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Abstract

Surveilling Spatially Concentrated Disease Patterns:
A Bayesian Approach to Understanding Tuberculosis in the United States

By Delante E. Moore

Despite advances in medical science, tuberculosis(TB) continues to be a significant
health concern across the world. In the United States, local prevalence of TB is often
highest in refugee communities due both to higher background prevalence among
politically unstable populations and due to a long latent period between infection
and active disease. In a public health surveillance setting, this pattern can result
in relatively sharp increases in observed local prevalences. By pinpointing areas of
concentrated TB prevalence and examining the factors contributing to these patterns,
this research aims to enhance the strategic planning and implementation of TB control
measures.

Bayesian hierarchical disease mapping models offer a robust means to borrow in-
formation across small areas in order to better interpret complex spatial patterns
of disease prevalence, enabling public health professionals to identify high-risk areas
and tailor interventions more effectively. However, such methods often result in strong
spatial smoothing that might dampen the ability to accurately estimate local spikes
in prevalence.

Here, we conduct a detailed comparison of Bayesian Hierarchical Models, customiz-
ing approaches to better capture TB’s spatial heterogeneity. Aim 1 explores perfor-
mance of hierarchical Bayesian disease mapping models in the context of spatially
concentrated TB prevalence. Through a motivating study centered on TB preva-
lence in Metro Atlanta, we demonstrate the utility of these models in identifying
high-risk areas and enhancing our understanding of TB’s spatial dynamics but also
raise new questions regarding model performance. Aim 2 shifts the focus to model
adequacy, using localized approaches to assess the fit of disease surveillance models,
particularly in capturing sharp spatial transitions. We evaluate specific epidemiolog-
ical characteristics of different regions. Finally, Aim 3 focuses on the development
of an enhanced Bayesian Spatially Varying Coefficient Model (BSVCM) integrated
with Locally Adaptive Smoothing (LAS). This model was specifically designed to
address the limitations of over-smoothing in traditional models while also capturing
spatial outliers. The LAS-enhanced BSVCM demonstrated significant improvements
in modeling accuracy, particularly in regions with high spatial variability, making it a
valuable tool for more accurate disease risk mapping and public health interventions.
Taken together, the aims explore how customizing Bayesian hierarchical models can
provide deeper insights into the epidemiology of TB in the presence of sharp changes
in local prevalence.
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Chapter 1

Introduction and Literature Review

1.1 Background

The preamble to the Constitution of the United States states that ...“We the People

of the United States, in Order to form a more perfect Union, ... , promote the general

welfare, and secure the blessings of liberty to ourselves and our posterity, do ordain

and establish this Constitution for the United States of America” [1]. Providing

for the health and welfare of the citizenry were of such fundamental concern to the

framers that one of our most significant founding documents identifies it as a role of

the government in its opening strophe. One method to achieve this is monitoring or

surveilling population health status and trends.

Disease surveillance provides a rich source of information about when and where

major health problems occur in populations over long periods of time, and large

areas. From Lemuel Shattuck’s landmark 1850 Report of the Massachusetts Sanitary

Commission that proposed the creation of a permanent public health at the state

and local levels in order to gather statistical information on public health conditions
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that ultimately led to the development of the decennial census and standardization of

nomenclature for diseases and causes of death, to modern modern initiatives like the

HealthMap Project that leverages machine learning and big data to enable near real

time forecasting infectious diseases, the ways and means of executing public health

surveillance have evolved over time [109, 21].

Similarly, the definition and objectives of surveillance have evolved as well. Until

the 1960’s, surveillance in regard to public health was the close monitoring and, if

necessary, the quarantining of persons who, due to some exposure, were at risk of

developing an infectious disease in order to prevent the spread of disease to others

[108]. In a contemporary context, surveillance in regards to public heath involves the

ongoing systematic collection, analysis, and interpretation of data, closely integrated

with the timely dissemination of these data to those responsible for preventing and

controlling disease and injury with a stated goal of providing information that can be

used for health action by public health personnel, government leaders, and the public

to guide public health policy and programs [110, 25]. One method to achieve these

goals is by using mathematical models to quantify, measure, and track infectious

diseases over space and time. The current chapter intends to provide some basic

information about mathematical modeling of infectious diseases as well as different

methods to model them over time and space.

In this work, we seek to reconcile current approaches to infectious disease mapping

with the classical methods of modeling infectious diseases given the challenges asso-

ciated with using aggregated surveillance data. In this chapter, we briefly introduce

infectious disease and disease mapping models that we build upon throughout this

work and describes the organization of the rest of this paper.
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1.2 Spatial Modeling of Infectious Disease Surveil-

lance Data

Spatial modeling of infectious diseases has long played a role in the arena of public

health as public health professionals learned how geographical information could be

used to explore patterns of diseases and the relationships between diseases and risk

factors. As early as 1840, Robert Cowan used a map to highlight the relationship

between overcrowding and scarlet fever in Glasgow, Scotland [85]. Perhaps the most

famous early use of spatial modeling of a disease was John Snow, who drew dots on

a map of the Soho neighborhood of London which he subsequently used to trace the

source of the cholera outbreak to fecal-contaminated water supplied by the Broad

Street pump [105]. These early attempts to model infectious diseases were based on

the basic premise that maps can be used to contain, control, and reduce the spread of

infectious diseases. They typically also have a goal of attempting to define the most

vulnerable populations at risk for obtaining disease.

The first real Geospatial Information System (GIS), the Canada Geographic Infor-

mation System in the mid-1960s, led to the increased availability of spatial data that

further enabled improvements in the analysis of spatially referenced public health

data [76, 33, 98, 120]. Spatially referenced data are any data with a direct or indirect

reference to a specific location or geographical area. The location may include a set

of coordinates such as longitude and latitudes or administrative areas, such as census

tracts, zip codes, congressional districts, etc. In terms of infectious diseases, this data

is typically presented as counts of people infected with a particular disease in a small

area such as a county. Researchers can then use this data to estimate spatio-temporal

patterns in disease risk, explain the variation in the risk by covariate factors, identify
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high-risk clusters of disease, and conduct surveillance of disease outbreaks [76].

Several statistical methods exist to analyze spatially referenced infectious disease

data. The choice of statistical method depends on the type or category of infectious

disease data that is available. Blangiardo defined spatially referenced data as the

realized values of stochastic process indexed by space formally defined as:

Y (s) = y(s), s ∈ D

Where D is a fixed subset of (Rd). In an public health setting, d is typically equal

to 2 and represents a 2 dimensional coordinate plane (map). y(s) is an individual

observation from the actual data and s is the spatial unit of measurement. If D is a

continuous surface then the problem can be specified as a spatially continuous ran-

dom process, and if D is a countable collection of 2-dimensional spatial units then the

problem is defined as a discrete random process. Blangiardo categorized spatially ref-

erenced data as either areal, point-referenced, or point-pattern [17]. This distinction

is crucial for selecting appropriate statistical models; specifically, point-referenced

data, where measurements at fixed locations are random variables, are typically ana-

lyzed using geostatistical methods, whereas point-pattern data, in which the locations

themselves are random variables in space, require point process techniques to account

for the inherent randomness of the spatial locations.

Areal data refers to a situation where y(s) is the aggregation of values over areal units

partitioning the overall study area D. Areal units are typically irregular in shape and

has boundaries that are defined based on an administrative area such as census tracts,

zip codes, counties, etc. For example, state level public health departments and the

CDC typically aggregate infectious disease counts by counties.
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Point referenced data consists of data measured at specific location y(s) where the

spatial domain s at specific locations s varying continuously over the spatial domain

D. The location s is commonly represented by two-dimensional vector longitude and

latitude. The actual data are represented by observations y = (y(s1), y(s2), ..., y(sn))

at locations (s1, s2, ..., sn). For example, we can get measurements of pollutants from

air pollution monitors positioned throughout a particular city. The most common goal

of point-referenced data in a public health setting is to interpolate y(s) to locations

where data measurements are not available.

Point pattern data is the collection of information about whether the event of interest

occurred or not at random locations. The spatial domain D represents the set of points

where the events of interest occurred. For example, we might be interested in locations

of homeless encampments or addresses of persons with HIV. In these examples, the

location S in (R2) is random and the measurements y(s) are taken as binary value

0, 1 based on whether the event has occurred or not. The main question of interest

with point pattern data is whether the event of interest is random or clustered in the

spatial domain D.

1.3 Existing Methods and Estimation Approaches

for Infectious Disease Model Parameters

1.3.1 Maximum Likelihood Estimation (MLE)

Over the years, a variety of approaches have been used to conduct inference of the

model parameters epidemic models. Frequentists tend to apply the Maximum Likeli-

hood approach. Maximum likelihood estimation (MLE) is a method used for fitting

a parametric statistical model to data and providing estimates for the model param-

eters. In general, for a given set of data and an underlying probability model, the
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method of maximum likelihood selects values of the model parameters such that the

parameters maximize the likelihood function, or equivalently, log-likelihood function.

Maximum likelihood estimation, which has well-understood large sample properties,

provides a unified approach for estimating parameters of interest. Probability state-

ments within a MLE approach rely on indirect statements based on confidence inter-

vals and p-values. Calculation of the confidence levels based on an MLE may require

development of appropriate theoretical results and the usual conditions that require

asymptotic normality of maximum likelihood estimators are often violated. [52, 74].

1.3.2 Hierarchical Bayesian Approximation

Bayesian inference is the process of fitting a model to data and summarizing the

results via the posterior distribution of the parameters and unobserved quantities.

In contrast to maximum likelihood estimation, in a Bayesian model, parameters are

treated as random variables and relevant data are considered as given. Put simply,

in Bayesian inference, before observing the data, the possible means and standard

deviations have some prior distribution, which can range from very uncertain to

highly informed. After we observe the data, we update our probabilities based on

information observed in the data, summarized via the likelihood function. Thomas

Bayes formalized the method to describe how uncertainty changes when new data are

taken into account as:

P (α | D) =
P (D | α)P (α)

P (D)

where:

P (D) =

∫
dαP (D | α)P (α)
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Here, α is the set of model parameters, D is the observed data, P (α | D) is the

posterior distribution, P (α) is the prior probability or what you believed before you

saw the evidence, P (D | α) is the likelihood likelihood summarizing information in

the data regarding α, and P (D) is the “marginal likelihood” or the likelihood of seeing

that evidence under any circumstances [74, 9].

