 mol%) P ^t Bu ₃ • HBF ₄ (5 mol%)	93 (56) ^c
Isolated yields reported. ^a 3.0 equiv 1.5 used ^b 10 mol% catalyst used. ^c Isolated reaction yield without added fluoride. ^d A reaction run in a PTFE-lined vessel gave 1.4a in 78% yield. ^e Reaction conducted				

added fluoride. ^a A reaction run in a PTFE-lined vessel gave **1.4a** in 78% yield. ^e Reaction cond using 2 mol% catalyst, 2.34 equiv [(tmeda)Zn(OH)(OTf)]₃, 1.1 equiv **1.5**, in THF.

black, we wondered if using an excess of ligand in the reaction might protect the catalyst from potential degradation pathways. Using an equimolar amount of ligand as the phosphonium

tetrafluoroborate salt gave an increased yield using $P('Bu)_3 Pd G4$ (entry 13); however, this result was outperformed significantly when we swapped the G4 for $P('Bu)_3Pd(crotyl)Cl$ (entry 17, 93% yield).

The notable success of a one precatalyst over another, even with a common phosphine ligand between them, taken along with the effects of fluoride led us to ask whether the relationship between precatalyst and fluoride was important. We ran four reactions with and without added fluoride (entries 13-15, 17) and found that fluoride is responsible for a significant increase in yield, irrespective of the catalyst precursor used. Yields without fluoride show little variation between the four precatalysts used. We also wondered whether the fluoride was interacting with the glassware used for the reaction and ran the reaction in a PTFE tube.¹² Interestingly, we observed a slight decrease in yield (78%), but we hypothesize that a decrease in yield of this size may be due to differences in reaction setup.

In the course of investigating the fluoride-enhanced conditions, we also attempted to use Niwa's zinc-mediated Suzuki-Miyaura coupling, which gave an 85% yield of **1.4a** (entry 16).⁶ However, when we attempted the same conditions to other IMiDs (vide infra), we found that the conditions gave only partial conversion. Compounds **1.3b-1.3e** were only sparingly soluble in the ethereal solvents required for the conditions, which we presume contributed to the poor conversion observed.⁶

We briefly investigated the generality of the conditions to alternative aryl halides (**Scheme 1-4**) and found that the conditions were agnostic as to the identity of the aryl halide, giving **1.4a** from the chloride and iodide in similar yields compared to the bromide. To successfully investigate the scope and biological activity of rhodium-catalyzed cyclopropanation on these vinyl IMiD derivatives, we deemed it important to prepare all the possible regioisomers. This includes both the thalidomide-like regioisomers (phthalimide core, 4- and 5-substitutions) and the lenalidomide-like regioisomers (isoindolinone core, 4-7 substitution possible). When extending the conditions, we found that switching the solvent from 1,4-dioxane to DMSO boosted the solubility of the aryl bromides and gave an equivalent yield (in the case of **1.4a**) to 1,4-dioxane. Additionally, we found that the reactions were completed in only 1 hour. Compound **1.4b** required an increase in catalyst loading (to 10% catalyst) to give a yield comparable to the others.

Scheme 1-4. Scope of IMiD-Type Compounds

Isolated yields reported. ^a Reaction run using 1,4-dioxane as solvent. ^b Reaction conducted using 10 mol% catalyst, 30 mol% Et_3N , 10 mol% ligand.

Since study of enantioenriched IMiD derivatives is valuable and often requires preparative chiral HPLC or SFC separation,^{2a, 13} we investigated the viability of conducting a vinylation on enantioenriched starting material. Using the optimal conditions listed in **Scheme 1-4**, we were immediately beset by degradation of the enantioenrichment of the glutarimide stereogenic center (**Scheme 1-5**). (*S*)-1.3c, enriched to 99% ee, gave (*S*)-1.4c in 82% ee under the standard

conditions. We initially hypothesized that the presence of amine base in the reaction was leading to the racemization, and conducted the reaction with no added ligand or amine base, using an oxidative addition complex as the Pd(0) source.¹⁴ This had the opposite of the intended effect, giving (*S*)-1.4c in 69% ee (entry 2). Efforts to eliminate the workup as a potential contributing factor led us to attempt an acidic workup (entry 3), which resulted in less racemization (90% ee). Running the reaction at a lowered temperature (entry 4) gave a slight increase in the enantioenrichment of (*S*)-1.4c (92% ee). We ran the reaction again at 90 °C, taking samples from the reaction every five min to run on a chiral SFC, and found that if the reaction is run for only *Scheme 1-5. Optimization of an Enantioretentive Reaction*.

10 minutes, (*S*)-1.4c can be isolated in an 88% yield without racemization (99% ee). As a comparison, we ran the reaction using conditions from the patent literature,¹⁵ and observed complete racemization of the starting material (*S*)-1.3c.

We returned to our investigation of the generality of the reaction conditions by conducting the reaction with aryl halides other than IMiD derivatives. We were inspired by Buchwald and workers' research on C–N couplings of base-sensitive 5-membered heterocycles with aliphatic amines,¹⁶ and subjected a subset of these substrates (**Scheme 1-6**, **1.8a-h**) to the vinylation conditions. To avoid issues with volatility, we used potassium 4-methyl-ß-styryltrifluoroborate (**1.7e**) in place of potassium (vinyl)trifluoroborate. Excluding isothiazole (**1.8b**) and 1,2,4-triazole (**1.8e**), all heteroaryl bromides gave modest to excellent yields. We also tested the reaction of a pyridyl substrate with potassium (vinyl)trifluoroborate to ensure relevance to sixmembered heterocycles, and this substrate gave an excellent 87% yield (**1.8h**).

Isolated yields reported. ^a $R^1 = p$ -tolyl ^b $R^1 = H$

We next explored the scope of trifluoroborates under the reaction conditions with aryl bromide **1.3a**. Simple allyl and vinyl trifluoroborates performed very well (**1.9a-1.9c**, **Scheme 1-7**), but these presented an additional intrigue. In the case of **1.9a** and **1.9b**, the reaction had to be stopped after 10 minutes, as additional reaction time produced rearrangement products of the substrate alkene. These presumably result from off-cycle palladium species generated during the reaction. Both **1.9a** and **1.9c** rearrange to the more thermodynamically stable product **1.9b**. Other simple trifluoroborates give excellent performance in the reaction (**1.9d-e**). Aryl trifluoroborates do not perform as well; for example, phenyl trifluoroborate only gives a 26% yield of **1.9f**. When the reaction is conducted for 10 minutes with vinyl trifluoroborate, a 75% yield of **1.9** is produced. However, when the reaction is conducted for 10 minutes with phenyl trifluoroborate, the reaction gives a 7% yield of **1.9f**. Interestingly, heteroaryl trifluoroborates give high yields all around (**1.9h-I**). We attempted to extend the scope of trifluoroborates to alkyl trifluoroborates, but we recovered the starting aryl bromide and the trifluoroborate in most of these cases (See the *Scheme 1-7. Scope of Potassium Trifluoroborates*

^d 7.5:1 ratio 1.9c:1.9b; standard conditions gave a 1:2 ratio of 1.9c:1.9b

Supporting Information for Chapter 1 for more information).

With the exception of a few special cases, trifluoroborates are slow to react under anhydrous conditions due to the strength of the B–F bonds and their weak nucleophilicity.^{6, 17} The standard reaction pathway of a trifluoroborate in fact requires water, which under basic conditions will convert the trifluoroborate to a boronic acid in situ.^{12b, 17c} One special case relies on an

electrophilic acyl halide coupling partner and a key potassium-mediated interaction to transmetalate from an alkyl trifluoroborate, which releases BF₃ and KCl in the process (**Figure 1-1A**).^{17a} Another known pathway involves transmetallation from trifluoroborate encouraged by a palladium center with either a partially positive⁶ or fully positive charge^{17b} generated via abstraction of the halide with a Lewis acid. This pathway, as exemplified by Niwa's proposed

A: Transmetalation mediated by key potassium-halogen interaction

B: Transmetalation mediated by cationic palladium

Figure 1-1. Mechanistic Examples of Transmetalation of Trifluoroborates Under Anhydrous Conditions

mechanism in **Figure 1-1B**, involves a four-center transition state in which BF₃ is released as the Pd–C bond with the substrate forms. In light of these known mechanisms, the ease of the cross-coupling of the vinyl trifluoroborate under our conditions was intriguing and prompted us to investigate the mechanism further.

We elected to probe the mechanism with DFT calculations, using the M06/6-31G* level of theory. These calculations were conducted by Lauren Grant from Bristol Myers Squibb. We first computed a proposed "association complex," (**I**, **Figure 1-2**) where the fluoride of the trifluoroborate coordinates with the palladium center. Due to the excess of fluoride in the system, we also proposed this complex with a fluoride in place of the vestigial bromide derived from oxidative addition into **1.3a**. We calculated the stability of the possible isomeric arrangements

for this structure. The most stable features the trifluoroborate *trans* to the phosphine ligand and *cis* to the phenyl ring. We then proposed a rearrangement coordinating the π -system of the vinyl group to palladium to prepare for transmetallation. This is a favorable rearrangement in terms of ΔG , as demonstrated by the 9.8 kcal/mol exotherm leading to the rearranged structure **II**. A ΔG^{\ddagger} of 17.3 kcal/mol leads to a proposed structure **III** in which the B–C bonds begin to weaken.

Figure 1-2. Computed structures of association and rearrangement complexes of the trifluoroborate. ΔG demonstrates the favorability of this transformation for potassium vinyltrifluoroborate salts.

A slight (2.9 kcal/mol) depression in energy shows **IV**, in which a bond begins to form between the borate center and the palladium-ligated fluoride, and near-complete breakage of the B–C bond. Relative to the rearrangement complex, this leads to an exotherm of 20.2 kcal/mol and complex **V**, primed for reductive elimination. Interestingly, this proposed mechanism does not exactly model the mechanisms proposed in **Figure 1-1**.

Based on these findings, we conducted a study on the reaction with phenyl trifluoroborate to investigate reasons why the reaction proceeds more poorly than with the vinyl trifluoroborate (**Figure 1-3**). Phenyl trifluoroborate is clearly less favorable as a transmetalation partner: in the

stage of pre-transmetalation analogous to that from **I** to **II** in **Figure 1-1**, **VII** is produced by an exothermic rearrangement (1.7 kcal/mol). Significantly, efforts to find other analogous transition states were unsuccessful. This suggests either that the process is far less favorable or that the transmetalation proceeds by a mechanism not considered here. We considered a potential role for potassium in calculations, but the ground state trend in free energy was upheld in this case.

Figure 1-3. Computed structures of productive and non-productive association and rearrangement complexes of phenylborate. ΔG as well elongated π -bonding interactions demonstrate that this transformation for phenylborate salts is less favorable.

One illuminating factor is that the π -interaction between the phenyl ring and the palladium is weaker than that of the vinyl group. The calculated distance between the ring and the metal center is elongated at 3.3–3.6 Å versus the vinyl group and the metal center (2.3 Å). We did identify an instance in which the bond length was shortened (**VIII**, **Figure 1-3**), but in this case it is not a productive interaction as the interaction is not with the π -system immediately adjacent to the borate. We hypothesize that steric effects play a role in modulating these distances, when comparing the phenyl trifluoroborate to the vinyl trifluoroborate. Additionally, the ability of the vinyl π -system to donate electron density is better than that of the aromatic phenyl π -system. One additional argument for this point is that in the calculated association complexes **XI** and **X** for heterocyclic trifluoroborates, which are less aromatic systems than the phenyl, the bond distances are similar to that of the vinyl trifluoroborate (**Figure 1-4**). This is corroborated by the isolated yields of **1.9k** and **1.9l** (**Scheme 1-7**), which are 82 and 86%, respectively.

Figure 1-4. Computed structures of association for a more hindered isoxazoleborate and furanborate reveal the ability to form vinyl-like association complexes despite aromaticity or increased steric demand.

To round out our investigations, we next conducted a screen of alternative organoboron nucleophiles as the vinyl source for the reaction (**Scheme I-8**). We did not screen vinylboronic acid due to the impracticality of its use.¹ The MIDA-protected boronate ester (entry 2) only gave trace amounts of product. The pinacol ester (entry 3) gave a 28% yield. Overall, these results indicate that the role of the trifluoroborate as a vinyl source under these conditions may be somewhat unique.

Scheme 1-8. Investigation of Alternative Nucleophiles

We were left with questions about the role of fluoride. The role of fluoride is understood due to the work of Fu, Le Duc, and others, but only under hydrolytic conditions.^{11-12, 18} In one 2000 study by Fu, potassium fluoride is utilized as a base in a Suzuki-Miyaura coupling with boronic acids under anhydrous conditions, and a trifluoroborate is proposed as an intermediate. However, they go on to demonstrate that a potassium *o*-tolyl trifluoroborate cannot couple with an aryl

chloride under their conditions.¹⁹ We hypothesize that fluoride might serve to make the pretransmetalation palladium complex more electrophilic and therefore more prone to transmetalation compared to a palladium-bromide complex, contributing to the success of the reaction along with the uniquely suitable alkene-type trifluoroborates. While we demonstrate the impact of inorganic fluoride independent of precatalyst (vide supra), we were curious whether other Lewis-basic additives or even halide scavengers would influence the reaction similarly

(Scheme 1-9).

Scheme 1-9. Investigation of Alternative Additives

We tested inorganic bases under the conditions (entries 2, 4, 7, 8), which when compared to reaction outcome without fluoride gave equivalent or diminished yield. An alternative source of fluoride (TBAF, entry 3) gave a diminished yield, which we contribute to the introduction of water into the reaction. Suzuki-Miyaura additives successful in other contexts (entry 5)⁹ eliminated reaction product entirely. Interestingly, mild bases like sodium triflate and sodium trifluoroacetate increased the reaction yield slightly, relative to a reaction with no fluoride (entries 9-11). We hypothesize a possible halide scavenging effect of these ligands in the reaction, but this cannot be fully deconvoluted from other potential effects.²⁰

Conclusions

During our efforts to prepare substrates for modification by rhodium carbene chemistry, we discovered generally applicable Suzuki-Miyaura conditions effective for the cross-coupling of glutarimide-containing compounds with alkene-type potassium trifluoroborates. We found that fluoride played an essential role in ensuring high reaction yields, and that the reaction conditions were mild enough to ensure enantiofidelity at the sensitive and important stereogenic center found in thalidomide-like compounds. Upon computational investigation, we found that a π -complex potentially formed during the pre-transmetalation process illuminated an experimental preference for alkene-type trifluoroborates and some heterocyclic trifluoroborates over arene-type trifluoroborates. This study represents a significant addition to the methods available to medicinal chemists in the preparation of important IMiD-type compounds.

The research contained in this chapter was published in the *Journal of Organic Chemistry* in 2024:

Tracy, W. F.; Davies, G. H. M.; Grant, L. N.; Ganley, J. M.; Moreno, J.; Cherney, E. C.; Davies, H. M. L., Anhydrous and Stereoretentive Fluoride-Enhanced Suzuki–Miyaura Coupling of Immunomodulatory Imide Drug Derivatives. *J. Org. Chem.* **2024**, *89*, 4595-4606.

This work was a collaborative project with Bristol Myers Squibb. W.F. Tracy conducted all of the experimental work. L.N. Grant provided the computational analysis. G.H.M. Davies provided valuable optimization advice that led to further exploration of the fluoride effects and helped to provide substrates for the project. J.M. Ganley provided valuable mechanistic insights and analysis. E.C. Cherney and J. Moreno provided valuable support, ideas, and analysis.

References

(1) Denmark, S. E.; Butler, C. R., Palladium- (and nickel-) catalyzed vinylation of aryl halides. *Chem. Commun.* **2009**, 20-33.

(2) (a) Qian, Y.; Crew, A.; Crews, C.; Dong, H.; Hornberger, K. R.; Wang, J. Modulators of Estrogen Receptor Proteolysis and Associated Methods of Use. US 237418 A1, 2018; (b) Beckwith, J. E. R.; Bonazzi, S.; Cernijenko, A. Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof. US 0271940 A1, 2021.

(3) Stewart, S. G.; Braun, C. J.; Ng, S.-L.; Polomska, M. E.; Karimi, M.; Abraham, L. J., New thalidomide analogues derived through Sonogashira or Suzuki reactions and their TNF expression inhibition profiles. *Bioorg. Med. Chem. Lett.* **2010**, *18*, 650-662.

(4) Reist, M.; Carrupt, P.-A.; Francotte, E.; Testa, B., Chiral Inversion and Hydrolysis of Thalidomide: Mechanisms and Catalysis by Bases and Serum Albumin, and Chiral Stability of Teratogenic Metabolites. *Chem. Res. Toxicol.* **1998**, *11*, 1521-1528.

(5) Kassel, V. M.; Hanneman, C. M.; Delaney, C. P.; Denmark, S. E., Heteroaryl– Heteroaryl, Suzuki–Miyaura, Anhydrous Cross-Coupling Reactions Enabled by Trimethyl Borate. *J. Am. Chem. Soc.* **2021**, *143*, 13845-13853.

(6) Niwa, T.; Uetake, Y.; Isoda, M.; Takimoto, T.; Nakaoka, M.; Hashizume, D.; Sakurai, H.; Hosoya, T., Lewis acid-mediated Suzuki–Miyaura cross-coupling reaction. *Nat. Catal.* 2021, *4*, 1080-1088.

(7) Su, M.; Huang, X.; Lei, C.; Jin, J., Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Vinyl Acetate in Dimethyl Isosorbide as a Sustainable Solvent. *Org. Lett.* **2022**, *24*, 354-358.

(8) Sharland, J. C.; Wei, B.; Hardee, D. J.; Hodges, T. R.; Gong, W.; Voight, E. A.; Davies, H. M. L., Asymmetric synthesis of pharmaceutically relevant 1-aryl-2-heteroaryl- and 1,2-diheteroarylcyclopropane-1-carboxylates. *Chem. Sci.* **2021**, *12*, 11181-11190.

(9) Delaney, C. P.; Marron, D. P.; Shved, A. S.; Zare, R. N.; Waymouth, R. M.; Denmark, S. E., Potassium Trimethylsilanolate-Promoted, Anhydrous Suzuki–Miyaura Cross-Coupling Reaction Proceeds via the "Boronate Mechanism": Evidence for the Alternative Fork in the Trail. *J. Am. Chem. Soc.* **2022**, *144*, 4345-4364.

(10) Colacot, T. J.; Shea, H. A., $Cp_2Fe(PR_2)_2PdCl_2$ (R = *i*-Pr, *t*-Bu) Complexes as Air-Stable Catalysts for Challenging Suzuki Coupling Reactions. *Org. Lett.* **2004**, *6*, 3731-3734.

(11) Firsan, S. J.; Sivakumar, V.; Colacot, T. J., Emerging Trends in Cross-Coupling: Twelve-Electron-Based L1Pd(0) Catalysts, Their Mechanism of Action, and Selected Applications. *Chem. Rev.* **2022**, *122*, 16983-17027.

(12) (a) Butters, M.; Harvey, J. N.; Jover, J.; Lennox, A. J. J.; Lloyd-Jones, G. C.; Murray,
P. M., Aryl Trifluoroborates in Suzuki–Miyaura Coupling: The Roles of Endogenous Aryl
Boronic Acid and Fluoride. *Angew. Chem. Int. Ed.* 2010, *49*, 5156-5160; (b) Lennox, A. J. J.;
Lloyd-Jones, G. C., Organotrifluoroborate Hydrolysis: Boronic Acid Release Mechanism and an
Acid–Base Paradox in Cross-Coupling. *J. Am. Chem. Soc.* 2012, *134*, 7431-7441.

(13) (a) Sosič, I.; Bricelj, A.; Steinebach, C., E3 ligase ligand chemistries: from building blocks to protein degraders. *Chem. Soc. Rev.* 2022, *51*, 3487-3534; (b) Hansen, J. D.; Correa, M.; Nagy, M. A.; Alexander, M.; Plantevin, V.; Grant, V.; Whitefield, B.; Huang, D.; Kercher, T.; Harris, R.; Narla, R. K.; Leisten, J.; Tang, Y.; Moghaddam, M.; Ebinger, K.; Piccotti, J.; Havens, C. G.; Cathers, B.; Carmichael, J.; Daniel, T.; Vessey, R.; Hamann, L. G.; Leftheris, K.; Mendy, D.; Baculi, F.; LeBrun, L. A.; Khambatta, G.; Lopez-Girona, A., Discovery of CRBN E3 Ligase Modulator CC-92480 for the Treatment of Relapsed and Refractory Multiple Myeloma. *J. Med. Chem.* 2020, *63*, 6648-6676; (c) Yamamoto, T.; Tokunaga, E.; Nakamura, S.; Shibata, N.; Toru, T., Synthesis and Configurational Stability of (*S*)- and (*R*)-Deuteriothalidomides. *Chem. Pharm. Bull.* 2010, *58*, 110-112; (d) Tokunaga, E.; Yamamoto, T.; Ito, E.; Shibata, N., Understanding the Thalidomide Chirality in Biological Processes by the Self-disproportionation of Enantiomers. *Sci. Rep.* 2018, *8*, 17131; (e) Mori, T.; Ito, T.; Liu, S.; Ando, H.; Sakamoto, S.; Yamaguchi, Y.; Tokunaga, E.; Shibata, N.; Handa, H.; Hakoshima, T., Structural basis of thalidomide enantiomer binding to cereblon. *Sci. Rep.* 2018, *8*, 1294.

(14) Timsina, Y. N.; Xu, G.; Colacot, T. J., It Is Not All about the Ligands: Exploring the Hidden Potentials of tBu3P through Its Oxidative Addition Complex as the Precatalyst. *ACS Catal.* **2023**, *13*, 8106-8118.

(15) Lu, L.; Combs, A.; Basch, C.; Shetty, R.; Dai, C.; Bersch, K.; Rose, J. A.; Beam, D.J.; Mei, S. BRM Targeting Compounds and Associated Methods of Use. US 0083376 A1, 2021.

(16) Reichert, E. C.; Feng, K.; Sather, A. C.; Buchwald, S. L., Pd-Catalyzed Amination of Base-Sensitive Five-Membered Heteroaryl Halides with Aliphatic Amines. *J. Am. Chem. Soc.*2023, *145*, 3323-3329.

(17) (a) Roh, B.; Farah, A. O.; Kim, B.; Feoktistova, T.; Moeller, F.; Kim, K. D.;
Cheong, P. H.-Y.; Lee, H. G., Stereospecific Acylative Suzuki–Miyaura Cross-Coupling:
General Access to Optically Active α-Aryl Carbonyl Compounds. *J. Am. Chem. Soc.* 2023, *145*, 7075-7083; (b) Bardin, V. V.; Shabalin, A. Y.; Adonin, N. Y., Weakly nucleophilic potassium aryltrifluoroborates in palladium-catalyzed Suzuki–Miyaura reactions: relative reactivity of K[4-RC6F4BF3] and the role of silver-assistance in acceleration of transmetallation. *Beilstein J. Org. Chem.* 2015, *11*, 608-616; (c) Molander, G. A.; Biolatto, B., Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions of Potassium Aryl- and Heteroaryltrifluoroborates. *J. Org. Chem.* 2003, 68, 4302-4314.

(18) (a) Ichikawa, J.; Hamada, S.; Sonoda, T.; Kobayashi, H., A one-pot synthesis of 2,2-difluorovinyl carbonyl compounds from 2,2,2,-trifluoroethyl p-toluenesulfonate via 2,2-difluorovinylboranes. *Tet. Lett.* **1992**, *33*, 337-340; (b) Wright, S. W.; Hageman, D. L.;
McClure, L. D., Fluoride-Mediated Boronic Acid Coupling Reactions. *J. Org. Chem.* **1994**, *59*, 6095-6097; (c) Fagnou, K.; Lautens, M., Halide Effects in Transition Metal Catalysis. *Angew. Chem. Int. Ed.* **2002**, *41*, 26-47; (d) Amatore, C.; Jutand, A.; Le Duc, G., The Triple Role of Fluoride Ions in Palladium-Catalyzed Suzuki–Miyaura Reactions: Unprecedented Transmetalation from [ArPdFL2] Complexes. *Angew. Chem. Int. Ed.* **2012**, *51*, 1379-1382.

(19) Littke, A. F.; Dai, C.; Fu, G. C., Versatile Catalysts for the Suzuki Cross-Coupling of Arylboronic Acids with Aryl and Vinyl Halides and Triflates under Mild Conditions. *J. Am. Chem. Soc.* **2000**, *122*, 4020-4028.

(20) Mondal, A.; van Gemmeren, M., Silver-Free C–H Activation: Strategic Approaches towards Realizing the Full Potential of C–H Activation in Sustainable Organic Synthesis. *Angew. Chem. Int. Ed.* **2022**, *61*, e202210825.

Chapter 2: Asymmetric Dirhodium-Catalyzed Cyclopropanation and Cyclopropenation of Cereblon E3 Ligase Modulatory Drug Cores and their Biological Evaluation.

Introduction

Despite the value of IMiDs as a drug class, many challenges remain on the path to full understanding of how to design clinically effective IMiDs. Several decades ago, IMiDs were evaluated and classified according to phenotypic observations (i.e., their function in biological systems).¹ Advances in the field led to target elucidation, such as discovery of the targeting of proteins implicated in the metabolisms of multiple myeloma by lenalidomide.² More recently, medicinal chemists have been guided by structural biology and computational work solving ternary complexes of CRBN with IMiDs and multiple neosubstrates.³ This has also led to identification of common themes in neosubstrates targeted by IMiDs like the G-motif or G-loop, an eight-amino-acid stretch comtaining glycine in the primary classes of successfully targeted neosubstrates.⁴

Because of this work, researchers now have deeper understanding of the teratogenicity of IMiDs, target elucidation and off-target effects, and the beginnings of how to design selective IMiDs. However, what remains out of reach is a more *a priori* design approach. Designing protein degradation efficacy and selectivity for a single neosubstrate into an IMiD is semi-empirical, even among the now well-studied protein classes like zinc finger family proteins. Some efforts towards *a priori* design of IMiDs are underway: systemic neosubstrate selectivity correlations are becoming less rare in the literature.^{3c, 4-5} There are two primary factors limiting further understanding of IMiDs: Systematic structure-and-reactivity (SAR) correlations for distal

modifications to IMiDs across a range of neosubstrates, of which reports are rare,^{5a} and the limitations of structure-based modelling, especially in computation.⁶

SAR correlations have arguably been hampered by the lack of development in synthetic approaches to IMiDs. As discussed in the introduction to this work, there is pressure in the field to (1) demonstrate compatibility between known methods and glutarimide-containing compounds, (2) re-optimize known methods for compatibility and (3) develop new, glutarimide-compatible methods. We aimed to adapt rhodium-catalyzed [2+1] cycloadditions to the modification of glutarimides (**Figure 2-1**) as this will enable facile introduction of stereochemically defined and complex functionality to IMiDs, which is currently lacking in the space. We propose that the introduction of stereochemically defined and Csp³-rich content may be a valuable strategy to avoid off-target neosubstrate degradation.⁷ In the previous chapter, we developed an anhydrous, stereoretentive Suzuki-Miyaura coupling to gain access to the vinyl derivatives required to begin our planned campaign.

Figure 2-1. Conception of the project: Adapt rhodium-catalyzed [2+1] cycloadditions to prepare regio- and stereochemically diverse IMiD derivatives.

In this chapter, we show the highly effective and highly asymmetric cyclopropanation of these derivatives. The cyclopropanations are mild enough to be fully stereoretentive in reactions with enantioenriched starting material. We also demonstrate the successful cyclopropenation of IMiD derivatives with terminal alkynes. These reactions enabled systematic SAR studies across several neosubstrates (IKZF3 or Aiolos, CK1 α , GSPT1, and SALL4) of how stereochemical and regiochemical changes distal to the IMiD cores (both phtalimide and isoindolinone) affect

degradation selectivity and activity, which is to our knowledge one of the first studies of its kind. We evaluate the products resulting from the adapted rhodium-catalyzed methods using cheminformatic approaches and find that they provide highly divergent structures in terms of both chemical space and moments of inertia (compound shape). Finally, we take advantage of the highly diversifiable ester groups introduced by 2,2,2-trichloroethyl 2-(4-bromophenyl)-2diazoacetate in the reactions to demonstrate possible routes of further modifications.

Results and Discussion

The primary goal of the project was singular: demonstrate enantioselective cyclopropanation of vinyl IMiD derivatives with both pthalimide (thalidomide-like) and isoindolinone (lenalidomide-like) cores, across the range of possible vinyl substitutions. As a secondary goal, we desired to conduct an analogous campaign of cyclopropenation of ethynyl IMiD derivatives. Going into the project, we did not know whether the vinyl IMiD derivatives we synthesized would work in the reactions, given that we found them to be mostly insoluble in the dichloromethane ubiquitous in our cycloaddition chemistry. We also wondered whether the glutarimide N–H would interfere with the reaction by poisoning the catalyst or inserting into the carbene generated from the diazoacetate. We selected 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate as the carbene precursor or the reactions, due to its precedented robust asymmetric induction and the highly diversifiable functional groups contained within (i.e., the ester and aryl bromide functionalities).⁸

The starting vinyl glutarimides we selected for the initial studies are racemates. In a cyclopropanation, two new stereocenters are formed. We report two diastereomeric ratios (**Scheme 2-1**); the first is for the relative configuration of the two new stereogenic centers formed during the cyclopropanation, and the second is for the level of asymmetric induction achieved by the chiral catalyst. Starting with the 5-substituted vinyl thalidomide, we conducted a

brief screen of chiral catalysts (**Scheme 2-1**). Although other catalysts (entries 1-3) gave slightly higher yields, $Rh_2(S-p-Ph-TPCP)_4$ (**Figure 2-2**), an effective chiral catalyst developed by our group,⁹ gave the highest level of asymmetric induction (entry 4), with a ratio of greater than 20:1 between relative configurations of the newly formed cyclopropane, and a d.r. of 99:1 for the asymmetric induction achieved by the catalyst.

Reactions conducted on material in which the glutarimimide stereocenter is racemic. Entries 1 and 3 gave the stereoisomers of product **2.18b**, equivalent to those produced from the reaction with $Rh_2(R-p-Ph-TPCP)_4$.^a Diastereomeric ratio for the relative configuration of the two new stereogenic centers, determined by ¹H NMR analysis.^b Asymmetric induction arising from formation of the major relative diastereomer, determined by SFC analysis.^c Reaction run with HFIP as solvent instead of CH_2Cl_2 .

Figure 2-2. Catalysts Used in the Optimization Study

Because we were particularly interested in the differential biological effects of different cyclopropane stereroisomers, we elected to use both enantiomers of the chiral catalyst in our reactions with the different vinyl-IMiD regioisomers. In **Scheme 2-2**, the "**a**" series are products *Scheme 2-2*. *Cyclopropanation of Vinyl IMiD Derivatives*

All reactions were performed on racemic glutarimide intermediates. Yields are reported as isolated yields of purified product. ^a Product arising from reaction with $Rh_2(S$ -p-Ph-TPCP)₄ ^b Product arising from reaction with $Rh_2(R$ -p-Ph-TPCP)₄ ^c Diastereomeric ratio for the relative configuration of the two new stereogenic centers, determined by ¹H NMR analysis. ^d Asymmetric induction arising from formation of the major relative diastereomer, determined by SFC analysis.

derived from reactions catalyzed by $Rh_2(S-p-Ph-TPCP)_4$ and the "**b**" series are products derived from reactions catalyzed by $Rh_2(R-p-Ph-TPCP)_4$. The absolute stereochemistry of the products were determined in reference to the X-ray crystallographic structure of compound **2.17a** acquired by John Bacsa and Mackenzie Young. The reactions proceed in good yields, with the exception of compounds in which the vinyl group is adjacent to the carbonyl group (**2.16a,b** and **2.20a,b**). The reactions proceeded with high levels of asymmetric induction and diastereoselectivity.

An analogous series of aryl alkynes were subjected to cyclopropenation reactions (**Scheme 2-3**) using the same diazoacetate (**2.13**). All reactions proceeded in good yield, irrespective of the position of the alkyne to the carbonyl. The reactions generate the cyclopropene products in high (up to >99:1) d.r., except when the alkyne is immediately adjacent to the carbonyl (**2.22a,b** and **2.26a,b**), which give poor diastereomeric ratios. Since the analogous cyclopropanation products (for example, **2.16a,b**) are produced in comparatively high d.r., we hypothesize that these differential effects may be due to the "end-on" approach of these substrates to the carbene. This places the site of reaction closer to the adjacent carbonyl in cyclopropenation than in cyclopropanation.¹⁰ Alternatively, some difference in how the substrate approach is affected by the chiral catalyst used may cause the difference in reactivities and selectivities.

Since the conditions of rhodium-catalyzed cyclopropanation are quite mild, we wondered whether the reaction would preserve the sensitive glutarimide stereocenter. We prepared (S)-2.3 and (R)-2.3 from the enantiopure aryl bromides as discussed in Chapter 1 and subjected them to the reaction conditions (Scheme 2-4). The cyclopropanations proceed with full retention of stereochemistry at the glutarimide stereogenic center.

All reactions were performed on racemic glutarimide intermediates. Yields are reported as isolated yields of purified product. ^a Product arising from reaction with $Rh_2(S-p-Ph-TPCP)_4$ ^b Product arising from reaction with $Rh_2(R-p-Ph-TPCP)_4$. ^c Asymmetric induction arising from formation of the major relative diastereomer, determined by SFC analysis.

Scheme 2-4. Stereoretentive cyclopropanation of (S)- and (R)-3-(1-oxo-5-vinylisoindolin-2-yl)piperidine-2,6-dione

This retention is well-illustrated by the corresponding SFC traces of compounds (*S*)- and (*R*)-**2.17a** and **b** (**Figure 2-3**). With a racemic trace at the top for reference, the traces demonstrate how the Suzuki-Miyaura conditions developed in Chapter 1 combined with rhodium-catalyzed cyclopropanation enable the preparation of four individual stereoisomers.

Aryldiazoacetates in themselves contain useful synthetic potential beyond that of any carbene chemistry. The arene portion can be modified to contain valuable motifs and introduced to the substrate of interest to provide a rapid expansion of chemical complexity. In the context of the project, we were interested in how a more drug-like arene portion—potentially even one with a nucleophilic site that might react with the carbene—could be introduced to a vinyl-thalidomide core. We prepared a trichloroethyl diazoacetate with a benzyl morpholine moiety (**2.14**),

Figure 2-3. SFC trace showing retention of stereochemistry in the cyclopropanation of enantionriched vinyl IMiDs

reminiscent of that in iberdomide (**Scheme 2-5**). Under the standard conditions for cyclopropanation (**Scheme 2-2**), no reaction is observed. However, using Rh₂(*tetra-p*-Br-PPTTL)₄ in conjunction with 10 equivalents of HFIP, the cyclopropanation of the 4-vinyl isoindolinone core (**2.27a,b**) proceeds with modest asymmetric induction and good yield using both enantiomers of the chiral catalyst.

The trichloroethyl ester portion of the diazo can also be leveraged as a handle for diversification (**Scheme 2-6**). Typically the ester is modified by first converting it to the acid under reductive conditions (zinc dust in acetic acid)—conditions which have rarely needed modification in our hands.¹¹ However, with the cyclopropane products we wished to modify (**2.17a,b**), we saw low conversion and degradation of the starting material. Inspired by the work of Just and Grozinger supporting that the success and rate of hydrolysis can be pH-dependent,¹² we conducted a 16-experiment Design of Experiment (DoE) study using an adaptation of their system evaluating the effects of the ratio of THF and aqueous buffer in the solvent system, and the concentration, pH, and amount of buffer. We identified conditions that successfully cleaved

Scheme 2-5. Introduction of Further Complexity via the Arene Portion of the Diazo

All reactions were performed on racemic glutarimide intermediates. Yields are reported as isolated yields of purified product. ^a Product arising from reaction with Rh₂(*tetra-p*-BrPhPTTL)₄ ^b Product arising from reaction with Rh₂(*tetra-p*-BrPhPTTL)₄ ^c Diastereomeric ratio for the relative configuration of the two new stereogenic centers, determined by ¹H NMR analysis. ^d Asymmetric induction arising from formation of the major relative diastereomer, determined by SFC analysis

Scheme 2-6. Introduction of Further Complexity via the Ester Portion of the Diazo

All reactions were performed on racemic glutarimide intermediates. Yields are reported as isolated yields of purified product. ^a Product arising from reaction with $Rh_2(S-p-Ph-TPCP)_4$ ^b Product arising from reaction with $Rh_2(R-p-Ph-TPCP)_4$ ^c Diastereomeric ratio for the relative configuration of the two new stereogenic centers, determined by ¹H NMR analysis ^d Asymmetric induction arising from formation of the major relative diastereomer, determined by SFC analysis ^e Stereochemical information from the starting material was retained, as determined by ¹H NMR and SFC analysis. 1.2 M acetate buffer: calc'd pH = 3.7.

the trichloroethyl ester of 2.17a and b in high yield (Scheme 2-6). This acid can be converted

into an amide (**2.29a,b**) with complete retention of the stereochemistry induced by cyclopropanation, highlighting another way to generate complexity.

We next set out to evaluate how the novel IMiD structures synthesized compared to IMiDs in the public domain. This cheminformatics analysis was conducted by Lei Jia and Ethan Evans from Bristol Myers Squibb. The molecular features were captured using 2048 bit extended-connectivity fingerprints with a radius of 2 (ECFP4), along with the features of 18,175 public-domain compounds.^{13, 14} These fingerprints were then embedded into a two-component Uniform Manifold Approximation and Projection (UMAP) algorithm to visualize the data (**Figure 2-4a**).¹⁵ While our compounds (orange) cluster together due to their similarity, they occupy a part of chemical space relatively unoccupied by known compounds (blue). We also set out with a

Figure 2-4. Representation of chemical and structural space accessed by the novel IMiDs relative to literature precedence (18,175 compounds). (A) 2-dimensional UMAP projection from 2048 bit ECFP4 fingerprints. (B) Principal moments of inertia analysis. Both plots depict the new IMiDs shown in orange relative to existing compounds shown in blue. Data prepared by Lei Jia and Ethan Evans of BMS.

hypothesis that cyclopropanation and cyclopropenation would increase the structural complexity and diversity of known IMiDs. We modeled the 3-D shape of our compounds and visualized this using a principal moments of inertia (PMI) plot (**Figure 2-4b**).¹⁶ The PMI plot describes whether the compounds are more rod-shaped (upper left), disk-shaped (bottom), sphere-shaped (upper right), and combinations of the three. Relative to the external collection (blue), our compounds (orange) take on a more spherical shape, but in general occupy a broad swath, suggesting diversity despite a smaller sample size. Going in line with the accepted notion that structural and chemical diversity increases the likelihood of interaction with a broader range of biological targets, these analyses demonstrate the effectiveness of our methods.

We evaluated the biological effectiveness of the core series of cyclopropane (2.15a,b-**2.20a,b**) and cyclopropene (**21a,b-26a,b**) by evaluating their function in assays with four important G-motif-containing substrates: IKZF3, CK1a, GSPT1, and SALL4.⁴ Both the compounds' binding to CRBN and their degradation activity were evaluated. The biological studies were conducted by Zhenghang Sun, Jennifer Buenviaje, Gody Khambatta, Shan Yu, and Lihong Shi from Bristol Myers Squibb. Figure 2-5a correlates CRBN binding ability (HTRF IC_{50}) to neosubstrate degradation (Y_{min} indicates depth of degradation where 100% represents no degradation and 0% represents complete neosubstrate degradation). There was no correlation between CRBN binding and neosubstrates, which is expected and reflects the importance of forming a productive ternary complex between CRBN and a neosubstrate (versus simply binding to CRBN).^{6, 17} Figure 2-5b depicts trends in neosubstrate activity with EC₅₀ (half-maximal concentration required to reach 50% degradation effect). The boxes are colored to represent the Y_{min} of the compounds, with red showing very little degradation (i.e., closer to 100%) and green showing more degradation (i.e., closer to 0% protein remaining). Most of the compounds tested showed measurable CRBN binding; only a small fraction (4 out of 24) showing a CRBN IC₅₀ >10 µM (see supporting information for CRBN data). Matched pairs of of the isoindolinone (abbreviated as "Len") and phthalimide (abbreviated as "Thal") cores (2.15a,b vs 2.16a,b,

Figure 2-5. Biological activity and trends. (A) Correlation of CRBN binding (HTRF IC₅₀) to neosubstrate degradation (Y_{min}). (B) Trends in neosubstrate activity with EC₅₀ (concentration required to achieve 50% of total degradation effect) reported in μ M and boxes colored by Y_{min} (with red showing weak depth of degradation and green showing strong depth of degradation); data reported as an average of $N \ge 3$ test occasions. Data prepared by Lei Jia, Ethan Evans, Jesus Moreno, and Emily Cherney of BMS.

2.17a,b vs 2.18a,b, 2.19a,b vs 2.20a,b, 2.21a,b vs 2.22a,b, 2.23a,b vs 2.24a,b, and 2.25a,b vs 2.26a,b) generally show similar trends. A few matched pairs show inactivity across neosubstrates (2.15a,b vs 2.16a,b, 2.17a vs 2.18a, 2.19a,b vs 2.20a,b, 2.25a,b vs 2.26a,b) all show inactivity across substrates in matched pairs. On the other hand, others (2.21a,b vs 2.22a,b and 2.23a,b vs 2.24a,b) show some level of activity across neosubstrates. Two pairs exhibited exceptions to this trend. The first was 2.17b and 2.18b, where 2.17b showed more activity than 2.18b against CK1 α . This may be due to the carbonyl in the phthalimide core of 2.18b interfering with ternary complex formation (the lack of a carbonyl in the isoindolinone core as in 2.17b is hypothesized to allow better complex formation).^{3a} Interestingly, the carbonyl is better tolerated for CK1 α recruitment and degradation in phthalimide cores that contain cyclopropenes

rather than cyclopropanes (**22a**,**b** and **24a**,**b**). In the other exception, **2.23a** was inactive across neosubstrates, while **2.24a** showed activity across neosubstrates.

Trends in regiochemistry of the substitution patterns (4- vs 5- vs 6- vs 7- position) were the most universal with 6- and 7-substituted isoindolinone cores being generally inactive. However, these compounds maintain binding to CRBN. This suggests that the lack of degradation is due to inability to form a productive ternary complex between CRBN and the neosubstrates investigated, all of which contain G-motifs. This lack of an ability to form productive complexes may be advantageous in some scenarios in which degradation selectivity for G-motif-containing substrates (e.g., GSPT1) is undesired.¹⁸

The general preference in degradation for cyclopropenes over cyclopropanes was not anticipated a priori. Excluding the inactivity of the 6- and 7-substituted isoindolinone cores discussed previously, the trend for the cyclopropanes to be less active holds true for 4- and 5substituted cyclopropanated cores (compounds **2.15-2.18**) regardless of stereochemistry. One exception is compound **2.17b**, where (compared to **2.17a**) stereochemical effects on neosubstrate degradation are observed (vide infra). The trend becomes more striking when comparing the degradation of a singular neosubstrate for matched pairs, such as the difference in IKZF3 degradation between **2.16b** (EC₅₀ >10 μ M, 99% Y_{min}) and **2.22b** (EC₅₀ = 3.67 μ M, 10% Y_{min}) or **2.15a** (EC₅₀ = 1.86 μ M, 79% Y_{min}) and **2.21a** (EC₅₀ = 0.012 μ M, 9.2% Y_{min}). Two examples highlighting GSPT1 selectivity are **2.18a** (EC₅₀ >10 μ M, 100% Ymin) vs. **2.24a** (EC₅₀ 1.4 μ M, 2.3% Y_{min}) and **2.18b** (EC₅₀ = 3.1 μ M, 85% Y_{min}) vs. **2.24b** (EC₅₀ = 1.4 \Box M, 1.4% Y_{min}). The only outlier of the cyclopropenes is compound **2.23a**, which is the only 4- or 5-substituted cyclopropene that does not significantly degrade any of the neosubstrates tested. Finally, distal stereochemistry effects on neosubstrate degradation were analyzed. Strikingly, while subtle in terms of structural change, these changes lead to significant changes in neosubstrate selectivity. For instance, cyclopropene compound **2.21a**, generated from Rh₂(*S*-*p*-Ph-TPCP)₄ is a significantly deeper degrader of IKZF3 (9.2% Y_{min}) than its counterpart **2.21b** (69% Y_{min}), generated from Rh₂(*R*-*p*-Ph-TPCP)₄. (**2.23a** vs **2.23b**). Perhaps the most conspicuous stereochemical pair is **2.23a** and **2.23b** for which one is universally less active than the other. While the SAR arising from distal changes in stereochemistry may be more nuanced, the demonstration of the ability of distal stereochemistry alone to strongly impact neosubstrate selectivity is significant. This finding highlights the importance of enabling enantioselective methodologies, like asymmetric rhodium catalysis, on glutarimide-containing molecules to help medicinal chemists fine-tune neosubstrate selectivity.

We were interested in rationalizing the observed binding and degradation data using computational modeling and attempted to rationalize the observed binding and degradation data using molecular docking methods. We used publicly available structures of the neosubstrates in complex with CRBN (PDB IDS: 5FQD for CK1 α , 6XK9 for GSPT1, and 8U15 for SALL4). We had to use the structure of IKZF1 (8D7Z), which has an identical G-motif sequence to IKZF3, as a replacement as the structure of IKZF3 was not available. We attempted docking our compounds using both Glide (SP and induced fit) and MOE-based induced fit docking. For all neosubstrates and methods there was no trend between docking success or score with binding affinity or Y_{min} values. The small molecule focused docking scores likely do not fully capture the intricacies of the ternary complex in which water and protein-protein interactions play a key role as recently suggested, highlighting the need for more sophisticated modelling approaches.¹⁹

Conclusions

We have demonstrated rhodium-catalyzed cyclopropanations and cyclopropenations to be effective and useful methods for the creation of chemically and structurally distinct IMiDs. Due to the mild nature of the reactions, we were able to generate IMiDs with a high degree of asymmetric induction, without interfering with the sensitive functionality in IMiDs. This method enables highly convergent synthesis and provides opportunities for further diversification. We demonstrated that the compounds degrade common G-motif-containing neosubstrates with measurable CRBN-binding activity. SAR analysis revealed the subtle interplay of distal stereochemistry and regiochemistry on neosubstrate degradation activity, which can significantly influence future efforts to design new prospective IMiD-class durgs. Our work highlights the effectiveness of rhodium-carbene chemistry as a tool for the diversification of important drug classes—even those in which diversification is a synthetic challenge.

This work was published in ACS Medicinal Chemistry Letters in 2024:

Tracy, W. F.; Davies, G. H. M.; Jia, L.; Evans, E. D.; Sun, Z.; Buenviaje, J.; Khambatta, G.;
Yu, S.; Shi, L.; Shanmugasundaram, V.; Moreno, J.; Cherney, E. C.; Davies, H. M. L.,
Asymmetric Dirhodium-Catalyzed Modification of Immunomodulatory Imide Drugs and Their
Biological Assessment. *ACS Med. Chem. Lett.* 2024, *15*, 1575-1583.

W.F. Tracy conducted all of the synthetic work. G.H.M. Davies led the project with H.M.L. Davies in its early stages and provided valuable guidance on project direction. E.D. Evans and L. Jia conducted the cheminformatics analysis. Z. Sun, J. Buenviaje, G. Khambatta, S. Yu, and L. Shi conducted the biological studies. J. Moreno, E.C. Cherney, and V. Shanmugasundaram provided valuable support, guidance, and analysis. Chuong-Thu Thai and Blayne Lenoir assisted with analytical chemistry, structural validation, and compound management. Zia Lozewski, Carolindah Ntimi, Kaitlyn Wieler, Ishani Patel, Giselles Perez, Gabe Mintier, John Feder, Derek Mendy, and Lynda Groocock assisted with cell line development. John Bacsa and Mackenzie Young were responsible for the X-ray crystallographic data.

Reference

(1) (a) D'Amato, R. J.; Loughnan, M. S.; Flynn, E.; Folkman, J., Thalidomide is an inhibitor of angiogenesis. *Proc. Natl. Acad. Sci.* 1994, *91*, 4082-4085; (b) Sampaio, E. P.; Sarno, E. N.; Galilly, R.; Cohn, Z. A.; Kaplan, G., Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. *J. Exp. Med.* 1991, *173*, 699-703.

(2) (a) Krönke, J.; Udeshi, N. D.; Narla, A.; Grauman, P.; Hurst, S. N.; McConkey, M.;
Svinkina, T.; Heckl, D.; Comer, E.; Li, X.; Ciarlo, C.; Hartman, E.; Munshi, N.; Schenone,
M.; Schreiber, S. L.; Carr, S. A.; Ebert, B. L., Lenalidomide Causes Selective Degradation of
IKZF1 and IKZF3 in Multiple Myeloma Cells. *Science* 2014, *343*, 301-305; (b) Lu, G.;
Middleton, R. E.; Sun, H.; Naniong, M.; Ott, C. J.; Mitsiades, C. S.; Wong, K.-K.; Bradner, J.
E.; Kaelin, W. G., The Myeloma Drug Lenalidomide Promotes the Cereblon-Dependent
Destruction of Ikaros Proteins. *Science* 2014, *343*, 305-309.

(3) (a) Petzold, G.; Fischer, E. S.; Thomä, N. H., Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase. *Nature* **2016**, *532*, 127-130; (b) Matyskiela, M. E.; Lu, G.; Ito, T.; Pagarigan, B.; Lu, C.-C.; Miller, K.; Fang, W.; Wang, N.-Y.; Nguyen, D.; Houston, J.; Carmel, G.; Tran, T.; Riley, M.; Nosaka, L. A.; Lander, G. C.; Gaidarova, S.; Xu, S.; Ruchelman, A. L.; Handa, H.; Carmichael, J.; Daniel, T. O.; Cathers, B. E.; Lopez-Girona, A.; Chamberlain, P. P., A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. *Nature* **2016**, *535*, 252-257; (c) Sievers, Q. L.; Petzold, G.; Bunker, R. D.; Renneville, A.; Słabicki, M.; Liddicoat, B. J.; Abdulrahman, W.; Mikkelsen, T.; Ebert, B. L.; Thomä, N. H., Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. *Science* **2018**, *362*, eaat0572; (d) Matyskiela, M. E.; Clayton, T.; Zheng, X.; Mayne, C.; Tran, E.; Carpenter, A.; Pagarigan, B.; McDonald, J.; Rolfe, M.; Hamann, L. G.; Lu, G.; Chamberlain, P. P., Crystal structure of the SALL4–pomalidomide–cereblon–DDB1 complex. *Nat. Struct. Mol. Biol.* **2020**, *27*, 319-322; (e) Wang,

E. S.; Verano, A. L.; Nowak, R. P.; Yuan, J. C.; Donovan, K. A.; Eleuteri, N. A.; Yue, H.; Ngo, K. H.; Lizotte, P. H.; Gokhale, P. C.; Gray, N. S.; Fischer, E. S., Acute pharmacological degradation of Helios destabilizes regulatory T cells. *Nat. Chem. Biol.* 2021, *17*, 711-717; (f) Watson, E. R.; Novick, S.; Matyskiela, M. E.; Chamberlain, P. P.; H. de la Peña, A.; Zhu, J.; Tran, E.; Griffin, P. R.; Wertz, I. E.; Lander, G. C., Molecular glue CELMoD compounds are regulators of cereblon conformation. *Science* 2022, *378*, 549-553; (g) Bonazzi, S.; d'Hennezel, E.; Beckwith, R. E. J.; Xu, L.; Fazal, A.; Magracheva, A.; Ramesh, R.; Cernijenko, A.; Antonakos, B.; Bhang, H.-e. C.; Caro, R. G.; Cobb, J. S.; Ornelas, E.; Ma, X.; Wartchow, C. A.; Clifton, M. C.; Forseth, R. R.; Fortnam, B. H.; Lu, H.; Csibi, A.; Tullai, J.; Carbonneau, S.; Thomsen, N. M.; Larrow, J.; Chie-Leon, B.; Hainzl, D.; Gu, Y.; Lu, D.; Meyer, M. J.; Alexander, D.; Kinyamu-Akunda, J.; Sabatos-Peyton, C. A.; Dales, N. A.; Zécri, F. J.; Jain, R. K.; Shulok, J.; Wang, Y. K.; Briner, K.; Porter, J. A.; Tallarico, J. A.; Engelman, J. A.; Dranoff, G.; Bradner, J. E.; Visser, M.; Solomon, J. M., Discovery and characterization of a selective IKZF2 glue degrader for cancer immunotherapy. *Cell Chem. Biol.* 2023, *30*, 235-247.e12.

(4) Oleinikovas, V.; Gainza, P.; Ryckmans, T.; Fasching, B.; Thomä, N. H., From Thalidomide to Rational Molecular Glue Design for Targeted Protein Degradation. *Annu. Rev. Pharmacool. Toxicol.* **2024**, *64*, 291-312.

(5) (a) Yamanaka, S.; Furihata, H.; Yanagihara, Y.; Taya, A.; Nagasaka, T.; Usui, M.; Nagaoka, K.; Shoya, Y.; Nishino, K.; Yoshida, S.; Kosako, H.; Tanokura, M.; Miyakawa, T.; Imai, Y.; Shibata, N.; Sawasaki, T., Lenalidomide derivatives and proteolysis-targeting chimeras for controlling neosubstrate degradation. *Nat. Commun.* 2023, *14*, 4683; (b) Nowak, R. P.; Che, J.; Ferrao, S.; Kong, N. R.; Liu, H.; Zerfas, B. L.; Jones, L. H., Structural rationalization of GSPT1 and IKZF1 degradation by thalidomide molecular glue derivatives. *RSC Med. Chem.* 2023, *14*, 501-506.

(6) Weiss, D. R.; Bortolato, A.; Sun, Y.; Cai, X.; Lai, C.; Guo, S.; Shi, L.;
Shanmugasundaram, V., On Ternary Complex Stability in Protein Degradation: In Silico Molecular Glue Binding Affinity Calculations. *J. Chem. Inf. Model.* 2023, *63*, 2382-2392.

(7) Szewczyk, S. M.; Verma, I.; Edwards, J. T.; Weiss, D. R.; Chekler, E. L. P., Trends in Neosubstrate Degradation by Cereblon-Based Molecular Glues and the Development of Novel Multiparameter Optimization Scores. *J. Med. Chem.* **2024**, *67*, 1327-1335.

(8) Guptill, D. M.; Davies, H. M. L., 2,2,2-Trichloroethyl Aryldiazoacetates as Robust Reagents for the Enantioselective C–H Functionalization of Methyl Ethers. *J. Am. Chem. Soc.* 2014, *136*, 17718-17721.

(9) Liao, K.; Liu, W.; Niemeyer, Z. L.; Ren, Z.; Bacsa, J.; Musaev, D. G.; Sigman, M. S.; Davies, H. M. L., Site-Selective Carbene-Induced C–H Functionalization Catalyzed by Dirhodium Tetrakis(triarylcyclopropanecarboxylate) Complexes. *ACS Catal.* **2018**, *8*, 678-682.

(10) Davies, H. M. L.; Lee, G. H., Dirhodium(II) Tetra(N(dodecylbenzenesulfonyl)prolinate) Catalyzed Enantioselective Cyclopropenation of Alkynes. *Org. Lett.* 2004, 6, 1233-1236.

(11) (a) Woodward, R. B.; Heusler, K.; Gosteli, J.; Naegeli, P.; Oppolzer, W.; Ramage,
R.; Ranganathan, S.; Vorbrüggen, H., The Total Synthesis of Cephalosporin C1. *J. Am. Chem. Soc.* 1966, 88, 852-853; (b) Negretti, S.; Cohen, C. M.; Chang, J. J.; Guptill, D. M.; Davies, H.
M. L., Enantioselective dirhodium(II)-catalyzed cyclopropanations with trimethylsilylethyl and
trichloroethyl aryldiazoacetates. *Tetrahedron* 2015, *71*, 7415-7420.

(12) Just, G.; Grozinger, K., A Selective, Mild Clevage of Trichloroethyl Esters, Carbamates, and Carbonates to Carboxylic Acids, Amines, and Phenols using Zinc/Tetrahydrofuran/pH 4.2-7.2 Buffer. *Synthesis* 1976, 1976, 457-458.

(13) (a) Axen, S. D.; Huang, X.-P.; Cáceres, E. L.; Gendelev, L.; Roth, B. L.; Keiser, M.
J., A Simple Representation of Three-Dimensional Molecular Structure. *J. Med. Chem.* 2017, 60, 7393-7409; (b) Rogers, D.; Hahn, M., Extended-Connectivity Fingerprints. *J. Chem. Inf. Model.* 2010, *50*, 742-754.

(14) The compound database was an internally curated list from Bristol Myers Squibb of non-BMS compounds, mostly scraping patent literature and publications.

(15) McInnes, L.; Healy, J.; Melville, J., UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. *arXiv* **2020**.

(16) Sauer, W. H. B.; Schwarz, M. K., Molecular Shape Diversity of CombinatorialLibraries: A Prerequisite for Broad Bioactivity. J. Chem. Inf. Comput. 2003, 43, 987-1003.

(17) Chamberlain, P. P.; Lopez-Girona, A.; Miller, K.; Carmel, G.; Pagarigan, B.; Chie-Leon, B.; Rychak, E.; Corral, L. G.; Ren, Y. J.; Wang, M.; Riley, M.; Delker, S. L.; Ito, T.; Ando, H.; Mori, T.; Hirano, Y.; Handa, H.; Hakoshima, T.; Daniel, T. O.; Cathers, B. E.,
Structure of the human Cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs. *Nat. Struct. Mol. Biol.* **2014**, *21*, 803-809.

(18) Vetma, V.; Casarez-Perez, L.; Eliaš, J.; Stingu, A.; Kombara, A.; Gmaschitz, T.;
Braun, N.; Ciftci, T.; Dahmann, G.; Diers, E.; Gerstberger, T.; Greb, P.; Kidd, G.; Kofink,
C.; Puoti, I.; Spiteri, V.; Trainor, N.; Westermaier, Y.; Whitworth, C.; Ciulli, A.; Farnaby,
W.; McAulay, K.; Frost, A. B.; Chessum, N.; Koegl, M., Confounding factors in targeted
degradation of short-lived proteins. *bioRxiv* 2024, 2024.02.19.581012.

(19) Miñarro-Lleonar, M.; Bertran-Mostazo, A.; Duro, J.; Barril, X.; Juárez-Jiménez, J., Lenalidomide Stabilizes Protein–Protein Complexes by Turning Labile Intermolecular H-Bonds into Robust Interactions. *J. Med. Chem.* **2023**, *66*, 6037-6046.

Chapter 3: Adapting Cereblon E3 Ligase Modulatory Drug Cores as Rhodium Carbene Precursors for C-H Functionalization and Cyclopropanation.

Introduction

In Chapter 2, we expanded into new chemical space by adapting dirhodium-catalyzed asymmetric cyclopropanation and cyclopropenation to vinyl and ethynyl IMiD cores. This work was enabled largely by enabled largely by the anhydrous, fluoride-enhanced and stereoretentive Suzuki-Miyaura coupling discussed in Chapter 1. This allowed the synthesis of stereodefined, CRBN-modulating structures with a highly convergent, rapid introduction of diversity in a single step from vinyl and ethynyl CELMoD derivatives. We demonstrated how this diversity can be extended even further by modifying the aryldiazoacetate used in cyclopropanation (Scheme 2-5), or by hydrolysis of the trichloroethyl ester and subsequent amide coupling (Scheme 2-6).

However, these routes are only a partial display of how rhodium carbene reactions and their products can be used to create novel IMiDs.

The Davies laboratory has a long history of developing rhodium-carbene mediated C-H functionalization reactions.¹ The key components of C–H functionalization—a chiral dirhodium catalyst and the appropriate aryldiazoacetate- are capable of performing highly stereo- and regioselective functionalization of a range of C-H bonds, both in activated and activated systems.¹⁻² As discussed in the introduction, relative to cyclopropanation and related reactions, C-H functionalization has been underutilized in medicinal contexts outside of total synthesis. Utilization of IMiD cores in a C-H functionalization context would not only further increase the power of synthetic methods to create chemical diversity and convergent syntheses in IMiDs, but also explore the limits of how C-H functionalization can be applied in a challenging context. C-H functionalization presents an additional challenge over cycloaddition reactions as the substrates are often less reactive. For example, holding the diazoacetate and catalyst the same, styrene is 24,000 times more reactive than cyclohexane.³ Some substrates can be even more strikingly less reactive; for example, 2,2-dimethylbutane is roughly 307,000 times less reactive than styrene.³ Therefore, when considering the challenges presented by IMiD-like structures, features like the glutarimide N-H bond and insolubility become even more intimidating. However, the benefits make C-H functionalization with IMiDs a worthy challenge; the rapid introduction of high-sp³, stereodefined context in a highly convergent manner would greatly improve the synthetic possibilities available to medicinal chemists. In the following, we show that IMiD cores can be modified to become aryldiazoacetates and become highly effective precursors for the C-H functionalization of both activated and unactivated hydrocarbons. Cyclopropanation also proceeds well using these IMiD-diazo compounds. We also take

advantage of the cyclopropanation reactions and further diversification to create stereodefined LDDs. HFIP, which we have previously shown to be a nucleophilicity-moderating⁴ and occasional enantioselectivity-enhancing⁵ agent plays a key role in these cyclopropanation and C– H functionalization reactions. This work adds to what is only a small collection of known stereoselective transformations on glutarimide-containing compounds.⁶

Results and Discussion

The initial iteration of C–H functionalization in an IMiD context began as an extension of the work discussed in Chapter 2. We envisioned using the same aryldiazoacetate, but with 5-methyl substituent in place of the 5-vinyl group used for cyclopropanation (**Scheme 3-1**). However, we were unable to observe any of the intended C–H functionalization product **3.3**. Instead, the diazo (**3.2**) preferentially inserted into the N–H bond of the substrate (**3.1**) to generate a 35% yield of **3.4**, with the rest of the mass balance being carbene dimerization byproducts. Any attempt to rescue the reaction by the addition of HFIP was unsuccessful and generated complex mixtures. *Scheme 3-1. Unsuccessful C–H Functionalization of 5-Methylthalidomide*

At this point, we elected to change strategies. Instead of using an IMiD-like core as a substrate, the IMiD-like core could be incorporated as the donor portion of a donor/acceptor

carbene precursor like a 2,2,2-trichloroethyl aryldiazoacetate. An effective acceptor portion would be the 2,2,2-trichloroethyl ester as it historically enhances both reactivity and stereoselectivity in C-H functionalization reactions with our chiral catalysts.⁷ We opted to use a cross-coupling approach based on some of our previous work to access the planned diazo compounds as the starting aryl iodide was commercially available, as opposed to the phenylacetate required for the typical diazo transfer reaction with a sulforyl azide.⁸ The solubility of the iodo- derivatives of thalidomide-like and lenalidomide-like structures is very poor, and were found to be only sparingly soluble in toluene, the typical solvent for crosscoupling.^{8a} We also experienced problems with palladium black formation. We hypothesize that the the presence of a silver compound (silver carbonate is included in the reaction) capable of oxidation and a glutarimide-containing substrate work in tandem to encourage the formation of off-cycle palladium species. One of our industrial collaborators on the project, Jake Ganley, conducted a high-throughput screen with a simpler model substrate (5-bromo-2methylisoindolin-1-one) to explore whether reaction without silver and with a more optimal aryl bromide was possible (See supporting information for details). However, this screen produced no promising results, indicating that either silver carbonate or an aryl iodide are necessary for reaction, or both. Turning back to the original conditions,^{8a} Jack Sharland, who conducted some of the early explorations into adapting the cross-coupling, found that toluene could be exchanged for N,N-dimethylformamide to successfully produce the intended 5-substituted precursor **3.6a** from **3.5a**. Along with an increase in the amount of acceptor-only diazo used compared to the literature conditions, aryldiazoacetate **3.6a** can be produced in a modest 40% yield (Scheme 3-2). The synthesis of the 5-substituted isoindolinone analog required more forcing conditions to produce **3.6b** in useful yield (28%). The 4-substituted aryl iodides **3.5c** and **3.5d** provided more

Scheme 3-2. Synthesis of Carbene Precursors 3.6

^a When conducted in toluene, no product was observed. ^b Reaction conducted with 6 equiv diazo, 30 mol% Pd(PPh₃)₄, 60 mol% PPh₃, 6 equiv Et₃N, and 1 equiv Ag₂CO₃ in DMSO (0.20 M) for 16 h.

of a challenge. *Ortho*-substituted substrates are difficult substrates for this class of crosscoupling;^{8b} we previously reported that *ortho*-substituted aryl iodides were completely unsuccessful under our conditions.^{8a} We were pleased to find that the conditions produced aryldiazoacetate **3.6c**, despite the lowered yield of the reaction. Unfortunately, the 4-substituted isoindoline core **3.5d** resisted our efforts, possibly due to the lack of an adjacent carbonyl, which in **3.5c** makes the aryl iodide more amenable to oxidative addition by making the site more electron-deficient.

Industrial chemists have used the ring-opened form of glutarimides to circumvent any synthetic problems associated with the ring-closed glutarimide, and to allow preparation of enantioenriched IMiDs.⁹ Another advantage offered by use of ring-opened glutarimides is that they are known to be less neuro- and embryotoxic, relative to thalidomide.¹⁰ Despite the utility and clinical value of IMiDs, the toxicity of thalidomide derivatives is of constant concern to chemists.¹¹ We considered that the safety and synthetic advantages conferred by the use of ring-opened derivatives might be useful. The ring-opened aryl iodide cores **3.7a** and **3.7b** were much

Scheme 3-3. Synthesis of Carbene Precursors 3.7

more soluble than the ring-closed variants, allowing the cross-couplings to be run in toluene (**Scheme 3-3**). The ring-opened diazo compounds **3.8a** and **3.8b** formed in modest yields under the reaction conditions. The formation of the 4-substituted isoindolinone **3.8b** is noteworthy as the efforts to prepare the corresponding ring-closed variant **3.6d** were unsuccessful.

We selected **3.6a** as a model carbene precursor for optimization in C–H functionalization reactions with cyclohexane as a susbtrate. $Rh_2(p-PhTPCP)_4$ (**Figure 3-1**), when added as a solution to a suspension of the diazo compound in neat cyclohexane, does not react (entry 1, **Scheme 3-4**). Instead, the diazo remains in suspension. Hypothesizing that HFIP might assist in compound solubility, when HFIP (10 equiv) is added to the reaction vessel before addition of the

Figure 3-1. Chiral Catalysts Used in this Study

Rh₂(*p*-PhTPCP)₄ solution, the C–H functionalized product **3.9a** is produced in 54% yield (entry 2). However, **3.9a** is produced in modest asymmetric induction (76:24 d.r.), which stands in contrast to the high stereoinduction conferred by Rh₂(*p*-PhTPCP)₄ in the cycloaddition reactions in Chapter 2. The reported d.r. values represent the asymmetric induction generated at the carbene site by the chiral catalyst. Compounds **3.6a-c** are racemic, and both enantiomers of **3.6a-c** react at essentially the same rate in the presence of the chiral catalyst. The resulting diastereomeric products **3.9a** are formed with essentially the same levels of asymmetric induction. The absolute configuration at the newly formed stereogenic center in **3.9a** is tentatively assigned as *R* by analogy to the assignments made in a related C–H functionalization with the same catalyst.¹²

Scheme 3-4. Optimization of the C-H Functionalization Reaction with Ring-Closed Diazo

Cl₃C	0 0 N- N- 3.6a	Cyclohexane (s NH Rh ₂ (L HFIF solve 4 Å n	solvent or 10 equiv.)) ₄ (1 mol%) ⁹ (x equiv) ent, r.t., 2 h nol. sieves		3.9a	−NH O		
Entry	L =	Solvent	Cyclohexane (equiv)	HFIP (equiv)	Yield 3.9a (%)	d.r.		
1	S-p-Ph-TPCP	cyclohexane	solvent	None	n.r.	N/A		
2	S-p-Ph-TPCP	cyclohexane	solvent	10	54	76:24		
3	S-TPPTTL	cyclohexane	solvent	10	77	82:18		
4	S-tetra-pBrPPTTL	cyclohexane	solvent	10	81	98:2		
5	S-tetra-pBrPPTTL	1:1 CH ₂ Cl ₂ :cyclohexane	e solvent	None	64	99:1		
6	S-tetra-pBrPPTTL	1:1 CH ₂ Cl ₂ :cyclohexane	e solvent	10	89	99:1		
7	S-tetra-pBrPPTTL	CH ₂ Cl ₂	10	10	89	99:1		
Reactions were conducted on 0.1 mmol scale. Yields reported as isolated yields of purified material. Asymmetric induction determined by SFC analysis. See SI for details.								

The C₄-symmetric bowl-shaped catalyst $Rh_2(S$ -TPPTTL)₄ formed **3.9a** in improved yield (77%) and asymmetric induction (82:18 d.r.) (entry 3). A more recently developed derivative of the TPPTTL scaffold, $Rh_2(S$ -tetra-*p*BrPPTTL)₄¹² gave even better results, forming **3.9a** in excellent yield (81%) and with high levels of asymmetric induction (98:2 d.r.) (entry 4). $Rh_2(S$ -tetra-*p*BrPPTTL)₄ has also previously been successful when used in conjunction with non-

solvent amounts of HFIP in our previous studies (also see Chapter 2, **Scheme 2-5**).⁴ We conducted further optimization studies with $Rh_2(S$ -tetra-*p*BrPPTTL)₄ to further gauge the nature of the system. Interestingly, when the reaction is conducted in a 1:1 mixture of cyclohexane and dichloromethane, the reaction proceeds in the absence of HFIP (64% yield, entry 5). The lowered yield is the result of more carbene dimerization byproducts; interestingly, no N-H insertion is observed in the crude ¹H NMR spectra. Addition of HFIP (10 equiv, entry 6) increases the yield to 89%. When the amount of cyclohexane used is lowered to 10 equiv, the reaction is equally effective. Instead of adding a catalyst solution to a stirred suspension of diazo in neat substrate, the diazo is dissolved in dichloromethane with the aid of HFIP (10 equiv), and the solution is added slowly, over 1 h, to a solution of catalyst (1 mol%) and cyclohexane (10 equiv) in dichloromethane.

Optimization studies were also carried out with the ring opened derivative **3.8a** (Scheme 3-**5**). As with the aryl iodides **3.7a** and **3.7b**, the ring-opened diazo compounds like **3.8a** are far more soluble than the ring-closed variants in relatively nonpolar solvents. Thus, the diazo can be dissolved in dichloromethane without the use of HFIP. However, without HFIP (*S*,*R*)-**3.10a** is formed in only 13% yield (entry 1). In this reaction, we observed carbene dimerization as the major byproduct. The addition of HFIP (10 equiv) to the reaction vessel prior to diazo addition allows a 60% yield of (*S*,*R*)-**3.10a**, with a high level of asymmetric induction at the site of reaction (98:2 d.r., entry 2). Reaction under the same conditions with the enantiomer of the catalyst, $Rh_2(R$ -tetra-*p*BrPPTTL)_4, preferentially generates the other diastereomer of the product in only 16% yield (entry 3). An improved yield (70%) of (*S*,*R*)-**3.10a** can be achieved in the $Rh_2(S$ -tetra-*p*BrPPTTL)_4-catalyzed reaction by using cyclohexane as solvent (entry 4).

Scheme 3-5. Optimization of the C-H Functionalization Reaction with Ring-Opened Diazo

Reactions were conducted on 0.1 mmol scale. Yields reported as isolated yields of purified material. Asymmetric induction determined by SFC analysis. See SI for details. ^a Reaction with the *R* catalyst produced (*S*,*S*)-3.10a as the major diastereomer.

We found the reaction with the opposite catalyst enantiomer (entry 3) to be one of the more intriguing features of these transformations from a catalyst design perspective. Even though the stereocenter in **3.8a** is far removed from the diazoacetate, the C–H functionalization reaction experiences significant matched/mis-matched conditions (i.e., reactivity dependent on the enantiomer of the chiral catalyst used). The reaction with $Rh_2(S-tetra-pBrPPTTL)_4$ forms **3.10a** in higher yield (60%) than the reaction with $Rh_2(R-tetra-pBrPPTTL)_4$ (16%), but both enantiomers of the catalyst produce the same high (and opposite) asymmetric induction. We have observed the effects of distal functionality in substrates in the past, arising from secondary interactions between the catalyst wall and the approaching substrate.¹³ The influence of the stereochemistry of the catalyst on yield, by our reckoning, is due to the bowl-shape of the catalyst, which is the major contributing factor in our past studies.¹³ In this case, the bowl-shaped catalyst might favor differing orientations of **3.8a** within the catalyst based on catalyst enantiomer. To further explore this hypothesis, we conducted density functional theory (DFT) calculations to model the relative stability of the rhodium carbene intermediates of 3.8a in Rh₂(Stetra-*p*BrPPTTL)₄ versus Rh₂(*R*-tetra-*p*BrPPTTL)₄ (Figure 3-2). Duc Ly conducted the

calculations, and Djamaladdin Musaev assisted with and checked the calculations. Calculations were initially difficult due to the large size of the catalyst-carbene system (up to 400 atoms). To work around this we used the two-layer ONIOM (B3LYP:UFF) approach, which uses the more powerful but more intensive quantum mechanics-based approach to model the carbene system and the core of the catalyst, and a less demanding molecular mechanics (which is an adapted method relying on classical mechanics) approach to model the more peripheral atoms (See SI for details). We found that the rhodium-carbene intermediate **A** resulting from $Rh_2(S-tetra-pBrPPTTL)_4$ is thermodynamically more stable than **B** ($Rh_2(R-tetra-pBrPPTTL)_4$) by 1.7 kcal/mol (**Figure 3-2**). Structural analysis reveals that the ring-opened side chain of the carbene fragment and the trichloroethyl acetate are arranged differently in **A** versus **B**. On the *Si* face of the carbene, where the reaction with the substrate and $Rh_2(R-tetra-BrTPPTTL)_4$ occurs, the ring-opened side chain in **B** folds towards the trichloroethyl acetate group. In **A**, this side chain fold

Figure 3-2. DFT-optimized structures of 8*a* as a carbone complex with Rh₂(S-tetra-pBrPPTTL)₄(A) and Rh₂(R-tetra-pBrPPTTL)₄(B).

towards the opposite side of the trichloroethyl acetate group. This differential folding makes the open face of **A** less sterically demanding than in **B**, which allows better reactivity. These insights gleaned from computational analysis illustrate the subtle but impactful effects of secondary interactions between substrates and bowl-shaped catalysts like $Rh_2(tetra-BrTPPTTL)_4$

With good conditions in hand for both the ring-closed and ring-opened diazo compounds, we tested the other carbene precursors (**3.6b**, **3.6c**, **3.8b**) in the C–H functionalization of cyclohexane using Rh₂(*S*-tetra-*p*BrPPTTL)₄ (**Scheme 3-6**). The optimized conditions are well-suited to all analogs, generating compounds **3.9a-c** and **3.10a-b** in high yields. We conducted the reactions using 10 equiv cyclohexane and a slow addition of diazo, as well as using catalyst addition to a stirred solution of diazo in neat cyclohexane. The latter "catalyst addition" method is superior in terms of yield and generates far less carbene dimerization byproducts. All C–H *Scheme 3-6. Scope of the C–H Functionalization of Cyclohexane*

Reactions conducted on 0.1 mmol scale. Yields reported as isolated yields of purified material. Diastereomeric ratio (d.r.) represents asymmetric induction by catalysts. See SI for details. ^a cyclohexane as solvent. ^b cyclohexane (10 equiv) as trap.

functionalization products were produced with high levels of asymmetric induction, except for **3.9c**, which we hypothesized is due to interference from the proximal carbonyl oxygen.

Both the ring-closed and ring-opened carbene precursors are competent in the

cyclopropanation reactions as illustrated in the Rh₂(S-tetra-pBrPPTTL)₄ catalyzed reactions with

Scheme 3-7. Scope of the Cyclopropanation of Styrene

Reactions conducted on 0.1 mmol scale. Yields reported as isolated yields of purified material. Diastereomeric ratio (d.r.) represents asymmetric induction by catalysts. See SI for details. ^a cyclohexane as solvent. ^b cyclohexane (10 equiv) as trap. ^c d.r. for asymmetric induction by catalyst ^d d.r. for ratio of two newly formed stereogenic centers

styrene (**Scheme 3-7**). Just 5 equiv of styrene is necessary for a good reaction, as cyclopropanation is in general a more favorable reaction than C–H functionalization.³ The desired products **3.11a-c**, **3.12a**, and **3.12b** were produced in excellent yield, although these products displayed lower levels of asymmetric induction. The absolute configuration of these products is tentatively assigned as 1R, 2S by analogy to assignments made previously from X-ray crystal structures of similar products formed from the reaction of aryldiazoacetates with Rh₂(*S*-tetra-*p*BrPPTTL)₄.⁴

The ring-opened products such as **3.10a,b** and **3.12a,b** can be subjected to acid-mediated ring closure with retention of stereochemistry both at the site of carbene reaction and at the glutarimide stereogenic center.^{9b} In **Scheme 3-8** we show the conversion of **3.10b** to **3.13** (also see compounds **SI2-SI4** in the supporting information). This example gives an enantioenriched product which could not be reached by direct synthesis of the diazo compound (**3.6d**, **Scheme 2**).

In Chapter 2, we observed during analysis of the biological studies that often the 5substituted derivatives (see Figure 2-5) were more biologically active than others, so we selected carbene precursor **3.6a** to probe the scope of potential C–H functionalization products (Scheme **3-9**). Addition of solution of catalyst into a solution of diazo and neat substrate with HFIP (10 equiv) allowed for the generation of secondary C-H functionalization products 3.14-3.16 in excellent asymmetric induction and yield. Of note is product 3.14 which showed an exquisite selectivity for C2 over other sites (>30:1 r.r.). Slow addition of **3.6a** in dichloromethane and HFIP into a solution of catalyst and 10 equiv substrate allowed the generation of compound **3.17**-**3.21**. The mildly electron-withdrawing bromide of compound **3.18** causes a slightly lower yield (35%), although it offers the potential for further functionalization. The system favors benzylic tertiary sites over benzylic primary sites for C-H functionalization, as we observed in the formation of compound **3.19**. The yield of compound **3.19** can be increased to near-quantitative levels using the substrate (p-cymene) as solvent, compared to using 10 equiv of p-cymene (53% yield). Interestingly there is a variation in selectivity observed between the set of conditions; compound **3.19** is produced with enhanced regioselectivity but decreased asymmetric induction when *p*-cymene is used as solvent. Other tertiary-site functionalizations perform well as with the reaction of 1-(4-(tert-butyl)phenyl)bicyclo[1.1.1]pentane and compound 3.6a, which form 3.20

Scheme 3-9. Scope of C-H Functionalization with 3.6a

Reactions conducted on 0.1 mmol scale. Yields reported as isolated yields of purified material. See SI for details. ^a Substrate used as solvent. ^b 10 equiv substrate used. ^c d.r. for asymmetric induction by the catalyst ^d d.r. for ratio of two newly formed stereogenic centers

in modest yield and asymmetric induction while preserving the strained carbocycle of the substrate. The reaction of compound **3.6a** and cholesteryl acetate with high diastereoselectivity, with only one observed regioisomer (**3.21**) present (>30:1 r.r.). We also tested compound **3.6a** in the C–H functionalization of *N*-tosyl pyrrolidine, which is produced in excellent d.r. and 53% yield. We hypothesized that the slightly decreased yield be due to HFIP hydrogen-bonding to the nitrogen of the substrate, thereby making the α -proton less hydridic. Removal of HFIP from the conditions by adding a solution of catalyst to a reaction containing diazo, only 10 equiv substrate, and catalyst in dichloromethane produces the product **3.22** in appreciably higher yield (85%) with good d.r. (95:5).

These IMiD-core diazo compounds are demonstrably effective at creating them in a stereodefined manner. While the primary focus of our work so far has been on IMiDs, we proposed that our method might also be effective in creating novel bifunctional LDDs, as many LDDs rely on glutarimide-containing and thalidomide-like compounds.¹⁴ The product of a reaction between a "linker" and a diazo compound like **3.6a** could then be appended to a bioactive ligand. Our particular approach was to prepare a protected piperazine with a 6-carbon chain terminated by an alkene, and perform a cyclopropanation using diazo **3.6a** (**Scheme 3-10**). *Scheme 3-10. Synthesis of LDDs with Stereodefined Cereblon Modulating Components*

^a EC₅₀ indicates the concentration required to achieve 50% of total degradation effect and Y_{min} indicates depth of degradation with 100% representing no reduction in protein level and 0% representing complete degradation; data reported as an average of N = 3 test occasions.

Using only 1.1 equiv of the trap **3.23**, the reaction forms the cyclopropanation product **3.24** in 49% yield with excellent relative and absolute stereochemical control. We then performed a bocdeprotection with trifluoroacetic acid and immediately subjected this intermediate to amide coupling with a potent bromodomain 4 (BRD4) inhibitor, (+)-JQ1 to form LDD **3.25**.¹⁵ We also performed the same amide coupling with the inactive enantiomeric partner (-)-JQ1 to form compound **3.26** (Scheme 3-10). The ability of **25** and **26** to degrade BRD4 was assessed in a HiBiT (a tagging system for endogenous proteins)¹⁶ assay in A549 cells (a line derived from human adenocarcinoma).¹⁷ Hua Fang of Bristol Myers Squibb conducted the biological study. Compound **3.25** displayed modest BRD4 degradation, with an EC₅₀ of 0.28 mM and partial level of degradation (46% Y_{max}). The negative control (**3.26**) containing (-)-JQ1 did not significantly degrade BRD4, at concentrations up to 50 mM. The degradation effects of compound **3.25** highlight the potential of our method to applied towards the generation of biologically effective compounds.

Conclusions

Aryldiazoacetates with IMiD-like cores are exceptionally useful dirhodium carbene precursors for C–H functionalization and cyclopropanation. The reaction conditions remain mild but can produce stereodefined structures with high diastereoselectivity, regioselectivity, and yields. HFIP acts as a solubilizing agent and a nucleophile-deactivating agent in the carbene reactions, enabling the synthesis of diverse IMiD-like compounds as well as bioactive, stereodefined LDDs. This work reinforces the synthetic utility of rhodium carbene chemistry in medicinally relevant contexts.

We proposed that asymmetric rhodium catalysis could influence the study of immunomodulatory imide drugs by introducing mild yet effective methods of synthesizing novel, diverse, and stereodefined IMiDs and IMiD-like structures. Dirhodium-catalyzed cycloadditions (Chapter 2), enabled by the development of an anhydrous, stereoretentive, and fluoride-enhanced Suzuki-Miyaura reaction (Chapter 1), allowed both this kind of synthesis and a seminal SAR study of how stereochemistry affects neosubstrate degradation. Overcoming obstacles with expanding the scope of reactions to C–H functionalization produced the development of rhodium carbene precursors based on IMiDs, which enabled the highly convergent creation of novel IMiD-like structures and LDDs (Chapter 3). The challenge of adapting rhodium carbene chemistry to the IMiD space expanded the knowledge of how both cyclopropanation and C–H functionalization (a heretofore underutilized method relative to cyclopropanation) can potentially revolutionize how medicinal chemists approach the preparation of synthetically challenging yet valuable drug classes.

The work in Chapter 3 was submitted for publication in 2025:

Tracy, W.F.; Sharland, J.C.; Ly, D.; Davies, G.H.M.; Musaev, D.G.; Fang, H.; Moreno, J.; Cherney, E.C.; Davies, H.M.L. Diversity Synthesis Using CELMoD Cores as Rhodium Carbene Precursors in Enantioselective C–H Functionalization and Cyclopropanation. *Manuscript Submitted*.

J.C. Sharland performed the initial exploration into diazo synthesis. W.F. Tracy conducted the rest of the synthetic work. D. Ly performed the computational work, and D.G. Musaev provided advice, support, and validation for the computational work. Hua Fang performed the biological studies. G.H.M Davies, J. Moreno, and E.C. Cherney provided valuable support and advice.

References

(1) Davies, H. M. L., Finding Opportunities from Surprises and Failures. Development of Rhodium-Stabilized Donor/Acceptor Carbenes and Their Application to Catalyst-Controlled C– H Functionalization. *J. Org. Chem.* **2019**, *84*, 12722-12745.

(2) Davies, H. M. L.; Liao, K., Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. *Nat. Rev. Chem.* **2019**, *3*, 347-360.

(3) Davies, H. M. L.; Hansen, T.; Churchill, M. R., Catalytic Asymmetric C–H Activation of Alkanes and Tetrahydrofuran. *J. Am. Chem. Soc.* **2000**, *122*, 3063-3070.

(4) Sharland, J. C.; Dunstan, D.; Majumdar, D.; Gao, J.; Tan, K.; Malik, H. A.; Davies, H. M. L., Hexafluoroisopropanol for the Selective Deactivation of Poisonous Nucleophiles
Enabling Catalytic Asymmetric Cyclopropanation of Complex Molecules. *ACS Catal.* 2022, *12*, 12530-12542.

(5) (a) Vaitla, J.; Boni, Y. T.; Davies, H. M. L., Distal Allylic/Benzylic C–H
Functionalization of Silyl Ethers Using Donor/Acceptor Rhodium(II) Carbenes. *Angew. Chem. Int. Ed.* 2020, *59*, 7397-7402; (b) Boni, Y. T.; Vaitla, J.; Davies, H. M. L., Catalyst Controlled
Site- and Stereoselective Rhodium(II) Carbene C(sp³)–H Functionalization of Allyl Boronates. *Org. Lett.* 2023, *25*, 5-10.

(6) Chen, L.-M.; Shin, C.; DeLano, T. J.; Carretero-Cerdán, A.; Gheibi, G.; Reisman, S.
E., Ni-Catalyzed Asymmetric Reductive Arylation of α-Substituted Imides. *J. Am. Chem. Soc.*2024.

(7) Guptill, D. M.; Davies, H. M. L., 2,2,2-Trichloroethyl Aryldiazoacetates as Robust Reagents for the Enantioselective C–H Functionalization of Methyl Ethers. *J. Am. Chem. Soc.* 2014, *136*, 17718-17721.

(8) (a) Fu, L.; Mighion, J. D.; Voight, E. A.; Davies, H. M. L., Synthesis of 2,2,2,-Trichloroethyl Aryl- and Vinyldiazoacetates by Palladium-Catalyzed Cross-Coupling. *Chem. Eur. J.* 2017, *23*, 3272-3275; (b) Ye, F.; Qu, S.; Zhou, L.; Peng, C.; Wang, C.; Cheng, J.; Hossain, M. L.; Liu, Y.; Zhang, Y.; Wang, Z.-X.; Wang, J., Palladium-Catalyzed C–H Functionalization of Acyldiazomethane and Tandem Cross-Coupling Reactions. *J. Am. Chem. Soc.* 2015, *137*, 4435-4444; (c) Tortoreto, C.; Rackl, D.; Davies, H. M. L., Metal-Free C–H Functionalization of Alkanes by Aryldiazoacetates. *Org. Lett.* 2017, *19*, 770-773. (9) (a) Zacuto, M. J.; Traverse, J. F.; Bostwick, K. F.; Geherty, M. E.; Primer, D. N.;
Zhang, W.; Zhang, C.; Janes, R. D.; Marton, C., Process Development and Kilogram-Scale
Manufacture of Key Intermediates toward Single-Enantiomer CELMoDs: Synthesis of
Iberdomide·BSA, Part 1. *Org. Process Res. Dev.* 2024, 28, 46-56; (b) Zacuto, M. J.; Traverse, J.
F.; Geherty, M. E.; Bostwick, K. F.; Jordan, C.; Zhang, C., Chirality Control in the KilogramScale Manufacture of Single-Enantiomer CELMoDs: Synthesis of Iberdomide·BSA, Part 2. *Org. Process Res. Dev.* 2024, 28, 57-66.

(10) Fabro, S.; Schumacher, H.; Smith, R. L.; Stagg, R. B. L.; Williams, R. T., The metabolism of thalidomide: Some biological effects of thalidomide and its metabolites. *Br. J. Pharmacol.* **1965**, *25*, 352-362.

(11) From private communications with process and medicinal chemists from Pfizer, Bristol Myers Squibb, and Adesis.

(12) Garlets, Z. J.; Boni, Y. T.; Sharland, J. C.; Kirby, R. P.; Fu, J.; Bacsa, J.; Davies, H.
M. L., Design, Synthesis, and Evaluation of Extended C4–Symmetric Dirhodium
Tetracarboxylate Catalysts. *ACS Catal.* 2022, *12*, 10841-10848.

(13) Fu, J.; Ren, Z.; Bacsa, J.; Musaev, D. G.; Davies, H. M. L., Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. *Nature* **2018**, *564*, 395-399.

(14) Sosič, I.; Bricelj, A.; Steinebach, C., E3 ligase ligand chemistries: from building blocks to protein degraders. *Chem. Soc. Rev.* **2022**, *51*, 3487-3534.

(15) Pérez-Salvia, M.; Simó-Riudalbas, L.; Llinàs-Arias, P.; Roa, L.; Setien, F.; Soler, M.;
Castro de Moura, M.; Bradner, J. E.; Gonzalez-Suarez, E.; Moutinho, C.; Esteller, M.,
Bromodomain inhibition shows antitumoral activity in mice and human luminal breast cancer. *Oncotarget* 2017, 8.

(16) Schwinn, M. K.; Machleidt, T.; Zimmerman, K.; Eggers, C. T.; Dixon, A. S.; Hurst,
R.; Hall, M. P.; Encell, L. P.; Binkowski, B. F.; Wood, K. V., CRISPR-Mediated Tagging of
Endogenous Proteins with a Luminescent Peptide. *ACS Chem. Biol.* 2018, *13*, 467-474.

(17) (a) Lieber, M.; Todaro, G.; Smith, B.; Szakal, A.; Nelson-Rees, W., A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. *Int. J. Cancer* **1976**, *17*, 62-70; (b) Riching, K. M.; Mahan, S.; Corona, C. R.; McDougall, M.; Vasta, J. D.; Robers, M. B.; Urh, M.; Daniels, D. L., Quantitative Live-Cell Kinetic

Degradation and Mechanistic Profiling of PROTAC Mode of Action. *ACS Chem. Biol.* **2018**, *13*, 2758-2770.

Appendix A: Supporting Information for Chapter 1

Section 1: Supplemental Figures

Scheme S2-1: Attempts at generation of 1.4a and 1.4c using literature and patent conditions

	X = CH ₂ , CO 1.3a	1.4a (X = CO) 1.4c (X = CH ₂)		
Entry	Conditions	Vinyl source	Result	Reference
1	PdCl ₂ (dppf) (10 mol%), Cs ₂ CO ₃ (2 equiv), 1,4- dioxane, 90 °C, 18 h	BF ₃ K 3.0 equiv	33% yield 1.4a	Lu, L., et al. US 0083376 A1, 2021 .
2	PdCl ₂ (dppf) (10 mol%), NaOH (1 equiv), <i>N</i> -cyclohexyl- <i>N</i> - methylcyclohexanamine (1 equiv), THF, 67 °C, 18 h	BPin 1.2 equiv	trace 1.4a	Stewart, S.G., et al. <i>Biorg. Med.</i> <i>Chem.</i> 2010 , 18, 650-662
3	Pd ₂ (dba) ₃ (0.5 mol%), PAPh (1.5 mol%), K ₂ CO ₃ (2.5 equiv), 1,4- dioxane:H ₂ O (4:1), 80 °C, 18h	BPin 1.5 equiv	11% yield 1.4a	Sharland, J. C., et al <i>Chem. Sci.</i> 2021 , 12, 11181-11190.
4	NiCl ₂ (dppp) (10 mol%), Lil (3.5 equiv), Zn (2 equiv), dimethyl isosorbide, 65 °C, 8 h	0 2 equiv	trace 1.4a	Su, M., et al. <i>Org. Lett.</i> 2022 , 24, 354- 358.
5	PdCl ₂ (amphos) ₂ (2 mol%), 2.34 equiv [(tmeda)Zn(OH)(OTf)] ₃ , 1,4- dioxane, 80 °C, 3 h	BF ₃ K 1.1 equiv	85% yield 1.4a 42% yield 1.4c	Niwa, T., et al. <i>Nature Catalysis</i> 2021 , 4, 1080-1088
6	This Work	BF ₃ K 2.1 equiv	High yield for all derivatives	

Scheme S2-2: Limitations of the substrate scope

Protodehalogenation as major product

Complex mixture

Section 2: General Information

Section 3: Synthetic Procedures and Compound Characterization

General Synthetic and Characterization Information

All reactions were conducted in flame-dried glassware under an inert atmosphere of dry nitrogen or argon, unless otherwise noted. All reagents were purchased from Oakwood, Combi-Blocks, Millipore Sigma, Strem, or Ambeed, and used as received. Anhydrous dimethylsulfoxide (DMSO), 1,4-dioxane, and all other solvents were purchased from Fisher Scientific and used as received. Proton (¹H) NMR spectra were recorded at 400 MHz on Varian and Bruker spectrometers, 500 MHz on an Inova-500 spectrometer, or 600 MHz on an Inova-600

spectrometer. Carbon-13 (¹³C{¹H}) NMR spectra were recorded at 100 MHz on Varian and Bruker spectrometers or 151 MHz on an Inova-600 spectrometer. NMR spectra were recorded in deuterated solvents and were referenced to tetramethylsilane (in the case of CDCl₃) or the respective residual solvent signal. NMR chemical shifts were reported in parts per million (ppm). Abbreviations for signal couplings are as follows: s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; sex, sextet; sep, septet; and m, multiplet. Coupling constants were taken from the spectra directly and are uncorrected. Fourier Transform Infrared (FTIR) Spectra were collected on a Nicolet Impact Series 10 FT-IR equipped with an attenuated total reflection (ATR) apparatus. Mass spectrometric determinations were carried out on a Thermo Finnigan LTQ-FTMS spectrometer with atmospheric pressure chemical ionization (APCI), using a Fourier transform ion cyclotron resonance (FT-ICR) mass analyzer. Optical rotations were measured on a Rudolph Research Analytical Automatic Polarimeter APIV-1W. Analytical thin layer chromatography (TLC) was performed on silica gel plates using ultraviolet (UV) light to visualize analytes. Normal phase column chromatography was performed with SiliCycle silica gel 60 Å (50 µm) hand-packed in Biotage Sfär columns, on Biotage Isolera Four chromatographs, with Celite® as a dry-loading absorbent. Reverse phase chromatography was conducted using Teledyne ISCO RediSep Gold 18 reverse-phase columns using Teledyne ISCO CombiFlash or Biotage Isolera chromatographs. Supercritical fluid chromatography (SFC) analysis was performed on a Water Acquity UPC2 instrument. Melting points were measured on an Electrothermal IA6304 melting point apparatus.

Caution! Glutarimide-containing compounds such as thalidomide are known reproductive, neurological, and hematological toxins. Care must be exercised to avoid direct contact with glutarimide-containing material; any glassware used with glutarimide-containing material should be treated with a 2 M aqueous solution of strong base such as sodium hydroxide to destroy the material.

General procedure A for reaction optimization.

A septum-cap vial was equipped with a PTFE magnetic stir bar and flame dried under vacuum, then allowed to cool under N₂ atmosphere. The vial was charged with 5-bromo-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (169 mg, 1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 Eq, 1.50 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 µmol), tri-*tert*-butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 µmol), and potassium trifluoro(vinyl)borate (142 mg, 2.12 equiv, 1.06 mmol) under backflow of nitrogen. Dry 1,4-dioxane (1.71 mL) and triethylamine (10.5 µL, 15 mol%, 75.0 µmol) were charged by syringe, and the vial was equipped with an argon-filled balloon. The vial was placed in an aluminum heating block preheated to 90 °C, and was stirred at this temperature for 24 hours. The reaction was concentrated in vacuuo onto Celite[®] and purified by flash column chromatography (20-50% EtOAc/hexanes). The product-containing fractions were aggregated and concentrated in vacuuo, affording 2-(2,6-dioxopiperidin-3-yl)-5-vinylisoindoline-1,3-dione as an amorphous tan to off-white solid.

General procedure B-1 for the cross-coupling of potassium trifluoro(vinyl)borates and aryl halides.

A septum-cap vial was equipped with a PTFE magnetic stir bar and flame dried under vacuum, then allowed to cool under N₂ atmosphere. The vial was charged with aryl halide (1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 Eq, 1.50 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 µmol), tri-*tert*-butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 µmol), and potassium

trifluoro(vinyl)borate (142 mg, 2.12 equiv, 1.06 mmol) under backflow of nitrogen. Dry DMSO (0.70 mL) and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol) were charged by syringe, and the vial was equipped with an argon-filled balloon. The vial was placed in an aluminum heating block preheated to 90 °C, and was stirred at this temperature for one hour. The reaction was partitioned between ethyl acetate (25 mL) and water (50 mL). The aqueous layer was extracted thrice with 25 mL portions of ethyl acetate, after which the combined organic layers were washed with a 10% w/w aqueous solution of lithium chloride. The organic layers were dried over magnesium sulfate, then filtered and concentrated in vacuuo. The material was purified via reverse phase chromatography (C₁₈, 10-100% MeCN/H₂O, 0.1% v/v TFA) and/or normal phase column chromatography with an appropriate mixture of solvents (SiO₂).

General procedure B-2 for the cross-coupling of potassium trifluoroborates and aryl bromides.

A septum-cap vial was equipped with a PTFE magnetic stir bar and flame dried under vacuum, then allowed to cool under N₂ atmosphere. The vial was charged aryl halide (1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 Eq, 1.50 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 μ mol), tri-*tert*-butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 μ mol), and potassium trifluoro(vinyl)borate (142 mg, 2.12 equiv, 1.06 mmol) under backflow of nitrogen. Dry DMSO (0.70 mL) and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol) were charged by syringe, and the vial was equipped with an argon-filled balloon. The vial was placed in an aluminum heating block preheated to 90 °C, and was stirred at this temperature for 18 hours. The reaction was partitioned between ethyl acetate (25 mL) and water (50 mL). The aqueous layer was extracted thrice with 25 mL portions of ethyl acetate, after which the combined organic layers were washed with a 10% w/w aqueous solution of lithium chloride. The organic layers were dried over magnesium sulfate, then filtered and concentrated in vacuuo. The material was purified via reverse phase chromatography (C₁₈, 10-100% MeCN/H₂O, 0.1% v/v TFA) and/or normal phase column chromatography with an appropriate mixture of solvents (SiO₂).

General Procedure B-3 for the 1 mmol-scale cross-coupling of potassium trifluoro(vinyl)borate and 5-bromo-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione.

A septum-cap vial was equipped with a PTFE magnetic stir bar and flame dried under vacuum, then allowed to cool under N_2 atmosphere. The vial was charged with 5-bromo-2-(2,6dioxopiperidin-3-yl)isoindoline-1,3-dione (337 mg, 1.0 equiv, 1.00 mmol), sodium fluoride (126 mg, 3.0 equiv, 3.00 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (21 mg, 5 mol%, 50.0 µmol), tri-*tert*-butylphosphoniumtetrafluoroborate (15 mg, 5 mol%, 50.0 µmol), and potassium trifluoro(vinyl)borate (284 mg, 2.12 equiv, 2.12 mmol) under backflow of nitrogen. Dry DMSO (1.71 mL) and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol) were charged by syringe, and the vial was equipped with an argon-filled balloon. The vial was placed in an aluminum heating block preheated to 90 °C, and was stirred at this temperature for 24 hours. The reaction was partitioned between ethyl acetate (25 mL) and water (50 mL). The aqueous layer was extracted thrice with 25 mL portions of ethyl acetate, after which the combined organic layers were washed with a 10% w/w aqueous solution of lithium chloride. The organic layers were dried over magnesium sulfate, then filtered and concentrated in vacuuo. The material was concentrated in vacuuo onto Celite[®] and purified by flash column chromatography (20-50% EtOAc/hexanes). The product-containing fractions were aggregated and concentrated in vacuuo, affording 2-(2,6-dioxopiperidin-3-yl)-5-vinylisoindoline-1,3-dione (261 mg, 0.92 mmol, 92% yield) as a fine, amorphous tan solid.

General Procedure C for the stereoretentive cross-coupling of potassium trifluoroborates and thalidomide derivatives.

A septum-cap vial was equipped with PTFE magnetic stir bar and flame dried under vacuum, then allowed to cool under N₂ atmosphere. The vial was charged with thalidomide derivative (81 mg, 1.0 equiv, 0.25 mmol), sodium fluoride (32 mg, 3.0 equiv, 0.75 mmol), potassium trifluoro(vinyl)borate (71 mg, 2.12 equiv, 0.53 µmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (5 mg, 5 mol% 13 µmol), and tri-*tert*-butylphosphonium tetrafluoroborate (4 mg, 5 mol%, 13 µmol) under backflow of nitrogen. Dry DMSO (0.9 mL,) and triethylamine (5.2 µL, 15 mol%, 38 µmol) were charged by syringe. The vial was placed in an aluminum heating block preheated to 90 °C, and was stirred at this temperature for 10 minutes. The reaction was partitioned between 20 mL 1 M aqueous citric acid solution and 10 mL ethyl acetate. The aqueous layer was extracted thrice with 10 mL portions of ethyl acetate, which was dried over magnesium sulfate and evaporated in vacuuo. The material was purified by reverse phase chromatography (10-100% MeCN/H₂O, 0.1% v/v TFA).

Compound Synthesis and Characterization

2-(2,6-dioxopiperidin-3-yl)-5-vinylisoindoline-1,3-dione (1.4a). Compound **1.4a** was prepared via General Procedure **A**, using **1.3a**, (169 mg, 1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 equiv, 1.50 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 μ mol), tri-*tert*-butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 μ mol), **1.5** (142 mg, 2.12 equiv, 1.06 mmol), dry 1,4-dioxane (1.71 mL), and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol). The material was purified by flash column chromatography (SiO₂, 20-50%)

EtOAc/hexanes). The product-containing fractions were aggregated and concentrated in vacuuo, affording **1.4a** (132 mg, 0.46 mmol, 93% yield) as a fine amorphous tan solid.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₃O₄N₂ 285.0870; Found 285.0868.

¹**H NMR** (500 MHz, DMSO-*d*₆): δ 11.15 (s, 1H), 8.06 (s, 1H), 7.95 (d, *J* = 7.6 Hz, 1H), 7.89 (d, *J* = 7.6 Hz, 1H), 6.95 (dd, *J* = 17.6, 11.0 Hz, 1H), 6.20 (d, *J* = 17.6 Hz, 1H), 5.54 (d, *J* = 11.0 Hz, 1H), 5.16 (dd, *J* = 12.7, 5.2 Hz, 1H), 2.93 – 2.86 (m, 1H), 2.62 – 2.50 (m, 2H, partially obscured by solvent signal), 2.08-2.05 (m, 1H).

¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 172.8, 169.9, 167.1, 166.9, 143.8, 135.2, 132.4, 132.1, 130.1, 123.9, 120.7, 119.1, 49.1, 31.0, 22.0.

FTIR (neat): v_{max}/cm⁻¹ 3468, 3202, 3101, 2990, 2904, 1773, 1695, 1616.

2-(2,6-dioxopiperidin-3-yl)-4-vinylisoindoline-1,3-dione (1.4b). Compound **1.4b** was prepared via a modification of General Procedure **B-1**, using **1.3b** (169 mg, 1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 equiv, 1.50 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (21

mg, 10 mol%, 50.0 μ mol), tri-*tert*-butylphosphoniumtetrafluoroborate (15 mg, 10 mol%, 10.0 μ mol), **1.5** (142 mg, 2.12 equiv, 1.06 mmol), dry DMSO (1.71 mL), and triethylamine (21 μ L, 30 mol%, 0.15 mmol). The material was purified by flash column chromatography (SiO₂, 0-10% MeOH/CH₂Cl₂), affording **1.4b** (120 mg, 0.42 mmol, 84% yield) as a fine, amorphous tan solid.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₃O₄N₂ 285.0870; Found 285.0868.

¹**H** NMR (500 MHz, DMSO-*d*₆): δ 11.13 (s, 1H), 8.21 – 8.14 (m, 1H), 7.87 – 7.78 (m, 1H), 7.66 (dd, *J* = 17.8, 11.1 Hz, 1H), 6.23 (dd, *J* = 17.8, 0.9 Hz, 1H), 5.66 (dd, *J* = 11.1, 0.9 Hz, 1H), 5.15 (dd, *J* = 12.8, 5.4 Hz, 11H), 2.89 (ddd, *J* = 16.9, 13.9, 5.4 Hz, 1H), 2.66 – 2.50 (m, 2H, partially obscured by solvent signal), 2.13 – 1.97 (m, 1H).

¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 172.8, 169.9, 167.6, 166.8, 135.7, 134.7, 131.8, 130.6, 129.8, 125.9, 122.7, 120.6, 48.9, 30.9, 21.9.

FTIR (neat): v_{max}/cm⁻¹ 3202, 3097, 2920, 1774, 1698, 1391, 1370, 1262, 1201.

3-(1-oxo-5-vinylisoindolin-2-yl)piperidine-2,6-dione (1.4c, racemic material), (S)-3-(1-oxo-5-vinylisoindolin-2-yl)piperidine-2,6-dione ((S)-1.4c, enantioenriched material).

Compound **1.4c** was prepared via General Procedure **B-1**, using **1.3c**, (162 mg, 1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 equiv, 1.50 mmol), chloro(crotyl)(tri-*tert*-

butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 µmol), tri-tert-

butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 μ mol), **1.5** (142 mg, 2.12 equiv, 1.06 mmol), dry DMSO (1.71 mL), and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol). The material was purified by flash column chromatography (SiO₂, 0-3% MeOH/CH₂Cl₂), affording **1.4c** (126 mg, 0.47 mmol, 93% yield) as a fine, amorphous tan solid.

Compound (*S*)-1.4c was prepared via General Procedure C, using (*S*)-1.3c (99% ee by SFC) (81 mg, 1.0 equiv, 0.25 mmol), sodium fluoride (32 mg, 3.0 equiv, 0.75 mmol), 1.5(71 mg, 2.12 equiv, 0.53 µmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (5 mg, 5 mol% 13 µmol), and tri-*tert*-butylphosphonium tetrafluoroborate (4 mg, 5 mol%, 13 µmol), dry DMSO (0.9 mL,) and triethylamine (5.2 µL, 15 mol%, 38 µmol). The material was purified by reverse phase chromatography (C₁₈, 10-100% MeCN/H₂O, 0.1% v/v TFA), giving (*S*)-1.4c as a fine, amorphous light-gray solid in 99% ee (59 mg, 0.22 mmol, 88% yield). The same reaction run at 70 °C for 0.5 h gave an 80% yield and 99% ee (54 mg, 0.20 mmol).

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₅O₃N₂ 271.1077; Found 271.1076.

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 11.00 (s, 1H), 7.96 – 7.65 (m, 2H), 7.62 (dd, *J* = 7.9, 1.4 Hz, 1H), 6.87 (dd, *J* = 17.6, 11.0 Hz, 1H), 6.00 (d, *J* = 17.7 Hz, 1H), 5.41 (d, *J* = 11.0 Hz, 1H), 5.12 (dd, *J* = 13.3, 5.1 Hz, 1H), 4.46 (d, *J* = 17.3 Hz, 1H), 4.33 (d, *J* = 17.2 Hz, 1H), 2.92 (ddd, *J* = 17.3, 13.6, 5.4 Hz, 1H), 2.65 – 2.56 (m, 1H), 2.40 (qd, *J* = 13.2, 4.4 Hz, 1H), 2.01 (ddq, *J* = 10.3, 5.3, 2.5 Hz, 1H).

¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 172.9, 171.0, 167.8, 142.7, 140.6, 136.2, 131.1, 126.2, 123.2, 121.0, 116.7, 51.6, 47.1, 31.2, 22.5.

FTIR (neat): v_{max}/cm⁻¹ 3079, 2854, 1712, 1677, 1619, 1349, 1198.

For **(S)-1.4c**:

Specific rotation: $[\alpha]_D^{23}$ –42.0° (c 0.57, DMSO).

SFC analysis: major enantiomer (Chiralcel OJ-3, 20% 1:1 MeOH:'PrOH in CO₂, 2.5 mL/min, 254 nm) indicated 99% ee: t_R (major enantiomer) = 1.43 min, t_R (minor enantiomer) = 1.12 min.

3-(1-oxo-6-vinylisoindolin-2-yl)piperidine-2,6-dione (1.4d). Compound **1.4d** was prepared via General Procedure **B-1**, using **1.3d** (162 mg, 1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 equiv, 1.50 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 μ mol), tri-*tert*-butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 μ mol), **1.5** (142 mg, 2.12 equiv, 1.06 mmol), dry DMSO (1.71 mL), and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol). The material was purified by flash column chromatography (SiO₂, 0-10% MeOH/CH₂Cl₂), affording **2d** (126 mg, 0.47 mmol, 92% yield) as a fine, amorphous tan solid.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₅O₃N₂ 271.1077; Found 271.1076.

¹**H NMR** (600 MHz, DMSO-*d*₆): δ 10.99 (s, 1H), 7.82 (d, *J* = 1.5 Hz, 1H), 7.75 (d, *J* = 1.6 Hz, 1H), 7.59 (d, *J* = 7.9 Hz, 1H), 6.87 (dd, *J* = 17.7, 11.0 Hz, 1H), 5.98 (d, *J* = 18.1 Hz, 1H), 5.34 (d, *J* = 11.0 Hz, 1H), 5.13 (dd, *J* = 13.3, 5.1 Hz, 1H), 4.46 (d, *J* = 17.4 Hz, 1H), 4.33 (d, *J* = 17.4 Hz, 1H), 2.91 (ddd, *J* = 17.3, 13.7, 5.4 Hz, 1H), 2.64 – 2.56 (m, 1H), 2.40 (qd, *J* = 13.3, 4.4 Hz, 1H), 2.01 (dtd, *J* = 12.7, 5.3, 2.3 Hz, 1H).

¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ 172.9, 171.0, 167.9, 141.6, 137.2, 136.0, 132.2, 129.6, 123.8, 120.3, 115.4, 51.6, 47.1, 31.2, 22.4.

FTIR (neat) v_{max}/cm⁻¹ 2967, 2365, 1739, 1664, 1371, 1271.

3-(1-oxo-4-vinylisoindolin-2-yl)piperidine-2,6-dione (1.4e). Compound **1.4e** was prepared via General Procedure **B-1**, using **1.3e** (162 mg, 1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 equiv, 1.50 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 μ mol), tri-*tert*-butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 μ mol), **1.5** (142 mg, 2.12 equiv, 1.06 mmol), dry DMSO (1.71 mL), and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol). The material was purified by flash column chromatography (SiO₂, 0-10% MeOH/CH₂Cl₂), affording **1.4e** (126 mg, 0.47 mmol, 91% yield) as a fine, amorphous tan solid.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₅O₃N₂ 271.1077; Found 271.1075.

¹**H** NMR (400 MHz, DMSO- d_6): δ 11.03 (s, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 7.4 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 6.83 (dd, J = 17.8, 11.3 Hz, 1H), 5.90 (d, J = 17.7 Hz, 1H), 5.50 (d, J = 11.3 Hz, 1H), 5.15 (dd, J = 13.3, 5.1 Hz, 1H), 4.57 (d, J = 17.5 Hz, 1H), 4.41 (d, J = 17.6 Hz, 1H), 2.93 (ddd, J = 17.2, 13.7, 5.4 Hz, 1H), 2.74 – 2.56 (m, 1H), 2.46 – 2.27 (m, 1H, partially obscured by solvent signal at 2.50 ppm), 2.11 – 1.72 (m, 1H).

¹³C{1H} NMR (101 MHz, DMSO-*d*₆): δ 172.9, 171.0, 167.9, 139.3, 132.8, 132.4, 132.1, 129.1, 128.5, 122.5, 117.9, 51.6, 47.0, 31.2, 22.5.

FTIR (neat): v_{max}/cm⁻¹ 3712, 3083, 3016, 2914, 1706, 1660, 1628.

3-(1-oxo-7-vinylisoindolin-2-yl)piperidine-2,6-dione (1.4f). Compound **1.4f** was prepared via General Procedure **B-1**, using **1.3f** (50 mg, 1.0 equiv, 0.16 mmol), sodium fluoride (20 mg, 3 equiv, 0.46 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (3.2 mg, 5 mol%, 7.7µmol), tri-*tert*-butylphosphoniumtetrafluoroborate (2.2 mg, 5 mol%, 7.7 µmol), **1.5** (44 mg, 2.12 equiv, 0.33 mmol), dry DMSO (0.53 mL), and triethylamine (3.2 µL, 15 mol%, 23 µmol). The material was purified by flash column chromatography (C₁₈, 10-100% MeCN/H₂O, 0.1% v/v TFA), followed by a second purification (SiO₂, 0-10% MeOH/CH₂Cl₂), affording **1.4f** (38 mg, 0.14 mmol, 91% yield) as an amorphous solid.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₅O₃N₂ 271.1077; Found 271.1076.

¹**H NMR** (500 MHz, DMSO-*d*₆): δ 11.00 (s, 1H), 7.99 (dd, J = 17.9, 11.1 Hz, 1H), 7.79 (dt, J = 7.8, 0.7 Hz, 1H), 7.59 (td, J = 7.6, 0.7 Hz, 1H), 7.50 (dd, J = 7.5, 0.9 Hz, 1H), 6.02 (dd, J = 17.9, 1.2 Hz, 1H), 5.44 (dd, J = 11.1, 1.2 Hz, 1H), 5.10 (dd, J = 13.3, 5.1 Hz, 1H), 4.42 (d, J = 17.2 Hz, 1H), 4.29 (d, J = 17.2 Hz, 1H), 2.91 (ddd, J = 17.4, 13.7, 5.4 Hz, 1H), 2.60 (dddd, J = 17.4, 4.5, 2.3, 1.0 Hz, 1H), 2.39 (qd, J = 13.6, 4.5 Hz, 1H), 2.00 (dtd, J = 12.7, 5.4, 2.3 Hz, 1H). ¹³C{¹H} **NMR** (101 MHz, DMSO-*d*₆): δ 173.0, 171.1, 168.5, 142.7, 135.3, 131.6, 130.9, 127.0, 123.5, 122.8, 117.0, 51.5, 46.6, 31.3, 22.4.

FTIR (neat): v_{max}/cm^{-1} 3195, 3099, 2979, 2193, 1732, 0693, 1590, 1454, 1411, 1484, 1226, 1198, 1179, 1042, 1004, 949, 931, 860, 800.

(*E*)-1-methyl-4-(4-methylstyryl)-1H-pyrazole (1.8a). Compound 1.8a was prepared via General Procedure B-1, using 1.6a (51.7 μ L, 1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 equiv, 1.50 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 μ mol), tri-*tert*-butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 μ mol), 1.7e (142 mg, 2.12 equiv, 1.06 mmol), dry DMSO (1.71 mL), and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol). The material was purified by flash column chromatography (SiO₂, 20-30% EtOAc/hexanes). The product-containing fractions were aggregated and concentrated in vacuuo, affording 1.8a (82 mg, 0.41 mmol, 83% yield) as a crystalline tan solid. ¹H NMR indicated a >20:1 *E:Z* ratio of the alkene.

HRMS (APCI) *m/z*: [M+H]⁺, calcd for C₁₃H₁₅N₂ 199.1230; Found 199.1228.

¹**H NMR** (400 MHz, CDCl₃): δ 7.66 (s, 1H), 7.44 (s, 1H), 7.33 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 7.8 Hz, 2H), 6.88 (d, J = 16.4 Hz, 1H), 6.79 (d, J = 16.4 Hz, 1H), 3.90 (s, 3H), 2.34 (s, 3H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃): δ 137.3, 137.0, 134.9, 129.4, 127.8, 126.9, 125.9, 121.2, 117.7, 39.1, 21.3.

FTIR: (film) v_{max}/cm⁻¹ 2915, 1738, 1638, 1510, 1407, 967, 624.

Melting point: 129-131 °C

(*E*)-4-(4-methylstyryl)thiazole (1.8b). Compound 1.8b was prepared via General Procedure B-1, using 1.6b (17.8 μ L, 1.0 equiv, 0.20 mmol), sodium fluoride (25 mg, 3.0 equiv, 0.60 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (4 mg, 5 mol%, 10.0 μ mol), tri-*tert*butylphosphoniumtetrafluoroborate (3 mg, 5 mol%, 10.0 μ mol), 1.7e (142 mg, 2.12 equiv, 0.42 mmol), dry DMSO (0.70 mL) and triethylamine (4.2 μ L, 15 mol%, 30.0 μ mol). The material was purified by flash column chromatography (SiO₂, 0-40% EtOAc/hexanes). The productcontaining fractions were aggregated and concentrated in vacuuo, affording 1.8b as an amorphous white solid (7 mg, 0.03 mmol, 19% yield).

¹H NMR indicated a >20:1 *E*:*Z* of the alkene.

HRMS (APCI) m/z: $[M+H]^+$ calcd for $C_{12}H_{12}N^{32}S$ 202.0685; Found 202.0684.

¹**H** NMR (600 MHz, CDCl₃): δ 8.82 (d, J = 2.0 Hz, 1H), 7.49 (d, J = 16.0 Hz, 1H), 7.43 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 2.0 Hz, 1H), 7.17 (d, J = 7.9 Hz, 2H), 7.12 (d, J = 15.9 Hz, 1H), 2.36 (s, 3H).

¹³C NMR{¹H} (101 MHz, CDCl₃): δ 155.3, 153.1, 138.1, 134.2, 131.8, 129.6, 126.8, 120.1, 114.4, 21.4.

FTIR (neat): v_{max}/cm⁻¹ 3107, 3031, 2920, 2854, 1737, 1680, 1606, 1514, 973, 819, 808.

(*E*)-5-(4-methylstyryl)-2-phenyloxazole (1.8c). Compound 1.8c was prepared via General Procedure B-1, using 1.6c (45 mg, 1.0 equiv, 0.20 mmol), sodium fluoride (25 mg, 3.0 equiv, 0.60 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (4 mg, 5 mol%, 10.0 μ mol), tri-*tert*-butylphosphoniumtetrafluoroborate (3 mg, 5 mol%, 10.0 μ mol), 1.7e (142 mg, 2.12 equiv, 0.42 mmol), dry DMSO (0.70 mL) and triethylamine (4.2 μ L, 15 mol%, 30.0 μ mol). The material was purified by flash column chromatography (SiO₂, 0-10% EtOAc/hexanes). The product-containing fractions were aggregated and concentrated in vacuuo, affording 1.8c as an amorphous white solid (35 mg, 0.14 mmol, 68% yield). ¹H NMR indicated a >20:1 *E:Z* of the alkene.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₆ON 262.1226; Found 262.1225.

¹**H** NMR (400 MHz, CDCl₃): δ 8.16 – 7.88 (m, 2H), 7.52 – 7.44 (m, 3H), 7.41 (d, *J* = 8.1 Hz, 2H), 7.21 – 7.10 (m, 4H), 6.89 (d, *J* = 16.3 Hz, 1H), 2.37 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 161.0, 150.7, 138.4, 133.7, 130.5, 129.7, 129.6, 128.9, 127.5, 126.6, 126.5, 126.2, 112.3, 21.5.

FTIR (film): v_{max}/cm⁻¹ 3202, 2920, 1607, 1535, 1508, 1483, 1449.

(*E*)-3-methyl-5-(4-methylstyryl)isothiazole (1.8d). Compound 1.8d was prepared via General Procedure B-1, using 1.6d (20.9 μ L, 1.0 equiv, 0.20 mmol), sodium fluoride (25 mg, 3.0 equiv, 0.60 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (4 mg, 5 mol%, 10.0 μ mol), tri-*tert*-butylphosphoniumtetrafluoroborate (3 mg, 5 mol%, 10.0 μ mol), 1.7e (142 mg, 2.12 equiv, 0.42 mmol), dry DMSO (0.70 mL) and triethylamine (4.2 μ L, 15 mol%, 30.0 μ mol). The material was purified by flash column chromatography (SiO₂, 0-10% EtOAc/hexanes). The product-containing fractions were aggregated and concentrated in vacuuo, affording 1.8d as an amorphous white solid (25 mg, 0.12 mmol, 58% yield). ¹H NMR indicated a >20:1 *E:Z* of the alkene.

HRMS (APCI) m/z: $[M+H]^+$ calcd for C₁₃H₁₄N³²S 216.0842; Found 216.0841.

¹**H** NMR (400 MHz, CDCl₃): δ 7.38 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 16.2 Hz, 1H), 7.02 (d, J = 16.2 Hz, 1H), 6.95 (s, 1H), 2.48 (s, 3H), 2.37 (s, 3H).

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 167.6, 165.1, 139.0, 133.8, 133.2, 129.7, 126.9, 121.7, 116.7, 21.5, 19.1.

FTIR (film): v_{max}/cm⁻¹ 3028, 2921, 2360, 1739, 1523, 961, 826, 802.

1 8f

(*E*)-3-methyl-4-(4-methylstyryl)thiophene (1.8f). Compound 1.8f was prepared via General Procedure B-1, using 1.6f (22.3 μ L, 1.0 equiv, 0.20 mmol), sodium fluoride (25 mg, 3.0 equiv, 0.60 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (4 mg, 5 mol%, 10.0 μ mol), tri-*tert*-butylphosphoniumtetrafluoroborate (3 mg, 5 mol%, 10.0 μ mol), 1.7e (142 mg, 2.12 equiv, 0.42 mmol), dry DMSO (0.70 mL) and triethylamine (4.2 μ L, 15 mol%, 30.0 μ mol). The material was purified by flash column chromatography (SiO₂, 0-1% EtOAc/hexanes). The product-containing fractions were aggregated and concentrated in vacuuo, affording 1.8f as an amorphous white solid (28 mg, 0.13 mmol, 65% yield). ¹H NMR indicated a >20:1 *E:Z* of the alkene.

HRMS (APCI) m/z: $[M+H]^+$ calcd for C₁₄H₁₅³²S 215.0889; Found 215.0888.

¹**H** NMR (400 MHz, CDCl₃): δ 7.41 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 3.2 Hz, 1H), 7.18 (d, J = 7.9 Hz, 2H), 7.06 – 6.91 (m, 3H), 2.38 (s, 3H), 2.35 (s, 3H).

¹³C NMR{¹H} (101 MHz, CDCl₃): δ 139.3, 137.5, 136.6, 134.9, 129.5, 129.5, 126.4, 121.7, 121.0, 120.4, 21.4, 15.2.

FTIR (film): v_{max}/cm⁻¹3025, 2919, 2862, 1511, 1448, 959, 801, 780, 510.

Methyl (E)-5-(4-methylstyryl)furan-2-carboxylate (1.8g).

Compound **1.8g** was prepared via General Procedure **B-1**, using **1.6g** (41, 1.0 equiv, 0.20 mmol), sodium fluoride (25 mg, 3.0 equiv, 0.60 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (4 mg, 5 mol%, 10.0 µmol), tri-*tert*-

butylphosphoniumtetrafluoroborate (3 mg, 5 mol%, 10.0 μ mol), **1.7e** (142 mg, 2.12 equiv, 0.42 mmol), dry DMSO (0.70 mL) and triethylamine (4.2 μ L, 15 mol%, 30.0 μ mol). The material was purified by flash column chromatography (SiO₂, 0-20% EtOAc/hexanes). The product-containing fractions were aggregated and concentrated in vacuuo, affording **1.8g** as an amorphous white solid (38 mg, 0.16 mmol, 78% yield). ¹H NMR indicated a >20:1 *E:Z* of the alkene.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₅O₃ 243.1016; Found 243.1015.

¹**H NMR** (400 MHz, CDCl₃): δ 7.39 (d, J = 8.1 Hz, 2H), 7.26 (d, J = 16.3 Hz, 1H), 7.20 – 7.13 (m, 3H), 6.86 (d, J = 16.4 Hz, 1H), 6.42 (d, J = 3.6 Hz, 1H), 3.91 (s, 3H), 2.36 (s, 3H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃): δ 159.3, 157.3, 143.3, 138.8, 133.5, 131.6, 129.7, 126.9, 120.2, 114.7, 109.5, 52.0, 21.5.

FTIR (film): v_{max}/cm⁻¹ 3018, 2590, 1716, 1517, 1496, 1300, 994, 1136, 808.

2-methoxy-5-vinylpyridine (1.8h). Compound **1.8h** was prepared via General Procedure **B-1**, using **1.6h** (129 μ L, 1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 equiv, 1.50 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 μ mol), tri-*tert*-butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 μ mol), **1.5** (142 mg, 2.12 equiv, 1.06 mmol), dry DMSO (1.71 mL), and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol). The material was purified by flash column chromatography (SiO2, 0-7% pentane/ether,). The product-containing fractions were aggregated and concentrated in vacuuo, affording **1.8h** (117 mg, 0.87 mmol, 87% yield) as a translucent yellow liquid.

¹**H** NMR (600 MHz, CDCl₃): δ 8.12 (d, J = 2.4 Hz, 1H), 7.69 (dd, J = 8.6, 2.5 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 6.65 (dd, J = 17.6, 10.9 Hz, 1H), 5.64 (d, J = 18.4 Hz, 1H), 5.21 (d, J = 11.0 Hz, 1H), 3.94 (s, 3H). Spectral data were consistent with the literature.¹

5-allyl-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (1.9a). A septum-cap vial was equipped with a PTFE magnetic stir bar and flame dried under vacuum, then allowed to cool under N₂ atmosphere. The vial was charged with **1.3a** (337 mg, 1.0 equiv, 1.000 mmol), sodium fluoride (126 mg, 3.0 equiv, 3.0 mmol), **1.7a** (314 mg, 2.12 equiv, 2.12 mmol), chloro(crotyl)(tri-

tert-butylphosphine)palladium(II) (42 mg, 10 mol%, 0.10 mmol), and tri-*tert*-butylphosphonium tetrafluoroborate (29 mg, 10 mol%, 0.10 mmol) under backflow of nitrogen. Dry DMSO (1.71 mL) and triethylamine (42 μ L, 30 mol%, 0.30 mmol) were charged by syringe, and the vial was equipped with an argon-filled balloon. The vial was placed in an aluminum heating block preheated to 90 °C, and was stirred at this temperature for 10 minutes. The reaction was partitioned between ethyl acetate (25 mL) and water (50 mL). The aqueous layer was extracted thrice with 25 mL portions of ethyl acetate, after which the combined organic layers were washed with a 10% w/w aqueous solution of lithium chloride. The organic layers were dried over magnesium sulfate, then filtered and concentrated in vacuuo. The material was concentrated in vacuuo onto Celite[®] and purified by flash column chromatography (SiO₂, 30-50% EtOAc/hexanes). The product-containing fractions were aggregated and concentrated in vacuuo, affording **1.9a** (239 mg, 0.80 mmol, 80% yield) as a fine, amorphous white solid. Crude ¹H NMR indicated a 20:1 ratio of **1.9a** to the internal alkene product **1.9b**. ¹H NMR of the purified product indicated a >20:1 ratio of **1.9a** to **1.9b**.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₆H₁₅O₄N₂ 299.1026; Found 299.10255.

¹**H NMR** (600 MHz, CDCl₃): δ 7.92 (s, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.73 – 7.66 (m, 1H), 7.63 – 7.46 (m, 1H), 5.93 (ddt, J = 16.8, 10.1, 6.7 Hz, 1H), 5.24 – 5.05 (m, 2H), 4.96 (dd, J = 12.7, 5.4 Hz, 1H), 3.53 (d, J = 6.7 Hz, 2H), 2.95 – 2.68 (m, 3H), 2.14 (ddtd, J = 12.5, 6.2, 3.0, 1.7 Hz, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 171.4, 168.4, 167.5, 167.4, 148.1, 135.5, 134.8, 132.3, 129.8, 124.1, 124.0, 117.8, 49.4, 40.4, 31.5, 22.7.

FTIR (neat): v_{max}/cm^{-1} 3024, 2361, 1735, 1365, 1217.

(*E*)-2-(2,6-dioxopiperidin-3-yl)-5-(prop-1-en-1-yl)isoindoline-1,3-dione (1.9b). Compound 1.9b was prepared via General Procedure B-2, using 1.3a, (169 mg, 1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 equiv, 1.50 mmol), chloro(crotyl)(tri-*tert*-

butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 µmol), tri-tert-

butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 μ mol), **1.7b** (157 mg, 2.12 equiv, 1.06 mmol), dry DMSO (1.71 mL), and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol). The material was purified by flash column chromatography (C₁₈, 10-100% MeCN/H₂O, 0.1% v/v TFA), followed by a second column purification (SiO₂, 30-50% EtOAc/hexanes), which afforded **1.9b** (128 mg, 0.43 mmol, 87% yield) as a fine, amorphous white solid. Crude ¹H NMR indicated a >20:1 ratio of **1.9b** to the terminal alkene product **1.9a**. ¹H NMR of the purified product indicated a >20:1 ratio of **1.9b** to **1.9a**. ¹H NMR indicated a >20:1 *E:Z* of the alkene.

HRMS (APCI) m/z: $[M+H]^+$ calcd for C₁₆H₁₅O₄N₂ 299.1026; Found 299.1029.

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 11.14 (s, 1H), 7.94 (s, 1H), 7.84 (d, *J* = 0.9 Hz, 2H), 6.75 – 6.58 (m, 2H), 5.14 (dd, *J* = 12.9, 5.4 Hz, 1H), 2.89 (ddd, *J* = 17.3, 14.1, 5.4 Hz, 1H), 2.64 – 2.52 (m, 2H), 2.06 (dtd, *J* = 12.7, 6.0, 2.9 Hz, 1H), 1.90 (d, *J* = 5.3 Hz, 3H).

¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 173.5, 170.6, 167.6, 144.9, 132.8, 132.4, 131.8, 130.2, 129.6, 124.5, 120.8, 49.6, 31.6, 22.7, 19.3.

FTIR (neat): v_{max}/cm^{-1} 3219, 1774, 1616, 1387, 1261, 1199, 1134, 743.

2-(2,6-dioxopiperidin-3-yl)-5-(prop-1-en-2-yl)isoindoline-1,3-dione (1.9c). A septum-cap vial was equipped with a PTFE magnetic stir bar and flame dried under vacuum, then allowed to cool under N₂ atmosphere. The vial was charged with **1.3a** (67 mg, 1.0 equiv, 0.20 mmol), sodium fluoride (25 mg, 3.0 equiv, 0.60 mmol), 1.7c (63 mg, 2.12 equiv, 0.42 mmol), chloro(crotyl)(tritert-butylphosphine)palladium(II) (8.3 mg, 10 mol%, 0.02 mmol), and tri-tert-butylphosphonium tetrafluoroborate (6 mg, 10 mol%, 0.02 mmol) under backflow of nitrogen. Dry DMSO (1.71 mL) and triethylamine (8.4 μ L, 30 mol%, 0.06 mmol) were charged by syringe, and the vial was equipped with an argon-filled balloon. The vial was placed in an aluminum heating block preheated to 90 °C, and was stirred at this temperature for 10 minutes. The reaction was partitioned between ethyl acetate (10 mL) and water (20 mL). The aqueous layer was extracted thrice with 20 mL portions of ethyl acetate, after which the combined organic layers were washed with a 10% w/w aqueous solution of lithium chloride. The organic layers were dried over magnesium sulfate, then filtered and concentrated in vacuuo. The material was concentrated in vacuuo onto Celite[®] and purified by flash column chromatography (C₁₈, 10-100% MeCN/H₂O, 0.1% v/v TFA), followed by a second column purification (SiO₂, 40% EtOAc/hexanes), which afforded **1.9c** (47 mg, 0.16 mmol, 79% yield) as a fine, amorphous white solid. ¹H NMR of the crude reaction mixture showed a 7.5:1 ratio of the isoprenyl product 1.9c to the rearranged product (1.9b). ¹H NMR of the purified reaction mixture showed a 6:1 ratio to 1.9c to 1.9b.

HRMS (APCI) m/z: $[M+H]^+$ calcd for C₁₆H₁₅O₄N₂ 299.1026; Found 299.1026.

¹**H NMR** (400 MHz, DMSO- d_6): δ 11.44 (s, 1H), 8.35 – 8.06 (m, 3H), 6.03 (s, 1H), 5.66 (s, 1H), 5.47 (dd, J = 13.0, 5.3 Hz, 1H), 3.20 (ddd, J = 17.3, 14.0, 5.4 Hz, 1H), 2.95 – 2.82 (m, 2H), 2.37 (ddd, J = 10.8, 5.6, 3.2 Hz, 1H).

¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 172.8, 169.8, 167.1, 166.9, 147.0, 141.3, 131.8, 131.5, 129.9, 123.6, 120.1, 116.7, 49.0, 30.9, 22.0, 21.3.

FTIR (neat): v_{max}/cm⁻¹ 3214, 3100, 2914, 1772, 1694, 1615, 1375, 1193, 1110.

5-(cyclohex-1-en-1-yl)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (1.9d). Compound **1.9d** was prepared via General Procedure **B-2**, using **1.3a** (67 mg, 1.0 equiv, 0.20 mmol), sodium fluoride (25 mg, 3.0 equiv, 0.60 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (4 mg, 5 mol%, 10.0 μ mol), tri-*tert*-butylphosphoniumtetrafluoroborate (3 mg, 5 mol%, 10.0 μ mol), **1.7d** (80 mg, 2.12 equiv, 0.42 mmol), dry DMSO (0.70 mL) and triethylamine (4.2 μ L, 15 mol%, 30.0 μ mol). The material was purified by flash column chromatography (C₁₈, 10-100% MeCN/H₂O, 0.1% v/v TFA). The product-containing fractions were aggregated and concentrated in vacuuo, affording **6d** as a fine, amorphous tan solid (48 mg, 0.14 mmol, 71% yield).

HRMS (APCI) m/z: [M+H]⁺ calcd for C₁₉H₁₉O₄N₂ 339.1339; Found 339.1338.

¹**H** NMR (600 MHz, CDCl₃): δ 8.14 (s, 1H), 7.87 (d, J = 1.2 Hz, 1H), 7.79 (d, J = 7.9 Hz, 1H), 7.72 (dd, J = 7.9, 1.5 Hz, 1H), 6.35 (tt, J = 4.0, 1.7 Hz, 1H), 4.98 (dd, J = 12.6, 5.4 Hz, 1H), 2.93 – 2.88 (m, 1H), 2.84 (qd, J = 12.6, 3.9 Hz, 2H), 2.75 (ddd, J = 16.8, 13.5, 5.0 Hz, 2H), 2.43 (tt, J = 4.0, 1.9 Hz, 2H), 2.27 (tt, J = 6.3, 3.1 Hz, 2H), 2.15 (dtd, J = 12.5, 4.9, 2.3 Hz, 2H), 1.81 (ddd, J = 12.0, 5.8, 3.1 Hz, 2H), 1.69 (ddd, J = 12.1, 6.3, 2.9 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 171.3, 168.3, 167.7, 167.4, 149.6, 135.4, 132.2, 130.6, 129.5, 129.3, 123.9, 120.3, 49.4, 31.5, 27.4, 26.2, 22.8, 22.8, 21.8.

FTIR (neat): $v_{\text{max}}/\text{cm}^{-1}$ 3467, 3207, 3090, 2918, 1772, 1699, 1604.

(*E*)-2-(2,6-dioxopiperidin-3-yl)-5-(4-methylstyryl)isoindoline-1,3-dione (1.9e). Compound 1.9e was prepared via General Procedure B-2, using 1.3a (67 mg, 1.0 equiv, 0.20 mmol), sodium fluoride (25 mg, 3.0 equiv, 0.60 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (4 mg, 5 mol%, 10.0 µmol), tri-*tert*-butylphosphoniumtetrafluoroborate (3 mg, 5 mol%, 10.0 µmol), 1.7e (94 mg, 2.12 equiv, 0.42 mmol), dry DMSO (0.70 mL) and triethylamine (4.2 µL, 15 mol%, 30.0 µmol). The material was purified by flash column chromatography (C₁₈, 10-100% MeCN/H₂O, 0.1% v/v TFA), followed by a second column purification (SiO₂, 40% EtOAc/hexanes). The product-containing fractions were aggregated and concentrated in vacuuo, affording 1.9e as a fine, amorphous yellow solid (68 mg, 0.18 mmol, 91% yield). ¹H NMR indicated a >20:1 *E:Z* of the alkene.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₂₂H₁₉O₄N₂, 375.1339); Found 375.1336

¹**H NMR** (600 MHz, CDCl₃): δ 8.12 (s, 1H), 8.02 (s, 1H), 7.84 (d, J = 7.9 Hz, 1H), 7.79 (dd, J = 7.8, 1.5 Hz, 1H), 7.45 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 16.3 Hz, 1H), 7.21 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 16.2 Hz, 1H), 5.00 (dd, J = 12.5, 5.4 Hz, 1H), 3.01 – 2.80 (m, 3H), 2.80 – 2.68 (m, 1H), 2.38 (s, 3H), 2.17 (dtd, J = 12.6, 5.0, 2.2 Hz, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 171.0, 168.1, 167.4, 167.2, 144.6, 139.3, 133.4, 132.7, 132.4, 129.8, 129.6, 127.1, 125.5, 124.4, 120.9, 49.5, 31.6, 22.8, 21.5.

FTIR (neat): v_{max}/cm^{-1} 3467, 3207, 3090, 2918, 1772, 1699, 1604.

2-(2,6-dioxopiperidin-3-yl)-5-phenylisoindoline-1,3-dione (1.9f). Compound **1.9f** was prepared via General Procedure **B-2**, using **1.3a** (67 mg, 1.0 equiv, 0.20 mmol), sodium fluoride (25 mg, 3.0 equiv, 0.60 mmol), chloro(crotyl)(tri*-tert*-butylphosphine)palladium(II) (4 mg, 5 mol%, 10.0 μ mol), tri*-tert*-butylphosphoniumtetrafluoroborate (3 mg, 5 mol%, 10.0 μ mol), **1.7f** (94 mg, 2.12 equiv, 0.42 mmol), dry DMSO (0.70 mL) and triethylamine (4.2 μ L, 15 mol%, 30.0 μ mol). The material was purified by flash column chromatography (C₁₈, 10-100% MeCN/H₂O,

0.1% v/v TFA), followed by a second column purification (SiO₂, 40% EtOAc/hexanes). The product-containing fractions were aggregated and concentrated in vacuuo, affording **1.9f** as a fine, amorphous yellow solid (17 mg, 0.05 mmol, 26% yield).

¹**H** NMR (600 MHz, DMSO-*d*₆): δ 11.16 (s, 1H), 8.21 – 8.14 (m, 2H), 8.01 (d, *J* = 8.2 Hz, 1H), 7.85 (d, *J* = 7.3 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 5.19 (dd, *J* = 12.8, 5.5 Hz, 1H), 2.91 (ddd, *J* = 16.7, 13.8, 5.4 Hz, 1H), 2.68 – 2.54 (m, 2H), 2.13 – 2.00 (m, 1H). Spectral data were consistent with the literature.²

2-(2,6-dioxopiperidin-3-yl)-5-(2-methoxypyrimidin-5-yl)isoindoline-1,3-dione (1.9g).

Compound **1.9g** was prepared via General Procedure **B-2**, using **1.3a** (67 mg, 1.0 equiv, 0.20 mmol), sodium fluoride (25 mg, 3.0 equiv, 0.60 mmol), chloro(crotyl)(tri-tert-butvlphosphine)palladium(II) (4 mg, 5 mol%, 10.0 µmol), tri-tert-

butylphosphoniumtetrafluoroborate (3 mg, 5 mol%, 10.0 μ mol), **1.7g** (91 mg, 2.12 equiv, 0.42 mmol), dry DMSO (0.70 mL) and triethylamine (4.2 μ L, 15 mol%, 30.0 μ mol). The material was purified by flash column chromatography (C₁₈, 10-100% MeCN/H₂O, 0.1% v/v TFA), followed by a second column purification (SiO₂, 70-100% EtOAc/hexanes). The product-containing fractions were aggregated and concentrated in vacuuo, affording **1.9g** as a fine, amorphous white solid (37 mg, 0.10 mmol, 50% yield).

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₅O₅N₄ 367.1037; Found 367.1035.

¹**H NMR** (600 MHz, DMSO-*d*₆): δ 11.16 (s, 1H), 9.12 (s, 2H), 8.33 (d, *J* = 1.6 Hz, 1H), 8.25 (dd, *J* = 7.8, 1.5 Hz, 1H), 8.03 (d, *J* = 7.8 Hz, 1H), 5.20 (dd, *J* = 12.8, 5.4 Hz, 1H), 3.99 (s, 3H), 2.91 (ddd, *J* = 16.9, 13.7, 5.4 Hz, 1H), 2.66 - 2.54 (m, 2H), 2.14 - 2.04 (m, 1H).

¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 172.8, 169.8, 166.9, 166.8, 165.2, 158.2, 140.6, 132.5, 132.4, 130.3, 125.7, 124.1, 121.3, 55.0, 49.1, 31.0, 22.0.

FTIR (neat): v_{max}/cm⁻¹ 3468, 3233, 2918, 1775, 1702, 1595, 1471, 1411, 1393, 1327, 1116, 1028, 910, 730, 610.

2-(2,6-dioxopiperidin-3-yl)-5-(thiophen-2-yl)isoindoline-1,3-dione (1.9h). Compound **1.9h** was prepared via General Procedure **B-2**, using **1.3a**, (169 mg, 1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 equiv, 1.50 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 μ mol), tri-*tert*-butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 μ mol), **1.7h** (201 mg, 2.12 equiv, 1.06 mmol), dry DMSO (1.71 mL), and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol). The material was purified by flash column chromatography (40-70% EtOAc/hexanes, SiO₂), followed by a second column purification (10-100% MeCN/H₂O, 0.1%
v/v TFA, C₁₈), which afforded **1.9h** (137 mg, 0.40 mmol, 80% yield) as a fine, amorphous yellow solid.

HRMS (APCI) m/z: [M+H]⁺ calcd for C₁₇H₁₄O₄N₂³²S 341.0591; Found 341.0591.

¹**H** NMR (600 MHz, DMSO- d_6): δ 11.13 (s, 1H), 8.16 (s, 1H), 8.10 (d, J = 7.9 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.89 (d, J = 3.8 Hz, 1H), 7.73 (d, J = 5.1 Hz, 1H), 7.22 – 7.15 (m, 1H), 5.15 (dd, J = 12.9, 5.5 Hz, 1H), 2.87 (ddd, J = 18.1, 13.7, 5.5 Hz, 1H), 2.61 – 2.48 (m, 2H), 2.10 – 1.95 (m, 1H).

¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 174.1, 171.1, 168.1, 168.0, 142.3, 141.2, 133.9, 132.2, 130.5, 130.4, 129.8, 128.2, 125.7, 120.8, 50.3, 32.2, 23.3.

FTIR (neat): v_{max}/cm⁻¹ 3470, 3191, 3088, 2896, 1770, 1703, 1616.

2-(2,6-dioxopiperidin-3-yl)-5-(1-methyl-1H-pyrazol-5-yl)isoindoline-1,3-dione (1.9i).

Compound **1.9i** was prepared via General Procedure **B-2**, using **1.3a**, (169 mg, 1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 equiv, 1.50 mmol), chloro(crotyl)(tri-*tert*-

butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 µmol), tri-tert-

butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 μ mol), **1.7i** (199 mg, 2.12 equiv, 1.06 mmol), dry DMSO (1.71 mL), and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol). The material was purified by flash column chromatography (50-100% EtOAc/hexanes, SiO₂). The product-containing fractions were aggregated and concentrated in vacuuo, affording **1.9i** (127 mg, 0.38 mmol, 82% yield) as a fine amorphous yellow solid.

HRMS (APCI) m/z: $[M+H]^+$ calcd for C₁₇H₁₅O₄N₄ 339.1088; Found 339.1086.

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 11.16 (s, 1H), 8.16 – 7.87 (m, 3H), 7.55 (d, *J* = 1.9 Hz, 1H), 6.66 (d, *J* = 1.9 Hz, 1H), 5.20 (dd, *J* = 13.0, 5.3 Hz, 1H), 3.94 (s, 3H), 2.91 (ddd, *J* = 17.4, 14.0, 5.4 Hz, 1H), 2.66 – 2.53 (m, 2H), 2.14 – 2.02 (m, 1H).

¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 172.8, 169.8, 166.7, 166.7, 140.9, 138.2, 136.3, 134.5, 132.0, 130.4, 123.9, 122.9, 107.3, 49.1, 37.9, 30.9, 22.0.

FTIR (neat): v_{max}/cm^{-1} 3076, 1712, 1379, 1202.

Methyl 4-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-1-methyl-1H-pyrazole-3-carboxylate (1.9j).

Compound **1.9j** was prepared via General Procedure **B-2**, using **1.3a**, (169 mg, 1.0 equiv, 0.50 mmol), sodium fluoride (63 mg, 3 equiv, 1.50 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 µmol), tri-*tert*-

butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 µmol), 1.7j (261 mg, 2.12 equiv, 1.06

mmol), dry DMSO (1.71 mL), and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol). The material was purified by flash column chromatography (SiO₂, 50-100% EtOAc/hexanes to 5% EtOH/EtOAC). The product-containing fractions were aggregated and concentrated in vacuuo, affording **1.9j** (172 mg, 0.43 mmol, 87% yield) as a fine amorphous yellow solid.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₉H₁₇O₆N₄ 397.1143; Found 397.1142.

¹**H NMR** (600 MHz, DMSO-*d*₆): δ 11.15 (s, 1H), 8.29 (s, 1H), 8.03 (s, 1H), 7.98 – 7.82 (m, 2H), 5.17 (dd, *J* = 12.9, 5.4 Hz, 1H), 3.97 (s, 3H), 3.77 (s, 3H), 2.91 (ddd, *J* = 17.3, 14.0, 5.5 Hz, 1H), 2.67 – 2.53 (m, 2H), 2.16 – 2.04 (m, 1H).

¹³C{¹H} NMR (101 MHz, DMSO-*d*6): δ 172.8, 169.9, 167.1, 166.9, 162.4, 138.4, 138.2, 134.8, 133.2, 131.4, 129.4, 123.5, 123.2, 123.0, 51.6, 49.1, 31.0, 22.0.

FTIR (neat): v_{max}/cm⁻¹ 3195, 2957, 1774, 1698, 1620, 1557, 1698, 1411, 1198, 1377, 639.

5-(3,5-dimethylisoxazol-4-yl)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (1.9k). Compound **1.9k** was prepared via General Procedure **B-2**, using **1.3a**, (169 mg, 1.0 equiv, 0.50

mmol), sodium fluoride (63 mg, 3 equiv, 1.50 mmol), chloro(crotyl)(tri-*tert*-

butylphosphine)palladium(II) (10 mg, 5 mol%, 25.0 µmol), tri-tert-

butylphosphoniumtetrafluoroborate (7 mg, 5 mol%, 25.0 μ mol), **1.7k** (215 mg, 2.12 equiv, 1.06 mmol), dry DMSO (1.71 mL), and triethylamine (10.5 μ L, 15 mol%, 75.0 μ mol). The material was purified by flash column chromatography (C₁₈, 10-100% MeCN/H₂O, 0.1% v/v TFA), followed by a second column purification (SiO₂, 50-100% EtOAc/hexanes). The product-containing fractions were aggregated and concentrated in vacuuo, affording **1.9k** (151 mg, 0.43 mmol, 86% yield) as a fine amorphous yellow solid.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₆O₅N₃ 354.1085; Found 354.1084.

¹**H NMR** (600 MHz, DMSO-*d*₆): δ 11.16 (s, 1H), 8.02 (d, *J* = 7.7 Hz, 1H), 7.96 (s, 1H), 7.90 (dd, *J* = 7.7, 1.5 Hz, 1H), 5.19 (dd, *J* = 12.9, 5.4 Hz, 1H), 2.91 (ddd, *J* = 16.9, 13.9, 5.4 Hz, 1H), 2.67 – 2.53 (m, 2H), 2.46 (s, 3H), 2.28 (s, 3H), 2.15 – 2.01 (m, 1H).

¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 172.9, 169.9, 166.9, 166.9, 166.6, 158.1, 136.8, 135.2, 132.2, 130.0, 124.0, 123.6, 115.0, 49.1, 31.0, 22.0, 11.5, 10.4.

FTIR (neat): v_{max}/cm⁻¹ 3213, 3109, 2917, 1776, 1708, 1626, 1380, 1260, 1195.

2-(2,6-dioxopiperidin-3-yl)-5-(furan-2-yl)isoindoline-1,3-dione (1.9l). Compound **1.9l** was prepared via General Procedure **B-2**, using **1.3a** (67 mg, 1.0 equiv, 0.20 mmol), sodium fluoride (25 mg, 3.0 equiv, 0.60 mmol), chloro(crotyl)(tri-*tert*-butylphosphine)palladium(II) (4 mg, 5 mol%, 10.0 µmol), tri-*tert*-butylphosphoniumtetrafluoroborate (3 mg, 5 mol%, 10.0 µmol), **1.7l** (74 mg, 2.12 equiv, 0.42 mmol), dry DMSO (0.70 mL) and triethylamine (4.2 µL, 15 mol%, 30.0

µmol). The material was purified by flash column chromatography (C_{18} , 10-100% MeCN/H₂O, 0.1% v/v TFA), The product-containing fractions were aggregated and concentrated in vacuuo, affording **1.9I** as a fine, amorphous tan solid (53 mg, 0.16 mmol, 82% yield).

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₃O₅N₂ 325.0819; Found 325.0816.

¹**H** NMR (600 MHz, DMSO-*d*₆): δ 11.15 (s, 1H), 8.21 (s, 1H), 8.16 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.97 (d, *J* = 7.9 Hz, 1H), 7.92 (d, *J* = 1.6 Hz, 1H), 7.44 (d, *J* = 1.4 Hz, 1H), 6.72 (dd, *J* = 3.4, 1.7 Hz, 1H), 5.18 (dd, *J* = 12.9, 5.4 Hz, 1H), 2.90 (ddd, *J* = 17.1, 14.2, 5.4 Hz, 1H), 2.65 – 2.52 (m, 2H), 2.13 – 2.03 (m, 1H).

¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 172.8, 169.9, 166.8, 166.8, 151.2, 145.0, 136.0, 132.5, 129.0, 128.6, 124.3, 117.8, 112.9, 110.1, 49.1, 30.9, 22.0.

FTIR (neat): v_{max}/cm⁻¹ 3469, 3211, 3143, 3110, 3043, 2858, 1776, 1706, 1619.

Section 4: Computation Details

The data in this section were generated by Lauren Grant.

All DFT geometry optimization and frequency calculations were conducted with Gaussian 16, revision C.01.¹ Geometry optimizations were performed in the gas phase with the M06 functional and 6-311G++(d,p) basis sets for all atoms, excluding Pd and Br. Pd was computed with a Stuttgart 1997 (with ECP) basis set and LANL2DZ (with ECP for Br). All stationary points were characterized by frequency calculations to confirm local minima for ground state optimizations (zero imaginary frequencies). All energy values are reported in Hartrees and are the sum of electronic and thermal free energies as computed by Gaussian16.