In infectious disease modeling, we are often interested in describing data from indi-

viduals within groups. In situations like this, the parameters of the model will have

meaningful dependencies on each other. For example, we know that different demo-

graphic and socio-economic groups have different underlying biases that will impact

the probability that they become infected. In this case, whether a person becomes

infected depends only on the parameters specific to that individual, but those individ-

ual parameters are influenced by the different groups that the person belongs to. This

chain of dependencies among the different parameters in the population describes a

hierarchical model [73].

1.3.3 Bayesian Hierarchical Disease Mapping

Researchers often utilize disease maps to investigate the spatial variation of disease

risk across different geographical regions. These maps display “small-area” risk esti-

mates such as area-level period prevalence or relative risk (RR) of disease occurrence.

Relative risk refers to the ratio of the probability of developing a disease in a par-

ticular area to the probability of developing the disease in a reference region, which

may be the entire study region or a distinct area. Disease maps are instrumental

in highlighting spatial disparities in disease risk, generating hypotheses about dis-

ease etiology, and informing the allocation of resources [117]. The history of disease

mapping dates back to the 1800s, with early examples including maps of yellow fever

in the United States and cholera in Europe, which were pivotal in identifying risk
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factors [122]. One of the most renowned examples is John Snow’s 1855 cholera map

(Figure 1.1) [104], which depicted the distribution of cholera deaths in London at the

residence level and played a crucial role in linking the outbreak to a contaminated

water supply.

.

Figure 1.1: John Snow’s Cholera Map, [104]

Statistical methods for disease mapping typically utilize either point-level data or

areal data. Point-level data provide the exact geographical coordinates of disease

cases and non-cases, similar to the data used in John Snow’s cholera map. However,

point-level data require detailed information on the location of each case, which can

be resource-intensive to collect and is often not readily available. Therefore, this

discussion focuses on methods for areal data, where the study region is divided into

discrete areas. In areal data maps, the data consist of counts of disease cases and the

at-risk population for each area. Areal data are more commonly accessible from rou-

tine data sources, such as cancer registries or census data, and they protect individual

privacy since exact locations are not required [92]. Disease maps of the United States,
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for example, can show subdivisions by state or by counties within states. The ideal

map partition should minimize ecological bias, where associations observed at the

aggregate level do not hold at the individual level due to heterogeneity within areas.

To ensure that disease risk estimates at the area level closely reflect individual-level

risk, it is advisable to use maps with the finest possible subdivisions [37]. However,

choosing a coarse grid can result in risk estimates that average out high and low-risk

areas.

While finer grids are preferred for disease maps, they can lead to increased random

variation in the estimates, particularly in the context of rare diseases or sparse popu-

lations [119]. This increased variability can make it challenging to determine whether

extreme risk estimates are indicative of true elevated risk or simply a result of random

fluctuation. For instance, in maps showing standardized morbidity/mortality ratios

(SMRs), the SMR for an area is calculated by dividing the observed number of disease

cases by the expected number of cases. When the disease is rare or the population is

small, the variance of the SMR can be large, making it difficult to identify true hot

spots of disease incidence.

Advanced statistical methods can help address the issue of random variation in disease

maps. One common approach is to introduce assumptions about the similarity of risk

estimates between neighboring areas, allowing for more stable estimates. Bayesian

hierarchical models, or Bayesian “smoothing” models, have been widely used in dis-

ease mapping to enhance the precision of risk estimates by borrowing information

from adjacent areas. Bayesian smoothing models work by stabilizing disease maps,

allowing each area to “borrow strength” from other areas, thereby reducing the im-

pact of random variation. For example, local spatial smoothing models assume that

disease risk in a given area is similar to the risk in neighboring areas, which helps to

smooth out extreme values by averaging them with the risks of nearby regions. Global
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smoothing, on the other hand, allows for borrowing strength across non-contiguous

areas, assuming that area-level risks deviate from a mean level without a specific

spatial pattern.

Despite the benefits of spatial smoothing, it can introduce challenges when detecting

clusters or hot spots. Spatial smoothing may mask true clusters by assuming a smooth

risk surface, which can lead to a loss of accuracy in identifying isolated high-risk areas

[34, 120, 58]. While spatial smoothing can remove extra variation and produce more

stable estimates, it may not capture abrupt changes in risk that characterize isolated

hot spots.

In summary, disease maps with finer subdivisions are generally preferred because

they provide estimates that better approximate individual-level risk. However, maps

of crude risk estimates can be unstable when dealing with rare diseases or small popu-

lations. Bayesian disease mapping models, which incorporate spatial smoothing, offer

a way to enhance the stability of these estimates by reducing random variation. While

spatially smoothed disease maps may present a more cohesive view of clustering, their

assumptions may obscure the detection of true hot spots. Therefore, the choice of

model and smoothing technique should be carefully considered based on the specific

objectives of the disease mapping study.

1.4 Motivating Example: Georgia Tuberculosis Surveil-

lance Data

This chapter focuses on addressing problems of spatial aggregation in infectious dis-

eases. Spatial models attempt to identify structural factors that create conditions

for the prevalence of certain outcomes [69]. By approaching the analysis of infec-

tious diseases from a spatial perspective, we can identify the characteristics of groups
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that influence variation in rates of a particular outcome of interest. Unlike many

traditional infectious disease models, spatial models begin with the assumption that

relationships between variables do not operate similarly in all places or at all levels

of interaction [5]. Further, the use of spatial models is based on the premise that

geographical variation in the outcome of interest accurately models the influence of

aggregate-level factors such as socio-economic status on the individual, and thus,

specifically links structure to rates of individual-level outcomes [70].

Due to the limited availability of small-area data, identifying the spatial boundaries

of an infectious disease becomes challenging, leading to an instance of the modifiable

areal unit problem (MAUP) [79]. MAUP refers to the fact that aggregating data

into different sizes or geographical units for spatial analysis can introduce issues that

prevent a disease mapping model from fully reflecting the spatial characteristics of an

infectious disease [93]. Although this approach does not completely solve the problem,

we will employ spatially varying coefficient models to help alleviate it. These models

allow parameters to vary across space, thereby reducing the scale effect of MAUP by

capturing local variations in the data. This, in turn, will enable researchers to identify

potential future disease clusters and allocate the necessary surveillance and mitigation

resources to appropriate areas. We test our models on tuberculosis surveillance data

collected from the CDC’s National Tuberculosis Surveillance System (NTSS) as well

as the Georgia Department of Public Health’s State Electronic Notifiable Disease

Surveillance System (SendSS).

1.4.1 Overview of Tuberculosis

Tuberculosis (TB) is an infectious disease caused by the bacteria Mycobacterium

tuberculosis (MTb) that typically manifests through respiratory symptoms, but can

also affect other parts of the body such as the kidneys, spine, and brain. The World
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Health Organization reports that over 10 million people became infected with TB

in 2020 resulting in an estimated 1.5 million deaths. This made TB the second

most deadly infectious disease that year after only COVID-19 [94]. Furthermore, in

2020, the United States saw 7,174 cases, resulting 526 deaths, and $503 million in

associated heath care costs. Besides the loss of life and financial costs, each case

requires a patient to take approximately 180 days of medication, in addition to the

burden of multiple x-rays, lab tests, and contact tracing [35, 42]. In response to this

loss, the World Health Organization has set a goal to reduce TB incidence by 90% and

TB-related deaths by 95% by 2035. Similarly, the CDC established the Division of

TB Elimination, whose mission is to promote health and quality of life by preventing,

controlling, and ultimately eliminating TB in the United States.[62].

The MTb bacteria is transmitted from person to person via airborne particles mostly

through an infected person coughing, speaking, or sneezing in the vicinity of an un-

infected individual. One of the most challenging aspects of TB is its latency. Tuber-

culosis infections can be classified as either “latent” (non-transmissible TB infection)

or “active” (generally symptomatic, transmissible TB disease). It is estimated that

approximately 23% of the worlds population has latent TB infection (LTBI), which

is an asymptomatic condition that is not infectious. However, only five to ten per-

cent of persons with LTBI will progress to active TB disease during their lifetime,

with approximately half of those developing the disease within the first two years of

exposure [36]. The remaining 90 - 95% of exposed persons remain infected, but the

infection remains dormant or latent [94]. The rates of LTBI in the United States are

much lower, than those worldwide at closer to 5%, but LTBI still remains a significant

risk factor [36].

Complicating issues concerning LTBI, the Human Immunodeficiency Virus (HIV)

epidemic exacerbates active TB incidence due to the manner in which HIV suppresses
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one’s immune system [94]. Persons co-infected with HIV and MTb are twenty to thirty

times more likely to progress from LTBI to active TB disease [18]. Additionally, TB

is one of the leading causes of death among HIV infected individuals both globally

and in the United States, with 19% of HIV-positive TB patients dying compared to

3% of HIV-negative patients according to a recent study [18].

In addition to LTBI and HIV co-infection, the proliferation of drug-resistant strains

of TB also pose significant challenges to efforts to manage and control infection. Drug

resistance typically develops when patients fail to take medications regularly, undergo

therapies involving a single drug, have poor drug absorption, take improper combi-

nations of active medications in a treatment regimen, and/or fail to adhere to the

prescribed treatment regimen. Increased use of antibiotics to treat infectious diseases

caused multidrug resistant (MDR) and extensively drug resistant (XDR) stains of TB

to propagate. Drug resistance typically results in fewer and more expensive treatment

options, longer treatment durations, and generally poorer outcomes from the remain-

ing available treatments [87, 57]. The WHO defines Pre-XDR as TB caused by My-

cobacterium tuberculosis strains that fulfil the definition of MDRand which are also

resistant to any fluoroquinolone. Additionally, the WHO defines XDR as TB caused

by Mycobacterium tuberculosis strains that fulfil the definition of MDR and which

are also resistant to any fluoroquinolone and at least one of the following: levofloxacin

or moxifloxacin, bedaquiline and linezolid. [43, 44, 127]. Drug resistance also leads

to increased risk of death as evidenced by a 2012 study where even when controlling

for several potential confounders, patients with a drug resistant strain of TB had a

higher risk of death during during TB treatment in comparison to drug-susceptible

TB cases [29]. Disease resistance, latent infections, and the HIV epidemic highlight

how critical is it to monitor and control the spread of TB and adds to complexities

of TB disease surveillance.
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1.4.2 Tuberculosis Surveillance in the United States

Although the prevalence of TB in the United States is among the lowest in the world,

the nature of the disease still poses a problem, as many geographic locations within

the United States have TB incidence that mirrors that of high burden countries. This

requires the United States to develop a dual approach of maintaining and strengthen-

ing current TB control priorities, while increasing efforts to identify and treat latent

TB infection in populations at risk for TB disease [116].