Potassium (vinyl)trifluoroborate Association Complexes

Three fluoride associated complexes were considered in this study (S1, S2 and I). Structure I was found to be the most stable and the further calculations began from that structure.:

Isomer **S1** arrangement: Borate and phenyl are transoid Fluoride and phosphine are transoid

Isomer **S2** arrangement: Borate and phenyl are cisoid Phenyl and phosphine are transoid

Isomer **I** arrangement: Borate and phenyl are transoid Borate and phosphine are transoid

Cartesian Coordinates:

((tBu)₃P)Pd(Ph)(F)(BF₃(CH=CH₂)) association anion isomer I

Cartesian coordinates for association anion isomer I

Sum of cicc	uome and merm	ai nee chergie	51075.00505
Pd	-0.59213100	-0.15188900	-0.74325200
F	-2.76256200	-0.39422500	-1.01893300
В	-3.45091700	-0.95243900	0.17145600
F	-4.45365600	-0.05164400	0.49386100
F	-2.48961100	-0.98135500	1.21051000
С	-3.98692700	-2.41703700	-0.18735100
С	-3.70076500	-3.52155000	0.50293400
С	-1.00385200	1.73833800	-0.27781800
С	-0.64547000	2.74756800	-1.17886100
С	-1.05884400	4.06661600	-0.98202300
С	-1.84687100	4.39292700	0.11717400
С	-2.24139200	3.38589700	0.99714800
С	-1.83079700	2.06990200	0.80115800
Р	1.55400000	-0.21499700	0.10836100
С	2.40853100	1.37317700	0.82467800
С	3.64962500	1.08635700	1.67908400
С	1.44852900	2.20106600	1.69377600
С	2.80903000	2.30878100	-0.32194300
С	2.72568100	-0.89751700	-1.27103600
С	2.42066500	-2.37343500	-1.55685300
С	4.22948700	-0.78505500	-1.00770800
С	2.37011900	-0.13797400	-2.55715600
С	1.45641200	-1.50708500	1.53593600
С	2.79677000	-2.14156100	1.91842200
С	0.47328000	-2.62092500	1.14492100
С	0.85413500	-0.85039600	2.78185500
Н	-4.64998900	-2.52904300	-1.05452000
Н	-4.08365000	-4.51276000	0.24331100

Sum of electronic and thermal free energies: -1675.663058

Η	-3.04243700	-3.48154400	1.37399600
Η	-0.03670000	2.50326700	-2.05377800
Н	-0.76393700	4.83942100	-1.69422000
Η	-2.16761200	5.42255000	0.27837600
Η	-2.88758400	3.62534700	1.84290100
Η	-2.17267500	1.28256900	1.47266700
Η	4.38892000	0.44187200	1.19374000
Η	4.14540500	2.04577900	1.89846100
Η	3.38548200	0.63935300	2.64550900
Η	0.69964200	2.71810600	1.08981200
Η	2.04671300	2.96621400	2.21518000
Η	0.91633200	1.62436000	2.45350400
Η	3.62849000	1.92792300	-0.94086500
Η	1.95210900	2.54086900	-0.96639600
Η	3.14941100	3.26006700	0.11756300
Η	2.76752900	-3.04106900	-0.75835400
Η	1.34429600	-2.51792200	-1.72819500
Η	2.97263000	-2.65444000	-2.46898100
Η	4.59598100	0.24494000	-0.92911100
Η	4.75554700	-1.24694700	-1.85854600
Η	4.53851300	-1.33186300	-0.10679600
Η	1.32024300	-0.31470900	-2.82619100
Η	2.53146500	0.94378900	-2.48793400
Η	3.00351900	-0.51660500	-3.37580000
Η	3.55218500	-1.41498200	2.23835000
Η	2.62405700	-2.82441000	2.76561500
Η	3.22212200	-2.74294200	1.10682500
Η	-0.55170200	-2.23929700	1.05929900
Η	0.49374100	-3.37381800	1.95041900
Η	0.70521500	-3.11412000	0.19940000
Η	1.53316500	-0.14416600	3.27646600
Η	-0.09601000	-0.34877600	2.55322800
Η	0.63030100	-1.64680200	3.50851300
F	-0.43108100	-1.99107800	-1.62595000

 $((tBu)_3P)Pd(Ph)(F)(BF_3(CH=CH_2))$ association anion isomer S2

Cartesian coordinates for association anion isomer S2

Sum of ele	ectronic and therm	al free energie	s: -1675.66509
Pd	0.59642600	-0.64176100	-0.16066600
F	1.31645500	1.28015400	-0.78337500
В	1.81471800	2.22924900	0.28880500
F	1.33008600	1.68775900	1.48596700
F	1.19062500	3.43361500	0.01241400
С	3.40744100	2.27775200	0.21986600
С	4.10331000	3.37613400	-0.07654700
С	2.50883500	-1.19968100	-0.17459600
С	3.32089500	-0.89719900	-1.26706400
С	4.67465600	-1.23347700	-1.24868200
С	5.22721100	-1.85491900	-0.13224900
С	4.41589700	-2.15300900	0.96048300
С	3.05789000	-1.83961400	0.93525300
Р	-1.86194500	-0.06777500	-0.06100300
С	-2.45854600	-0.63031600	1.68248100
С	-3.81285100	-0.09247300	2.14491300
С	-1.36940500	-0.20005400	2.67736200
С	-2.49912800	-2.16159800	1.75739100
С	-2.83710100	-1.07536900	-1.37889700
С	-2.67832700	-0.41237200	-2.75034000
С	-4.33115700	-1.26307900	-1.11131000
С	-2.16916500	-2.44968600	-1.51674300
С	-2.33903800	1.78748500	-0.27633200
С	-3.82545100	2.08948800	-0.47451500
С	-1.56412300	2.35393300	-1.47512000
С	-1.83862100	2.56799800	0.94520800
Н	3.96646000	1.35803500	0.43464200
Н	5.19569200	3.40663600	-0.11509900
Н	3.59282400	4.31645600	-0.29764200
Н	2.90384900	-0.37285600	-2.12768800
Н	5.30315800	-0.99133900	-2.10718300
Н	6.28860300	-2.10460000	-0.11218500

91

Η	4.84260300	-2.63837700	1.83998200
Η	2.41782200	-2.09007800	1.78130400
Η	-4.63082400	-0.37010400	1.46663300
Η	-4.04488300	-0.52854300	3.13075800
Η	-3.82422200	0.99724800	2.26701000
Η	-0.40340700	-0.65836700	2.42460000
Η	-1.65987900	-0.54476100	3.68370000
Η	-1.21298300	0.88110900	2.72577200
Η	-3.33599500	-2.59753600	1.19655700
Η	-1.55203400	-2.59247900	1.40643200
Η	-2.64334400	-2.44390200	2.81333400
Η	-3.26109200	0.51046000	-2.85516800
Η	-1.62555600	-0.19249500	-2.97624800
Η	-3.04188900	-1.11360300	-3.51871500
Η	-4.52487800	-1.85521200	-0.20909200
Η	-4.78041900	-1.80953800	-1.95756900
Η	-4.86863600	-0.31147400	-1.01448700
Η	-1.12174700	-2.34894400	-1.82778000
Η	-2.16185200	-3.03444900	-0.59523200
Н	-2.71229500	-3.02196800	-2.28772400
Η	-4.45676100	1.71646500	0.34130300
Η	-3.95668400	3.18339000	-0.51764300
Η	-4.21443000	1.68606500	-1.41850200
Η	-0.48925000	2.17260700	-1.38260600
Η	-1.71036900	3.44568200	-1.49391600
Η	-1.91083500	1.96504200	-2.43700600
Η	-2.42984100	2.37119700	1.84787800
Η	-0.77919800	2.37814400	1.15723300
Η	-1.93000400	3.64340600	0.72639600
F	0.18871600	-2.50814800	0.42124400

((tBu)₃P)Pd(Ph)(F)(BF₃(CH=CH₂)) association anion isomer S1

Cartesian coordinates for association anion isomer S1

Sum of e	lectronic and therm	ai nee energie	810/5.05590
Pd	-0.41710300	0.80715700	-0.61554400
F	-2.47078700	-0.05299300	-0.92032800
В	-3.35443900	0.15031700	0.25804400
F	-2.48078100	0.50668300	1.31334500
F	-3.92117800	-1.08984300	0.53047400
С	-4.40357600	1.30068100	-0.08190600
С	-5.72735800	1.15402200	-0.01475800
С	0.97933600	2.15761400	-0.17624100
С	2.01990500	2.60134900	-0.99263600
С	2.84742500	3.65114100	-0.58937400
С	2.63248300	4.29575500	0.62343700
С	1.54857300	3.91042000	1.40920600
С	0.72010600	2.86795900	1.00347400
Р	0.76438500	-1.19195000	0.00431600
С	1.78866400	-0.96717400	1.63173400
С	2.27063200	-2.24975100	2.31612300
С	0.92017600	-0.19588900	2.63325400
С	3.02296900	-0.09273200	1.37514200
С	2.00686800	-1.72331900	-1.37643700
С	1.23791100	-2.31953600	-2.55939000
С	3.09299300	-2.71904200	-0.96250200
С	2.68165800	-0.46932300	-1.93264500
С	-0.39966300	-2.72177900	0.28719700
С	0.29432000	-4.08509200	0.38137400
С	-1.43382800	-2.83247400	-0.84270700
С	-1.19555800	-2.48667200	1.57678100
Н	-3.99747700	2.26958900	-0.39291500
Н	-6.43803600	1.95252500	-0.24825800

Sum of electronic and thermal free energies: -1675.655906

Η	-6.16837300	0.19910600	0.28285500
Η	2.19725700	2.14063900	-1.96195000
Η	3.66301000	3.96936700	-1.24098000
Η	3.28425000	5.11007600	0.94050000
Η	1.33135800	4.43763400	2.33924200
Η	-0.16137600	2.61678700	1.59587300
Η	2.87925000	-2.88914000	1.66546400
Η	2.90185200	-1.96350500	3.17291900
Η	1.44543200	-2.84847700	2.71856100
Η	0.66289100	0.79705100	2.25537100
Η	1.49859800	-0.06303800	3.56219600
Η	-0.01265600	-0.70300600	2.88932300
Η	3.79818700	-0.60251700	0.78971700
Η	2.77374400	0.85487100	0.88378300
Η	3.47044000	0.15480800	2.35085900
Η	0.88716200	-3.34002600	-2.37088200
Η	0.37866500	-1.69734900	-2.84554600
Η	1.91741100	-2.36624700	-3.42540700
Η	3.80127900	-2.29475800	-0.24102300
Η	3.67472200	-2.99350900	-1.85787800
Η	2.69028800	-3.64630000	-0.54002000
Η	1.93388500	0.18275600	-2.40064500
Η	3.21648100	0.11973600	-1.18194100
Η	3.40693100	-0.77123100	-2.70616200
Η	1.07026000	-4.14670900	1.15095100
Η	-0.47498200	-4.83186500	0.63558100
Η	0.73157100	-4.39969400	-0.57500400
Н	-1.99105500	-1.90603700	-0.99001800
Η	-2.16199000	-3.60480000	-0.54982900
Η	-0.99976600	-3.14845200	-1.79517900
Η	-0.58590300	-2.63056400	2.47785800
Н	-1.66710100	-1.49649100	1.60525900
Η	-2.01167900	-3.22345100	1.61771300
F	-1.33565700	2.44767700	-1.24627900

Potassium (vinyl)trifluoroborate π -Association Complexes

(Structure II)

Cartesian coordinates for Structure II

Sum of electronic and thermal free energies: -1675.678683				
Pd	0.74733400	-0.28870000	-0.80233400	
С	2.64418700	-0.82708100	-1.88653200	
С	3.04702700	-0.69786000	-0.57895100	
F	4.40566300	-2.08378000	0.91901600	
F	2.48379600	-1.16945600	1.78393700	
В	3.06959400	-1.78510500	0.64334500	
F	2.35797800	-2.94215000	0.32753000	
С	1.36672000	1.54683700	-0.27741000	
С	1.19798800	2.56616100	-1.22233400	
С	1.59603100	3.87627700	-0.95058500	
С	2.18821100	4.18859600	0.26931300	
С	2.40050000	3.17333800	1.20157400	
С	2.00184000	1.86597300	0.93152500	
Р	-1.51169900	-0.08147900	0.11097300	
С	-2.75490500	0.22018500	-1.32682400	
С	-4.20181300	-0.19212800	-1.04526900	
С	-2.25386800	-0.53178500	-2.56513600	
С	-2.75422300	1.70281500	-1.71069000	
С	-1.89107400	1.24691600	1.47339700	
С	-1.10843500	0.86677400	2.73664700	
С	-3.37369100	1.41752900	1.82673800	
С	-1.37661800	2.64343300	1.09251500	
С	-1.89372200	-1.80901700	0.90836500	
С	-3.09040000	-1.85668400	1.86251400	
С	-0.62833300	-2.24748800	1.66075000	
С	-2.13204700	-2.87295600	-0.16996500	
Η	2.84848900	-0.04205900	-2.62309900	
Η	2.25777400	-1.77223600	-2.26883300	
Н	0.73923000	2.33671400	-2.18850200	
Н	1.44210200	4.65547600	-1.69926000	

Η	2.49851200	5.21103400	0.48616000
Н	2.88873400	3.40003300	2.15083200
Η	2.20523900	1.06618100	1.64637100
Н	-4.63207400	0.31921200	-0.17627500
Н	-4.81883200	0.07413600	-1.91942000
Η	-4.30937200	-1.27173500	-0.89382100
Η	-1.27150900	-0.15840100	-2.88250700
Η	-2.97561300	-0.36414700	-3.38225300
Η	-2.13014600	-1.60546800	-2.41358000
Η	-3.28584700	2.33341400	-0.98761700
Η	-1.73583800	2.09539600	-1.83907700
Н	-3.27498400	1.80967000	-2.67575000
Η	-0.04642800	0.69057600	2.51797500
Η	-1.16443100	1.70835700	3.44545000
Η	-1.50584100	-0.01568900	3.24899800
Η	-3.92603600	1.92605900	1.02533100
Н	-3.44326600	2.06419000	2.71676000
Η	-3.89404000	0.48506300	2.06097200
Η	-0.28770700	2.67641500	1.03593400
Η	-1.77698700	3.03235800	0.15371700
Η	-1.68835900	3.33682200	1.89075200
Н	-4.03319000	-1.56453000	1.37998300
Η	-3.20948800	-2.90086500	2.19264800
Η	-2.96080300	-1.25360000	2.76878100
Η	0.22897100	-2.39913300	0.99250300
Η	-0.84249500	-3.21420500	2.14538100
Н	-0.31135600	-1.55293300	2.44429800
Η	-3.09236900	-2.75436500	-0.68868600
Η	-1.30509700	-2.87516000	-0.89075000
Н	-2.16272300	-3.85063100	0.33726400
Η	3.53136200	0.25731700	-0.34678200
F	0.14082200	-2.04176500	-1.71000400

 $((tBu)_3P)Pd(Ph)(F)(BF_3(CH=CH_2))$ rearrangement π -complex **S3**

Cartesian coordinates for π -complex S3					
Sum of	Sum of electronic and thermal free energies: -1675.670679				
Pd	-0.92412700	-0.26311300	0.17628500		
С	-1.72995800	1.03644200	1.81468700		
С	-0.79417000	1.75943900	1.10756800		
F	-0.42638600	4.03339300	0.24483900		
F	-0.56553800	2.36276600	-1.31685700		
В	-1.08621700	2.83909800	-0.08730500		
F	-2.45992000	3.05443600	-0.22371000		
С	-2.90070500	-0.62451500	0.07072300		
С	-3.39684900	-1.80588500	0.61832300		
С	-4.73277900	-2.15334000	0.42709000		
С	-5.57238200	-1.32982900	-0.31950900		
С	-5.06980900	-0.15103700	-0.86275400		
С	-3.73764300	0.21399100	-0.66143800		
Р	1.73757900	-0.27535300	-0.02147400		
С	2.29390100	-1.22009800	1.56448900		
С	3.66276100	-1.90199600	1.52439300		
С	1.22307300	-2.27801600	1.86719500		
С	2.28396900	-0.25670200	2.75518400		
С	2.85761900	1.31494100	-0.16867500		
С	2.66315500	1.92164300	-1.56470200		
С	4.34941000	1.07963200	0.09511100		
С	2.42185600	2.43897200	0.78586200		
С	2.20436000	-1.37239900	-1.55293500		
С	3.66647700	-1.34981700	-2.00567600		
С	1.29531800	-0.89350900	-2.69665000		
С	1.84477000	-2.84648000	-1.32179200		
Н	-1.48313200	0.50343800	2.73974100		
Н	-2.79376600	1.18280300	1.63889000		
Н	-2.73018000	-2.46789400	1.17271000		
Н	-5.11602700	-3.08066200	0.85657000		

Н	-6.61622700	-1.60525400	-0.47394500
Н	-5.72104200	0.50397200	-1.44353200
Н	-3.36016700	1.16279300	-1.04372500
Н	4.48440000	-1.19561400	1.35972000
Н	3.84483600	-2.39496200	2.49422300
Н	3.72427300	-2.67823100	0.75364100
Н	0.22738400	-1.82232000	1.97771700
Н	1.48240100	-2.78191500	2.81338300
Н	1.13450100	-3.04074100	1.08912200
Η	3.11210900	0.46212200	2.72930000
Η	1.33937500	0.30117400	2.82876400
Н	2.39218100	-0.84237900	3.68253900
Н	1.59958200	2.11369600	-1.75973800
Н	3.18001400	2.89462400	-1.58606600
Н	3.08119200	1.31867100	-2.37746300
Η	4.55060100	0.91333900	1.16225300
Н	4.90002700	1.99131200	-0.18982900
Н	4.78412100	0.24799100	-0.46623200
Η	1.47799700	2.90582900	0.48736000
Η	2.35252900	2.13716000	1.83583400
Н	3.19038100	3.22764500	0.73316800
Н	4.35264400	-1.72029900	-1.23128500
Н	3.76161400	-2.02862300	-2.86885600
Н	4.01820300	-0.36683400	-2.33649500
Н	0.25092600	-1.11729100	-2.44854000
Н	1.56314700	-1.44596900	-3.61282900
Н	1.38136400	0.17567600	-2.91399300
Н	2.51495100	-3.34883700	-0.61248700
Н	0.79918900	-2.94343000	-1.01112600
Н	1.95963800	-3.36696800	-2.28714000
Н	0.20309400	1.74522800	1.55026800
F	-0.87694700	-2.00502400	-0.86553000

A29

 $((tBu)_3P)Pd(Ph)(F)(BF_3(CH=CH_2))$ rearrangement isomer S4

Cartesian coordinates for rearrangement isomer ${\bf S4}$

Sum of elec	ctronic and therm	al free energie	s: -1675.649115
Pd	-0.88050600	0.09648900	0.73314900
С	-1.50381000	2.27439600	1.75889800
С	-1.49278700	2.51368300	0.42418400
F	-2.97022200	3.43188800	-1.29901900
F	-2.13642500	1.33342300	-1.69299100
В	-2.66152500	2.21263700	-0.68594000
F	-3.77899800	1.63367800	-0.11315200
С	-1.25166800	-1.77163200	0.15302300
С	-1.22545500	-2.86139200	1.02145500
С	-1.63268000	-4.11782900	0.57695400
С	-2.09783400	-4.28573400	-0.72616500
С	-2.18370300	-3.18105900	-1.56980600
С	-1.76916000	-1.92241400	-1.13317400
Р	1.39518600	0.12904600	-0.08986500
С	2.33280900	1.09729100	1.31771500
С	3.85535100	0.94755100	1.38680200
С	1.75480900	0.66006000	2.67289600
С	2.04669400	2.59695300	1.18319400
С	1.77989600	1.02788300	-1.76486500
С	1.39178100	0.09121500	-2.91360100
С	3.22443000	1.49018800	-1.97585400
С	0.87376900	2.25270800	-1.91956000
С	2.30030000	-1.59642500	-0.20926400
С	3.72615800	-1.54960900	-0.77436000
С	1.53125400	-2.61295900	-1.07255000
С	2.35655100	-2.22162800	1.18905000
Η	-0.72751600	2.65710200	2.43195200
Н	-2.33918900	1.75672900	2.22927800
Н	-0.90684900	-2.72090200	2.05491500

Η	-1.59805300	-4.96953000	1.25857500
Н	-2.41704400	-5.26896100	-1.07307000
Η	-2.58599600	-3.29387900	-2.57771900
Η	-1.87457800	-1.04844300	-1.77829300
Η	4.35882300	1.24551800	0.45883300
Η	4.22761700	1.61201100	2.18360900
Η	4.17889100	-0.06654500	1.64735700
Η	0.66143300	0.75725900	2.70843600
Η	2.18421300	1.30211500	3.45932300
Η	1.99871800	-0.37590200	2.92751300
Η	2.57466600	3.05517000	0.33830100
Η	0.97925600	2.81314500	1.08461400
Η	2.40401000	3.10021400	2.09563700
Η	0.37643100	-0.30955200	-2.78516200
Η	1.39505200	0.67200400	-3.84884300
Η	2.09295000	-0.74079900	-3.04864400
Н	3.51616600	2.28033500	-1.27296100
Η	3.29949600	1.92443200	-2.98604400
Н	3.96512900	0.68689400	-1.91418900
Η	-0.18942500	1.98788300	-1.87535900
Η	1.07781200	3.03488100	-1.18195800
Η	1.06926100	2.69147000	-2.91140500
Η	4.37786400	-0.80867500	-0.30330500
Η	4.18791200	-2.53748500	-0.61460000
Η	3.73068400	-1.37393100	-1.85749200
Η	0.65320200	-3.00233600	-0.55580200
Η	2.20814900	-3.46207100	-1.26223100
Η	1.20146600	-2.23430200	-2.04179800
Η	3.09469600	-1.74847200	1.84704200
Н	1.37567200	-2.20330300	1.68117900
Η	2.64977500	-3.27824600	1.08305200
Η	-0.64507200	3.10312800	0.05491700
F	-2.42243900	-0.36141100	1.95486700

Transmetalation structures III-V

Structure III

Cartesian coordinates for Structure III

sum of ele	ctronic and therma	al free energies	5: -16/5.65104
Pd	0.79572400	-0.32407800	-0.53135300
С	3.05715600	-1.55743900	-1.93477300
С	2.80180800	-0.63653600	-0.98687800
F	4.41931300	-1.73419100	0.75730400
F	2.54144900	-1.01549100	1.80500000
В	3.07079300	-1.77010500	0.81163800
F	2.49099000	-2.95900800	0.61284900
С	1.41774000	1.55721800	-0.20171500
С	1.23795300	2.51852600	-1.21033800
С	1.63523100	3.84449800	-1.04308500
С	2.25006900	4.24966900	0.13913100
С	2.48498800	3.30202500	1.13292100
С	2.08439900	1.97763600	0.96039300
Р	-1.58066000	-0.07512000	0.07083100
С	-2.62937600	0.30883500	-1.49414600
С	-4.12173400	-0.01960500	-1.42070300
С	-1.99053700	-0.46360800	-2.65549000
С	-2.49997500	1.79259100	-1.85053700
С	-2.05305100	1.23890600	1.41376200
С	-1.42593100	0.79284200	2.74009600
С	-3.54985200	1.49650800	1.61404300
С	-1.40924100	2.60014600	1.11318100
С	-2.16357800	-1.79259600	0.76489600
С	-3.45483200	-1.79880300	1.58536400
С	-1.00284700	-2.33356000	1.61587600
С	-2.33974400	-2.81575900	-0.36551200
Н	4.00410300	-1.60010100	-2.48707900
Н	2.31063000	-2.32515000	-2.14996000
Н	0.77109100	2.22285700	-2.15422100
Н	1.46546900	4.56610500	-1.84503900

of electronic and thermal free energies: -1675.651047 Sum

Н	2.55794100	5.28680900	0.27695300
Н	2.98803000	3.59625800	2.05646800
Н	2.29134300	1.24817100	1.74360000
Η	-4.63396500	0.52241800	-0.61595300
Н	-4.59821600	0.27869200	-2.36989000
Н	-4.31735500	-1.08908100	-1.28649700
Н	-0.93095600	-0.19515100	-2.77243300
Н	-2.52704800	-0.20969000	-3.58533600
Н	-2.02101900	-1.54818900	-2.52542000
Н	-3.09423900	2.43952900	-1.19280200
Н	-1.45694800	2.13649200	-1.83074700
Н	-2.88076100	1.93910300	-2.87443300
Η	-0.35327700	0.58289900	2.62113400
Η	-1.52439900	1.61355300	3.46879200
Н	-1.90457100	-0.08955200	3.17885300
Η	-3.98859800	2.01979700	0.75372900
Η	-3.67833700	2.15985300	2.48568700
Η	-4.14068900	0.59498500	1.80002100
Η	-0.31788000	2.54271300	1.09758400
Η	-1.73450100	3.05001400	0.17165200
Η	-1.69895900	3.29194000	1.92147600
Н	-4.32023600	-1.43196100	1.01589900
Η	-3.67317600	-2.84228900	1.86547400
Н	-3.38907900	-1.22922200	2.51996500
Н	-0.13530000	-2.53308800	0.97381800
Н	-1.32209100	-3.28485200	2.07395800
Н	-0.69105400	-1.66479900	2.42540800
Н	-3.22327300	-2.63033700	-0.98898500
Н	-1.42672200	-2.85753900	-0.97290000
Н	-2.48655700	-3.80209300	0.10540300
Н	3.56404700	0.13789500	-0.82656000
F	0.35906100	-2.24475900	-1.20347800

Cartesian coordinates for Structure IV

Sum of el	ectronic and therma	al free energies	s: -1675.65569
Pd	0.91598300	-0.36937300	-0.53224600
С	2.80719600	-1.56305000	-2.44547800
С	2.69313600	-0.67917800	-1.44960200
F	3.26545300	-1.81167400	1.22767000
F	1.17452600	-2.30619700	1.95667100
В	2.18256800	-2.56607000	1.13752500
F	2.26698300	-3.73609200	0.54784100
С	1.74982900	1.41090100	-0.09459500
С	1.81746400	2.49478800	-0.98475200
С	2.39385000	3.71360000	-0.62639700
С	2.96002300	3.88106300	0.63430400
С	2.96017300	2.80300000	1.51741500
С	2.37454900	1.59201700	1.15267400
Р	-1.52580100	0.11245200	0.05552900
С	-2.18692100	1.09411400	-1.47302400
С	-3.70018300	1.08145000	-1.69918600
С	-1.48863400	0.51868200	-2.71463300
С	-1.75097900	2.55996400	-1.38810600
С	-1.96469200	1.15636100	1.62294300
С	-1.76686500	0.26956700	2.85692500
С	-3.36366800	1.77401300	1.67987700
С	-0.94048200	2.28674300	1.77947000
С	-2.58386500	-1.50809000	0.16375600
С	-4.02351300	-1.36412200	0.66096200
С	-1.83627500	-2.49557900	1.07107100
С	-2.60588800	-2.19289600	-1.20958400
Η	3.75009900	-1.71202400	-2.98580600
Н	1.97061300	-2.19988300	-2.73641100

Sum of electronic and thermal free energies1075.055091	Sum	of	electronic	and	thermal	free	energies:	-1675	.655691
--	-----	----	------------	-----	---------	------	-----------	-------	---------

Н	1.41287300	2.38252200	-1.99442600
Н	2.40985800	4.53631600	-1.34471900
Н	3.41211600	4.83212800	0.91839500
Н	3.42270900	2.90529300	2.50147000
Н	2.38818900	0.76155300	1.86413500
Η	-4.25750800	1.49628500	-0.84933800
Η	-3.93175600	1.70746500	-2.57750100
Η	-4.09312300	0.08005100	-1.90747900
Η	-0.39468900	0.58782100	-2.62466100
Η	-1.80613600	1.09622500	-3.59922500
Η	-1.72302500	-0.53381000	-2.89782000
Η	-2.31690900	3.13138800	-0.64153600
Η	-0.68041300	2.66547200	-1.17327800
Η	-1.94142300	3.03426200	-2.36503700
Η	-0.79145200	-0.23810200	2.83451200
Н	-1.79046400	0.90709000	3.75570900
Η	-2.55079100	-0.48739800	2.97565600
Н	-3.50479600	2.55042300	0.91717600
Н	-3.49528300	2.26385100	2.65961400
Н	-4.16998700	1.04073900	1.57089100
Н	0.07758400	1.89645700	1.87808300
Η	-0.93070900	3.00254500	0.95274300
Н	-1.18199900	2.84710400	2.69822800
Η	-4.62313600	-0.65910000	0.07121400
Η	-4.51276100	-2.34956600	0.58581300
Η	-4.08184800	-1.06555000	1.71575800
Η	-0.85833700	-2.71318000	0.62639500
Η	-2.42297400	-3.42887200	1.11651500
Η	-1.69986100	-2.14613100	2.09858600
Η	-3.20903300	-1.66479100	-1.95781100
Η	-1.57768400	-2.34046300	-1.56680000
Н	-3.06148600	-3.18860000	-1.07931600
Н	3.57152100	-0.08557500	-1.16634900
F	0.37808800	-2.34351400	-0.91383500

Structure V

Cartesian coordinates for Structure V Sum of electronic and thermal free energies: 1675.710866 Pd 0.49256600 1.01039000 0.20786300 С 2.42440400 3.20089300 1.23702900 С 1.30978800 2.80899700 0.61761000 F -1.276044002.79932500 -1.56386000 F -3.33454500 2.75743500 -0.57379200В -1.992409003.02489900 -0.39126500 F -1.76441800 4.28631700 0.10458900 С 2.38362800 0.46829600 -0.11883200 С 3.21969800 -0.01845700 0.89577400 С 4.50742200 -0.47546900 0.62081000 С 5.00692400 -0.43374700 -0.67862200 С -1.69271700 4.20671100 0.08787400 С 2.91656700 0.53747200 -1.41464600 Р -0.71063200 -1.25100200 0.02744200 С -0.93654600 -1.80880600 1.86002800 С -1.99978500 -2.87341200 2.13557200 С -1.25912100 -0.55140500 2.67962800 С 0.39717300 -2.32940000 2.40375100 С 0.15791400 -2.71285700 -0.90336500 С 0.06949700 -2.44444000 -2.40982400С -0.37954300 -4.11669200 -0.61199000 С 1.66146400 -2.72769700 -0.59866000 С -2.48069900 -1.09622100 -0.74872600 С -3.18832900 -2.40123000 -1.12182900 С -2.34682400 -0.22842700 -2.00845300 С -3.41705200 -0.33404500 0.19709500 Η 2.60064000 4.25531200 1.47703300 Η 3.21785000 2.51115900 1.53327800 Η 2.85702300 -0.03700300 1.92683800 5.12744700 -0.86415000 Η 1.43105600

Н	6.01430700	-0.78983900	-0.89597900
Η	4.59158800	0.15040600	-2.71231000
Η	2.30707200	0.95022700	-2.22056200
Н	-1.81250400	-3.81029400	1.59678300
Н	-1.99425400	-3.10971300	3.21283700
Н	-3.01248700	-2.53625900	1.88810400
Η	-0.47012900	0.20816000	2.56994000
Н	-1.32289000	-0.83106400	3.74437100
Н	-2.20452400	-0.07836500	2.40105500
Η	0.65790800	-3.32210000	2.01612100
Η	1.22522300	-1.63974800	2.19168200
Η	0.31418700	-2.42273400	3.49868600
Н	0.40427300	-1.42639400	-2.65550600
Н	0.74072000	-3.14632500	-2.93015600
Н	-0.93444000	-2.59103400	-2.82312200
Н	-0.14230600	-4.43985100	0.41007400
Н	0.11451200	-4.83073600	-1.29195500
Н	-1.45938000	-4.21884200	-0.75902900
Н	2.15328200	-1.81566500	-0.94876900
Н	1.90438600	-2.84832300	0.45993000
Н	2.10721700	-3.58036600	-1.13716300
Н	-3.32090900	-3.07499300	-0.26475000
Н	-4.19437700	-2.14973100	-1.49520200
Н	-2.68501000	-2.95653500	-1.92232800
Н	-1.90919300	0.75437600	-1.79767600
Н	-3.35501500	-0.05087300	-2.41597600
Н	-1.75542100	-0.70366500	-2.79806100
Н	-3.72220900	-0.93034500	1.06574700
Η	-2.99328800	0.61573100	0.53008100
Н	-4.33253800	-0.08649100	-0.36222100
Н	0.56948100	3.57125700	0.34007200
F	-1.49638400	2.06026100	0.59776200

Potassium (phenyl)trifluoroborate Association Complexes

Structure VI

Cartesian coordinates for Structure VI

Sı	JM	of	el	ectroni	c and	thermal	free	energies:	-1	829	.16	52	13	
----	----	----	----	---------	-------	---------	------	-----------	----	-----	-----	----	----	--

Pd	-0.06870800	0.18198300	-0.62196500
F	-2.11504500	0.96627200	-0.87878400
В	-2.92726100	0.91360800	0.35654200
F	-3.31601000	2.20667100	0.65595200
F	-2.04454000	0.43895600	1.36081200
С	0.45468700	2.08035500	-0.35919800
С	1.12761400	2.75457700	-1.38343100
С	1.36121300	4.12873100	-1.30228800
С	0.91395200	4.84810000	-0.19843600
С	0.20504100	4.18931500	0.80507300
С	-0.02921900	2.81914100	0.72517300
Р	1.90179300	-0.77239000	0.12431800
С	3.44965000	0.30950800	0.57383400
С	4.51904700	-0.43288600	1.38558200
С	3.06707000	1.56022400	1.38139500
С	4.09512400	0.84923600	-0.70768500
С	2.48431700	-2.03748900	-1.21905800
С	1.52772400	-3.23445100	-1.29400700
С	3.89952900	-2.59805800	-1.05672300
С	2.36650400	-1.31885700	-2.57108800
С	1.39647100	-1.73666300	1.71348400
С	2.34104800	-2.87781700	2.10116900
С	-0.01789700	-2.30488400	1.52840000
С	1.29495600	-0.76557000	2.89369300
Н	1.47150300	2.20331800	-2.26269800
Н	1.89267200	4.63663000	-2.10890600

Η	1.09889300	5.92032200	-0.12892200
Η	-0.18188400	4.75076400	1.65648100
Η	-0.61906600	2.31756400	1.49199200
Η	4.83653200	-1.38408800	0.94783100
Η	5.41069900	0.21149300	1.44809400
Η	4.19288800	-0.62025700	2.41616500
Η	2.56055800	2.30366200	0.76216000
Η	4.00039700	2.01330900	1.75357200
Η	2.43040700	1.36242500	2.24656000
Η	4.58162500	0.08078100	-1.31768000
Η	3.36750300	1.38902600	-1.32620000
Η	4.87285200	1.57386400	-0.41808100
Η	1.62803700	-3.91265700	-0.43748000
Η	0.48693700	-2.89521800	-1.38573800
Η	1.79569900	-3.81487900	-2.19203900
Η	4.69244600	-1.84565900	-1.13634800
Η	4.06809000	-3.32603500	-1.86626000
Η	4.02833500	-3.13838300	-0.10934700
Η	1.32487600	-1.02597100	-2.75846400
Η	2.99546200	-0.42489200	-2.65100600
Η	2.67609300	-2.01498700	-3.36734200
Η	3.37432000	-2.55488900	2.27046400
Η	1.97957900	-3.31731600	3.04448400
Η	2.35081800	-3.68403400	1.35890900
Η	-0.76433200	-1.50518000	1.44891500
Η	-0.25199800	-2.90668000	2.42184000
Η	-0.13409000	-2.93281000	0.64411400
Η	2.26881300	-0.41258800	3.25550400
Η	0.65928200	0.09752900	2.65330600
Η	0.81285000	-1.29743400	3.72844400
F	-0.86032800	-1.60772300	-1.25749700
С	-4.15671600	-0.09219000	0.12622200
С	-5.46238900	0.25219600	0.48578300
С	-3.94482600	-1.36953200	-0.41239100
С	-6.52489200	-0.63502700	0.32381300
Η	-5.64535700	1.24554600	0.89953700
С	-5.00039200	-2.26242000	-0.57829200
Η	-2.93155100	-1.64597400	-0.72050100
С	-6.29497100	-1.90008200	-0.20922300
Η	-7.53601600	-0.33930400	0.61137700
Η	-4.81443200	-3.25037800	-1.00402900
Η	-7.12201000	-2.60035400	-0.34093500

((tBu)₃P)Pd(Ph)(F)(BF₃(Ph)) association anion S5

Cartesian coordinates for association anion isomer S5 Sum of electronic and thermal free energies: -1829.160612

Pd	-0.05916500	-0.86761200	-0.19349600
F	1.06400700	0.89407000	-0.73781100
В	1.68408100	1.75207700	0.33890200
F	1.18978100	1.23094400	1.53441600
F	1.18955500	3.02725800	0.10754300
С	1.67708300	-1.85182600	-0.24829900
С	2.59914300	-1.60651200	-1.26490000
С	3.82346200	-2.27505100	-1.27612300
С	4.14123900	-3.17537500	-0.26369100
С	3.22119500	-3.41707600	0.75427900
С	1.98653700	-2.76994400	0.75512600
Р	-2.36486900	0.18148700	-0.05523600
С	-3.07160300	-0.32589500	1.66492000
С	-4.29345200	0.45178500	2.15524100
С	-1.92518500	-0.16502600	2.67504900
С	-3.42247300	-1.81881700	1.67355600
С	-3.51507600	-0.55529400	-1.41099200
С	-3.21873000	0.12167900	-2.75252300
С	-5.01762500	-0.44736500	-1.14609900
С	-3.14123300	-2.02959300	-1.61239700
С	-2.46239700	2.10037000	-0.18952400
С	-3.85444200	2.70924400	-0.36631000
С	-1.58761600	2.54525100	-1.37133900
С	-1.82228300	2.70531400	1.06597500
Н	2.37970100	-0.86974800	-2.03781200
Н	4.54293500	-2.06721100	-2.06934300
Н	5.10534300	-3.68514700	-0.26546200
Н	3.46186000	-4.12274200	1.55142600
Η	1.25215500	-2.98289200	1.53106100

Η	-5.14786800	0.37172000	1.46990700
Н	-4.61169100	0.02919100	3.12267300
Н	-4.08860700	1.51566200	2.32436800
Η	-1.05589900	-0.77186200	2.38602900
Н	-2.27535700	-0.51398800	3.66056300
Н	-1.57916000	0.86603000	2.79009000
Н	-4.32462500	-2.05050600	1.09295500
Н	-2.58001800	-2.41791300	1.30446800
Н	-3.63243700	-2.11008400	2.71588200
Н	-3.60800000	1.14470700	-2.81528600
Н	-2.14190100	0.13971600	-2.97105400
Н	-3.70825600	-0.45981400	-3.55023300
Η	-5.33307000	-1.03037600	-0.27273300
Η	-5.56353000	-0.85005900	-2.01578000
Н	-5.35137600	0.58775400	-1.00178400
Η	-2.09383200	-2.13237300	-1.92199300
Н	-3.26175400	-2.64502400	-0.71905100
Η	-3.78517400	-2.44190000	-2.40747000
Н	-4.54949500	2.44606600	0.44060900
Н	-3.75627100	3.80745700	-0.37002000
Н	-4.31788000	2.42908000	-1.32123600
Н	-0.58703600	2.10572400	-1.32589700
Н	-1.46226300	3.63805200	-1.31730200
Н	-2.03504600	2.31815700	-2.34359300
Н	-2.45771300	2.60415500	1.95424200
Н	-0.83337900	2.28287400	1.27911200
Н	-1.67341600	3.78244800	0.89373400
F	-0.87086200	-2.62058000	0.30399200
С	3.28101700	1.67050600	0.22269400
С	4.00978300	2.67129800	-0.42844600
С	4.00345700	0.60102900	0.76477500
С	5.39632600	2.61054300	-0.54580500
Н	3.46970500	3.52265000	-0.84558800
С	5.38883600	0.52577100	0.65275900
Н	3.46307500	-0.19707700	1.27748200
С	6.09169100	1.53238700	-0.00478100
Н	5.93814700	3.40704700	-1.05908000
Н	5.92048400	-0.32882100	1.07390000
Н	7.17764900	1.47683800	-0.09505600

((tBu)₃P)Pd(Ph)(F)(BF₃(Ph)) association anion isomer S6

Cartesian coordinates for association anion isomer ${\bf S6}$

Sum of el	lectronic and therm	al free energie	s: -1829.1550
Pd	-0.08145400	0.57931500	-0.61811800
F	-1.78858200	-0.91449100	-0.90416600
В	-2.58328000	-1.13663400	0.31937200
F	-1.88436200	-0.45139400	1.34141800
F	-2.54666400	-2.50567700	0.57820000
С	0.72932100	2.32203100	-0.10301200
С	1.54605100	3.15018900	-0.87162800
С	1.91712200	4.41299200	-0.40511900
С	1.45529900	4.87906000	0.82050000
С	0.57823600	4.08696500	1.55776400
С	0.20322600	2.82998800	1.09110500
Р	1.73447300	-0.86970000	-0.01405400
С	2.65430200	-0.32964500	1.60004700
С	3.57937600	-1.37553200	2.22889100
С	1.59520600	0.05816900	2.64007500
С	3.49159700	0.93178400	1.35441900
С	3.04124100	-0.89233500	-1.43650600
С	2.49536400	-1.69346000	-2.62274600
С	4.42225300	-1.44763800	-1.07977800
С	3.21421800	0.53273900	-1.96311200
С	1.19483100	-2.71605000	0.24515500
С	2.32561500	-3.75010200	0.27729900
С	0.22932700	-3.14904200	-0.86738300
С	0.41508900	-2.80821400	1.56257000
Η	1.89949100	2.82860300	-1.84876100
Н	2.56838800	5.03829700	-1.01803000
Н	1.75181200	5.86262100	1.18503800

54

Η	0.16420500	4.45563700	2.49708400
Η	-0.53007300	2.24326600	1.64716300
Η	4.35388600	-1.73903500	1.54282600
Η	4.09490700	-0.90717100	3.08279800
Η	3.03265800	-2.23876500	2.62461300
Η	1.01251300	0.92210100	2.30882400
Η	2.11253000	0.34002500	3.57173200
Η	0.89187600	-0.74362100	2.87650400
Η	4.38388600	0.74416900	0.74445400
Η	2.91190700	1.74085800	0.89566700
Η	3.84442100	1.29786000	2.33165700
Η	2.53410200	-2.77651700	-2.46240600
Η	1.46333400	-1.40910600	-2.87024700
Η	3.11974700	-1.47550400	-3.50382100
Η	4.95828400	-0.81530600	-0.36202500
Η	5.03319700	-1.47696200	-1.99692700
Η	4.39025000	-2.46712600	-0.67955800
Η	2.26855000	0.89616400	-2.38457700
Η	3.54220900	1.24912800	-1.20407400
Η	3.96856600	0.52305700	-2.76688800
Η	3.09592600	-3.55475500	1.03073900
Η	1.87512000	-4.72631500	0.51843900
Η	2.81719300	-3.86489900	-0.69713500
Η	-0.60460900	-2.45696300	-0.99470500
Н	-0.20329900	-4.11817900	-0.57548700
Η	0.72565400	-3.29663100	-1.83045400
Η	1.06981600	-2.74941000	2.44110900
Η	-0.37372100	-2.05064900	1.63889100
Η	-0.08789400	-3.78580000	1.59785300
F	-1.46339700	1.82199600	-1.33524800
С	-4.06910000	-0.57245800	0.11463100
С	-4.28242700	0.70447500	-0.42306300
С	-5.19119300	-1.31344900	0.49598400
С	-5.56948500	1.21664000	-0.56435600
Η	-3.41366900	1.28686100	-0.74403400
С	-6.48285600	-0.80848100	0.35867300
Η	-5.04309200	-2.31319900	0.90846700
С	-6.67515200	0.46360600	-0.17246700
Н	-5.71348500	2.21246100	-0.98736800
Н	-7.34243300	-1.40852400	0.66452400
Н	-7.68368500	0.86623800	-0.28399600

Potassium (phenyl)trifluoroborate π -Association Complexes

Structure VIII

Sum of electronic and thermal free energies: -1829.165066 *note that the C atoms are not those involved in C-C bond formation (not interacting with borate)

Pd	-0.21581200	0.04850800	1.00569400
F	-4.03004000	-2.45200100	-1.72893800
F	-1.91340600	-1.59495900	-1.96037000
В	-2.84761700	-2.18256300	-1.04112300
F	-2.27458400	-3.35380500	-0.53300500
С	-0.89928500	1.57346300	-0.08105900
С	-0.68528100	2.83800200	0.48003400
С	-1.24246300	3.97989200	-0.09463300
С	-2.01448100	3.87310500	-1.24878700
С	-2.22799000	2.61801900	-1.81291600
С	-1.67539200	1.47275300	-1.23883900
Р	1.86613500	-0.08458400	-0.12478300
С	3.22585200	0.73633700	0.95911900
С	4.64747500	0.21560500	0.73379800
С	2.84214500	0.53514000	2.42946000
С	3.23696400	2.25042600	0.73035800
С	2.06169900	0.59806900	-1.92629500
С	1.17503000	-0.23993900	-2.85697300
С	3.50535600	0.58077300	-2.44706500
С	1.57379100	2.04729500	-2.08026100

Cartesian coordinates for Structure VIII

С	2.19595500	-1.99495400	-0.21026900
С	3.30033900	-2.43833600	-1.17376800
С	0.87465000	-2.66929000	-0.60978200
С	2.55384700	-2.54984600	1.17423400
Η	-0.09093900	2.93533300	1.39345900
Η	-1.07240700	4.95562500	0.36370000
Η	-2.44852900	4.76375400	-1.70409100
Η	-2.83496100	2.52103400	-2.71444500
Η	-1.86058300	0.49558000	-1.68669900
Η	4.98905500	0.33897900	-0.30062000
Η	5.33610100	0.78946900	1.37547100
Η	4.75887900	-0.83935100	1.00679300
Η	1.89424800	1.03986600	2.66040700
Η	3.63468600	0.97505600	3.05744700
Н	2.70347700	-0.50978400	2.71410600
Н	3.68902300	2.53537700	-0.22748800
Н	2.22953100	2.68555900	0.78715700
Н	3.84389500	2.71365500	1.52465300
Н	0.14665900	-0.34594500	-2.48675600
Н	1.12497200	0.27001000	-3.83198300
Н	1.57039900	-1.24499300	-3.04033400
Н	4.11934800	1.35750900	-1.97164600
Н	3.48151000	0.81194700	-3.52413200
Н	4.01752900	-0.37797000	-2.33308600
Н	0.49127100	2.13245300	-1.97463000
Н	2.03893300	2.75597900	-1.39108300
Н	1.83267200	2.36896800	-3.10206000
Н	4.27764200	-1.99581900	-0.93733900
Н	3.40914300	-3.52933100	-1.07050400
Н	3.07167700	-2.24404400	-2.22761400
Н	0.11391900	-2.56679700	0.17173700
Н	1.06476800	-3.74683400	-0.73784500
Н	0.41913900	-2.30131000	-1.53255700
Н	3.56077200	-2.26577800	1.50713400
Н	1.80603500	-2.25188100	1.92052400
Н	2.54393800	-3.64868500	1.09450400
F	0.34445200	-1.23995000	2.53608700
С	-3.10461500	-1.10843500	0.15532300
С	-2.32002300	-1.12787300	1.32726900
С	-4.00787200	-0.05795200	0.03153400
С	-2.37896000	-0.09446000	2.28422600
Η	-1.71250000	-2.00789900	1.53755200
С	-4.10611800	0.96426600	0.98603500
Н	-4.64518900	-0.02489100	-0.85507400
С	-3.28350200	0.96496400	2.09883700
Н	-1.79778600	-0.18158900	3.20242700

Н	-4.81546100	1.78009400	0.83606000
Н	-3.33797100	1.77114400	2.83084300

$((tBu)_{3}P)Pd(Ph)(F)(BF_{3}(Ph))$ rearrangement π -complex S7

Cartesian coordinates for π -complex S7 Sum of electronic and thermal free energies: -1829.157902 -0.42986000 -0.74199700 -0.01346400 Pd F -1.23512000 2.62550000 -2.44978700 F -0.93968600 0.46171400 -1.72740100 В -1.88666600 1.66589200 -1.69228400 F 1.23516400 -2.29039400 -3.04953600 С -2.28494200 -1.49997500 -0.01548400 С -2.88537500 -1.88832300 1.18232700 С -4.19820600 -2.35386300 1.18507900 С -4.90992400 -2.46255700 -0.00843000 С -1.20534800 -4.29874700 -2.10247400 С -2.98935800 -1.61881100 -1.21280400 Р 2.05852300 -0.17555300 -0.00178500 С 2.64577000 0.72385300 1.59364000 С 4.12276600 0.55762500 1.95504000 С 1.76542700 0.22520200 2.74725700 С 2.35799900 2.22382800 1.48637600 С 2.72392400 0.82305500 -1.50921400 C 2.52210100 -0.02031100 -2.77309100 С 4.18182300 1.28146600 -1.44292600 С 1.84271600 2.06221800 -1.70967300 С 2.91268300 -1.91311400 -0.04388900

С	4.38371700	-1.93984300	-0.46107600
С	2.10384400	-2.79320400	-1.01021500
С	2.79185000	-2.59817400	1.32333800
Η	-2.31503100	-1.81921100	2.10716300
Η	-4.66796500	-2.63858400	2.12849200
Η	-5.93794000	-2.82712600	-0.00457000
Η	-4.84669700	-2.18028800	-2.14558300
Η	-2.54129500	-1.29183700	-2.14892600
Η	4.79407600	0.91431400	1.16314000
Η	4.33566600	1.15496100	2.85726500
Η	4.39250000	-0.47873100	2.18682500
Η	0.71231700	0.47972200	2.56762500
Η	2.09058200	0.72721600	3.67386100
Η	1.80565100	-0.85455800	2.90522200
Η	3.04623200	2.74886900	0.81267600
Η	1.32436300	2.41911700	1.17136100
Η	2.48240100	2.66880800	2.48709300
Η	1.48544900	-0.37460100	-2.85733200
Η	2.72176700	0.61416300	-3.65093200
Η	3.19990500	-0.87971800	-2.83601500
Η	4.34764000	2.01458700	-0.64297200
Η	4.43621500	1.78348500	-2.39120600
Η	4.89521500	0.46125000	-1.30527900
Η	0.78497600	1.80446100	-1.80857200
Η	1.94731800	2.80392300	-0.91320800
Η	2.14799000	2.55433800	-2.64733100
Η	5.02048000	-1.32618600	0.18974100
Η	4.74847700	-2.97781200	-0.38792800
Η	4.54318700	-1.61897800	-1.49799100
Η	1.05955100	-2.88347600	-0.68106900
Η	2.54699000	-3.80277800	-1.01762700
Η	2.10195600	-2.42795200	-2.04194900
Η	3.43593100	-2.15009700	2.08949900
Η	1.74979600	-2.59338700	1.66630200
Η	3.11833000	-3.64475100	1.20638000
F	-0.10543100	-1.91662800	1.56689200
С	-2.06344400	2.09377700	-0.15555600
С	-3.08453500	1.56495200	0.64253200
С	-1.17430600	2.98606400	0.45398200
С	-3.18892500	1.87472300	1.99513000
Η	-3.80013800	0.87611300	0.19090600
С	-1.26800000	3.30930500	1.80622800
Η	-0.39135100	3.44043300	-0.15809300
С	-2.27405900	2.74348000	2.58553600
Η	-3.98358100	1.42689400	2.59366700
Η	-0.55279000	4.00242400	2.25416500

	Cartesian coordina	tes for Structu	re VII	
Sum of electronic and thermal free energies: -1829.138831				
Pd	-0.44816300	0.39896200	-0.62853400	
F	-2.85245400	-1.86120600	2.44566900	
F	-1.76979600	0.12923300	2.14207000	
В	-2.98746400	-0.58677100	1.86749200	
F	-4.04973800	0.10465100	2.44103500	
С	0.08892800	2.25099400	-0.18543100	
С	0.60151700	3.12128900	-1.14354600	
С	0.87724000	4.44307300	-0.79609200	
С	0.60672000	4.90132900	0.49159400	
С	0.03246400	4.03778100	1.42166500	
С	-0.23806600	2.71021800	1.08833100	
Р	1.58193400	-0.69364200	0.05136000	
С	1.87089400	-1.92050300	-1.42970200	
С	3.28127200	-2.49303600	-1.59362300	
С	1.48411900	-1.20180800	-2.73203100	
С	0.92001900	-3.11534500	-1.30678700	
С	1.56542900	-1.74096800	1.67619000	
С	1.68967400	-0.78739300	2.86905200	
С	2.62976600	-2.83461900	1.79738400	
С	0.19112400	-2.39418300	1.83630000	
С	3.18249200	0.40839100	0.14030800	
С	4.43784800	-0.30816700	0.65250100	
С	2.97111600	1.63524300	1.04500600	
С	3.49267500	0.98205300	-1.24651200	
Η	0.76496800	2.77194800	-2.16350900	

Η	1.29170700	5.12187700	-1.54310200
Η	0.82046900	5.93575400	0.76161000
Η	-0.21782000	4.39887700	2.42002600
Η	-0.71630500	2.03713600	1.80102900
Η	3.62928700	-3.02888200	-0.70194200
Η	3.26509800	-3.21972300	-2.42225000
Η	4.02810500	-1.73452000	-1.85370700
Η	0.44138000	-0.85259900	-2.71647500
Η	1.59506400	-1.91087400	-3.56898600
Η	2.11230400	-0.33247700	-2.95079500
Η	1.20687000	-3.80968900	-0.50865000
Η	-0.11821300	-2.80938600	-1.14402000
Η	0.95082600	-3.67979300	-2.25252400
Η	0.94225100	0.01646000	2.81651300
Η	1.48012300	-1.35818400	3.78655100
Η	2.69050400	-0.35332000	2.97940500
Η	2.49436600	-3.63278700	1.05662600
Η	2.52305400	-3.30473100	2.78817300
Η	3.65918100	-2.46939100	1.72179100
Η	-0.60945100	-1.65012000	1.87206400
Η	-0.03579500	-3.13683000	1.06487400
Η	0.17258400	-2.92414200	2.80155500
Η	4.66595900	-1.24267800	0.13090100
Η	5.29865800	0.36448900	0.50728700
Η	4.38105400	-0.51834600	1.72753000
Η	2.36008200	2.39569500	0.55553100
Η	3.95997300	2.07984100	1.24320000
Η	2.50900700	1.41535700	2.00984100
Η	3.88737500	0.23938200	-1.94942300
Η	2.61428000	1.46541600	-1.69151400
Η	4.26594400	1.75836400	-1.13035600
F	-1.74992200	1.40495700	-1.75507000
С	-3.18642700	-0.73394200	0.25944200
С	-4.20953900	-0.07423600	-0.42285900
С	-2.35638400	-1.56947400	-0.51369000
С	-4.39726800	-0.22551500	-1.79400700
Η	-4.87546300	0.57301000	0.14795300
С	-2.53654900	-1.73188400	-1.89227300
Η	-1.63347800	-2.19486900	0.01057800
С	-3.56217800	-1.05272600	-2.53814600
Η	-5.20533300	0.31170700	-2.29336600
Η	-1.89072700	-2.40975300	-2.45680600
Η	-3.70822700	-1.16410400	-3.61271100

Structure IX

Heterocyclic trifluoroborate π -complexes

Cartesian coordinates for structure IX Sum of electronic and thermal free energies: -1921.566936 Pd -0.40517700 -0.20265000 -0.38872700 С -0.72710900 -0.04158000 -2.72452700 С -3.05856300 0.01989400 -1.15939300 С -0.61008000 1.77364400 -0.17933600 С -1.02952300 2.40661900 0.99529600 С -1.24424600 3.78300200 1.01968900 С -1.03688200 4.55732900 -0.12115700 С -0.62078800 3.93921800 -1.29709500 С -0.41211300 2.55946000 -1.32250900 Р 1.95522800 -0.23241300 0.04129700 С 2.13635500 -1.18216300 1.70604800 С 3.51846400 -1.79256300 1.95409400 С 1.08075200 -2.29578900 1.75970300 С 1.80419200 -0.24841400 2.87400400 С 2.98211200 1.41175800 0.20116200 С 3.12291100 2.06288700 -1.18049400 С 4.37694800 1.23552500 0.81588700 C C 2.26127500 2.46553700 1.05715900 2.81812500 -1.26552500 -1.35891200 С 4.34204700 -1.14466500 -1.45305300 С 2.17744600 -0.80171800 -2.67502100 С 2.51133100 -2.76516000 -1.24308300 Η -1.22055300 1.81084500 1.88535500

Η	-1.58523800	4.25477000	1.94228900
Η	-1.20449500	5.63435200	-0.09463400
Н	-0.46188400	4.52945300	-2.20134200
Н	-0.10740500	2.08168700	-2.25900400
Η	4.32680700	-1.05361800	1.95795600
Η	3.51008600	-2.26964900	2.94721300
Η	3.77271300	-2.57266500	1.22819800
Η	0.07042700	-1.87099100	1.81311000
Η	1.25522300	-2.87494700	2.68149400
Η	1.10672000	-2.97692900	0.90669800
Η	2.57941400	0.50516500	3.06162500
Η	0.83186800	0.24331600	2.73659900
Η	1.72404000	-0.86274500	3.78440200
Η	2.14284200	2.21435900	-1.65046700
Н	3.57149300	3.05989800	-1.04304900
Н	3.76687500	1.51179100	-1.87335000
Н	4.32035500	1.03995400	1.89419000
Н	4.92658400	2.18320600	0.69549000
Н	4.98149300	0.44893500	0.35606600
Н	1.42011700	2.91226200	0.52524300
Н	1.88613000	2.09418600	2.01343300
Н	2.98404500	3.26925400	1.27315900
Н	4.84409300	-1.50140800	-0.54347700
Н	4.67720500	-1.79419500	-2.27742900
Н	4.70697900	-0.13684900	-1.67734600
Н	1.10338100	-1.02879800	-2.67086600
Н	2.64282100	-1.35218500	-3.50882200
Н	2.30763700	0.26898900	-2.87246200
Н	3.02418200	-3.24378100	-0.40000400
Н	1.43085000	-2.93013000	-1.17491200
Н	2.88926000	-3.24778000	-2.15937800
F	-0.25530500	-2.18085000	-0.92907600
В	-2.90789300	-0.37501300	1.55870200
F	-3.44304700	0.90938200	1.70619600
F	-3.77518700	-1.32148200	2.10595800
F	-1.67126900	-0.44213700	2.25954900
Ċ	-3.45942200	1.43571700	-1.34999400
H	-4.51104700	1.45843900	-1.66845400
Н	-3.35984700	1.98169500	-0.40893900
Н	-2.86120500	1,93331900	-2.12324700
0	-3.26966800	-0.76502200	-2.23146000
N	-3 14253100	-2 10990700	-1 84014500
C	-2.82354800	-2.07368000	-0.57774100
Č	-2.66590900	-3.33577800	0.18683400
н	-1.72081700	-3.31213100	0.73986500
Н	-3.48065000	-3.43269900	0.91351600
	2		0000

Structure \mathbf{X}

Cartesian coordinates for Structure ${\bf X}$

Sum of el	lectronic and therm	al free energie	s: -1827.018056
Pd	-0.46783000	-0.29516200	0.68011000
С	-2.52581500	-0.91962400	1.58621800
С	-2.87597000	-1.01677100	0.23660000
F	-3.80208200	-2.54022500	-1.46247300
F	-1.88976200	-1.41180700	-2.02465800
В	-2.58317100	-2.07536900	-0.98406700
F	-1.80164600	-3.11970700	-0.49115500
С	-1.12344000	1.45559500	-0.02632800
С	-1.04773000	2.55269100	0.84108000
С	-1.56709600	3.79567000	0.48092200
С	-2.18204800	3.96194500	-0.75711300
С	-2.28356100	2.87106900	-1.61846200
С	-1.75896200	1.62952900	-1.26128600
Р	1.80208600	-0.00898500	-0.05108800
С	2.86658500	0.57591300	1.44093100
С	4.35967000	0.24959500	1.35528700
С	2.28273000	-0.05909000	2.70848400
С	2.73176300	2.09009700	1.62590600
С	2.20720300	1.16786500	-1.53899400
С	1.57959400	0.56657500	-2.80262600
С	3.70293600	1.41234300	-1.77672100
С	1.56646900	2.55699400	-1.39654500
С	2.39672700	-1.78303800	-0.57242200
С	3.68691800	-1.84306000	-1.39484700
---	-------------	-------------	-------------
С	1.25746800	-2.42571700	-1.37612300
С	2.59984800	-2.67862300	0.65675700
Η	-1.95863800	-1.67470100	2.12531400
Η	-0.58807000	2.43295900	1.82637400
Η	-1.49318600	4.63602800	1.17362900
Η	-2.58891300	4.93199700	-1.04455700
Η	-2.78078700	2.98391800	-2.58322300
Η	-1.87187900	0.77291300	-1.92590000
Η	4.84234200	0.68815200	0.47381900
Η	4.86106100	0.66826100	2.24351200
Η	4.55825100	-0.82731900	1.35269000
Η	1.25407500	0.28496200	2.88181200
Η	2.90469700	0.24524500	3.56692200
Η	2.23091800	-1.14926400	2.67482500
Η	3.29501300	2.66455300	0.87996200
Η	1.68417400	2.41928800	1.60466400
Η	3.14294400	2.35377500	2.61360500
Η	0.52089300	0.31514700	-2.65079400
Η	1.63038700	1.31853000	-3.60602500
Η	2.09762300	-0.32833900	-3.16361400
Η	4.13412500	2.06416100	-1.00525100
Η	3.81592200	1.94226900	-2.73652500
Η	4.30887700	0.50460400	-1.83387100
Η	0.47820700	2.51540100	-1.46544500
Η	1.82675500	3.08292200	-0.47547000
Η	1.92994200	3.17109700	-2.23671800
Η	4.54906000	-1.40671400	-0.87234900
Η	3.92015200	-2.90586600	-1.56623600
Η	3.60407000	-1.37689900	-2.38355400
Η	0.34794200	-2.56276100	-0.77865300
Η	1.59458300	-3.42471500	-1.69782600
Η	0.97714100	-1.87077300	-2.27582700
Η	3.48344700	-2.40865200	1.24938500
Η	1.69950800	-2.67586400	1.28462800
Η	2.76634500	-3.70328900	0.28730200
F	0.06722400	-1.95785400	1.80301500
С	-3.29503300	0.16537000	2.14393600
Η	-3.27717000	0.52555000	3.16598000
0	-3.78723400	-0.03426300	-0.02406800
С	-4.02128100	0.66201900	1.11944100
Η	-4.70265100	1.49886000	1.02442200

Section 5: Spectroscopic Data

A62

Section 6: Chromatographic Data

SFC Chromatogram, (S)-1.3c

Racemic SFC Chromatogram, 1.4c

SFC Chromatogram, (S)-1.4c

Section 7: References

(1) Yamamoto, T.; Yamakawa, T., Nickel-Catalyzed Vinylation of Aryl Chlorides and Bromides with Vinyl ZnBr·MgBrCl. *J. Org. Chem.* **2009**, *74*, 3603-3605.

(2) Stewart, S. G.; Braun, C. J.; Ng, S.-L.; Polomska, M. E.; Karimi, M.; Abraham, L. J., New thalidomide analogues derived through Sonogashira or Suzuki reactions and their TNF expression inhibition profiles. *Bioorg. Med. Chem. Lett.* **2010**, *18*, 650-662.

A81

Appendix B: Supporting Information for Chapter 2

Section 1: DoE Study Details

The DoE study was designed using StatEase[®] software. Parameters selected for testing in the study were as follows: volume of tetrahydrofuran (high value, 200 μ L, low value, 75 μ L), volume of buffer (high value, 240 μ L, low value, 30 μ L), buffer concentration (high value, 2 M, low value, 1 M), and buffer pH (high value, 4.2, low value, 3.6). The parameters were arranged by StatEase[®] into 16 experiments. The procedure for the experiments was as follows:

Under ambient conditions, a 16-well plate containing glass reaction tubes equipped with PTFEcoated magnetic stir bars was charged 17 mg zinc powder (0.26 mmol, 16 equiv) and **2.17a** (10 mg, 16 µmol, 1.0 equiv) for each reaction. The corresponding amounts of tetrahydrofuran and buffer (see **Table S2-1**) were charged via adjustable automatic micropipette. The reactions were stirred for 16 h, after which they were filtered through a Celite[®] plug and concentrated by streams of compressed air. The yields of the reactions were assessed by quantitative ¹H NMR in DMSO-*d*₆ using 1,3,5trimethoxybenzene as an internal standard. Yields are listed in **Table S2-1**. The reaction yields were assessed using the StatEase[®] software. The buffers were prepared beforehand using a mixture of sodium acetate and acetic acid in water, using

<u>https://www.liverpool.ac.uk/pfg//Tools/BuffferCalc/Buffer.html</u> to calculate the requisite reagent amounts.

Figure S2-1 shows the variables which were assessed by the software as having the most impact. Three relationships were evaluated to be above the requisite t-value limit (statistically significant): The relationship between the amount of buffer and the buffer pH, the ratio between THF and buffer, and the relationship between the ratio of THF, water, and the buffer pH. The most important relationship was the amount of buffer and the buffer pH used, as this correlation was above the Bonferroni limit (statistically significant and unlikely to be a false positive.

The StatEase[®] software also calculated the theoretical "best conditions" for future runs of the reaction (**Figure S2-2**). These were the final conditions used for the hydrolysis of **2.17a** and **2.17b**. The theoretical yield for these conditions was 137%, indicating some possible sources of error in the statistical analysis. However, these conditions worked well for the reaction. The predicted "best conditions" were reproduced using the same procedure with 33 µmol **2.17a** before running a full-scale reaction. The calculated conditions gave an isolated 92% yield of **2.28a**.

				Factor 3:	Factor	
		Factor 1: THF	Factor 2: Buffer	Buffer	4: Buffer	Yield
Std	Run	volume (mL)	volume (mL)	molarity (M)	pН	(%)
14	1	0.2	0.03	2	4.2	63
15	2	0.075	0.24	2	4.2	21
13	3	0.075	0.03	2	4.2	30
7	4	0.075	0.24	2	3.6	30
16	5	0.2	0.24	2	4.2	0
5	6	0.075	0.03	2	3.6	57
9	7	0.075	0.03	1	4.2	72
2	8	0.2	0.03	1	3.6	0
6	9	0.2	0.03	2	3.6	0
4	10	0.2	0.24	1	3.6	33
12	11	0.2	0.24	1	4.2	0
10	12	0.2	0.03	1	4.2	93
1	13	0.075	0.03	1	3.6	63
3	14	0.075	0.24	1	3.6	3
11	15	0.075	0.24	1	4.2	39
8	16	0.2	0.24	2	3.6	33

Table S2-1: DoE Reaction Parameters and Yields

Figure S2-1: DoE Reaction Analysis—Pareto Chart

Figure S2-2: DoE Reaction Analysis—Calculated Best Conditions

Figure S2-3. Aryl alkenes used in this study

Section 3: Synthetic Procedures and Compound Characterization

General Synthetic and Characterization Information

All reactions were conducted in flame-dried glassware under an inert atmosphere of dry nitrogen or argon, unless otherwise noted. All reagents were purchased, unless otherwise noted, from Oakwood, CombiBlocks, Millipore Sigma, Ambeed, and WuXi and used as received. Anhydrous dichloromethane was obtained from a Grubbs-type solvent purification system and further dried under an argon atmosphere for 24 hours over 4 Å molecular sieves. Molecular sieves were activated by heating under vacuum (<1 torr) for three hours at 300 °C.

Proton (¹H) NMR spectra were recorded at 400 MHz on Varian and Bruker spectrometers, 500 MHz on an Inova-500 spectrometer, or 600 MHz on an Inova-600 spectrometer. Proton-decoupled carbon (¹³C{¹H}) NMR spectra were recorded at 100 MHz on Varian and Bruker spectrometers or 151 MHz on an Inova-600 spectrometer. NMR spectra were recorded in deuterated solvents and were referenced to tetramethylsilane (in the case of CDCl₃) or the respective residual solvent signal. NMR chemical shifts were reported in parts per million (ppm). Abbreviations for signal couplings are as follows: s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; sex, sextet; sep, septet; and m, multiplet. The coupling constants were taken from the spectra directly and are uncorrected.

Mass spectrometric determinations were carried out on a Thermo Finnigan LTQ-FTMS spectrometer with atmospheric pressure chemical ionization (APCI), using a Fourier transform ion cyclotron resonance mass analyzer. Optical rotations were measured on a Rudolph Research Analytical Automatic Polarimeter, APIV-1W. Analytical thin layer chromatography was performed on silica gel plates using ultraviolet light to visualize analytes. Normal phase column chromatography was performed with SiliCycle silica gel 60 Å (50 µm) hand-packed in Biotage Sfaë columns on Biotage Isolera Four chromatographs, with SiliCycle silica gel 60 Å or Celite® as a dry-loading absorbent. Reverse phase chromatography was conducted using Teledyne ISCO RediSep Gold 18 reverse-phase columns using Teledyne ISCO CombiFlash or Biotage Isolera chromatographs. Supercritical fluid chromatography (SFC) analysis was performed on a Waters Acquity UPC2 instrument.

Purity of key compounds was assessed using SFC analysis (Waters Acquity UPC2 instrument), high-performance liquid chromatography analysis (HPLC) on an Agilent 1260 Infinity HPLC, or Waters AutoPurification System. All key compounds were \geq 95% pure by HPLC or SFC analysis.

Dirhodium catalysts $Rh_2(S-p-Ph-TPCP)_{4,1} Rh_2(R-p-Ph-TPCP)_{4,1} Rh_2(S-tetra-p-Br-PPTL)_{4,2}^2$ and $Rh_2(R-tetra-p-Br-PPTL)_{4,2}^2$ were prepared according to their respective literature procedures. Racemic standards were prepared by using a 1:1 mixture of *R* and *S* catalyst under the same reaction conditions used to prepare enantioenriched compounds.

Aryl alkenes **2.1-2.6** were prepared following the procedure outline in the supporting information for Chapter 1 in 84-93% yield.

Caution! Glutarimide-containing compounds such as thalidomide are known reproductive, neurological, and hematological toxins. Care must be exercised to avoid direct contact with glutarimide-containing material; any glassware used with glutarimide-containing material should be treated with a 2 M aqueous solution of a strong base such as sodium hydroxide to destroy the material.

Compound Synthesis and Characterization Synthesis of Starting Materials

2.7

3-(4-ethynyl-1-oxoisoindolin-2-yl)piperidine-2,6-dione (2.7)

3-(4-bromo-1-oxoisoindolin-2-yl)piperidine-2,6-dione (1.00 g, 1.0 equiv, 3.1 mmol) and Pd(PPh₃)₂Cl₂ (217 mg, 10 mol%, 0.30 mmol) were added to a flame-dried round-bottom flask under inert atmosphere. Dry *N*,*N*-dimethylformamide (14.6 mL) was added via syringe, and the mixture was degassed with N₂ for 30 min. Diisopropylethylamine (1.77 mL, 3.2 equiv, 9.9 mmol) and ethynyltrimethylsilane (2.2 mL, 5.0 equiv, 15.5 mmol) were charged via syringe, and finally CuI (59 mg, 10 mol%, 0.30 mmol) was charged. The reaction was heated to 65 °C in an oil bath overnight, after which it was cooled to room temperature. The reaction was filtered through Celite[®] and poured into ethyl acetate. The solution was washed with water and thrice with saturated aqueous sodium chloride solution, then dried over magnesium sulfate. The solution was filtered and concentrated in vacuuo onto silica gel, then purified by flash column chromatography (SiO₂ 0-40% acetone in CH₂Cl₂). The residue from the concentrated fractions were taken up in CH₂Cl₂, precipitated with hexanes, and the solid was collected by vacuum filtration. The material was carried forward to the next step without further purification.

3-(1-oxo-4-((trimethylsilyl)ethynyl)isoindolin-2-yl)piperidine-2,6-dione (650 mg, 1.0 equiv, 1.9 mmol) was added to a flame-dried flask under inert atmosphere. Dry THF (7.0 mL) was added via syringe, and the mixture was cooled to 0 °C. TBAF (2.3 mL, 1.0 molar in THF, 1.2 equiv, 2.3 mmol) was added dropwise to the cooled reaction over 30 min by syringe pump. The reaction was quenched with 40 mL 0.1 M citric acid after addition of the THF solution, then diluted with CH₂Cl₂. The organic layer was separated and concentrated in vacuuo. The residue was suspended in CH₂Cl₂

and thrice the volume of hexanes was added. The solid was isolated via vacuum filtration, giving **2.7** (496 mg, 1.85 mmol, 60% overall yield) as a light brown amorphous solid.

HRMS (APCI) m/z: [M+H]⁺ calcd for C₁₅H₁₃O₃N₂ 269.0921; Found 269.0923 ¹H NMR (500 MHz, DMSO-*d*₆): δ 11.01 (s, 1H), 7.78 (dd, J = 7.6, 1.0 Hz, 1H), 7.74 (dd, J = 7.7, 1.0 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 4.62 (s, 1H), 4.50 (d, J = 17.8 Hz, 1H), 4.34 (d, J = 17.8 Hz, 1H), 2.92 (ddd, J = 17.3, 13.6, 5.4 Hz, 1H), 2.59 (ddt, J = 17.2, 4.4, 2.1 Hz, 1H), 2.53 – 2.40 (m, 1H, partially obscured by solvent signal at 2.50), 2.01 (dtd, J = 12.6, 5.2, 2.1 Hz, 1H). ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ 172.9, 170.9, 167.5, 144.4, 134.6, 132.1, 128.7, 123.7, 117.3, 86.1, 79.3, 51.7, 46.9, 31.2, 22.3.

2-(2,6-dioxopiperidin-3-yl)-4-ethynylisoindoline-1,3-dione (2.8)

4-bromo-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (1.0 g, 1.0 equiv, 2.97 mmol) and $Pd(PPh_3)_2Cl_2$ (208 mg, 10 mol%, 0.30 mmol) were added to a flame-dried round-bottom flask under inert atmosphere, and diisopropylethylamine (1.7 mL, 3.2 equiv, 9.5 mmol) was added via syringe along with dry *N*,*N*-dimethylformamide (30 mL). This mixture was degassed with N₂ for thirty minutes, and ethynyltrimethylsilane (2.1 mL, 5.0 equiv, 15 mmol) was added by syringe. CuI (57 mg, 10 mol%, 0.30 mmol) was then added and the reaction was heated to 65 °C in an aluminum heating block for two days. The reaction was cooled to room temperature and poured into ethyl acetate. The solution was washed with water and saturated aqueous sodium chloride solution. The organic layer was dried over magnesium sulfate and filtered, then concentrated. The reaction was dry-mounted onto silica gel and purified via flash column chromatography (SiO₂, 30-100% ethyl acetate in hexanes). The material from the isolated column fractions was then suspended in methanol and isolated via vacuum filtration, giving 2-(2,6-dioxopiperidin-3-yl)-4- ((trimethylsilyl)ethynyl)isoindoline-1,3-dione, which was carried to the next step without further purification.

(2,6-dioxopiperidin-3-yl)-4-((trimethylsilyl)ethynyl)isoindoline-1,3-dione (600 mg, 1.0 equiv, 1.69 mmol) was added to a flame-dried round-bottom flask under inert atmosphere. Dry tetrahydrofuran (6.2 mL) was added via syringe, and the reaction was cooled to 0 °C in an ice bath. TBAF (2.03 mL, 1.0 molar in THF, 1.2 equiv, 2.03 mmol) was added over 30 min via syringe pump to the cooled reaction. After addition of the TBAF solution, 30 mL 0.1 M aqueous citric acid solution was added. 50 mL ethyl acetate was added to form an organic layer and the aqueous layer was separated. The organic layer was concentrated in vacuuo, and the resulting residue was suspended in methanol. The solid was isolated by vacuum filtration, giving **2.8** (429 mg, 1.52 mmol, 51% overall yield) as a tan amorphous solid.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₁O₄N₂ 283.0713; Found 283.0716

¹**H** NMR (500 MHz, DMSO-*d*₆): δ 11.16 (s, 1H), 7.98 – 7.91 (m, 2H), 7.90 – 7.83 (m, 1H), 5.15 (dd, *J* = 12.9, 5.4 Hz, 1H), 4.77 (s, 1H), 2.89 (ddd, *J* = 17.1, 13.9, 5.4 Hz, 1H), 2.60 (dt, *J* = 16.9, 3.0 Hz, 1H), 2.57 – 2.44 (m, 1H, partially obscured by solvent signal at 2.50), 2.06 (dtd, *J* = 9.8, 5.0, 2.3 Hz, 1H).

¹³C{¹H} NMR (151 MHz, DMSO): δ 172.8, 169.8, 166.2, 165.5, 138.8, 134.8, 132.1, 130.9, 123.7, 118.3, 88.2, 78.5, 49.0, 30.9, 21.9.

2.9

3-(5-ethynyl-1-oxoisoindolin-2-yl)piperidine-2,6-dione (2.9)

Compounds 2.9 was prepared via an adaptation of a literature procedure.³ 3-(5-iodo-1oxoisoindolin-2-yl)piperidine-2,6-dione (553 mg, 1.0 equiv, 1.50 mmol), Pd(PhCN)₂Cl₂ (17 mg, 3 mol%, 45 µmol), tri-tert-butylphosphoniumtetrafluoroborate (28 mg, 6.5 mol%, 97 µmol) were added to a flame-dried flask under inert atmosphere. Ethynyltrimethylsilane (0.25 mL, 1.2 equiv, 1.8 mmol), dry 1,4-dioxane (3.1 mL), and diisopropylamine (0.25 mL, 1.2 equiv, 1.8 mmol) were added by syringe. The reaction was degassed with argon under sonication for 15 min, after which CuI (5.7 mg, 2 mol%, 30 µmol) was charged. The reaction was stirred at room temperature for 18 h, after which the reaction mixture was poured into ethyl acetate and filtered through Celite[®]. The reaction was partitioned between ethyl acetate and water, then extracted thrice into ethyl acetate. The combined organic layers were washed with saturated aqueous sodium chloride solution, and were then dried over magnesium sulfate, filtered, and concentrated in vacuuo. The material was drymounted onto silica gel and purified by flash column chromatography (SiO₂, 0-5% methanol in CH₂Cl₂. The material was then carried forward to the next reaction without further purification. 3-(1-oxo-5-((trimethylsilyl)ethynyl)isoindolin-2-yl)piperidine-2,6-dione (200 mg, 1.0 equiv, 0.59 mmol) was added to a flame-dried round-bottom flask under inert atmosphere. Dry tetrahydrofuran (4.8 mL) was added via syringe, and the reaction was cooled to 0 °C in an ice bath. TBAF (0.68 mL, 1.0 molar in THF, 1.2 equiv, 0.68 mmol) was added over 30 min via syringe pump to the cooled reaction. After addition of the TBAF solution, 30 mL 0.1 M aqueous citric acid solution was added. 50 mL ethyl acetate was added to form an organic layer and the aqueous layer was separated. The organic layer was concentrated in vacuuo, and the resulting residue was suspended in methanol. The solid was isolated by vacuum filtration, giving 2.9 (131 mg, 0.49 mmol, 33% overall yield) as a tan amorphous solid.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₃O₃N₂ 269.0921; Found 269.0923

¹**H** NMR (400 MHz, DMSO-*d*₆): δ 11.01 (s, 1H), 7.76 – 7.69 (m, 2H), 7.64 – 7.57 (m, 1H), 5.12 (dd, *J* = 13.3, 5.1 Hz, 1H), 4.47 (d, *J* = 17.5 Hz, 1H), 4.43 (s, 1H), 4.34 (d, *J* = 17.5 Hz, 1H), 2.91 (ddd, *J* = 17.2, 13.6, 5.4 Hz, 1H), 2.60 (d, *J* = 17.1 Hz, 1H), 2.39 (qd, *J* = 13.3, 4.5 Hz, 1H), 2.01 (ddd, *J* = 10.5, 5.0, 2.8 Hz, 1H).

¹³C{¹H} NMR (151 MHz, DMSO): δ 172.9, 170.9, 167.3, 142.4, 131.9, 131.6, 126.9, 124.9, 123.3, 83.0, 82.9, 51.7, 47.1, 31.2, 22.4.

2.10

2-(2,6-dioxopiperidin-3-yl)-5-ethynylisoindoline-1,3-dione (2.10)

5-bromo-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (3.0 g, 1.0 equiv, 8.9 mmol) and Pd(PPh₃)₂Cl₂ (625 mg, 10 mol%, 0.89 mmol) were added to a flame-dried round-bottom flask under inert atmosphere, and diisopropylethylamine (5.1 mL, 3.2 equiv, 9.5 mmol) was added via syringe along with dry *N*,*N*-dimethylformamide (42 mL). This mixture was degassed with N₂ for thirty minutes, and ethynyltrimethylsilane (2.1 mL, 5.0 equiv, 15 mmol) was added by syringe. CuI (169 mg, 10 mol%, 0.89 mmol) was then added and the reaction was heated to 65 °C in an aluminum heating block for two days. The reaction was cooled to room temperature and poured into ethyl acetate. The solution was washed with water and saturated aqueous sodium chloride solution. The organic layer was dried over magnesium sulfate and filtered, then concentrated. The reaction was dry-mounted onto silica gel and purified via flash column chromatography (SiO₂, 30-100% ethyl acetate in hexanes). The material from the isolated column fractions was then suspended in methanol and isolated via vacuum filtration, which was carried to the next step without further purification.

2-(2,6-dioxopiperidin-3-yl)-5-((trimethylsilyl)ethynyl)isoindoline-1,3-dione (1.65 g, 1.0 equiv, 4.7 mmol) was added to a flame-dried round-bottom flask under inert atmosphere. Dry tetrahydrofuran (16.4 mL) was added via syringe, and the reaction was cooled to 0 °C in an ice bath. TBAF (5.4 mL, 1.0 molar in THF, 1.2 equiv, 5.4 mmol) was added over 30 min via syringe pump to the cooled reaction. After addition of the TBAF solution, 50 mL 0.1 M aqueous citric acid solution was added. 50 mL ethyl acetate was added to form an organic layer and the aqueous layer was separated. The organic layer was concentrated in vacuuo, and the resulting residue was suspended in methanol. The solid was isolated by vacuum filtration, giving **2.10** (494 mg, 1.75 mmol, 20% overall yield) as a tan amorphous solid.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₁O₄N₂ 283.0713; Found 283.0713

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 11.16 (s, 1H), 8.10 – 7.73 (m, 3H), 5.17 (dd, *J* = 12.8, 5.4 Hz, 1H), 4.68 (s, 1H), 2.89 (ddd, *J* = 16.9, 13.8, 5.4 Hz, 1H), 2.69 – 2.48 (m, 2H, partially obscured by solvent signal at 2.50), 2.06 (ddd, *J* = 10.4, 5.5, 3.2 Hz, 1H).

¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ 173.2, 170.2, 166.9, 166.8, 138.5, 132.2, 131.3, 128.5, 126.6, 124.3, 85.9, 82.4, 49.6, 31.4, 22.4.

2.11

3-(6-ethynyl-1-oxoisoindolin-2-yl)piperidine-2,6-dione (2.11)

3-(6-bromo-1-oxoisoindolin-2-yl)piperidine-2,6-dione (713 mg, 1.0 equiv, 2.2 mmol) and Pd(PPh₃)₂Cl₂ (155 mg, 10 mol%, 0.22 mmol) were added to a flame-dried round-bottom flask under inert atmosphere, and diisopropylethylamine (1.3 mL, 3.2 equiv, 7.1 mmol) was added via syringe along with dry *N*,*N*-dimethylformamide (10.4 mL). This mixture was degassed with N₂ for thirty
minutes, and ethynyltrimethylsilane (1.6 mL, 5.0 equiv, 11 mmol) was added by syringe. CuI (42 mg, 10 mol%, 0.22 mmol) was then added and the reaction was heated to 65 °C in an aluminum heating block for two days. The reaction was cooled to room temperature and poured into ethyl acetate. The solution was washed with water and saturated aqueous sodium chloride solution. The organic layer was dried over magnesium sulfate and filtered, then concentrated. The reaction was dry-mounted onto silica gel and purified via flash column chromatography (SiO₂, 30-100% ethyl acetate in hexanes). The material from the isolated column fractions was then suspended in methanol and isolated via vacuum filtration, which was carried to the next step without further purification.

3-(1-oxo-6-((trimethylsilyl)ethynyl)isoindolin-2-yl)piperidine-2,6-dione (280 mg, 1.0 equiv, 0.82 mmol) was added to a flame-dried round-bottom flask under inert atmosphere. Dry tetrahydrofuran (2.9 mL) was added via syringe, and the reaction was cooled to 0 °C in an ice bath. TBAF (0.95 mL, 1.0 molar in THF, 1.2 equiv, 0.95 mmol) was added over 30 min via syringe pump to the cooled reaction. After addition of the TBAF solution, 30 mL 0.1 M aqueous citric acid solution was added. 50 mL ethyl acetate was added to form an organic layer and the aqueous layer was separated. The organic layer was concentrated in vacuuo, and the resulting residue was suspended in methanol. The solid was isolated by vacuum filtration, giving **2.11** (175 mg, 0.65 mmol, 30% overall yield) as a tan amorphous solid.

HRMS (APCI) *m/z*: $[M+H]^+$ calcd for C₁₅H₁₃O₃N₂ 269.0921; Found 269.0919 ¹H NMR (500 MHz, DMSO-*d*₆): δ 11.02 (s, 1H), 7.76 (dd, *J* = 1.5, 0.8 Hz, 1H), 7.74 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.65 (dd, *J* = 7.8, 0.9 Hz, 1H), 5.12 (dd, *J* = 13.3, 5.1 Hz, 1H), 4.50 (d, *J* = 17.9 Hz, 1H), 4.36 (d, *J* = 17.8 Hz, 1H), 4.31 (s, 1H), 2.91 (ddd, *J* = 17.3, 13.7, 5.4 Hz, 1H), 2.66 – 2.55 (m, 1H), 2.39 (qd, *J* = 13.3, 4.5 Hz, 1H), 2.01 (dtd, *J* = 11.5, 4.7, 1.7 Hz, 1H). ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ 172.9, 170.9, 167.1, 142.6, 135.0, 132.1, 125.9, 124.2, 121.5, 82.7, 81.5, 51.7, 47.3, 31.2, 22.4.

2.12

3-(7-ethynyl-1-oxoisoindolin-2-yl)piperidine-2,6-dione (2.12)

3-(7-bromo-1-oxoisoindolin-2-yl)piperidine-2,6-dione (1.0 g, 1.0 equiv, 3.1 mmol) and Pd(PPh₃)₂Cl₂ (217 mg, 10 mol%, 0.31 mmol) were added to a flame-dried round-bottom flask under inert atmosphere, and diisopropylethylamine (1.8 mL, 3.2 equiv, 9.9 mmol) was added via syringe along with dry *N*,*N*-dimethylformamide (14.6 mL). This mixture was degassed with N₂ for thirty minutes, and ethynyltrimethylsilane (2.2 mL, 5.0 equiv, 16 mmol) was added by syringe. CuI (59 mg, 10 mol%, 0.31 mmol) was then added and the reaction was heated to 65 °C in an aluminum heating block for two days. The reaction was cooled to room temperature and poured into ethyl acetate. The solution was washed with water and saturated aqueous sodium chloride solution. The organic layer was dried over magnesium sulfate and filtered, then concentrated. The reaction was dry-mounted onto silica gel and purified via flash column chromatography (SiO₂, 0-5% methanol in CH₂Cl₂). The material from the isolated column fractions was then suspended in methanol and isolated via vacuum filtration, which was carried to the next step without further purification.

Under inert atmosphere, a flask was charged with 3-(1-oxo-7-((trimethylsilyl)ethynyl)isoindolin-2yl)piperidine-2,6-dione (540 mg, 1.0 equiv, 1.6 mmol), followed by tetrahydrofuran (5.8 mL). The reaction was cooled to 0 °C in the ice bath. TBAF (1.9 mL, 1.0 molar in THF, 1.2 equiv, 1.9 mmol) in THF was added over 30 min to the cooled reaction. Following this, the reaction was quenched with 30 mL 0.1 M citric acid solution. The reaction was diluted with THF and saturated aqueous sodium chloride. The THF layer was washed with saturated aqueous sodium chloride, then concentrated. The material was purified by flash column chromatography (SiO₂, 0-10% methanol in CH₂Cl₂), the concentrated fractions of which were washed with 1:1 CH₂Cl₂:hexanes, affording **2.12** (176 mg, 0.66 mmol, 21% overall yield) as an amorphous tan solid.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₃O₃N₂ 269.0921; Found 269.0923

¹**H NMR** (500 MHz, DMSO-*d*₆): δ 11.01 (s, 1H), 7.80 – 7.50 (m, 3H), 5.07 (dd, *J* = 13.2, 5.1 Hz, 1H), 4.48 (s, 1H), 4.43 (d, *J* = 17.5 Hz, 1H), 4.30 (d, *J* = 17.5 Hz, 1H), 2.91 (ddd, *J* = 17.3, 13.7, 5.4 Hz, 1H), 2.60 (d, *J* = 17.8 Hz, 1H), 2.40 (qd, *J* = 13.2, 4.4 Hz, 1H), 2.01 (ddd, *J* = 9.8, 5.4, 2.7 Hz, 1H).

¹³C{¹H} NMR (151 MHz, DMSO): δ 172.9, 171.0, 166.4, 143.2, 133.0, 131.5, 131.4, 124.1, 118.0, 86.4, 79.9, 51.6, 46.7, 31.2, 22.3.

Preparation of Aryldiazoacetatess.

Figure S2-5. Aryldiazoacetatess used in this study

2.13

2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (2.13) was prepared via the literature procedure, in 90% yield.⁴

2.14

2,2,2-trichloroethyl 2-diazo-2-(4-(morpholinomethyl)phenyl)acetate (**2.14**) was prepared from 2-(4-(bromomethyl)phenyl)acetic acid in three steps. Following an adaptation of the literature procedure,⁴ 2-(4-(bromomethyl)phenyl)acetic acid (1.0 g, 1.0 equiv, 4.4 mmol), 2,2,2-trichloroethanol (0.51 mL, 1.2 equiv, 5.2 mmol), and 4-(dimethylamino)pyridine (53 mg, 10 mol%, 0.44 mmol) were dissolved in dry CH₂Cl₂ (10 mL), and cooled to 0 °C. A solution of dicyclohexylcarbodiimide (1.0 g, 4.8 mmol, 1.1 equiv) in CH₂Cl₂ (5.7 mL) was added dropwise to the cooled reaction, which was allowed to stir and come to room temperature overnight. The reaction was filtered through Celite® to remove the white precipitate that had formed, rinsing with diethyl ether, and the filtrate was concentrated in vacuuo. The material was filtered through a short plug of silica gel with diethyl ether, and concentrated in vacuuo. The product obtained was used in the next step without further purification.

Following a procedure from the literature,⁵ potassium carbonate (359 mg, 1.3 equiv, 2.6 mmol), morpholine (0.17 mL, 1.0 equiv, 2.0 mmol), and 2,2,2-trichloroethyl 2-(4- (bromomethyl)phenyl)acetate (793 mg, 1.1 equiv, 2.2 mmol) were combined in a flame-dried vial

under inert atmosphere, dissolved in dry acetonitrile (6.7 mL), and stirred at room temperature overnight. The acetonitrile was removed in vacuuo and the residue was partitioned between water and ethyl acetate. The aqueous layer was extracted thrice with ethyl acetate, after which the organic layers were washed with brine, dried over magnesium sulfate, and concentrated in vacuuo. The material was filtered through a silica plug with diethyl ether. The product obtained was used in the next step without further purification.

Following the literature procedure,⁴ 2,2,2-trichloroethyl 2-(4-(morpholinomethyl)phenyl)acetate (475 mg, 1 equiv, 1.3 mmol) and 2-nitrobenzenesulfonyl azide (443 mg, 1.5 equiv, 1.9 mmol) were taken up in dry acetonitrile (7.2 mL) and cooled to 0 °C. 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine (0.43 mL, 2.2 equiv, 2.9 mmol) was added dropwise to the cooled reaction. The reaction was allowed to stir for three hours at 0 °C, after which the reaction was quenched with a saturated solution of ammonium chloride in water. The reaction was extracted with three portions of diethyl ether. The combined organic layers were washed with brine, dried over magnesium sulfate, and concentrated in vacuuo. The crude residue was purified via flash column chromatography (SiO₂, 10-30% EtOAc in hexanes), which gave 2,2,2-trichloroethyl 2-diazo-2-(4-(morpholinomethyl)phenyl)acetate (345 mg, 0.88 mmol, 68% yield) as a yellow-orange amorphous

(morpholinomethyl)phenyl)acetate (345 mg, 0.88 mmol, 68% yield) as a yellow-orange amorphous solid.

HRMS (APCI) m/z: [M+H]⁺ calcd for C₁₅H₁₇O₃N₃³⁵Cl₃ 392.0330; Found 392.0336 ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 8.3 Hz, 1H), 4.92 (s, 1H), 3.71 (t, J = 4.7 Hz, 3H), 3.49 (s, 1H), 2.44 (t, J = 4.7 Hz, 2H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 163.5, 136.3, 130.0, 124.2, 123.5, 95.2, 74.0, 67.1, 63.0, 53.7. *Note*: We did not observe the resonance associated with the diazo carbon. FTIR (film): v_{max}/cm^{-1} *inter alia* 2089 (N=N), 1709 (C=O).

Synthesis of Final Compounds

General Cyclopropanation Procedure (GP 1)

A 10 mL round-bottom flask was charged with a PTFE magnetic stir bar and ca. 200% w/w 4 Å molecular sieves, then flame dried under vacuum. The flask was then backfilled with dry nitrogen. Rh₂(*S*-p-Ph-TPCP)₄ (1 mol%) and the aryl alkene (1.0 equiv) were charged to the flask, and the flask was evacuated and backfilled with nitrogen. The flask was equipped with an argon balloon and rubber septum, and dry CH₂Cl₂ (0.2 M) was charged via syringe. A solution of 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (1.1 equiv) in dry CH₂Cl₂ (0.2 M, prepared in the same manner under inert atmosphere) was added dropwise to the stirred reaction at room temperature. The reaction was allowed to stir for two hours, after which the reaction was filtered through Celite, rinsing the filter pad with CH₂Cl₂. The crude residue was dry-mounted onto silica gel and was purified by flash column chromatography (SiO₂).

General Cyclopropenation Procedure (GP 2)

A 10 mL round-bottom flask was charged with a PTFE magnetic stir bar and ca. 200% w/w 4 Å molecular sieves, then flame dried under vacuum. The flask was then backfilled with dry nitrogen. Rh₂(*S*-p-Ph-TPCP)₄ (1 mol%) and the aryl alkyne (1.0 equiv) were charged to the flask, and the flask was evacuated and backfilled with nitrogen. The flask was equipped with an argon balloon and rubber septum, and dry CH₂Cl₂ (0.2 M) was charged via syringe. A solution of 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (1.1 equiv) in dry CH₂Cl₂ (0.2 M, prepared in the same manner under inert atmosphere) was added over 15 minutes to the stirred reaction at room temperature, via syringe pump. The reaction was allowed to stir for two hours, after which the reaction was filtered through Celite, rinsing the filter pad with CH₂Cl₂. The crude residue was dry-mounted onto silica gel and was purified by flash column chromatography (SiO₂).

2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)cyclopropane-1-carboxylate (2.15a).

2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)cyclopropane-1-carboxylate (2.15b).

Compound **2.15a** was prepared following **GP 1**, using $Rh_2(S$ -p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 µmol), 3-(1-oxo-4-vinylisoindolin-2-yl)piperidine-2,6-dione (54 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH_2Cl_2 (2 mL) at room temperature for two hours. Purification via flash column chromatography (SiO₂, gradient of 40% to 100% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)cyclopropane-1-carboxylate as an amorphous white solid. (78 mg, 0.12 mmol, 62% yield).

Compound **2.15b** was prepared in the same manner using $Rh_2(R$ -p-Ph-TPCP)₄, which afforded 2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)cyclopropane-1-carboxylate as an amorphous white solid. (77 mg, 0.12 mmol, 61% yield).

HRMS (APCI) m/z: $[M+H]^+$ calcd for $C_{25}H_{20}^{79}Br^{35}Cl_3N_2O_5$ 612.9694; Found 612.9702 ¹H NMR (600 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.26 and 8.25 (s, 1H), 7.655 and 7.652 (d, J = 7.6 Hz, 1H), 7.28 and 7.26 (d, J = 8.5 Hz, 2H, partially obscured by solvent signal), 7.16-7.10 (m, 1H), 6.89 and 6.86 (d, J = 8.5 Hz, 2H), 6.49 and 6.43 (d, J = 7.7 Hz, 1H), 5.29 and 5.26 (dd, J = 13.2, 5.2 Hz, 1H), 4.88 and 4.87 (d, J = 12.0 Hz, 1H), 4.66 and 4.65 (d, J = 12.0 Hz, 1H), 4.59 and 4.54 (d, J = 16.0 Hz, 1H), 4.39 and 4.37 (d, J = 16.0 Hz, 1H), 3.07 (dd, J = 9.3, 7.3 Hz, 1H), 2.98-2.81 (m, 2H), 2.40-2.20 (m, 3H), 2.12-2.06 (m, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.4, 171.1, 169.63, 169.59, 169.42, 169.37, 141.6, 133.3, 133.2, 132.3, 131.5, 131.4, 130.7, 129.0, 128.9, 128.4, 122.93, 122.91, 122.2, 74.4, 74.3, 52.1, 52.0, 46.4, 36.8, 36.7, 31.7, 29.9, 29.7, 23.7, 23.6, 19.8, 19.7. SFC analysis: **2.15a** (Trefoil® AMY1, 25% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated 99:1 d.r.: t_R (major diastereomers) = 2.89 and 4.82 min, t_R (minor diastereomers) = 3.24 and 3.96 min. **2.15b** indicated the opposite diastereomers in 99:1 d.r. **Purity** (SFC): **2.15a** – 99%; **2.15b** – 99%

2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)cyclopropane-1-carboxylate (2.16a).

2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)cyclopropane-1-carboxylate (2.16b).

Compound **2.16a** was prepared following **GP 1**, using $Rh_2(S$ -p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 µmol), 2-(2,6-dioxopiperidin-3-yl)-4-vinylisoindoline-1,3-dione (57 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH₂Cl₂ (2 mL) at room temperature for two hours. Purification via flash column chromatography (SiO₂, gradient of 40% to 100% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)cyclopropane-1-carboxylate as an amorphous white solid. (40 mg, 62 µmol, 31% yield).

Compound **2.16b** was prepared in the same manner using $Rh_2(R-p-Ph-TPCP)_4$, which afforded 2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)cyclopropane-1-carboxylate as an amorphous white solid. (38 mg, 59 µmol, 30% yield).

HRMS (APCI) *m/z*: [M]⁺ calcd for C₂₅H₁₈BrCl₃N₂O₆ 625.9422; Found 625.9417

¹**H** NMR (500 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.22 and 8.21 (s, 1H), 7.624 and 7.617 (dd, *J* = 7.40, 0.70 Hz, 1H), 7.38-7.33 (m, 1H), 7.27 (d, *J* = 7.9 Hz, 2H, partially obscured by solvent signal), 6.95 (t, *J*=8.2 Hz, 2H), 6.77 and 6.68 (d, *J* = 8.0 Hz, 1H), 5.00 (dt, *J* = 12.4, 6.1 Hz, 1H), 4.95 and 4.93 (d, J = 11.9 Hz, 1H), 4.64 and 4.61 (d, *J* = 11.2 Hz, 1H), 4.21-4.09 (m, 1H) 2.95-2.72 (m, 3H), 2.39 and 2.35 (dd, *J* = 9.1, 5.4 Hz, 1H), 2.20-2.13 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.1, 171.0, 170.9, 168.1, 168.0, 167.9, 166.95, 166.93, 136.3, 136.1, 134.0, 133.9, 133.2, 133.1, 132.4, 132.37, 132.32, 132.19, 132.17, 131.40, 131.37, 130.0, 129.8, 122.4, 122.3, 122.1, 122.0, 94.8, 74.81, 74.76, 49.5, 37.1, 36.8, 31.5, 29.5, 29.0, 22.8, 22.7, 19.7, 19.3.

SFC analysis: 2.16a (Chiralcel® OX-3, 35% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated >99:1 d.r.: t_R (major diastereomers) = 2.16 and 2.36 min, t_R (minor diastereomers) = 4.09 and 7.32 min. **2.16b** indicated the opposite diastereomers in 99:1 d.r. **Purity** (SFC): **2.16a** – 99%; **2.16b** – 96%

2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate (2.17a).

2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate (2.17b).

Compound **2.17a** was prepared following **GP 1**, using $Rh_2(S$ -p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 µmol), 3-(1-oxo-5-vinylisoindolin-2-yl)piperidine-2,6-dione (54 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH_2Cl_2 (2 mL) at room temperature for two hours. Purification via flash column chromatography (SiO₂, gradient of 25% to 75% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate as an amorphous white solid. (95 mg, 0.16 mmol, 77% yield).

Compound **2.17b** was prepared in the same manner using $Rh_2(R-p-Ph-TPCP)_4$, which afforded 2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate as an amorphous white solid. (97 mg, 0.16 mmol, 79% yield).

HRMS (APCI) m/z: [M+H]⁺ calcd for C₂₅H₂₀BrCl₃N₂O₅ 612.9686; Found 612.9702 ¹**H** NMR (500 MHz, CDCl₃, reported as a mixture of diastereomers): 8.42 (s, 1H), 7.60 (12.0, 8.0 Hz, 1H), 7.28 and 7.27 (d, J = 8.5 Hz, 2H), 6.96-6.93 (m, 3H), 6.86-6.85 (m, 1H), 5.16 (ddd, J = 18.0, 13.3, 5.2 Hz), 4.83 and 4.81 (d, J = 2.8 Hz, 1H), 4.66 and 4.64 (d, J = 3.2 Hz, 1H), 4.34 and 4.31 (d, J = 16.0 Hz, 1H), 4.21 and 4.10 (d, 16.0 Hz, 1H), 3.29 (dd, J = 9.4, 7.2 Hz, 1H), 2.89-2.76 (m, 2H), 2.36-2.23 (m, 2H), 2.23-2.18 (m, 1H), 2.03-2.00 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.33, 171.30, 171.3, 169.72, 169.66, 169.0, 141.50, 141.48, 140.4, 133.7, 133.6, 132.5, 132.4, 131.46, 131.38, 130.33, 130.27, 128.7, 128.3, 123.8, 122.9, 122.4, 122.1, 122.0, 94.9, 74.6, 52.0, 51.8, 47.0, 46.8, 37.4, 37.3, 33.9, 33.8, 31.6, 23.54, 23.47, 20.91, 20.86.

SFC analysis: 2.17a (Chiralcel® OJ-3, 30% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated >99:1 d.r.: t_R (major diastereomers) = 2.72 and 4.60 min, t_R (minor diastereomers) = 3.38 and 3.98 min. **2.17b** indicated the opposite diastereomers in >99:1 d.r. **Purity** (SFC): **2.17a** – 99%; **2.17b** – 99%

2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-((*R*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate (*R*-2.17a).

2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-((*S*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate (*S*-2.17b).

Compound *S*-2.17a was prepared following **GP 1**, using $Rh_2(S$ -p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 µmol), (*S*)-3-(1-oxo-5-vinylisoindolin-2-yl)piperidine-2,6-dione (54 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH₂Cl₂ (2 mL) at room temperature for two hours. Purification via flash column chromatography (SiO₂, gradient of 25% to 75% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-((*S*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate as an amorphous white solid. (115 mg, 0.19 mmol, 94% yield).

Compound *R***-2.17b** was prepared in the same manner using (*R*)-3-(1-oxo-5-vinylisoindolin-2-yl)piperidine-2,6-dione and Rh₂(*R*-p-Ph-TPCP)₄, which afforded 2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-((*R*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate as an amorphous white solid. (117 mg, 0.19 mmol, 95% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 8.00 (s, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.29 (d, J = 8.5 Hz, 2H), 7.00 – 6.91 (m, 3H), 6.87 (dd, J = 7.9, 1.5 Hz, 1H), 5.15 (dd, J = 13.2, 5.2 Hz, 1H), 4.83 (d, J = 11.9 Hz, 1H), 4.65 (d, J = 11.9 Hz, 1H), 4.32 (d, J = 16.0 Hz, 1H), 4.22 (d, J = 16.0 Hz, 1H), 3.30 (dd, J = 9.3, 7.4 Hz, 1H), 2.94 – 2.87 (m, 1H), 2.87-2.73 (m, 1H), 2.41 – 2.26 (m, 2H), 2.25-2.13 (m, 1H), 2.06 – 1.95 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 171.5, 171.3, 169.8, 168.9, 141.5, 140.4, 133.6, 132.3, 131.3, 130.3, 128.2, 123.7, 122.9, 122.0, 94.9, 74.5, 51.9, 47.0, 37.3, 33.8, 31.6, 23.4, 20.9.

SFC analysis: *S***-2.17a** (Chiralcel® OJ-3, 30% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated 98:2 d.r.: t_R (major diastereomers) = 4.08 min (peak representing minor enantiomer of *S***-2.17a** n.d.), t_R (minor diastereomers) = 2.64 and 3.22 min. *R***-2.17b** indicated the opposite diastereomers in 96:4 d.r.

Specific rotation: *S***-2.17a** [α]D²² 12.7 (c 1, CHCl₃) *R***-2.17b** [α]D²² -17.6 (c 1.9, CHCl₃) **Purity** (SFC): *S***-2.17a** – 97%; *R***-2.17b** – 98%

2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-((*S*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate (*S*-2.17a).

2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-((*R*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate (*R*-2.17b).

Compound *R*-2.17a was prepared following GP 1, using $Rh_2(S$ -p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 µmol), (*R*)-3-(1-oxo-5-vinylisoindolin-2-yl)piperidine-2,6-dione (54 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH₂Cl₂ (2 mL) at room temperature for two hours. Purification via flash column chromatography (SiO₂, gradient of 25% to 75% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-((*S*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate as an amorphous white solid. (118 mg, 0.19 mmol, 96% yield).

Compound *S*-2.17b was prepared in the same manner using (*S*)-3-(1-oxo-5-vinylisoindolin-2-yl)piperidine-2,6-dione and Rh₂(*R*-p-Ph-TPCP)₄, which afforded 2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-((*S*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate as an amorphous white solid. (117 mg, 0.19 mmol, 95% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.97 (s, 1H), 7.63 (d, *J* = 7.9 Hz, 1H), 7.29 (d, *J* = 8.5 Hz, 2H), 6.98 – 6.93 (m, 3H), 6.86 (s, 1H), 5.19 (dd, *J* = 13.2, 5.3 Hz, 1H), 4.83 (d, *J* = 11.9 Hz, 1H), 4.66 (d, *J* = 11.9 Hz, 1H), 4.36 (d, *J* = 16.0 Hz, 1H), 4.12 (d, *J* = 16.1 Hz, 1H), 3.30 (dd, *J* = 9.3, 7.4 Hz, 1H), 2.97-2.87, (m, 1H), 2.87-2.72 (m, 1H), 2.41 – 2.27 (m, 2H), 2.27 – 2.15 (m, 1H), 2.08 – 1.94 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 171.5, 171.3, 169.8, 169.0, 141.5, 140.4, 133.6, 132.4, 131.3, 130.2, 128.6, 123.7, 122.4, 121.9, 94.9, 74.6, 51.8, 46.8, 37.4, 33.8, 31.6, 23.5, 20.8.

SFC analysis: *R***-2.17a** (Chiralcel® OJ-3, 30% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated 99:1 d.r.: t_R (major diastereomers) = 2.53 min (peak representing minor enantiomer of *R***-2.17a** n.d.), t_R (minor diastereomers) = 3.71 and 3.98 min. *S***-15b** indicated the opposite diastereomers in 98:2 d.r.

Specific rotation: *R***-2.17a** $[\alpha]D^{22}$ -4.8 (c 1, CHCl₃) *S***-2.17b** $[\alpha]D^{22}$ 5.5 (c 1.9, CHCl₃) **Purity** (SFC): *R***-2.17a** – 96%; *S***-2.17b** – 97%

2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)cyclopropane-1-carboxylate (2.18a).

2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)cyclopropane-1-carboxylate (2.18b).

Compound **2.18a** was prepared following **GP 1**, using $Rh_2(S$ -p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 µmol), 2-(2,6-dioxopiperidin-3-yl)-5-vinylisoindoline-1,3-dione (57 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH₂Cl₂ (2 mL) at room temperature for two hours. Purification via flash column chromatography (SiO₂, gradient of 20% to 60% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)cyclopropane-1-carboxylate as an amorphous white solid. (90 mg, 0.14 mmol, 72% yield).

Compound **2.18b** was prepared in the same manner using $Rh_2(R-p-Ph-TPCP)_4$, which afforded 2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)cyclopropane-1-carboxylate as an amorphous white solid. (90 mg, 0.14 mmol, 72% yield).

HRMS (APCI) m/z: $[M+H]^+$ calcd for C₂₅H₁₈⁷⁹Br³⁵Cl₃N₂O₆ 625.9487; Found 626.9492 ¹H NMR (500 MHz, CDCl₃, reported as a mixture of diastereomers): 8.49 (s, 1H), 7.59 and 7.58 (d, J=2.0 Hz, 1H), 7.40 (d, 10.2 Hz, 1H), 7.29 (d, 8.0 Hz, 2H), 7.12-7.10 (m, 1H), 6.95 (d, J=8.0 Hz, 2H), 4.93 (dd, J=12.2, 5.3 Hz, 1H), 4.83 (d, 12.0 Hz, 1H), 4.65 (d, 12.0 Hz, 1H), 3.37-3.33 (m, 1H), 2.88-2.71 (m, 3H), 2.37 (dd, 9.2, 5.5 Hz, 1H), 2.13-2.08 (m, 2H).

¹³C{¹H} NMR (126 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.2, 170.9, 168.2, 167.04, 167.02, 166.90, 166.88, 143.72, 143.70, 133.91, 133.88, 133.47, 133.46, 131.9, 131.8, 131.6, 130.1, 129.1, 128.3, 125.4, 123.4, 123.47, 123.44, 122.3, 94.8, 74.7, 49.42, 49.39, 37.76, 37.74, 33.4, 31.42, 31.40, 22.69, 22.64, 20.68, 20.64.

SFC analysis: 2.18a (Trefoil® CEL1, 20% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated 99:1 d.r.: $t_{\rm R}$ (major diastereomers) = 5.17 and 5.62 min, $t_{\rm R}$ (minor diastereomers) = 4.31 and 4.92 min. **2.18b** indicated the opposite diastereomers in 98:2 d.r. **Purity** (SFC): **2.18a** – 98%; **2.18b** – 96%

2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-5-yl)cyclopropane-1-carboxylate (2.19a).

2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-5-yl)cyclopropane-1-carboxylate (2.19b).

Compound **2.19a** was prepared following **GP 1** using $Rh_2(S$ -p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 μ mol), 3-(1-oxo-6-vinylisoindolin-2-yl)piperidine-2,6-dione (54 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH₂Cl₂ (2 mL)

at room temperature for two hours. Purification via flash column chromatography (SiO₂, gradient of 20% to 75% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1R,2S)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-5-yl)cyclopropane-1-carboxylate as an amorphous white solid. (96 mg, 0.16 mmol, 78% yield).

Compound **2.19b** was prepared in the same manner using $Rh_2(R$ -p-Ph-TPCP)₄, which afforded 2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-5-yl)cyclopropane-1-carboxylate as an amorphous white solid. (95 mg, 0.15 mmol, 77% yield). **HRMS** (APCI) *m*/*z*: [M+H]⁺ calcd for C₂₅H₂₁O₅N₂⁷⁹Br³⁵Cl₃ 612.9694; Found 612.9698

¹**H** NMR (600 MHz, CDCl₃, reported as a mixture of diastereomers): δ 7.94 (s, 1H), 7.53 and 7.43 (s, 1H), 7.26 (d, J = 8.6 Hz, 2H, partially obscured by solvent signal), 7.21 and 7.19 (d, J = 7.9 Hz, 1H), 7.02 and 6.92 (dd, J = 8.0, 1.7 Hz, 1H), 6.96 (d, J = 8.6 Hz, 2H), 5.20 and 5.17 (dd, J = 15.6, 5.0 Hz, 1H), 4.843 and 4.841 (d, J = 12.0 Hz, 1H), 4.65 and 4.648 (d, J = 11.9 Hz, 1H), 4.41 and 4.39 (d, J = 16.0 Hz, 1H), 4.25 and 4.24 (d, J = 15.9 Hz, 0H), 3.34 (t, J = 8.3 Hz, 1H), 2.97 – 2.88 (m, 1H), 2.86 – 2.77 (m, 1H), 2.45 – 2.26 (m, 2H), 2.24-2.18 (m, 1H), 2.10 – 1.97 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.4, 171.3, 169.72, 169.69, 169.1, 140.20, 140.18, 136.23, 136.21, 133.7, 133.6, 132.5, 132.2, 131.62, 131.58, 131.28, 131.26, 124.4, 123.7, 122.7, 121.9, 121.8, 95.0, 74.6, 51.98, 51.85, 47.0, 46.8, 36.94, 36.87, 33.57, 31.64, 31.62, 23.5, 20.1, 20.0.

SFC analysis: 2.19a (Trefoil® CEL1, 25% 1:1 EtOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.0 mL/min, diode array) indicated 98:2 d.r.: t_R (major diastereomers) = 4.85 and 5.60 min, t_R (minor diastereomers) = 4.34 and 4.72min. **2.19b** indicated the opposite diastereomers in 97:3 d.r. **Purity** (SFC): **2.19a** – 99%; **2.19b** – 95%

2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-4-yl)cyclopropane-1-carboxylate (2.20a).

2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-4-yl)cyclopropane-1-carboxylate (2.20b).

Compound **2.20a** was prepared following **GP 1**, using Rh₂(*S*-p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 μ mol), 3-(1-oxo-7-vinylisoindolin-2-yl)piperidine-2,6-dione (54 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH₂Cl₂ (2 mL) at room temperature for two hours. Purification via flash column chromatography (SiO₂, gradient of 50% to 60% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-4-yl)cyclopropane-1-carboxylate as an amorphous white solid. (35 mg, 56 µmol, 28% yield).

Compound **2.20b** was prepared in the same manner using $Rh_2(R-p-Ph-TPCP)_4$, which afforded 2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-4-yl)cyclopropane-1-carboxylate as an amorphous white solid. (36 mg, 57 µmol, 29% yield).

HRMS (APCI) m/z: $[M+H]^+$ calcd for C₂₅H₂₁O₅N₂⁷⁹Br³⁵Cl₃ 612.9694; Found 612.9698 ¹H NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.30 and 8.23 (s, 1H), 7.24 – 7.14 (m, 4H), 7.00 and 6.97 (d, J = 8.5 Hz, 2H), 6.60-6.52 and 6.52-6.45 (m, 1H), 5.27 and 5.19 (dd, J = 13.3, 5.1 Hz, 1H), 4.91 and 4.89, (d, J = 11.9 Hz, 1H), 4.67 and 4.65 (d, J = 11.9 Hz, 1H), 4.47-4.22 (m, 3H), 3.00 – 2.75 (m, 2H), 2.50 – 2.18 (m, 3H), 2.15-2.10 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.5 and 171.4, 171.34 and 171.30, 170.0 and 169.73, 169.72 and 169.61, 142.14 and 142.12, 135.47 and 135.45, 133.45 and 133.28. 133.42 and 133.38, 131.6 and 131.5, 131.0 and 130.9, 130.1 and 129.9, 126.1 and 126.0, 121.7 and 121.6, 121.49, 121.46, 95.1, 74.8 and 74.7, 52.1 and 51.9, 46.9 and 46.6, 36.8 and 36.5, 31.8 and 31.7, 29.6 and 29.3, 23.6 and 23.4, 19.2 and 19.0.

SFC analysis: 2.20a (Trefoil® AMY1, 30% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated 99:1 d.r.: t_R (major diastereomers) = 3.65 and 5.13 min, t_R (minor diastereomers) = 3.17 and 4.24 min. **2.20b** indicated the opposite diastereomers in 99:1 d.r. **Purity** (SFC): **2.20a** – 98%; **2.20b** – 99%

2,2,2-trichloroethyl (1*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)cycloprop-2-ene-1-carboxylate (2.21a).

2,2,2-trichloroethyl (1*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)cycloprop-2-ene-1-carboxylate (2.21b).

Compound **2.21a** was prepared following **GP 2**, using Rh₂(*S*-p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 μ mol), 3-(4-ethynyl-1-oxoisoindolin-2-yl)piperidine-2,6-dione (54 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH₂Cl₂ (2 mL) at room temperature for two hours. Purification via flash column chromatography (SiO₂, gradient of 30% to 90% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)cycloprop-2-ene-1-carboxylate as an amorphous white solid. (76 mg, 0.12 mmol, 62% yield).

Compound **2.21b** was prepared in the same manner using $Rh_2(R$ -p-Ph-TPCP)₄, which afforded 2,2,2-trichloroethyl (1*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)cycloprop-2-ene-1-carboxylate as an amorphous white solid. (79 mg, 0.13 mmol, 64% yield).

HRMS (APCI) m/z: $[M+H]^+$ calcd for C₂₅H₁₉O₅N₂⁷⁹Br³⁵Cl₃ 610.9537; Found 610.9536 ¹H NMR (600 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.27 (s, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.58 (td, J = 7.6, 2.7 Hz, 1H), 7.444 and 7.437 (d, J = 8.5 Hz, 2H), 7.39 and 7.38 (s, 1H), 7.29 and 7.28 (d, J = 8.5 Hz, 2H), 5.25 and 5.22 (dd, J = 13.4, 5.2 Hz, 1H), 4.81 and 4.80 (d, J = 12 Hz, 1H), 4.762 and 4.760 (d, J = 12 Hz, 1H), 4.60 and 4.58 (d, J = 15.7 Hz, 1H), 4.43 and 4.40 (d, 16.5 Hz, 1H), 2.95-2.89 (m, 1H), 2.88-2.81 (m, 1H), 2.40-2.30 (m, 1H), 2.26 - 2.18 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.92, 171.90, 171.0, 169.5, 169.4, 168.60, 168.58, 142.41, 142.40, 138.6, 138.5, 133.02, 133.97, 132.60, 132.57, 131.6, 129.9, 129.32, 126.29, 121.3, 120.32, 120.29, 113.7, 113.3, 102.41, 102.37, 95.0, 74.5, 74.4, 52.1, 52.0, 46.8, 46.7, 32.5, 32.4, 31.6, 23.6.

SFC analysis: 2.21a (Trefoil® AMY1, 30% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated 98:2 d.r.: t_R (major diastereomers) = 3.00 and 3.55 min, t_R (minor diastereomers) = 4.41 and 5.81 min. **19b** indicated the opposite diastereomers in 98:2 d.r. **Purity** (SFC): **2.21a** – 98%; **2.21b** – 95%

2,2,2-trichloroethyl (1*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)cycloprop-2-ene-1-carboxylate (2.22a).

2,2,2-trichloroethyl (1*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)cycloprop-2-ene-1-carboxylate (2.22b).

Compound **2.22a** was prepared following **GP 2**, using $Rh_2(S$ -p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 µmol), 2-(2,6-dioxopiperidin-3-yl)-4-ethynylisoindoline-1,3-dione (56 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH_2Cl_2 (2 mL) at room temperature for two hours. Purification via flash column chromatography (SiO₂, gradient of 30% to 55% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)cycloprop-2-ene-1-carboxylate as an amorphous white solid. (93 mg, 0.15 mmol, 76% yield).

Compound **2.22b** was prepared in the same manner using $Rh_2(R$ -p-Ph-TPCP)₄, which afforded 2,2,2-trichloroethyl (1*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)cycloprop-2-ene-1-carboxylate as an amorphous white solid. (99 mg, 0.16 mmol, 79% yield).

HRMS (APCI) m/z: $[M+H]^+$ calcd for C₂₅H₁₇O₆N₂⁷⁹Br³⁵Cl₃ 624.9330; Found 624.9330 ¹H NMR (600 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.29 (s, 1H), 7.95 (d, J = 7.7 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.584 and 7.58 (t, J = 7.7 Hz, 1H), 7.443 and 7.436 (d, J = 8.6 Hz, 2H), 7.39 and 7.38 (s, 1H), 7.29 and 7.28 (d, J = 8.6 Hz, 2H), 5.26 and 5.22 (dd, J = 13.4, 5.0 Hz, 1H), 4.81 and 4.79 (d, J = 12.0 Hz, 1H), 4.761 and 4.760 (d, J = 11.9 Hz, 1H), 4.61 and 4.56 (d, J = 16.6 Hz, 1H), 4.43 and 4.40 (d, J = 16.5 Hz, 1H), 2.97-2.87 (m, 1H), 2.87-2.79 (m, 1H), 2.41-2.29 (m, 1H), 2.27 – 2.11 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.8, 170.9, 168.0, 166.59, 166.57, 166.24, 166.22, 138.3, 138.2, 135.8, 135.7, 134.9, 133.1, 131.5, 130.1, 129.91, 129.86, 125.2, 122.70, 122.68, 121.2, 112.48, 112.45, 108.11, 108.06, 95.11, 95.08, 74.49, 74.47, 49.6, 33.92, 33.91, 31.5, 22.7.

SFC analysis: 2.22a (Chiralcel® OX-3, 30% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated 80:20 d.r.: $t_{\rm R}$ (major diastereomers) = 6.92 and 12.88 min, $t_{\rm R}$ (minor diastereomers) = 4.57 and 4.97 min. **2.22b** indicated the opposite diastereomers in 81:19 d.r. **Purity** (SFC): **2.22a** – 99%; **20b** – 98%

2,2,2-trichloroethyl (1*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cycloprop-2-ene-1-carboxylate (2.23a).

2,2,2-trichloroethyl (1*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cycloprop-2-ene-1-carboxylate (2.23b).

Compound **2.23a** was prepared following **GP 2**, using $Rh_2(S$ -p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 μ mol), 3-(5-ethynyl-1-oxoisoindolin-2-yl)piperidine-2,6-dione (54 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH₂Cl₂ (2 mL) at room temperature for two hours. Purification via flash column chromatography (SiO₂, gradient of 35% to 55% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cycloprop-2-ene-1-carboxylate as an amorphous white solid. (48 mg, 78 μ mol, 39% yield).

Compound **2.23b** was prepared in the same manner using $Rh_2(R-p-Ph-TPCP)_4$, which afforded 2,2,2-trichloroethyl (1*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cycloprop-2-ene-1-carboxylate as an amorphous white solid. (46 mg, 74 µmol, 37% yield).

HRMS (APCI) m/z: $[M+H]^+$ calcd for C₂₅H₁₉O₅N₂⁷⁹Br³⁵Cl₃ 610.9537; Found 610.9536 ¹H NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.27 (s, 1H), 7.952 and 7.950 (d, J = 7.9 Hz, 1H), 7.79 – 7.71 (m, 1H), 7.69 – 7.64 (m, 1H), 7.43 (d, J = 8.5 Hz, 2H), 7.39 (s, 1H), 7.29 (d, J = 8.6 Hz, 2H), 5.23 (dd, J = 13.3, 5.2 Hz, 1H), 4.823 and 4.816 (d, J = 12.0 Hz, 1H), 4.764 and 4.760 (d, J = 12.0 Hz, 1H), 4.52 and 4.51 (d, J = 16.3 Hz, 1H), 4.37 and 4.35 (d, J = 16.3 Hz, 1H), 2.98 – 2.88 (m, 2H), 2.88 – 2.76 (m, 1H), 2.35 (qd, J = 13.1, 5.1 Hz, 1H), 2.26 – 2.15 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃, reported as a mixture of diastereomers): δ ¹³C NMR (101 MHz, CDCl₃) δ 172.08, 172.06, 171.1, 169.5, 168.5, 142.1, 138.5, 133.17, 133.15, 131.50, 131.48, 130.32, 130.30, 129.95, 128.4, 125.0, 124.5, 121.13, 121.10, 116.2, 102.2, 102.1, 95.1, 74.42, 74.39, 52.1, 47.1, 33.3, 31.6, 23.5.

SFC analysis: 2.23a (Chiralpak® AS3, 20% 1:1:1 EtOH:^{*i*}PrOH:MeCN with 20 mM NH₄HCO₂ in CO₂, 2.5 mL/min, diode array) indicated >99:1 d.r.: t_R (major diastereomers) = 3.94 and 6.41 min, t_R (minor diastereomers) = 3.41 and 4.88 min. **2.23b** indicated the opposite diastereomers in 99:1 d.r. **Purity (SFC): 2.23a** – 97%; **2.23b** – 95%

2,2,2-trichloroethyl (1*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)cycloprop-2-ene-1-carboxylate (2.24a).

2,2,2-trichloroethyl (1*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)cycloprop-2-ene-1-carboxylate (2.24b).

Compound **2.24a** was prepared following **GP 2**, using $Rh_2(S$ -p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 µmol), 2-(2,6-dioxopiperidin-3-yl)-5-ethynylisoindoline-1,3-dione (56 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH_2Cl_2 (2 mL) at room temperature for two hours. Purification via flash column chromatography (SiO₂, gradient of 20% to 50% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)cycloprop-2-ene-1-carboxylate as an amorphous white solid. (87 mg, 0.14 mmol, 69% yield).

Compound **2.24b** was prepared in the same manner using $Rh_2(R-p-Ph-TPCP)_4$, which afforded 2,2,2-trichloroethyl (1*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)cycloprop-2-ene-1-carboxylate as an amorphous white solid. (88 mg, 0.14 mmol, 70% yield).

HRMS (APCI) m/z: [M+H]⁺ calcd for C₂₅H₁₆⁷⁹Br₃₅Cl₃N₂O₆ 624.9344; Found 624.9341 ¹H NMR (500 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.26 (s, 1H), 8.11-8.10 (m, 1H), 7.98-7.94 (m, 2H), 7.54 (s, 1H), 7.45 (d, *J*=8.5 Hz, 2H), 7.28 (d, *J*=8.5 Hz, 2H), 5.01 (dd, *J*=12.5, 5.1 Hz, 1H), 4.84 and 4.83 (d, *J*=12.0 Hz, 1H), 4.76 (d, *J*=12.0 Hz, 1H), 2.94-2.72 (m, 3H), 2.19-2.14 (m, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.5, 171.0, 167.9, 166.5, 166.4, 137.9, 135.7, 132.7, 132.6, 131.6, 131.2, 129.90, 129.89, 124.89, 124.88, 124.6, 121.4, 116.1, 116.0, 104.5, 95.0, 74.5, 60.5, 49.7, 33.7, 31.48, 31.46, 22.7, 22.6, 14.3.

SFC analysis: 2.24a (Chiralcel® OJ-3, 20% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated 98:2 d.r.: t_R (major diastereomers) = 7.10 and 8.24 min, t_R (minor diastereomers) = 9.20 and 11.52 min. **2.24b** indicated the opposite diastereomers in 99:1 d.r. **Purity (SFC): 2.24a** – 98%; **2.24b** – 95%

2,2,2-trichloroethyl (1*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-5-yl)cycloprop-2-ene-1-carboxylate (2.25a).

2,2,2-trichloroethyl (1*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-5-yl)cycloprop-2-ene-1-carboxylate (2.25b).

Compound **2.25a** was prepared following **GP 2**, using $Rh_2(S$ -p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 μ mol), 3-(6-ethynyl-1-oxoisoindolin-2-yl)piperidine-2,6-dione (54 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH₂Cl₂ (2 mL) at room temperature for two hours. Purification via flash column chromatography (SiO₂,

gradient of 60% to 75% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1S)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-5-yl)cycloprop-2-ene-1-carboxylate as an amorphous white solid. (76 mg, 12 mmol, 62% yield).

Compound **2.25b** was prepared in the same manner using $Rh_2(R$ -p-Ph-TPCP)₄, which afforded 2,2,2-trichloroethyl (1*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-5-yl)cycloprop-2-ene-1-carboxylate as an amorphous white solid. (77 mg, 0.13 mmol, 63% yield).

HRMS (APCI) m/z: [M+H]⁺ calc'd for C₂₅H₁₉O₅N₂⁷⁹Br³⁵Cl₃ 610.9537; Found 610.9540 ¹H NMR (600 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.17 (s, 1H), 8.13 (d, J = 6.2 Hz, 1H), 7.81 (t, J = 7.9 Hz, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.42 (d, J = 8.6 Hz, 2H), 7.32 (s, 1H), 7.31 (d, J = 8.4 Hz, 2H), 5.29 – 5.17 (m, 1H), 4.82 and 4.81 (d, J = 11.9 Hz, 1H), 4.76 and 4.75 Hz (d, J = 11.9 Hz, 1H), 4.54 (d, J = 16.7 Hz, 1H), 4.39 (d, J = 16.5 Hz, 1H), 2.97 – 2.90 (m, 1H), 2.88 – 2.77 (m, 1H), 2.41 – 2.30 (m, 1H), 2.25 – 2.18 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃, reported as a mixture of diastereomers): δ 172.2, 169.5, 171.3, 168.5, 143.3, 138.6, 133.61, 133.57, 132.54, 132.52, 131.4, 130.1, 125.65, 125.61, 125.4, 123.9, 121.02, 121.00, 116.3, 116.2, 100.7, 95.1, 74.4, 52.03, 52.00, 47.3, 33.3, 31.6, 23.5.

SFC analysis: 2.25a (Chiralcel® OJ-3, 30% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated 98:2 d.r.: t_R (major diastereomers) = 1.81 and 2.40 min, t_R (minor diastereomers) = 2.12 and 3.16 min. **2.25b** indicated the opposite diastereomers in 98:2 d.r. **Purity** (SFC): **2.25a** – 99%; **2.25b** – 99%

2,2,2-trichloroethyl (1*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-4-yl)cycloprop-2-ene-1-carboxylate (2.26a).

2,2,2-trichloroethyl (1*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-4-yl)cycloprop-2-ene-1-carboxylate (2.26b).

Compound **2.26a** was prepared following **GP 2**, using Rh₂(*S*-p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 μ mol), 3-(7-ethynyl-1-oxoisoindolin-2-yl)piperidine-2,6-dione (54 mg, 1.0 equiv, 0.20 mmol), 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 equiv, 0.22 mmol), and CH₂Cl₂ (2 mL) at room temperature for two hours. Purification via flash column chromatography (SiO₂, gradient of 45% to 70% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-4-yl)cycloprop-2-ene-1-carboxylate as an amorphous white solid. (99 mg, 0.16 mmol, 81% yield).

Compound **2.26b** was prepared in the same manner using $Rh_2(R$ -p-Ph-TPCP)₄, which afforded 2,2,2-trichloroethyl (1*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-3-oxoisoindolin-4-yl)cycloprop-2-ene-1-carboxylate as an amorphous white solid. (97 mg, 0.16 mmol, 79% yield).

HRMS (APCI) m/z: $[M+H]^+$ calcd for C₂₅H₁₉O₅N₂⁷⁹Br³⁵Cl₃ 610.9537; Found 610.9545 ¹H NMR (600 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.17 (s, 1H), 7.66 (d, J = 3.6 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.51 and 7.50 (s, 1H), 7.41 and 7.40 (d, J = 8.6 Hz, 2H), 7.34 and 7.33 (d, J = 8.6 Hz, 2H), 5.25 and 5.23 (dd, J = 13.0, 5.1 Hz, 1H), 4.85 and 4.83 (d, J = 11.9 Hz, 1H), 4.74 and 4.73 (d, *J* = 12.0 Hz, 1H), 2.95-2.89 (m, 1H), 2.89-2.84 (m, 1H), 2.43-2.33 (m, 1H), 2.29-2.14 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃, reported as a mixture of diastereomers): δ 172.5, 172.4, 171.3, 169.7, 168.4, 143.1, 139.1, 139.0, 132.2, 131.29, 131.28, 130.45, 130.43, 130.37, 130.26, 130.24, 124.8, 122.5, 120.80, 120.77, 112.7, 112.5, 106.0, 105.9, 95.3, 74.4, 74.3, 52.1, 52.0, 47.1, 47.0, 33.27, 33.26, 31.7, 23.5.

SFC analysis: 2.26a (Chiralpak® AS3, 20% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated 61:39 d.r.: t_R (major diastereomers) = 4.05 and 5.21 min, t_R (minor diastereomers) = 4.49 and 7.67 min. **2.26b** indicated the opposite diastereomers in 60:40 d.r. **Purity (SFC): 2.26a** – 95%; **2.26b** – 95%

2,2,2-trichloroethyl (1*S*,2*R*)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-1-(4-(morpholinomethyl)phenyl)cyclopropane-1-carboxylate (2.27a).

2,2,2-trichloroethyl (1*R*,2*S*)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-1-(4-(morpholinomethyl)phenyl)cyclopropane-1-carboxylate (2.27b).

A 10 mL round-bottom flask was charged with a PTFE magnetic stir bar and ca. 200% w/w 4 Å molecular sieves, then flame dried under vacuum. The flask was then backfilled with dry nitrogen. Rh₂(*S-tetra-p*-BrPPTTL)₄ (3.7 mg, 1 mol%, 1.0 µmol) and 3-(1-oxo-4-vinylisoindolin-2-yl)piperidine-2,6-dione (27 mg, 1.0 equiv, 0.10 mmol) were charged to the flask, and the flask was evacuated and backfilled with nitrogen. The flask was equipped with an argon balloon and rubber septum, and dry CH₂Cl₂ (0.5 mL) along with 0.10 mL 1,1,1,3,3,3-hexafluoroisopropanol (10 equiv, 1.0 mmol) were charged via syringe. A solution of 2,2,2-trichloroethyl 2-diazo-2-(4-(morpholinomethyl)phenyl)acetate (43 mg, 1.1 equiv, 0.11 mmol) in dry CH₂Cl₂ (0.5 mL, prepared in the same manner under inert atmosphere) was added dropwise to the stirred reaction at room temperature. The reaction was allowed to stir for two hours, after which the reaction was filtered through Celite®, rinsing the filter pad with CH₂Cl₂. The crude residue was dry-mounted onto silica gel and was purified by flash column chromatography (SiO₂, 0-5% methanol in CH₂Cl₂), which afforded 2,2,2-trichloroethyl (1*S*,2*R*)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-1-(4-(morpholinomethyl)phenyl)cyclopropane-1-carboxylate as an amorphous white solid (50 mg, 79 µmol, 79% yield).

Compound **2.27b** was prepared in the same manner using $Rh_2(R-tetra-p-BrPPTTL)_4$, which afforded 2,2,2-trichloroethyl (1*R*,2*S*)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-1-(4- (morpholinomethyl)phenyl)cyclopropane-1-carboxylate as an amorphous white solid as an amorphous white solid. (49 mg, 77 µmol, 77% yield).

HRMS (APCI) m/z: [M+H]⁺ calcd for C₃₀H₃₁O₆N₃³⁵Cl₃ 634.1273; Found 634.1279 ¹**H** NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.54 (s, 1H), 7.595 and 7.593 (d, J = 7.6 Hz, 1H), 7.10 – 7.00 (m, 3H), 6.96 and 6.93 (d, J = 12.3 Hz, 2H), 5.29 and 5.25 (dd, J =9.6, 5.2 Hz, 1H), 4.86 and 4.85 (d, J = 12.0 Hz, 1H), 4.664 and 4.658 (d, J = 12.0 Hz, 1H), 4.58 and 4.56 (d, J = 16.0 Hz, 1H), 4.42 and 4.38 (d, J = 16.2 Hz, 1H), 3.69 – 3.58 (m, 4H), 3.43 – 3.36 (m, 2H), 3.07 (ddd, *J* = 9.4, 7.4, 2.1 Hz, 1H), 3.01 – 2.77 (m, 2H), 2.42 – 2.19 (m, 7H), 2.15 (ddd, *J* = 7.5, 5.3, 2.2 Hz, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.9, 171.8, 171.29, 171.27, 169.7, 169.53, 169.48, 141.7, 141.6, 137.3, 137.2, 132.0, 131.9, 131.5, 131.4, 131.30, 131.27, 131.19, 131.18, 129.12, 129.06, 129.05, 128.0, 122.6, 95.3, 95.2, 74.4, 74.3, 67.0, 62.9, 53.50, 53.46, 52.03, 51.96, 46.61, 46.50, 37.1, 37.0, 31.7, 29.8, 29.7, 29.6, 23.63, 23.60, 19.7, 19.6. SFC analysis: 2.27a (Trefoil® CEL2, 35% 1:1 MeOH: PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated 83:17 d.r.: t_R (major diastereomers) = 6.04 and 8.83 min, t_R (minor diastereomers) = 6.80 and 13.50 min. 2.27b indicated the opposite diastereomers in 85:15 d.r. Purity (SFC): 2.27a – 99%; 2.27b – 99%

(1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylic acid (2.28a).

(1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylic acid (2.28b).

A 100 mL round-bottom flask was charged with a PTFE magnetic stir bar and zinc dust (754 mg, 16 equiv, 11.5 mmol) under ambient conditions, followed by 2,2,2-trichloroethyl (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate (443 mg, 1.0 equiv, 0.72 mmol). Tetrahydrofuran (16.6 mL) was charged via syringe followed by acetate buffer (10 mL, pH = 3.7, 1.2 M in H₂O, NaOAc/AcOH). The reaction was stirred at room temperature for 18 hours, after which the reaction was filtered through Celite®, rinsing with ethyl acetate. The aqueous layer was extracted thrice with 50 mL portions of ethyl acetate, after which the combined organics were washed with 150 mL brine. The combined organics were dried over magnesium sulfate, then filtered and concentrated in vacuuo. The crude material was purified via flash column chromatography (C18, 10-95% MeCN in H₂O, 0.1% trifluoroacetic acid buffer), which gave (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylic acid as an amorphous white solid (280 mg, 0.58 mmol, 83% yield).

Compound **2.28b** was prepared in the same manner using zinc dust (727 mg, 16 equiv, 11.1 mmol), 2,2,2-trichloroethyl (1*R*,2*S*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylate (427 mg, 1.0 equiv, 0.70 mmol), tetrahydrofuran (16.0 mL), and acetate buffer (9.6 mL), which gave (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylic acid (286 mg, 0.59 mmol, 82% yield) as an amorphous white solid.

HRMS (APCI) m/z: [M+H]⁺ calcd for C₂₃H₂₀O₅N₂⁷⁹Br 483.0550; Found 483.0559 ¹H NMR (600 MHz, CD₃OD, reported as a mixture of diastereomers): δ 7.55 – 7.42 (m, 1H), 7.26 (d, J = 8.1 Hz, 2H), 7.14 and 7.10 (s, 1H), 7.05-6.98 (m, 1H, partially obscured by signal at 7.00), 7.00 (d, J = 8.0 Hz, 3H), 5.10 and 5.07 (dd, J = 10.9, 5.2 Hz, 1H), 4.39 and 4.34 (d, J = 17.0 Hz, 1H), 4.27 and 4.26 (d, J = 17.0 Hz, 1H), 3.27 (t, J = 8.2 Hz, 1H), 2.87 (ddd, J = 18.5, 13.6, 5.4 Hz, 1H), 2.81 – 2.70 (m, 1H), 2.43 (pd, J = 13.5, 4.5 Hz, 1H), 2.17-2.08 (m, 3H). ¹³C{¹H} NMR (101 MHz, CD₃OD, reported as a mixture of diastereomers): δ 176.2, 174.7, 172.22, 172.20, 171.19, 171.17, 143.5, 143.01, 143.29, 135.7, 135.6, 135.0, 134.9, 131.9, 131.0, 130.9, 129.7, 129.3, 124.3, 124.0, 123.73, 123.71, 122.0, 53.6, 53.5, 38.6, 38.5, 34.0, 32.3, 24.0, 20.5, 20.4. **SFC analysis: 2.28a** (Chiralpak® AS3, 20% 1:1 EtOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated 99:1 d.r.: *t*_R (major diastereomers) = 4.56 and 6.30 min, *t*_R (minor diastereomers) = 5.73 and 8.81 min. **2.28b** indicated the opposite diastereomers in 99:1 d.r. **Purity** (SFC): **2.28a** – 98%; **2.28b** – 98%

3-(5-((1*S*,2*R*)-2-(4-bromophenyl)-2-(morpholine-4-carbonyl)cyclopropyl)-1-oxoisoindolin-2-yl)piperidine-2,6-dione (2.29a).

3-(5-((1*R*,2*S*)-2-(4-bromophenyl)-2-(morpholine-4-carbonyl)cyclopropyl)-1-oxoisoindolin-2-yl)piperidine-2,6-dione (2.29b).

A 4 mL scintillation vial equipped with a PTFE magnkjetic stir bar was flame-dried under vacuum and backfilled with dry nitrogen. The vial was charged with (1S,2R)-1-(4-bromophenyl)-2-(2-(2,6dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylic acid (50 mg, 1.0 equiv, 0.10 mmol) and N-(chloro(dimethylamino)methylene)-N-methylmethanaminium hexafluorophosphate(V) (34 mg, 1.2 equiv, 0.12 mmol). Morpholine (11 µL, 1.3 equiv, 0.13 mmol), 1-methyl-1H-imidazole (28 µL, 3.5 equiv, 0.35 mmol), and acetonitrile (0.25 mL) were charged successively by syringe, and the reaction was stirred at room temperature for 18 hours. The reaction was stirred at room temperature for 18 hours, after which the reaction was partitioned between water (50 mL) and ethyl acetate (50 mL). The aqueous layer was extracted thrice with 50 mL portions of ethyl acetate, after which the combined organics were washed with 150 mL of brine. The combined organics were dried over magnesium sulfate, then filtered and concentrated in vacuuo. The crude material was purified via flash column chromatography (SiO₂, 0-10% methanol in CH₂Cl₂), which gave 3-(5-((1*S*,2*R*)-2-(4-bromophenyl)-2-(morpholine-4-carbonyl)cyclopropyl)-1-oxoisoindolin-2yl)piperidine-2,6-dione as an amorphous white solid (31 mg, 55 µmol, 55% yield). Compound **2.29b** was prepared in the same manner from (1*S*,2*R*)-1-(4-bromophenyl)-2-(2-(2,6-

dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)cyclopropane-1-carboxylic acid, which gave 3-(5- $((1R,2S)-2-(4-bromophenyl)-2-(morpholine-4-carbonyl)cyclopropyl)-1-oxoisoindolin-2-yl)piperidine-2,6-dione as an amorphous white solid (34 mg, 60 <math>\mu$ mol, 60% yield).

HRMS (APCI) m/z: [M+H]⁻ calcd for C₂₇H₂₇O₅N₃⁷⁹Br 552.1129; Found 552.1139 ¹H NMR (600 MHz, CDCl₃, reported as a mixture of diastereomers): δ 7.99 and 7.98 (s, 1H), 7.60 (d, *J* and 7.58 (d, *J* = 5.9 Hz, 1H), 7.29 – 7.26 (m, 2H, partially obscured by solvent signal), 7.17 and 7.10 (s, 1H), 7.07 and 7.02 (dd, *J* = 7.9, 1.4 Hz, 1H), 6.99 – 6.92 (m, 2H), 5.160 and 5.156 (dd, *J* = 13.3, 5.1 Hz, 1H), 4.343 and 4.338 (d, *J* = 15.9 Hz, 1H), 4.17 and 4.16 (d, *J* = 15.9 Hz, 1H), 3.74 – 3.37 (m, 7H), 3.30 (dt, *J* = 9.2, 6.9 Hz, 1H), 3.18 (s, 1H), 2.92 – 2.87 (m, 1H), 2.80 (ddd, *J* = 18.1, 13.4, 5.4 Hz, 1H), 2.37 – 2.25 (m, 1H), 2.23 – 2.13 (m, 1H), 2.08 (ddd, *J* = 7.0, 5.8, 3.2 Hz, 1H), 1.68 (ddd, *J* = 9.1, 5.8, 4.5 Hz, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.74, 171.72, 170.27, 170.23, 170.0, 169.1, 141.4, 141.25, 141.21, 134.26, 134.21, 131.74, 131.71, 129.87,129.7, 128.6, 128.3, 123.8, 123.51, 123.48, 123.2, 121.2, 121.1, 66.4, 51.8, 51.7, 46.80, 46.76, 38.1, 37.9, 31.6, 30.2, 30.1, 23.4, 16.1, 16.0.

SFC analysis: 2.29a (Chiralcel® OJ-3, 20% 1:1 MeOH:ⁱPrOH with 0.2% formic acid in CO₂, 2.5 mL/min, diode array) indicated 99:1 d.r.: t_R (major diastereomers) = 2.80 and 3.65 min, t_R (minor diastereomers) = 3.21 and 4.77 min. **2.29b** indicated the opposite diastereomers in 99:1 d.r. **Purity (SFC): 2.29a** – 98%; **2.29b** – 98%

Synthetic References

(1) Qin, C.; Davies, H. M. L., Role of Sterically Demanding Chiral Dirhodium Catalysts in Site-Selective C–H Functionalization of Activated Primary C–H Bonds. *J. Am. Chem. Soc.* 2014, *136*, 9792-9796.

(2) Garlets, Z. J.; Boni, Y. T.; Sharland, J. C.; Kirby, R. P.; Fu, J.; Bacsa, J.; Davies, H. M.

L., Design, Synthesis, and Evaluation of Extended C4–Symmetric Dirhodium Tetracarboxylate Catalysts. *ACS Catal.* **2022**, *12*, 10841-10848.

(3) Hundertmark, T.; Littke, A. F.; Buchwald, S. L.; Fu, G. C., Pd(PhCN)2Cl2/P(t-Bu)3: A

Versatile Catalyst for Sonogashira Reactions of Aryl Bromides at Room Temperature. *Org. Lett.* **2000**, *2*, 1729-1731.

(4) Tortoreto, C.; Rackl, D.; Davies, H. M. L., Metal-Free C–H Functionalization of Alkanes by Aryldiazoacetates. *Org. Lett.* **2017**, *19*, 770-773.

(5) Tilden, J. A. R.; Lubben, A. T.; Reeksting, S. B.; Kociok-Köhn, G.; Frost, C. G., Pd(II)-Mediated C-H Activation for Cysteine Bioconjugation. *Chem. Eur. J.* **2022**, *28*, e202104385.

Section 4: Crystallographic Information

Submitted by:William Tracy, Huw Davies LabSolved by:John Bacsa, Mackenzie Young

$R_1 = 5.45\%$

Crystal Data and Experimental

Figure S2-6 Crystal Structure of (*R*)-2.17a

Experimental. Single colourless plate-shaped crystals of WT-05-553 were crystallized from methanol by slow evaporation. A suitable crystal with dimensions $0.13 \times 0.10 \times 0.05$ mm³ was selected and mounted on a loop with paratone on a XtaLAB Synergy, Dualflex, HyPix diffractometer. The crystal was kept at a steady *T* = 104(6) K during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) solution program using dual methods and by using Olex2 1.5-alpha (Dolomanov et al., 2009) as the graphical interface. The model was refined with olex2.refine 1.5-alpha (Bourhis et al., 2015) using full matrix least squares minimisation on *F*².

Crystal Data. $C_{25}H_{20}BrCl_{3}N_{2}O_{5}$, $M_{r} = 614.709$, monoclinic, $P2_{1}$ (No. 4), a = 6.1901(4) Å, b = 9.2069(6) Å, c = 22.1261(17) Å, $\beta = 90.543(7)^{\circ}$, $\alpha = \gamma = 90^{\circ}$, V = 1260.94(16) Å³, T = 104(6) K, Z = 2, Z' = 1, μ (Mo K $_{\alpha}$) = 1.988, 15376 reflections measured, 5610 unique (R_{int} = 0.0782) which were used in all calculations. The final wR_{2} was 0.1153 (all data) and R_{I} was 0.0545 (I $\geq 2 \sigma$ (I)).

Compound

Formula	C25H20BrCl3N2O5
D_{calc} / g cm ⁻³	1.619
μ/mm^{-1}	1.988
Formula Weight	614,709
Color	colorless
Shane	nlate-shaned
Size/mm ³	0 13×0 10×0 05
T/K	104(6)
Crystal System	monoclinic
Flack Parameter	-0.006(8)
Hooft Parameter	-0.006(8)
Snace Groun	0:000(0) P2₁
a/Δ	61901(4)
h/Å	9 2069(6)
c/Å	22 1261(17)
	90
BI°	90543(7)
p_{l}	00
γ/ ν/Å3	90 12(0.04(1()
V/A ³ 7	1200.94(10) 2
L 7'	۲ 1
Z Waxalangth /Å	L 0.71072
Wavelength/A	0./10/5
	MO K α
$\Theta_{\min}/2$	3.41
$\Theta_{max}/^{\circ}$	27.57
Measured Refl's.	15376
Indep't Refl's	5610
Refl's I≥2 <i>σ</i> (I)	4416
$R_{ m int}$	0.0782
Parameters	451
Restraints	823
Largest Peak	1.5961
Deepest Hole	-0.6735
GooF	1.0057
<i>wR</i> 2 (all data)	0.1153
wR_2	0.1076
R₁ (all data)	0.0786
R ₁	0.0545

WT-05-553

Structure Quality Indicators

A colorless plate-shaped-shaped crystal with dimensions $0.13 \times 0.10 \times 0.05 \text{ mm}^3$ was mounted on a loop with paratone. Data were collected using a XtaLAB Synergy, Dualflex, HyPix diffractometer equipped with an Oxford Cryosystems low-temperature device operating at *T* = 104(6) K.

Data were measured using ω scans with Mo K_{α} radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro system (CCD 43.92a 64-bit (release 05-10-2023)). The maximum resolution that was achieved was Θ = 27.57° (0.77 Å).

The unit cell was refined using CrysAlisPro 1.171.43.121a (Rigaku OD, 2024) on 3358 reflections, 22% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.43.121a (Rigaku OD, 2024). The final completeness is 98.65 % out to 27.57° in Θ . An analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) was performed using CrysAlisPro 1.171.43.121a (Rigaku Oxford Diffraction, 2024). An empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm was also applied. The absorption coefficient μ of this material is 1.988 mm⁻¹ at this wavelength ($\lambda = 0.71073$ Å) and the minimum and maximum transmissions are 0.821 and 0.924.

The structure was solved and the space group $P2_1$ (# 4) determined by the ShelXT (Sheldrick, 2015) structure solution program using using dual methods and refined by full matrix least squares minimisation on F^2 using version of olex2.refine 1.5-alpha (Bourhis et al., 2015). All atoms, even hydrogen atoms, were refined anisotropically. Hydrogen atom positions were located from the electron densities and freely refined using Hirshfeld scattering factors. Refinement was by using NoSpherA2, an implementation of non-spherical atomform-factors (F. Kleemiss, H. Puschmann, 0. Dolomanov, S.Grabowsky https://doi.org/10.1039/D0SC05526C - 2020). NoSpherA2 implementation of HAR makes use of tailor-made aspherical atomic form factors calculated from a Hirshfeld-partitioned electron density (ED) not from spherical-atom form factors. The ED was calculated from a Gaussian basis set single determinant SCF wavefunction from DFT using selected functionals for a fragment of this crystal. This fragment was embedded in an electrostatic crystal field by employing cluster charges. The following options were used: software: SOFTWARE: ORCA PARTITIONING: NoSpherA2 INT ACCURACY: Normal METHOD: PBE BASIS SET: x2c-SVP CHARGE: 0 MULTIPLICITY: 1 SOLVATION: Methanol RELATIVISTIC: DKH2 DATE: 2024-05-14_13-44-20

There is a single formula unit in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z' is 1. The moiety formula is C25 H20 Br Cl3 N2 O5.

The Flack parameter was refined to -0.006(8). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in -0.006(8). The chiral atoms in this structure are: C9(R), C14(S), C15(R). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0, a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Figure S2-7. A thermal ellipsoidal representation of the asymmetric unit in the crystal structure (50% probability) which consists of one whole molecule. The chiral atoms in this structure are: C9(R), C14(S), and C15(R).

Reflection Statistics

Total reflections (after filtering)	15067	Unique reflections	5610
Completeness	0.969	Mean I/ σ	9.61
hkl _{max} collected	(8, 11, 28)	hkl _{min} collected	(-8, -11, -28)
hkl _{max} used	(8, 11, 28)	hkl _{min} used	(-8, -11, 0)
Lim d _{max} collected	100.0	Lim d _{min} collected	0.36
d _{max} used	5.98	d _{min} used	0.77
Friedel pairs	3967	Friedel pairs merged	0
Inconsistent equivalents	5	Rint	0.079
Rsigma	0.0982	Intensity transformed	0
Omitted reflections	309	Omitted by user (OMIT hkl)	3
Multiplicity	(5283, 3149, 948, 182, 41, 3)	Maximum multiplicity	9
Removed systematic absences	0	Filtered off (Shel/OMIT)	0

Table S2-1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for WT-05-553. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	х	у	Z	Ueq
Br1	5371.5(7)	1137.5(3)	1682.0(2)	21.17(12)
Cl3	3100.3(17)	5997.6(11)	86.8(5)	26.1(3)
Cl1	761(2)	8186.8(11)	-588.1(6)	28.2(3)
Cl2	2633(2)	8864.4(11)	589.3(6)	29.2(3)
01	7753(5)	8378(3)	4542.3(14)	17.2(6)
02	10793(5)	6114(5)	6695.3(14)	32.8(8)
03	7875(5)	4979(3)	4887.5(14)	17.5(7)
04	-410(5)	6480(3)	1003.0(14)	19.3(5)
05	-2542(6)	8132(4)	1452.0(16)	33.7(9)
N1	4848(6)	7116(4)	4900.2(18)	16.2(6)
N2	9217(6)	5538(4)	5810.9(18)	18.4(8)
C1	2699(7)	6635(5)	4700(2)	16.9(7)
C2	2630(7)	7101(4)	4056(2)	16.0(7)
C3	4518(7)	7884(4)	3935(2)	13.4(7)
C4	5927(7)	7865(4)	4472(2)	15.2(7)
C5	1035(7)	6939(4)	3619(2)	16.3(8)
C6	1334(7)	7600(5)	3054(2)	15.8(6)
C7	3204(7)	8426(4)	2945(2)	16.9(8)
C8	4842(7)	8574(4)	3376(2)	16.2(8)
С9	5785(7)	6673(4)	5473(2)	17.0(6)
C10	6482(8)	7933(5)	5882(2)	22.2(9)
C11	7441(9)	7325(5)	6465(2)	25.4(9)
C12	9287(7)	6297(5)	6349(2)	21.8(9)
C13	7694(7)	5653(4)	5353(2)	15.7(8)
C14	-410(8)	7585(5)	2582(2)	17.9(5)
C15	-528(7)	6447(4)	2067(2)	17.8(4)
C16	-2184(7)	6491(4)	2567(2)	19.1(5)
C17	-1285(7)	7124(5)	1485(2)	18.5(6)
C18	-833(8)	7092(5)	422(2)	21.0(5)
C19	1315(9)	7524(5)	144(2)	23.8(4)
C20	963(7)	5191(5)	2009(2)	16.9(5)
C21	3039(7)	5365(5)	1791(2)	18.8(8)
C22	4392(8)	4176(5)	1687(2)	20.1(9)
C23	3612(8)	2779(5)	1814(2)	17.2(8)
C24	1527(8)	2574(5)	2030(2)	18.4(8)
C25	228(8)	3780(5)	2133(2)	17.6(8)

Table S2-2: Anisotropic Displacement Parameters (×10⁴) for WT-05-553. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U 11	U 22	U 33	U 23	U 13	U 12
Br1	22.6(2)	11.99(18)	28.9(3)	5.0(2)	1.08(16)	-0.4(2)
Cl3	27.2(5)	19.5(5)	31.5(6)	1.8(4)	0.1(4)	3.2(4)

Atom U_{11} U_{22} U_{33} U_{23} U_{13} Cl136.4(7)22.4(6)25.6(5)4.3(4)-3.2(3)Cl235.7(7)20.7(5)31.0(6)-1.6(4)-7.2(4)	U ₁₂ 2.4(3) 0.8(3)
Cl136.4(7)22.4(6)25.6(5)4.3(4)-3.2(3)Cl235.7(7)20.7(5)31.0(6)-1.6(4)-7.2(4)	2.4(3) 0.8(3)
Cl2 $35.7(7)$ 20.7(5) $31.0(6)$ -1.6(4) -7.2(4)	0.8(3)
01 18.1(8) 17.2(14) 16.3(12) -0.9(5) -4.0(5)	-0.6(7)
02 38.0(15) 32.9(17) 27.2(15) 10.1(13) -15.7(8)	-6.6(14)
03 18.8(17) 16.0(14) 17.6(11) 1.9(11) -5.1(8)	-2.3(7)
04 23.5(11) 13.6(10) 20.9(6) 3.4(5) -3.4(3)	-2.2(3)
05 45.3(17) 33.9(13) 21.7(12) 25.3(8) -7.5(6)	-4.9(5)
N1 17.9(8) 13.8(13) 16.9(7) 0.8(5) -3.2(4)	-1.3(5)
N2 18.5(15) 19.0(16) 17.6(11) -0.5(8) -4.7(7)	-0.3(8)
H2 17(8) 10(20) 18(9) -3(6) -2(4)	3(6)
C1 18.1(8) 15.1(16) 17.3(7) 0.4(6) -3.2(4)	-1.6(5)
H1a 19(5) 15(2) 17(5) 0.3(10) -2.3(19)	-1.9(10)
H1b 18(3) 16(5) 19(4) 0.1(15) -3.0(14)	-2.9(17)
C2 17.2(8) 13.7(16) 17.2(7) 1.2(6) -3.0(4)	-2.1(5)
C_3 15.8(8) 9.0(15) 15.4(7) 3.7(6) -2.3(4)	-3.9(5)
(4 17.1(8) 12.2(16) 16.2(7) 1.3(6) -3.3(4)	-2.0(5)
C5 17.0(9) 14.3(16) 17.5(7) 2.2(6) -3.1(4)	-3.2(5)
H5 $27(8)$ $50(30)$ $23(6)$ $-15(7)$ $-10(3)$	9(5)
(6 16.4(9) 13.5(12) 17.5(7) 3.4(5) -2.6(4)	-3.4(4)
(.7 173(9) 166(17) 165(8) 17(6) -36(4)	-2 1(5)
H7 = 26(7) = 50(20) = 23(4) = -16(6) = -12(3)	13(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 3(5)
$H_0 = 26(7) = 50(20) = 22(4) = 16(6) = 12(2)$	12(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.9(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.0(10)
U10 = 30(4) = 10(4) = 20(5) = 0.2(7) = 0.2(6)	-1.9(0)
H10a $30(4)$ 18(4) 20(5) -0.4(16) -9.0(17)	-1.6(17)
H10D $31(4)$ $1/(4)$ $22(5)$ $1.8(16)$ $-7.6(16)$	-2.0(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.1(/)
H11a $32(5)$ $24(4)$ $21(4)$ $5.9(17)$ $-7.4(18)$	-2.1(16)
H110 $32(4)$ $24(5)$ $22(5)$ $6.0(18)$ $-6.3(16)$	0.5(18)
C12 29.2(15) 18.6(17) 17.6(12) 2.2(10) -6.6(7)	-0.1(8)
(13 17.5(12) 12.9(15) 16.7(11) -0.7(7) -3.7(5)	-0.7(7)
C14 18.1(8) 15.7(8) 19.7(7) 3.7(4) -4.6(3)	-3.8(3)
H14 19(6) 16(2) 22(6) $3.7(11)$ -6(2)	-3.5(11)
C15 $18.1(8)$ $15.3(7)$ $20.0(6)$ $3.9(3)$ $-4.8(3)$	-3.7(3)
C16 $18.7(8)$ $17.3(11)$ $21.1(9)$ $2.8(4)$ $-4.0(4)$	-4.8(4)
H16a 19(5) 19(5) 22(5) 2.6(17) -4.1(18)	-4(2)
H16b $20(2)$ $22(6)$ $26(7)$ $3.9(12)$ $-4.4(11)$	-3(2)
C1719.1(12)15.8(10)20.5(6)3.4(5)-5.5(3)	-3.3(3)
C1826.4(7)15.2(11)21.4(7)1.6(4)-4.5(3)	-1.2(4)
H18a 27(5) 16(3) 21(4) 1.2(15) -4.2(16)	-1.1(15)
H18b 26(4) 16(3) 23(6) 1.6(15) -4.7(17)	-1.0(15)
C1926.9(7)18.8(6)25.5(6)1.4(3)-2.9(3)	1.4(3)
C20 17.7(8) 14.8(7) 18.3(12) 3.4(3) -4.9(4)	-3.4(4)
C21 18.6(8) 12.3(6) 25(2) 4.2(3) -2.4(6)	-2.1(4)
H21 30(5) 11(6) 100(30) 6.7(15) 28(6)	5(3)
C22 19.2(9) 12.0(6) 29(2) 4.1(3) -0.4(6)	-1.3(4)
H22 30(5) 11(6) 100(30) 6.7(15) 28(6)	5(3)
C23 19.1(8) 11.8(5) 21(2) 3.7(3) -3.2(6)	-2.0(4)
C24 19.2(8) 14.4(7) 22(2) 3.2(3) -2.7(6)	-2.6(4)
H24 29(8) 15(2) 90(40) 4.1(14) 22(9)	1.6(19)
C25 18.7(8) 14.8(7) 19(2) 3.3(3) -4.3(6)	-3.3(4)
H25 38(9) 17(6) 140(50) 7.1(16) 44(11)	7(3)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C23	1.887(4)	<u>C9</u>	Н9	1.17(5)
Cl3	C19	1.793(5)	С9	C10	1.531(6)
Cl1	C19	1.762(5)	С9	C13	1.534(6)
Cl2	C19	1.773(5)	C10	H10a	1.08(3)
01	C4	1.234(5)	C10	H10b	1.08(3)
02	C12	1.213(5)	C10	C11	1.523(6)
03	C13	1.208(5)	C11	H11a	1.12(4)
04	C17	1.340(6)	C11	H11b	1.12(4)
04	C18	1.426(6)	C11	C12	1.508(7)
05	C17	1.213(5)	C14	H14	1.070(3)
N1	C1	1.467(5)	C14	C15	1.550(6)
N1	C4	1.353(6)	C14	C16	1.490(6)
N1	C9	1.447(6)	C15	C16	1.516(7)
N2	H2	0.97(5)	C15	C17	1.500(6)
N2	C12	1.381(6)	C15	C20	1.486(6)
N2	C13	1.382(5)	C16	H16a	1.0702(18)
C1	H1a	1.04(3)	C16	H16b	1.0702(18)
C1	H1b	1.04(3)	C18	H18a	1.098(9)
C1	C2	1.489(6)	C18	H18b	1.097(9)
C2	C3	1.402(6)	C18	C19	1.522(7)
C2	C5	1.383(6)	C20	C21	1.386(6)
C3	C4	1.469(6)	C20	C25	1.405(6)
C3	C8	1.405(6)	C21	H21	1.0780
C5	H5	1.06(5)	C21	C22	1.399(6)
C5	C6	1.405(6)	C22	H22	1.0780
C6	C7	1.407(6)	C22	C23	1.403(6)
C6	C14	1.494(6)	C23	C24	1.394(7)
C7	H7	1.0780	C24	H24	1.0780
C7	C8	1.393(6)	C24	C25	1.391(6)
C8	H8	1.0780	C25	H25	1.0780

Table S2-3: Bond Lengths in Å for WT-05-553.

Table S2-4: Bond Angles in $^\circ$ for WT-05-553.