The CDC defines a notifiable disease as one in which regular, frequent, and timely

information regarding individual cases is considered necessary for the prevention and

control of the disease [2]. TB became a nationally notifiable disease in 1951 with

reporting being mandated in all 50 states and the District of Columbia [82]. Data are

collected by local and state health departments and submitted electronically to the

CDC, Division of Tuberculosis Elimination. Using case surveillance methods, active

TB cases are reported to the National Tuberculosis Surveillance System (NTSS) [45].

Case surveillance begins with local, regional, state, and territorial public health agen-

cies. These agencies collect data on confirmed diagnoses of TB to understand how

the frequency of TB cases varies across small areas. This assists researchers and pub-

lic health officials in identifying TB trends and facilitates the tracking of outbreaks.

The reporting process generally occurs in two phases. First, hospitals, healthcare

providers, and laboratories report positive lab results or information on people di-

agnosed with TB to appropriate health departments. Then state and local health

departments send deidentified data about confirmed cases of TB to CDC [2]. Figure

1.2 illustrates the CDC’s case reporting and notification process. For TB cases, this

process is executed via the Report of Verified Case of Tuberculosis (RVCT) [2].

The RVCT allows the CDC to standardize case information collected from all juris-
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.

Figure 1.2: Flowchart showing the CDC case surveillance reporting procedure for
a nationally notifiable disease, such as tuberculosis. The process includes reporting
by healthcare providers to local and state health departments, with data ultimately
submitted to the CDC for analysis and public health response.

dictions into a unified surveillance system for TB cases from all 50 states, the District

of Columbia, and U.S. territories. Information collected on the form includes case cat-

egorization, demographic, clinical, laboratory, treatment, risk factors, and outcome

characteristics. This system categorizes TB cases according to occupation status, site

of disease, and sputum culture conversion. Demographic information includes the sex,

age, origin at birth, and race/ethnicity of the patient. Clinical information includes
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tuberculin skin test (TST) result at time of TB diagnosis, interferon gamma release

assay (IGRA) result at time of TB diagnosis, culture result, and initial drug resis-

tance. Risk factors included previous diagnosis of TB, excess alcohol use, drug use,

incarceration at time of diagnosis, and residential status at a long-term care facility

at time of diagnosis. Treatment outcomes included method of TB treatment, and

completion of TB treatment. Method of TB treatment was categorized as directly

observed therapy (DOT), self-administered therapy (SAT), both DOT and SAT, or

unknown/missing [41]. Cases may be verified using a laboratory result, the clinical

case definition, or a provider diagnosis. Follow up reports collect information ob-

tained after the initial case report has been submitted. Data are transmitted to CDC

electronically, using CDC-supplied software [82]. See Appendix ?? for the complete

RVCT form.

1.4.3 Tuberculosis Surveillance in Georgia

Georgia follows all baseline CDC protocols for reporting cases. Specifically, the

state of Georgia, by law, requires all physicians, laboratories, and other health care

providers to immediately report clinical and laboratory-confirmed TB cases under

their care to Georgia public health authorities. The TB Epidemiology Section of

the Georgia Department of Public Health (GDPH) is responsible for the systematic

collection of all reported TB cases in the state [91]. The GDPH states that their TB

surveillance program allows public health officials and health care providers to follow

up with patients, administer directly observed therapy (DOT), monitor TB treatment

until completion, evaluate and screen individuals exposed to a TB case, and control

TB outbreaks [91].

Hospital infection control personnel as well as other local public health officials elec-

tronically report TB cases through the State Electronic Notifiable Disease Surveillance
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System (SendSS). If officials are not able to report cases electronically, they may also

report TB cases by calling, mailing, or faxing a report to public health authorities.

Information contained in the report is similar to that collected by the NTSS and

includes demographic, clinical, and risk factor information about reported TB cases

as well as their contacts. This information is transmitted to the U.S. Centers for

Disease Control and Prevention (CDC) and becomes part of the national TB surveil-

lance database. State and local public health officials use this surveillance data to

guide policy and decision making, set priorities for program interventions, evaluate

program performance for the prevention and control of TB in Georgia, and educate

key stakeholders and the general public on TB [91].

In 2021, Georgia reported 221 new TB cases for a rate of 2.1 cases per 100,000 in 2020.

This is slightly lower than the national case rate of 2.4 cases per 100,000 population

in 2021. Even though the most recent reports (2021) indicate that Georgia has the

sixth highest number of new TB cases, it only had the fourteenth highest rate per

100,000 population among the fifty states who reported information [40].

Public health officials in Georgia also routinely conduct contact investigations among

persons exposed to a TB case to identify secondary TB cases and contacts with

latent TB infection (LTBI). During a contact investigation, public health staff conduct

in-person interviews to ask recent contacts whether they have TB-like symptoms,

administer a TB skin test (TST) or interferon gamma release assay (IGRA), repeat

the TST or IGRA 8-10 weeks after the last exposure to the index (first) TB case if the

initial TST or IGRA is negative, and have a chest radiology exam performed if the

TST or IGRA is positive. Georgia identifies persons with LTBI as having a positive

TST or IGRA but are asymptomatic and have a normal chest radiology exam. In

2019, the GDPH identified 3,120 people who were thought to have been in contact

with someone with an active TB infection. Of the 3,120 people identified, public
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health officials were able to test 2,361 persons for TB. From this number, 464 had

LTBI and 42 had TB disease [91]. Additionally, among the laboratory confirmed

cases in Georgia in 2020, there were 17 cases with some form of drug resistance and

there were 20 deaths as a result of TB [91].

1.5 Organization

This dissertation is structured to guide the reader through the technical foundations,

methodological advancements, and applied analyses that underpin the study of spatial

disease mapping, with a particular emphasis on tuberculosis (TB) prevalence.

Chapter 2 lays the groundwork by providing essential background on several technical

topics that are frequently referenced throughout the dissertation. This chapter delves

into the theoretical aspects of modern disease mapping, focusing on the frameworks

and assumptions that guide current research. Additionally, it introduces Hamiltonian

Monte Carlo (HMC), an advanced and efficient Markov chain Monte Carlo technique

that plays a crucial role in the posterior inference processes utilized in the subse-

quent chapters. The detailed discussion of HMC is necessary, as it is the primary

computational technique used across all models presented in this work.

Chapter 3 addresses Aim 1, where the focus shifts to evaluating the performance of

hierarchical Bayesian disease mapping models in the context of TB prevalence that

is spatially concentrated. Using a case study centered on Metro Atlanta, this chapter

illustrates how these models can effectively identify high-risk areas, providing valuable

insights into the spatial dynamics of TB. While demonstrating the practical utility of

these models, the chapter also highlights some challenges and raises critical questions

about their performance in specific contexts.

Chapter 4 explores Aim 2 by shifting the focus to model adequacy, particularly in
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the context of localized disease surveillance. This chapter investigates the ability of

disease mapping models to capture sharp spatial transitions, which are often critical

in understanding the spread of diseases like TB. The chapter evaluates the epidemi-

ological characteristics of different regions and assesses how well the models perform

in representing these localized variations.

Chapter 5 discusses Aim 3 and presents a comparative analysis of local spatial re-

gression models, specifically Bayesian Hierarchical Models (BHM)—including the In-

trinsic Conditional Autoregressive (ICAR) and Horseshoe models—and Geospatial

Weighted Regression Models (GWR). This chapter examines the strengths of each

approach in capturing spatial variation in the associations between TB prevalence

and local covariates. The comparison aims to provide a deeper understanding of

complex spatial patterns and to identify which models are best suited for various

analytical scenarios.

Finally, Chapter 6 concludes the dissertation by summarizing the key findings and

discussing potential directions for future research. Throughout the research presented

here, several new discoveries and challenges emerged that could not be fully addressed

within the scope of this dissertation. These include potential model extensions, the

development of customized methods for marginal likelihood estimation, and the ex-

ploration of alternative computational techniques. This final chapter aims to reflect

on the broader implications of the work and to propose avenues for continued explo-

ration in the field of spatial disease mapping.
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Chapter 2

Technical Background on Disease

Mapping Topics

2.1 Theoretical Foundations of Linear Mixed Models

2.1.1 Introduction

Traditionally, statistical analyses often rely on linear models to capture relationships

between variables. While effective in capturing linear trends, these models often falter

when faced with data characterized by inherent variability due to unobserved factors

or repeated measurements on the same subjects. The limitations become particularly

pronounced when working with data structures where observations are nested within

higher-level units such as individuals within groups or repeated measurements over

time.

Linear Mixed Models (LMMs) provide a potent solution to these multifaceted chal-

lenges. These models offer a flexible and robust framework for modeling relationships
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between variables, while simultaneously accommodating the intrinsic variability in-

troduced by different levels of grouping in the data. By assimilating fixed effects,

which capture population-level relationships, and random effects, which encapsulate

individual-level deviations from these population-level trends, linear mixed models

furnish a more nuanced and accurate representation of complex real-world data [19].

In the sections below we define LMMs, followed by a detailed description of the con-

cept of Best Linear Unbiased Prediction (BLUP). Throughout, we contrast so-called

“old style” and “new style” interpretations of random effects, and contrast their roles

in both estimation and prediciton.

2.1.2 Definition

A general equation for a linear mixed model (LMM) can be written as:

Yi = Xiβ + Ziui + ϵi (2.1)

Where:

• Yi is the vector of observations.

• Xi is the design matrix for the fixed effects.

• β is the vector of fixed effect coefficients.

• Zi is the design matrix for the random effects.

• ui is the vector of random effect values.

• ϵi is the vector of (within i) random errors.