Atom	Atom	Atom	Angle/°	_	Atom	Atom	Atom	Angle/°
C18	04	C17	118.1(3)		N1	C4	01	124.4(4)
C4	N1	C1	113.3(4)		C3	C4	01	129.3(4)
C9	N1	C1	122.3(4)		C3	C4	N1	106.3(4)
C9	N1	C4	124.1(4)		H5	C5	C2	120.8(3)
C12	N2	H2	117(3)		C6	C5	C2	118.4(4)
C13	N2	H2	115(3)		C6	C5	H5	120.8(3)
C13	N2	C12	127.5(4)		C7	C6	C5	120.1(4)
H1a	C1	N1	111.2(2)		C14	C6	C5	121.1(4)
H1b	C1	N1	111.2(2)		C14	C6	C7	118.4(4)
H1b	C1	H1a	109.1		H7	C7	C6	119.0(3)
C2	C1	N1	102.7(4)		C8	C7	C6	122.0(4)
C2	C1	H1a	111.2(2)		C8	C7	H7	119.0(3)
C2	C1	H1b	111.2(2)		C7	C8	C3	116.7(4)
C3	C2	C1	108.4(4)		H8	C8	C3	121.6(3)
C5	C2	C1	130.7(4)		H8	C8	C7	121.6(3)
C5	C2	C3	120.9(4)		H9	C9	N1	107.5(2)
C4	C3	C2	109.2(4)		C10	C9	N1	114.4(4)
C8	C3	C2	121.8(4)		C10	C9	H9	107.5(3)
C8	C3	C4	129.0(4)		C13	C9	N1	108.9(4)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Atom	Atom	Atom	Angle/°	-	Atom	Atom	Atom	Angle/°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	С9	H9	107.5(2)	-	H16b	C16	C14	117.6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	С9	C10	110.7(4)		H16b	C16	C15	117.6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H10a	C10	C9	109.8(3)		H16b	C16	H16a	114.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H10b	C10	C9	109.8(3)		05	C17	04	123.6(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H10b	C10	H10a	108.3		C15	C17	04	112.0(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	C10	C9	109.2(4)		C15	C17	05	124.4(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	C10	H10a	109.8(3)		H18a	C18	04	105(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	C10	H10b	109.8(3)		H18b	C18	04	113(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H11a	C11	C10	109.2(3)		H18b	C18	H18a	107.6(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H11b	C11	C10	109.2(3)		C19	C18	04	108.3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H11b	C11	H11a	107.892608686(1		C19	C18	H18a	111(2)
C12C11C10112.1(4)C11C19C13108.7(3)C12C11H11a109.2(3)Cl2C19Cl3107.7(3)C12C11H11b109.2(3)Cl2C19Cl1110.7(3)N2C12O2119.5(4)C18C19Cl3111.4(3)C11C12O2124.0(4)C18C19Cl1107.3(3)C11C12N2116.6(4)C18C19Cl2110.9(4)N2C13O3122.7(4)C21C20C15121.3(4)C9C13N2116.2(4)C25C20C15120.0(4)C9C13N2116.2(4)C25C20C11119.1(2)C15C14C6115(2)H21C21C20121.7(4)C15C14C6123.3(4)C22C21H21119.1(3)C16C14C6123.4(4)H22C22C21120.8(3)C16C14C1559.8(3)C23C22C21120.8(3)C16C14C1459.8(3)C23C22C21118.4(4)C16C14C1459.8(3)C23C22C21120.8(3)C16C16114.0(4)C24C23C22121.0(4)C20C15C16114.0(4)C24C23C22121.0(4)C20C15C16120.6(4)C25C24C23120.4(3)				5)		C19	C18	H18b	111(2)
C12C11H11a109.2(3)Cl2C19Cl3107.7(3)C12C11H11b109.2(3)Cl2C19Cl1110.7(3)N2C12O2119.5(4)C18C19Cl3111.4(3)C11C12O2124.0(4)C18C19Cl1107.3(3)C11C12N2116.6(4)C18C19Cl2110.9(4)N2C13O3121.1(4)C21C20C15121.3(4)C9C13O3122.7(4)C25C20C15120.0(4)C9C13N2116.2(4)C25C20C11118.6(4)H14C14C6115(2)H21C21C20119.1(2)C15C14C6123.3(4)C22C21L20.0(119.1(2)C15C14H14111(2)C22C21H21119.1(3)C16C14C6123.4(4)H22C22C21120.8(3)C16C14C1459.8(3)C23C22C21118.4(4)C16C14C1458.2(3)C23C22C21118.8(3)C17C15C16114.0(4)C24C23Re1118.8(3)C17C15C16114.0(4)C24C23120.4(3)C20C15C16120.6(4)C25C24C23110.4(3)C20C15C16120.6(4)C25C24C23119.1(4) <t< td=""><td>C12</td><td>C11</td><td>C10</td><td>112.1(4)</td><td></td><td>Cl1</td><td>C19</td><td>Cl3</td><td>108.7(3)</td></t<>	C12	C11	C10	112.1(4)		Cl1	C19	Cl3	108.7(3)
C12C11H11b $109.2(3)$ Cl2C19Cl1 $110.7(3)$ N2C12O2 $119.5(4)$ C18C19Cl3 $111.4(3)$ C11C12O2 $124.0(4)$ C18C19Cl1 $107.3(3)$ C11C12N2 $116.6(4)$ C18C19Cl2 $110.9(4)$ N2C13O3 $121.1(4)$ C21C20C15 $121.3(4)$ C9C13O3 $122.7(4)$ C25C20C15 $120.0(4)$ C9C13N2 $116.2(4)$ C25C20C21 $118.6(4)$ H14C14C6 $115(2)$ H21C21C20 $119.1(2)$ C15C14C6 $123.3(4)$ C22C21C20 $121.7(4)$ C15C14H14 $111(2)$ C22C21H21 $119.1(3)$ C16C14C6 $123.4(4)$ H22C22C21 $120.8(3)$ C16C14C14S9.8(3)C23C22C21 $118.4(4)$ C16C14C14S8.2(3)C22C23Br1 $120.2(4)$ C17C15C14 $111.3(3)$ C24C23C22 $121.0(4)$ C20C15C14 $124.4(4)$ H24C24C23 $120.4(3)$ C20C15C16 $120.6(4)$ C25C24C23 $120.4(3)$ C20C15C16 $120.6(4)$ C25C24C23 $120.4(3)$ C20C15C16<	C12	C11	H11a	109.2(3)		Cl2	C19	Cl3	107.7(3)
N2C12O2119.5(4)C18C19Cl3111.4(3)C11C12O2124.0(4)C18C19Cl1107.3(3)C11C12N2116.6(4)C18C19Cl2110.9(4)N2C13O3121.1(4)C21C20C15121.3(4)C9C13O3122.7(4)C25C20C15120.0(4)C9C13N2116.2(4)C25C20C21118.6(4)H14C14C6115(2)H21C21C20121.7(4)C15C14C6123.3(4)C22C21L20.0(1)C15C14H14111(2)C22C21H21119.1(3)C16C14H14114(2)C23C22C21120.8(3)C16C14H14114(2)C23C22C21118.4(4)C16C14C1459.8(3)C23C22C21120.8(3)C16C14T1459.8(3)C23C22H22120.8(3)C17C15C16114.0(4)C24C23C22121.0(4)C20C15C16114.0(4)C24C23120.4(3)C20C15C16120.6(4)C25C24C23120.4(3)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C16120.6(4)C25C24C23119.1(4)C20 </td <td>C12</td> <td>C11</td> <td>H11b</td> <td>109.2(3)</td> <td></td> <td>Cl2</td> <td>C19</td> <td>Cl1</td> <td>110.7(3)</td>	C12	C11	H11b	109.2(3)		Cl2	C19	Cl1	110.7(3)
C11C12O2 $124.0(4)$ C18C19Cl1 $107.3(3)$ C11C12N2116.6(4)C18C19Cl2 $110.9(4)$ N2C13O3121.1(4)C21C20C15 $121.3(4)$ C9C13N2116.2(4)C25C20C15 $120.0(4)$ C9C13N2116.2(4)C25C20C21 $118.6(4)$ H14C14C6115(2)H21C21C20 $119.1(2)$ C15C14C6123.3(4)C22C21H21 $119.1(3)$ C16C14C6123.4(4)H22C22C21120.8(3)C16C14C6123.4(4)H22C22C21120.8(3)C16C14C1459.8(3)C23C22C21118.4(4)C16C14C1459.8(3)C23C22C21120.8(3)C16C15C14111.3(3)C24C23Br1120.2(4)C17C15C16114.0(4)C24C23C22121.0(4)C20C15C16120.6(4)C25C24C23120.4(3)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C17116.0(4)C25C24C23119.1(4)C20C15C17116.0(4)C25C24C23119.1(4)C20C15C17116.0(4)C25C24<	N2	C12	02	119.5(4)		C18	C19	Cl3	111.4(3)
C11C12N2116.6(4)C18C19Cl2110.9(4)N2C13O3121.1(4)C21C20C15121.3(4)C9C13O3122.7(4)C25C20C15120.0(4)C9C13N2116.2(4)C25C20C21118.6(4)H14C14C6115(2)H21C21C20119.1(2)C15C14C6123.3(4)C22C21H21C19119.1(3)C16C14C6123.4(4)H22C22C21120.8(3)C16C14H14114(2)C23C22C21118.4(4)C16C14C1559.8(3)C23C22C21118.8(3)C16C15C1458.2(3)C22C23Br1120.2(4)C17C15C16114.0(4)C24C23C22121.0(4)C20C15C14124.4(4)H24C24C23120.4(3)C20C15C16120.6(4)C25C24H24120.4(3)C20C15C16120.6(4)C25C24H24120.4(3)C40C45C15C17116.0(4)C25C24H24120.4(3)	C11	C12	02	124.0(4)		C18	C19	Cl1	107.3(3)
N2C13O3121.1(4)C21C20C15121.3(4)C9C13O3122.7(4)C25C20C15120.0(4)C9C13N2116.2(4)C25C20C21118.6(4)H14C14C6115(2)H21C21C20119.1(2)C15C14C6123.3(4)C22C21H21C10119.1(2)C15C14H14111(2)C22C21H21119.1(3)C16C14C6123.4(4)H22C22C21120.8(3)C16C14H14114(2)C23C22C21118.4(4)C16C14C1559.8(3)C23C22C21118.4(4)C16C14C1458.2(3)C22C23Br1120.2(4)C17C15C16114.0(4)C24C23C22121.0(4)C20C15C16120.6(4)C24C23C22120.4(3)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C17116.0(4)C25C24C23119.1(4)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C17116.0(4)C25C24C23119.1(4)C20C15C16120.6(4)C25C24C2	C11	C12	N2	116.6(4)		C18	C19	Cl2	110.9(4)
C9C13O3122.7(4)C25C20C15120.0(4)C9C13N2116.2(4)C25C20C21118.6(4)H14C14C6115(2)H21C21C20119.1(2)C15C14C6123.3(4)C22C21H21119.1(3)C15C14H14111(2)C22C21H21119.1(3)C16C14C6123.4(4)H22C22C21120.8(3)C16C14H14114(2)C23C22C21118.4(4)C16C14C1559.8(3)C23C22H22120.8(3)C16C14C1559.8(3)C23C22H22120.8(3)C16C15C1458.2(3)C22C23Br1120.2(4)C17C15C16114.0(4)C24C23C22121.0(4)C20C15C16120.6(4)C24C23C22120.4(3)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C16120.6(4)C25C24C231	N2	C13	03	121.1(4)		C21	C20	C15	121.3(4)
C9C13N2116.2(4)C25C20C21118.6(4)H14C14C6115(2)H21C21C20119.1(2)C15C14C6123.3(4)C22C21C20121.7(4)C15C14H14111(2)C22C21H21119.1(3)C16C14C6123.4(4)H22C22C21120.8(3)C16C14C6123.4(4)H22C22C21118.4(4)C16C14H14114(2)C23C22C21118.4(4)C16C14C1559.8(3)C23C22H22120.8(3)C16C15C1458.2(3)C22C23Br1120.2(4)C17C15C16114.0(4)C24C23C22121.0(4)C20C15C16120.6(4)C25C24C23120.4(3)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C17116.0(4)C25C24H24120.4(3)C15C16120.6(4)C25C24C23119.1(4)C20C15C17116.0(4)C25C24H24120.4(3)C15C16120.6(4)C25C24C23119.1(4)C20C15C17116.0(4)C25C24H24120.4(3)<	С9	C13	03	122.7(4)		C25	C20	C15	120.0(4)
H14C14C6115(2)H21C21C20119.1(2)C15C14C6123.3(4)C22C21C20121.7(4)C15C14H14111(2)C22C21H21119.1(3)C16C14C6123.4(4)H22C22C21120.8(3)C16C14H14114(2)C23C22C21118.4(4)C16C14C1559.8(3)C23C22H22120.8(3)C16C15C1458.2(3)C23C22H22120.8(3)C17C15C14111.3(3)C24C23Br1118.8(3)C17C15C16114.0(4)C24C23C22121.7(4)C20C15C16120.6(4)C24C23120.4(3)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C17116.0(4)C25C24H24120.4(3)C40C41C44C44C43119.1(4)C40C45C44C44120.4(3)C40C45C44C44120.4(3)C40C45C44C44120.4(3)C40C45C44C44120.4(3)C40C45C44C44120.4(3)C40C45C44C44120.4(3)C40C45C44C44120.4(3)C40C45C44C44C44 <td< td=""><td>C9</td><td>C13</td><td>N2</td><td>116.2(4)</td><td></td><td>C25</td><td>C20</td><td>C21</td><td>118.6(4)</td></td<>	C9	C13	N2	116.2(4)		C25	C20	C21	118.6(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H14	C14	C6	115(2)		H21	C21	C20	119.1(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	C14	C6	123.3(4)		C22	C21	C20	121.7(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	C14	H14	111(2)		C22	C21	H21	119.1(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	C14	C6	123.4(4)		H22	C22	C21	120.8(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	C14	H14	114(2)		C23	C22	C21	118.4(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	C14	C15	59.8(3)		C23	C22	H22	120.8(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	C15	C14	58.2(3)		C22	C23	Br1	120.2(4)
C17C15C16114.0(4)C24C23C22121.0(4)C20C15C14124.4(4)H24C24C23120.4(3)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C17116.0(4)C25C24H24120.4(3)C15C17C16C16C25C24C25C24C25C16C17C16C16C25C24C25C24C25C24C25C16C17C16C16C16C25C24C25<	C17	C15	C14	111.3(3)		C24	C23	Br1	118.8(3)
C20C15C14124.4(4)H24C24C23120.4(3)C20C15C16120.6(4)C25C24C23119.1(4)C20C15C17116.0(4)C25C24H24120.4(3)C15C17C16C16C16C16C16C16	C17	C15	C16	114.0(4)		C24	C23	C22	121.0(4)
C20 C15 C16 120.6(4) C25 C24 C23 119.1(4) C20 C15 C17 116.0(4) C25 C24 H24 120.4(3) C15 C14 C14 C14 C14 C25 C24 H24 120.4(3)	C20	C15	C14	124.4(4)		H24	C24	C23	120.4(3)
C20 C15 C17 116.0(4) C25 C24 H24 120.4(3)	C20	C15	C16	120.6(4)		C25	C24	C23	119.1(4)
	C20	C15	C17	116.0(4)		C25	C24	H24	120.4(3)
C15 $C16$ $C14$ $62.1(3)$ $C24$ $C25$ $C20$ $121.1(4)$	C15	C16	C14	62.1(3)		C24	C25	C20	121.1(4)
H16a C16 C14 117.6(2) H25 C25 C20 119.4(3)	H16a	C16	C14	117.6(2)		H25	C25	C20	119.4(3)
H16a C16 C15 117.6(2) H25 C25 C24 119.4(3)	H16a	C16	C15	117.6(2)		H25	C25	C24	119.4(3)

Table S2-5: Torsion Angles in $^{\circ}$ for WT-05-553.

Atom	Atom	Atom	Atom	Angle/°
Br1	C23	C22	C21	-179.9(3)
Br1	C23	C24	C25	179.5(3)
Cl3	C19	C18	04	58.1(3)
Cl1	C19	C18	04	177.0(3)
Cl2	C19	C18	04	-61.9(3)
01	C4	N1	C1	179.6(4)
01	C4	N1	C9	-7.4(5)
01	C4	C3	C2	177.0(5)
01	C4	C3	C8	-4.6(6)
02	C12	N2	C13	-176.8(4)
02	C12	C11	C10	150.3(5)
03	C13	N2	C12	176.1(4)
03	C13	C9	N1	-22.4(5)
03	C13	C9	C10	-148.9(5)
04	C17	C15	C14	148.0(4)

Atom	Atom	Atom	Atom	Angle/°
04	C17	C15	C16	-148.5(4)
04	C17	C15	C20	-1.7(4)
05	C17	C15	C14	-32.1(5)
05	C17	C15	C16	31.4(5)
05	C17	C15	C20	178.2(5)
N1	C1	C2	C3	-4.8(4)
N1	C1	C2	C5	179.0(3)
N1	C4	C3	C2	-1.5(4)
N1	C4	C3	C8	176.9(3)
N1	C9	C10	C11	-179.9(4)
N1	C9	C13	N2	157.8(3)
N2	C12	C11	C10	-29.4(5)
N2	C13	С9	C10	31.2(4)
C1	C2	C3	C4	4.0(4)
C1	C2	C3	C8	-174.5(3)
C1	C2	C5	C6	174.7(5)
C2	C3	C8	C7	-0.9(5)
C2	C5	C6	C7	-1.1(5)
C2	C5	C6	C14	-174.3(4)
C3	C8	C7	C6	-1.4(5)
C5	C6	C7	C8	2.4(5)
C5	C6	C14	C15	-95.8(4)
C5	C6	C14	C16	-22.6(5)
C6	C14	C15	C16	112.3(6)
C6	C14	C15	C17	-141.9(5)
C6	C14	C15	C20	4.8(6)
C6	C14	C16	C15	-112.2(6)
C9	C10	C11	C12	55.9(4)
C14	C15	C20	C21	-77.5(5)
C14	C15	C20	C25	107.2(5)
C14	C16	C15	C17	-101.0(3)
C14	C16	C15	C20	113.9(3)
C15	C20	C21	C22	-174.5(4)
C15	C20	C25	C24	174.1(4)
C20	C21	C22	C23	-0.6(5)
C20	C25	C24	C23	1.6(5)
C21	C22	C23	C24	0.9(5)
C22	C23	C24	C25	-1.4(5)

Atom	X	У	Z	U_{eq}
H2	10440(80)	4920(60)	5720(20)	16(11)
H1a	2539(9)	5520(40)	4738(2)	17(3)
H1b	1490(40)	7135(16)	4947(8)	17(3)
H5	-380(60)	6330(30)	3709(5)	32(13)
H7	3374(7)	8960(4)	2514(2)	33(10)
H8	6286(7)	9189(4)	3287(2)	33(10)
H9	4480(50)	6010(30)	5731(10)	17(3)
H10a	7660(40)	8590(20)	5656(8)	23(3)
H10b	5110(50)	8610(20)	5982(4)	23(3)
H11a	8030(20)	8240(30)	6755(10)	26(3)
H11b	6150(40)	6738(19)	6720(9)	26(3)
H14	-890(70)	8640(20)	2420(20)	19(3)
H16a	-2135(7)	5640(5)	2896(2)	20(3)
H16b	-3773(8)	6866(4)	2452(2)	22(3)
H18a	-1610(50)	6220(30)	163(17)	22(3)
H18b	-1960(50)	8010(30)	430(20)	22(3)
H21	3626(7)	6444(5)	1700(2)	48(13)
H22	5997(8)	4329(5)	1513(2)	48(13)
H24	929(8)	1495(5)	2117(2)	45(17)
H25	-1371(8)	3629(5)	2312(2)	70(20)

Table S2-6: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for WT-05-553. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Citations for crystallographic work

CrysAlisPro (ROD), Rigaku Oxford Diffraction, Poland (2019).

CrysAlisPro Software System, Rigaku Oxford Diffraction, (2024).

L.J. Bourhis and O.V. Dolomanov and R.J. Gildea and J.A.K. Howard and H. Puschmann, The Anatomy of a Comprehensive Constrained, Restrained, Refinement Program for the Modern Computing Environment - Olex2 Disected, *Acta Cryst. A*, (2015), **A71**, 59-71.

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, *Acta Cryst.*, (2015), **A71**, 3-8.

Section 5: Spectroscopic Data

¹H NMR Spectra

¹H NMR (400 MHz) Spectrum for Compound 2.9

1.5 1.0 0.5 0.0

¹H NMR (400 MHz) Spectrum for Compound 2.10

B4

¹H NMR (500 MHz) Spectrum for Compound 2.12

¹H NMR (600 MHz) Spectrum for Compounds 2.15a and 2.15b

¹H NMR (500 MHz) Spectrum for Compounds 2.17a and 2.17b

¹H NMR (400 MHz) Spectrum for Compounds *R*-2.17a and *S*-2.17b

¹H NMR (500 MHz) Spectrum for Compounds 2.18a and 2.18b

¹H NMR (600 MHz) Spectrum for Compounds 2.19a and 2.19b

¹H NMR (600 MHz) Spectrum for Compounds 2.21a and 2.21b

¹H NMR (400 MHz) Spectrum for Compounds 2.23a and 2.23b

¹H NMR (600 MHz) Spectrum for Compounds 2.25a and 2.25b

¹H NMR (400 MHz) Spectrum for Compounds 2.27a and 2.27b

¹H NMR (600 MHz) Spectrum for Compounds 2.29a and 2.29b

¹³C NMR Spectra ¹³C{¹H} (151 MHz) NMR Spectrum for Compound 2.7.

¹³C{¹H} (151 MHz) NMR Spectrum for Compound 2.9.

¹³C{¹H} NMR (151 MHz) Spectrum for Compound 2.10.

¹³C{¹H} NMR (151 MHz) Spectrum for Compound 2.11.

¹³C{¹H} (151 MHz) NMR Spectrum for Compound 2.12.

¹³C{¹H} NMR (151 MHz) Spectrum for Compound 2.14.

¹³C{¹H} NMR (126 MHz) Spectrum for Compounds 2.15a and 2.15b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds 2.16a and 2.16b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds 2.17a and 2.17b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds *S*-2.17a and *R*-2.17b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds *R*-2.17a and *S*-2.17b.

¹³C{¹H} NMR (126 MHz) Spectrum for Compounds 2.18a and 2.18b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds 2.19a and 2.19b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds 2.20a and 2.20b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds 2.21a and 2.21b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds 2.22a and 2.22b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds 2.23a and 2.23b.

¹³C{¹H} NMR (126 MHz) Spectrum for Compounds 2.24a and 2.24b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds 2.25a and 2.25b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds 2.26a and 2.26b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds 2.27a and 2.27b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds 2.28a and 2.28b.

¹³C{¹H} NMR (101 MHz) Spectrum for Compounds 2.29a and 2.29b.

Section 6: Chromatographic Data

Chiral SFC Chromatograms Racemic Chromatogram, 2.15

Racemic Chromatogram, 2.16

0.50

1.00

2.50

3.50

4.00

4.50

5.00

5.50

B30

Racemic Chromatogram, 2.17

S-2.17b

R-2.17b

10.00

9.50

9.00

Racemic Chromatogram, 2.19

6.00

7.00

5.50

5.00

8.00

7.50

8.50

1.00

0.50

Racemic Chromatogram, 2.20

B37

Time

9.50

9.00

3.50

3.00

4.00

4.50

5.50

0.0

Racemic Chromatogram, 2.22

2.22b

Racemic Chromatogram, 2.23

2.24a

Racemic Chromatogram, 2.26

Racemic Chromatogram, 2.28

00 020 040 050 050 100 120 140 160 150 200 220 240 250 200 300 320 340 350 350 400 420 440 460 450 550 550 540 560

Purity Chromatograms

2.17a

S-2.17a

R-2.17a

10.00 11.00 12.00

8.00

6.00 7.00

0.0

2.21a

2.22a

2.23a

2.25a

2.26a

2.26b

2.27b

2.28a

2.28b

2.29a

Section 7: Assay Protocols

Fluorescence Resonance Energy Transfer-Based NSD@ PWWP Cereblon Binding Assay.

A solution containing 0.5 nM purified 6×His-CRBN_005-DDB1_026 (CRBN a.a. 1–442, DDB1 a.a. 1–1140, generated in-house) and 20 nM Tracer compound (CC0782985) was premixed in FRET-assay buffer (50 mM HEPES pH 7.3, 50 mM NaCl, 0.005% Brij35, 1mg/mL BSA and 0.5mM TCEP). Compounds for testing were spotted into a 1536 well plate (Greiner Cat#782075). CRBN and Tracer solution were incubated in compound wells for 20 minutes. Detection mix containing Anti6xHis Tb Crytate (CisBio Cat#61HI2TLF) was then added to assay wells for a final 0.5x assay concentration of detection antibody (stock is provided at 400x). Plates were incubated for 30 minutes before being read on Pherastar FSX plate reader using TR-FRET module (Excitation 340nM, Emssion 615/665nm).

ePL and HiBiT degradation assays

DF15 cells overexpressing ePL tagged GSPT1 (DF15/GSPT1 ePL OE) was used to monitor the degradation of GSPT1 induced by experimental compounds. MDS-L cells overexpressing ePL tagged CK1 α and GSPT1^{G575N} (MDS-L/CK1 α ePL OE_GSPT1^{G575N} OE) was used to monitor the degradation of CK1 α induced by experimental compounds. NCCIT cells with HiBiT tag knocked in at the c-terminus of *SALL4* (NCCIT/SALL4-HiBiT KI) was used to monitor the degradation of SALL4 induced by experimental compounds. DF15 cells with HiBiT tag knocked in at the n-terminus of *IKZF3* (DF15/HiBiT-IKZF3 KI) was used to monitor the degradation of AIOLOS (IKZF3) induced by experimental compounds.

The cell culture medium recipes, seeding densities and compound incubation time with cells are shown in the table below:

Target	Cell line	Cell culture medium	Seeding density (cells/well)	Compound incubation time (hr)
GSPT1	DF15/GSPT1 ePL OE	RPMI 1640, 10% heat inactivated (HI) FBS, 1mM sodium pyruvate, 25mM Hepes, 0.1% pluronic acid, 1X NEAA	800	20
CK1a	MDS-L/CK1α ePL OE_GSPT1 ^{G575N} OE	RPMI 1640, 20% HI FBS and 50 ng/mL of human recombinant IL3	1,000	4
SALL4	NCCIT/SALL4- HiBiT KI	RPMI 1640 and 10% HI FBS	800	2
IKZF3	DF15/HiBiT- IKZF3 KI	RPMI 1640, 10% HI FBS, 1mM sodium pyruvate, 25mM Hepes, 0.1% pluronic acid, 1X NEAA	800	4

Table S2-7: Cell Cultures and Assay Details

For all degradation assays, compounds were pre-spotted in a 1536 well plate (Corning 3727) starting at 10uM with 3-fold serial dilution down 11 points in replicates using an Echo 650 series acoustic liquid handler. 5uL/well cells were seeded in the assay ready plate at the density and in the medium as indicated in the table. The final DMSO concentration in the cell culture was 0.25%. The plates were equilibrated at room temperature for 30 minutes before putting into a 37 °C CO₂ incubator. After appropriate incubation period, plates were retrieved from the incubator and set at room temperature to equilibrate for 30 minutes, before adding ePL or HiBiT detection reagent. For ePL detection, the pre-prepared mixture of EA reagent, lysis buffer, and substrate reagent at ratio 1:1:4 from the DiscoverX InCELL Detection Kit (Eurofins 96-0079L) according to the manufacturer's recommendation was added 3ul/well into the plate. Plates were incubated in the dark for 1hr at room temperature before reading using a BMG PheraStar luminescence reader. For HiBiT detection, Nano-Glo HiBiT Lytic Reagent (Promega, N3050) prepared according to the manufacturer's recommendation was added 3 uL/well into the plate. Plates were incubated 30 minutes at room temperature in the dark before reading using a BMG PheraStar luminescence reader. For HiBiT detection, Nano-Glo HiBiT Lytic Reagent (Promega, N3050) prepared

To determine EC_{50} values for degradation, a four parameter logistic model (Sigmoidal Dose-Response Model) (FIT= (A+((B-A)/1+((C/x)^D)))) C is the inflection point (EC₅₀), D is the correlation coefficient, A and B are the low and high limits of the fit respectively) was used to determine the compound's EC₅₀ value, which is the half maximum effective concentration. In the degradation assays, the Y_{const} of each compound was calculated by normalizing the lowest point of the fitted curve to the media only control, which is 0%, and the cells treated with DMSO control, which is 100%. All degradation curves were processed and evaluated using Dotmatics.

Section 8: Biological Data Tables

The data in this section were generated by Zhenghang Sun, Jennifer Buenviaje, Gody Khambatta, Shan Yu, and Lihong Shi.

Table S2-8: Fluorescence Resonance Energy Transfer-Based Cereblon Binding Assay Data

Compound	CRBN HTRF
Number	IC ₅₀ (µM)
2.15a	0.66
2.15b	2.4
2.16a	>10
2.16b	7.9
2.17a	0.39
2.17b	1.3
2.18a	5.3
2.18b	>10
2.19a	2.1
2.19b	2.5
2.20a	>10
2.20b	>10
2.21a	0.16
2.21b	0.35
2.22a	4.6
2.22b	35
2.23a	0.59
2.23b	0.8
2.24a	5.7
2.24b	7.8
2.25a	0.98
2.25b	1.7
2.26a	2.4
2.26b	2.9

Table S2-9: Neosubstrate Degradation Assay Data	ı*
---	----

Compound	IKZF3	IKZF3	CK1a	CK1a	GSPT1	GSPT1	SALL4	SALL4
Number	EC ₅₀ (µM)	$Y_{min}(\%)$	EC50 (µM)	$Y_{min}(\%)$	$EC_{50}(\mu M)$	$Y_{min}(\%)$	EC50 (µM)	$Y_{min}(\%)$

2.15a	$>10\pm0.00$	81 ± 3.3	$> 10 \pm 0.00$	87 ± 0.55	$>10\pm0.00$	92 ± 7.8	$>10\pm0.00$	85 ± 7.3
2.15b	$>10\pm0.00$	97 ± 4.9	$> 10 \pm 0.00$	90 ± 7.1	$>10\pm0.00$	99 ± 2.2	$>10\pm0.00$	97 ± 3.1
2.16a	$>10\pm0.00$	89 ± 3.2	$>10\pm0.00$	92 ± 3.8	$>10\pm0.00$	91 ± 16	$>10\pm0.00$	91 ± 8.0
2.16b	$>10\pm0.00$	95 ± 4.3	$>10\pm0.00$	94 ± 5.1	$>10\pm0.00$	87 ± 11	$>10\pm0.00$	87 ± 13
2.17a	$>10\pm0.00$	100 ± 4.6	$>10\pm0.00$	89 ± 5.1	$>10\pm0.00$	96 ± 7.8	$>10\pm0.00$	99 ± 1.2
2.17b	$>10\pm0.00$	89 ± 5.0	0.22 ± 0.089	47 ± 5.0	$>10\pm0.00$	83 ± 7.0	0.16 ± 0.05	67 ± 5.4
2.18a	$>10\pm0.00$	94 ± 8.3	$>10\pm0.00$	94 ± 9.9	$>10\pm0.00$	94 ± 11	$>10\pm0.00$	92 ± 8.2
2.18b	$>10\pm0.00$	97 ± 3.6	$>10\pm0.00$	85 ± 4.1	$>10\pm0.00$	86 ± 8.2	0.41 ± 0.16	60 ± 6.1
2.19a	$>10\pm0.00$	95 ± 7.6	$> 10 \pm 0.00$	98 ± 12	$>10\pm0.00$	95 ± 5.4	$>10\pm0.00$	97 ± 2.2
2.19b	$>10\pm0.00$	89 ± 6.5	$> 10 \pm 0.00$	96 ± 12	$>10\pm0.00$	93 ± 5.8	$>10\pm0.00$	96 ± 3.1
2.20a	$>10\pm0.00$	91 ± 0.6	$> 10 \pm 0.00$	89 ± 1.7	$>10\pm0.00$	87 ± 6.5	$>10\pm0.00$	93 ± 3.8
2.20b	$>10\pm0.00$	96 ± 5.7	$> 10 \pm 0.00$	91 ± 7.1	$>10\pm0.00$	83 ± 15	$>10\pm0.00$	96 ± 5.4
2.21a	0.012 ± 0.010	7.9 ± 1.8	0.17 ± 0.18	64 ± 4.3	0.17 ± 0.13	64 ± 8.7	0.019 ± 0.010	23 ± 4.5
2.21b	0.11 ± 0.05	69 ± 3.3	1.5 ± 1.1	60 ± 7.4	0.55 ± 0.47	66 ± 5.5	0.17 ± 0.06	35 ± 5.9
2.22a	0.90 ± 0.18	40 ± 2.2	1.5 ± 0.94	56 ± 14	4.3 ± 1.9	12 ± 13	0.56 ± 0.27	34 ± 7.4
2.22b	3.7 ± 0.62	10 ± 8.2	2.1 ± 1.3	54 ± 8.9	5.1 ± 1.4	17 ± 13	2.8 ± 1.6	57 ±7.7
2.23a	$>10\pm0.00$	95 ± 7.6	$> 10 \pm 0.00$	89 ± 9.3	$>10\pm0.00$	81 ± 17	$>10\pm0.00$	89 ± 4.2
2.23b	4.8 ± 2.6	79 ± 6.4	0.25 ± 0.37	57 ± 8.0	3.3 ± 3.0	7.7 ± 4.7	0.075 ± 0.050	68 ± 2.1
2.24a	1.3 ± 2.1	73 ± 6.2	1.2 ± 1.2	60 ± 26	1.1 ± 0.69	2.7 ± 0.7	$3.6\ \pm 0.74$	67 ± 7.8
2.24b	0.31 ± 0.11	71 ± 9.7	1.6 ± 0.71	55 ± 39	1.4 ± 0.88	1.8 ± 0.86	2.4 ± 1.7	58 ± 3.2
2.25a	$> 10 \pm 0.00$	94 ± 2.3	$> 10 \pm 0.00$	93 ± 10	$>10\pm0.00$	82 ± 7.1	$>10\pm0.00$	95 ± 6.5
2.25b	$>10\pm0.00$	81 ± 4.6	$>10\pm0.00$	95 ± 6.0	$>10\pm0.00$	88 ± 10	$>10\pm0.00$	91 ± 10
2.26a	$>10\pm0.00$	97 ± 0.58	$>10\pm0.00$	96 ± 12	$>10 \pm 0.00$	85 ± 24	$>10\pm0.00$	95 ± 5.0
2.26b	$>10\pm0.00$	93 ± 2.5	$>10\pm0.00$	93 ± 6.8	$>10 \pm 0.00$	80 ± 4.3	$>10\pm0.00$	97 ± 5.2

* $N \ge 3$ for all data

Appendix C: Supporting Information for Chapter 3.

Section 1: General Information

All reactions were conducted in flame-dried glassware under an inert atmosphere of dry nitrogen or argon, unless otherwise noted. All reagents were purchased from commercial suppliers and used as received, unless otherwise noted. Anhydrous dichloromethane was obtained from a Grubbs-type solvent purification system and further dried under an argon atmosphere for 24 hours over 4 Å molecular sieves. Anhydrous N,N-dimethylformamide, dimethyl sulfoxide, and toluene were obtained from DriSolv® Supelco® bottles. Molecular sieves were activated by heating under vacuum (<1 torr) for three hours at 300 °C. 1,1,1,3,3,3-hexafluoroisopropanol was obtained from Oakwood Chemical, distilled, and stored under inert atmosphere over 4 Å molecular sieves. Pentane, cyclopentane, cyclohexane, cycloheptane, *p*-bromo cumene, and *p*-cymene were stored over 4 Å molecular sieves for at least 24 hours prior to reaction.

Proton (¹H) NMR spectra were recorded at 400 MHz on Varian and Bruker spectrometers, 500 MHz on an Inova-500 spectrometer, 600 MHz on an Inova-600 spectrometer, or 800 MHz on a Bruker-800 spectrometer. Proton-decoupled carbon (${}^{13}C{}^{1}H{}$) NMR spectra were recorded at 100 MHz on Varian and Bruker spectrometers, 151 MHz on an Inova-600 spectrometer, or 201 MHz on a Bruker-800 spectrometer. NMR spectra were recorded in deuterated solvents and were referenced to tetramethylsilane or the respective residual solvent signal. NMR chemical shifts were reported in parts per million (ppm). Abbreviations for signal couplings are as follows: s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; sex, sextet; sep, septet; m, multiplet; dd, doublet of doublets; dt, doublet of triplets; dtd, doublet of triplets; dtd, doublet of triplets; and dq, doublet of quartets. The coupling constants were taken from the spectra directly and are uncorrected.

Mass spectrometric determinations were carried out on a Thermo Finnigan LTQ-FTMS spectrometer with atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI) using a Fourier transform ion cyclotron resonance mass analyzer. Optical rotations were measured on a Rudolph Research Analytical Automatic Polarimeter, APIV-1W. Analytical thin layer chromatography was performed on silica gel plates using ultraviolet light, iodine vapor, or potassium permanganate stain to visualize analytes. Normal phase column chromatography was performed with SiliCycle silica gel 60 Å (50 μ m) or neutral alumina hand-packed in Biotage Sfar columns on Biotage Isolera Four chromatographs or hand-packed glass columns, with SiliCycle silica gel 60 Å or Celite® as a dry-loading absorbent. Reverse phase chromatography was conducted using Teledyne ISCO RediSep Gold 18 reverse-phase columns using Teledyne ISCO CombiFlash or Biotage Isolera chromatographs. Supercritical fluid chromatography (SFC) analysis was performed on a Waters Acquity UPC2 instrument.

Purity of biologically tested compounds was tested by high-performance liquid chromatography analysis (HPLC) on an Agilent 1260 Infinity HPLC. All tested compounds were \geq 95% pure by HPLC analysis.

1-(4-(tert-butyl)phenyl)bicyclo[1.1.1]pentane was prepared following the literature procedure.¹ 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (**3.2**) was prepared via the literature procedure.² 2,2,2-trichloroethyl 2-diazoacetate was also prepared following the literature procedure.³ Dirhodium catalysts Rh₂(*S*-p-Ph-TPCP)₄,⁴ Rh₂(*S*-tetra-p-Br-PPTTL)₄,⁵ Rh₂(*R*-tetra-p-Br-PPTTL)₄,⁵ and Rh₂(*S*-TPPTTL)₄⁶ were prepared according to their respective literature procedures.

Racemic standards for the products of reactions with ring-closed diazo compounds were prepared by using a 1:1 mixture of *R* and *S* catalyst under the same reaction conditions used to prepare enantioenriched compounds. Racemic standards for the cyclopropanation of styrene with ring-opened diazo compounds were prepared using Rh₂(esp)₂ under the same reaction conditions used to prepare enantioenriched diazo compounds. Racemic standards for the C-H insertion of cyclohexane using ring-opened diazo compounds were prepared from the enantioenriched material by epimerization with 1,8-diazabicyclo[5.4.0]undec-7-ene in acetonitrile. Racemic standards for **3.13** and **SI-3** were prepared from the racemic standards for **3.11b** and **3.12b** using **GP 8** (detailed below) and the resulting glutarimide stereogenic centers were epimerized with 1,8-diazabicyclo[5.4.0]undec-7-ene in acetonitrile.

Caution! Glutarimide-containing compounds such as thalidomide are known reproductive, neurological, and hematological toxins. Care must be exercised to avoid direct contact with glutarimide-containing compounds. The neat compounds and their solutions must only be handled in a chemical fume hood. Any glassware used with glutarimide-containing material should be treated with a 2 M aqueous solution of a strong base such as sodium hydroxide to destroy the material. Caution! Diazo compounds are potentially energetic and must be handled carefully; initiation temperatures for similar compounds are often below 100 °C.⁷ Off-gassing of nitrogen during rhodium-catalyzed reactions with diazo compounds must be accounted for in reaction setup.

Figure S3-1. Aryl iodides used in this study Section 2: Synthetic Procedures and Compound Characterization

2,2,2-trichloroethyl 2-diazo-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetate (3.6a).

Compound **3.6a** was produced following a modified literature procedure.³ Under inert atmosphere, a flame-dried round-bottom flask equipped with PTFE magnetic stir bar was charged with 2-(2,6-dioxopiperidin-3-yl)-5-iodoisoindoline-1,3-dione (1.33 g, 1.0 equiv, 3.46 mmol) (3.5a), triphenylphosphine (182 mg, 20 mol%, 0.69 mmol), silver (I) carbonate (477 mg, 50 mol%, 1.7 mmol), and Pd(PPh₃)₄ (400 mg, 10 mol%, 0.35 mmol). 2,2,2-trichloroethyl 2diazoacetate (1.51 g, 2.0 equiv, 6.9 mmol), triethylamine (0.97 mL, 2.0 equiv, 6.9 mmol) and 19 mL dry DMF were charged via syringe. The reaction was stirred vigorously at room temperature for six hours, after which it was poured into saturated aqueous sodium chloride solution and filtered through Celite® with 200 mL ethyl acetate. The organic phase was separated and washed thrice with saturated aqueous sodium chloride solution, then dried over sodium sulfate. The solution was filtered and concentrated onto Celite®. The residue was purified via flash column chromatography (SiO₂, gradient of 20% to 60% ethyl acetate in hexanes with 3% v/v triethylamine). The obtained material was dissolved in acetone, then concentrated in vacuuo until a viscous red liquid was obtained. The solution was placed in a -20 °C freezer overnight. The precipitated vellow solid was collected by vacuum filtration, washing with minimal -20 °C acetone, which gave 2,2,2-trichloroethyl 2-diazo-2-(2-(2,6-dioxopiperidin-3-yl)-1,3dioxoisoindolin-5-yl)acetate (3.6a) as an amorphous light yellow solid (655 mg, 1.38 mmol, 40% yield).

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₂O₆N₄³⁵Cl₃ 472.9817; Found 472.9818

¹**H NMR** (400 MHz, Acetone-*d*6): δ 9.93 (s, 1H), 8.19 – 8.17 (m, 1H), 8.03 (dd, J = 8.1, 1.8 Hz, 1H), 7.94 (dd, J = 8.0, 0.7 Hz, 1H), 5.16 (dd, J = 12.7, 5.4 Hz, 1H), 5.12 (s, 2H), 3.09 – 2.88 (m, 1H), 2.86 – 2.68 (m, 2H, partially obscured by residual water peak at 2.82), 2.31 – 2.19 (m, 1H). ¹³C{¹H} **NMR** (151 MHz, Acetone-*d*6): δ 172.6, 169.9, 167.7, 167.6, 163.1, 134.2, 133.8, 129.4, 129.3, 124.7, 118.8, 96.0, 74.6, 66.5, 50.4, 32.0, 23.3. **FT-IR** (film): v_{max}/cm^{-1} inter alia 2100 (N=N).

2,2,2-trichloroethyl 2-diazo-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)acetate (3.6b).

Under inert atmosphere, a flame-dried round-bottom flask was charged with a PTFE magnetic stir bar, Compound **3.6b** was produced following a modified literature procedure.³ 5-iodo-1oxoisoindolin-2-yl)piperidine-2,6-dione (370 mg, 1.0 equiv, 1.0 mmol) (3.5b), triphenylphosphine (71 mg, 10 mol%, 0.10 mmol), silver(I) carbonate (138 mg, 50 mol%, 0.50 mmol), and Pd(PPh₃)₄ (58 mg, 5.0 mol%, 0.05 mmol). 2,2,2-trichloroethyl 2-diazoacetate (261 mg, 1.2 equiv, 1.2 mmol), triethylamine (0.21 mL, 1.5 equiv, 1.5 mmol), and dry DMSO (5.6 mL) were charged via syringe. After two hours of stirring at room temperature, the reaction was recharged with Pd(PPh₃)₄ (58 mg, 5.0 mol%, 0.05 mmol) and triphenylphosphine (71 mg, 10 mol%, 0.10 mmol). After five hours of stirring at room temperature, the reaction was recharged with Pd(PPh₃)₄ (58 mg, 5.0 mol%, 0.05 mmol), triphenylphosphine (71 mg, 10 mol%, 0.10 mmol), and triethylamine (0.21 mL, 1.5 equiv, 1.5 mmol). The reaction was stirred for a further 12 hours at room temperature. The reaction was recharged with Pd(PPh₃)₄ (58 mg, 5.0 mol%, 0.05 mmol), triphenylphosphine (71 mg, 10 mol%, 0.10 mmol), triethylamine triethylamine (0.21 mL, 1.5 equiv, 1.5 mmol), silver(I) carbonate (138 mg, 50 mol%, 0.50 mmol) and 2,2,2trichloroethyl 2-diazoacetate (261 mg, 1.2 equiv, 1.2 mmol), then stirred for a further two hours (total reaction time, 19 hours). The reaction was poured into 100 mL ethyl acetate with 1% v/v triethylamine and filtered through a layered plug of Celite®, silica gel, and neutral alumina. The solution was washed with 100 mL 10% w/w aqueous LiCl solution once, and twice with saturated aqueous NaCl solution. The organic layer was dried over sodium sulfate and filtered, then concentrated in vacuuo onto Celite[®]. The reaction was purified via flash column chromatography on neutral alumina using a gradient of 0-10% MeOH in CH₂Cl₂. The productcontaining fractions were concentrated in vacuuo, and the obtained residue was sonicated with 4 mL acetone and stored in a -20 °C freezer overnight in the acetone. The yellow insoluble material was collected via vacuum filtration, rinsing with an additional 4 mL of acetone cooled to -20 °C, which gave 2,2,2-trichloroethyl 2-diazo-2-(2-(2,6-dioxopiperidin-3-yl)-1oxoisoindolin-5-yl)acetate (3.6b) as a pale yellow amorphous solid (130 mg, 0.28 mmol, 28%) vield).

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₁₇H₁₄O₅N₄³⁵Cl₃, 459.0024; Found 459.0021

¹**H NMR** (600 MHz, DMSO-*d*6): δ 10.99 (s, 1H), 7.82 (dd, J = 1.7, 0.8 Hz, 1H), 7.78 (dd, J = 8.1, 0.7 Hz, 1H), 7.69 (dd, J = 8.1, 1.7 Hz, 1H), 5.11 (dd, J = 13.3, 5.2 Hz, 1H, partially obscured by signal at 5.10), 5.10 (s, 2H) 4.48 (d, J = 17.4 Hz, 1H), 4.35 (d, J = 17.3 Hz, 1H), 2.91 (ddd, J = 17.4, 13.7, 5.4 Hz, 1H), 2.60 (ddd, J = 17.2, 4.4, 2.4 Hz, 1H), 2.40 (qd, J = 12.6, 4.5 Hz, 1H), 2.01 (dtd, J = 12.4, 5.3, 2.4 Hz, 1H).

¹³C{¹H} NMR (151 MHz, DMSO-*d*6): δ 172.9, 171.0, 167.6, 162.5, 143.0, 129.4, 128.8, 123.6, 123.3, 118.4, 95.3, 73.2, 51.6, 47.2, 31.2, 30.7, 22.5.

FT-IR (film): v_{max}/cm^{-1} inter alia 2103 (N=N).

2,2,2-trichloroethyl 2-diazo-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)acetate (3.6c).

Compound **3.6c** was produced following a modified literature procedure.³ Under inert atmosphere, a flame-dried round-bottom flask equipped with PTFE magnetic stir bar was charged with 2-(2,6-dioxopiperidin-3-yl)-4-iodoisoindoline-1,3-dione (768 mg, 1.0 equiv, 2.0 mmol) (3.5c), triphenylphosphine (105 mg, 20 mol%, 0.4 mmol), silver (I) carbonate (276 mg, 50 mol%, 1.0 mmol), and Pd(PPh₃)₄ (231 mg, 10 mol%, 0.20 mmol). 2,2,2-trichloroethyl 2diazoacetate (870 mg, 2.0 equiv, 4.0 mmol), triethylamine (0.56 mL, 2.0 equiv, 4.0 mmol) and 11 mL dry DMF were charged via syringe. The reaction was stirred vigorously at room temperature for six hours, after which it was poured into saturated aqueous sodium chloride solution and filtered through Celite® with 100 mL ethyl acetate. The organic phase was separated and washed thrice with saturated aqueous sodium chloride solution, then dried over sodium sulfate. The solution was filtered and concentrated onto Celite®. The residue was purified via flash column chromatography (SiO₂, gradient of 20% to 60% ethyl acetate in hexanes with 3% v/v triethylamine) and further purified via flash column chromatography (SiO₂, gradient of 0% to 5% acetone in CH₂Cl₂ with 3% v/v triethylamine). The obtained material was further purified via reverse phase flash column chromatography (C18, gradient of 20% to 90% EtOH in H₂O with 10 mM NH₄OAc buffer), which gave 2,2,2-trichloroethyl 2-diazo-2-(2-(2,6dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)acetate (3.6c) as an amorphous light yellow solid (145 mg, 0.30 mmol, 15% yield).

HRMS (ESI) m/z: $[M+Na]^+$ calcd for C₁₇H₁₁O₆N₄³⁵Cl₃²³Na 494.9636; Found 494.9640

¹**H** NMR (400 MHz, Acetone-*d*6): δ 9.94 (s, 1H), 8.13 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.94 (dd, *J* = 8.1, 7.3 Hz, 1H), 7.87 (dd, *J* = 7.4, 1.0 Hz, 1H), 5.19 (dd, *J* = 12.6, 5.4 Hz, 1H), 5.07 (s, 2H), 3.07 – 2.91 (m, 1H), 2.86 – 2.70 (m, 2H), 2.30 – 2.20 (m, 1H).

¹³C{¹H} NMR (151 MHz, Acetone-*d*6): δ 206.1, 172.5, 169.8, 167.6, 167.4, 163.7, 135.9, 135.3, 133.7, 126.3, 125.3, 123.1, 96.1, 74.7, 50.4, 31.9, 23.2.

FT-IR (film): v_{max}/cm^{-1} inter alia 2100 (N=N).

tert-butyl (S)-5-amino-4-(5-(1-diazo-2-oxo-2-(2,2,2-trichloroethoxy)ethyl)-1-oxoisoindolin-2-yl)-5-oxopentanoate (3.8a).

Compound **3.8a** was produced following a modified literature procedure.³ Under inert atmosphere, a flame-dried 16 mL vial equipped with PTFE magnetic stir bar was charged with *tert*-butyl (*S*)-5-amino-4-(5-iodo-1-oxoisoindolin-2-yl)-5-oxopentanoate (**3.7a**) (89 mg, 1.0 equiv, 0.20 mmol), triphenylphosphine (28 mg, 20 mol%, 0.04 mmol), silver (I) carbonate (28 mg, 50 mol%, 0.10 mmol), and Pd(PPh₃)₄ (23 mg, 10 mol%, 0.02 mmol). 2,2,2-trichloroethyl 2-diazoacetate (65 mg, 1.5 equiv, 0.30 mmol), triethylamine (42 mL, 1.5 equiv, 0.30 mmol) and 4.0 mL dry toluene were charged via syringe. The reaction was placed in a preheated aluminum heating block (40 °C) and stirred vigorously at this temperature for four hours. The reaction was then cooled, rinsed through a silica plug with 20 mL ethyl acetate, and concentrated in vacuuo. The crude residue was mounted into Celite® and purified by flash column chromatography (SiO₂, gradient of 20% to 90% ethyl acetate in hexanes with 1% v/v triethylamine). The obtained material was further purified by reverse-phase flash column chromatography (C18, 20-90% acetonitrile in H₂O, with 10 mM NH₄OAc as buffer), which afforded *tert*-butyl (*S*)-5-amino-4-(5-(1-diazo-2-oxo-2-(2,2,2-trichloroethoxy)ethyl)-1-oxoisoindolin-2-yl)-5-oxopentanoate (**3.8a**) as an amorphous light yellow solid (63 mg, 0.12 mmol, 59% yield).

HRMS (APCI) m/z: $[M+H]^+$ calcd for C₂₁H₂₄O₆N₄³⁵Cl₃ 533.0756; Found 533.0759.

¹**H** NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 1.7 Hz, 1H), 7.48 (dd, J = 8.1, 1.7 Hz, 1H), 6.24 (s, 1H), 5.30 (s, 1H), 4.93 (s, 2H), 4.89 (dd, J = 8.7, 6.3 Hz, 1H), 4.55 (d, J = 17.2 Hz, 1H), 4.46 (d, J = 17.2 Hz, 1H), 2.50 – 2.08 (m, 4H), 1.42 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 171.8, 168.8, 142.9, 129.8, 129.4, 124.5, 123.1, 118.4, 94.9, 81.0, 74.1, 54.1, 47.3, 32.0, 28.2, 24.4.

FT-IR (film): v_{max}/cm^{-1} inter alia 2099 (N=N).

Specific Rotation: $[\alpha]_D^{22}$ -55.2 (c 1.0, CHCl₃).

Note: The degree of enantioenrichment of the stereogenic center was not measured by SFC analysis due to the instability of the compound under the conditions of analysis.

tert-butyl (*S*)-5-amino-4-(4-(1-diazo-2-oxo-2-(2,2,2-trichloroethoxy)ethyl)-1-oxoisoindolin-2-yl)-5-oxopentanoate (3.8b).

Compound **3.8b** was produced following a modified literature procedure.³ Under inert atmosphere, a flame-dried 16 mL vial equipped with PTFE magnetic stir bar was charged with *tert*-butyl (*S*)-5-amino-4-(4-iodo-1-oxoisoindolin-2-yl)-5-oxopentanoate (**3.7b**) (89 mg, 1.0 equiv, 0.20 mmol), triphenylphosphine (28 mg, 20 mol%, 0.04 mmol), silver (I) carbonate (28 mg, 50 mol%, 0.10 mmol), and Pd(PPh₃)₄ (23 mg, 10 mol%, 0.02 mmol). 2,2,2-trichloroethyl 2-diazoacetate (65 mg, 1.5 equiv, 0.30 mmol), triethylamine (42 mL, 1.5 equiv, 0.30 mmol) and 4.0 mL dry toluene were charged via syringe. The reaction was placed in a preheated aluminum heating block (40 °C) and stirred vigorously at this temperature for four hours. The reaction was then cooled, rinsed through a silica plug with 20 mL ethyl acetate, and concentrated in vacuuo. The crude residue was mounted into Celite® and purified by flash column chromatography (SiO₂, gradient of 20% to 90% ethyl acetate in hexanes with 1% v/v triethylamine). The obtained material was further purified by reverse-phase flash column chromatography (C18, 20-90% acetonitrile in H₂O, with 10 mM NH₄OAc as buffer), which afforded *tert*-butyl (*S*)-5-amino-4-(4-(1-diazo-2-oxo-2-(2,2,2-trichloroethoxy)ethyl)-1-oxoisoindolin-2-yl)-5-oxopentanoate (**3.8b**) as an amorphous light yellow solid (33 mg, 0.06 mmol, 31% yield).

HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₂₄O₆N₄³⁵Cl₃ 533.0763; Found 533.0756.

¹**H NMR** (400 MHz, CDCl₃): δ 7.83 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.64 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.57 (t, *J* = 7.6 Hz, 1H), 6.32 (s, 1H), 5.35 (s, 1H), 4.97 – 4.89 (m, 3H), 4.55 (d, *J* = 17.5 Hz, 1H), 4.45 (d, *J* = 17.5 Hz, 1H), 2.46 – 2.21 (m, 3H), 2.20 – 2.09 (m, 1H), 1.42 (s, 9H).

¹³C{¹H} NMR: (151 MHz, CDCl₃): δ 171.9, 171.6, 168.7, 140.0, 133.3, 129.3, 123.9, 120.5, 95.0, 81.1, 74.3, 54.2, 47.0, 32.0, 28.2, 24.4.

FT-IR (film): v_{max}/cm^{-1} inter alia 2099 (N=N).

Specific Rotation: $[\alpha]_D^{22}$ -43.2 (*c* 0.5, CHCl₃).

Note: The degree of enantioenrichment of the stereogenic center was not measured by SFC analysis due to the instability of the compound under the conditions of analysis.

Boc

tert-butyl 4-(hex-5-en-1-yl)piperazine-1-carboxylate (3.23).

Under inert atmosphere, a flame-dried round-bottom flask fitted with reflux condenser was charged with sodium iodide (75 mg, 10 mol%, 0.50 mmol), tert-butyl piperazine-1-carboxylate (0.93 g, 1.0 equiv, 5.0 mmol), and potassium carbonate (1.5 g, 2.2 equiv, 11 mmol). 6-

bromohex-1-ene (0.90 g, 1.1 equiv, 5.5 mmol) and 23 mL dry acetonitrile were charged by syringe. The reaction was stirred overnight at reflux then cooled, filtered through Celite® with CH₂Cl₂, and concentrated in vacuuo. The crude residue was purified via flash column chromatography (SiO₂, gradient of 0-10% methanol in CH₂Cl₂), which produced tert-butyl 4-(hex-5-en-1-yl)piperazine-1-carboxylate (**3.23**) (1.23 g, 92% yield, 4.6 mmol) as a translucent yellow oil.

HRMS (APCI) m/z: [M+H]⁺ calcd for C₁₅H₂₉O₂N 269.2224; Found 269.2223. ¹H NMR (400 MHz, CDCl₃): δ 5.79 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.00 (dq, J = 17.1, 1.7 Hz, 1H), 4.94 (ddt, J = 10.2, 2.2, 1.2 Hz, 1H), 3.42 (t, J = 5.1 Hz, 4H), 2.47 – 2.27 (m, 6H), 2.06 (qt, J = 7.1, 1.4 Hz, 2H), 1.55 – 1.35 (m, 13H).

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 154.9, 138.8, 114.7, 79.7, 58.7, 53.2, 33.8, 28.6, 26.9, 26.4.

Synthesis of Final Compounds General Procedure 1 (GP1)

A flame-dried 4 mL vial under inert atmosphere was equipped with ca. 200 wt% 4Å mol. sieves and a PTFE magnetic stir bar. The vial was charged with diazo (1.0 equiv, 0.10 mmol) and 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol). 1.0 mL substrate was charged via syringe, and a 20 mM solution of Rh₂(*S*-tetra-p-Br-TPPTTL)₄ (50 μ L, 1 mol%, 1.0 μ mol) in dry CH₂Cl₂ was charged via syringe at room temperature to the stirred reaction. The reaction was allowed to stir at r.t. for 0.5 h and was filtered through Celite®, then concentrated in vacuuo, removing excess substrate by Kugelrohr distillation if possible. The reaction was drymounted into Celite® and purified by flash column chromatography.

General Procedure 2 (GP2)

A flame-dried 4 mL vial under inert atmosphere was equipped with ca. 200 wt% 4Å mol. sieves and a PTFE magnetic stir bar. The vial was charged with diazo (1.0 equiv, 0.10 mmol) and 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol). 0.5 mL substrate and 0.5 mL CH₂Cl₂ were charged via syringe, and a 20 mM solution of Rh₂(*S*-tetra-p-Br-TPPTTL)₄ (50 μ L, 1 mol%, 1.0 μ mol) in dry CH₂Cl₂ was charged via syringe at room temperature to the stirred reaction. The reaction was allowed to stir at r.t. for 0.5 h and was filtered through Celite®, then concentrated in vacuuo, removing excess substrate by Kugelrohr distillation if possible. The reaction was dry-mounted into Celite® and purified by flash column chromatography.

General Procedure 3 (GP3)

A flame-dried 4 mL vial equipped with 200 w/w% 4 Å mol. sieves and PTFE magnetic stir bar was charged with $Rh_2(S$ -tetra-p-Br-PPTTL)₄ (1 mol%, 1.0 µmol) and substrate (10.0 equiv, 1.0 mmol) under inert atmosphere. 0.5 mL dry CH_2Cl_2 was charged by syringe. A solution of diazo (1.0 equiv, 0.10 mmol) in 0.5 mL dry CH_2Cl_2 and 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol) was prepared under inert atmosphere in a flame-dried vial. The diazoacetate solution was added over the course of 1 hour using a syringe pump to the stirred reaction vial at room temperature. The reaction was stirred for 0.5 h further, after which the reaction was filtered through a pad of Celite®, rinsing with CH_2Cl_2 . The solution was concentrated in vacuuo. If possible, remaining substrate was removed via Kugelrohr distillation. The crude residue was analyzed by ¹H NMR. The crude material was dry-mounted on Celite® and purified by flash column chromatography.

General Procedure 4 (GP4)

A flame-dried 4 mL vial equipped with 200 w/w% 4 Å mol. sieves and PTFE magnetic stir bar was charged with $Rh_2(S$ -tetra-p-Br-PPTTL)₄ (1 mol%, 1.0 µmol) and substrate (10.0 equiv, 1.0 mmol) under inert atmosphere. 0.5 mL dry CH_2Cl_2 and 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol) were charged by syringe. A solution of diazo (1.0 equiv, 0.10 mmol) in 0.5 mL dry CH_2Cl_2 was prepared under inert atmosphere in a flame-dried vial. The diazoacetate solution was added over the course of 3 hours using a syringe pump to the stirred reaction vial at room temperature. The reaction was stirred for 0.5 h further, after which the reaction was filtered through a pad of Celite®, rinsing with CH_2Cl_2 . The solution was concentrated in vacuuo. If possible, remaining substrate was removed via Kugelrohr distillation. The crude residue was analyzed by ¹H NMR. The crude material was dry-mounted on Celite® and purified by flash column chromatography.

General Procedure 5 (GP5)

A flame-dried 4 mL vial equipped with 200 w/w% 4 Å mol. sieves and PTFE magnetic stir bar was charged with $Rh_2(S$ -tetra-p-Br-PPTTL)₄ (1 mol%, 1.0 µmol) and substrate (5.0 equiv, 0.5 mmol) under inert atmosphere. 0.5 mL dry CH_2Cl_2 was charged by syringe. A solution of diazo (1.0 equiv, 0.10 mmol) in 0.5 mL dry CH_2Cl_2 and 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol) was prepared under inert atmosphere in a flame-dried vial. The diazoacetate solution was added over the course of 0.25 h using a syringe pump to the stirred reaction vial at room temperature. The reaction was stirred for 0.5 h further, after which the reaction was filtered through a pad of Celite®, rinsing with CH_2Cl_2 . The solution was concentrated in vacuuo. The crude residue was analyzed by ¹H NMR. The crude material was dry-mounted on Celite® and purified by flash column chromatography.

General Procedure 6 (GP6)

A flame-dried 4 mL vial equipped with 200 w/w% 4 Å mol. sieves and PTFE magnetic stir bar was charged with $Rh_2(S$ -tetra-p-Br-PPTTL)₄ (1 mol%, 1.0 µmol) and substrate (5.0 equiv, 0.5 mmol) under inert atmosphere. 0.5 mL dry CH_2Cl_2 and 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol) were charged by syringe. A solution of diazo (1.0 equiv, 0.10 mmol) in 0.5 mL dry CH_2Cl_2 was prepared under inert atmosphere in a flame-dried vial. The diazoacetate solution was added over the course of 0.25 h using a syringe pump to the stirred reaction vial at room temperature. The reaction was stirred for 0.5 h further, after which the reaction was filtered through a pad of Celite®, rinsing with CH_2Cl_2 . The solution was concentrated in vacuuo. The crude residue was analyzed by ¹H NMR. The crude material was dry-mounted on Celite® and purified by flash column chromatography.

General Procedure 7 (GP7)

Under inert atmosphere, a flame-dried vial equipped with PTFE magnetic stir bar was charged with ring-opened product (1.0 equiv). Dry acetonitrile (0.2 M) was charged via syringe. Benzenesulfonic acid (2.0 equiv) was added to the reaction mixture neat, and the reaction was placed in a preheated aluminum heating block (70 °C). The reaction was stirred at this temperature for 3.5 h, after which the reaction was allowed to cool, and was filtered through a short plug of silica with 4 mL ethyl acetate. The reaction was concentrated in vacuuo, dry mounted to Celite®, and purified via flash column chromatography (SiO₂) to afford the product. It is important to note that as per the publication of this method as adapted to similar substrates, the reaction must be run for no longer than ca. 3-3.5 h, as the risk of racemization at the
glutarimide stereogenic center increases with time.⁸ These reactions were run with this parameter in mind, and no significant degradation of the stereocenter was noted.

General Procedure 8 (GP8)

A flame-dried 4 mL vial under inert atmosphere was equipped with ca. 200 wt% 4Å mol. sieves and a PTFE magnetic stir bar. The vial was charged with diazo (1.0 equiv, 0.10 mmol) and substrate (10.0 equiv, 1.0 mmol). 1.0 mL dry CH_2Cl_2 was charged via syringe, and a 20 mM solution of $Rh_2(S$ -tetra-p-Br-TPPTTL)₄ (50 µL, 1 mol%, 1.0 µmol) in dry CH_2Cl_2 was charged via syringe at room temperature to the stirred reaction. The reaction was allowed to stir at r.t. for 0.5 h and was filtered through Celite®, then concentrated in vacuuo, removing excess substrate by Kugelrohr distillation if possible. The reaction was dry-mounted into Celite® and purified by flash column chromatography.

2,2,2-trichloroethyl 2-(4-bromophenyl)-2-(3-(5-methyl-1,3-dioxoisoindolin-2-yl)-2,6-dioxopiperidin-1-yl)acetate (3.4).

2-(2,6-dioxopiperidin-3-yl)-5-methylisoindoline-1,3-dione (54 mg, 1.0 equiv, 0.20 mmol) and Rh₂(*S*-p-Ph-TPCP)₄ (3.5 mg, 1 mol%, 2.0 µmol) were charged to an oven-dried vial under inert atmosphere along with ~200% w/w 4Å molecular sieves. The vial was charged with 1.0 mL dry CH₂Cl₂ via syringe. A solution of 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (82 mg, 1.1 Eq, 0.22 mmol) was prepared under inert atmosphere in 1.0 mL dry CH₂Cl₂ and added to the stirred reaction at room temperature over the course of thirty minutes, using a syringe pump. The reaction was allowed to stir for 17 hours following addition, after which the reaction was drymounted onto Celite® and purified by flash column chromatography (SiO₂, 1:1 ethyl acetate:hexanes), which produced 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-(3-(5-methyl-1,3-dioxoisoindolin-2-yl)-2,6-dioxopiperidin-1-yl)acetate (**3.4**) as an amorphous white solid (43 mg, 70 µmol, 35% yield).

HRMS (APCI) m/z: [M+H]⁺ calcd for C₂₄H₁₉O₆N₂⁷⁹Br³⁵Cl₃ 614.9487; Found 614.9488 ¹H NMR (500 MHz, CDCl₃): 7.75 – 7.69 (m, 1H), 7.67 – 7.63 (m, 1H), 7.561 and 7.556 (d, J = 8.6 Hz, 1H), 7.53 – 7.50 (m, 2H), 7.431 and 7.427 (d, J = 8.6 Hz, 1H), 6.45 and 6.41 (s, 1H), 4.92 and 4.86 (dd, J = 13.3, 5.7 Hz, 1H, partially obscured by signals at 4.904 and 4.902), 4.904 and 4.902 (d, J = 11.9 Hz, 1H, partially obscured by signal at 4.92), 4.67 and 4.60 (d, J = 11.9Hz), 3.09 – 2.72 (m, 3H), 2.51 (s, 3H), 2.27 – 2.13 (m, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 179.2, 179.1, 175.6, 175.4, 167.9, 167.84, 167.75, 167.71, 166.5, 166.3, 145.7, 134.9, 132.4, 132.3, 132.3, 131.7, 131.5, 129.7, 129.6, 129.5, 124.29, 124.27, 123.7, 94.28, 94.26, 76.02, 76.98, 74.7, 74.6, 49.93, 49.85, 27.7, 27.6, 23.0, 22.9, 22.2.

3.9a

2,2,2-trichloroethyl (2*R*)-2-cyclohexyl-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetate (3.9a).

Compound **3.9a** was produced via **GP1** using **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3hexafluoroisopropanol (0.11 mL, 10.0 equiv, 1.00 mmol), $Rh_2(S$ -*tetra*-p-Br-PPTTL)₄ (20 mM in CH₂Cl₂, 50 µL, 1 mol%, 1.0 µmol), and cyclohexane (1.0 mL). Purification via flash column chromatography (SiO₂, 20% to 50% ethyl acetate in hexanes) produced 2,2,2-trichloroethyl (2*R*)-2-cyclohexyl-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetate (**9a**) as an amorphous white solid (47 mg, 89 µmol, 89% yield).

Compound **3.9a** was produced via **GP2** using **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3hexafluoroisopropanol (0.11 mL, 10.0 equiv, 1.00 mmol), $Rh_2(S$ -*tetra*-p-Br-PPTTL)₄ (20 mM in CH₂Cl₂, 50 µL, 1 mol%, 1.0 µmol), CH₂Cl₂ (0.5 mL), and cyclohexane (0.5 mL). Purification via flash column chromatography (SiO₂, 20% to 50% ethyl acetate in hexanes) produced 2,2,2trichloroethyl (2*R*)-2-cyclohexyl-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetate **(3.9a)** as an amorphous white solid (47 mg, 89 µmol, 89% yield).

Compound **3.9a** was prepared via **GP3** using **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), $Rh_2(S$ -tetra-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 µmol), 2,2,2-trichloroethyl 2-diazo-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetate (**1c**) (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a one hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 20% to 50% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (2*R*)-2-cyclohexyl-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetate (**3.9a**) as an amorphous white solid (47 mg, 89 µmol, 89% yield).

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₂₃H₂₄O₆N₂³⁵Cl₃ 529.0695; Found 529.0697

¹**H NMR** (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.09 (s, 1H), 7.94 (d, J = 1.6 Hz, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.76 (dd, J = 7.8, 1.7 Hz, 1H), 4.99 (dd, J = 12.5, 5.3 Hz, 1H), 4.79 (d, J = 11.9 Hz, 1H), 4.65 (d, J = 12.0 Hz, 1H), 3.58 (d, J = 10.5 Hz, 1H), 3.01 – 2.87 (m, 1H), 2.87 – 2.68 (m, 2H), 2.26 – 2.09 (m, 2H), 1.99 – 1.83 (m, 1H), 1.82 – 1.73 (m, 1H), 1.69 – 1.61 (m, 2H), 1.41 – 1.29 (m, 2H), 1.22 – 1.08 (m, 3H), 0.94 – 0.75 (m, 1H).

¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.2, 171.0, 168.2, 167.1, 167.0, 144.7, 135.2, 132.3, 131.0, 124.27, 124.25, 124.1, 94.7, 74.4, 58.9, 49.5, 41.4, 31.8, 31.5, 30.4, 26.1, 25.9, 25.8, 22.7.

SFC analysis: Using **GP1**, **3.9a** (Trefoil® AMY1, 30% 1:1 MeOH:'PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 98:2 d.r. for asymmetric induction observed at the newly

formed stereogenic center: t_R (major diastereomers) = 2.43 and 6.85 min., t_R (minor diastereomers) = 2.2 and 5.4 min. Using **GP2**, **3.9a** indicated 99:1 d.r. Using **GP3**, **3.9a** indicated 99:1 d.r.

2,2,2-trichloroethyl (2*R*)-2-cyclohexyl-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)acetate (3.9b).

Compound **3.9b** was produced via **GP1** using **3.6b** (46 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3hexafluoroisopropanol (0.11 mL, 10.0 equiv, 1.00 mmol), $Rh_2(S$ -*tetra*-p-Br-PPTTL)₄ (20 mM in CH₂Cl₂, 50 µL, 1 mol%, 1.0 µmol), and cyclohexane (1.0 mL). Purification via flash column chromatography (SiO₂, 40% to 100% ethyl acetate in hexanes) produced 2,2,2-trichloroethyl (2*R*)-2-cyclohexyl-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)acetate (**3.9b**) as an amorphous white solid (42 mg, 82 µmol, 82% yield).

Compound **3.9b** was prepared via **GP3** using **3.6b** (46 mg, 1.0 equiv, 0.10 mmol), $Rh_2(S$ -tetra-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, μ .0 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a one hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 40% to 100% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (2*R*)-2-cyclohexyl-2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)acetate (**3.9b**) as an amorphous white solid (24 mg, 46 μ mol, 46% yield).

HRMS (APCI) m/z: [M+H]⁺ calcd for C₂₃H₂₆O₃N₂³⁵Cl₃ 515.0902; Found 515.0902 ¹H NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.12 and 8.09 (s, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.53 and 7.50 (s, 1H), 7.47 (d, *J* = 8.6 Hz, 1H), 5.23 and 5.22 (dd, *J* = 13.4, 5.1 Hz, 1H), 4.799 and 4.796 (d, *J* = 12.0 Hz, 1H), 4.62 and 4.61 (d, *J* = 11.9 Hz, 1H), 4.50 and 4.48 (d, *J* = 16.1 Hz, 1H), 4.35 and 4.32 (d, *J* = 16.0 Hz, 1H), 3.51 and 3.50 (d, *J* = 10.6 Hz, 1H), 3.01 – 2.76 (m, 2H), 2.45 – 2.28 (m, 1H), 2.28 – 2.16 (m, 1H), 2.15 – 2.06 (m, 1H), 1.94 – 1.85 (m, 1H), 1.81 – 1.73 (m, 1H), 1.68 – 1.54 (m, 2H), 1.39 – 1.04 (m, 5H), 0.88 – 0.74 (m, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.8, 171.7, 171.2, 169.69, 169.67, 169.1, 142.0, 141.7, 131.0, 129.5, 129.3, 124.40, 124.37, 123.3, 123.1, 94.8, 74.3, 59.0, 58.9, 52.0, 51.9, 47.09, 47.06, 32.0, 31.7, 30.5, 26.2, 26.0, 25.9, 23.56, 23.55. **SFC analysis**: Using **GP1, 3.9b** (CHIRALCEL® OZ-3, 20% 1:1 MeOH: PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 97:3 d.r. for asymmetric induction observed at the newly formed stereogenic center: *t*_R (major diastereomers) = 6.7 and 15.8 min., *t*_R (minor diastereomers) = 7.2 and 15.0 min. Using **GP3, 3.9a** indicated 98:2 d.r.

2,2,2-trichloroethyl (2*R*)-2-cyclohexyl-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)acetate (3.9c).

Compound **3.9c** was produced via **GP1** using **3.6c** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3hexafluoroisopropanol (0.11 mL, 10.0 equiv, 1.00 mmol), $Rh_2(S$ -*tetra*-p-Br-PPTTL)₄ (20 mM in CH₂Cl₂, 50 µL, 1 mol%, 1.0 µmol), and cyclohexane (1.0 mL). Purification via flash column chromatography (SiO₂, gradient of 20% to 50% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (2*R*)-2-cyclohexyl-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)acetate (**9c**) as an amorphous white solid (32 mg, 61 µmol, 61% yield).

Compound **3.9c** was prepared via **GP3** using cyclohexane (0.11 mL, 10.0 equiv, 1.0 mmol), Rh₂(*S-tetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 μ mol), **3.6c** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a one hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 20% to 50% EtOAc in hexanes) afforded 2,2,2trichloroethyl (2*R*)-2-cyclohexyl-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)acetate (**9c**) as an amorphous white solid (25 mg, 47 μ mol, 47% yield).

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₂₃H₂₄O₆N₂³⁵Cl₃ 529.0695; Found 529.0700

¹**H** NMR (600 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.10 (s, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.80 (ddd, J = 7.4, 2.9, 1.0 Hz, 1H), 7.72 (ddd, J = 8.0, 7.3, 1.0 Hz, 1H), 5.00 (d, J = 10.2 Hz, 1H, overlapping with dd at 4.99), 4.99 (dd, J = 15.7, 4.8 Hz, 1H, overlapping with d at 5.00), 4.76 – 4.59 (m, 2H), 2.94 – 2.88 (m, 1H), 2.87 – 2.69 (m, 2H), 2.22 – 2.12 (m, 2H), 1.97 – 1.90 (m, 1H), 1.82 – 1.74 (m, 1H), 1.68 – 1.61 (m, 2H), 1.37 – 1.28 (m, 2H), 1.22 – 1.12 (m, 3H), 1.01 – 0.91 (m, 1H).

¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.11, 171.08, 170.9, 167.93, 167.90, 167.8, 167.7, 166.8, 137.6, 134.8, 134.7, 134.59, 134.57, 132.1, 129.2, 129.1, 123.99, 123.97, 94.82, 94.81, 74.2, 50.4, 50.3, 49.41, 49.37, 41.3, 41.2, 31.68, 31.66, 31.51, 31.49, 30.1, 30.0, 26.1, 26.00, 25.98, 22.77, 22.76.

SFC analysis: Using **GP1**, **3.9c** (CHIRALPAK® AS-3, 15% 1:1 MeOH: PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 73:27 d.r. for asymmetric induction observed at the newly formed stereogenic center: t_R (major diastereomers) = 2.5 and 3.1 min., t_R (minor diastereomers) = 1.6 and 1.8 min. Using **GP3**, **3.9c** indicated 76:24 d.r.

tert-butyl (S)-5-amino-4-(5-((R)-1-cyclohexyl-2-oxo-2-(2,2,2-trichloroethoxy)ethyl)-1-oxoisoindolin-2-yl)-5-oxopentanoate ((S,R)-3.10a).

Compound (*S*,*R*)-3.10a was produced via **GP1** using 3.8a (53 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoroisopropanol (0.11 mL, 10.0 equiv, 1.00 mmol), Rh₂(*S-tetra*-p-Br-PPTTL)₄ (20 mM in CH₂Cl₂, 50 µL, 1 mol%, 1.0 µmol), and cyclohexane (1.0 mL). Purification via flash column chromatography (SiO₂, 40% to 100% ethyl acetate in hexanes) produced *tert*-butyl (*S*)-5-amino-4-(5-((*R*)-1-cyclohexyl-2-oxo-2-(2,2,2-trichloroethoxy)ethyl)-1-oxoisoindolin-2-yl)-5-oxopentanoate ((*S*,*R*)-3.10a) as an amorphous white solid (42 mg, 71 µmol, 71% yield). Compound (*S*,*R*)-3.10a was prepared via **GP4** using 3.8a (53 mg, 1.0 equiv, 0.10 mmol), Rh₂(*S-tetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 µmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a three hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 40% to 100% EtOAc in hexanes) afforded *tert*-butyl (*S*)-5-amino-4-(5-((*R*)-1-cyclohexyl-2-oxo-2-(2,2,2-trichloroethoxy)ethyl)-1-oxoisoindolin-2-yl)-5-0.3.10a was an amorphous white solid (*s*, *B*)-3.10a was prepared via GP4 using 3.8a (53 mg, 1.0 equiv, 0.10 mmol), Rh₂(*S-tetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 µmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a three hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 40% to 100% EtOAc in hexanes) afforded *tert*-butyl (*S*)-5-amino-4-(5-((*R*)-1-cyclohexyl-2-oxo-2-(2,2,2-trichloroethoxy)ethyl)-1-oxoisoindolin-2-yl)-5-oxopentanoate ((*S*,*R*)-3.10a) as an amorphous white solid (36 mg, 60 µmol, 60% yield).

HRMS (APCI) m/z: [M+H]⁺ calcd for C₂₇H₃₆O₆N₂³⁵Cl₃ 589.1634; Found 589.1638 ¹**H** NMR (600 MHz, CDCl₃): δ 7.78 (d, J = 7.9 Hz, 1H), 7.50 (s, 1H), 7.46 (dd, J = 7.9, 1.5 Hz, 1H), 6.34 (s, 1H), 5.46 (s, 1H), 4.90 (dd, J = 8.9, 6.3 Hz, 1H), 4.79 (d, J = 12.0 Hz, 1H), 4.61 (d, J = 12.0 Hz, 1H), 4.54 (d, J = 17.0 Hz, 1H), 4.43 (d, J = 17.0 Hz, 1H), 3.49 (d, J = 10.6 Hz, 1H), 2.42 - 2.29 (m, 2H), 2.28 - 2.19 (m, 1H), 2.19 - 2.07 (m, 2H), 1.92 - 1.85 (m, 1H), 1.79 - 1.74 (m, 1H), 1.68 - 1.60 (m, 2H), 1.41 (s, 9H), 1.36 - 1.27 (m, 2H), 1.21 - 1.09 (m, 3H), 0.80 (qd, J = 11.9, 3.6 Hz, 1H).

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 171.9, 171.8, 171.7, 169.1, 142.2, 141.6, 131.3, 129.3, 124.1, 123.3, 94.8, 81.0, 74.3, 59.0, 54.1, 47.3, 41.3, 32.02, 31.99, 30.5, 28.2, 26.2, 26.0, 25.9, 24.3. **SFC analysis:** Using **GP1**, (*S*,*R*)-**3.10a** (CHIRALCEL® OJ-3, 5% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 98:2 d.r. for asymmetric induction observed at the newly formed stereogenic center: t_R (major diastereomer) = 7.2 min., t_R (minor diastereomer) = 5.6 min. Using **GP4**, (*S*,*R*)-**3.10a** indicated 98:2 d.r. **Specific Rotation:** Specific Rotation: [α]_D²²-49.5 (*c* 1, CHCl₃)

tert-butyl (*S*)-5-amino-4-(5-((*S*)-1-cyclohexyl-2-oxo-2-(2,2,2-trichloroethoxy)ethyl)-1-oxoisoindolin-2-yl)-5-oxopentanoate ((*S*,*S*)-3.10a)

Compound (*S*,*S*)-3.10a was prepared via GP4 using 3.8a (53 mg, 1.0 equiv, 0.10 mmol), Rh₂(*Rtetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 µmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a three hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 40% to 100% EtOAc in hexanes) afforded *tert*-butyl (*S*)-5-amino-4-(5-((*S*)-1cyclohexyl-2-oxo-2-(2,2,2-trichloroethoxy)ethyl)-1-oxoisoindolin-2-yl)-5-oxopentanoate (*S*,*S*)-**3.10a** as an amorphous white solid (9.3 mg, 16 µmol, 16% yield).

HRMS (APCI) m/z: [M+H]⁺ calcd for C₂₇H₃₆O₆N₂³⁵Cl₃ 589.1634; Found 589.1633

¹**H** NMR (600 MHz, CDCl₃): δ 7.79 (d, J = 7.9 Hz, 1H), 7.51 (d, J = 1.4 Hz, 1H), 7.47 (dd, J = 7.9, 1.5 Hz, 1H), 6.25 (s, 1H), 5.35 (s, 1H), 4.89 (dd, J = 9.0, 6.3 Hz, 1H), 4.79 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.50 (d, J = 17.0 Hz, 1H), 4.45 (d, J = 17.0 Hz, 1H), 3.50 (d, J = 10.7 Hz, 1H), 2.42 – 2.30 (m, 2H), 2.29 – 2.21 (m, 1H), 2.20 – 2.10 (m, 2H), 1.93 – 1.86 (m, 1H), 1.80 – 1.72 (m, 1H), 1.67 – 1.63 (m, 2H), 1.41 (s, 9H), 1.35 – 1.27 (m, 2H), 1.22 – 1.04 (m, 3H), 0.84 – 0.74 (m, 1H).

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 171.9, 171.9, 171.8, 171.7, 169.1, 142.2, 141.5, 131.3, 129.2, 124.0, 123.4, 94.8, 81.0, 74.3, 59.0, 54.1, 47.3, 41.3, 32.0, 32.0, 30.5, 28.2, 26.2, 26.0, 25.9, 24.3. SFC analysis: Using GP4, (*S*,*S*)-3.10a (CHIRALCEL® OJ-3, 5% 1:1 MeOH:'PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 93:7 d.r. for asymmetric induction observed at the newly formed stereogenic center: *t*_R (major diastereomer) = 5.6 min., *t*_R (minor diastereomer) = 7.2 min.

Specific Rotation: $[\alpha]_D^{22}$ -52.7 (*c* 0.5, CHCl₃).

3.10b

tert-butyl (*S*)-5-amino-4-(4-((*R*)-1-cyclohexyl-2-oxo-2-(2,2,2-trichloroethoxy)ethyl)-1-oxoisoindolin-2-yl)-5-oxopentanoate (3.10b).

Compound **3.10b** was produced via **GP1** using **3.8b** (53 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3hexafluoroisopropanol (0.11 mL, 10.0 equiv, 1.00 mmol), Rh₂(*S-tetra*-p-Br-PPTTL)₄ (20 mM in CH₂Cl₂, 50 μ L, 1 mol%, 1.0 μ mol), and cyclohexane (1.0 mL). Purification via flash column chromatography (SiO₂, gradient of 20% to 100% EtOAc in hexanes) afforded *tert*-butyl (*S*)-5-amino-4-(4-((*R*)-1-cyclohexyl-2-oxo-2-(2,2,2-trichloroethoxy)ethyl)-1-oxoisoindolin-2-yl)-5-oxopentanoate (**3.10b**) as an amorphous white solid (47 mg, 79 μ mol, 79% yield).