Assumptions include:

• E(ϵi
∼
) = 0 and V ar(ϵi

∼
) = σ2Vi

∼
; where Vi

∼
is a matrix that defines the structure
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of the variance of the residuals (ϵi) and σ2 is the error variance.

• E(ui
∼
) = 0 and V ar(ui

∼
) = G; where G is the covariance matrix of the random

effects.

• ϵi
∼
’s and ui

∼
’s are mutually independent

2.1.2.1 Random Effects in Linear Models

To grasp the significance of LMMs, one must appreciate how they differ from tra-

ditional linear models. Traditional linear regression places exclusive emphasis on

fixed effects, assuming that all observations are independent but not identically dis-

tributed since E(Y ) varies across observations. This assumption is often inadequate

when dealing with data characterized by correlation, clustering, or hierarchical struc-

tures, as frequently encountered in longitudinal studies, repeated measurements, and

data collected across varying levels of aggregation [75].

Random effects introduce an intricate hierarchy into the modeling process. This hi-

erarchical structure encapsulates the insight that observations within the same group

or subject are more likely to be correlated with each other than with observations

from different groups or subjects. Often, random effects associated with a particular

layer of a hierarchical model are independent of one another. However, when their

predicted values are incorporated within each layer, observed outcomes are indepen-

dent conditioned on these values but correlated within each layer in the joint model.

These relationships provide a convenient structure for incorporating level-specific cor-

relations such as repeated measures on the same study subject, observations taken at

the same time, or in nearby spatial locations.

Random effects, ui, capture the variability in the data that is not explained by the

fixed effects. They are assumed to be normally distributed with mean 0 across ex-
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perimental units, i.e.,

ui ∼ N(0, G) (2.2)

Where:

• G is the covariance matrix of the random effects, capturing the variability of

each random effect and the covariance between them.

The residuals, ϵi, represent the variability not explained by either the fixed or random

effects. They are also assumed to be independent and normally distributed:

ϵi
iid∼ N(0, σ2Vi

∼
) (2.3)

where:

• σ2 is the error variance.

• Vi
∼

is the matrix defining the variance structure of the residuals.

The combined variability in the outcome, considering both random effects and resid-

uals, is:

V ar(yi) = ZiGZ ′
i + σ2Vi

∼
(2.4)

where:

• Z ′
i is the transpose of the design matrix for the random effects.

In more complex designs, the analysis can include nested or crossed random effects.

Nested effects occur when one grouping factor is completely contained within another

(e.g., students within schools). Crossed effects occur when grouping factors overlap

but are not nested (e.g., students and test examiners).
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The composition and quantity of random effects, along with their interconnections

(whether crossed or nested), significantly impact the analysis and interpretation of

linear mixed models. Moreover, the selection of covariance structures, such as de-

ciding if matrix G is diagonal or includes more complex patterns, is crucial. This is

because the structure of G can be instrumental in shaping the expected correlations

among observations. Such correlations may arise due to repeated measurements or

from temporal or spatial relationships among the data points, thereby influencing the

analytical outcomes and interpretations of these models.

In summary, random effects in linear mixed models allow for the incorporation of

group-specific variability into the model. Their proper specification and understand-

ing are crucial for correct modeling and interpretation of hierarchical or grouped

data. By accounting for such correlations, LMMs engender more accurate parame-

ter estimation, robust hypothesis testing, and enhanced reliability in the statistical

inferences derived from the model. Ultimately, LMMs form a versatile statistical

framework designed to address the challenges posed by hierarchical and correlated

data. Comprising both fixed and random effects, LMMs provide a flexible means to

model relationships between variables while accounting for the variability introduced

by various levels of grouping. The inclusion of random effects acknowledges the cor-

relations anticipated within the hierarchical grouping structure, enhancing parameter

estimation and enabling robust statistical inference.

2.1.2.2 Prediction versus Estimation

Traditional statistical theory tends to focus almost exclusively on estimation, empha-

sizing its centrality in the field. However, as illuminated by linear mixed models, the

importance of prediction cannot be overlooked [20]. The primary goal of statistical

estimation is determining the values of unknown parameters in a statistical model. In
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the context of linear mixed models, these parameters can encompass the fixed effects,

like treatment effects, or the variances and covariances of the random effects. Esti-

mation is driven by a desire to generalize about the population from which samples

are drawn. Instead of pinpointing predictions for individual outcomes, estimation

concentrates on deducing information about the entire population or specific groups

within that population. The results of estimation are typically expressed in terms

of point estimates (which offer the best guesses for parameter values) and interval

estimates (providing a range of plausible values for the parameters).

The main objective of statistical prediction is to produce forecasts or deduce values

of the response variable for new observations, particularly when given specific values

for the predictor variables. Predictions using LMMs involve using predicted values

of random effects to provide statistical predictions of individual-level outcomes. In a

linear mixed model, one might predict the response of a particular subject based on

fixed effects, such as treatment conditions, conditional on the value of an individual’s

random effects, like individual-specific random intercepts. The predictions factor in

both the average response across all subjects and the deviations specific to individual

subjects. In essence, while estimation focuses on understanding the underlying struc-

ture and parameters of the model generating the observed data, prediction zeroes

in on forecasting new data observations. Further, in LMMs, the predictions of the

random effects enable “best guesses” applicable to specific subjects.

2.1.3 Best Linear Unbiased Prediction

Best Linear Unbiased Prediction (BLUP) is a method used to make predictions of

random effects in linear mixed models. While the fixed effects are estimated using

least squares or maximum likelihood methods, BLUP provides a way to predict the

random effects. It is termed “best” because it minimizes the prediction error variance,
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“linear” because it is a linear function of the observed data, and “unbiased” because,

on average, it correctly estimates the true value of the random effect. BLUP plays an

instrumental role in providing both estimation-based and prediction-based inference

within the linear mixed model framework. It not only aids in understanding the

structure of the observed data but also in forecasting unobserved outcomes. By

optimizing the balance between these crucial aspects, BLUP ensures that the resulting

predictions are both accurate and unbiased across varying levels of the hierarchy and

that the estimates of the model’s fixed effects maintain clear statistical properties as

well. BLUP plays a pivotal role in capturing the nuances of individual-level deviations

from population-level trends, thereby contributing to the comprehensive analysis of

hierarchical data [99].

The marriage of LMMs with BLUP imparts precision and efficiency to data analysis.

BLUP provides a robust means to predict random effects, contributing to accurate

modeling of within-group variability. In the context of LMMs, this prediction is

seamlessly integrated within the broader inferential framework, enabling researchers

to construct more accurate and nuanced models that capture the complex interplay

between fixed and random effects. BLUP not only enhances the quality of parameter

estimates but also facilitates the prediction of unobserved values within and across

hierarchical structures.

In the paper entitled, That BLUP is a good thing: the estimation of random effects,

George Robinson nicely summarizes the relationship between the linear mixed model

and the BLUP. In the work, given the linear mixed model, Robinson (1991) describes

the best linear unbiased prediction (BLUP) for the random effects ui as [99]:

ûi = GZ ′
iΣ

−1
i (yi −Xiβ̂) (2.5)
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where Σ is the variance-covariance matrix of yi and is defined as:

Σi = ZiGZ ′
i + σ2Vi

∼
, (i = 1, ..., n) (2.6)

and the estimated fixed effects β̂ are provided by:

β̂ = (
n∑

i=1

X ′
iΣ̂i

−1
Xi)

−1

n∑
i=1

X ′
iΣ̂i

−1
yi (2.7)

The prediction of a new observation ŷ∗ conditional on ûi is given by:

ŷ∗i = X∗
i β̂ + Z∗

i ûi (2.8)

.

The foundation of BLUP-based estimation lies in the calculation of BLUP-based

predictions of ui and BLUP-adjusted estimates for β, represented as ûi and β̂, re-

spectively. These estimates are governed by the mixed model equations, as initially

formulated by Henderson in 1950. Mixed models have been foundational in quantita-

tive genetics and animal breeding. Henderson played a pivotal role in the development

and application of mixed model equations, especially in animal breeding. His work

in the mid-20th century established methods for estimating variance components and

making predictions using mixed models. Here are the basic mixed model equations

as formulated by Henderson:

X ′V
∼

−1X X ′V
∼

−1Z

Z ′V
∼

−1X Z ′V
∼

−1Z +G−1σ2


β̂
û

 =

X ′V
∼

−1y

Z ′V
∼

−1y

 (2.9)



28

The simultaneous equations utilize these matrices to derive BLUP predictions of ran-

dom variable u and estimates of fixed effects β, thereby establishing their interrelation

with the observed data y. The mixed model equations offer a systematic approach to

ascertain these parameter estimates conditional on the predicted random effects.

Comparatively, BLUP estimates diverge from those obtained through Generalized

Least Squares (GLS) when random effects are treated as fixed effects. While GLS

aims to provide the most precise estimates of fixed effects by minimizing the variance

of the errors, BLUP acknowledges the stochastic nature of random effects and aims

to provide the best linear unbiased predictions (BLUP) for them. This distinction

is particularly pronounced in the case of the dairy cow example detailed below [99],

where BLUP effectively accommodates the variability in sire effects based on available

information. In essence, while both BLUP and GLS are integral tools in the realm of

statistical modeling, they cater to different needs, with BLUP excelling in its ability to

generate reliable predictions for random effects, and GLS standing out in its capability

to estimate fixed effects.

To illustrate the practical application of BLUP, we consider a scenario involving first

lactation yields of dairy cows. In this case, herd effects are treated as fixed (β),

while sire additive genetic merits constitute the random effects (ui). The variance-

covariance matrix σ2I encapsulates deviations of yield from a model primarily ex-

plained by sire and herd effects. Meanwhile, the known multiple of the identity ma-

trix is represented by the genetic variation matrix G. By utilizing BLUP estimates in

this context, we capitalize on available information regarding each sire’s daughters’

lactation yields, leading to more informative and precise estimates compared to the

fixed sire effects [99].

A critical aspect of BLUP estimation lies in assessing the precision of the obtained
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estimates. The variance-covariance matrix of BLUP estimates is determined by σ2

multiplied by the inverse of the left-hand-side matrix in the mixed model equations

[99]. This inverse matrix encapsulates variance estimates for various components,

such as herd and sire effects, providing a quantification of the estimate precision.

Notably, increased information availability for a specific sire translates to diminished

estimate variation, ultimately yielding more dependable and finely-honed estimates

of its genetic merit.

While the illustrative model detailed in Robinson (1991) used small numbers with few

significant digits to make the example easier to follow, it underscores the significance

of accurate variance parameter estimation. The residual variance σ2 is crucial for

BLUP for several reasons:

1. Weighting Observations: BLUP uses the inverse of the total variance-covariance

matrix of yi to weight observations when predicting random effects. The matrix

is determined by both the structure imposed by random effects (via the matrix

ZiGZ ′
i, where G is the covariance matrix of the random effects) and the residual

variance σ2.

2. Shrinkage: The magnitude of the residual variance relative to the variance of

the random effects determines the amount of “shrinkage” applied to the random

effect predictions. If the residual variance is large relative to the random effect

variance, the BLUPs will be shrunken more towards the population mean. This

shrinkage property ensures that the predictions are stable and less influenced

by random noise.

3. Model Fit and Diagnostics: The estimated σ2 can be used to assess the

goodness of fit of the model. Large residuals (compared to what is expected un-

der the assumed σ2) can indicate model misspecification, outliers, or influential

points.
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Ultimately, the residual variance in the context of BLUP and mixed models quantifies

the variability in the data unexplained by the fixed and random effects. It plays a

pivotal role in weighting observations, determining the degree of shrinkage of the

random effect predictions, and assessing the model’s fit.

2.1.3.1 Links to Other Statistical Theory

Robinson (1991) connects the BLUP approach to other branches of statistical theory.

It is fascinating to note that BLUP has its roots in animal breeding and genetics,

specifically tailored for ranking and selection. The BLUP has proved especially useful

when ranking things based on traits you cannot easily observe, treated as random

effects. Even though BLUP theory has roots in animal breeding experiments, it is now

used in many other areas. Robinson’s (1991) discussion focuses on several key themes:

the retrieval of inter-block information through BLUP, a comparative analysis of

Bayesian and Classical approaches to BLUP-based inference, and an exploration of

BLUP’s relationship with regression to the mean. Through this examination, we gain

a comprehensive understanding of how BLUP-based inference interacts with broader

statistical concepts.

As noted above, a crucial aspect of statistical analysis is the estimation of variance

parameters, where the Restricted Maximum Likelihood (REML) method stands out,

particularly with unbalanced data. REML is recognized for its effectiveness in es-

timating variance parameters in such scenarios, as it provides unbiased estimates of

variance components, which are essential for precise and dependable statistical results.

Unlike the Maximum Likelihood (ML) method, which tends to underestimate vari-

ance components, REML corrects for the bias introduced by estimating fixed effects.

When estimating variance components, if fixed effects are included in the model, their

estimation consumes degrees of freedom and can bias the estimates of the variance
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components. REML addresses this issue by first estimating the fixed effects, then

using the residuals (the remaining variation after accounting for fixed effects) to esti-

mate the variance components, thereby accounting for the loss of degrees of freedom

due to the estimation of fixed effects. This results in more accurate and unbiased

estimates of the variance components, facilitating robust statistical inferences. This

unbiased estimation of variance components is crucial for making robust statistical

inferences, particularly when dealing with intricate and varied data structures.

Next, Robinson (1991) discusses how BLUP offers a useful tool for addressing outliers.

BLUPs function as a useful tool for addressing outliers. Drawing parallels between

BLUPs and residuals, Robinson introduced a method to detect and address outliers

using these predictions.

In cases where dispersion parameters require estimation from data, we enter a mul-

tifaceted statistical landscape. Within this framework, the merits of the REML ap-

proach are discussed as a potent solution to this challenge. Concurrently, we consider

approximate Bayesian procedures as an alternate route for capably estimating fixed

and random effects in the presence of dispersion parameter estimation.

Shifting his focus, Robinson (1991) presents Empirical Bayes methods as a robust

toolkit for estimating distributions of random effects. Through this lens, we under-

stand how these methodologies empower the estimation of realized values of random

effects by leveraging Bayes’ theorem. With the application of empirical Bayes tech-

niques, we identify an avenue to refine the accuracy and consistency of random effects

estimation, enriching the quality of statistical inferences.

In the sections below, we expand on Robinson’s (1991) overview and provide details

on the following modern estimation approaches for predicting random effects and

predicting fixed effects. Specifically, we offer additional detail on Restricted Maxi-
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mum Likelihood, Penalized Maximum Likelihood, Bayesian Hierarchical Models, and

Bayesian Lasso Methods.

2.1.3.2 Further Commentary

Robinson’s work prompted further discussions and insight into statistical modeling,

especially the thoughtful comments by Harville (1991) and Speed (1991). Specifi-

cally, Harville (1991) touches on the relevance of the Best Linear Unbiased Prediction

(BLUP) in animal breeding. He also relates BLUP to other established prediction

methods like kriging and the Kalman filter. Although BLUP was originally designed

from a frequentist viewpoint, Harville (1991) discusses its interpretation within a

Bayesian context as well (as detailed below). He presents BLUP as a broader tool

for prediction, covering its technical aspects and foundational assumptions. Harville

(1991) emphasizes using BLUP to predict unseen variables from observable data and

introduces key statistical parameters. He also dives into the relationship between

BLUP and other predictive methods, comparing empirical BLUP with empirical

Bayesian techniques.

Importantly, Harville addresses the common misunderstanding that mixed-effects

models are limited to fixed effects and variance components. He highlights the im-

portance of recognizing both fixed and random effects in these models. Harville then

looks into Bayesian prediction methods, noting their computational demands and the

need for further research. He suggests the possibility of a unified prediction approach,

recommending that models be viewed as joint distributions for framing specific pre-

diction problems. Assumptions, non-informative priors, and evaluation criteria play

a vital role in this context. Overall, Harville’s response provides a detailed analysis

of Robinson’s work, focusing on BLUP, its relationship with Bayesian methods, and

the potential for an integrated approach to prediction problems [59].
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Speed’s (1991) response to the Robinson (1991) praises its clarity in explaining a com-

plex topic, ability to bridge gaps in the subject, and its provocative nature. Speed

(1991) commends Robinson (1991) for highlighting the role of BLUPs and offers addi-

tional insights to strengthen the case for explicit recognition of BLUPs. Speed (1991)

discusses Robinson’s (1991) Bayesian derivation with an emphasis on the posterior

mode being equivalent to BLUP estimates. The possibility of using proper priors

and standard Bayesian formulas for deriving BLUPs is mentioned and we expand on

this in Section 4.3 below. Speed (1991) also discusses different formulas for random

effects, including an “obvious plug-in” expression involving matrices V, Z, and G. The

response touches on solving BLUP equations, suggesting an iterative approach based

on rearranging equations and updating variance components.

Speed (1991) further highlights the connection between REML and BLUP, suggest-

ing that REML equations equate observed with expected sums of squares of BLUPs.

Additionally, the concept of penalized least squares, which can turn standard least

squares into a case of BLUP, is discussed in relation to its initial formulation by

Charles Roy Henderson in 1950 [61]. Speed then explores several relationships be-

tween the BLUP and and other theorectical concepts relating to the LMM. These

include relationships between smoothing splines and BLUPs, where Speed (1991)

corrects the terminology in the spline literature and connecting Generalized Maxi-

mum Likelihood with REML. Speed further relates linear smoothers to BLUPs, with

similarities in their underlying theory and formulas. Lastly, Speed (1991) addresses

the issue of interval estimates involving BLUPs along with concerns about interpret-

ing Bayesian posterior intervals in this context. The response concludes with a play

on words, suggesting that, just as “To a Bayesian, all things are Bayesian,” a sum-

mary of the paper could be “To a non-Bayesian, all things are BLUPs”. Overall, the

response provides additional insights, connections, and considerations related to the
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themes discussed in the Robinson (1991) article about BLUPs and their applications

[106].

2.1.4 “Old” versus “New” Style Random Effects

Robinson’s article describes a technique for incorporating predictions of random ef-

fects into estimates of fixed effects. BLUP can be used in a variety of settings, includ-

ing animal breeding, ore reserve estimation, and insurance premium calculation. The

article also discusses the relevance of BLUP to the foundations of statistics. The book

Richly Parameterized Linear Models by James Hodges provides a succinct overview of

the evolution in the conceptualization and application of random effects in statistical

models [64].

Hodges states that many things are now called random effects that do not fit the the

definition originally provided by Scheffe in 1959 [103]. This distinction has several

implications in conceptual as well as practical ways.

Old-style random effects are those that are thought to be draws from a population.

For example, in a study of nerve fiber density, subjects are considered to be a ran-

dom sample from the population of all non-diabetic adults. The random effects in

this model are the subject main effect, the method-by-subject interaction, and the

location-by-subject interaction. These random effects describe how the average nerve

density varies between subjects, between methods, and between locations.

New-style random effects are those that are not thought to be draws from a popula-

tion. They are used to implement smoothing or shrinkage in the model. For example,

in a penalized spline model for global mean surface temperature, Hodges (2013) uses

a random effect to smooth the curve and reduce the variance. In a spatial model of

stomach cancer mortality, Hodges (2013) uses a random effect to capture the spatial
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clustering of cases.

The distinction between old-style and new-style random effects is important for infer-

ence, prediction, and simulation. For old-style random effects, we can make inferences

about the population from the sample. For new-style random effects, we can only

make inferences about the particular data set that we have.

The old style of random effects estimation typically relies on methods such as the

method of moments or REML. Both approaches maintain the assumption that the

random effects follow a normal distribution with constant variance. Here, random ef-

fects are interpreted as deviations from the overall population mean. The assumption

of normality can lead to biased estimates when the underlying distribution deviates

from normality. Additionally, the reliance on homoscedasticity assumptions might be

problematic when dealing with heteroscedastic data.

In contrast, the new style of random effects involves modern techniques such as

Penalized Maximum Likelihood methods such as Lasso or Ridge. They may also

be estimated by Bayesian methods. These methods incorporate regularization into

the estimation process to prevent overfitting, stabilize estimates, and address multi-

collinearity. Additionally, random effects can be estimated using Bayesian methods,

which also apply regularization to enhance the estimation process. Further, Bayesian

methods provide flexible alternatives for estimating random effects by leveraging the

advantages of Bayesian inference. Simulation studies and real data applications have

demonstrated that this new style of random effects tends to outperform the old style in

terms of estimation accuracy, model fit, and predictive ability, especially in scenarios

with limited sample size or heterogeneous data [65].