Compound **3.10b** was prepared via **GP4** using cyclohexane (0.10 mL, 10.0 equiv, 0.94 mmol), Rh₂(*S-tetra*-p-Br-PPTTL)₄ (3.5 mg, 1 mol%, 0.94 µmol), **3.8b** (50 mg, 1.0 equiv, 94 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (99 µL, 10.0 equiv, 0.94 mmol), and 0.94 mL CH₂Cl₂ at room temperature with a three hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 20% to 100% EtOAc in hexanes) afforded *tert*-butyl (*S*)-5-amino-4-(4-((*R*)-1-cyclohexyl-2-oxo-2-(2,2,2-trichloroethoxy)ethyl)-1- oxoisoindolin-2-yl)-5-oxopentanoate (**3.10b**) as an amorphous white solid (21 mg, 35 µmol, 37% yield).

HRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₇H₃₆O₆N₂³⁵Cl₃ 589.1634, Found 589.1632

¹**H NMR** (400 MHz, CDCl₃): δ 7.76 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.67 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 6.25 (s, 1H), 5.30 (s, 1H), 4.90 (dd, *J* = 8.2, 6.7 Hz, 1H), 4.70 (d, *J* = 11.9 Hz, 1H), 4.64 (d, *J* = 12.0 Hz, 1H), 4.50 (d, *J* = 16.9 Hz, 1H), 3.46 (d, *J* = 11.0 Hz, 1H), 2.48 – 2.33 (m, 2H), 2.32 – 2.10 (m, 3H), 1.99 – 1.88 (m, 1H), 1.85 – 1.75 (m, 1H), 1.72 – 1.52 (m, 3H), 1.41 (s, 9H), 1.23 – 1.12 (m, 4H), 0.92 – 0.62 (m, 1H).

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 171.9, 171.5, 171.1, 169.3, 141.4, 132.4, 132.2, 131.2, 129.1, 123.2, 94.7, 81.0, 74.2, 54.6, 54.2, 46.8, 39.9, 32.0, 30.3, 28.2, 26.2, 25.95, 25.92, 24.2. **SFC analysis:** Using **GP1**, **3.10b** (Trefoil® AMY1, 20% 1:1 MeOH:^{*i*}PrOH with 0.2% formic

SFC analysis: Using **GP1**, **3.10b** (Trefoil® AMY1, 20% 1:1 MeOH: PrOH with 0.2% formic acid in CO₂, 1.5 mL/min, 210 nm) indicated 99:1 d.r. for asymmetric induction observed at the newly formed stereogenic center: $t_{\rm R}$ (major diastereomer) = 2.7 min., $t_{\rm R}$ (minor diastereomer) = 1.2 min. Using **GP4**, **3.10b** indicated 98:2 d.r.

Specific Rotation: $[\alpha]_D^{24}$ -106.2 (c 0.25, CHCl₃).

2,2,2-trichloroethyl (1*R*,2*S*)-1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-2-phenylcyclopropane-1-carboxylate (3.11a).

Compound **3.11a** was prepared via **GP5** using styrene (57 μ L, 5.0 equiv, 0.50 mmol), Rh₂(*S*-*tetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 μ mol), **3.6a** (47 mg, 1.0 equiv, 0.10 mmol),

1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH_2Cl_2 at room temperature with a 0.25 hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 30% to 50% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*R*,2*S*)-1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-2-

phenylcyclopropane-1-carboxylate (3.11a) as an amorphous white solid (50 mg, 90 μ mol, 90% yield).

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₂₅H₂₀O₆N₂³⁵Cl₃ 549.0382; Found 549.0381

¹**H** NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.15 (s, 1H), 7.74 – 7.67 (m, 1H), 7.59 (dd, J = 7.8, 2.4 Hz, 1H), 7.38 (dt, J = 7.8, 1.7 Hz, 1H), 7.17 – 7.07 (m, 3H), 6.92 – 6.80 (m, 2H), 4.94 and 4.93 (dd, J = 12.3, 5.4 Hz, 1H), 4.87 and 4.86 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 11.9 Hz, 1H), 3.36 (dd, J = 9.4, 7.6 Hz, 1H), 2.94 – 2.85 (m, 1H), 2.84 – 2.64 (m, 2H), 2.39 (dd, J = 9.4, 5.5 Hz, 1H), 2.15-2.09 (m, 1H, obfuscated by dd at 2.13), 2.13 (dd, J = 7.8, 5.6 Hz, 1H, obfuscated by m from 2.15-2.09).

¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.0, 170.8, 168.1, 167.09, 167.06, 167.02, 167.00, 141.9, 138.82, 138.76, 134.4, 131.6, 131.5, 130.7, 128.6, 128.2, 127.5, 127.1, 127.0, 123.2, 94.9, 74.6, 49.41, 49.39, 37.1, 34.7, 31.47, 31.45, 22.8, 22.7, 20.04, 20.03.

SFC analysis: Using **GP5**, **3.11a** (CHIRALCEL® OZ-3, 20% 1:1 MeOH: PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 86:14 d.r. for asymmetric induction observed from formation of the major relative diasteromer: t_R (major diastereomers) = 7.3 and 8.8 min., t_R (minor diastereomers) = 6.1 and 6.8 min.

3.11b

2,2,2-trichloroethyl (1*R*,2*S*)-1-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)-2-phenylcyclopropane-1-carboxylate (3.11b).

Compound **3.11b** was prepared via **GP5** using styrene (57 μ L, 5.0 equiv, 0.50 mmol), Rh₂(*Stetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 μ mol), **3.6b** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a 0.25 hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 40% to 100% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*R*,2*S*)-1-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)-2phenylcyclopropane-1-carboxylate (**3.11b**) as an amorphous white solid (45 mg, 83 μ mol, 83% yield).

HRMS (APCI) m/z: [M+H]⁺ calcd for C₂₅H₂₂O₅N₂³⁵Cl₃ 535.0589; Found 535.0591 ¹**H** NMR (600 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.01 and 8.00, (s, 1H), 7.66 and 7.63 (d, J = 7.9 Hz, 1H), 7.24 and 7.17 (d, J = 8.0 Hz, 1H), 7.21 and 7.15 (s, 1H), 7.12 – 7.05 (m, 3H), 6.89 – 6.76 (m, 2H), 5.17 and 5.16 (dd, J = 13.6, 5.0 Hz, 1H), 4.855 and 4.849 (d, J = 11.9 Hz, 1H), 4.64 (d, J = 11.9 Hz, 1H), 4.39 and 4.29 (d, J = 15.8 Hz, 1H), 4.21 and 4.14 (d, J = 15.9 Hz, 1H), 3.29 (t, J = 8.4 Hz, 1H), 2.95 – 2.86 (m, 1H), 2.85 – 2.74 (m, 1H), 2.41 – 2.33 (m, 1H), 2.33 – 2.25 (m, 1H), 2.21 – 2.12 (m, 1H), 2.10 – 2.03 (m, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.5, 171.0, 169.55, 169.51, 169.1, 141.1, 141.0, 138.71, 138.69, 135.14, 135.09, 132.6, 132.5, 130.7, 130.6, 128.3, 128.19, 128.17, 127.2, 127.1, 126.64, 126.67, 123.6, 123.6, 95.1, 74.5, 52.0, 51.9, 46.94, 46.89, 37.4, 37.3, 34.4, 34.3, 31.6, 23.54, 23.51, 20.5, 20.4.

SFC analysis: 3.11b (CHIRALPAK® AS-3, 20% 1:1 MeOH: PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 86:16 d.r. for asymmetric induction arising from formation of the major relative diastereomer using **GP5**: t_R (major diastereomer) = 2.50 min., t_R (minor diastereomer) = 2.84 min, t_R (inseparable major + minor) = 1.92 min.

Note: The other two diastereomers represented by the peak at 1.92 min were inseparable, and the d.r. was acquired from the diastereomers at 2.50 and 2.84 min only. Suppression of the peak at 1.92 min. in the chromatogram for **SI4** indicates that these diastereomers correspond to both diastereomers of the cyclopropane with R glutarimide stereogenic centers.

2,2,2-trichloroethyl (1*R*,2*S*)-1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)-2-phenylcyclopropane-1-carboxylate (11c).

Compound **3.11c** was prepared via **GP5** using styrene (57 μ L, 5.0 equiv, 0.50 mmol), Rh₂(*Stetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 μ mol), **3.6c** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a 0.25 hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 20% to 40% EtOAc in hexanes) afforded 2,2,2trichloroethyl (1*R*,2*S*)-1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)-2phenylcyclopropane-1-carboxylate **(3.11c)** as an amorphous white solid (40 mg, 73 μ mol, 73% yield).

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₂₅H₂₀O₆N₂³⁵Cl₃ 549.0382; Found 549.0385

¹**H** NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.00 (s, 1H), 7.73 – 7.61 (m, 1H), 7.61 – 7.37 (m, 2H), 7.08 – 6.90 (m, 3H), 6.88 – 6.71 (m, 2H), 4.82 (dd, *J* = 12.0, 5.7 Hz, 2H), 4.75 (d, *J* = 11.9 Hz, 1H), 4.64 and 4.62 (d, *J* = 11.9 Hz, 1H), 3.59 – 3.43 (m, 1H), 2.95 – 2.80 (m, 1H), 2.77 – 2.58 (m, 2H), 2.38 – 2.26 (m, 1H), 2.22 and 2.17 (t, *J* = 6.6 Hz, 1H), 2.03 – 1.86 (m, 1H).

¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 170.99, 170.97, 170.6, 170.5, 167.63, 167.57, 166.9, 166.8, 166.7, 133.93, 133.90, 132.02, 131.99, 131.7, 128.4, 128.2, 127.94, 127.86, 127.12, 127.09, 122.94, 122.88, 94.6, 94.5, 75.3, 75.1, 49.1, 49.0, 34.3, 34.2, 34.1, 31.5, 31.4, 22.8, 22.5.

SFC analysis: Using **GP5**, **3.11c** (CHIRALPAK® AD-3, 20% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 60:40 d.r. for asymmetric induction observed

from formation of the major relative diasteromer: t_R (major diastereomers) = 2.0 and 2.5 min., t_R (minor diastereomers) = 2.2 and 3.5 min.

2,2,2-trichloroethyl (1*R*,2*S*)-1-(2-((*S*)-1-amino-5-(*tert*-butoxy)-1,5-dioxopentan-2-yl)-1-oxoisoindolin-5-yl)-2-phenylcyclopropane-1-carboxylate (3.12a).

Compound **3.12a** was prepared via **GP6** using styrene (57 μ L, 5.0 equiv, 0.50 mmol), Rh₂(*Stetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 μ mol), **3.8a** (53 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a 0.25 hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 40% to 100% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*R*,2*S*)-1-(2-((*S*)-1-amino-5-(*tert*-butoxy)-1,5-dioxopentan-2-yl)-1oxoisoindolin-5-yl)-2-phenylcyclopropane-1-carboxylate (**3.12a**) as an amorphous white solid (53 mg, 88 μ mol, 88% yield).

HRMS (APCI) m/z: $[M+H]^+$ calcd for C₂₉H₃₂O₆N₂³⁵Cl₃, 609.1320; Found 609.1320. ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.2 Hz, 1H), 7.20 – 7.14 (m, 2H), 7.11 – 7.03 (m, 3H), 6.81 (dd, J = 6.7, 2.9 Hz, 2H), 6.40 (s, 1H), 5.49 (s, 1H), 4.84 (d, J = 12.0 Hz) 4.83 (dd, J = 3.3, 2.8 Hz), 4.63 (d, J = 11.9 Hz, 1H), 4.32 (s, 2H), 3.29 (dd, J = 9.4, 7.5 Hz, 1H), 2.38 – 2.09 (m, 5H), 2.06 (dd, J = 7.4, 5.4 Hz, 1H), 1.40 (s, 9H).

¹³**C** NMR (101 MHz, CDCl₃): δ 171.9, 171.7, 171.5, 169.1, 141.2, 138.5, 135.0, 132.4, 130.9, 128.3, 128.2, 127.2, 126.7, 123.2, 95.0, 81.0, 74.5, 54.0, 47.1, 37.3, 34.3, 32.0, 28.2, 24.2, 20.4. **SFC analysis**: Using **GP6**, **3.12a** (Trefoil® CEL1, 10% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 91:9 d.r. for asymmetric induction observed from formation of the major relative diasteromer: *t*_R (major diastereomer) = 5.1 min., *t*_R (minor diastereomer) = 5.6 min.

Specific Rotation: $[\alpha]_D^{22}$ -40.5 (*c* 1.0, CHCl₃)

2,2,2-trichloroethyl (1*R*,2*S*)-1-(2-((S)-1-amino-5-(*tert*-butoxy)-1,5-dioxopentan-2-yl)-1-oxoisoindolin-4-yl)-2-phenylcyclopropane-1-carboxylate (3.12b).

Compound **3.12b** was prepared via **GP6** using styrene (57 μ L, 5.0 equiv, 0.50 mmol), Rh₂(*S*-*tetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 μ mol), **3.8b** (53 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a 0.25 hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 40% to 100% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (1*R*,2*S*)-1-(2-((*S*)-1-amino-5-(*tert*-butoxy)-1,5-dioxopentan-2-yl)-1-oxoisoindolin-4-yl)-2-phenylcyclopropane-1-carboxylate (**3.12b**) as an amorphous white solid (51 mg, 84 μ mol, 84% yield).

HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₉H₃₂O₆N₂³⁵Cl₃, 609.1321; Found 609.1316.

¹**H** NMR (400 MHz, CDCl₃) δ 7.75 – 7.68 (m, 1H), 7.48 – 7.35 (m, 2H), 7.11 – 6.97 (m, 3H), 6.84 – 6.66 (m, 2H), 5.72 (s, 1H), 5.11 (s, 1H), 4.79 (d, *J* = 11.9 Hz, 1H), 4.74 (dd, *J* = 9.0, 6.1 Hz, 1H), 4.68 (d, *J* = 11.9 Hz, 1H), 4.37 (d, *J* = 17.1 Hz, 1H), 3.65 (d, *J* = 17.1 Hz, 1H), 3.27 (dd, *J* = 9.6, 7.4 Hz, 1H), 2.39 (dd, *J* = 9.5, 5.1 Hz, 1H), 2.35 – 2.21 (m, 2H), 2.19 – 2.08 (m, 1H), 2.01 – 1.91 (m, 1H, partially obscured by signal at 2.00), 2.00 (dd, *J* = 7.4, 5.3 Hz, 1H), 1.41 (s, 8H).

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 171.8, 171.2, 170.7, 169.0, 143.8, 135.23, 135.16, 131.9, 129.7, 128.5, 128.2, 127.6, 127.1, 123.7, 94.8, 80.9, 74.7, 54.1, 46.8, 35.1, 33.8, 32.1, 28.2, 24.0, 21.5.

SFC analysis: Using **GP6**, **3.12b** (Trefoil® CEL1, 10% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 93:7 d.r. for asymmetric induction observed from formation of the major relative diasteromer: t_R (major diastereomer) = 2.4 min., t_R (minor diastereomer) = 2.8 min.

Specific Rotation: $[\alpha]_D^{22}$ -76.5 (*c* 1, CHCl₃).

2,2,2-trichloroethyl (*R*)-2-cyclohexyl-2-(2-((*S*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)acetate (3.13).

Compound **3.13** was produced following **GP** 7, using **3.10b** (15 mg, 1.0 equiv, 25 μ mol) and benzenesulfonic acid (7.8 mg, 2.0 equiv, 49 μ mol) in acetonitrile (0.12 mL) at 70 °C for 3.5 h. Purification via flash column chromatography (SiO₂, 65% ethyl acetate in hexanes) gave 2,2,2-trichloroethyl (*R*)-2-cyclohexyl-2-(2-((*S*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)acetate (**3.13**) as an amorphous white solid (7.9 mg, 62% yield, 15 μ mol).

HRMS (APCI) m/z: [M+H]⁺ calcd for C₂₃H₂₆O₅N₂³⁵Cl₃ 515.0902; Found 515.0902

¹**H NMR** (400 MHz, CDCl₃): δ 8.05 (s, 1H), 7.82 (dd, J = 7.5, 1.0 Hz, 1H), 7.68 (dd, J = 7.7, 1.1 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 5.22 (dd, J = 13.3, 5.1 Hz, 1H), 4.72 (d, J = 11.9 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.59 (d, J = 16.0 Hz, 1H), 4.40 (d, J = 16.0 Hz, 1H), 3.44 (d, J = 11.1 Hz, 1H), 3.11 – 2.64 (m, 2H), 2.43 (qd, J = 13.1, 5.0 Hz, 1H), 2.30 – 2.18 (m, 2H), 2.00 – 1.90 (m, 1H), 1.85 – 1.74 (m, 1H), 1.71 – 1.59 (m, 2H), 1.47 – 1.32 (m, 2H), 1.22 – 1.05 (m, 3H), 0.82 – 0.66 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 171.1, 169.33, 169.27, 141.0, 132.1, 131.9, 131.6, 129.3, 123.7, 94.7, 74.3, 55.1, 52.0, 46.7, 39.7, 32.1, 31.7, 30.4, 26.2, 25.9, 23.6.

SFC analysis: 3.13 (CHIRALPAK® AD-3, 20% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 99:1 d.r. for retained asymmetric induction arising from formation of the major relative diastereomer and 99:1 d.r. for major relative configuration of the glutarimide stereogenic center: t_R (major diastereomer) = 2.9 min., t_R (minor diastereomers) = 2.1, 2.3, and 3.3 min.

Specific Rotation: $[\alpha]_D^{24}$ -37.9 (c 0.5, CHCl₃).

(2R,3S)-3.14

(2*R*,3*R*)-3.14

2,2,2-trichloroethyl (2*R*,3*S*)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-3-methylhexanoate ((2*R*,3*S*)-3.14).

2,2,2-trichloroethyl (2*R*,3*S*)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-3-methylhexanoate ((2*R*,3*R*)-3.14).

Compound **3.14** was produced via **GP1** using **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3hexafluoroisopropanol (0.11 mL, 10.0 equiv, 1.00 mmol), $Rh_2(S$ -*tetra*-p-Br-PPTTL)₄ (20 mM in CH₂Cl₂, 50 µL, 1 mol%, 1.0 µmol), and pentane (1.0 mL). Purification via flash column chromatography (SiO₂, 20% to 50% ethyl acetate in hexanes) produced a mixture of 2,2,2trichloroethyl (2*R*,3*S*)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-3methylhexanoate ((2*R*,3*S*)-3.14) and 2,2,2-trichloroethyl (2*R*,3*S*)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-3-methylhexanoate ((2*R*,3*R*)-3.14) as an amorphous white solid (42 mg, 82 µmol, 82% yield). ((2*R*,3*S*)-3.14) was generated as the major diastereomer in 3.7:1 d.r.

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₂₂H₂₄O₆N₂³⁵Cl₃ 517.0695; Found 517.0696

¹**H NMR** (600 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.07 (s, 1H), 7.94 (s, 1H), 7.852 and 7.848 (d, *J* = 7.8 Hz, 1H), 7.775, 7.772, and 7.770 (d, *J* = 7.8 Hz, 1H), 4.991 and 4.987 (dd, *J* = 12.7, 5.4 Hz, 1H), 4.80 and 4.79 (d, *J* = 11.9 Hz, 1H), 4.65 (d, *J* = 12.0 Hz, 1H), 3.61 and 3.60 (d, *J* = 10.5 Hz, 1H), 2.96 – 2.89 (m, 1H), 2.88 – 2.70 (m, 2H), 2.41 – 2.30 (m, 1H), 2.21 – 2.11 (m, 1H), 1.54-1.44 and 1.30 – 1.23 (m, 1H), 1.41 – 1.31 (m, 1H), 1.22 – 1.15 (m, 1H), 1.14 – 1.06 and 0.99 – 0.95 (m, 1H, partially occluded by signal at 1.09), 1.09 and 0.74 (d, *J* = 6.6 Hz, 3H), 0.92 and 0.74 (t, *J* = 6.8 Hz, 3H)

¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.13, 171.06, 170.8, 167.99, 167.97, 167.1, 167.0, 145.04, 145.01, 135.3, 135.21, 135.24, 132.34, 132.32, 131.07, 131.05, 124.4, 124.3, 124.2, 124.1, 94.7, 74.4, 59.0, 49.5, 37.4, 36.7, 36.6, 35.8, 31.5, 22.8, 19.9, 19.6, 17.8, 16.8, 14.3, 14.2.

SFC analysis: Using **GP1**, (*2R*,3*S*)-3.14 and (*2R*,3*R*)-3.14 (CHIRALCEL® OX-3, 15% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.0 mL/min, 210 nm) indicated 96:4 d.r. for the asymmetric induction arising from formation of the major relative diastereomer: t_R (major diastereomers) = 9.3 and 11.4 min., t_R (minor diastereomers) = 14.2 and 16.6 min., and 95:5 d.r. for the asymmetric induction arising from formation of the minor relative diastereomer: t_R (major diastereomers) = 10.5 and 12.3 min., t_R (minor diastereomers) = 13.3 and 15.2 min.

3.15

2,2,2-trichloroethyl (2*R*)-2-cyclopentyl-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetate (3.15).

Compound 3.15 was produced via **GP1** using 3.6a (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3hexafluoroisopropanol (0.11 mL, 10.0 equiv, 1.00 mmol), $Rh_2(S-tetra-p-Br-PPTTL)_4$ (20 mM in CH₂Cl₂, 50 µL, 1 mol%, 1.0 µmol), and cyclopentane (1.0 mL). Purification via flash column chromatography (SiO₂, 20% to 50% ethyl acetate in hexanes) produced 2,2,2-trichloroethyl (2*R*)-2-cyclopentyl-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetate (3.15) as an amorphous white solid (50 mg, 50 µmol, 96% yield).

HRMS (APCI): m/z [M+H]⁺ calcd for C₂₂H₂₂O₆N₂³⁵Cl₃ 515.0538, Found 515.0546 ¹**H NMR** (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.05 (s, 1H), 7.96 – 7.94 (m, 1H), 7.85 (dd, J = 7.7, 0.7 Hz, 1H), 7.78 (dd, J = 7.8, 1.5 Hz, 1H), 4.99 (dd, J = 12.5, 5.3 Hz, 1H), 4.79 (d, *J* = 12.0 Hz, 1H), 4.66 (d, *J* = 12.0 Hz, 1H), 3.61 (d, *J* = 11.1 Hz, 1H), 3.03 – 2.72 (m, 3H), 2.72 – 2.59 (m, 1H), 2.23 – 2.08 (m, 1H), 2.06 – 1.95 (m, 1H), 1.76 – 1.58 (m, 3H), 1.56 – 1.42 (m, 2H), 1.41-1.31 (m, 1H) 1.08 – 0.93 (m, 1H).

¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.04, 171.02, 168.1, 167.1, 167.0, 145.7, 134.8, 132.4, 131.0, 124.2, 124.0, 94.7, 74.4, 57.9, 49.5, 43.6, 43.6, 31.6, 31.5, 30.9, 25.2, 25.0, 22.7.

SFC analysis: Using **GP1**, **3.15** (CHIRALCEL® OX-3, 30% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 230 nm) indicated >99:1 d.r. for the asymmetric induction observed at the newly formed stereogenic center: t_R (major diastereomers) = 2.6 and 3.0 min., t_R (minor diastereomers) = 3.3 and 3.6 min.

2,2,2-trichloroethyl (2*R*)-2-cycloheptyl-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetate (3.16).

Compound **3.16** was produced via **GP1** using **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3hexafluoroisopropanol (0.11 mL, 10.0 equiv, 1.00 mmol), $Rh_2(S$ -*tetra*-p-Br-PPTTL)₄ (20 mM in CH₂Cl₂, 50 µL, 1 mol%, 1.0 µmol), and cycloheptane (1.0 mL). Purification via flash column chromatography (SiO₂, 20% to 50% ethyl acetate in hexanes) produced 2,2,2-trichloroethyl (2*R*)-2-cycloheptyl-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetate (**3.16**) as an amorphous white solid (52 mg, 96 µmol, 96% yield).

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₂₄H₂₆O₆N₂³⁵Cl₃, 543.0851; Found 543.0857.

¹**H** NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.07 (s, 1H), 7.94 (dd, J = 1.7, 0.6 Hz, 1H), 7.84 (dd, J = 7.7, 0.7 Hz, 1H), 7.77 (dd, J = 7.8, 1.5 Hz, 1H), 4.99 (dd, J = 12.3, 5.2 Hz, 1H), 4.77 (d, J = 12.0 Hz, 1H), 4.655 and 4.653 (d, J = 12.0 Hz, 1H), 3.65 (d, J = 10.8 Hz, 1H), 2.97 – 2.66 (m, 3H), 2.47 – 2.28 (m, 1H), 2.20 – 2.09 (m, 1H), 1.93 – 1.77 (m, 1H), 1.76 – 1.66 (m, 1H), 1.64 – 1.30 (m, 9H), 1.10 – 0.98 (m, 1H).

¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.2, 170.8, 168.0, 167.1, 167.0, 145.3, 135.3, 132.3, 131.0, 124.4, 124.2, 94.7, 74.5, 59.1, 49.5, 42.6, 33.1, 31.6, 31.5, 28.3, 28.2, 26.31, 26.29, 26.2, 22.8.

SFC analysis: Using **GP1**, **3.16** (Trefoil® AMY1, 30% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 230 nm) indicated 95:5 d.r. for the asymmetric induction observed at the newly formed stereogenic center: t_R (major diastereomers) = 2.9 and 7.9 min., t_R (minor diastereomers) = 2.4 and 5.3 min.

2,2,2-trichloroethyl (2*R*)-2-((3*R*,5*R*,7*R*)-adamantan-1-yl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetate (3.17).

Compound **3.17** was prepared via **GP3** using admantane (140 mg, 10.0 equiv, 1.0 mmol), Rh₂(*Stetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 µmol), **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a one hour slow addition of diazo and 0.5 h additional stirring. Excess adamantane was removed after reaction by sublimation via Kugelrohr (100 °C, <10 torr, 10 min). Purification via flash column chromatography (SiO₂, gradient of 20% to 50% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (2*R*)-2-((3*R*,5*R*,7*R*)-adamantan-1-yl)-2-(2-(2,6-dioxopiperidin-3yl)-1,3-dioxoisoindolin-5-yl)acetate **(3.17)** as an amorphous white solid (47 mg, 81 µmol, 81% yield).

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₂₇H₂₈O₆N₂³⁵Cl₃ 581.1008; Found 581.1006

¹**H** NMR (600 MHz, CDCl₃, reported as a mixture of diastereomers): $\delta 8.05 - 7.93$ (m, 2H), 7.84 (d, J = 7.7 Hz, 1H), 7.80 (dt, J = 7.8, 1.9 Hz, 1H), 5.00 (dd, J = 12.6, 5.4 Hz, 1H), 4.812 and 4.811 (d, J = 12.0 Hz, 1H), 4.665 and 4.663 (d, J = 12.0 Hz, 1H), 3.61 (s, 1H), 2.97 - 2.89 (m, 1H), 2.89 - 2.81 (m, 1H), 2.79 - 2.69 (m, 1H), 2.18 - 2.13 (m, 1H), 2.04 - 1.81 (m, 2H), 1.82 - 1.63 (m, 3H), 1.61 - 1.38 (m, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 170.9, 170.0, 168.1, 167.3, 167.2, 141.9, 136.4, 131.6, 130.8, 125.6, 123.3, 94.7, 74.5, 63.2, 49.5, 40.0, 37.4, 36.6, 31.5, 28.6, 22.8.

SFC analysis: Using **GP3**, **3.17** (CHIRALCEL® OX-3, 30% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 230 nm) indicated 98:2 d.r. for the asymmetric induction observed at the newly formed stereogenic center: t_R (major diastereomers) = 3.8 and 4.7 min., t_R (minor diastereomers) = 5.3 and 5.8 min.

2,2,2-trichloroethyl (2*S*)-3-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-3-methylbutanoate (3.18).

Compound **3.18** was prepared via **GP3** using 1-bromo-4-isopropylbenzene (0.16 mL, 10.0 equiv, 1.0 mmol), Rh₂(*S-tetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 µmol), **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a one hour slow addition of diazo and 0.5 h additional stirring. Excess 1-bromo-4-isopropylbenzene was removed from the reaction mixture via Kugelrohr distillation (100 °C, <10 torr, 10 min). Purification via flash column chromatography (SiO₂, gradient of 20% to 50% EtOAc in hexanes) followed by further purification (C18, 40-90% MeCN in H₂O, 0.1% v/v as buffer) afforded 2,2,2-trichloroethyl (2*S*)-3-(4-bromophenyl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-3-methylbutanoate (**3.18**) as an amorphous white solid (23 mg, 35 µmol, 35% yield).

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₂₆H₂₃O₆N₂⁷⁹Br³⁵Cl₃ 642.9800; Found 642.9805 ¹H NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.09 (s, 1H), 7.96 – 7.84 (m, 1H), 7.77 – 7.71 (m, 1H), 7.53 – 7.46 (m, 1H), 7.42 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 4.99 (dd, J = 12.3, 5.3 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.49 (d, J = 12.0 Hz, 1H), 4.15 (s, 1H), 2.96 – 2.88 (m, 1H), 2.87 – 2.63 (m, 2H), 2.20 – 2.11 (m, 1H), 1.55 (s, 3H), 1.38 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 170.8, 169.7, 168.0, 167.03, 167.02, 166.95, 144.7, 142.0, 136.44, 136.40, 131.7, 131.5, 131.1, 128.4, 125.31, 125.30, 123.4, 121.1, 94.4, 74.5, 62.3, 49.5, 41.8, 31.5, 26.40, 26.37, 25.2, 25.1, 22.7.

SFC analysis: Using **GP3**, **3.18** (CHIRALPAK® AD-3, 20% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 92:8 d.r. for the asymmetric induction observed at the newly formed stereogenic center: $t_{\rm R}$ (major diastereomers) = 2.4 and 2.7 min., $t_{\rm R}$ (minor diastereomers) = 4.4 and 15.0 min.

2,2,2-trichloroethyl (2S)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-3-methyl-3-(p-tolyl)butanoate (3.19).

Compound **3.19** was produced via **GP1** using **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3hexafluoroisopropanol (0.11 mL, 10.0 equiv, 1.00 mmol), Rh₂(*S-tetra*-p-Br-PPTTL)₄ (20 mM in CH₂Cl₂, 50 µL, 1 mol%, 1.0 µmol), and *p*-cymene (1.0 mL). Purification via flash column chromatography (SiO₂, 20% to 50% ethyl acetate in hexanes) produced afforded 2,2,2trichloroethyl (2*S*)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-3-methyl-3-(ptolyl)butanoate (**3.19**) as an amorphous white solid (58 mg, 99 µmol, 99% yield). Compound **3.19** was prepared via **GP3** using *p*-cymene (0.16 mL, 10.0 equiv, 1.0 mmol), Rh₂(*Stetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 µmol), **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a one hour slow addition of diazo and 0.5 h additional stirring. Excess *p*cymene was removed from the reaction mixture via Kugelrohr distillation (100 °C, <10 torr, 10 min). Purification via flash column chromatography (SiO₂, gradient of 20% to 50% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (2*S*)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5yl)-3-methyl-3-(p-tolyl)butanoate (**3.19**) as an amorphous white solid (31 mg, 53 µmol, 53% yield).

NMR spectra contaminated with ca. 10% primary insertion product. Yields reported as a combined yield of diastereomers and regioisomers.

HRMS (APCI) m/z: [M+H]⁺ calcd for C₂₇H₂₆O₆N₂³⁵Cl₃ 579.0851; Found 579.0850 ¹H NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.05 (s, 1H), 7.89 (dd, J= 5.1, 1.4 Hz, 1H), 7.71 (dt, J = 7.8, 1.0 Hz, 1H), 7.47 (ddd, J = 7.7, 6.0, 1.6 Hz, 1H), 7.17 (d, J= 8.4 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 4.98 (dd, J = 12.2, 5.3 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.52 (d, J = 12.0 Hz, 1H), 4.17 (s, 1H), 2.96 – 2.87 (m, 1H), 2.88 – 2.67 (m, 2H), 2.31 (s, 3H), 1.55 (s, 3H), 1.39 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.02, 171.00, 169.9, 168.1, 167.13, 167.12, 167.09, 142.52, 142.50, 136.6, 136.43, 136.40, 131.5, 130.8, 129.1, 128.9, 126.9, 126.4, 125.33, 125.31, 123.2, 94.55, 94.48, 74.4, 62.6, 49.52, 49.46, 41.8, 31.5, 26.0, 25.6, 22.7, 21.0.

SFC analysis: Using **GP1**, **3.19** (Trefoil® AMY1, 20% 1:1 MeOH:'PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 78:22 d.r. for the asymmetric induction observed for the formation of the major regioisomer: t_R (major diastereomers) = 4.2 and 5.2 min., t_R (minor diastereomers) = 8.6 and 21.1 min. Using **GP3**, **3.19** indicated 90:10 d.r.

2,2,2-trichloroethyl (2*R*)-2-(3-(4-(*tert*-butyl)phenyl)bicyclo[1.1.1]pentan-1-yl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetate (3.20).

Compound **3.20** was prepared via **GP3** using 1-(4-(tert-butyl)phenyl)bicyclo[1.1.1]pentane (168 mg, 10.0 equiv, 1.0 mmol), $Rh_2(S$ -tetra-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 µmol), **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a one hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 20% to 50% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (2*R*)-2-(3-(4-(*tert*-butyl)phenyl)bicyclo[1.1.1]pentan-1-yl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)acetate (**3.20**) as an amorphous white solid (40 mg, 64 µmol, 46% yield).

HRMS (APCI) m/z: [M+H]⁺ calcd for C₃₂H₃₂O₆N₂³⁵Cl₃ 645.1321; Found 645.1323 ¹H NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.00 (s, 1H), 7.94 (s, 1H), 7.89 (d, J = 7.7 Hz, 1H), 7.77 (dt, J = 7.8, 1.6 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 7.10 (d, J = 8.3 Hz, 1H), 5.00 (dd, J = 12.2, 5.2 Hz, 1H), 4.87 (d, J = 12.0 Hz, 1H), 4.756 and 4.755 (dd, J = 12.0 Hz, 1H), 4.17 (s, 1H), 2.97 – 2.89 (m, 1H), 2.88 – 2.70 (m, 1H), 2.17 (ddd, J = 10.3, 5.1, 2.9 Hz, 1H), 2.08 – 1.99 (m, 6H), 1.29 (s, 9H).

¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 170.9, 169.3, 168.0, 167.1, 167.0, 149.9, 143.4, 136.8, 135.02, 135.00, 132.3, 131.0, 125.8, 125.3, 124.2, 124.1, 94.6, 74.6, 53.6, 52.0, 49.5, 42.5, 39.5, 34.6, 31.53, 31.47, 22.8.

SFC analysis: Using **GP3**, **3.20** (CHIRALCEL® OX-3, 20% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 99:1 d.r. for the asymmetric induction observed at the newly formed stereogenic center: t_R (major diastereomers) = 10.6 and 11.8 min., t_R (minor diastereomers) = 10.3 and 14.0 min.

3.21

2,2,2-trichloroethyl (2*R*,7*R*)-7-((3*S*,8*S*,9*S*,10*R*,13*R*,14*S*)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[*a*]phenanthren-17-yl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-3,3-dimethyloctanoate (3.21).

Compound **3.21** was prepared via **GP3** using (3S,8S,9S,10R,13R,14S)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[*a*]phenanthren-3-yl acetate (430 mg, 10.0 equiv, 1.0 mmol), Rh₂(*S-tetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 µmol), **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a one hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 20% to 50% EtOAc in hexanes) afforded **2,2,2**-trichloroethyl (2*R*,7*R*)-7-((3*S*,8*S*,9*S*,10*R*,13*R*,14*S*)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[*a*]phenanthren-17-yl)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-3,3-dimethyloctanoate (**3.21**) as an amorphous white solid (28 mg, 32 µmol, 32% yield).

HRMS (APCI) *m/z*: [M+Na]⁺ calcd for C₄₆H₅₉O₈N₂³⁵Cl₃²³Na 895.3229; Found 895.3244

¹**H** NMR (600 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.04 (s, 1H), 8.00 (d, J = 4.8 Hz, 1H), 7.89 – 7.79 (m, 2H), 5.37 (d, J = 5.1 Hz, 1H), 4.99 (dd, J = 12.6, 5.4 Hz, 1H), 4.84 (d, J = 12.0 Hz, 1H), 4.66 – 4.52 (m, 2H), 3.84 (s, 1H), 2.99 – 2.89 (m, 1H), 2.89 – 2.64 (m, 2H), 2.38-2.29 (m, 2H), 2.21 – 2.12 (m, 1H), 2.03 (s, 3H), 2.02 – 1.92 (m, 2H), 1.89-1.82 (m, 1H), 1.81 – 1.75 (m, 1H), 1.61 – 1.34 (m, 10H), 1.34 – 1.27 (m, 1H), 1.26 – 1.10 (m, 6H), 1.09 (s, 3H), 1.07 – 1.03 (m, 1H), 1.01 (s, 3H), 1.00 – 0.96 (m, 2H), 0.95 (s, 3H), 0.92 (d, J = 6.5 Hz, 3H), 0.67 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 170.9, 170.7, 170.5, 168.1, 167.2, 167.1, 143.1, 139.8, 136.41, 136.38, 131.7, 130.9, 125.6, 125.5, 123.4, 122.7, 94.7, 74.4, 74.1, 60.6, 56.8, 56.2, 50.1, 49.5, 42.5, 41.4, 39.8, 38.3, 37.1, 36.73, 36.71, 35.9, 32.01, 31.98, 31.5, 28.4, 27.9, 24.85, 24.83, 24.43, 24.41, 24.39, 22.8, 21.6, 21.2, 20.4, 19.4, 18.9, 12.0. **SFC analysis:** Using **GP3, 3.20** (CHIRALCEL® OX-3, 35% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 230 nm) indicated 99:1 d.r. for the asymmetric induction observed at the newly formed stereogenic center: *t*_R (major diastereomers) = 6.8 and 8.0 min., *t*_R (minor diastereomers) = 9.7 and 11.0 min.

2,2,2-trichloroethyl (2*S*)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-2-((*R*)-1-tosylpyrrolidin-2-yl)acetate (3.22).

Compound **3.22** was prepared via **GP3** using 1-*N*-tosylpyrrolidine (0.23 g, 10.0 equiv, 1.0 mmol), $Rh_2(S$ -*tetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 µmol), **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.10 mL, 10.0 equiv, 1.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a one hour slow addition of diazo and 0.5 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 10% to 65% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (2*S*)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-2-((*R*)-1-tosylpyrrolidin-2-yl)acetate (**3.22**) as an amorphous white solid (36 mg, 53 µmol, 53% yield).

Compound **3.12** was prepared via **GP8** using 1-*N*-tosylpyrrolidine (0.23 g, 10.0 equiv, 1.0 mmol), $Rh_2(S$ -*tetra*-p-Br-PPTTL)₄ (20 mM in CH₂Cl₂, 50 µL, 1 mol%, 1.0 µmol), **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), and 1.0 mL CH₂Cl₂ at room temperature for 0.5 h. Purification via flash column chromatography (SiO₂, gradient of 10% to 65% EtOAc in hexanes) afforded 2,2,2-trichloroethyl (2*S*)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-2-((*R*)-1-tosylpyrrolidin-2-yl)acetate (**3.22**) as an amorphous white solid (57 mg, 85 µmol, 85% yield).

HRMS (APCI) m/z: [M+H]⁺ calcd for C₂₉H₃₂O₆N₂³⁵Cl₃ 670.0579; Found 670.0579

¹**H** NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.14 (s, 1H), 7.98 – 7.90 (m, 1H), 7.92 – 7.78 (m, 3H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.00 (dd, *J* = 12.2, 5.2 Hz, 1H), 4.83 – 4.79 (m, 2H), 4.37 (m, 1H), 4.27 (d, *J* = 6.8 Hz, 1H), 3.42 – 3.34 (m, 1H), 3.32 – 3.18 (m, 1H), 2.99 – 2.63 (m, 3H), 2.41 (s, 3H), 2.23 – 2.12 (m, 1H), 1.99 – 1.88 (m, 1H), 1.77 – 1.63 (m, 1H), 1.51 – 1.33 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.0, 169.35 and 169.33, 168.1, 167.04 and 166.99, 144.2, 144.1, 142.1, 136.0, 134.6, 134.5, 132.1, 131.4, 130.0, 127.7, 127.6, 125.0, 124.0, 94.6, 74.6, 62.94 and 62.92, 56.0, 49.5, 49.4, 31.5, 29.8, 24.2, 22.7, 21.7.

SFC analysis: 3.22 (Trefoil® AMY1, 30% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 1.5 mL/min, 210 nm) indicated 97:3 d.r. for asymmetric induction arising from formation of the major relative diastereomer using **GP3**: $t_{\rm R}$ (major diastereomers) = 11.2 and 20.7 min., $t_{\rm R}$ (minor diastereomers) = 10.0 and 13.6 min. **GP8** gave **3.22** in 95:5 d.r.

tert-butyl 4-(4-((1*R*,2*R*)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-2-((2,2,2-trichloroethoxy)carbonyl)cyclopropyl)butyl)piperazine-1-carboxylate (3.24).

Compound **3.24** was prepared via **GP5** using **13** (30 mg, 1.1 equiv, 0.11 mmol), Rh₂(*S-tetra*-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 µmol), **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), 1,1,1,3,3,3-hexafluoropropan-2-ol (0.20 mL, 20.0 equiv, 2.0 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a 0.5 h slow addition of diazo and 0.25 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 50% to 100% EtOAc in hexanes) afforded tert-butyl 4-(4-((1*R*,2*R*)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-2-((2,2,2-

trichloroethoxy)carbonyl)cyclopropyl)butyl)piperazine-1-carboxylate (3.24) as an amorphous white solid (35 mg, 49 µmol, 49% yield).

Compound **3.24** was prepared via **GP8** using **3.13** (30 mg, 1.1 equiv, 0.11 mmol), $Rh_2(S$ -tetra-p-Br-PPTTL)₄ (3.7 mg, 1 mol%, 1.0 µmol), **3.6a** (47 mg, 1.0 equiv, 0.10 mmol), and 1.0 mL CH₂Cl₂ at room temperature with a 0.5 h slow addition of diazo and 0.25 h additional stirring. Purification via flash column chromatography (SiO₂, gradient of 50% to 100% EtOAc in hexanes) afforded tert-butyl 4-(4-((1R,2R)-2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-2-((2,2,2-trichloroethoxy)carbonyl)cyclopropyl)butyl)piperazine-1-carboxylate (**3.24**) as an amorphous white solid (22 mg, 30 µmol, 30% yield).

HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₃₂H₄₀O₈N₄³⁵Cl₃ 713.1906; Found 713.1904.

¹**H** NMR (400 MHz, CDCl₃, reported as a mixture of diastereomers): δ 8.25 and 8.14 (s, 1H), 7.92 – 7.83 (m, 1H), 7.83 – 7.79 (m, 1H), 7.72 (dd, J = 7.7, 1.5 Hz, 1H), 4.990 and 4.987 (dd, J = 12.5, 5.3 Hz, 1H), 4.81 and 4.80 (d, J = 11.9 Hz, 1H), 4.58 and 4.57 (d, J = 11.9 Hz, 1H), 3.48 – 3.41 (m, 4H), 3.00 – 2.89 (m, 1H), 2.88 – 2.71 (m, 2H), 2.42 – 2.32 (m, 5H), 2.20 – 2.13 (m, 1H), 2.09 – 1.94 (m, 2H), 1.68 – 1.36 (m, 7H, overlapping with s at 1.44) 1.44 (s, 9H, overlapping with multiplet from 1.68-1.36), 1.32 (dd, J = 6.6, 4.3 Hz, 1H).

¹³C{¹H} NMR (151 MHz, CDCl₃, reported as a mixture of diastereomers): δ 171.6, 170.92, 170.91, 168.2, 168.1, 167.2, 167.1, 154.8, 143.2, 137.9, 131.93, 131.92, 130.88, 130.86, 126.71, 126.68, 123.7, 123.6, 94.9, 74.5, 58.4, 53.0, 49.5, 33.9, 33.8, 31.6, 30.6, 30.5, 30.1, 28.6, 27.0, 22.8, 22.32, 22.27.

SFC analysis: 3.24 (CHIRALPAK® AD-3, 30% 1:1 MeOH: PrOH with 0.2% formic acid in CO₂, 1.5 mL/min, diode array) indicated 96:4 d.r. for asymmetric induction arising from formation of the major relative diastereomer using **GP5**: t_R (major diastereomer) = 4.5 min., t_R (minor diastereomer) = 2.1 min., t_R (inseparable major + minor) = 1.7 min. **GP8** gave **3.24** in 97:3 d.r.

Note: The other two diastereomers represented by the peak at 1.7 min were inseparable, and the d.r. was acquired from the diastereomers at 2.1 and 4.5 min. only.

2,2,2-trichloroethyl (1*R*,2*R*)-1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-2-(4-(piperazin-1-yl)butyl)cyclopropane-1-carboxylate (SI1).

Compound **3.24** (27 mg, 38 µmol, 1.0 equiv) was added to a vial equipped with a PTFE magnetic stir bar under ambient conditions, and 0.5 mL CH_2Cl_2 were added. The vial was cooled to 0 °C in an ice bath, and 0.5 mL trifluoroacetic acid was added in one portion. The ice bath was removed and the reaction was allowed to come to room temperature, stirring for one hour. The reaction was concentrated in vacuuo and the residual trifluoroacetic acid was removed by concentration from toluene (3x). The obtained residue was dissolved in ethyl acetate (5 mL) and washed twice with a saturated aqueous solution of sodium bicarbonate (5 mL). The organic layer was dried over sodium sulfate, filtered, and concentrated under vacuum. The crude 2,2,2-trichloroethyl (1*R*,2*R*)-1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)-2-(4-(piperazin-1-yl)butyl)cyclopropane-1-carboxylate (SI1) was carried forward to the next step without further purification.

A flame-dried vial equipped with a PTFE magnetic stir bar and under inert atmosphere was charged with (*S*)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetic acid (9.0 mg, 22 μmol, 1.0 equiv) and HATU (17 mg, 45 μmol, 2.0

equiv). Dry DMF (0.5 mL) was charged by syringe along with DIPEA (12 μ L, 67 μ mol, 3.0 equiv). The reaction was stirred at room temperature for 0.5 hours, after which a solution of **SI1** (15 mg, 25 μ mol, 1.1 equiv) in 0.5 mL dry DMF was charged by syringe. The reaction was allowed to stir for 4 hours at room temperature, after which it was partitioned between saturated aqueous sodium chloride solution (5 mL) and ethyl acetate (5 mL). The aqueous layer was extracted thrice with ethyl acetate (5 mL portions), after which the combined organic layers were washed with saturated aqueous sodium chloride solution (5 mL). The combined organic layers were dried over sodium sulfate, filtered, and concentrated in vacuuo. Flash column chromatography (SiO₂, 5% to 10% MeOH in CH₂Cl₂) afforded 2,2,2-trichloroethyl (1*R*,2*R*)-2-(4-(4-(2-((*S*)-4-(4-chlorophenyl))-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetyl)piperazin-1-yl)butyl)-1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)cyclopropane-1-carboxylate (3.25) as a tan amorphous solid (16 mg, 22 μ mol, 72% yield).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₄₆H₄₇O₇N₈³⁵Cl₄³²S 995.2037; Found 995.2065

¹**H NMR** (800 MHz, DMSO-*d*6, sample at 80 °C, reported as a mixture of diastereomers): δ 10.87 (s, 1H), 7.90 (t, J = 7.6 Hz, 1H), 7.88 (d, J = 1.4 Hz, 1H), 7.86 (dt, J = 7.7, 1.3 Hz, 1H), 7.46 (d, J = 9.0 Hz, 2H), 7.44 (d, J = 8.6 Hz, 2H), 5.13 and 5.12 (dd, J = 12.6, 5.6 Hz, 1H), 4.90 (d, J = 12.3 Hz, 1H), 4.791 and 4.790 (d, J = 12.3 Hz, 1H), 4.59 (t, J = 6.7 Hz, 1H), 3.62 – 3.55 (m, 5H), 3.398 and 3.396 (dd, J = 16.1, 6.5 Hz, 1H), 2.88 (ddt, J = 17.0, 13.4, 5.3 Hz, 1H), 2.66 – 2.54 (m, 3 H), 2.60 (s, 3H, overlapping with m from 2.66-2.54), 2.53 – 2.50 (m, 1H, overlapping with solvent signal at 2.50), 2.42 (s, 3H), 2.41 – 2.15 (m, 5H), 2.13 – 2.09 (m, 1H), 2.05 – 1.99 (m, 1H), 1.87 (dd, J = 9.1, 4.8 Hz, 1H), 1.65 (s, 3H), 1.58 (dd, J = 7.1, 4.9 Hz, 1H), 1.46 – 1.38 (m, 5H).

¹³C{¹H} NMR (201 MHz, DMSO-*d*6, sample at 80 °C, reported as a mixture of diastereomers): δ 171.9, 170.7, 169.1, 166.5, 166.4, 155.0, 149.2, 142.4, 137.3, 136.6, 134.9, 131.8, 130.9, 130.3, 129.9, 129.7, 129.55, 129.46, 128.0, 125.7, 122.5, 95.0, 73.6, 73.4, 57.1, 54.0, 48.9, 34.4, 33.1, 30.6, 30.1, 29.2, 29.0, 25.9, 21.70, 21.68, 21.0, 13.4, 12.23, 12.01, 10.74, 10.72.

Purity (HPLC): 97%

A flame-dried vial equipped with a PTFE magnetic stir bar and under inert atmosphere was charged (R)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3with a][1,4]diazepin-6-yl)acetic acid (12 mg, 30 µmol, 1.0 equiv) and HATU (23 mg, 60 µmol, 2.0 equiv). Dry DMF (0.5 mL) was charged by syringe along with DIPEA (16 µL, 90 µmol, 3.0 equiv). The reaction was stirred at room temperature for 0.5 hours, after which a solution of SI1 (20 mg, 33 µmol, 1.1 equiv) in 0.5 mL dry DMF was charged by syringe. The reaction was allowed to stir for 4 hours at room temperature, after which it was partitioned between saturated aqueous sodium chloride solution (5 mL) and ethyl acetate (5 mL). The aqueous layer was extracted thrice with ethyl acetate (5 mL portions), after which the combined organic layers were washed with saturated aqueous sodium chloride solution (5 mL). The combined organic layers were dried over sodium sulfate, filtered, and concentrated in vacuuo. Flash column chromatography (SiO₂, 5% to 10% trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetyl)piperazin-1-yl)butyl)-1-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)cyclopropane-1-carboxylate (3.26) as a tan amorphous solid (14 mg, 30 µmol, 47% yield).

HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₄₆H₄₇O₇N₈³⁵Cl₄³²S 995.2037; Found 995.2049

¹**H NMR** (800 MHz, DMSO-*d*6, sample at 80 °C, reported as a mixture of diastereomers): δ 10.86 (s, 1H), 7.90 (d, J = 7.7 Hz, 2H), 7.88 (d, J = 1.5 Hz, 2H), 7.86 (dt, J = 7.7, 1.4 Hz, 2H), 7.46 (d, J = 8.8 Hz, 3H), 7.44 (d, J = 8.7 Hz, 4H), 5.13 and 5.12 (dd, J = 12.6, 5.5 Hz, 1H), 4.90 (d, J = 12.3 Hz, 1H), 4.792 and 4.790 (d, J = 12.2 Hz, 1H), 4.59 (t, J = 6.7 Hz, 1H), 3.68-3.43 (m, 4H, overlapped with dd at 3.57), 3.57 (dd, J = 16.0, 6.8 Hz, 1H), 3.40 and 3.39 (dd, J = 16.1, 6.5 Hz, 1H), 2.88 (ddt, J = 17.0, 13.4, 5.3 Hz, 1H), 2.65 – 2.55 (m, 3H, overlapped with s at 2.60), 2.60 (s, 3H, overlapped with m from 2.65-2.55), 2.53 – 2.49 (m, 1H, partially overlapped with solvent signal), 2.42 (s, 3H), 2.41 – 2.16 (m, 5H), 2.14 – 2.09 (m, 1H), 2.06 – 2.00 (m, 1H), 1.87 (dd, J = 9.1, 4.8 Hz, 1H), 1.66 (s, 3H), 1.58 (dd, J = 7.1, 4.9 Hz, 1H), 1.44 – 1.34 (m, 5H).

¹³C{¹H} NMR (201 MHz, DMSO-*d*6, sample at 80 °C, reported as a mixture of diastereomers): δ 171.9, 170.7, 169.1, 167.8, 166.5, 166.4, 162.4, 155.0, 149.2, 142.4, 137.3, 136.6, 134.9, 131.8,

130.9, 130.3, 129.9, 129.7, 129.54, 129.46, 128.0, 125.8, 122.5, 95.0, 73.4, 57.1, 54.0, 48.9, 34.4, 33.1, 30.6, 30.1, 29.2, 29.04, 28.96, 25.9, 25.4, 21.70, 21.68, 21.0, 13.4, 12.2, 10.7. **Purity** (HPLC): 95%

2,2,2-trichloroethyl (*R*)-2-cyclohexyl-2-(2-((*S*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)acetate (SI2).

Compound **SI2** was produced following **GP 7**, using using **3.10a** (21 mg, 1.0 equiv, 34 μ mol) and benzenesulfonic acid (11 mg, 2.0 equiv, 68 μ mol) in acetonitrile (0.17 mL) at 70 °C for 3.5 h. Purification via flash column chromatography (SiO₂, 70% ethyl acetate in hexanes) gave 2,2,2-trichloroethyl (*R*)-2-cyclohexyl-2-(2-((*S*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)acetate (**SI2**) as an amorphous white solid (13 mg, 73% yield, 34 μ mol).

HRMS (APCI) m/z: [M+H]⁺ calcd for C₂₃H₂₆O₅N₂³⁵Cl₃ 515.0902; Found 515.0902 ¹**H** NMR (600 MHz, CDCl₃): δ 7.98 (s, 1H), 7.84 (d, J = 7.9 Hz, 1H), 7.53 (s, 1H), 7.47 (d, J = 7.9 Hz, 1H), 5.23 (dd, J = 13.4, 5.1 Hz, 1H), 4.80 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.50 (d, J = 15.9 Hz, 1H), 4.33 (d, J = 15.9 Hz, 1H), 3.51 (d, J = 10.6 Hz, 1H), 2.98 – 2.89 (m, 1H), 2.84 (ddd, J = 18.1, 13.4, 5.4 Hz, 1H), 2.36 (qd, J = 13.2, 4.6 Hz, 1H), 2.25 – 2.19 (m, 1H), 2.17 – 2.08 (m, 1H), 1.93 – 1.86 (m, 1H), 1.81 – 1.75 (m, 1H), 1.73 – 1.61 (m, 2H), 1.37 – 1.28 (m, 2H), 1.20 – 1.09 (m, 3H), 0.85 – 0.75 (m, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 171.6, 171.1, 169.5, 169.1, 141.0, 138.7, 135.1, 132.5, 130.6, 128.3, 128.2, 127.2, 126.7, 123.6, 95.1, 74.5, 51.9, 46.9, 37.3, 34.4, 31.6, 23.5, 20.4.

SFC analysis: SI2 (CHIRALCEL® OZ-3, 20% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 99:1 d.r. for retained asymmetric induction arising from formation of the major relative diastereomer and 99:1 d.r. for major relative configuration of the glutarimide stereogenic center: t_R (major diastereomer) = 6.7 min., t_R (minor diastereomers) = 7.2, 15.0, and 15.8min.

Specific Rotation: $[\alpha]_D^{24}$ -7.4 (*c* 1.0, CHCl₃)

2,2,2-trichloroethyl (1*R*,2*S*)-1-(2-((*S*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-2-phenylcyclopropane-1-carboxylate (SI3).

Compound **SI3** was produced following **GP 7**, using using **3.12b** (15 mg, 1.0 equiv, 25 μ mol) and benzenesulfonic acid (7.8 mg, 2.0 equiv, 50 μ mol) in acetonitrile (0.12 mL) at 70 °C for 3.5 h. Purification via flash column chromatography (SiO₂, 70% ethyl acetate in hexanes) gave 2,2,2-trichloroethyl (1*R*,2*S*)-1-(2-((*S*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-2-phenylcyclopropane-1-carboxylate (**SI3**) as an amorphous white solid (7.5 mg, 57% yield, 25 μ mol).

HRMS (APCI) *m/z*: [M+H]⁺ calcd for C₂₅H₂₂O₅N₂³⁵Cl₃ 535.0589; Found 535.0591

¹**H** NMR (400 MHz, CDCl₃): δ 7.91 (s, 1H), 7.80 – 7.71 (m, 1H), 7.48 – 7.34 (m, 2H), 7.18 – 7.02 (m, 3H), 6.79 – 6.66 (m, 2H), 5.02 (dd, *J* = 13.2, 5.1 Hz, 1H), 4.87 (d, *J* = 11.9 Hz, 1H), 4.57 (d, *J* = 12.0 Hz, 1H), 4.29 (d, *J* = 16.0 Hz, 1H), 3.70 (d, *J* = 16.0 Hz, 1H), 3.25 (dd, *J* = 9.6, 7.4 Hz, 1H), 2.93 – 2.82 (m, 1H), 2.81 – 2.69 (m, 1H), 2.38 (dd, *J* = 9.6, 5.1 Hz, 1H), 2.23 (qd, *J* = 13.1, 4.8 Hz, 1H), 2.13 – 2.06 (m, 1H), 2.02 (dd, *J* = 7.5, 5.2 Hz, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 171.1, 170.9, 169.0, 168.7, 143.7, 135.3, 134.7, 131.7, 129.5, 128.5, 128.3, 127.6, 127.4, 124.0, 94.9, 74.6, 51.8, 46.7, 35.1, 34.2, 31.6, 23.5, 21.4.

SFC analysis: SI3 (CHIRALCEL® OZ-3, 20% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO₂, 2.5 mL/min, 210 nm) indicated 93:7 d.r. for retained asymmetric induction arising from formation of the major relative diastereomer and 99:1 d.r. for major relative configuration of the glutarimide stereogenic center: t_R (major diastereomer) = 6.30 min., t_R (minor diastereomers) = 7.00, 12.94, and 20.28 min.

Specific Rotation: $[\alpha]_D^{24}$ -11.6 (*c* 0.5, CHCl₃)

SI4

2,2,2-trichloroethyl (1*R*,2*S*)-1-(2-((*S*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)-2-phenylcyclopropane-1-carboxylate (SI4).

Compound **SI4** was produced following **GP 7**, using using **3.12a** (15 mg, 1.0 equiv, 25 μ mol) and benzenesulfonic acid (7.8 mg, 2.0 equiv, 50 μ mol) in acetonitrile (0.12 mL) at 70 °C for 3.5 h. Purification via flash column chromatography (SiO₂, 65% ethyl acetate in hexanes) gave 2,2,2-trichloroethyl (1*R*,2*S*)-1-(2-((*S*)-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)-2-

phenylcyclopropane-1-carboxylate (SI4) as an amorphous white solid (7.9 mg, 62% yield, 25 μ mol).

HRMS (APCI): m/z [M+H]⁺ calcd for C₂₅H₂₂O₅N₂³⁵Cl₃ 535.0589; Found 535.0592 ¹H NMR (400 MHz, CDCl₃): δ 8.01 (s, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.24 (d, J = 8.1 Hz, 1H), 7.15 (s, 1H), 7.11 – 7.06 (m, 3H), 6.83 – 6.79 (m, 2H), 5.16 (dd, J = 13.3, 5.2 Hz, 1H), 4.86 (d, J = 11.9 Hz, 1H), 4.64 (d, J = 11.9 Hz, 1H), 4.29 (d, J = 15.9 Hz, 1H), 4.21 (d, J = 16.0 Hz, 1H), 3.29 (dd, J = 9.4, 7.5 Hz, 1H), 2.94 – 2.87 (m, 1H), 2.80 (m, 1H), 2.36 (dd, J = 9.4, 5.2 Hz, 1H), 2.29 (qd, J = 13.0, 4.9 Hz, 1H), 2.21 – 2.14 (m, 1H), 2.06 (dd, J = 7.5, 5.3 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 171.6, 171.1, 169.5, 169.1, 141.0, 138.7, 135.1, 132.5, 130.6, 128.3, 128.2, 127.2, 126.7, 123.6, 95.1, 74.5, 51.9, 46.9, 37.3, 34.4, 31.6, 23.5, 20.4. SFC analysis: SI4 (CHIRALPAK® AS-3, 20% 1:1 MeOH:^{*i*}PrOH with 0.2% formic acid in CO-2, 2.5 mL/min, 210 nm) indicated 91:9 d.r. for retained asymmetric induction arising from formation of the major relative diastereomer and 97:3 d.r. for major relative configuration of the glutarimide stereogenic center: t_R (major diastereomer) = 2.50 min., t_R (minor diastereomers) = 1.92 and 2.84 min.

Specific Rotation: $[\alpha]_D^{24} 2.3$ (*c* 0.5, CHCl₃).

Section 3: Computation Details

The data in this section were generated by Duc Ly and checked by Djamaladdin Musaev.

All calculations were performed using Gaussian-16 suite of programs.⁹ Images of 3D structures were rendered using VMD¹⁰ and Vesta.¹¹ Geometry and vibrational frequencies of the presented Rh₂(OAc)₄-carbene complexes were calculated at the B3LYP-D3(BJ)¹² level of theory in conjunction with Lanl2dz¹³ basis set for rhodium and $6-31G(d,p)^{14}$ basis set for other atoms. Geometry and vibrational frequencies of the Rh₂(S-tetra-BrPhTPPTTL)₄ systems with approximately 400 atoms and their carbene complexes were calculated by using the two-layer ONIOM¹⁵ approach via partitioning of the complex Rh₂(S-tetra-BrPhTPPTTL)₄ into the two layers. (Figure S3-2) The highlighted catalyst structure and Rh-coordinated carbene fragment were treated at the B3LYP level of theory in conjunction with Lanl2dz basis set for rhodium and 6-31G(d,p) basis set for other atoms. The real system with all atoms from the catalyst and upcoming carbene fragment was calculated by using the molecular mechanics UFF¹⁶ approach. The resulting approach is called the ONIOM(B3LYP:UFF) approach. The solvent effect (the CH₂Cl₂ was chosen as a solvent) was incorporated in all presented calculations by using the IFF-PCM method.¹⁷ Frequency analyses and Gibbs free energy and zero-point energy corrections were calculated at a temperature and pressure corresponding to standard reaction conditions (i.e. at the 298.15K and 1 atm, respectively).

Figure S3-2. ONIOM Partitioning and the solid-state Structure of studied catalyst. The blue-highlighted atoms were modeled with QM layer (B3LYP), the rest was modeled with MM layer (UFF).

Analysis of the metal-carbene complex with Rh₂(OAc)₄

As the aryl fragment of the carbene moiety is unsymmetrical, there are four stereoisomers that will be formed upon the formation of the carbene complex due to the hinder rotation of the ester group and the aryl groups. As the studied catalyst is achiral and the stereocenter on the diazo is very far away from the ester group, it is expected that the diastereomer isomers resulted from the rotation of the carbene-ester bond will have comparable energy. In contrast, the rotation around the carbene-aryl bond would result in a significant energy difference as the configuration **II** (**SI-2**) is thermodynamically more stable than **I** (**SI-1**) by 2.6 kcal/mol.

Figure S3-3. Study of Rh₂(OAc)₄-carbene complexes with isomers resulted from the rotation around the carbene-aryl bond.

1. Validation for ONIOM approach

The ONIOM approach can divide the study system into a QM level layer and an MM level layer. Increasing the size of the MM layer will help save computational cost but also imposed the loss of information especially weal interaction. Therefore, a comparison between structures obtaining from two layering of the ONIOM approach (A and A-SI-1) and the optimized structure from fully QM level (A-SI-2). The structure of model metal-carbene is displaced in Error! Reference source n ot found.-4 and its optimized structure is displaced in Figure S3-5. The significant difference between the two ONIOM layering methods and the full QM level is the rhodium-carbene length. As the ONIOM low level layer become bigger, the rhodium-carbene bond length becomes slightly longer by 0.01 Å and 0.04 Å, respectively. However, the optimized structures from ONIOM approach showed a good agreement with the optimized structure obtained from QM level with Root-Mean-Squares Deviation (RMSD) was only 0.65 Å and 0.94 Å. (Figure S3-5) This comparison showed that the ONIOM approach showed a fairly good correlation with the full QM level. As a result, the first layering approach to structure **A** was selected for the rest of this study.

Figure S3-4 Structure of metal-carbene model study for Rh₂(S-tetra-pBrPPTTL)₄

Figure S3-5. Optimized structure of metal-carbene complex. A. structure was optimized at ONIOM(B3LYP:UFF) with highlighted structure included in QM level while the rest in MM level. B. structure was optimized at ONIOM(B3LYP:UFF) with highlighted structure included in QM level while the rest in MM level. C. Structure was optimized at B3LYP-D3(BJ)/6-31G(d,p) (C,H,N,O,Br,Cl) – Lan2ldz (Rh). The reported bond length is Rhodium-carbene length

Figure S3-6 Comparison between structures obtained from ONIOM approach and normal QM approach. a) an overlay between structure A (colorful) and A-SI-2 (green). b) an overlay between structure A-SI-1 (colorful) and A-SI-2 (green). Layering structures were generated by Vesta program. Root-Mean-Squares Deviation (RMSD) was calculated by Pymol using align function.

Analysis of the metal-carbene complexes with Rh₂(*S-tetra*-Br-TPPTTL)₄ and Rh₂(*R-tetra*-Br-TPPTTL)₄

Based on experimental results and previous computation models, the open face of the $Rh_2(S-tetra-Br-TPPTTL)_4$ is Re - face and the open face of the $Rh_2(R-tetra-Br-TPPTTL)_4$ is Si - face. Previously, we showed that the attack of the substrate in C-H insertion favored the approach from the trichloroethyl (TCE) side over the carbonyl side (**Figure S3-7**).¹⁸ Because of the above reasoning and cost of calculation, we only consider the carbene diastereomer resulted from $Rh_2(S-tetra-Br-TPPTTL)_4$ with the TCE group located on the Re – face and the one resulted from $Rh_2(R-tetra-Br-TPPTTL)_4$ with the TCE group located on the Si – face. The calculated relative free energy of the metal-carbene complex showed that a carbene in a configuration **II** is more stable than configuration **I**, which is in good agreement with a model study with $Rh_2(OAc)_4$. (**Figure S3-8**) However, the energy difference between 2 configurations is now much more significant at 9.6 and 7.1 kcal/mol. This difference can be attributed to the effect of the bowl-shaped structure of the catalyst is significantly distorted in configuration **I** compared to configuration **II**. Additionally, the carbene complex resulted from $Rh_2(S-tetra-Br-TPPTTL)_4$. This could explain why the yield of the reaction with the R enantiomer of the catalyst is lower than the S enantiomer.

Figure S3-7 Illustration of the side of approach during C-H insertion reaction

Figure S3-8. Structure of metal-carbene complex from Rh₂(S-tetra-BrTPPTTL)₄ and Rh₂(R-tetra-BrTPPTTL)₄ with I and II configuration. The reported relative enthalpies and free energy are in kcal/mol unit and relative to structure A.

Tables of energies

Table S3-1. zero-point correction (ZPE), thermal correction to enthalpy (TCH), thermal correction to Gibbs free energy (TCG), energies (E), enthalpies (H), and Gibbs free energies (G) (in Hartree) of the structures calculated at the B3LYP-D3(BJ) +CPCM(CH2Cl2) level of theory

Structure	ZPE	тсн	TCG	Ε	н	G	Imaginary Frequency
SI-1	0.633920	0.691141	0.529830	-3888.905165	-3888.214024	-3888.375335	-
SI-2	0.633718	0.690998	0.529273	-3888.908780	-3888.217782	-3888.379507	-

Table S3-2 zero-point correction (ZPE), thermal correction to enthalpy (TCH), thermal correction to Gibbs free energy (TCG), energies (E), enthalpies (H), and Gibbs free energies (G) (in Hartree) of the structures calculated at the ONIOM[B3LYP:UFF]+CPCM(CH₂Cl₂) level of theory followed Figure S3-1

Structure	ZPE	тсн	TCG	Е	Н	G	Imaginary Frequency
Α	2.710880	2.913795	2.430058	-6564.904862	-6561.991066	-6562.474804	-
В	2.711298	2.913860	2.433357	-6564.905450	-6561.991590	-6562.472093	-
С	2.711768	2.914275	2.430523	-6564.890041	-6561.975766	-6562.459518	-
D	2.712272	2.914810	2.434298	-6564.895144	-6561.90334	-6562.460846	-

Cartesian coordinates for calculated structure

Structure S	<u>I-1</u>		
Rh	6.44401000	12.42180000	-7.03264900
Rh	8.55091000	12.50559000	-5.77183300
0	7.63247900	13.89605300	-4.54137300
0	9.11967000	14.04434900	-7.02630400
0	9.29875900	11.13646300	-7.13402300
0	7.79839300	10.94897900	-4.62877300
0	5.68279800	13.81226100	-5.69917800
0	7.17658100	13.96625400	-8.19772000
0	7.34614400	11.03746800	-8.28494200
0	5.84787700	10.87588100	-5.78485200
С	6.42595800	14.25013400	-4.77268400
С	8.32384400	14.44133200	-7.94429700
С	8.54594600	10.69795700	-8.07270300
С	6.63587900	10.47632200	-4.87921100
С	10.23313900	12.55340600	-4.66258800
С	9.17733300	9.68858300	-8.99972800
Н	10.01179500	10.15798700	-9.52865500
Н	8.44741300	9.31862300	-9.71897800
Н	9.58264500	8.85894200	-8.41446900
С	5.86286600	15.29619700	-3.84156300
Н	6.42323800	16.22719700	-3.96927000
Н	5.99056600	14.97143500	-2.80579400
Н	4.80846800	15.47171200	-4.05277400
С	8.80599600	15.60401700	-8.77670100
Н	8.69226000	16.52415500	-8.19433500
Н	8.21933200	15.68724700	-9.69151100
Н	9.86568700	15.48453200	-9.00970800
С	6.17959400	9.35027100	-3.98411000
Н	5.95662500	9.75374700	-2.99144400
Н	6.98232200	8.61797800	-3.87221100
Н	5.28600700	8.87659800	-4.38979200
С	11.06195900	11.46785500	-4.26904700
С	12.19635200	11.68598100	-3.42358300
С	10.74540400	10.14474800	-4.69489000
С	12.99697200	10.63503300	-3.01110400

•

Н	12.43093100	12.69431500	-3.10249300
С	11.54951400	9.10759400	-4.26825900
Н	9.89018600	9.98288000	-5.33378000
С	12.65075900	9.35283500	-3.44047400
Н	13.86001800	10.79011800	-2.37353300
С	11.45813000	7.63176500	-4.55174400
С	13.33453300	8.06299500	-3.16353800
Ν	12.56764500	7.09706800	-3.76096300
н	11.59226700	7.40417600	-5.61650700
н	10,50056200	7.20773700	-4.23284300
0	14.38903400	7.87372800	-2.55381600
Č	12,99296200	5 69995500	-3 79626300
C	13 95049000	5 52678400	-5.00053800
C	11 80391800	4 74736300	-3 86163900
ч	13 56030800	5 54115700	-2.87407200
N	15.10571200	6.00604300	4 77337000
N O	13.19371200	5.02226200	-4.77557000
C C	12 24007700	2 28605000	-0.03889200
	12.24007700	3.28003900	-3.70237900
н	11.29450900	4.86025100	-4.82019200
H	11.0989/500	5.01611900	-3.06815000
H	15.83896300	6.06119100	-5.55048200
H	15.38124700	6.55455600	-3.94003100
С	11.08540300	2.30280200	-3.71737900
Н	12.78496900	3.12882800	-2.76852500
Н	12.90720300	3.02020900	-4.53033400
0	10.98793300	1.36338500	-2.94987400
0	10.21891900	2.60292000	-4.69692100
С	9.00533800	1.79782200	-4.94366300
С	9.40106100	0.37308700	-5.33245300
С	8.35848200	2.52503100	-6.12106500
С	8.09932800	1.83962800	-3.71269900
Н	8.50778100	-0.17975100	-5.63816400
Н	9.86816700	-0.14712300	-4.49646900
Н	10.09738200	0.39073500	-6.17609300
Н	7.43313900	2.01857900	-6.40866400
Н	8.12023700	3.55784400	-5.85136800
Н	9.03157900	2.53649000	-6.98281500
Н	7.89386100	2.87640100	-3.42962800
Н	8.55752100	1.32467400	-2.86858000
Н	7.14716700	1.35474000	-3.94778300
С	10.55072900	13.90424700	-4.16466400
Õ	11.17484400	14,73161700	-4.79452200
Ő	9 98889300	14 10524800	-2.94569200
Č	9,95929500	15.43875300	-2.45135100
C	10.81334100	15 54413500	-1 18435400
н	10.34441700	16 13354100	-3 19824400
н	8 92480300	15 67559500	-2 19969600
	12 53544000	15 18200300	1 55403600
Cl	10 66781700	17.18200300	-1.55495000
	10.00781700	17.22692200	-0.37030300
CI Starrastarras SI	10.22343800	14.39077300	0.00018700
Structure 5	<u></u>	12.05001200	6 07 477 400
Kn Dl	0.31900300	13.05991200	-0.9/4//400
кn	8.416/5200	12./1143400	-5./4531000
U	/./1143500	14.08338100	-4.36323200
U	9.20008000	14.2/415/00	-6.84685000
U	8.96149900	11.3992/400	-/.25064700
U	7.44879600	11.16966600	-4.75575700
0	5.76926400	14.40119400	-5.49192400
0	7.26466100	14.59802600	-7.98684900
0	7.01310500	11.69756700	-8.37386900

0	5.50751800	11.49484800	-5.88414900
С	6.56817800	14.62911800	-4.53636000
С	8.46917000	14.87478800	-7.70607200
С	8.15244400	11.16957300	-8.21589200
С	6.23045000	10.89554900	-5.03497100
C	10.09264900	12.41572400	-4.66700800
Č	8.62843800	10.17687500	-9.24731600
н	9 54123200	10 55361800	-9 71733000
н	7 86320300	10.01348400	-10 00540300
н	8 87606100	9 23260700	-8 75504300
C	6 15987700	15 63468300	-3 48779600
с u	6 8000/000	16 44774100	3 46446600
П Ц	6 16600000	15 15647800	-3.40440000
п u	5 16801000	16.02280500	2 70146700
Г	0.11251900	16.02502000	-3.70140700
C II	9.11251800	16.03593900	-8.42348000
H	9.13660100	16.89698000	-/./4/6/200
H	8.54093400	16.29850900	-9.31361400
H	10.14236500	15.78947500	-8.68850100
С	5.61791900	9.76025000	-4.25253300
Н	5.47591100	10.07921800	-3.21528900
Н	6.29875300	8.90608300	-4.24696200
Н	4.65590700	9.47617100	-4.67818100
С	10.80052500	11.20777200	-4.42361200
С	10.31804500	9.97394800	-4.95863400
С	11.97950700	11.21446500	-3.61676100
С	10.97612300	8.78125800	-4.69907200
Η	9.42296200	9.99041800	-5.56199700
С	12.62778100	10.02275700	-3.37897800
Н	12.35370200	12.14348100	-3.20203700
С	12.12806800	8.82830300	-3.91572600
Н	10.61463100	7.83675900	-5.09007400
С	13.86811400	9.73050400	-2.57765700
С	13.00207200	7.70987500	-3.47492700
N	14.02625900	8.28824200	-2.77305000
Н	13.74073500	9.96946000	-1.51486100
Н	14,73897600	10.28063500	-2.94728700
0	12.84581500	6 50097300	-3 66092700
C	15.03561400	7 48192700	-2 09117000
C	14 47279900	7.09058900	-0 70278800
C	16 37036700	8 21270100	-1 99029700
с u	15 1/186600	6 57337000	2 60173100
N	13.14180000	6 10107500	-2.09173100
N O	14.92692000	7 65526000	-0.75557500
C C	14.82083900	7.03320900	1 45562000
U U	17.47634000	0.07146900	1 22420100
н	16.27042600	9.07146800	-1.52459100
H	16.63945100	8.5836/200	-2.9845/600
H	13.03344200	5.88045800	0.08543800
H	13.19439/00	5.78766500	-1.64966700
C	18.83544600	7.97090900	-1.37926400
Н	17.59557800	6.40489300	-2.07478200
Н	17.21656100	6.97223800	-0.44253400
0	19.87452500	7.43863000	-1.72483100
0	18.72512900	9.20402900	-0.86381100
С	19.89576400	10.08616300	-0.67753200
С	20.86909500	9.45027200	0.31515300
С	19.26835900	11.35042300	-0.09330800
С	20.54375600	10.37509100	-2.03182100
Н	21.66711600	10.16244900	0.54531300
Н	21.31372400	8.54407500	-0.09571800
Н	20.35191900	9.20344700	1.24707400

Н	20.04382600 12.09788200 0.09466700
Н	18.53817900 11.77393600 -0.78870400
Н	18.76281600 11.12821900 0.85057000
Н	19.79934700 10.76770900 -2.73097100
Н	20.98972700 9.47540900 -2.45536400
н	21.32503200 11.13028100 -1.90472500
C	10 56455700 13 64691500 -4 00404100
0	11 25346400 14 49198300 -4 53505500
0	10.06514400 13.71984300 -2.74383100
C C	10.21354700 14.05160500 2.04682200
C	10.21334700 14.33100300 $-2.0408220011.14278000$ 14.76071400 0.84320300
U U	11.14270000 14.70071400 $-0.0452750010.62127200$ 15.71670600 2.70190900
п	10.05157500 15.71079000 -2.70180800
H	9.22/98100 15.24/8/100 -1.68561200
CI	12.79862000 14.31276900 -1.38736800
CI	11.20361500 16.32179100 0.04325500
Cl	10.51250500 13.47299700 0.23859800
Structure	
Rh	0 -0.39893618 0.06648936 0.00000000 H
Rh	0 1.85221582 -0.06469364 -1.00789600 H
Br	0 2.43003582 -7.93353664 4.44283300 L
Br	0 -1.02574818 -7.40566664 10.85677700 L
Br	0 -1.77997218 5.86830436 9.38045400 L
Br	0 -3.44282618 -0.51664964 13.50629800 L
0	0 2.60074482 0.53922036 0.82655100 H
0	0 0.55046782 0.50968236 1.79236400 H
Ō	0 0.86986382 2.36349036 5.28219000 H
õ	0 2 04447482 -1 70759164 3 55351600 H
N	0 1.73761382 0.40086136 4.23502800 H
C	0 1.91212282 0.60006426 1.90150000 H
C	0 1.81512582 0.09090450 1.80159900 H
U U	0 2.30313782 1.22729030 3.13391800 H
н	0 1.92100282 2.22904030 5.21399700 H
C	0 3.91018382 1.41989330 3.29107300 H
C	0 4.3682/082 2.51933536 2.30/19100 H
Н	0 3.80414982 3.44647236 2.45940800 H
Н	0 4.24437982 2.21020636 1.26839500 H
Н	0 5.42725682 2.74129036 2.47536200 H
С	0 4.18329882 1.92766336 4.72389700 H
Н	0 3.96110082 1.16627536 5.47760400 H
Н	0 3.58829382 2.81641636 4.95238800 H
Н	0 5.24078382 2.19169436 4.82246700 H
С	0 4.71644482 0.12849836 3.05723100 H
Н	0 4.57530482 -0.25329964 2.04447100 H
Н	0 4.43364382 -0.65775564 3.76227800 H
Н	0 5.78250982 0.33668036 3.20031000 H
С	0 1.02017982 1.15824336 5.23618100 H
C	0 1.63778682 -0.89799264 4.36840700 H
Č	0 0.92638282 -1.13635964 5.67174700 H
Č	0 0.52476782 0.10436436 6.16989600 H
C C	0 -0.17012118 0.23448536 7.36569100 H
C C	0 0.43657818 0.04713064 8 10058000 H
C	0 0.01877118 0.01271064 7.60000100 H
C	0 -0.018//118 -2.212/1904 /.00909100 H
	U U.UJ004/02 -2.3102/804 0.30214200 H
C	U 1.07037082 -3.02012964 5.80238800 L H 35
C	U 2.43907282 -3.92080764 5.63733000 L
H	0 3.19156882 -3.17544564 5.86376400 L
С	0 2.83785682 -5.19252564 5.21562300 L
Ĥ	0 3.89111882 -5.41548164 5.10492900 L
С	0 1.88026682 -6.17910964 4.96018700 L
С	0 0.52042982 -5.88472364 5.09960400 L
Н	0 -0.22378518 -6.64396764 4.89789100 L