The distinction between old-style and new-style random effects is important for un-

derstanding the interpretation of statistical models. As noted above, old-style random
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effects can be used to make inferences about the population, while new-style random

effects can only be used to make inferences about the particular data set that we have.

The choice of the distribution for a new-style random effect is a modeling decision

that should be made based on hierarchies or association, the specific data set, and

the goals of the analysis.

2.1.4.1 Restricted Maximum Likelihood (REML)

In discussing the methodologies used for estimating variance components in linear

mixed models, attention is often directed towards the Restricted Maximum Likelihood

(REML) approach, as noted above. This method, known for its iterative nature,

is particularly effective in models with fixed effects. It addresses the tendency of

Maximum Likelihood (ML) estimates to underestimate variance components by not

considering the reduction in degrees of freedom during the estimation of random effect

parameters. By excluding fixed effects from the likelihood function, REML provides

more accurate estimates of variance components.

Corbeil (1976) presents the REML in detail. REML is formulated as the maximizer

to the following log likelihood:

∗(γ) = −1

2
log(|Σ|)− 1

2
log(|X ′Σ−1X|)− 1

2
(Y −Xβ̂)′Σ−1(Y −Xβ̂) (2.10)

Here γ is a vector that contains all the variance components. This approach is “re-

stricted” compared to standard maximum likelihood estimation because it modifies

the likelihood function. Specifically, REML adjusts for the degrees of freedom con-

sumed by estimating fixed effects (represented by β̂ in the equation). This adjustment

is not present in the standard maximum likelihood method, making REML more

suitable for unbiased estimation of variance components, particularly in models with
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several fixed effects.

Corbeil’s (1976) method develops estimators that do not include fixed effects in their

likelihood, maximizing over a restricted parameter set. This generalizes earlier meth-

ods for balanced data and random models, extending applicability to unbalanced data

and mixed models with various fixed and random effects. The process involves parti-

tioning the likelihood function, segregating the portion independent of fixed effects,

and maximizing this to obtain REML estimators for variance components [32, 13].

Corbeil (1976) emphasizes that REML estimators are invariant to the fixed effects in

the model and do not depend on estimates of these fixed effects. In balanced data

scenarios, REML estimators align with traditional analysis of variance (ANOVA)

estimators, a property not shared by ML estimators, offering advantages due to the

optimal properties of ANOVA estimators in balanced data.

In transitioning from traditional random effects estimation methodologies like REML

to more contemporary approaches, we observe a significant evolution in statistical

modeling techniques. REML, with its roots firmly in classical statistical theory, pri-

marily focuses on obtaining unbiased estimates of variance components under the

assumption of normally distributed errors. This method has been a cornerstone in

handling random effects, particularly in linear mixed models, offering a robust frame-

work for dealing with complex data structures. The transition from REML represents

a paradigm shift from the ’old style’ of random effects estimation to a ’new style’ that

emphasizes flexibility, adaptability, and the capacity to manage more complex and

high-dimensional data structures. This shift not only reflects the advancements in

computational power and data availability but also the growing need for models that

can accurately capture the intricacies of modern datasets while maintaining robust-

ness and interpretability.
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2.1.4.2 Penalized Maximum Likelihood

One popular method of incorporating new-style random effects within a linear mixed

model is through penalized maximum likelihood. New style random effects utilize the

penalized maximum likelihood. Penalized maximum likelihood is an advanced statis-

tical approach that seeks to bridge the gap between traditional maximum likelihood

estimation and regularization techniques. In the context of mixed models, where

random effects play a pivotal role in accounting for unobserved heterogeneity, the

introduction of penalized maximum likelihood offers a novel way to predict the values

of random effects and estimate fixed effects conditional on these predictions. Instead

of merely maximizing the likelihood of the observed data, this method introduces

penalties to the likelihood function, essentially providing a trade-off between the fit

of the model and the complexity of the random effects. This approach is particularly

useful in situations where there is a risk of overfitting due to a large number of ran-

dom effects or when data is sparse for certain levels. By incorporating penalties, the

method enhances robustness, prevents overfitting, and improves the generalization of

random effects in complex hierarchical models [31]. For a generalized linear model,

where the relationship between covariates and expected outcomes is given by:

g(E(yi)) = Xβ (2.11)

with g representing the link function, the log-likelihood is:

l(β) =
n∑

i=1

yix
′
iβ − b(x′

iβ) (2.12)

where b represents a function of the linear predictor x′
iβ. The function b(·) is related
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to the canonical parameter of the exponential family distribution that is assumed for

the response variable.

The penalized log-likelihood becomes:

lp(β) = l(β)− λP (β) (2.13)

Here, λ is a non-negative regularization parameter, and P (β) denotes the penalty

function. These newer methods extend the fundamental principles of maximum like-

lihood estimation by incorporating penalty terms, which impose regularization on the

model parameters. This regularization, often seen in the form of L1 (Lasso) or L2

(Ridge) penalties, enables the handling of high-dimensional data and mitigates issues

like overfitting, a common challenge in traditional models. These penalty functions

are given by:

1. L1 penalty (Lasso):

PL1(β) = ||β||1 =
p∑

j=1

|βj| (2.14)

2. L2 penalty (Ridge):

PL2(β) = ||β||22 =
p∑

j=1

β2
j (2.15)

The penalized maximum likelihood estimates maximize lp(β).

Disease Mapping Models provide a case study for the use of Penalized Maximum

Likelihood. Disease mapping refers to the process of estimating disease risk or preva-

lence over a spatial domain, often on a fine spatial scale like neighborhoods, towns,

or counties [77]. One of the main goals of disease mapping is to identify areas with

unusually high or low disease risks which might not be apparent when using raw dis-
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ease counts alone. However, direct estimates based solely on observed disease counts

in each area can be highly unstable, especially for rare outcomes observed in subsets

with small numbers of observations.

To deal with these issues, we employ smoothing or shrinkage techniques. Penalized

Maximum Likelihood (PML) is a powerful method for achieving this. Instead of

estimating the disease risk purely based on the observed counts, PML introduces a

penalty term in the likelihood which shrinks the estimates towards a global mean or

a local average. This process “borrows strength” from neighboring regions, thereby

reducing random noise in the estimates [77].

The penalty term typically involves some measure of the roughness of the estimated

risk surface over the domain. Smoother risk surfaces are preferred because they are

more likely under the assumption that disease risk changes gradually over space. In

fact, the smoother the surface, the more information a local estimate will borrow from

its neighboring values, resulting in a more stable and reliable estimate. The penalty

term usually depends on a smoothing parameter, which determines the amount of

smoothing applied: a larger smoothing parameter results in more shrinkage and a

smoother risk surface.[31].

To further illustrate, imagine a state with 10 cities. You want to estimate the risk of

a particular disease in each city. Raw counts for each city might be:
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City Observed Cases Population

A 100 100,000

B 5 500

C 25 5,000

... — —

J 50 5,000

City B has a raw risk of 1% (5 cases out of 500 people), which is higher than City A’s

risk of 0.1% (100 cases out of 100,000 people). However, with such a small population

in City B, this estimate is very uncertain. Using PML, the risk estimate for City B

would shrink towards the overall average risk for all towns or possibly towards the

risk estimates of neighboring towns.

After applying PML, the risk in City B might be revised downwards, say to 0.8%,

reflecting both the observed data and the borrowed information from other towns.

This smoothed estimate would be more stable and reliable than the raw estimate.

Penalized Maximum Likelihood is a crucial tool in disease mapping, ensuring that

estimates are both spatially smooth and more reliable. By borrowing strength from

neighboring regions, PML can produce more stable and credible risk maps, aiding in

the identification of areas with genuinely high or low disease risks.

2.1.4.3 Bayesian Framework

Further expanding on the concept of new style of random effects, the Bayesian frame-

work provides for very flexible specification and inference. Within the Bayesian frame-

work, every parameter, including random effects, is assigned a prior distribution.

For random effects, commonly used priors are the Gaussian (normal) distributions,
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though others can be used based on domain knowledge or modeling considerations.

The prior encapsulates the researcher’s beliefs about the distribution of the random

effects before observing the data [55].

As with traditional random effects models, the likelihood function characterizes how

the observed data is generated given the parameters, including the random effects. In

the context of new style random effects, this likelihood might be adjusted or penalized

to incorporate additional constraints or penalties via the random effects. In other

words, the random effects distribution is the means by which these constraints and

penalties are added. From a Bayesian perspective, these additional constraints or

penalties can be seen as incorporating a “structural” prior on the random effects

distribution. This prior acts similarly to the penalties mentioned above, serving to

constrain the random effects in a way that aligns with the underlying assumptions of

the model. On the other hand, a classical statistician might view such a prior as a

constraint on the likelihood, influencing the estimates of the random effects in a way

that enhances the overall fit and parsimony of the model.

In the Bayesian paradigm, Bayes’ Theorem combines the prior distribution with the

likelihood to form the posterior distribution. The posterior distribution describes the

updated beliefs about the random effects after observing the data. In essence, it is

a compromise between what the data tells us (through the likelihood) and what we

believed a priori (through the prior).

In Bayesian inference, our goal is to compute the posterior predictive distribution

of random variables representing model parameters given the observed data. As an

example, consider the regression model:

yi = Xiβ + ϵi (2.16)
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where ϵi ∼ N(0, σ2Vi
∼
).

In a Bayesian approach, prior distributions are set for the parameters:

For the coefficients (fixed effects), we set:

β ∼ N(0,Σβ) (2.17)

For the error variance, we assume:

σ2 ∼ Inverse-Gamma(α, γ) (2.18)

Assuming that the priors for β
∼

and σ2 are independent, the posterior distribution,

given observed data, is then:

p(β, σ2|y) ∝ p(y|β, σ2)p(β)p(σ2) (2.19)

This reflects the updated belief about the parameters after observing the data. To

obtain estimates or predictions, one would sample from this posterior distribution.