С	0	0.11820682	-4.61283064	5.51636800 L
Η	0	-0.93712418	-4.40378364	5.63795200 L
С	0	-0.26225918	-3.44433564	8.41254700 L H 34
С	0	-1.57222318	-3.85936264	8.70306700 L
Н	0	-2.41783618	-3.27462564	8.36989200 L
С	0	-1.79702818	-5.03221764	9.42820900 L
Ĥ	0	-2.81096818	-5.34498164	9.64185900 L
C	0	-0 71594818	-5 79853664	9 87369000 L
Č	Ő	0 59183782	-5 38572664	9.60019200 L
н	0	1 43175582	-5 97375364	9.94686600 I
C C	0	0.81031582	-1 21200564	8 87602000 L
с u	0	1 83703882	3 00244764	8.67312100 L
II C	0	1.03703002	-3.90244704	0.07512100 L
C	0	-1.13360616	-0.84308204	9.39/33100 L П 33
C U	0	-2.4903/118	-0.4290/304	9.42931100 L
H	0	-3.01630218	-0.18/18064	8.51099400 L
C	0	-3.1730/218	-0.33225664	10.64842500 L
Н	0	-4.20696518	-0.01249864	10.66430800 L
C	0	-2.51616318	-0.64871064	11.84206100 L
C	0	-1.17990318	-1.06145164	11.81589700 L
Н	0	-0.66770118	-1.30585564	12.73749300 L
С	0	-0.50008918	-1.15801864	10.59853900 L
Н	0	0.53598782	-1.47340564	10.59010800 L
С	0	-0.56096018	1.58037836	7.85136800 L H 32
С	0	-1.51235118	2.33771436	7.14943000 L
Н	0	-1.96528418	1.94690236	6.24741800 L
С	0	-1.87634118	3.60783936	7.60572200 L
H	0	-2.60645518	4.18781336	7.05575800 L
C	Ő	-1.29258418	4.12936736	8.76455400 L
Č	Ő	-0 34519718	3 37886536	9 46836400 L
н	0	0.11037182	3 78030836	10 36429100 L
C C	0	0.02020382	2 10845236	0.01/153000 I
ч	0	0.02029382	1 53803636	9.56/1/700 L
11 D.:	0	1.07004518	5 40218664	7 92909200 I
DI D.	0	-1.2/224310	-3.49210004	-7.03090200 L
Br	0	-/.98591118	-8./8309964	-5./024/100 L
Br	0	-4.63546618	-6.85566064	6.9/143800 L
Br	0	-9.93043318	-9.014/8564	1.61188800 L
0	0	1.94968182	-2.0411/064	-0.3/268800 H
0	0	-0.17515818	-1.94747564	0.40622200 H
0	0	-1.12940718	-4.89875764	2.46789900 H
0	0	-0.23072118	-4.23944764	-1.95834300 H
Ν	0	-0.27917718	-4.64036764	0.32717300 H
С	0	0.93346482	-2.53897464	0.18288600 H
С	0	0.96304382	-3.97911164	0.72941900 H
Н	0	0.84427082	-3.84853464	1.81193500 H
С	0	2.24996982	-4.84647364	0.53626100 H
С	0	3.38440382	-4.20308764	1.36303100 H
Н	0	3.09804182	-4.09001464	2.41376200 H
Н	0	3.65010982	-3.21668364	0.97747500 H
Н	Ő	4.27530182	-4.83821364	1.32155300 H
C	õ	1 95178982	-6 24448864	1 11880500 H
ч	0	1.24862382	-6 80295764	0.49388600 H
н	0	1.52386482	-6.17350064	2 12276600 H
ц	0	2 87701682	-6 87545264	1 18225300 H
C C	0	2.07701002	5 00200964	0.02270700 II
с п	0	2.0991/082	-3.00399804	-0.920/9/00 H
п	0	2.94569182	-4.04001164	-1.3//14900 H
Н	0	1.92928682	-5.4/925164	-1.54105000 H
H	0	3.59282282	-5.63/24064	-0.96214900 H
C	0	-1.24779818	-5.02857664	1.26226800 H
C	0	-0.77703818	-4.71584464	-0.97843000 H
С	0	-2.09299118	-5.42409264	-0.88078900 H
С	0	-2.39206218	-5.58081064	0.47344100 H
---------	---	--------------	--------------	--------------------------------
С	0	-3.59188618	-6.13827964	0.90307200 H
С	0	-4.51319218	-6.54083964	-0.09395500 H
Ċ	0	-4 19052018	-6 42451564	-1 46964700 H
Č	Õ	-2 95769418	-5 85965064	-1 88166600 H
C C	0	2.55767118	5 77120564	3 30060400 I H 108
C	0	1 22071212	6 41156064	2 75662000 L
C II	0	-1.369/1316	-0.41130904	-3.73003000 L
Н	0	-0.7/355118	-6.9/241164	-3.06450900 L
C	0	-1.01068/18	-6.33023664	-5.099/1200 L
Н	0	-0.10372718	-6.81830664	-5.43222900 L
С	0	-1.80039918	-5.61981164	-6.00892500 L
С	0	-2.97185018	-4.99332464	-5.57394000 L
Н	0	-3.58774318	-4.44354564	-6.27389500 L
С	0	-3.34466718	-5.06085364	-4.22959400 L
Н	0	-4.24296718	-4.55392764	-3.90577800 L
C	Ň	-5 10852918	-6 99285664	-2 48718500 L H 107
C C	0	-6 20322018	-6.24804464	-2.46716500 E 11 107
U U	0	-0.20322918	5 25206564	-2.94824400 L
П	0	-0.3623/116	-3.23200304	-2.30302100 L
C	0	-7.05424318	-6.//890364	-3.92127700 L
Н	0	-7.89142118	-6.1943/164	-4.27989900 L
С	0	-6.81976318	-8.05906564	-4.43360500 L
С	0	-5.72956618	-8.80639764	-3.97461800 L
Н	0	-5.54330318	-9.79647264	-4.37018200 L
С	0	-4.87410918	-8.27471864	-3.00511400 L
Н	0	-4.02989618	-8.85809064	-2.65861700 L
C	0	-5 81062618	-7 13614864	0 30914500 L H 106
Č	õ	-6 98233318	-6 36562464	0.26703800 L
с u	0	6.04501018	5 33248464	0.05577700 I
	0	-0.94391018	-5.55246404	-0.05377700 L
C U	0	-8.20300918	-0.92422204	0.65293900 L
Н	0	-9.10341218	-6.32348564	0.61913600 L
C	0	-8.260/0/18	-8.25360164	1.08451400 L
C	0	-7.09338618	-9.02378364	1.13205600 L
Н	0	-7.13318618	-10.05199664	1.46762600 L
С	0	-5.87029218	-8.46714664	0.74653600 L
Н	0	-4.97136218	-9.06991964	0.78722000 L
С	0	-3.85452118	-6.31822964	2.35213000 L H 105
С	0	-4.92515518	-5.65373864	2.97022500 L
Ĥ	0	-5 56378718	-4 99278564	2 39813200 L
C	0	-5 16771618	-5 82908564	4 33552700 I
с u	0	5 00363418	5 30005564	4.80430200 I
П	0	-3.99303410	-3.30993304	4.80439200 L
C	0	-4.33186218	-6.65284564	5.09692300 L
C	0	-3.263/4018	-/.31/19264	4.48688500 L
Н	0	-2.61461718	-7.95579964	5.07196600 L
C	0	-3.02915718	-7.15717564	3.11852100 L
Н	0	-2.20085618	-7.68059664	2.65672600 L
Br	0	-0.92670518	7.74422236	-5.92705800 L
Br	0	-8.68832918	7.83856036	-6.85345500 L
Br	0	-9.33174018	-4.35306364	-2.10610800 L
Br	0	-12.73451018	1.56653936	-4.77804200 L
0	õ	0.92354282	-0.66175164	-2 78561500 H
0	ñ	-1 12010018	-0.34287064	-1 88/38200 H
0	0	-3 802/0819	-1 9657/964	-3 78500/00 U
0	0	1 20240010	1 0005/202	-J./0J77400 П 4 22641000 II
U N	0	-1.52249/18	1.02000000	-4.33041900 H
IN C	0	-2.2/239318	-0.28862264	-4.2/06/600 H
C	0	-0.33636118	-0.65146/64	-2.83595200 H
C	0	-1.07635418	-1.11735564	-4.10538400 H
Н	0	-1.48904318	-2.09271464	-3.81626400 H
С	0	-0.25599418	-1.36698864	-5.41654800 H
С	0	0.63300282	-2.60951264	-5.18692300 H
Н	0	0.03826582	-3.47360964	-4.87267800 H

Н	0	1.38900682	-2.42325264	-4.42184100 H
Н	0	1.14451782	-2.87357564	-6.11822300 H
С	0	-1.25663318	-1.68540864	-6.54776200 H
Н	0	-1.84172618	-0.80647164	-6.83346800 H
Н	0	-1.95633118	-2.47411364	-6.25789200 H
н	0	-0.71266618	-2.02685464	-7.43389700 H
C	0	0.62362782	-0.17917964	-5.85276000 H
н	Õ	1 35893282	0.07520336	-5 08698800 H
н	Ő	0.02813182	0 71126736	-6 06439500 H
н	õ	1 16277582	-0.45098864	-6 76708000 H
C C	0	-3 55022218	-0.80420264	-4 05174900 H
C C	0	2 30236718	1 10561536	4 38815800 H
C	0	2 75196519	1.10501550	4 52728100 II
C	0	-5./5160516	1.4//90030	-4.32/38100 H
C	0	-4.30203918	0.33940730	-4.22924700 H
C	0	-5.89092118	0.36159236	-4.1806/800 H
C	0	-6.53800218	1.56783236	-4.54878400 H
С	0	-5.77985618	2.71590936	-4.90354300 H
C	0	-4.35913618	2.68968936	-4.85207400 H
С	0	-3.53406718	3.89882036	-5.11117300 L H 181
С	0	-2.55396718	3.89093736	-6.11752300 L
Н	0	-2.39085218	3.00348836	-6.71662300 L
С	0	-1.77921118	5.02998836	-6.35614100 L
Н	0	-1.01896218	5.01036536	-7.12621800 L
С	0	-1.98914618	6.19097636	-5.60552900 L
С	0	-2.97698118	6.21325336	-4.61720700 L
н	0	-3.14310818	7.10997636	-4.03456500 L
C	0	-3.74176818	5.07099336	-4.36541100 L
й	0	-4 49035718	5 09696536	-3 58444300 L
C	õ	-6 47275718	3 95045236	-5 36545900 L H 180
C	0	-7 34356618	4 64265236	-4 50869000 L 11 100
с u	0	7 51665418	4 28665236	3 50325400 L
II C	0	7 00202512	4.28003230	4 04086000 I
U U	0	-7.99696316	5.79460550	-4.94980000 L
п	0	-8.07030418	0.51880550	-4.28213500 L
C	0	-/./8031118	6.26810236	-6.24840700 L
C	0	-6.9156/818	5.58/59636	-7.10543700 L
H	0	-6.74845618	5.95036236	-8.11133600 L
С	0	-6.26222/18	4.43222036	-6.66778900 L
Н	0	-5.59717718	3.90904836	-7.34382000 L
C	0	-8.02405118	1.60359736	-4.59897600 L H 179
С	0	-8.77725918	1.48437736	-3.41986900 L
Н	0	-8.28233018	1.39003536	-2.46163200 L
С	0	-10.17336718	1.47383936	-3.47728600 L
Н	0	-10.74834818	1.37028536	-2.56940000 L
С	0	-10.82684518	1.59014236	-4.70716900 L
С	0	-10.08227118	1.71710536	-5.88400300 L
Н	0	-10.58429518	1.80510036	-6.83877900 L
С	0	-8.68558318	1.72047236	-5.83203200 L
н	0	-8.11876418	1.80357336	-6.75115100 L
C	0	-6 64233918	-0 82914964	-3 71302500 L H 178
Č	õ	-6 55409318	-1 22894364	-2 36961700 L
н	0	-5 89682018	-0 70609364	-1 68600900 I
C	ñ	-7 34126918	-2 28324464	-1 89595800 I
ч	0	7 77068219	_2.20324404	-0.85507100 I
C	0	-1.21700310 9 21012010	-2.37412104	-0.0330/100 L
C	0	-0.21910018	-2.94300204	-2.70090200 L
	0	-0.29240918	-2.30/20904	-4.1035/200 L
п	0	-8.9682/618	-3.0/944464	-4.///92900 L
C	0	-/.50/01118	-1.51531/64	-4.58161800 L
H	0	-/.58/30318	-1.21598064	-5.61987200 L
Br	0	3.86994982	5.30766836	6.79502600 L
Br	0	-1.96959318	9.80336436	8.71669500 L

Br	0	-6.47935818	8.94561936	-3.71086700 L
Br	0	-7.37735718	11.42918336	3.63794100 L
0	0	1.63612882	1.92391836	-1.55851800 H
0	0	-0.34057118	2.09780536	-0.47111300 H
0	0	-2.06145318	5.43180036	-1.78988300 H
0	0	1.19740982	4.26379736	1.20215000 H
Ν	0	-0.19271218	4.79156936	-0.58092800 H
С	0	0.61583382	2.56010736	-1.17961000 H
С	0	0.40384082	4.00666936	-1.66264600 H
Н	0	-0.41137818	3.91702936	-2.39306600 H
С	0	1.57421782	4.73240836	-2.41077000 H
C	0	1.82792182	4.00611036	-3.75055900 H
Ĥ	0	0.91138882	3 95061736	-4 34919500 H
Н	Ő	2.19984582	2.99224836	-3.59787000 H
н	Õ	2 57171282	4 56162736	-4 33117700 H
C	0	1 11325082	6 17023936	-2 73849400 H
н	0	0.98872782	6 77663536	-1.83637500 H
н	0	0.16533282	6 17359/36	-3 285/1000 H
и и	0	1 866/3182	6 65061136	3 36373000 H
II C	0	2 97210092	4 70722526	1 58500000 H
C U	0	2.87510982	4.79752550	-1.36399000 H
п	0	3.24880382	5.79895250	-1.55511800 H
п	0	2.72794982	5.33622036	-0.04584900 H
Н	0	3.64162982	5.32/23/36	-2.15926700 H
C	0	-1.40796318	5.46008036	-0.76309700 H
C	0	0.24370282	4.8/132936	0.74956900 H
C	0	-0.70723218	5.81246336	1.44128100 H
С	0	-1.70303818	6.15152136	0.52260700 H
C	0	-2.73187118	7.03082636	0.82933400 H
С	0	-2.76845418	7.56238036	2.13789000 H
С	0	-1.76477218	7.22173336	3.08209000 H
С	0	-0.70188018	6.34224036	2.73243700 H
С	0	0.40029582	6.02246236	3.67834400 L H 254
С	0	1.72968082	6.33101936	3.34419900 L
Н	0	1.96582782	6.76468436	2.38021300 L
С	0	2.75946282	6.10331836	4.26209000 L
Η	0	3.78024782	6.34334636	3.99417800 L
С	0	2.46846682	5.58776136	5.52874400 L
С	0	1.14840682	5.28261236	5.87059800 L
Η	0	0.92005582	4.88318236	6.84997000 L
С	0	0.12029682	5.48118236	4.94476700 L
Н	0	-0.89550718	5.22835436	5.22025300 L
С	0	-1.80555418	7.82854536	4.43918300 L H 253
С	0	-2.83603318	7.49525136	5.33293400 L
Н	0	-3.60002818	6.78318336	5.04607400 L
С	0	-2.88316518	8.08088736	6.60086800 L
Н	0	-3.68260318	7.82094336	7.28258600 L
С	0	-1.90006218	8.99809636	6.98669200 L
Ĉ	0	-0.86775518	9.32860936	6.10284500 L
H	0	-0.10530318	10.03796136	6.39758600 L
C	Ő	-0.82051318	8 74847436	4 83229700 L
н	0	-0.02188818	9.01862336	4 15242300 L
C	õ	-3 87007518	8 49085936	2 50399100 L H 252
č	õ	-5 19232218	8 02303836	2.56739800 L
й	0	-5 41560018	6 983/15736	2.36044500 I
C	0	-5.41500910	8 89520726	2.30044300 L 2.90330100 I
ч	0	-0.23110018	8 5761/626	2.20330100 L 2.05080100 L
C	0	-1.2+13/310	10 23021/24	2.75009100 L 3 17757000 I
C	0	-5.55005010	10.23721430	3.17737700 L 3.11763200 I
с u	0	-4.04134018	10./112000	3.11203200 L 3.22151100 I
11 C	0	-4.42303/18	0.84174126	3.32131100 L
U	U	-3.00081218	9.841/4136	2.77410300 L

Н	0	-2.58733018	10.21945536	2.71862100 L	
С	0	-3.65178718	7.49141936	-0.23539500 L H 251	
С	0	-4.69377618	6.66793436	-0.68524600 L	
Н	0	-4.84882218	5.69402336	-0.23998200 L	
С	0	-5.53600518	7.10337436	-1.71391400 L	
Н	0	-6.33273918	6.46388736	-2.06739700 L	
С	0	-5.34281718	8.36102936	-2.29398700 L	
С	0	-4.31143018	9.18857636	-1.83999500 L	
Н	0	-4.15883718	10.16281236	-2.28604100 L	
С	0	-3.46862718	8.75665036	-0.81276300 L	
Н	0	-2.66761018	9.40187636	-0.47315400 L	
С	0	-2.32647618	0.00878736	0.71560900 H	
C	0	-3.45845818	0.80075536	0.35603100 H	
C	0	-2.61275618	-1.18061664	1.55970300 H	
Ċ	Õ	-3.31821018	1.91255936	-0.53182200 H	
Č	Ő	-4 74715718	0 51452436	0 90753100 H	
õ	õ	-2.98211218	-2.23417164	1 08449500 H	
õ	õ	-2 38429018	-0.94981164	2 87496400 H	
C	õ	-4 39229118	2 73770836	-0.83160000 H	
н	õ	-2 34408918	2 11348136	-0 95252500 H	
C	0	-5 80732418	1 33555636	0.59331000 H	
н	0	-4 88888718	-0 33381664	1 56589400 H	
C	õ	-2 53140918	-2 04043164	3 79020100 H	
C	0	-5 62509518	2.04049104	-0 25275700 H	
н	0	-4 27421318	3 59148036	-1 48919900 H	
C	0	-7 24841418	1 26315136	1.02538600 H	
C	0	-3 79905918	-1 87919064	4 64624800 H	
н	0	-2 56296218	-2 99591864	3 26462500 H	
н	0	-2.50270210	-2.00699564	4 45775400 H	
C	0	-6.92118618	3 15804236	-0 36827100 H	
N	0	-7 83377618	2 40887436	0.32671000 H	
н	0	-7.36226118	1 35991036	2 11205800 H	
и и	0	-7.71830518	0.32253836	0.71895700 H	
Cl	0	-5 20/58118	-2.06661164	3 65791900 H	
	0	-3 76180718	-3 17202564	5.89211900 H	
Cl	0	-3 83071718	-0.27309164	5.69211900 H	
0	0	-7 15728518	1 22359636	-0.93823800 H	
C C	0	-0.24006018	2 80625736	0.0301900 H	
C	0	-9.24090918	2.00025750	1 60372300 H	
C	0	-10 16050818	1 58686436	0.44546400 H	
с u	0	0 42382518	3 3700/036	0.51310800 H	
N	0	-9.42382518	<i>1</i> 000/15236	1 41645500 H	
0	0	-10.05102118	3 12678236	2 61876500 H	
C	0	-11 63570318	1 9/730336	0.21070800 H	
ч	0	-10.05795518	1.07/66036	1 40507900 H	
п п	0	0.82615418	0.80100626	0.22880100 H	
и П	0	-9.82013418 8 00/10618	5 65013836	2 18146500 H	
п п	0	-0.90419018 9 24091419	5 1920/1926	0.50228000 H	
С	0	-0.34001410	0.70216726	0.39328900 H	
с u	0	-12.40003910	0.79310730	-0.29382000 H	
п u	0	12 09202919	2.74467130	-0.53102000 H	
0	0	-12.00303018	2.32333830	-0 08118100 Ц	
0	0	11 00770010	0.75277030	0.10422500 U	
C	0	-11.77//0018	1 68220464	0.10423300 F	
C	0	12.02750010	-1.00220404 1.85795164	-0.39303300 H	
C	0	-13.70/30718	-1.03/03104	-0.00003000 H	
C	0	-11.034/3/18	1 75062764	0.33420000 H 1.01006000 H	
с u	0	-12.301//118	-1./JU02/04	-1.71000900 П 0.25317700 Ц	
и П	0	14.309999918	-2.0/2/0/04	-0.23317700 П 0.51006800 Ц	
11 U	0	-14.0202/118	-1.14428204	-0.J1990000 П 1.07014000 Ц	
п	υ	-14.1090//18	-1./2284104	1.0/914900 H	

Н	0	-11.89093818	-3.71152764	0.01996100 H
Н	0	-10.57906518	-2.51728564	0.11065600 H
Н	0	-11.77514318	-2.62302764	1.41665000 H
Н	0	-11.24887418	-1.57429064	-2.15259000 H
Н	0	-12.91247218	-1.01125664	-2.43040700 H
Н	0	-12.57298118	-2.74579864	-2.27527400 H
Structure	B			
Rh	0	-2.27393623	0.41223404	0.00000000 H
Rh	0	0.09611277	0.28628704	0.68644900 H
Br	0	-0.99085923	-7.62470996	-4.90914100 L
Br	Ő	-5.68014623	-6.44779296	-10.65385400 L
Br	Ő	-3 64206523	6 57371804	-9 66849400 L
Br	0	-7 44567423	0.64511904	-12 84089600 I
0	0	0 58432577	0.83633504	-1 25363500 H
0	0	-1 58360823	0.89970504	-1.25505500 H
0	0	1 51618023	2 70807704	5 48533600 H
0	0	-1.51016925	2.79697704	-3.46333000 П 2.86857400 Ц
U N	0	-0.04000023	-1.39022390	-5.00057400 H
N C	0	-0.78931423	0.85055204	-4.31100000 H
C	0	-0.32827525	1.01023504	-2.10/58000 H
C	0	0.05952977	1.4916/204	-3.51896800 H
H	0	-0.28652823	2.53323804	-3.54302800 H
С	0	1.57991477	1.53276104	-3.90389900 H
C	0	2.28235377	2.59374604	-3.02/46400 H
H	0	1.79328577	3.57032104	-3.12184900 H
Н	0	2.28586577	2.31233004	-1.97385600 H
Н	0	3.32033977	2.70950504	-3.35632600 H
C	0	1.69455277	1.99418804	-5.37414300 H
Н	0	1.29134677	1.25189004	-6.06966600 H
Н	0	1.17004977	2.93913804	-5.54242300 H
Н	0	2.74948877	2.14146104	-5.62554900 H
С	0	2.27978877	0.16861604	-3.75608000 H
Н	0	2.25414777	-0.18501796	-2.72380600 H
Н	0	1.81677577	-0.59217096	-4.39057900 H
Н	0	3.32791577	0.26327304	-4.06045700 H
С	0	-1.51948223	1.58386504	-5.43759300 H
С	0	-1.06791823	-0.53794196	-4.62495600 H
С	0	-1.97028323	-0.67891596	-5.82448600 H
С	0	-2.25379923	0.60725804	-6.29049200 H
С	0	-3.05637923	0.84002304	-7.39943300 H
С	0	-3.62046123	-0.28472896	-8.04617600 H
С	0	-3.32944923	-1.59681796	-7.58845200 H
С	0	-2.48239323	-1.80892596	-6.46389500 H
С	0	-2.12079023	-3.17536196	-6.00012500 L H 35
С	0	-0.77494123	-3.57734196	-5.96514100 L
Н	0	0.01232077	-2.87970196	-6.22312500 L
С	0	-0.43939923	-4.89143196	-5.62467500 L
Н	0	0.60039177	-5.19077596	-5.59967300 L
C	0	-1.44486223	-5.82096496	-5.34091600 L
Č	0	-2.78570123	-5.42969496	-5.37579500 L
н	0	-3 56595723	-6 14552196	-5 15386400 L
C	Ő	-3 12256623	-4 10859496	-5 68176800 L
н	0	-4 16510623	-3 81825696	-5 69268100 L
C	õ	-3 89152023	-2.76520896	-8 31763400 L H 34
C	0	-5 27506523	-3 00261006	-8 31321400 I
н	0	-5 93995673	-2 34339696	-7 76964600 I
C	0	-5 8022022	_4 00180104	-9 01085500 I
ч	0	-5.00205025	- 1 .07107170	-9.01003300 L
C II	0	-0.007//323	4 05640404	0 708/5100 L
C	0	-4.73410123	-4.7JU47470	-7.70043100 L 0.71221000 I
с п	0	-3.3/443323	-+./2029490	-7./1221000 L
п	0	-2.91403023	-3.39494396	-10.25145900 L

С	0	-3.04353923	-3.63498896	-9.02215600 L
Н	0	-1.97440523	-3.46277796	-9.03814900 L
С	0	-4.53565723	-0.06760896	-9.20043300 L H 33
С	0	-5.74193023	0.62883204	-9.01932500 L
Н	0	-6.01601323	1.00288704	-8.04073500 L
С	0	-6.59738323	0.84736004 -	-10.10184100 L
Ĥ	Ő	-7.52040123	1.39032204	-9.95549500 L
C	Ő	-6 26292323	0.36213704 -	11 36936100 L
C	0	-5.06206023	-0.32939696	-11 55768600 L
ч	0	-1 79668923	-0.70157696	-12 53870500 L
C C	0	-4.19657723	-0.53721396	-10 /7003800 L
с u	0	3 26266623	1.06002606	10.64143300 L
II C	0	-3.20200023	2 21 400204	7 02640600 L H 22
C	0	-3.20421023	2.21400304	-7.93040000 L ft 32
U U	0	-3.90820123	2.04676904	-7.21377700 L
н	0	-4.34801/23	2.94676804	-0.25819400 L
C	0	-4.03812523	4.48424704	-7.72917600 L
Н	0	-4.5/888423	5.23345304	-/.1680/400 L
C	0	-3.468/0623	4.80863204	-8.96492000 L
С	0	-2.77127823	3.83/23/04	-9.68896900 L
Н	0	-2.33032723	4.08380004	-10.64616200 L
C	0	-2.63926323	2.54391104	-9.17798500 L
Н	0	-2.09311223	1.80049204	-9.74568400 L
Br	0	-2.84065423	-5.14927496	7.84827000 L
Br	0	-8.92623123	-9.56291196	5.95551800 L
Br	0	-7.15211123	-6.51282896	-6.73233300 L
Br	0	-11.36854723	-9.64868196	-1.23005000 L
0	0	0.08385677	-1.69115296	0.07293700 H
0	0	-2.11342423	-1.60250796	-0.47681200 H
0	0	-3.07137623	-4.74005896	-2.52185700 H
0	0	-1.97315923	-3.93263796	1.84005700 H
N	0	-2.15080023	-4.32910196	-0.43949400 H
C	0	-0.98413923	-2.18953296	-0.37680600 H
Č	Ő	-0.97667323	-3 61871696	-0 94772900 H
н	0	-1 20706923	-3 47151796	-2 01024400 H
C C	0	0 34974177	-4 44850096	-2.01024400 H
C C	0	1 40002177	3 73521306	1 77060400 H
с u	0	1.40072177	3 57853406	2 70715100 H
п	0	1.02379377	-3.37633490	-2.79713100 П 1.26574200 Ц
п	0	1.08204777	-2.70377290	-1.30374300 П 1.84651200 Ц
П	0	2.301/00/7	-4.55415090	-1.64031200 П 1.52417200 Ц
C	0	0.06204777	-5.82/24296	-1.5341/300 H
H	0	-0.62274423	-6.423/1496	-0.92398200 H
H	0	-0.3/391023	-5./2286196	-2.53186300 H
H	0	0.99631777	-6.38920796	-1.62936800 H
С	0	0.90411277	-4.65651896	0.52085100 H
Н	0	1.14339377	-3.70530396	0.99948000 H
Н	0	0.19590277	-5.19215896	1.15829000 H
Н	0	1.82086777	-5.25401096	0.46632600 H
С	0	-3.12951023	-4.82217196	-1.31089100 H
С	0	-2.54661823	-4.44863396	0.89683700 H
С	0	-3.80111023	-5.27973196	0.88199700 H
С	0	-4.18377823	-5.43759696	-0.45214700 H
С	0	-5.34680623	-6.10447096	-0.81809300 H
С	0	-6.12008423	-6.68212696	0.21936700 H
С	0	-5.71010623	-6.57005096	1.57514000 H
С	0	-4.54421923	-5.83439796	1.92305000 H
С	0	-4.12328523	-5.64322996	3.33559900 L H 108
С	0	-2.85485523	-6.06870596	3.76350000 L
H	0	-2.16611123	-6.52713296	3.06452200 L
C	õ	-2.47266423	-5.91352896	5.09931300 L
H	õ	-1 49096023	-6 23923496	5 41798600 L
	0	1.17070023	5.25725470	2

С	0	-3.35947023	-5.34958396	6.02175600 L
С	0	-4.62808223	-4.93535296	5.60611700 L
Н	0	-5.31787223	-4.49843596	6.31677700 L
С	0	-5.00608823	-5.07270096	4.26751400 L
Ĥ	Õ	-5 98571123	-4 73369396	3 95593600 L
C	ñ	-6 47860223	-7.27053596	2 64051500 L H 107
C	0	7 20520022	6.00702106	2.04031300 L 11 107
C II	0	-7.80389023	-0.90702190	2.92024000 L
Н	0	-8.27919623	-6.10216696	2.3/488800 L
C	0	-8.53104623	-/.58901396	3.90030500 L
Н	0	-9.55640623	-7.30725696	4.10186100 L
С	0	-7.93304723	-8.62955996	4.61817500 L
С	0	-6.60778523	-8.98869496	4.35327200 L
Н	0	-6.14121923	-9.79357296	4.90634100 L
С	0	-5.88304423	-8.31466096	3.36656000 L
Н	0	-4.86140223	-8.61012096	3.16162900 L
C	õ	-7 37709623	-7 39655096	-0 12689100 L H 106
C	0	<i>8 47</i> 038123	6 68547006	0.64643200 I
	0	-0.47030123	-0.08347990	-0.04043200 L
H	0	-8.40560525	-5.01501090	-0.79464900 L
C	0	-9.65283723	-7.35435096	-0.97329900 L
Н	0	-10.49127823	-6.79811996	-1.37212200 L
С	0	-9.75134323	-8.73673096	-0.78435700 L
С	0	-8.66401523	-9.45085196	-0.27006700 L
Н	0	-8.73563623	-10.52091796	-0.12434900 L
С	0	-7.47925823	-8.78481896	0.05582000 L
Ĥ	0	-6.64143323	-9.34820896	0.44766400 L
C	õ	-5 73462123	-6 20093796	-2 24778200 L H 105
C	0	6 0/108123	5.04012606	2.24778200 L 11 105
	0	-0.04108123	-5.04012090	-2.97397300 L
H	0	-5.95957425	-4.00050490	-2.51064400 L
С	0	-6.45897323	-5.13249796	-4.30662700 L
Н	0	-6.69965823	-4.23263696	-4.85836200 L
С	0	-6.56652123	-6.38401496	-4.92104900 L
С	0	-6.24673823	-7.54287396	-4.20644600 L
Н	0	-6.32459323	-8.51290296	-4.68009600 L
С	0	-5.83119123	-7.45321796	-2.87501300 L
H	0	-5.59025223	-8.35817796	-2.33117500 L
Br	Õ	-3 47229323	8 34164604	4 73936700 I
Br	ñ	-10 42675723	7 50530504	7 46782300 I
Di Da	0	0.04057222	5 66706206	6 01500600 I
DI	0	-9.04037323	-3.00/90290	0.91390000 L
Br	0	-13.41947923	0.56579204	8.39/99100 L
0	0	-0.56562323	-0.2604/396	2.57872400 H
0	0	-2.73434623	-0.12832196	1.93987200 H
0	0	-4.84819023	-2.02242496	4.70470400 H
0	0	-2.89970023	2.07724704	4.15533300 H
Ν	0	-3.53258223	-0.12805996	4.50778400 H
С	0	-1.80725723	-0.35012396	2.78559000 H
C	0	-2 31546923	-0 85585396	4 14648500 H
н	õ	-2 68056623	-1 86771596	3 92618700 H
II C	0	1 20142422	1.01004606	5 22202200 H
C	0	-1.29143423	-1.01004090	J.52505200 H
C III	0	-0.28918923	-2.12/85/96	4.95908700 H
H	0	-0.80928723	-3.06638096	4./34/1200 H
Н	0	0.32155577	-1.85856496	4.09634900 H
Н	0	0.37702277	-2.31231896	5.80827400 H
С	0	-2.06883223	-1.46667796	6.57744500 H
Н	0	-2.73617923	-0.68514696	6.95283400 H
Н	0	-2.66944323	-2.35827796	6.37444200 H
н	0	-1.36123723	-1.70880796	7.37647300 H
C	õ	-0 53926723	0 29399804	5 64770800 H
ч	0	0.05131577	0.63700804	1 70506000 H
и П	0	1 22647022	1 00514004	5 03201100 U
11	0	-1.2204/823	1.07314604	J.73271100 П
н	0	0.140/44/7	0.12195204	0.48924900 H

С	0	-4.71793223	-0.81486196	4.78406700 H
С	0	-3.73312123	1.25961204	4.50229100 H
С	0	-5.14086123	1.47553104	4.99759400 H
С	0	-5.72129623	0.21654404	5.16652800 H
С	0	-7.00199523	0.04439204	5.67251600 H
С	0	-7.73204523	1.20591204	6.01149500 H
Č	Õ	-7.16335923	2,49272004	5.82365200 H
Č	Ő	-5 84445623	2 64031904	5 30804400 H
Č	õ	-5 22841023	3 97845104	5 10782400 L H 181
C	õ	-4 04960423	4 32731304	5 78758900 I
ч	0	-3 55310023	3 60864804	6 42788700 L
n C	0	3 51080423	5 61572204	5.66403800 L
U U	0	-3.51565423	5.01372204	5.00495800 L
П	0	-2.01002625	5.87450004	0.1908/400 L
C	0	-4.1/336023	0.37210804	4.88270300 L
C	0	-5.35101823	6.2335/204	4.20755800 L
H	0	-5.85982823	6.97046304	3.60060900 L
С	0	-5.86641723	4.93863304	4.30381900 L
Н	0	-6.77422023	4.68966804	3.76903800 L
С	0	-7.94290723	3.69927704	6.21374400 L H 180
С	0	-9.13463223	4.02044404	5.54362800 L
Н	0	-9.48843323	3.40119904	4.72857100 L
С	0	-9.87438323	5.14319004	5.92386600 L
Н	0	-10.79533523	5.37916804	5.40674300 L
С	0	-9.42246123	5.96204704	6.96326900 L
С	0	-8.23418223	5.65030304	7.63158900 L
Н	0	-7.88222023	6.28013904	8.43832700 L
С	0	-7.49862323	4.52059704	7.26279300 L
н	0	-6.58527023	4.28334904	7.79426500 L
C	Ő	-9.09621323	1 05736604	6 58411100 L H 179
Č	õ	-10 13630623	0 53221204	5 80095900 L
н	õ	-9.95410323	0.24094904	4 77368900 L
C C	0	-11 /17/3/23	0.24074704	4.77508700 L 6 3/020600 L
с u	0	12 21/12622	0.01760406	5 72028000 L
П	0	-12.21413023	-0.01700490	J.12920900 L
C	0	-11.00805825	0.70378504	7.00300800 L
C II	0	-10.03458125	1.28465504	8.44929800 L
Н	0	-10.82389023	1.5/536604	9.4/452000 L
C	0	-9.351/9/23	1.42909304	7.91356500 L
Н	0	-8.55724223	1.82658904	8.53295000 L
C	0	-7.50565123	-1.31821796	5.96141500 L H 178
C	0	-7.89363623	-2.17111096	4.91755000 L
Н	0	-7.83836223	-1.83489096	3.89045500 L
С	0	-8.35118523	-3.46231996	5.20038600 L
Н	0	-8.64428923	-4.11919196	4.39210600 L
С	0	-8.42375223	-3.90538396	6.52540700 L
С	0	-8.04276523	-3.05564796	7.56824700 L
Н	0	-8.09771423	-3.39485896	8.59456600 L
С	0	-7.58590623	-1.76556996	7.28856100 L
Н	0	-7.28813423	-1.11706996	8.10344500 L
Br	0	2.29365877	5.80998904	-6.57040000 L
Br	0	-3.80065923	10.39331304	-8.55470400 L
Br	Ő	-9.66905223	6.94737704	2.80446900 L
Br	Ő	-10.00189823	10 29722604	-4 12390100 L
0	õ	-0.03821423	2.27532604	1.27237800 H
õ	ő	-2 17738623	2 41082004	0 53962100 H
ő	0	_3 01332172	5 49353704	1 70541600 H
0	0	-5.91555125	1 60026004	1.70341000 II 1.22217200 II
N	0	104227622	5 10201604	-1.2221/300 П 0.54002100 Ц
	0	-1.9452/025	3.10021004	0.34903100 Π 1.09000200 II
C	0	-1.12342423	2.88401004	1.08990300 H
U H	U	-1.31284623	4.32124804	1.01083200 H
Н	0	-2.11111023	4.21899004	2.35648100 H

С	0	-0.12815623	5.03206904	2.34080500 H
С	0	0.18457377	4.24207104	3.63086100 H
Н	0	-0.70806823	4.13694204	4.25763200 H
Н	0	0.56703377	3.24405704	3.40986400 H
Н	0	0.94142877	4.77740404	4.21341900 H
С	0	-0.61335723	6.43938804	2.74992100 H
H	0	-0.80110423	7.07593504	1.88015300 H
н	Ő	-1 53485323	6 38539004	3 33745900 H
н	0	0.15000877	6 92850104	3 36296000 H
C	0	1 1/5/18177	5 16655404	1 48564400 H
с u	0	1.14546177	1 18005004	1 181/3500 H
11	0	0.06012477	4.1899J004	0.59529500 11
п	0	0.90912477	5.70055004	0.38338300 H
H	0	1.92138077	5.67078904	2.0/226800 H
C	0	-3.25229123	5.58974104	0.69033600 H
C	0	-1.49863123	5.22832904	-0.77309000 H
С	0	-2.52466423	6.06941904	-1.48051800 H
C	0	-3.61386723	6.20594604	-0.61934000 H
С	0	-4.78934123	6.83466204	-1.00645600 H
С	0	-4.82489723	7.41982104	-2.29410300 H
С	0	-3.69645623	7.34114204	-3.15457400 H
С	0	-2.53434923	6.62193504	-2.76088100 H
С	0	-1.37606123	6.42672404	-3.67150800 L H 254
С	0	-0.08872823	6.83335404	-3.28329600 L
н	0	0.07182977	7.29520704	-2.31687800 L
C	õ	0.99855477	6 64667904	-4 14194000 L
н	0	1 98817677	6 95387504	-3 82943500 L
C C	0	0.80600177	6 06951/04	-5.40104600 L
C	0	0.00099177	5 6905 4404	5 80222100 L
C II	0	-0.4/418525	5.08034404	-3.80233100 L
H	0	-0.62/84123	5.23636/04	-6.77755800 L
C	0	-1.56022923	5.84962604	-4.93904300 L
H	0	-2.54336523	5.52458904	-5.25543400 L
С	0	-3.70921223	8.05491004	-4.460/8800 L H 253
C	0	-4.63355623	7.70347504	-5.45747500 L
Н	0	-5.33476623	6.89732004	-5.29182400 L
С	0	-4.66168523	8.39829804	-6.66902200 L
Н	0	-5.38579823	8.12644304	-7.42600800 L
С	0	-3.75796023	9.43998304	-6.90082300 L
С	0	-2.82598423	9.78700304	-5.91769900 L
Н	0	-2.12509323	10.59294304	-6.09268600 L
С	0	-2.80236623	9.09996004	-4.70084800 L
н	0	-2.08462723	9.38666504	-3.94209700 L
C	Ő	-6.06326323	8 11158604	-2.73656800 L H 252
Č	Õ	-7 23508223	7 37514004	-2 97303900 L
н	0	-7 24149523	6 29950704	-2 84357900 I
C	0	8 40245823	8.02560804	3 38000100 I
U U	0	0.20274822	7 45229504	-5.58090100 L
п	0	-9.302/4823	7.45258504	-5.55059400 L
C	0	-8.40639023	9.41251204	-3.36084800 L
C	0	-7.24148423	10.150/2404	-3.32699100 L
Н	0	-7.24105123	11.22442104	-3.4632/900 L
С	0	-6.07365923	9.50414304	-2.91282800 L
H	0	-5.17890823	10.08568004	-2.72789600 L
С	0	-5.94989423	6.86323904	-0.08578500 L H 251
С	0	-6.61887823	5.67212904	0.23851700 L
Н	0	-6.28720823	4.72755204	-0.17616900 L
С	0	-7.72197823	5.69790304	1.09626000 L
Н	0	-8.23102723	4.77547304	1.34453700 L
С	0	-8.16427123	6.91190604	1.63215900 L
С	0	-7.50185223	8.10110004	1.31029200 L
H	0	-7.84066123	9.04189804	1.72435700 L
C	õ	-6 39733023	8 07833504	0 45435900 I
-	0	5.57,55025	0.07000000	5.15 155700 L

Н	0	-5.89001423	9.00437804	0.21347400 L
С	0	-4.24799323	0.54591204	-0.50599200 H
С	0	-4.83369323	1.32961604	-1.54976500 H
С	0	-5.18446323	-0.17638696	0.39202300 H
С	0	-4.14616923	2.46606404	-2.07618800 H
C	0	-6.10273123	0.96507604	-2.09539800 H
Ō	Õ	-5.52421923	0.32083204	1.44435100 H
Õ	0	-5 57774423	-1 39452096	-0.06043600 H
Č	õ	-4 71483423	3 24789504	-3 07322600 H
н	õ	-3 18572823	2 72463704	-1 65386300 H
C	ň	-6 60876223	1 69820204	-3 14765900 H
ч	0	-6.62636723	0.00157004	-1.72671400 H
II C	0	6 30010023	2 20111706	0 80283500 H
C	0	5 03834023	2.20111790	0.80285500 H
U U	0	-3.93634923	4 12412504	-3.00478000 II
п	0	-4.21034423	4.15412504	-3.43009300 H
C	0	-7.84029525	1.4/430104	-3.97712300 H
C	0	-7.88368123	-2.14048696	0.42381400 H
H	0	-6.05042523	-3.22808396	0.66936400 H
H	0	-6.27230823	-1.89291296	1.84252400 H
С	0	-6.73594223	3.44152204	-4.70841500 H
Ν	0	-7.76599223	2.56882404	-4.94683400 H
Н	0	-8.76723423	1.53546304	-3.38380500 H
Н	0	-7.82771423	0.49779704	-4.47155000 H
Cl	0	-8.11897423	-2.52798096	-1.31811600 H
Cl	0	-8.72903323	-3.37437396	1.42427100 H
Cl	0	-8.59753423	-0.52461096	0.75813400 H
0	0	-6.54336223	4.50338004	-5.30262400 H
С	0	-8.69985323	2.77621004	-6.05583200 H
С	0	-9.89201923	3.64341104	-5.57588300 H
С	0	-9.13459323	1.44988104	-6.68333000 H
Н	0	-8.13840423	3.36452204	-6.79038500 H
Ν	0	-9.56276023	4.93964504	-5.36652100 H
0	0	-11.01782223	3.18132304	-5.40500800 H
С	0	-9.90349923	1.65081104	-7.99377100 H
Н	0	-9.75644123	0.88971204	-5.98037300 H
Н	0	-8.23675723	0.85539204	-6.87199900 H
Н	Õ	-10.25545223	5.55872404	-4.97050100 H
Н	Õ	-8.59640623	5.24099104	-5.43107200 H
C	õ	-10.08433123	0.41091304	-8 85878500 H
н	õ	-9 41286723	2 39346604	-8 63314900 H
н	0	-10 90335823	2.37340004	-7 78617400 H
0	0	-10.48084423	0.47248704	-10.00887600 H
0	0	-0 76213223	-0.71/07696	-8 20398100 H
C	0	-9.70213223	-2.05025496	-8.84344200 H
C	0	-9.01334323	2 26775006	-0.04344200 II
C	0	-11.24300223	-2.30773090	-9.28130300 H
C	0	-9.37309323	-2.97922390	-/./090//00 H
C U	0	-8.82088223	-2.0900/590	-10.00831300 H
H	0	-11.2956/023	-3.40496896	-9.62/15/00 H
H	0	-11.56775423	-1./11/9996	-10.09018100 H
H	0	-11.93499023	-2.25/66596	-8.43834900 H
H	0	-9.34680423	-4.01360296	-8.06327900 H
H	0	-8.3/922323	-2.70924496	-/.34/44800 H
Н	0	-10.07374423	-2.92108296	-6.86948100 H
Н	0	-7.81773323	-1.82670396	-9.66537800 H
Н	0	-9.11673423	-1.41435196	-10.80602200 H
Н	0	-8.77990323	-3.11162396	-10.41355700 H
Structure (2			
Rh	0	0.75797874	0.23936170	0.00000000 H
Rh	0	3.00840674	0.35525470	-1.00785500 H
Br	0	4.34449374	-7.70164230	3.88086700 L

Br	0	1.37251274	-7.70626330	10.78525800 L
Br	0	0.19018174	5.518/07/0	10.2017/0300 L
Br	0	-1.29211926	-1.21443330	13.85186800 L
0	0	3.73356274	0.90137470	0.83605700 H
0	0	1.69805674	0.70117870	1.81064200 H
0	0	2.14257774	2.35422670	5.49359800 H
0	0	3.34845074	-1.54037530	3.41329300 H
Ν	0	2.97527074	0.59315870	4.24690400 H
С	0	2.95002974	0.94973470	1.82347200 H
С	0	3.51047574	1.42957170	3.17412100 H
Н	0	3.02341674	2.39978470	3.33371800 H
С	0	5.05534674	1.69015270	3.28696000 H
С	0	5.41701374	2.88955070	2.38337000 H
Η	0	4.81519874	3.76961470	2.63498000 H
Н	0	5.26315674	2.66189670	1.32778500 H
Н	0	6.47019174	3.15174270	2.52841600 H
С	0	5.36844674	2.08906170	4.74618700 H
Н	0	5.24553474	1.24852270	5.43597600 H
Н	0	4.72563574	2.90424970	5.08720800 H
Н	0	6.40858274	2.42179270	4.81642900 H
C	Ő	5 91834274	0.46736970	2 91981700 H
H	0	5 77154674	0 16780170	1 88111500 H
н	0	5 69556274	-0.39106330	3 55924700 H
н	0	6 97553774	0.71013270	3 05803300 H
C C	0	2 34052174	1 16301670	5 35685000 H
C	0	2.34032174	0.80250220	4 20702700 H
C	0	2.9/1/13/4	-0.80330330	4.30/93/00 H
C	0	2.40017074	-1.13370030	5.05610200 П С 20089200 Ц
C	0	1.99858274	0.03406570	0.20988200 H
C	0	1.44196474	0.06225770	7.54245100 H
C	0	1.29/081/4	-1.1/422830	8.2183/300 H
C	0	1.72556374	-2.38538930	7.61207700 H
С	0	2.28/480/4	-2.38193830	6.30569900 H
С	0	2.76001974	-3.62623630	5.64778900 L H 35
C	0	4.11645574	-3.77581730	5.31559700 L
Н	0	4.81674674	-2.96962130	5.49681300 L
C	0	4.58112274	-4.97775430	4.77457000 L
Н	0	5.62964874	-5.08622930	4.52920000 L
С	0	3.69822974	-6.04231130	4.57100400 L
С	0	2.34483374	-5.89676930	4.88954100 L
Н	0	1.66025174	-6.71829030	4.73081800 L
С	0	1.87392374	-4.69251630	5.42109800 L
Н	0	0.82359874	-4.59559230	5.66889500 L
С	0	1.63739474	-3.66512030	8.36882900 L H 34
С	0	0.38927974	-4.18375030	8.75054900 L
Н	0	-0.52255726	-3.66150930	8.49451500 L
С	0	0.31377574	-5.37626530	9.47456200 L
Н	0	-0.65184826	-5.76139530	9.77467100 L
С	0	1.48102974	-6.06887830	9.80938300 L
С	0	2.72723974	-5.56018230	9.43073100 L
Н	0	3.63372074	-6.09094230	9.69148900 L
С	0	2.80701974	-4.36028330	8.71862700 L
Н	0	3.77881474	-3.97058230	8.44176900 L
С	0	0.67997274	-1.18635830	9.57054600 L H 33
Ċ	õ	-0.66997326	-0.83532830	9.72962200 L
Ĥ	õ	-1.26881926	-0.56113930	8.86954500 L
C	õ	-1 25318226	-0.84388930	10 99956400 L
н	0	-2.29510220	-0 57395730	11 11342600 L
C	ñ	-0.49285526	-1 20159630	12 11784800 I
č	0	0.85357174	-1 54885830	11 96530100 L
ч	0	1 1/157/674	-1 82/12720	12 828/1800 L
11	0	1.775/70/4	1.02412730	12.020+1000 L

С	0	1.44021374	-1.53948930	10.69679300 L
Н	0	2.48513374	-1.80369930	10.59073400 L
С	0	1.12407974	1.36202070	8.18511700 L H 32
C	0	0.12148574	2,19301070	7.65980800 L
H	Ő	-0 43479826	1 89092670	6 78277500 L
C II	0	-0.15/19826	3 42741370	8 25587800 I
с u	0	0.02257326	1 06612870	7 83015400 L
II C	0	-0.92237320	2 82627670	0.29262400 L
C	0	0.30493974	3.8302/0/0	9.38303400 L
C	0	1.56143374	3.01114970	9.913/0600 L
H	0	2.1214/4/4	3.32520470	10.78501600 L
C	0	1.84216974	1.77947770	9.31680200 L
Н	0	2.62479874	1.15503570	9.72981900 L
Br	0	-1.81212626	-5.00824930	-7.65550400 L
Br	0	-7.69971926	-8.31502930	-4.42475000 L
Br	0	-2.05589926	-7.28353330	7.40695700 L
Br	0	-7.88287526	-9.46717330	3.04883300 L
0	0	3.20979574	-1.67039530	-0.49697300 H
0	0	1.10808874	-1.74922930	0.34326400 H
Õ	Ő	0 59201874	-4 75262230	2 51133000 H
Õ	Ő	0.72229074	-3 90524730	-1 97447900 H
N	0	1.06640474	4 30205230	-1.97447900 H
C	0	2 22648274	-4.39203230	0.20940800 11
C	0	2.25048574	-2.20511450	0.04344300 H
C	0	2.35368574	-3./3025230	0.50205000 H
H	0	2.39922274	-3.65128030	1.59617600 H
C	0	3.60443174	-4.56710630	0.07752400 H
С	0	4.84146274	-3.97159430	0.78544700 H
Н	0	4.70592374	-3.95369330	1.87264600 H
Н	0	5.04459074	-2.95305530	0.44961300 H
Н	0	5.72104974	-4.58639930	0.56845200 H
С	0	3.39851774	-6.00687330	0.59462000 H
Н	0	2.60955674	-6.52803730	0.04468300 H
Н	0	3.12974074	-6.01304630	1.65522000 H
Н	0	4.32376274	-6.57905230	0.47507800 H
C	Ő	3 84055674	-4 60658230	-1 44349200 H
н	0	4 01628374	-3 60661230	-1 84543700 H
и П	0	2 00015574	5.04287130	1 07281700 H
и П	0	4 70022274	5 22082230	-1.97281700 H
II C	0	4.72233374	-3.22088230	-1.000000000000000000000000000000000000
C	0	0.2/4343/4	-4.65257550	1.55649400 П
C	0	0.34601774	-4.41322930	-0.93284800 H
C	0	-0.94184/26	-5.12/9/630	-0.63/94900 H
C	0	-0.98265526	-5.36506330	0.73769900 H
C	0	-2.06348326	-5.98413330	1.35223200 H
C	0	-3.14412926	-6.37347430	0.52853200 H
С	0	-3.10484626	-6.15077630	-0.87028500 H
С	0	-1.98795126	-5.51506330	-1.47665900 H
С	0	-1.90200726	-5.31746830	-2.94814600 L H 108
С	0	-0.84477426	-5.88779530	-3.67676300 L
Н	0	-0.05884526	-6.43176830	-3.16738400 L
С	0	-0.81096426	-5.78300230	-5.07063300 L
Н	0	0.00770374	-6.22627130	-5.62258000 L
С	0	-1.84233026	-5.12717030	-5.74994000 L
C	0	-2.89680226	-4.55638630	-5.03265300 L
Ĥ	Ő	-3.69542426	-4.04536630	-5.55471500 L
C	ñ	-2 01860/26	-4 63376/30	-3 63748900 I
с н	0	_3 73602126	-4 17360030	-3 00660100 I
C	0	4 20874026	-+.1/300030	-5.07007100 L 1.71064700 I II 107
C	0	-4.208/4920	-0.008/2230	-1./1904/00 L H 10/
	0	-3.40080320	-0.03443330	-1./2093300 L
н	0	-5.63023826	-5.15626630	-1.110/1900 L
C	0	-6.49605026	-6.52574130	-2.52067600 L
H	0	-7.45931426	-6.03240530	-2.51404400 L

С	0	-6.28528426	-7.64717930	-3.32968300 L
С	0	-5.03709326	-8.27861130	-3.33683000 L
Н	0	-4.86946626	-9.14566730	-3.96254300 L
С	0	-4.00145126	-7.79270730	-2.53370300 L
Ĥ	0	-3.03921426	-8.28979330	-2.54448400 L
C	Õ	-4 28219326	-7 11137730	1 12935400 L H 106
C	0	-5 /1007026	-6.42092630	1.57234500 L H 100
с u	0	5 47600226	5 24252620	1.57254500 E
п	0	-3.4/099320	-3.34332030	1.4/858100 L
C .	0	-0.48/00120	-7.12089430	2.1411/200 L
H	0	-7.36251526	-6.58200930	2.48106400 L
С	0	-6.423/0226	-8.51242430	2.27094000 L
С	0	-5.28962726	-9.20386030	1.83120500 L
Н	0	-5.23599726	-10.28029330	1.93044200 L
С	0	-4.22056826	-8.50594130	1.26200300 L
Н	0	-3.34606126	-9.04876430	0.92480200 L
С	0	-2.03899426	-6.26630230	2.80644100 L H 105
С	0	-2.93144126	-5.61477230	3.67058700 L
Ĥ	0	-3 62282826	-4 87533630	3 28757100 L
C	õ	-2 93814826	-5 92038130	5 03410300 L
ч	0	-3 63880026	-5 42306130	5.69197800 I
II C	0	-3.03007020	6 865 47220	5.05157800 L
C	0	-2.04550920	-0.80347330	J.J4JJ2900 L
C II	0	-1.14323320	-7.51077050	4.08988200 L
H	0	-0.453/0526	-8.24562530	5.08132000 L
C	0	-1.14245326	-7.21395730	3.32404400 L
Н	0	-0.44944626	-7.72704330	2.66851700 L
Br	0	1.55519174	7.78567170	-6.10761100 L
Br	0	-5.17459326	8.05146870	-9.95142200 L
Br	0	-7.62511726	-4.34211230	-5.34785400 L
Br	0	-10.33993826	2.32760670	-8.61253200 L
0	0	2.18583374	-0.22769430	-2.80897300 H
0	0	0.09702474	-0.21786430	-1.93620500 H
õ	Ő	-2.41733326	-1 63458930	-4 63942600 H
Õ	õ	0 34274074	2 01160270	-4 58894200 H
N	0	-0.73373626	-0.04445430	-4 63454200 H
C	0	-0.73373020	0.40161220	2 87008500 H
C	0	0.94003374	-0.40101230	-2.87998500 H
C III	0	0.32546874	-0.94913030	-4.18219600 H
H	0	-0.2195/226	-1.84324530	-3.85854100 H
C	0	1.28921874	-1.41286030	-5.32969600 H
С	0	2.15477374	-2.57573730	-4.79861400 H
Н	0	1.53396174	-3.38623030	-4.40443600 H
Н	0	2.82903274	-2.24785330	-4.00560600 H
Н	0	2.76086774	-2.97929830	-5.61642300 H
С	0	0.41799174	-1.96067130	-6.48151900 H
Н	0	-0.16666026	-1.17263830	-6.96596700 H
Н	0	-0.27405826	-2.72945430	-6.12777200 H
н	0	1.06142474	-2.40853130	-7.24501100 H
C	Ő	2 19432274	-0.29611030	-5 88459300 H
й	0	2 84204274	0.11750770	-5 11053400 H
U U	0	1 61470474	0.52127170	6 22122000 H
п	0	1.014/04/4	0.32137170	-0.32122000 H
п	0	2.82008174	-0.71114950	-0.0///3100 H
C	0	-2.03569826	-0.50496330	-4.8/095600 H
C	U	-0.62126426	1.32/89//0	-4.88201400 H
C	0	-1.91695926	1.73687670	-5.52605300 H
C	0	-2.78493226	0.64821870	-5.45532800 H
C	0	-4.09168226	0.71338670	-5.92068500 H
С	0	-4.50586426	1.91240770	-6.55414000 H
С	0	-3.60718526	3.00894570	-6.68225000 H
С	0	-2.30053126	2.93368870	-6.12341200 H
С	0	-1.37359026	4.09177570	-6.11986800 L H 181
С	0	-0.14731326	4.02428070	-6.80002500 L

Н	0	0.13376974	3.12461470	-7.33363700 L
С	0	0.71920574	5.12134270	-6.79727800 L
Н	0	1.66447774	5.06010670	-7.32072800 L
С	0	0.36671074	6.29179470	-6.11716900 L
С	0	-0.85572626	6.36566670	-5.44190300 L
Н	0	-1.13291426	7.26882770	-4.91362000 L
C	0	-1.72335226	5.27074770	-5.44374800 L
н	Ő	-2 66575426	5 33940270	-4 91848100 L
C	õ	-3 99390126	4 21925270	-7 46392800 L H 180
C	0	-5 09459426	5.00527570	-7 08308800 I
н	0	-5 68851126	4 73875470	-6 22306900 L
C C	0	5 44306026	6 13870070	7 82113400 I
с u	0	6 20565126	6 72440570	7 51848400 L
П	0	-0.29303120	6.73440370	-7.31040400 L
C	0	-4.09703020	0.30022070 5 72215070	-0.9430/900 L
C U	0	-3.00293120	5.72215970	-9.55584500 L
Н	0	-3.02424826	5.995/83/0 -	-10.20860300 L
C	0	-3.2541/026	4.58522470	-8.60154000 L
H	0	-2.40982326	3.98703270	-8.92117000 L
С	0	-5.90121626	2.01349170	-7.05526300 L H 179
C	0	-6.97347026	1.99311570	-6.14919000 L
Н	0	-6.78876426	1.90687370	-5.08563400 L
С	0	-8.28773026	2.08679270	-6.61226900 L
Н	0	-9.10658026	2.06799270	-5.90602100 L
С	0	-8.54158626	2.20187270	-7.98260400 L
С	0	-7.47753626	2.21996070	-8.89084300 L
Η	0	-7.66990026	2.30640070	-9.95238800 L
С	0	-6.16094626	2.12245370	-8.43058000 L
Н	0	-5.34499126	2.13069070	-9.14262600 L
С	0	-4.97304626	-0.47129530	-5.78640500 L H 178
С	0	-5.35324726	-0.92710430	-4.51367400 L
Н	0	-5.02898426	-0.39978530	-3.62450300 L
С	0	-6.14071426	-2.07482030	-4.38449600 L
Н	0	-6.41939526	-2.42731330	-3.39971000 L
C	0	-6.56030426	-2.76817230	-5.52446600 L
Č	Ő	-6 19402426	-2.31126030	-6 79478100 L
н	0	-6 51 52 1926	-2 84655830	-7 67890800 L
C	0	-5 40204626	-1 16716130	-6 92688900 L
ч	0	-5 11082026	-0.83182030	-7.91/68100 L
II Br	0	5 60150074	5 53365470	6 / 85/10/100 L
Br	0	0.12073826	0.41677770	0.54201800 L
DI Dr	0	6.02970726	9.4107770	1 17622200 L
DI Dr	0	6 20177626	0.90410770 10.72007270	-1.17022200 L 5 57476100 I
DI	0	-0.32177020	10.72907370	1.42126200 II
0	0	2.36919474	2.37342070	-1.42130200 H
0	0	0.37929474	2.20352070	-0.38340200 П 1.08217400 Ц
0	0	-1.49622426	5.54402370	-1.08517400 H
U	0	2.19116974	4.39932070	1.3/4/6400 H
N	0	0.56293174	4.9/0//8/0	-0.1/668900 H
C	0	1.5014/9/4	2.8/308/70	-1.02403900 H
С	0	1.13033974	4.33416870	-1.37177900 H
Н	0	0.27138074	4.23077670	-2.04539300 H
C	0	2.17461174	5.22131870	-2.12984600 H
C	0	2.44472174	4.58388670	-3.51043900 H
Н	0	1.51283374	4.36013170	-4.03890100 H
Н	0	3.00782674	3.65421270	-3.41874700 H
Н	0	3.02519674	5.27874270	-4.12616300 H
С	0	1.53870874	6.61035770	-2.35705100 H
Н	0	1.38093874	7.14666370	-1.41648900 H
Н	0	0.57552074	6.53589770	-2.87139400 H
Н	0	2.20590874	7.21954070	-2.97418200 H
С	0	3.50260474	5.39975270	-1.37020300 H

Н	0	3.98331074	4.43914870	-1.17622100 H
Н	0	3.36200874	5.91290870	-0.41535800 H
Н	0	4.18327374	6.00806570	-1.97588000 H
С	0	-0.71496826	5.53666670	-0.14309800 H
Č	0	1.15872374	4.98069970	1.09594200 H
Ċ	0	0 25613674	5 79387170	1 97418700 H
Č	õ	-0.89093526	6 09524770	1 23221300 H
C	õ	-1 93440426	6 83552470	1 77311900 H
C	0	-1.80201126	7 27805570	3 11005000 H
C	0	0.62205226	6 00624770	2 85628000 H
C	0	0.03203320	6.24240870	3 28205700 H
C	0	0.42740774	0.24240870 5.00462070	4 01550500 L LL 254
C	0	1.09/900/4	5.99462970	4.01559500 L H 254
C	0	2.91690874	6.45258070	3.48802600 L
Н	0	2.94646874	6.94512370	2.52384700 L
С	0	4.10138574	6.30272370	4.21508900 L
Н	0	5.034/34/4	6.66051670	3.80010300 L
C	0	4.07703874	5.71039870	5.48123000 L
С	0	2.86861374	5.25187070	6.01347900 L
Н	0	2.84484974	4.79014870	6.99247300 L
С	0	1.68557474	5.38288770	5.28062700 L
Н	0	0.75802974	5.01967670	5.70473800 L
С	0	-0.49169326	7.55617670	5.22676100 L H 253
С	0	-1.31248226	7.09482970	6.26828700 L
Н	0	-2.03781726	6.31122270	6.08731700 L
С	0	-1.20160326	7.64704370	7.54705500 L
Н	0	-1.84362826	7.29112870	8.34230000 L
С	0	-0.26534826	8.65597370	7.79660700 L
C	0	0.56131274	9.11231170	6.76487600 L
й	Õ	1 28644674	9 89329770	6 95364800 L
C	õ	0 44759074	8 56745170	5 48301300 L
н	Õ	1 08408274	8 93688670	4 68838300 I
C	0	-2 88368826	8 10419370	3 70508200 L H 252
C	0	-4.08302126	7 50526670	4 11868900 I
с u	0	4.00302120	6 43662170	4.01/0/000 L
II C	0	-4.22472320	0.43002170	4.01494900 L 4.67228700 I
U U	0	-3.10224720	0.20301070 7.91602170	4.07228700 L
п	0	-0.02304820	7.81023170	4.98803300 L
C	0	-4.92844920	9.00348070	4.81708700 L
C II	0	-5./551/420	10.20020270	4.40824200 L
H	0	-3.594/9626	11.33390870	4.51899800 L
C	0	-2.71311726	9.48897770	3.85240300 L
H	0	-1.79256026	9.96313970	3.53487500 L
С	0	-3.081/8/26	7.26026170	0.94244500 L H 251
C	0	-4.26734226	6.51122270	0.93290500 L
Н	0	-4.31882626	5.56152670	1.45101900 L
С	0	-5.40718626	7.01415170	0.29668400 L
Н	0	-6.32849026	6.44892470	0.31798300 L
С	0	-5.36356526	8.25797670	-0.34252600 L
С	0	-4.17439826	8.99334570	-0.35795100 L
Н	0	-4.13637626	9.95638170	-0.85029300 L
С	0	-3.03695826	8.49804570	0.28469200 L
Н	0	-2.13209126	9.09314570	0.30120200 L
С	0	-1.11166826	0.11711170	0.80754500 H
С	0	-2.22755226	0.92485670	0.44130900 H
C	0	-1.32940926	-0.97342030	1.78456400 H
Č	õ	-3.34787926	1.09099070	1.31897000 H
č	õ	-2 21593326	1 59731870	-0.81380200 H
õ	õ	-1 66636826	-2 07421830	1 39819000 H
0	0	-1.07205126	-0.63812020	1.57017000 II 3 070/3000 U
C	0	1 20501072	1 02614070	0 00055000 U
	0	-4.37301020	1.93014270	0.77033000 II
п	U	-3.33381526	0.57492070	2.2/224/00 H

С	0	-3.29645426	2.38713470	-1.14619700 H
Н	0	-1.39124426	1.44480770	-1.49409100 H
С	0	-1.11283726	-1.68147730	4.05245700 H
С	0	-4.35090826	2.57263170	-0.25253300 H
Н	0	-5.23305526	2.09191570	1.66224700 H
C	0	-3.57495126	3.15366770	-2.40244500 H
Č	Ő	-2.35492826	-1.55473030	4.94998500 H
н	õ	-1 10630926	-2 66329930	3 57681200 H
н	0	-0.22923826	-1 55957130	4 67880600 H
C	0	-5 35668126	3 48968170	-0.86685200 H
N	0	-4.83932026	3 83912770	-2.09894900 H
н	0	-3 70162026	2 48687970	-3.26426200 H
и и	0	2 77580326	2.40007770	-3.20420200 H
	0	3 86702726	1 86/10130	4 02435000 H
	0	2 18970726	2 78225420	4.02433000 H
	0	-2.100/0/20	-2.76525450	0.23237400 H
	0	-2.44899420	0.08274970	3.08039700 П 0.26647000 Ц
0	0	-0.41992020	5.85782970	-0.3004/000 H
C	0	-5.49058126	4.58240970	-3.18066900 H
C	0	-5.01138226	6.0442/6/0	-3.34906300 H
C	0	-7.02984426	4.45420670	-3.29015600 H
H	0	-5.10601426	4.09622070	-4.08434500 H
N	0	-3.93735926	6.44285370	-2.63496500 H
0	0	-5.56805726	6.76540670	-4.17649000 H
С	0	-7.88710026	5.46696370	-2.51511200 H
Н	0	-7.30522226	3.43225970	-3.01375900 H
Н	0	-7.26373126	4.57378970	-4.34850200 H
Н	0	-3.57932926	7.36843670	-2.82212300 H
Н	0	-3.45128726	5.88407970	-1.94821600 H
С	0	-9.35195026	5.42545270	-2.91287400 H
Н	0	-7.53208326	6.47421170	-2.75303500 H
Н	0	-7.81813626	5.30527370	-1.44159800 H
0	0	-10.27486826	5.35649470	-2.12074800 H
0	0	-9.48198926	5.51148470	-4.24972500 H
С	0	-10.79269726	5.54760270	-4.93105600 H
С	0	-11.56085726	4.25073570	-4.66116500 H
С	0	-10.39346226	5.65085670	-6.40497800 H
С	0	-11.57193526	6.78968070	-4.48874400 H
Н	0	-12.47316326	4.23605470	-5.26558100 H
Н	0	-11.83563626	4.16691070	-3.60938200 H
Н	0	-10.95686926	3.38238270	-4.93924200 H
н	0	-11.28563526	5,65906670	-7.03750500 H
Н	0	-9.82792126	6.56885970	-6.58933500 H
н	0	-9.77050026	4.80023270	-6.69440500 H
Н	Ő	-10.97098926	7.69103370	-4.64419600 H
н	Ő	-11 85035626	6 72704070	-3 43629500 H
н	Ő	-12 48307326	6 88077970	-5 08833300 H
Structure 1	Ď	12.40307320	0.00077770	5.00055500 11
Rh	0	-1 15691492	-0 18617021	0.0000000 H
Rh	0	1 17783408	-0.03636821	0 79760900 H
Br	0	2 16678308	-7 89540721	-4 76350300 L
Br	0	-1 56075392	-7 67144521	-11 07926600 I
Br	0	-3.47681502	5 302/1570	-9 86863500 L
Br	0	4 48187002	1 00187721	13 70247800 L
0	0	1 60211600	0.65668570	-107271000 L
0	0	-0.40705002	0.00000079	-1.072/1900 Fl
0	0	-0.40/33992	0.3722/3/9	-1.0//99000 H
0	0	-0.33481392	2.21443219	-J.JZ449300 H
U N	0	1.01/09308	-1./0442321	-3./323/100 H
IN	- 11	U 79784/U8	0.39003479	-4 4/818/UU H
0	0	0.02000100	0 (7070770	1.00(10000 II
C	0	0.83090108	0.67079779	-1.99612900 H

Н	0	0.87294908	2.15873179	-3.48462800 H
С	0	2.83953208	1.28611779	-3.64419100 H
С	0	3.39990508	2.41155579	-2.74442500 H
Н	0	2.77041508	3.30576579	-2.76143200 H
Н	0	3.47693308	2.08806879	-1.70625300 H
Н	0	4.39880008	2.69436879	-3.09254500 H
С	0	3.04310008	1.68940479	-5.12226700 H
Н	0	2.79714908	0.87007879	-5.80439300 H
Н	0	2.43318108	2.55080479	-5.40389400 H
н	0	4.09302808	1.94903679	-5.28743000 H
С	0	3.63608608	-0.00873821	-3.38718000 H
н	0	3.51710208	-0.35591221	-2.35960700 H
н	Ő	3 33735108	-0.81549221	-4 06023000 H
н	Ő	4 69986008	0 19010779	-3 55904900 H
C	õ	-0 13758592	1 01581079	-5 44844200 H
C	0	0.57875608	-1.00269321	-3.44044200 H
C	0	-0.00262002	-1.28769021	-4.55775000 H
C	0	0.56042602	-1.28765621	-5.80720500 H
C	0	1 25642402	-0.07303321	-0.37408400 II 7 57815500 H
C	0	1 44617002	-0.00373121	-7.37813300 II
C	0	-1.4401/092	-1.20391121	-8.30188000 H
C	0	-0.93/00992	-2.43520421	-7.80915500 H
C	0	-0.25585292	-2.48501721	-0.30233700 H
C	0	0.31025408	-3./4846021	-6.02628200 L H 35
C	0	1.698/8308	-3.88323521	-5.86429800 L
Н	0	2.35776508	-3.04883121	-6.07105100 L
С	0	2.24652208	-5.10769621	-5.47147200 L
Н	0	3.31878908	-5.20580821	-5.36206900 L
С	0	1.41354508	-6.20714621	-5.24354900 L
С	0	0.02880608	-6.07322121	-5.37953900 L
Н	0	-0.61730092	-6.92056421	-5.19741700 L
С	0	-0.52337092	-4.84874821	-5.76602800 L
Н	0	-1.59647492	-4.76428821	-5.88382800 L
С	0	-1.09019892	-3.67932321	-8.61327600 L H 34
С	0	-2.36513492	-4.20992321	-8.86891400 L
Н	0	-3.25031892	-3.71004821	-8.50038000 L
С	0	-2.50302992	-5.39131821	-9.60200100 L
Н	0	-3.48992392	-5.79342621	-9.79106300 L
С	0	-1.36996992	-6.05180921	-10.08648600 L
С	0	-0.09754892	-5.52466121	-9.84391000 L
Н	0	0.78199108	-6.03110021	-10.21986100 L
С	0	0.04315508	-4.34139121	-9.11345200 L
Н	0	1.03373908	-3.94206421	-8.93407400 L
С	0	-2.17227192	-1.15988321	-9.59704700 L H 33
С	0	-3.54900092	-0.88750321	-9.62324900 L
Н	0	-4.09067192	-0.71782621	-8.70064200 L
С	0	-4.23234092	-0.84019421	-10.84133900 L
Н	0	-5.29403092	-0.63021421	-10.85328800 L
C	Õ	-3.54613392	-1.06549821	-12.03930600 L
Č	Õ	-2 17403892	-1 33740421	-12 01814300 L
н	0	-1 63944992	-1 51158321	-12 94296600 L
C	õ	-1 48750692	-1 38326421	-10 80153200 L
н	0	-0 42435192	-1 58990321	-10 79607400 L
C	ñ	-1 74175592	1 20070570	-8 08459300 I H 32
c	0	-2 88210702	1 8801/870	-7 5222200 L 11 52
ч	0	-2.00219192	1 41005470	-7.52225200 E
C	0	-3.30302392	3 06000270	-0.00027700 L
с u	0	-3.37043492	3.00333219	-0.03742300 L 7 64532700 I
п	0	-4.30090192	2.472082/9	-7.04332700 L
C	0	-2./0308/92	5.08/333/9	-9.14009400 L
	0	-1.01189292	5.11444079	-9.09221000 L
н	0	-1.11/49392	3.58/060/9	-10.53098400 L

С	0	-1.10585092	1.91907679	-9.17136500 L
Н	0	-0.22728592	1.47067079	-9.61867200 L
Br	0	-1.01026892	-6.33796821	7.59356500 L
Br	0	-7.61163192	-9.83642621	5.64188100 L
Br	0	-4.98731492	-7.22275221	-7.09233100 L
Br	0	-9.70416692	-10.14605721	-1.64060600 L
0	0	1.45483208	-1.97527221	0.09518100 H
0	0	-0.72753492	-2.15037421	-0.47941000 H
Õ	Ő	-1 42522492	-5 08644421	-2.66594900 H
õ	Ő	-0.40336092	-4 52762521	1 74890200 H
N	0	-0.40330072	-4.82164021	-0 55008700 H
C	0	0.46222108	2 50637221	0.37578100 H
C	0	0.40222108	4 00071721	-0.37378100 II
	0	0.05095008	-4.009/1/21	-0.90739300 H
п	0	0.43942008	-5.65650521	-2.04001100 H
C	0	2.01524108	-4./3000121	-0.845/1100 H
C	0	3.03342508	-3.95660721	-1.71179300 H
Н	0	2.68991108	-3.86835121	-2.74761100 H
Н	0	3.20441808	-2.95031421	-1.32461400 H
Н	0	3.99030908	-4.48881521	-1.71682100 H
С	0	1.85022608	-6.14606821	-1.43687200 H
Н	0	1.24699508	-6.78959321	-0.78988800 H
Н	0	1.36848208	-6.11167221	-2.41796300 H
Н	0	2.83145808	-6.61602021	-1.55502200 H
С	0	2.54737008	-4.85025221	0.59499000 H
Ĥ	0	2.69794908	-3.86887621	1.04869500 H
н	0	1 86860408	-5 42089721	1 23253200 H
н	Ő	3 51115708	-5 37141021	0 57751700 H
C	0	-1 47625792	-5 27450421	-1 46353500 H
C	0	0.04050602	5 01206521	0.76700200 H
C	0	-0.94030092	5 85174621	0.70799200 II
C	0	-2.17604492	-5.65174021	0.06926300 H
C	0	-2.52102092	-5.9/0/8421	-0.05/30900 H
C	0	-3.0/894892	-0.03310021	-1.06277200 H
C	0	-4.51321792	-7.16282621	-0.04918200 H
C	0	-4.14504092	-7.06975321	1.31660300 H
С	0	-2.95065792	-6.41234221	1.70350400 H
С	0	-2.48226792	-6.37333921	3.11269100 L H 108
С	0	-1.24198292	-6.93623721	3.45738400 L
Н	0	-0.61607492	-7.38919821	2.69824100 L
С	0	-0.80621192	-6.92377121	4.78533700 L
Н	0	0.15324508	-7.35515621	5.03971100 L
С	0	-1.60894992	-6.35901221	5.78082200 L
С	0	-2.84744892	-5.80316921	5.44613200 L
Н	0	-3.47080892	-5.36102421	6.21262600 L
С	0	-3.27889992	-5.80204321	4.11750600 L
Н	0	-4.23167292	-5.35287421	3.87276500 L
C	Ő	-4 98041192	-7 73606321	2 34579100 L H 107
Č	0	-6 12174992	-7.09678921	2.54579100 E 11 107 2.85083400 I
ч	0	-6 30380502	-6 11108021	2.05005400 E
C C	0	6 001/7502	7 72002721	2.47710500 L 3.82848500 I
U U	0	-0.90147392	7.12002721	3.02040300 L
п	0	-1.11132492	-7.21744621	4.21702000 L
C	0	-0.54009092	-8.98623121	4.50505500 L
C	0	-5.40/4/492	-9.62/22621	3.80417400 L
H	0	-5.12799992	-10.60603321	4.17192200 L
C	0	-4.62489592	-9.00399421	2.82/54800 L
Н	0	-3.74375092	-9.50585921	2.44706600 L
C	0	-5.75639192	-7.87789821	-0.42835900 L H 106
С	0	-6.99910692	-7.23520921	-0.32531000 L
Н	0	-7.05787892	-6.21206921	0.02465900 L
С	0	-8.16945992	-7.90944321	-0.68346600 L
Н	0	-9.12478392	-7.40749521	-0.60048300 L

С	0	-8.10423992	-9.22662421	-1.15021200 L
С	0	-6.86587092	-9.86878721	-1.25979100 L
Н	0	-6 81112392	-10 88707121	-1 62244800 L
C	ñ	-5 6038/002	-0 10680221	-0.90060700 I
с u	0	4 72042702	0.70121021	-0.90000700 E
П	0	-4.73943792	-9.70131921	-0.98814000 L
C	0	-3.994/6292	-6.//33/321	-2.50506800 L H 105
С	0	-5.14/49/92	-6.1/886321	-3.040/9800 L
Н	0	-5.80662692	-5.59620621	-2.40999700 L
С	0	-5.44949692	-6.32613521	-4.39731900 L
Η	0	-6.33914092	-5.86138221	-4.80225700 L
С	0	-4.59538792	-7.05499721	-5.23112200 L
С	0	-3.44759792	-7.65270521	-4.70247900 L
Н	0	-2 78816392	-8 22328821	-5 34341300 L
C	Ő	-3 14799792	-7 51538721	-3 34401700 L
ч	0	-2 25760892	-7.98602821	-2 94530400 I
11 D.,	0	-2.23700892	-7.98002821	-2.94550400 L
Br	0	-1.0/894492	6.74059579	0.88809400 L
Br	0	-8./586/992	6.//1699/9	7.91867800 L
Br	0	-9.30114992	-5.12327121	2.14523900 L
Br	0	-12.86812292	0.41197279	5.26303000 L
0	0	0.56083708	-0.82646621	2.61116600 H
0	0	-1.60480192	-0.76108021	1.95029000 H
0	0	-3.86450992	-2.72233821	3.94976100 H
0	0	-1 51410992	1 09826579	4 83444300 H
N	Ő	-2 37692292	-1.03089021	4 50661600 H
C	0	0.67144602	1.03006321	2 78131000 H
C	0	1 16005102	1 72662121	4.06512800 H
C U	0	-1.10905192	-1./2003121	4.06512800 H
Н	0	-1.55256892	-2.68/9/421	3.70120600 H
C	0	-0.14541492	-2.07689521	5.20011700 H
С	0	0.76172908	-3.21167121	4.67601100 H
Н	0	0.17580408	-4.07841221	4.35539200 H
Н	0	1.36263108	-2.88074721	3.82611800 H
Н	0	1.44219508	-3.53489021	5.47066500 H
С	0	-0.95157192	-2.60947821	6.40373800 H
Н	0	-1 51906692	-1 81469421	6 89652700 H
н	Ő	-1 65848992	-3 38723221	6 10312800 H
и и	0	0.26863302	3.04021521	7 14252700 H
II C	0	0.72262609	-3.04021321	7.14232700 II 5.67024400 II
C II	0	0.75502008	-0.90403821	3.07924400 H
H	0	1.34182908	-0.50299521	4.86709400 H
Н	0	0.13668008	-0.09073921	6.0938/200 H
Н	0	1.40697108	-1.26732021	6.46414500 H
С	0	-3.65381192	-1.58728421	4.33130100 H
С	0	-2.45570292	0.32524579	4.83221300 H
С	0	-3.90041192	0.60543779	5.09907000 H
С	0	-4.62824092	-0.51815321	4.70686500 H
С	0	-6.01841092	-0.52786121	4.69918800 H
Ĉ	0	-6 67860692	0.62581979	5 19310300 H
C	0	-5.035/2002	1 7/300670	5.65450000 H
C C	0	4 52110102	1.74505075	5.60249000 H
C	0	-4.52119192	1.75080479	5.00509500 L H 191
C	0	-3./1385/92	2.95624579	5.90508500 L H 181
С	0	-2.75913292	2.90529379	6.93308000 L
Н	0	-2.61419992	1.99412879	7.50042600 L
С	0	-1.98130192	4.02946279	7.22693900 L
Η	0	-1.24032692	3.97859379	8.01414800 L
С	0	-2.15740092	5.21330279	6.50285700 L
С	0	-3.11572992	5.27382279	5.48677700 L
Н	0	-3.25532292	6.18742979	4.92364300 L
C	õ	-3.88731892	4.14909479	5.18458100 L
н	ñ	-4 61162002	4 20478670	4 38365700 I
C	0	- 4 .01102092	7.204/00/9	т.30303700 L 6 21030700 I Ц 190
C C	0	-0.03038192	2.9208/8/9	0.21050/00 L H 180
U	0	-7.38497392	5./54104/9	5.30498100 L

Н	0	-7.45194592	3.51894679	4.31264600 L
С	0	-8.01687692	4.89278779	5.87174200 L
н	0	-8.58688192	5.53200779	5.21051800 L
C	õ	-7 90389192	5 20954879	7 22919100 L
C	0	-7.15692092	1 38584079	8 07860100 L
с u	0	7.06207202	4.50504077	0.12000600 L
Г	0	-7.00397392	4.02906379	9.12909000 L 7.57106200 I
C U	0	-0.32141092	3.24841779	7.57100200 L
H	0	-5.93880392	2.62060879	8.23391500 L
C	0	-8.16303592	0.65811479	5.21301000 L H 179
C	0	-8.88474492	0.72844679	4.01077000 L
Н	0	-8.36386092	0.80612379	3.06452200 L
С	0	-10.28144792	0.67458879	4.02651900 L
Н	0	-10.83078892	0.71675279	3.09490400 L
С	0	-10.96379192	0.54650579	5.24142900 L
С	0	-10.24919292	0.50422779	6.44312300 L
н	0	-10.77407192	0.41250579	7.38514600 L
C	Ő	-8 85309492	0 56241379	6 43070100 L
н	õ	-8 30827492	0.50593579	7 36502300 I
n C	0	6 75261102	1 677/0021	7.50502500 L Л 11373700 L Ц 178
C	0	-0.73201192	1.07050221	4.11373700 L 11 178
C U	0	-0.005/1392	-1.97930221	2.73033300 L
H	0	-5.92454792	-1.402/0021	2.13655100 L
C	0	-7.34550192	-3.012/2021	2.1/133200 L
Н	0	-7.23210292	-3.22916621	1.11665200 L
С	0	-8.24338292	-3.75079421	2.94933000 L
С	0	-8.38020992	-3.46955321	4.31304000 L
Н	0	-9.07061892	-4.04154221	4.91930700 L
С	0	-7.63703892	-2.43766721	4.89513800 L
Н	0	-7.75952292	-2.22267321	5.94933500 L
Br	0	5 92059808	6 21932579	-4 28247900 L
Br	Ő	0 89086408	8 37104679	-9 71322000 L
Br	0	0.02261802	1 23876870	2.61258100 L
DI Dr	0	-9.02201892	4.23870879	2.01238100 L
	0	-0.00309892	1.90200079	-0.27300400 L
0	0	0.74541208	1.92125879	1.41854800 H
0	0	-1.32345192	1.81/664/9	0.50351000 H
0	0	-3.22616092	4.6/8392/9	0.25025500 H
0	0	1.21794708	4.42738879	-0.83604100 H
N	0	-0.91197092	4.56809979	0.09637700 H
С	0	-0.36504392	2.42153879	1.09712000 H
С	0	-0.71475192	3.89995179	1.39496300 H
Н	0	-1.73398792	3.84594479	1.78943300 H
С	0	0.09836008	4.68727279	2.46957800 H
Ċ	0	-0.01577792	3.89799279	3.79156400 H
н	Õ	-1 05493292	3 66659879	4 04348700 H
н	õ	0.52859508	2 95287379	3 74302500 H
н	0	0.0200000	1 40060679	4 61066100 H
n C	0	0.40424900	4.49000079	2.64051100 H
U U	0	-0.59075092	6 66091170	2.04931100 II 1 74592900 II
п	0	-0.51470992	0.00981179	1./4J60600 П
н	0	-1.05202392	5.94495579	2.89309000 H
H	0	-0.1141/192	6.60654479	3.46/40800 H
C	0	1.58763608	4.91066979	2.14/3/500 H
H	0	2.10145108	3.96528479	1.96548700 H
Н	0	1.72759308	5.54857879	1.27289600 H
Н	0	2.06273508	5.40302679	3.00341000 H
С	0	-2.20420592	4.81284079	-0.39888000 H
С	0	0.04971708	4.75726479	-0.91014600 H
С	0	-0.67608692	5.35800079	-2.07618400 H
С	0	-2.04250892	5.27296379	-1.80977200 H
C	õ	-2.99962492	5.60122579	-2.76414300 H
č	õ	-2.53624792	6 10718379	-4 00655700 H
c	0	1 1/572602	6 7281 770	4 25002000 H
C	U	-1.143/2092	0.23012279	-+.2J772700 П

С	0	-0.19044292	5.83820579	-3.28985500 H
С	0	1.27369708	5.92732279	-3.52827900 L H 254
С	0	2.08601308	6.68396779	-2.66749800 L
Н	0	1.65207508	7.20750379	-1.82441700 L
С	0	3,46322208	6.76927479	-2.89144100 L
н	0	4 08157108	7 34891779	-2 21833100 L
C	0	4.00137100	6 11008279	-3 98222600 I
C C	0	2 22459209	5 26716970	4 85128100 L
U U	0	2 67506909	1 955 41670	-4.85128100 L
П	0	5.07590808	4.83341079	-3.09001900 L
C II	0	1.85915408	5.27080179	-4.62317500 L
H	0	1.25205508	4.6//318/9	-5.29386600 L
C	0	-0.67913292	6.76208879	-5.57061400 L H 253
C	0	-0.87464592	6.01164679	-6.74149300 L
Н	0	-1.37517492	5.05219479	-6.69929900 L
С	0	-0.40500892	6.48928279	-7.96779600 L
Н	0	-0.54677992	5.90047779	-8.86402400 L
С	0	0.25322008	7.72111879	-8.03509900 L
С	0	0.44742008	8.47410979	-6.87237700 L
Н	0	0.95883508	9.42676979	-6.92012700 L
C	0	-0.01441592	7 99614879	-5 64279900 L
н	0	0.14549908	8 58414579	-4 74742800 I
C C	0	3 5200/202	6 53375370	5 03001800 L H 252
C	0	4 26620102	5 50225270	5 64716700 L 11 252
C U	0	-4.30029192	3.39333279	-3.04/10/00 L
н	0	-4.30096892	4.54628279	-5.37913900 L
C	0	-5.30535392	6.00292379	-6.59807900 L
H	0	-5.96098892	5.2/339/79	-7.05528000 L
С	0	-5.39398492	7.34991979	-6.96139700 L
C	0	-4.55062992	8.29110679	-6.36303800 L
Н	0	-4.61825392	9.33548879	-6.63886000 L
С	0	-3.62084192	7.88694879	-5.40109900 L
Н	0	-2.98207692	8.62702579	-4.93510900 L
С	0	-4.43140892	5.29523279	-2.52863000 L H 251
С	0	-4.85032192	3.95637179	-2.45854600 L
н	0	-4.12314492	3.15327779	-2.46521700 L
С	0	-6.21261592	3,64558079	-2.45302500 L
н	0	-6 52616792	2 60990779	-2 44150300 L
C	ñ	-7 16479292	4 66804179	-2 50554600 I
C C	0	6 75330802	6.00460477	2 52448800 I
с u	0	-0.73330892	6 70874270	-2.52448800 L
П	0	-7.40741792	0.79074279	-2.30301300 L
C .	0	-5.39120192	0.31943979	-2.53284500 L
H	0	-5.08453492	/.356339/9	-2.59263700 L
С	0	-3.13642392	-0.4/49/121	-0.5/33/300 H
C	0	-4.36538892	0.15315079	-0.19397000 H
С	0	-3.29724392	-1.68048121	-1.43194300 H
С	0	-5.62259992	-0.44583721	-0.54990400 H
С	0	-4.36947492	1.41929679	0.46849100 H
0	0	-3.48939092	-2.79653721	-0.99809100 H
0	0	-3.18481192	-1.35406021	-2.74309700 H
C	0	-6.82611092	0.18631279	-0.30091100 H
H	Õ	-5.63162492	-1.42218021	-1.01632000 H
C	õ	-5 58376692	2 05443579	0.68205200 H
ч	0	-3 12638292	1 88177870	0.73063600 H
C	0	2 25045502	2 202/5621	3 72105700 H
C	0	-3.23743372	-2.37343021	-J./219J/00 П
	0	-0./8115592	1.44059079	0.290/9900 H
п	U	-1.1/355/92	-0.26132421	-0.58059200 H
C	0	-5.89008192	3.41918279	1.23829100 H
C	0	-4.56358092	-2.28693321	-4.53103600 H
H	0	-2.42577492	-2.24333821	-4.40827100 H
Н	0	-3.19015892	-3.37934221	-3.26018100 H
С	0	-7.90998492	2.39269279	0.52545000 H

N	Ο	-7 35423292	3 51543879	1 09305900 H
н	0	-5 37800002	4 20222679	0.67151900 H
11	0	5 60020602	4.20222077	2 28624000 II
	0	-3.00020092	3.32026079	2.20024000 H
CI	0	-4.//9//892	-0.02819221	-5.18/89500 H
CI	0	-4.44015592	-3.45353021	-5.89259800 H
CI	0	-5.99796092	-2.70446121	-3.52514600 H
0	0	-9.08657292	2.21720579	0.21570100 H
С	0	-8.09694692	4.78264679	1.18573600 H
С	0	-7.19169392	5.88536979	1.76715100 H
С	0	-9.37607992	4.65490379	2.04195800 H
Н	0	-8.40182292	5.06365679	0.17045400 H
N	Õ	-7 09709392	7 00599179	1 01226100 H
N O	0	6 62774602	5 75614670	2.84062200 II
0 C	0	-0.02774092	5.06221170	2.04902200 H
C	0	-10.18139/92	5.96331179	2.09818800 H
Н	0	-9.10469992	4.35647479	3.05176100 H
Н	0	-9.98350392	3.85808579	1.61011800 H
Н	0	-6.58278192	7.79449579	1.37924000 H
Н	0	-7.60002792	7.12646279	0.14756000 H
С	0	-11.47535392	5.83681979	2.88570500 H
Ĥ	0	-10 45181492	6 31364779	1 09833500 H
и и	0	0 59097102	6 75 1 2 2 9 7 0	2 57602400 H
П	0	-9.3090/192	0.75425679	2.37002400 H
0	0	-12.54988292	6.24925579	2.48814500 H
0	0	-11.25/31292	5.23624879	4.06554800 H
С	0	-12.35130292	4.92922379	5.01411900 H
С	0	-12.97866292	6.22970479	5.52201400 H
С	0	-11.61747392	4.20166279	6.14227800 H
С	0	-13.36980392	4.00695379	4.33842800 H
Н	0	-13.69818292	6.00089579	6.31452200 H
н	Õ	-13 49641692	6 75811279	4 72091300 H
н	0	-12 208/2002	6 88/30/70	5 9/1/2001
11	0	12.20042992	2 92242670	2.94142200 II
п	0	-12.33391992	3.85242079	0.00113000 H
Н	0	-11.05355292	3.35341079	5.74733200 H
Н	0	-10.91830992	4.87324079	6.64622100 H
Н	0	-12.86098092	3.14767579	3.89144500 H
Н	0	-13.92294192	4.52967579	3.55804700 H
Н	0	-14.07894292	3.63607579	5.08466600 H
Structure .	A-S	I-1		
ONIOM to	tal I	E = -10262.097	654 Hartree	
ZPE - 2.60	413	R7 Hartree	00 1 1144 400	
TCH = 2.00	160	67 Hartroo		
TCH = 2.8	100			
1CG = 2.30	J27	79 Hartree		
H = -10259	.28	158/ Hartree		
G = -10259	0.79	4875 Hartree		
No Imagina	ary	frequency		
Rh	0	14.88064600	10.34251700	20.96964100 H
Rh	0	17.12325600	10.19437600	19.96527300 H
Br	0	18,20396200	2,33354700	25.41544100 L H 41
Br	õ	14 53449800	2 78683000	32 05078500 L H 51
Dr Dr	0	14.22402700	16 12021700	20 72105200 L H 71
D	0	14.52492700	10.15021700	30./3103300 L H /1
Br	0	12.64486000	9.68903600	34.92528900 L H 61
0	0	17.88913600	10.68203900	21.81433900 H
0	0	15.84508500	10.66259900	22.79043300 H
0	0	16.33786400	12.53067600	26.35261400 H
0	0	17.38417100	8.43384700	24.58664100 H
Ν	0	17.10116400	10.64003900	25.25170800 H
С	0	17.11087400	10.82891200	22.79682900 H
č	õ	17 69847300	11 35540200	24 12191300 H
с u	0	17 28220100	12 36701000	24.12171300 H 24.20727100 H
11 C	0	10.25062500	12.30/91000	24.20/3/100 H
C	U	19.25963500	11.51036000	24.22000000 H
C	0	19.71144100	12.60531900	23.22787400 H

Н	0	19.17661100	13.54520400	23.39951600 H
Н	0	19.54769000	12.30446400	22.19292600 H
Н	0	20.78169400	12.79693100	23.36416200 H
С	0	19.60450800	12.00147900	25.64425300 H
Н	0	19.38147500	11.24633700	26.40508100 H
Н	0	19.06208200	12.91655600	25.89859400 H
Н	0	20.67686900	12.21532500	25.70216400 H
С	0	20.02833100	10.20270800	23.94821300 H
Н	0	19.83374000	9.82510100	22.94360800 H
н	0	19.76488300	9.41717300	24.66119300 H
Н	0	21.10384200	10.39235500	24.04247100 H
С	0	16.47316300	11.32432100	26.30513400 H
C	0	17.02948800	9.25093000	25.41521200 H
Č	Õ	16.42484000	9.03148000	26.77427100 H
Č	Ő	16 05495000	10 27805900	27 28901900 H
Č	0	15 47476400	10.42400300	28 54866300 H
C	0	15 25102700	9 23263900	29 29251100 H
C	0	15.6238/100	7 96619900	29.29251100 H
C	0	16 23883600	7.85022800	20.77209500 H
C	0	16.23883000	6 52102000	27.49323900 II 26.05806000 H
C	0	18.06001000	6 26680100	20.93890900 II
U U	0	18.00991900	0.20080100	20.83821000 П 27.10724700 Ц
п	0	10./0000000	7.05558000	27.10754700 H
C II	0	18.51/14100	5.02000900	20.38505100 H
Н	0	19.58452500	4.84042500	26.30/85300 H
C	0	17.59529700	4.03/02300	26.033/3600 H
C	0	16.22790500	4.30023900	26.12994200 H
H	0	15.49443700	3.55537600	25.83935500 H
C	0	15.78174100	5.53698300	26.59530300 H
Н	0	14.71607200	5.72609500	26.66968400 H
С	0	15.36617300	6.72594500	29.57565100 H
С	0	14.05394900	6.32280900	29.86274300 H
Н	0	13.22300800	6.92673100	29.51374200 H
С	0	13.80792200	5.16030900	30.59266200 H
Н	0	12.78176400	4.86867400	30.79839500 H
С	0	14.87175300	4.38343900	31.05510500 H
С	0	16.18278100	4.77945100	30.78309600 H
Н	0	17.02234500	4.18796900	31.13720100 H
С	0	16.42688900	5.93884600	30.04694400 H
Н	0	17.44897500	6.23225800	29.82939900 H
С	0	14.62496700	9.33239500	30.65050900 H
С	0	13.30613300	9.78737200	30.79249300 H
Н	0	12.73775500	10.06027400	29.90860000 H
С	0	12.71928500	9.88815000	32.05384300 H
Н	0	11.69415800	10.23788900	32.13721000 H
С	0	13.44627000	9.54536400	33.19560000 H
С	0	14.76240700	9.09686200	33.06622700 H
Н	0	15.34198300	8.82733700	33.94464800 H
С	0	15.34472400	8.98808300	31.80364900 H
Н	0	16.36539100	8.63012700	31.70961500 H
С	0	15.16309700	11.78017800	29.09673100 H
С	0	14.21143500	12.60370300	28.48032000 H
Н	0	13.68462400	12.24476100	27.60198800 H
С	0	13.95382500	13.88302400	28.97078900 H
Н	0	13.21415100	14.50545800	28.47517100 H
Ċ	Ő	14.65441500	14.36403100	30.07930500 H
C	0	15.60464200	13.55157700	30.70087100 H
Ĥ	õ	16.15905100	13.91118100	31.56306900 H
C	õ	15 85295400	12.26763800	30 21552100 H
Ĥ	0	16.59318400	11.64087400	30.70282100 H
Br	ñ	13 26825600	4 43154200	13 19614100 I H 114
~.	0	10.20020000	1.13134200	

Br	0	7.42680900	0.39408500	15.77006300 L H 124
Br	0	11.39487100	2.92165900	28.30459300 L H 144
Br	0	6.06329700	-0.05691700	23.34224400 L H 134
0	0	17.15387200	8.19548000	20.49817000 H
0	0	15.03282800	8.30238600	21.27940100 H
0	0	14.24798600	5.30678500	23.51594000 H
0	0	14.83994600	5.85450800	19.01172500 H
Ν	0	14.93603400	5.57835000	21.31664900 H
С	0	16.13713800	7.70160300	21.05433400 H
С	0	16.18981400	6.27083600	21.62251500 H
Н	0	16.13738300	6.42608500	22.70786600 H
С	0	17.48130800	5.41795500	21.36488800 H
С	0	18.65793800	6.08692400	22.11086600 H
Н	0	18.43987400	6.20889600	23.17679900 H
Н	0	18.88886000	7.06910900	21.69624200 H
н	0	19.55048300	5.45815300	22.01788700 H
C	0	17.25547500	4.02288400	21.98695300 H
Н	0	16.48608800	3.45660400	21.45234700 H
Н	Ő	16.96221600	4.09528000	23.03897000 H
н	0	18.18435100	3.44533200	21.93428800 H
C	0	17.83913100	5.24974300	19.87545200 H
Ĥ	Ő	18.01857200	6.21371200	19.39718400 H
н	Ő	17 05081200	4 73871200	19 31852800 H
н	õ	18 75310800	4 64993900	19.79362900 H
C	0	14 07416100	5 12288800	22 32430100 H
Č	0	14 37636600	5 40185900	20.03944300 H
C	0	13 13740600	4 58255700	20.05944500 H 20.24967600 H
C	0	12 96189800	4.40762100	20.24907000 H 21.62483800 H
C	0	11 90479800	3 66732000	221.02403000 H 22 15247100 H
C	0	10 99402400	3.09635700	21 2224/100 H
C	0	11 18976700	3 24753300	19 82528000 H
C	0	12 28121700	4 00337800	19.31558800 H
C	0	12.20121700	4 11859700	17.84519900 H
C	0	12.09210000	3.04177500	17.04517700 H
н	0	13 34448200	2 12927800	17.14114000 H
C C	0	13 31274600	3 13375700	15 76739500 H
н	0	13 75204300	2 29054400	15 24161800 H
C C	0	12 96872600	1 20027300	15.07948400 H
C	0	12.00072000	5 37300400	15.77500500 H
ч	0	12.40940500	6 28540700	15.26489400 H
C C	0	12.12002000	5 28883300	17 15188200 H
н	0	11 78198500	6 13948000	17.15100200 H
C	0	10.26619500	2 56690700	18 86034000 H
C	0	9 45974700	3 30844300	17 98472600 H
ч	0	0 /0/03300	1 30306400	18 00021/00 H
C C	0	8 62038100	2 66585800	17.07455100 H
ч	0	8.02038100	2.00383800	16 40116400 H
C C	0	8 57423200	1 27168000	17 02222200 H
C	0	0.27423200	0.52226500	17.02222200 H
с u	0	9.37479700	0.52520500	17.88727100 H
II C	0	9.33432200	1 16671100	17.85700000 II 18 70806200 H
ч	0	10.21204300	0.57862100	10.79800200 H
C	0	0.03109400	2 32856800	21 73010700 H
C	0	2.01110300 8.51020000	2.32630600	21.73017700 F
ч	0	8 3675/200	2.00004200	21.31330400 fl 20.06603600 U
п С	0	7 40365000	2 105/7200	20.20003000 H 21.00350200 H
с н	0	6 40648500	2.1034/800	21.99330200 П 21.81557100 Ц
п С	0	7 57021000	2.47041100	21.01337100 H 22.60076000 H
C	0	8 86055600	0.20020700	22.09070900 F
с u	0	0.00733000	0.42133900	22.70717500 F
11	0	1.025/1900	-0.50510000	23.44730400 П

С	0	9.97523700	1.12846000	22.43665400 H
Н	0	10.97550000	0.74767100	22.61822500 H
С	0	11.75952600	3.47746500	23.62889800 H
С	0	10.69322600	4.05109500	24.33305300 H
Н	0	9.95291200	4.63786500	23.79849900 H
C	0	10 58010000	3 88026000	25 71350700 H
Ĥ	Ő	9 75037800	4 34330300	26 23947400 H
C	õ	11 52857900	3 12772500	26 40862000 H
C	0	12 58697100	2 53874800	25.71262100 H
ч	0	13 3280/900	1 9/291800	26.23831000 H
n C	0	12 70262100	2 71688500	20.23031000 H
U U	0	12.70202100	2.71088500	24.33470000 II
П D.:	0	13.33528000	2.20088900	25./9661100 П 15.40004.700 L Ц 197
Br	0	14.55541500	18.33988400	13.42224700 L H 187
Br	0	6.76447200	18.41/95500	13.98003400 L H 197
Br	0	6.08256200	5.624/4300	17.31552900 L H 217
Br	0	2.76909800	11.82/33/00	14.36010600 L H 207
0	0	16.20/00200	9.72985800	18.16444200 H
0	0	14.14718000	10.06210200	19.04264000 H
0	0	11.54565600	8.40795900	16.61645400 H
0	0	13.97598300	12.29063800	16.67478300 H
Ν	0	13.06714600	10.15774900	16.56200600 H
С	0	14.94962900	9.76789300	18.09332500 H
С	0	14.25918200	9.33461100	16.78421800 H
Н	0	13.84337400	8.34842700	17.02796300 H
С	0	15.15899200	9.12549700	15.51356700 H
С	0	16.06773900	7.89948400	15.76050800 H
Н	0	15.47941800	7.01027000	16.01241600 H
н	0	16.77603100	8.08040800	16.56953200 H
н	0	16 63550200	7 67833600	14 85001000 H
C	õ	14 23811900	8 79592200	14 31877500 H
н	0	13 59784100	9 64080500	14 04611000 H
н	0	13 59799700	7 93382600	14 52880400 H
и и	0	14 85106400	8 55222100	13 44496100 H
n C	0	16.0210100400	10.25026200	15 15245800 H
U U	0	16.02191900	10.53030300	15.15245800 H
п	0	15,41225100	11.01551500	13.90401900 П 14.02466900 Ц
п	0	15.41225100	11.22/07/00	14.92400800 H
н	0	10.02229300	10.116/0500	14.20570300 H
C	0	11./8262900	9.59/14600	16.51635/00 H
C	0	13.02180600	11.5594/300	16.49088000 H
С	0	11.59189500	11.906/2800	16.18331500 H
C	0	10.83868800	10.73302700	16.28907100 H
C	0	9.45517100	10.70935000	16.11706700 H
C	0	8.83667800	11.93618200	15.74440000 H
C	0	9.59982200	13.12614700	15.62307700 H
С	0	11.00430200	13.13239800	15.86404500 H
С	0	11.80911100	14.38664500	15.76187100 H
С	0	12.82998500	14.50234700	14.80729500 H
Н	0	13.04124500	13.66891200	14.14388100 H
С	0	13.57103900	15.67808300	14.70072300 H
Н	0	14.35296300	15.74856500	13.94985600 H
С	0	13.30966500	16.75113100	15.55746100 H
С	0	12.30270300	16.64145200	16.51789400 H
н	0	12.09614400	17.45507400	17.20574700 H
C	õ	11 55308200	15 46989000	16 61297000 H
H	õ	10 76538900	15 39975000	17 35575500 H
C	õ	8 91784600	14 40342700	15 23317100 H
č	0	7 98101/00	15 00470600	16 08583800 H
ч	0	7 7625100	14 55455700	17 0/870200 II
C	0	7 34534600	16 180/8800	17.04077200 П 15 71/22500 Ц
	0	1.34334000	10.10740000	1 <i>5./</i> 1422300 П 16.20002000 Ц
11	U	0.02344900	10.03030000	10.32022000 H

С	0	7.63460800	16.79134000	14.48814200 H
С	0	8.56889400	16.20137500	13.63440700 H
Н	0	8.80864400	16.65793100	12.67823200 H
С	0	9.20702500	15.01835200	14.00647200 H
Н	0	9.93968300	14.56940200	13.34249400 H
С	0	7.37007600	11.94924600	15.43038700 H
C	0	6.41112200	11.65390700	16.40992600 H
н	0	6.73972900	11.43275100	17.42086700 H
C	Ő	5.05156700	11.61952300	16.09694800 H
н	0	4 32144500	11 36414900	16 85975000 H
C	õ	4 63031300	11 88431600	14 79201000 H
C	0	5 57380400	12 18249800	13 80707400 H
ч	0	5 26135800	12.10249000	12 78718000 H
C C	0	6.93176100	12.38807700	14 12420800 H
с u	0	7 66004200	12.21343000	12 25210700 H
П	0	2.00004300	0.4599(700	15.55510700 H
C	0	8.07293300	9.45880/00	10.30231300 H
C II	0	8.00018300	8.89923800	17.04927500 H
H	0	9.26220200	9.35913500	18.43233000 H
C	0	7.90690800	7.76433800	17.93036500 H
Н	0	7.91546800	7.35180600	18.93581000 H
C	0	7.14861100	7.16248000	16.92314800 H
C	0	7.16743500	7.69737200	15.63336900 H
Н	0	6.58982500	7.23643300	14.83737300 H
С	0	7.92125800	8.83811000	15.35615200 H
Н	0	7.91666100	9.25653200	14.35503700 H
Br	0	20.23088900	15.69336400	27.27820400 L H 260
Br	0	14.53906200	20.18073500	29.96431800 L H 270
Br	0	8.43912100	18.86801000	18.10471800 L H 290
Br	0	8.72674900	22.02156200	25.40073100 L H 280
0	0	16.97776800	12.20543300	19.50061100 H
0	0	15.01170400	12.39936100	20.60308900 H
0	0	13.28915000	15.70497400	19.52778000 H
0	0	16.85489600	14.63313700	22.18636500 H
Ν	0	15.28568000	15.11899900	20.54560700 H
С	0	15.97394200	12.85527400	19.89306100 H
C	0	15,78626400	14,31250400	19.42986500 H
Ĥ	Õ	14.92621700	14.25722000	18.74943500 H
C	Ő	16 94043500	14 98793000	18 61009300 H
Č	0	17 08038200	14 24453500	17 26233600 H
н	0	16 12899600	14 21796800	16 72053500 H
и и	0	17 42204100	13 21830100	17.40231000 H
и П	0	17.42204100	14 76641000	16 63405500 H
II C	0	16 51 474000	16.70041900	10.03493300 II
с u	0	16 46512400	17 05287700	10.30444200 H
п	0	10.40312400	17.03267700	19.21001000 H
п	0	13.33632400	16.4/933400	17.61062200 П
П	0	17.24975800	16.90204300	1/.03090300 H
C II	0	18.29002300	15.00374500	19.34197200 H
H	0	18.63904100	13.99309100	19.56864/00 H
H	0	18.24849600	15.56161700	20.28022800 H
Н	0	19.04420100	15.48541300	18.70185200 H
C	0	14.04742800	15.77472000	20.47718300 H
C	0	15.86521900	15.23587100	21.819/1800 H
C	0	14.99982500	16.20694200	22.57158800 H
С	0	13.89407000	16.50861100	21.77056700 H
С	0	12.90074100	17.40040700	22.17334500 H
С	0	13.04222000	17.97551900	23.46447300 H
С	0	14.15379000	17.65717500	24.28712100 H
С	0	15.17323400	16.77191200	23.83523200 H
С	0	16.38637900	16.48554900	24.66011900 H
С	0	17.64100700	16.95440000	24.24255000 H

Н	0	17.72441800	17.50198500	23.30796100 H
С	0	18.77674800	16.72726300	25.01781500 H
Н	0	19.73810400	17.10230400	24.67813100 H
С	0	18.67379200	16.01804900	26.21786800 H
Ċ	0	17.43180000	15.53466800	26.63245600 H
н	0	17 33291200	14 95895900	27 54677000 H
C	Ő	16 29494600	15 77019000	25 85949700 H
н	0	15 33816400	15 37993800	26 18859300 H
C	0	14 25612400	18 26235900	25.65486900 H
C	0	13 31265900	17 9/6/8300	25.05400500 H
ч	0	12 50525200	17 25928000	26.04524500 H
n C	0	12.30525200	18 51050800	20.40704700 H
с u	0	12 65042500	18.31039800	27.91394200 II
Г	0	12.03043300	10.23179300	28.002/2400 H
C	0	14.42340100	19.40290300	26.22170200 H
C II	0	15.5/102000	19.72550900	27.24022000 H
H	0	16.1/99/000	20.41424700	27.46810600 H
C	0	15.28884000	19.1551/100	25.97512100 H
H	0	16.03388500	19.40221200	25.22547400 H
C	0	12.006/4000	18.94952400	23.93922500 H
C	0	10.68627200	18.53479700	24.16408600 H
Н	0	10.41781300	17.49609600	23.99668400 H
C	0	9.71843000	19.43962700	24.60013900 H
Н	0	8.70376100	19.09216000	24.77352000 H
С	0	10.05322100	20.77904500	24.80805100 H
С	0	11.36320900	21.20523800	24.57958900 H
Н	0	11.63974300	22.24430500	24.73440300 H
С	0	12.33134100	20.29703000	24.15213800 H
Н	0	13.34979800	20.63367300	23.98492600 H
С	0	11.78599900	17.77081900	21.24733000 H
С	0	10.80679100	16.83570100	20.89006100 H
Н	0	10.83998000	15.83902400	21.31984100 H
С	0	9.80813300	17.16041700	19.97223800 H
Н	0	9.07785300	16.40521900	19.69786300 H
С	0	9.77917100	18.43328800	19.39636200 H
Č	Õ	10.74240400	19.37892000	19.75525400 H
н	0	10.73028000	20.37319700	19.31750000 H
C	Ő	11.73715700	19.05011500	20.67693800 H
н	0	12,48847400	19,78593700	20.94706500 H
C	õ	12.97457800	10 26872300	21.65591200 H
Č	õ	11 83070400	11.01295100	21.05591200 H
C	0	12 68854900	9 09944700	22.52962300 H
C	0	12.00054700	12 20370200	22.52702500 H
C	0	10 50375900	10.58633000	20.44140300 H
0	0	12 26516700	8 04776800	21.51221000 H
0	0	12.20510700	0.25472600	22.10055000 H
0 C	0	12.96505200	9.55475000	23.82707700 H
U U	0	10.95502900	12.97218200	20.02202300 H
н	0	13.02569900	12.51/08800	20.21546400 H
C	0	9.43833200	11.34163200	21.06635000 H
H	0	10.34444800	9.67041400	22.06939700 H
C	0	12.8/258200	8.27823600	24.75724300 H
C	0	9.65475300	12.52012/00	20.33/54/00 H
Н	0	11.09188100	13.89012600	19.46559100 H
C	0	7.95453600	11.11/66500	21.22838700 H
C	0	11.68168900	8.49592000	25.70494700 H
H	0	12.76127200	7.32071700	24.24536300 H
Н	0	13.78498400	8.27626000	25.35592200 H
С	0	8.33481800	13.12923600	20.02772800 H
N	0	7.38842400	12.24756500	20.48845300 H
Н	0	7.63548800	11.14008100	22.27887300 H
Н	0	7.63230900	10.16237000	20.79807500 H

Cl	0	10.11332200 8.42478300 24.81544200 H
Cl	0	11.72358800 7.17641400 26.92406800 H
Cl	0	11.80135200 10.08723300 26.53630300 H
0	0	8.09186600 14.21522900 19.49366800 H
С	0	5.95933200 12.56314700 20.42726900 H
С	0	5.57730100 13.37898800 21.68984400 H
С	0	5.09951300 11.30949100 20.26374800 H
Н	0	5.84720500 13.20734600 19.54894100 H
Ν	0	5.95840500 14.68253200 21.62662100 H
0	0	5.00583800 12.87263000 22.64645700 H
С	0	3.62771200 11.65953300 19.96760200 Н
Н	0	5.14019300 10.70439000 21.17287500 H
Н	0	5.51379300 10.71727900 19.43956600 H
Н	0	5.85480900 15.24643800 22.45779200 H
Н	0	6.56378100 15.00098200 20.87856200 H
С	0	2.86647400 10.45235200 19.45089100 H
Н	0	3.55676900 12.42975100 19.19488900 H
Н	0	3.15769700 12.03071300 20.88278700 H
0	0	2.45666100 10.35060000 18.30975300 H
0	0	2.74774200 9.51899100 20.41071300 H
С	0	2.10833200 8.21049000 20.15355600 H
С	0	0.63792100 8.41629300 19.77673900 H
С	0	2.23222400 7.50860900 21.50765100 H
С	0	2.88780000 7.45523300 19.07205900 H
Н	0	0.14002600 7.44381600 19.70573600 H
Н	0	0.54451500 8.92872300 18.81897600 H
Н	0	0.12653900 9.00325200 20.54601100 H
Н	0	1.78451300 6.51170600 21.45583400 H
Н	0	3.28260800 7.40225100 21.79404200 H
Н	0	1.71978000 8.07949700 22.28710400 H
Н	0	3.94533400 7.38211700 19.34521900 H
Н	0	2.80716800 7.95276400 18.10536200 H
Н	0	2.49127500 6.43903200 18.97900500 H
Structur	re A-S	<u>I-2</u> (Frequency calculation was limited due to the physical limitation of our facility)
E = -513	96.217	7145 Hartree
Rh	15	5.09725200 10.03737200 20.90350600
Rh	1	7.31015400 9.97665200 19.82163600
Br	17	7.23291500 2.07032200 25.55601600
Br	14	4.11498100 3.00626400 31.85702400
Br	14	4.62035400 16.26513100 30.41712200
Br	12	2.42185100 10.16452800 34.53223900
0	18	8.06578600 10.63761600 21.62788500
0	16	5.05071800 10.51565600 22.65898600
0	16	5.56749500 12.52352500 26.11334000
0	17	7.33453100 8.35804600 24.38498400
Ν	17	7.22586800 10.57698300 25.05730600
С	17	2.30413100 10.74012900 22.62945800
С	17	2.87932600 11.26208200 23.94715500
Н	17	7.50078000 12.29000600 24.01410400
С	19	.42988700 11.34635800 24.08848200
С	19	9.95230000 12.42122500 23.11420900
Н	19	0.46009100 13.38319000 23.29670500
Н	19	0.78392900 12.13950800 22.07475600
Н	21	.02713300 12.56064600 23.26720400
С	19	0.75716000 11.81033900 25.52127800
Н	19	0.46653400 11.06372800 26.26621300
Н	19	0.25749400 12.75130200 25.76535600
Н	20	0.83603000 11.96692100 25.61315600
С	20	0.11892700 9.99713800 23.82726800
Н	19	0.91871700 9.63644300 22.81717100

Η	19.78326600	9.23476600	24.53485100
Н	21.20134500	10.11190400	23.94600000
С	16.61926400	11.30999700	26.08478600
С	17.02753400	9.19989700	25.21013200
Ĉ	16.36596000	9.03386600	26.55091200
Ĉ	16.09851400	10 31180000	27.05392300
C	15 /0161500	10.52396400	28.28466200
C	15.47101500	0.27210500	20.20400200
C	15.13371300	9.57210500	29.03003200
C	15.45455000	8.07394900	28.33074300
C	16.0405/100	7.88594700	27.27361600
C	16.31/29900	6.51482400	26.76577500
C	17.62582000	6.12226500	26.45419100
Н	18.43468100	6.84106500	26.52027700
C	17.90807900	4.80710500	26.09119400
Н	18.92361300	4.50368500	25.86745100
С	16.86279800	3.88622000	26.02800700
С	15.55027800	4.25875800	26.29835400
Н	14.74502700	3.54153300	26.21859000
С	15.28558800	5.57217500	26.67052700
Н	14.26633200	5.85581100	26.90246700
C	15 11569000	6 88339800	29 39086000
Č	13.80881900	6 62997300	29.82750700
ч	13.01836300	7 33199600	29.50721300
II C	12 50267100	7.33199000 5.49279000	29.59721300
C II	13.3030/100	5.465/6000	30.33708700
H	12.48559500	5.28845300	30.8/102400
C	14.52649800	4.59255200	30.8/16/800
С	15.84265500	4.83440200	30.48298200
Н	16.63100200	4.13941600	30.74610800
С	16.12749700	5.97873400	29.74228000
Н	17.14718500	6.16130500	29.42258000
С	14.50388800	9.55353200	30.36649700
С	13.23993900	10.15167400	30.44752000
Н	12.73791000	10.47142700	29.54086500
С	12.61376100	10.33232800	31.67889200
H	11.63282200	10.78863600	31.73649200
C	13 26985700	9 91673100	32,83571200
Č	14 53017800	9 32430600	32 78393200
ч	15 02750500	9.00957900	33 69353000
II C	15.02750500	9.00937900	31 54430000
C II	16 11712100	9.142/0000	21,40250600
H	16.11/12100	8.0/589000	31.49350600
C	15.25918200	11.8995/600	28.80632800
C	14.38685100	12./80/2100	28.15663700
Н	13.88094700	12.47158900	27.25006600
С	14.17147900	14.06599300	28.64712000
Η	13.48705400	14.74210200	28.14830000
С	14.86527200	14.48017500	29.78281600
С	15.74595500	13.62724800	30.44512700
Н	16.28057800	13.96426100	31.32509200
С	15.92932400	12.33505500	29.95643900
Н	16.60730900	11.66260800	30.47049000
Br	14.94602200	3.52779200	13.47026100
Br	7.27679600	3.12475600	15,10547800
Br	10 78170100	4 20969400	28 00639800
Br	5 07317600	3 54628700	20.00055000
0	17 53033000	8 05860800	22.57550000
0	15 40102500	0.000000000 0.01502000	20.33013000
0	13.40102500	6.04303900 5.42092600	21.32439000
0	14.54829500	5.43082600	25.54604500
U	15.6/504200	5.65119400	19.131/0000
N	15.51184900	5.39/91000	21.43689100
C	16.56084000	7.53317000	21.15662000

С	16.70161000	6.15733700	21.81612400
Н	16.55785200	6.36083300	22.88300500
С	18.04564700	5.38950800	21.69075400
С	19.11818100	6.19314800	22.45295900
Н	18.82183300	6.35777900	23.49286500
Н	19.28871700	7.16709700	21.99041700
Н	20.06249800	5.63944400	22.44826900
C	17.85314500	4.03465400	22,39422400
н	17 14868800	3 39789400	21 85154900
н	17.14000000	4 16670400	23 /0080300
н	18 80057300	3 50657300	22 45567500
II C	18.50737500	5.30037300	22.45507500
C II	18.50740500	5.14401000	20.24302300
п	18.05005200	0.085/9500	19.70905500
н	17.78825800	4.54041900	19.09005000
H	19.461/2200	4.60/14200	20.26467400
C	14.46340700	5.20146900	22.35453800
C	15.05222900	5.29369000	20.11498700
С	13.65730300	4.78498100	20.20519400
С	13.29281900	4.74583300	21.55066300
С	11.99340800	4.45150900	21.95118200
С	11.03912700	4.26045600	20.92154500
С	11.41499400	4.28455300	19.55727400
С	12.76092700	4.50863400	19.17824200
С	13.25979600	4.31967300	17.78635700
C	14.06497600	3.20079100	17.53018900
H	14.29868800	2,51404400	18.33736100
C	14 56820500	2,95311300	16 25452900
н	15 18977700	2.08607600	16.06542600
C C	14 25775400	3 8/11/2300	15 22766000
C	13 46207500	4 96051400	15.22700000
с u	12 22261200	4.900J1400	13.43370000
П	13.23301200	5.04148100	14.04343000
C II	12.97055200	5.19997500	16.73832400
Н	12.38360800	6.09065100	16.91604400
C	10.39786900	4.01238300	18.50140500
С	9.97505900	5.03114700	17.63899800
Н	10.34594200	6.04221100	17.76097700
C	9.06216200	4.76672700	16.62058100
Η	8.74687100	5.55752500	15.95354600
С	8.55224000	3.47930100	16.48626000
С	8.94073200	2.45072300	17.34194200
Η	8.53124500	1.45420400	17.22690400
С	9.86821200	2.72536300	18.34575300
Н	10.18334800	1.93074300	19.01386600
С	9.60759700	4.05525700	21.27849900
С	8.66768100	5.02747700	20.91747600
Н	8.99841300	5.90215400	20.37032800
С	7.32511000	4.88674400	21.25515500
Ĥ	6 59879800	5 63868100	20 97591300
C	6 92297400	3 74976900	21 95148300
C C	7 83557300	2 76456200	21.22140500
с u	7.50576100	1 88583400	22.32343300
II C	0 17068800	2 02767400	22.80471300
	7.1/7000UU	2.92/0/400	21.700/4000
п	9.89905200	2.1/00000	22.28208300
C	11.64/6/900	4.3/17/8000	25.39334000
C	10.68999500	5.22014100	23.96339500
H	10.17475300	5.94468400	23.34430100
C	10.40739100	5.15970300	25.32649700
Н	9.68046100	5.83090200	25.76550700
С	11.09403500	4.24253800	26.11945700
С	12.03115900	3.36892300	25.57348400

Н	12.53956700	2.64720600	26.20175500
С	12.30658200	3.44397800	24.21016500
Н	13.04702600	2.77906800	23.77857100
Br	13.96226200	18.21085800	15.75402100
Br	6.71175800	18.03308800	14.35970200
Br	5.79225900	5.60040200	17.98489400
Br	2.64200000	11.39833500	15,70900400
0	16 31155100	9 35307600	18 08051900
Ő	14 29526800	9 62052700	19.07301400
Ő	11 51752100	8 11152700	17.00296900
0	13 97512100	11 96220700	16.98833500
N	13.07512100	0.84747200	16 78026200
N C	15.04323200	9.84747200	10.76030200
C	15.05241700	9.37920200	16.07/15500
C III	14.25582600	9.02634200	10.8145/500
H	13.8/747/00	8.01695900	17.01344200
C	15.01917700	8.95542300	15.45771400
С	15.97714000	7.74788300	15.51522900
Н	15.43975900	6.82468500	15.75309900
Н	16.75563400	7.89621600	16.26463300
Н	16.45559700	7.61422600	14.54015200
С	13.97978700	8.71175800	14.34697100
Н	13.33913600	9.58502600	14.19533000
Н	13.33463700	7.85904300	14.57842300
Н	14.49134100	8.50261800	13.40313400
С	15.81420700	10.23128900	15,13131700
Ĥ	16 53881600	10 45846100	15 91501800
Н	15 16064700	11.09685100	15 00941800
Н	16 35686300	10.08335600	14 19187800
C C	11 75000000	0 20028800	16 87780700
C	13.00364400	11 25154700	16 80310200
C	11 56175700	11.23134700	16,61156400
C	10.91455500	10.44227600	10.01130400
C	10.81455500	10.44337600	16.70352900
C	9.42692200	10.43421500	16./185//00
С	8.78592000	11.65968500	16.40060400
С	9.53429300	12.83596600	16.183/3200
C	10.95206900	12.84368100	16.33878400
C	11.71343900	14.11274100	16.21082500
С	12.81614600	14.22291300	15.35307800
Н	13.14470900	13.36465800	14.77849400
С	13.48883000	15.43488700	15.21200400
Η	14.33706500	15.51906300	14.54342900
С	13.04769200	16.54048200	15.93926100
С	11.96088300	16.45750900	16.80358000
Н	11.64188100	17.31514500	17.38156200
С	11.30122800	15.24080300	16.93206800
Н	10.46344200	15.16803100	17.61336500
C	8.83154500	14.07596100	15.74312600
Č	7 81576900	14 64921200	16 51882500
н	7 54765500	14 20268700	17 46702000
C II	7.17630700	15 81/23000	16 10566600
с u	6 40772100	16 265 40000	16 72047300
II C	7 55528600	16.20349000	14.00270800
C	7.33330000	15.94652000	14.702/200
с H	0.34013/00	15.84052000	14.10103300
п	8.82831300	10.31418300	13.164//600
C	9.18192300	14.08168900	14.52892500
Н	9.96522600	14.24774600	13.91692300
C	7.30171600	11.66025000	16.24369000
C	6.47267500	11.37300300	17.33490800
Н	6.91637800	11.18382900	18.30458300
С	5.09007500	11.30481700	17.18409900

Н	4.44651000	11.07889800	18.02318300
С	4.53636700	11.52232700	15.92445800
С	5.33657500	11.81987200	14.82350700
Н	4.89170700	11.98742600	13.84997900
С	6.71829500	11.88960000	14.99185700
Н	7.34841500	12.11763900	14.13915400
С	8.61749000	9.21608100	16.99464500
Ċ	8 52496200	8 72994500	18 30385000
н	9 11660000	9 18823700	19 08915400
C	7 66170100	7 68052500	18 61329300
н	7 57257600	7 33204900	19 63310900
C	6.91283000	7.09375900	17 59/70100
C C	6.00862200	7.5250100	16 28101800
с u	6 4154200	7.082220100	15 40830500
II C	7 84846200	9 61726900	15.49859500
C II	7.00152400	8.01/20800	13.98937400
H D	7.90152400	8.99404300	14.9/443200
Br	19.69520400	15.3/813600	27.37518800
Br	13./0269400	19./2631400	29.65865700
Br	8.42381700	18.6863/100	17.78246500
Br	7.94964600	20.89846600	25.07528200
0	16.99257000	11.92289500	19.21393000
0	15.10280200	12.04896800	20.45153000
0	13.10630700	15.14543500	19.28965100
0	16.67083600	14.19829700	21.97523300
Ν	15.12532900	14.69336000	20.31969300
С	15.98376200	12.52827400	19.66059500
С	15.67793200	13.94911100	19.19515700
Н	14.82489700	13.82339600	18.51626700
С	16.76884200	14.72242200	18.39850000
С	16.95699200	14.02490800	17.03634900
Н	16.00734000	13.96893000	16.49411000
Н	17.34516300	13.01252700	17.15391800
н	17.66202400	14.59859600	16.42644300
C	16.23623400	16.14424500	18.13870600
Ĥ	16.15046900	16.71990000	19.06493700
н	15 25490000	16 12183900	17 65838900
н	16 92321700	16 67826900	17 47 57 4400
C	18 10829700	14 81033300	19 14699200
ч	18 52123500	13 81885000	19 3/121/00
н	17.00808000	15 32777000	20 10310800
II U	17.33838000	15.32777000	20.10310800
Г	12.84502000	15.5/151600	10.34011400
C	15.64502000	13.23000800	20.23087200
C	13.03782300	14.77032900	21.014/2300
C	14./1295500	15.04/08000	22.38707400
C	13.61/25400	15.91893900	21.55/81600
C	12.56819200	16.74233900	21.94363800
C	12.62247000	17.26896300	23.2569/100
С	13./1/6/000	16.99350900	24.10616100
C	14.80540000	16.18268200	23.67307200
C	15.98547000	15.95618500	24.54907800
С	17.27997400	16.23619600	24.08799100
Η	17.42779400	16.59430100	23.07577700
С	18.38502500	16.06991600	24.91965900
Η	19.38320100	16.28769000	24.55906100
С	18.18469800	15.62469300	26.22603000
С	16.91305100	15.34198700	26.71150500
Η	16.77060600	14.97111600	27.71791400
С	15.82238700	15.50471600	25.86434700
Н	14.83467400	15.26333000	26.23321300
С	13.73879000	17.61709200	25.46145000

С	12.75815900	17.29697400	26.40942100
Н	11.99203500	16.56880600	26.16539000
С	12.74660000	17.90925200	27.66086000
Н	11.98956800	17.65473000	28.39234700
С	13.72367900	18.85801700	27.95546400
С	14.71595600	19.18855200	27.03566400
Ĥ	15.47113300	19.92512300	27.28246000
C	14 71955500	18 56005000	25 79221700
н	15 48989200	18 80963300	25.07055200
C C	11 50826100	18 1/915800	23.71137700
C C	10.20519700	17 64084700	23.78917000
с u	10.20517700	16 602 47 400	23.78717000
П	0.14405700	10.00347400	23.33397700
C II	9.14495700	18.44/90400	24.19649100
Н	8.14035700	18.04/13600	24.26136500
C	9.39765600	19.77945300	24.51884100
C	10.68262600	20.31368900	24.44342100
Н	10.86133200	21.35267800	24.69317400
С	11.73265500	19.49180500	24.04060900
Н	12.73561700	19.89972000	23.98328700
С	11.52286200	17.18112100	20.97478500
С	10.52167300	16.32612200	20.50406200
Н	10.47190400	15.30098500	20.85277900
С	9.58210000	16.77324000	19.57523800
Н	8.82114200	16.09583900	19.21165500
C	9.66282100	18.08381400	19.10909100
Č	10 64680700	18 95858200	19 56537300
н	10.69751500	19 97471000	19 19290700
n C	11 56048400	18 40074500	20 50280500
U U	12 24100000	10.47774300	20.30289300
П	12.34109900	19.1/158100	20.80403800
C	13.20973300	9.92010300	21.39103200
C	12.06405000	10.61774000	21.1058/000
C	12.9/133900	8.78322500	22.50949200
C	12.22805900	11.72192900	20.21633000
С	10.75260100	10.26815400	21.55193400
0	12.50222200	7.72421900	22.14445100
0	13.38741000	9.06983300	23.76090100
С	11.15051700	12.50074300	19.82402000
Η	13.22014000	11.96525500	19.87373400
С	9.68766400	11.04044000	21.14301800
Н	10.60528300	9.41618600	22.20251900
С	13.15519200	8.10305900	24.78346100
C	9.89286200	12.14339400	20.30039500
Н	11.29193600	13,36513900	19,18745100
C	8.22471300	10.93772300	21.48285400
Č	12 09445300	8 64477600	25 74757000
ч	12.02443300	7 1/963700	24 36536200
П Ц	12.83137800	7.14903700	24.30330200
П	14.09102300 8 50287600	12 91920700	23.32463100
C N	8.59287600	12.81839700	20.08835100
N	/.65554/00	12.05503800	20.72371000
Н	8.03890200	11.06251600	22.55594800
Н	7.78730800	9.98449400	21.17079200
Cl	10.49854900	8.78348400	24.92201700
Cl	11.96309100	7.50305000	27.11679200
Cl	12.56478400	10.26432800	26.36673200
0	8.37272000	13.87842300	19.49301900
С	6.26361700	12.48383300	20.83229800
С	6.12680600	13.40811400	22.06628200
С	5.32522600	11.28629500	20.88636000
Н	6.06790800	13.07561400	19.93280400
Ν	6.66529000	14.63572100	21.88621100

0	5.59530100	13.02911800	23.10630700
С	3.85331000	11.69827400	20.75487400
Н	5.46807300	10.74055300	21.82082300
Н	5.59568800	10.60529800	20.07513400
Н	6.71431500	15.26884200	22.67159700
Н	7.17531100	14.85706700	21.03966500
С	2.96374300	10.57876400	20.24559900
Н	3.72644000	12.53180200	20.05792700
Н	3.47419000	12.03867900	21.72405300
0	1.98733400	10.76756600	19.54303100
0	3.41503300	9.38579700	20.65275600
С	2.87760000	8.11508400	20.11758500
С	1.41459300	7.95199400	20.52632200
С	3.75972600	7.07522600	20.80564500
С	3.07290100	8.09362800	18.60092000
Н	1.06908900	6.95463900	20.23815900
Н	0.78637100	8.69829700	20.04063700
Н	1.31090300	8.04921800	21.61106600
Н	3.48926900	6.06959100	20.47575300
Н	4.81013000	7.24535100	20.55685500
Н	3.64336600	7.12894500	21.89158200
Н	4.11919100	8.28944100	18.35034800
Н	2.44439200	8.83658100	18.10918100
Н	2.81748200	7.10313400	18.21568700

Section 4: Spectroscopic Data

¹H NMR Spectra ¹H NMR (500 MHz) Spectrum for Compound 3.4.

¹H NMR (400 MHz) Spectrum for Compound 3.6a.

¹H NMR (400 MHz) Spectrum for Compound 3.6c.

¹H NMR (400 MHz) Spectrum for Compound 3.8b.

¹H NMR (400 MHz) Spectrum for Compound 3.9b.

¹H NMR (600 MHz) Spectrum for Compound (*S*,*R*)-3.10a.

¹H NMR (400 MHz) Spectrum for Compound (*S*,*S*)-3.10a.

¹H NMR (400 MHz) Spectrum for Compound 3.10b.

¹H NMR (400 MHz) Spectrum for Compound 3.11a.

¹H NMR (400 MHz) Spectrum for Compound 3.11c.

¹H NMR (400 MHz) Spectrum for Compound 3.12a.

¹H NMR (400 MHz) Spectrum for Compound 3.12b.

¹H NMR (400 MHz) Spectrum for Compound 3.13.

¹H NMR (600 MHz) Spectrum for Compound 3.14.

¹H NMR (400 MHz) Spectrum for Compound 3.15.

¹H NMR (600 MHz) Spectrum for Compound 3.17.

3200000 2282222272223000000 2800000 2600000 2400000 3.18 2200000 2000000 1800000 1600000 1400000 -1200000 1000000 800000 600000 400000 200000 0 1.00-I 0.98-1.02-F 2.05-F 2.05-F 1.05-1.05-1.02-1.01-2.24 3.07. 3.10-<u>∓</u> 1.09.T -200000 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5

¹H NMR (400 MHz) Spectrum for Compound 3.19.

1.00 1.05 1.05 2.03 Ξ 2.04 Ξ 1.094 1.904 1.06± 6.33± 9.55<u>-</u> 1.04 1.01 1.02 2 3.0 2.5 2.0 1.5 1.0 0.5 0.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 f1 (ppm) 5.0 4.5 4.0 3.5

= 66'

-500000

¹H NMR (400 MHz) Spectrum for Compound 3.23.

-6500000 6000000 5500000 5000000 ~ 11 4500000 3.24 4000000 3500000 3000000 - 2500000 2000000 -1500000 -1000000 500000 0 1.08 A 1.02 A 1.00 A 1.07 1.03 1.03 1.03 1.03 1.03 1.5 3.65 1.17 5.43 1.27 2.13 -500000 11.5 11.0 10.5 10.0 9.5 0.5 0.0 9.0 8.0 7.5 7.0 6.5 6.0 5.5 f1 (ppm) 5.0 4.5 3.5 3.0 2.5 2.0 1.0 8.5

¹H NMR (800 MHz) Spectrum for Compound 3.25 at 23 °C.

Image: state state

¹H NMR (800 MHz) Spectrum for Compound 3.26 at 23 °C.

C95

-500000

°2 5.08 1.59

3.0 2.5

¹H NMR (400 MHz) Spectrum for Compound SI4.

¹³C NMR Spectra¹³C{¹H} (151 MHz) Spectrum for Compound 3.4.

¹³C{¹H} (151 MHz) Spectrum for Compound 3.6a.

¹³C{¹H} (151 MHz) Spectrum for Compound 3.6c.

¹³C{¹H} (151 MHz) Spectrum for Compound 3.8b.

¹³C{¹H} (151 MHz) Spectrum for Compound 3.9b.

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ (151 MHz) Spectrum for Compound (S,R)- 3.10a.

¹³C{¹H} (151 MHz) Spectrum for Compound (*S*,*S*)- 3.10a.

¹³C{¹H} (151 MHz) Spectrum for Compound 3.10b.

¹³C{¹H} (151 MHz) Spectrum for Compound 3.11b.

¹³C{¹H} (101 MHz) Spectrum for Compound 3.12a.

C105

¹³C{¹H} (101 MHz) Spectrum for Compound 3.13.

¹³C{¹H} (151 MHz) Spectrum for Compound 3.15.

¹³C{¹H} (151 MHz) Spectrum for Compound 3.17.

¹³C{¹H} (151 MHz) Spectrum for Compound 3.19.

¹³C{¹H} (151 MHz) Spectrum for Compound 3.21.

¹³C{¹H} (101 MHz) Spectrum for Compound 3.22.

¹³C{¹H} (151 MHz) Spectrum for Compound 3.23.

¹³C{¹H} (201 MHz) Spectrum for Compound 3.25 at 80 °C.

C112

¹³C{¹H} (101 MHz) Spectrum for Compound SI2.

¹³C{¹H} (101 MHz) Spectrum for Compound SI4.

Supplementary NMR Spectra

¹H NMR spectrum for 3.10b showing support for d.r. determination

3.10b epimerized with DBU showing appearance of diastereomeric peaks

Reaction of 3.8b with S catalyst showing absence of diastereomeric peaks in3.10b

¹H NMR spectrum for (S,R)-3.10a and (S,S)-3.10a showing support for d.r. determination

Reaction of 3.8a with R/S catalyst showing appearance of diastereomeric peaks fo((S,Ş)-3.10a

Reaction of 3.8a with S catalyst showing disappearance of diastereomeric peaks fo.(S,S)-3.10a

¹H NMR spectrum for 3.12b showing support for d.r. determination

Reaction of 3.8a with R/S catalyst showing appearance of diastereomeric peaks fo((S,Ş)-3.10a

Reaction of 3.8a with S catalyst showing disappearance of diastereomeric peaks fo((S,S)-3.10a

¹H NMR spectrum for 3.14 showing support for r.r. determination

¹H NMR spectrum for 3.14 showing support for d.r. (relative configuration of the two new stereocenters) determination

¹H NMR spectrum for 3.19 showing support for r.r. determination, Method A. \downarrow_{2000}

¹H NMR spectrum for 3.19 showing support for r.r. determination, Method B.

Section 5: Chromatographic Data

Chiral SFC Chromatograms Racemic Chromatogram for Compound 3.9a

Chromatogram for Compound 3.9a Using GP1

9.0e 8.0e 7.0e-1 6.0e-5.0e-1 4.0e-3.0e-2.0e-1.0e

5.00

6.00

Racemic Chromatogram for Compound 3.9b

20.00

15.00

13.00

14.00

17.00

16.00

18.00

Chromatogram for Compound 3.9c Using GP1

Time 10.00

8.00

8.50

9.00

Racemic Chromatogram for Compound 3.10a

Chromatogram for Compound (S,R)-3.10a Using GP4

Chromatogram for Compound 3.10b Using GP4

2.60

2.20

3.40

0.0-

Chromatogram for Compound 3.11b Using GP5

4.80

4.40

6.00

6.50

8.00

7.50

8.50

9.00

9.50

0.0

Chromatogram for Compound 3.11c Using GP5

Time 10.00

3.50

7.50

6.50

7.00

8.00

8.50 9.00 9.50

Chromatogram for Compound 3.12a Using GP6

C131

Racemic Chromatogram for Compound 3.14 and Chromatogram for Compound 3.14 Using GP1, Major Relative Diastereomer (2R,3S)- 3.14

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

Racemic Chromatogram for Compound 3.14 and Chromatogram for Compound 3.14 Using GP1, Minor Relative Diastereomer (2R,3R)- 3.14

10.00

9.00

9.50

Chromatogram for Compound 3.15 Using GP1

Time 10.00

Chromatogram for Compound 3.16 Using GP1

Chromatogram for Compound 3.19 Using GP1

32.00

26.00

8.00

9.00

0.0

Racemic Chromatogram for Compound 3.21

20.00

18.00

Chromatogram for Compound 3.22 Using GP8

Chromatogram for Compound 3.24 Using GP5

6.00 7.00 8.00 9.00 13.00 14.00 19.00 20.00 21.00 22.00 Time 12.00 15.00 5.00 11.00 18.00 23.00 27.00 16.00 17.00 25.00

Chromatogram for Compound SI3 Using GP7

Section 6: Assay Protocols

The A549-BRD4-HiBiT cell line, created via CRISPR/Cas9, is used for detecting intracellular BRD4 protein degradation through a chemiluminescent signal. This cell line is based on the human A549 cell line (CCL-185) which co-expresses chimeric BRD4 (the target) and HiBiT (detection tag) designed by Promaga. Routine passaging and assays are performed using RPMI 1640 medium with 10% heat-inactivated fetal bovine serum and 1X penicillin/streptomycin. Test compound detection is carried out on a 1536-well tissue culture plate (Corning #3727), with cells seeded in 3.5 μ L of core-RPMI 1640 at a density of 0.20 million/mL. Pre-titrated test compounds in DMSO are dispensed onto the assay plate using the ECHO liquid handling system (Labcyte), which employs acoustic energy. The assay is incubated for 24 hours at 37°C with 5% CO2, followed by 30 minutes of plate cooling at room temperature. The detection reagent mix (Cat# N3050, Nano-Glo® HiBiT Lytic Detection System from Promega) is then added at 3.5 μ L per well in a predefined proportion. Luminescence is measured using an EnVision reader (PerkinElmer) 60 minutes after the addition of the detection reagent mix. Raw data are collected and processed using Dotmatics (a data analysis tool) to determine the test compound's potency values, including EC₅₀ and Y_{min}.

Section 7: Results of the High-Throughput Screen for the Diazo Cross-

Coupling

The data in this section were generated by Jake Ganley.

Tttle: Davies Collab - Diazo Alpha Arylation - Ligand/Solvent/Additive/Base/Precatalyst Screen, rt Date: 11/1/22

otes and conclusions:

Conclusions: No promising hits found w/ < 3% RAP desired product formed in all cases 1) Largety intact Ar-Br. SM: no protoclenalogenation observed 2) Pc(PPh3)4 with EI3N as base largely preserved diazo coupling component, whereas significant consumption was observed with DBU as base or any other catalyst combination 3) No dovious trends with respect to halide scavenger or solvent 4) No decomposed diazo product observed, indicating that this is not the reason for low RAP

lext Steps: Potentially re-run plate at elevated temperature for longer reaction time to look for formation/decomposition of product

244 BN	242 DA	241 BN	240 BN	239 BM	238 BN	236 BM	235 BM	234 BN	233 BM	232 BN	231 BN	230 BN	229 BN	22/ BN	226 BA	225 BN	224 BM	223 BN	222 BN	221 BN	220 BN	218 BN	217 BA	216 BN	215 BM	214 BN	213 BN	212 BA	210 DA	209 BN	208 BN	207 BN	206 BN	204 BN	203 BN	202 BN	201 BN	200 BN	199 BN	100 BN	196 BN	195 BN	194 BN	193 BN	191 BN	190 BN	189 BN
ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	100 dou	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	ASP 201	101 201
912 H	912 H	912 H	912 H	912 H	912 H	912 H	912 H	912 H	912 H	912 G	912 G	912 G	912 G	912 G	912 G	912 G	912 G	912 G	912 G	912 G	912 F	912 T	912 F	012 F	912 F	912 E	912 E	912 E	912 E	912 E	912 E	912 E	912 E		912 T	912 D	912 D	912 D	912 D	912 0	912 D	1					
12 indolinone Diazo Ester	11 indolinone Diazo Ester	9 indolinone Diazo Ester	8 indolinone Diazo Ester	7 indolinone Diazo Ester	6 indolinone Diazo Ester	4 indolinone Diazo Ester	3 indolinone Diazo Ester	2 indolinone Diazo Ester	1 indolinone Diazo Ester	12 indolinone Diazo Ester	11 indolinone Diazo Ester	10 indolinone Diazo Ester	9 indolinone Diazo Ester	/ Indolinone Diazo Ester	6 Indolinone Diazo Ester	5 indolinone Diazo Ester	4 indolinone Diazo Ester	3 indolinone Diazo Ester	2 indolinone Diazo Ester	1 indolinone Diazo Ester	12 indolinone Diazo Ester	10 Indolinone Diazo Ester	9 indolinone Diazo Ester	8 indolinone Diazo Ester	7 indolinone Diazo Ester	6 indolinone Diazo Ester	5 indolinone Diazo Ester	4 indolinone Diazo Ester	2 indolinone Diazo Ester	1 indolinone Diazo Ester	12 indolinone Diazo Ester	11 indolinone Diazo Ester	10 indolinone Diazo Ester	9 indolinone Diazo Ester	7 indolinone Diazo Ester	6 indolinone Diazo Ester	5 indolinone Diazo Ester	4 indolinone Diazo Ester	3 indolinone Diazo Ester	 Indolinone Diazo Ester indolinone Diazo Ester 	12 indolinone Diazo Ester	11 indolinone Diazo Ester	10 indolinone Diazo Ester	9 indolinone Diazo Ester	 Indolinone Diazo Ester Indolinone Diazo Ester 	6 indolinone Diazo Ester	
1.3	ນ ເ	າ 1 ລີເພ	1. 	1.3	ີ່ພີ່ ເ	ລີ ເມ	1.3	1.3	1.3	1.3	ີ່ ຜູ້	1.0	ີ່ມີ ບ	່ວ່	1.3	1.3	1.3	1.3	1.3	1.3	ີ່ ພີ່	יי ג יי ג	ι <u>ι</u>	; 1 .ວ	1.3	1.3	1.3		າ ເ	ຳ ເວັ	1.3	1.3	1.0	່າ	τ. 	1.3	1.3	ີ່ ເບັ	ຸ່ມ ເມີ	⊥ د من در	່. ເວ	1.3	1.3	ີ່ພີ່ ເ	ר ר גי גר		
Pd(dba)2	Pd(dha)2	Pd(dba)2	Pd(dba)2	Pd(dba)2	Pd(dba)2	Pd(dba)2	Pd(dba)2	Pd(dba)2	Pd(dba)2	Pd(dba)2	Pd(dba)2	Pri/dba)2	Pd(dba)2	Pd(OAc)2		Pd(OAc)2	Pd(OAc)2	Pd(OAc)2	Pd(UAc)2	Pd(OAc)2	Pd(OAc)2	Pd(OAc)2	Pd(OAc)2	PH(OAc)2	Pa(UAc)2	Pd(PPh3)4	Pd(PPh3)4	Pd(PPh3)4	Pd(PPh3)4	Pd(PPh3)4	Pd(PPh3)4																
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	о о л	0.5	0.5	0.5	0.5	0.5	0.5	0.5	ο C υ τ	0.5	0.5	0.5	0.5	0.5	0.0	о о л о	0.5	0.5	0.5	0.5	0 0 7 0	0.5	0.5	0.5	0.5	о с 5 о	эс лσ	0.5	0.5	0.5	0.5	с с л с	0.5	
5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.U%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	0.0.0
PCy3 HBF4	CX-A	DPPF	tB-XPhos	X-Phos	tB-Xantphos	A-taPhos	P(p-F-Ph)3	P(fur)3	PPh3	PCy3 HBF4	CX-A	DIRPE	DPPF	r-Phos	tB-Xantphos	Xantphos	A-taPhos	P(p-F-Ph)3	P(fur)3	PPh3	PCy3 HBF4		DPPF	tB-XPhos	X-Phos	tB-Xantphos	Xantphos	A-taPhos	P(IUI)S	PPh3	PCy3 HBF4	CX-A	DtBPF	TB-XPhos	X-Phos	tB-Xantphos	Xantphos	A-taPhos	P(nF-Ph)3	D/fin/3	PPh3	PPh3	PPh3	PPh3	PPh3	PPh3	
TEA	TEA	TEA	TEA	TEA	ĒŠ	TEA	TEA	TEA	TEA	TEA	Ē	TEA	TEA 9		TEA	TEA	TEA	TEA	TEA	TEA	₽Ş		TEA	TEA	TEA	TEA	TEA	TFA 5		TEA	TEA	TEA	Ę	TEA	TEA	TEA	TEA	ĒŠ			TEA	TEA	TEA	ĒŞ		TEA	
1.5	 סירט		1.51	1.5	<u>-</u> т.		1.51	1.5	1.5	1.5	5	5 10		- - - - -	1.5	1.5	1.5	1.5	1.5	1.5		ר ר ס ת	n (n	1.5	1.5	1.5	1.5	יד ב- סירכ	л . О п	- <u>-</u>	1.5	1.5			1 .51	1.5	1.5	<u>с</u> т і	יד ב יד דנ	יר ב ס ת	1.5	1.5	1.51 1.51	<u>с</u> т с	л . Л . С	1.51	
KTFA	KTEA	KTFA	KTFA	KTFA	KTFA	KTFA	KTFA	KTFA	KTFA	KTFA	KTFA	KTFA	KTFA	KTEA	KIFA	KTFA	KTFA	KTFA	KTFA	KTFA	KTFA	KITA	KTFA	KTFA	KTFA	KTFA	KTFA	KTEA		KTFA	KTFA	KTFA	KTFA	KTEA	KTFA	KTFA	KTFA	KTFA	KTEA	KTEA	NaOTf	NaOTf	NaOTf	KOTF	KOIT	NaTFA	
1.5	יים ידע		- - - - - -	1.5	τι τι τι	n in	1.51	1.5	1.5	1.5	<u>с</u> т і	<u>т</u> о опо	5 0	ט ת	1.5	1.5	1.5	1.5	1.51 151	1.5	ີ. ເກີເ	ר ב ט ת	n (n	; ,	1.5	1.5	<u>1</u> ст с	л. Слі	л і л і	- <u>-</u>	1.5	1.5	5 0	יד ד ט רכ	h in	1.5	1 .5	τ, <u>τ</u>	ב ב ט רכ	יד ב ס ת	1.51	1.57	1.5	τη τ	ר ב ט ת	1 .51	
DMF		DMF	DMF	DMF	DMF	DMF	DMF	DMF	DMF	EtOAc	EtOAc	FfOAc	FtOAc	EtOAc	DMF		DMF	DMF	DMF	DMF	DMF			DMF	EtOAc	EtOAc	EtOAc	EtOAc	EtOAc	EtOAc	EtOAc	EtOAc	FICAR	EtOAc	DMF	MeCN	EtOAc	DMF	EtOAc	DMF							
100	38	100	100	100	8	88	100	100	100	100	10	100	100		100	100	100	100	100	100	100	100	3 10	10	100	100	100	100		8 0	100	100	100		8 0	100	100	100	100	10	100	100	100	100		10	1000
0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
6.0	6 C	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	ດ ດີ	6.0	8 O	6.0	6.0	6.0	6.0	6.0	6.0	6.0	ກ ດ ວັດ	o 0.0	6.0	6.0	6.0	6.0	6 C		6.0	6.0	6.0	6.0	6 O	6.0	6.0	6.0	6.0	ה פ ה	ດ ດ	6.0	6.0	6.0	6.0	8 O.O	6.0	0.0
0.18%	0.2.970	0.27%	0.27%	0.49%	0.18%		0.73%	0.31%	0.31%	0.17%	0.14%	0.13%	0.24%	0.12%	0.53%	0.17%		0.23%	0.19%	0.14%	0.12%	1.UU%	1.23%	0.12%		0.24%	0.15%	0.0170	0.23%	0.56%	0.17%	0.29%	1.90%	0.3/%	0.27%	0.37%	0.19%	0.2070	0.22.70	70CC U	0.34%		0.27%	1.09%	0.28%	0.31%	
65.19%	69 47%	44.61%	58.17%	49.68%	59.88%	61.39%	75.39%	56.26%	77.33%	60.37%	57.85%	46 65%	41.32%	56 37%	57.04%	41.33%	69.69%	59.30%	62.63%	60.86%	59.27%	70 46%	47.84%	60.53%	49.57%	63.13%	51.13%	60.00%	20.39%	85.22%	60.11%	69.98%	65.76%	52 36%	52.59%	68.32%	53.02%	68.71%	69.47%	11.92%	42.79%	43.28%	43.03%	43.59%	43.01%	44.15%	
34.62%	30 22%	40 050/	41.57%	49.84%	39.94%	38.61%	23.88%	43.43%	22.36%	39.46%	42.01%	53.22%	58.44%	43 17%	42.43%	58.51%	30.31%	40.46%	37.18%	39.00%	40.61%	32.08%	50.92%	39.34%	50.43%	36.63%	48.72%	40.00%	18 5.4%	14.22%	39.72%	29.73%	32.34%	33.33% 46 70%	47.14%	31.31%	46.79%	31.29%	30.20%	38 50%	56.87%	56.72%	56.70%	55.32%	56./1%	55.54%	
0:100	0.100	1:99	0:100	1:99	0:100		1:99	1:99	0:100	0:100	0:100	0-100	1:99	1-99	1:99	0:100		0:100	0:100	0:100	0:100	0.400 86:L	3:97	0:100		0:100	0:100	1.00	1.00	1:99	0:100	0:100	3:97	966.L	1:99	1:99	0:100	0.100	0.100	0-100	1:99		1:99	2:98	1:99	1:99	

Section 8: References

(1) Garlets, Z. J.; Sanders, J. N.; Malik, H.; Gampe, C.; Houk, K. N.; Davies, H. M. L., Enantioselective C–H functionalization of bicyclo[1.1.1]pentanes. *Nat. Catal.* **2020**, *3*, 351-357.

(2) Tortoreto, C.; Rackl, D.; Davies, H. M. L., Metal-Free C–H Functionalization of Alkanes by Aryldiazoacetates. *Org. Lett.* **2017**, *19*, 770-773.

(3) Fu, L.; Mighion, J. D.; Voight, E. A.; Davies, H. M. L., Synthesis of 2,2,2,-Trichloroethyl Aryl- and Vinyldiazoacetates by Palladium-Catalyzed Cross-Coupling. *Chem. Eur. J.* **2017**, *23*, 3272-3275.

(4) Qin, C.; Davies, H. M. L., Role of Sterically Demanding Chiral Dirhodium Catalysts in Site-Selective C–H Functionalization of Activated Primary C–H Bonds. *J. Am. Chem. Soc.* **2014**, *136*, 9792-9796.

(5) Garlets, Z. J.; Boni, Y. T.; Sharland, J. C.; Kirby, R. P.; Fu, J.; Bacsa, J.; Davies, H. M. L., Design, Synthesis, and Evaluation of Extended C4–Symmetric Dirhodium Tetracarboxylate Catalysts. *ACS Catal.* 2022, *12*, 10841-10848.

(6) Fu, J.; Ren, Z.; Bacsa, J.; Musaev, D. G.; Davies, H. M. L., Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. *Nature* **2018**, *564*, 395-399.

(7) Green, S. P.; Wheelhouse, K. M.; Payne, A. D.; Hallett, J. P.; Miller, P. W.; Bull, J. A., Thermal Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. *Org. Process Res. Dev.* **2020**, *24*, 67-84.

(8) Zacuto, M. J.; Traverse, J. F.; Geherty, M. E.; Bostwick, K. F.; Jordan, C.; Zhang, C., Chirality Control in the Kilogram-Scale Manufacture of Single-Enantiomer CELMoDs: Synthesis of Iberdomide·BSA, Part 2. *Org. Process Res. Dev.* **2024**, *28*, 57-66.

(9) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.;

Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J., Gaussian 16 Rev. C.01. **2016**.

(10) Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. *J. Mol. Graph.* **1996**, *14*, 33-38.

(11) Momma, K.; Izumi, F., VESTA: a three-dimensional visualization system for electronic and structural analysis. *J. Appl. Crystallogr.* **2008**, *41*, 653-658.

(12) (a) Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. *Phys. Rev. B* 1988, *37*, 785-789; (b) Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* 1993, *98*, 5648-5652; (c) Becke, A. D., A new mixing of Hartree–Fock and local densityfunctional theories. *J. Chem. Phys.* 1993, *98*, 1372-1377; (d) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* 2010, *132*, 154104; (e) Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth, C., Dispersion-Corrected Mean-Field Electronic Structure Methods. *Chem. Rev.* 2016, *116*, 5105-5154; (f) Johnson, E. R.; Becke, A. D., A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections. *J. Chem. Phys.* 2006, *124*, 174104.

(13) (a) Hay, P. J.; Wadt, W. R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. *J. Chem. Phys.* 1985, 82, 299-310; (b) Roy, L. E.; Hay, P. J.; Martin, R. L., Revised Basis Sets for the LANL Effective Core Potentials. *J. Chem. Theory Comput.* 2008, *4*, 1029-1031.

(14) (a) Hariharan, P. C.; Pople, J. A., The influence of polarization functions on molecular orbital hydrogenation energies. *Theor. Chim. Acta* 1973, 28, 213-222; (b) Hehre, W. J.;
Ditchfield, R.; Pople, J. A., Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. *J. Chem. Phys.* 1972, *56*, 2257-2261.

(15) (a) Vreven, T.; Byun, K. S.; Komáromi, I.; Dapprich, S.; Montgomery, J. A., Jr.; Morokuma, K.; Frisch, M. J., Combining Quantum Mechanics Methods with Molecular Mechanics Methods in ONIOM. *J. Chem. Theory Comput.* **2006**, *2*, 815-826; (b) Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J., A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives1Dedicated to Professor Keiji Morokuma in celebration of his 65th birthday.1. *J. Mol. Struct. THEOCHEM* **1999**, *461-462*, 1-21.

(16) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., III; Skiff, W. M., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. *J. Am. Chem. Soc.* **1992**, *114*, 10024-10035.

(17) (a) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. *J. Comput. Chem.* 2003, 24, 669-681; (b) Barone, V.; Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. *J. Phys. Chem. A* 1998, *102*, 1995-2001.

(18) Ren, Z.; Musaev, D. G.; Davies, H. M. L., Key Selectivity Controlling Elements in Rhodium-Catalyzed C–H Functionalization with Donor/Acceptor Carbenes. *ACS Catal.* 2022, *12*, 13446-13456.