With random effects and potentially high-dimensional data, exact analytical solutions

for the posterior distribution can be elusive. This is where Markov Chain Monte Carlo

(MCMC) methods, like the Gibbs sampler or the Metropolis-Hastings algorithm,

become invaluable. They allow for sampling from the posterior distribution to make

statistical inferences about the random effects and other parameters. When new-style

penalties are incorporated, specialized algorithms or adjustments might be necessary

to efficiently sample from the posterior [63].
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One of the most promising features of Bayesian random effects models is the natural

shrinkage that occurs, especially with hierarchical models. This can be represented in

the equations of the regression model by extending them to include a random effects

term:

y = Xβ + Zu+ ϵ (2.20)

Here, y is the response variable, X and Z are matrices of fixed and random effects

covariates respectively, β is a vector of fixed effects coefficients, u is a vector of random

effects, and ϵ is a vector of errors. The inclusion of the random effects term, Zu, allows

the model to account for the variability between different levels or groups in the data.

Random effects, especially those defined for levels with few observations, are shrunk

towards a global mean, reducing the risk of overfitting. This shrinkage effect is con-

ceptually similar to the penalization in “new style” random effects models, where the

idea is to avoid overfitting and derive more stable estimates, especially in the presence

of sparse data. [53].

The Bayesian framework for random effects focuses on capturing group-specific vari-

ations. As such, the model complexity arises from the hierarchical structure, and

interpretations are often about differences between groups or levels. This framework

is ideal for data with inherent group structures like longitudinal studies, nested de-

signs, or any scenario where it is crucial to account for non-independence within

groups.

2.1.4.4 Bayesian LASSO

Bayesian models are particularly convenient when accounting for unobserved het-

erogeneity in data, especially hierarchical or clustered data. Such models capture

variations that are not explained by the fixed effects by introducing random effects
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that can vary across levels of a grouping factor (like subjects, regions, or time points).

The Bayesian LASSO (Least Absolute Shrinkage and Selection Operator) represents

an intriguing fusion of Bayesian inference and regularization techniques, primarily

geared towards variable selection and shrinkage in regression models. When cast into

the realm of random effects, the Bayesian LASSO offers a potent tool to handle high-

dimensional data structures, account for unobserved heterogeneity, and mitigate the

risks of overfitting [95].

As noted, LASSO, in its traditional form, implements regularization by adding a

penalty term to the likelihood function, which is proportional to the absolute values of

the coefficients. This L1 penalty, interpreted from a Bayesian perspective as a Laplace

prior on the regression coefficients, leads to a “double-exponential” distribution. This

distribution is characterized by a sharp peak at zero and heavier tails than a Gaussian

distribution. This structure enforces sparsity, setting some coefficients to zero, while

allowing others to be large if the data supports it, as described by Park and Casella

(2008).

In the Bayesian LASSO approach, as applied by Park and Casella, this penalty is

specifically targeted at the fixed effect parameters, drawing smaller estimates towards

zero. This method resembles early concepts of random effects distributions, as it is

applied across a collection of parameters. In the context of Generalized Linear Mixed

Models (GLMMs), this LASSO-type distribution can similarly be applied to a group

of random effects, as seen in models like disease mapping. Here, the predicted random

effects are more aggressively shrunk towards zero compared to the typical Gaussian

(L2) random effect distributions. The application of the LASSO-type distribution to a

collection of random effects also introduces a “structural prior,” resulting in stronger

shrinkage than that seen with Gaussian random effect distributions. Consider the
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linear regression setting:

y = Xβ + ϵ (2.21)

where ϵ ∼ N(0, σ2I).

In the Bayesian Lasso, the L1 penalty of Lasso regression is integrated within a

Bayesian framework by imposing a Laplace prior on the coefficients:

βj|λ ∼ Laplace(0, λ) (2.22)

with density:

f(βj|λ) =
λ

2
exp(−λ|βj|) (2.23)

for j = 1, ..., p.

A common choice for a hyperprior on λ is:

λ2 ∼ Exponential(a) (2.24)

where a is a predetermined hyperparameter.

The hierarchical formulation is then:

y|β, σ2 ∼ N(Xβ, σ2I)

βj|λ ∼ Laplace(0, λ)

λ2 ∼ Exponential(a)

When integrated into a random effects setting, a Bayesian model with LASSO priors

assigned to the collection of random effects can induce sparsity and shrinkage among
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the random effects. Imagine a hierarchical model with several groups or clusters,

where each group might have its set of predictors. By placing a Laplace prior on

the group-specific coefficients, the Bayesian LASSO encourages a parsimonious rep-

resentation. Some group-specific predictors might have their effects shrunk to zero,

indicating they do not significantly vary across groups or do not offer additional

explanatory power over the global (fixed) effects.

Furthermore, the random effects themselves can be subjected to the LASSO-type

distribution. This can be particularly advantageous when dealing with a high number

of random effects or when there is a suspicion that only a subset of random effects

significantly contributes to the outcome.

Estimation in Bayesian LASSO models, especially with random effects, can be chal-

lenging due to the non-conjugacy of the Laplace prior. Advanced sampling techniques,

such as Hamiltonian Monte Carlo (often implemented in software like Stan) or adap-

tive Metropolis-Hastings, are typically deployed. These techniques ensure efficient

and accurate sampling from the posterior distribution, allowing for robust inferences

about the random effects and other parameters under the LASSO constraint [95].

Bayesian LASSO with random effects presents a holistic approach to model high-

dimensional data structures. By marrying the strengths of Bayesian inference with

the regularization of the LASSO, it offers a robust framework to decipher complex

relationships, enforce sparsity, and mitigate overfitting, all while accounting for un-

observed heterogeneity.
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2.1.4.5 Distinction Between Bayesian LASSO and L1 Norm Random In-

tercept

While both Bayesian LASSO and the L1 norm random intercept models utilize princi-

ples of shrinkage and sparsity, they are applied differently and serve distinct purposes

in statistical modeling. The Bayesian LASSO is a technique primarily used for vari-

able selection and shrinkage in the context of regression models. In contrast, the

L1 norm random intercept model, as proposed by Besag et al. (1995) [13], applies

similar principles but focuses on spatial shrinkage, particularly for handling random

intercepts in hierarchical models.

The L1 norm random intercept model is designed to achieve spatial shrinkage, en-

abling the model to handle spatial data effectively. This approach is particularly

beneficial in models where there are spatial dependencies, such as in geographical

or environmental data. The L1 norm is applied to the random intercepts, allowing

for sharper transitions than the typical L2-based conditional autoregressive regres-

sion (CAR) priors. This is in contrast to the overall shrinkage towards zero that

the Bayesian LASSO seeks to achieve with its Laplace prior applied to regression

coefficients [14].

In a hierarchical model with spatial components, employing an L1 norm random

intercept can lead to better modeling of spatial variations. This is because it allows

the intercepts to vary more flexibly across different spatial units while still enforcing

a degree of sparsity. This sparsity is crucial in models with a large number of spatial

units, as it helps in reducing the complexity of the model and avoiding overfitting.

The primary difference between the two approaches lies in their application and the

type of shrinkage they induce. While the Bayesian LASSO imposes shrinkage on the

regression coefficients, driving some of them to zero to achieve variable selection, the
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L1 norm random intercept model focuses on achieving spatial shrinkage, allowing for

more nuanced variations between spatially correlated intercepts.

In summary, while both Bayesian LASSO and L1 norm random intercept models

utilize L1 penalties to induce sparsity, their applications differ significantly. The

Bayesian LASSO is used for variable selection in regression models, whereas the L1

norm random intercept model is suited for spatial models, focusing on the random

intercepts to handle spatial heterogeneity and dependencies. Understanding these

distinctions is essential for appropriately applying these methods to various types of

data and research questions.

2.1.5 Contrasting Prediction and Estimation

One of the foundational aspects of statistical modeling is understanding variance,

be it for prediction or estimation. Both prediction variance and estimation variance

provide insights into the accuracy and precision of our models, but they operate under

different paradigms and carry distinct implications.

At its core, estimation is about determining the values of parameters (fixed or random

effects) that best describe the observed data. Estimation variance quantifies the

variability of these parameter estimates if the study were to be repeated numerous

times. In the context of the “old-style” random effects, estimation variance is centered

on the quantification of variance attributed to different hierarchical levels or groupings

within a dataset. The aim was to capture and partition variability to understand the

structure of the observed data. The primary focus on the variability of these estimates

reflects the uncertainty about the true parameter value given the observed data.

On the other hand, prediction variance pertains to the variability expected when pre-

dicting new, unobserved outcomes based on the model. It combines the variability
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from the estimation of the parameters with the inherent variability of the new data

points. This is particularly salient in the “new-style” random effects, where the em-

phasis shifted from merely estimating variance components to predicting outcomes

based on a more in-depth understanding of the data’s structure, including predictive

values of the individual random effects (e.g., the random effect for each small area in

disease mapping models). BLUP, for instance, thrives in this domain as it minimizes

prediction error variance. It is all about forecasting the unknown, and prediction

variance provides an idea of the spread or dispersion of these forecasts around their

mean.

In contrasting the two, it’s important to clarify that estimation variance pertains

to the uncertainty in estimating fixed effect values in a model, whereas prediction

variance encompasses this uncertainty as well as the variability in predicting values

of random effects in new data points. This distinction is critical in practical appli-

cations. For example, a model may yield precise estimates (low estimation variance)

for fixed effects using training data, but when predicting new observations, it faces

the additional challenge of accurately predicting random effects. This can result in

high prediction variance, indicating a wider spread or dispersion in forecasts for new,

unseen data, as the model must account for both fixed effect estimation and random

effect prediction.

Understanding both prediction and estimation variance is vital for researchers and

practitioners. While the former tells us about the model’s generalizability and ability

to forecast new data points, the latter provides insights into the accuracy of the pa-

rameter estimates. As the field moved from “old-style” to “new-style” random effects,

the balance between these two types of variance became even more significant, with

the recognition that models need to be both accurate in estimation and effective in

prediction for them to be truly valuable in applied settings.
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2.1.6 Discussion

The intricate landscape of random effects theory underscores a pivotal distinction in

statistical modeling: the contrast between prediction and estimation. Each method

discussed in our review serves primarily one of these purposes, and understanding

this dichotomy is fundamental for appropriate model selection.

BLUP stands as a classic testament to the power of prediction. By aiming to derive

the best linear unbiased predictions, it leans heavily towards harnessing data to make

accurate forecasts about unobserved entities or future observations. Its methodology

prioritizes reducing prediction errors, which, while invaluable, might not always yield

insights into the underlying structure of the data.

“Old-style” and “new-style” random effects serve to highlight the evolution in estima-

tion techniques. The “old-style” method provides a more rigid structure for estimation

and might lack flexibility in adapting to more complex data scenarios. Conversely,

new-style random effects, by considering spatial and temporal dependencies, offer a

nuanced approach to estimation, digging deeper into understanding the intrinsic data

patterns and relationships.

Historically, random effects modeling was centered around the paradigm of estimation.

The “old-style” random effects approach primarily aimed to quantify the variance

attributed to different hierarchical levels or groupings within a dataset. The primary

focus was on capturing and partitioning variability, resulting in models that, while

robust for many classical datasets, adhered to rigid variance structures. In this realm,

the end-goal was often to obtain estimates of variance components that could provide

insight into the relative contribution of different factors or groupings to the overall

variability in the outcome of interest.
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With the advancement of computational power and the increased complexity of mod-

ern datasets, the focus shifted towards prediction. The “new-style” random effects

models evolved to address this changing landscape. By embracing spatial, temporal,

and other intricate dependencies, these models not only aim to estimate variance

components but also predict outcomes based on a more detailed understanding of the

data’s structure. This shift towards prediction acknowledges the value of harnessing

the rich information contained within datasets, allowing for more accurate forecasts

and data-driven decisions.

In this shift from “old-style” to “new-style” random effects, the focus has shifted

from simply estimating model parameters to also predicting random effects. In this

approach, random effects are first predicted, and then the model parameters are esti-

mated conditional on those predictions. This process is facilitated by the hierarchical

structure of the models, which helps keep track of the conditioning and ensures that

all estimates and predictions are made in the correct context. This progression from

estimation to predictive modeling reflects a broader evolution in statistical modeling,

where the focus has expanded from merely capturing the fixed effects and variance

components to make informed forecasts that leverage all available information. This

forward-looking approach is crucial in many modern applications, where understand-

ing the current data structure and making accurate predictions for future data points

can lead to actionable insights.

Penalized Maximum Likelihood (PML) further emphasizes the primacy of estimation,

but with a crucial twist. When applied to spatial data, PML incorporates a smoothing

element, ensuring that estimates are spatially coherent. By introducing a penalty

term, it nudges the model towards achieving spatial continuity, offering a bridge

between raw estimates and more refined, smoothed-out representations.
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The Bayesian framework and Bayesian LASSO bring forth an amalgamation of both

worlds. While they inherently focus on updating estimates based on prior beliefs and

observed data, they also have predictive power. Particularly, Bayesian LASSO stands

out by harnessing the sparsity-inducing power of LASSO within a Bayesian context,

streamlining both estimation of parameters and prediction of outcomes.

In essence, the trajectory of random effects models accentuates the continuous inter-

play between prediction and estimation. While some methods prioritize one over the

other, the true art lies in discerning which approach aligns best with the research

question at hand. As data continues to grow in complexity, the models and meth-

ods we choose will inevitably need to strike a balance between these two pillars of

statistical modeling.

In conclusion, the concept of random effects serves as both a reflection on the past

and a glimpse into the future of statistical modeling. The models and methodologies

discussed are not mere tools but represent the evolving thought processes of the

statistical community. As we venture forward, these theories will not only guide our

analyses but also shape the very questions we seek to answer.

2.2 Bayesian Modeling

As discussed in Chapter 1, statistical modeling often starts with a vector of observed

data, denoted as Y = (Y1, . . . , Yn), which we assume is generated from a probability

distribution characterized by a set of unknown parameters θ = (θ1, . . . , θp). The ob-

jective of statistical inference is to make the best possible estimates of these unknown

parameters based on the observed data.

Under the classical likelihood framework, parameter estimation is typically carried
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out by maximizing the likelihood function, L(θ | Y), defined as:

L(θ | Y) =
n∏

i=1

f(Yi | θ),

where f(Yi | θ) represents the probability density function of the data given the

parameters θ. The parameter estimates, θ̂, are obtained by finding the values that

maximize this likelihood function. In this framework, θ is treated as fixed, and

uncertainty about θ is typically expressed through confidence intervals.

In contrast, the Bayesian approach treats the parameters θ as random variables and

assigns a probability distribution to them, known as the prior distribution, denoted

by f(θ). The core of Bayesian inference lies in updating this prior distribution in light

of the observed data Y to obtain the posterior distribution using Bayes’ Theorem:

f(θ | Y) =
f(Y | θ)f(θ)

f(Y)
,

where f(Y | θ) is the likelihood function and f(Y) is the marginal likelihood, com-

puted as:

f(Y) =

∫
f(Y | θ)f(θ)dθ.

Since f(Y) is independent of θ, the posterior distribution is often expressed up to a

normalizing constant as:

f(θ | Y) ∝ f(Y | θ)f(θ).

The posterior distribution provides a full probabilistic description of the uncertainty

about the parameters after observing the data. Point estimates can be obtained by

summarizing this distribution, typically using the posterior mean or median. Uncer-

tainty in Bayesian inference is quantified through credible intervals, which provide a

direct probabilistic interpretation [8].
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The distinction between frequentist and Bayesian interpretations of probability is

central to the philosophical differences between the two approaches. While frequen-

tists interpret probability as the long-run relative frequency of an event, Bayesians

interpret probability as a measure of belief or plausibility, which can be updated with

new evidence. This difference in interpretation is fundamental to how each approach

handles uncertainty and inference [72].

2.2.1 Prior Distributions

A key element of Bayesian inference is the specification of the prior distribution, f(θ).

The prior encapsulates all prior knowledge or beliefs about the parameters before

observing the data. Priors can be informative, incorporating strong prior knowledge,

or non-informative (or weakly informative), designed to have minimal influence on

the posterior. Examples of weakly informative priors include the normal distribution

with a large variance, N(0, σ2), or the uniform distribution over a broad range. Non-

informative priors can also take the form of improper priors, such as the uniform

distribution over the entire real line, but care must be taken as these can lead to

improper posterior distributions [72].

In certain cases, conjugate priors are used, which result in a posterior distribution

that is in the same family as the prior. For example, if the likelihood is defined

for independent observations following a normal distribution with unknown mean

but known variance, a normal prior on the mean is conjugate, resulting in a normal

posterior distribution. Conjugate priors simplify the analytical computation of the

posterior but may not always be appropriate depending on the context of the model

and data [28].
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2.2.2 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) methods are integral to modern Bayesian in-

ference, especially when dealing with complex models where direct sampling from the

posterior distribution is infeasible. MCMC algorithms allow us to generate samples

from the posterior distribution by constructing a Markov chain that converges to the

desired distribution. These samples can then be used to estimate posterior summaries

such as means, variances, and credible intervals.

MCMC methods rely on the construction of a Markov chain, a sequence of random

variables where the distribution of each variable depends only on the previous one.

The key property of MCMC is that, under certain conditions, the chain will converge

to a stationary distribution, which is the target posterior distribution in Bayesian

analysis [50].

Two of the most commonly used MCMC algorithms are the Gibbs sampler and the

Metropolis-Hastings algorithm.

2.2.2.1 Gibbs Sampling

First proposed by Geman and Geman (1984), Gibbs sampling is a special case of

MCMC where the full conditional distributions of each parameter are known and can

be sampled from directly. Suppose we have a set of parameters θ = (θ1, . . . , θp), and

let f(θj | θ−j,Y) denote the conditional distribution of θj given all other parameters

θ−j and the observed data Y. The Gibbs sampler proceeds by iteratively sampling

from these conditional distributions:

θ
(t+1)
1 ∼ f(θ1 | θ(t)2 , . . . , θ(t)p ,Y),

θ
(t+1)
2 ∼ f(θ2 | θ(t+1)

1 , θ
(t)
3 , . . . , θ(t)p ,Y),
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...

θ(t+1)
p ∼ f(θp | θ(t+1)

1 , . . . , θ
(t+1)
p−1 ,Y),

where t denotes the iteration number. This process is repeated until the chain con-

verges, beyond which point subsequent samples can be used to approximate the pos-

terior distribution [54].

2.2.2.2 Metropolis-Hastings Algorithm

Proposed by Metropolis (1953) and later extended by Hastings (1970), The Metropolis-

Hastings algorithm is a more general MCMC method that can be applied when the

full conditional distributions are not easily sampled from. At each step, the algorithm

generates a candidate value θ∗ from a proposal distribution q(θ∗ | θ(t)), where θ(t) is

the current value of the parameter. The candidate value is accepted with probability:

α = min

(
1,

f(θ∗ | Y)q(θ(t) | θ∗)
f(θ(t) | Y)q(θ∗ | θ(t))

)
,

and rejected otherwise. If the candidate is rejected, the current value is retained for

the next iteration. This algorithm is particularly useful in complex models where

Gibbs sampling is not feasible [86, 60].

2.2.3 Efficient Posterior Sampling in Bayesian Inference

In Bayesian inference, the goal is often to approximate the posterior distribution

of model parameters, particularly when dealing with complex models such as those

involving Gaussian Markov Random Fields (GMRFs). Markov Chain Monte Carlo

(MCMC) methods are typically employed for this purpose due to their flexibility and

general applicability. However, MCMC can be challenging to implement efficiently

for GMRFs, given the large number of parameters and the correlations among them.
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2.2.3.1 Challenges with MCMC for GMRFs

When applying MCMC to GMRFs, one of the primary challenges is the potential

for poor mixing and slow convergence due to the high-dimensional parameter space

and the inherent correlations among the parameters. To address these issues, several

strategies have been developed. One effective approach is block updating, where

groups of parameters are updated jointly rather than individually. This method

has been shown to improve both the mixing and convergence rates of the MCMC

algorithm [71, 100]. In block updating, joint proposals are made for parameter blocks,

and the acceptance or rejection of these proposals is done simultaneously, which can

lead to more efficient exploration of the parameter space.

Another method that has proven useful for latent Gaussian models is elliptical slice

sampling [89]. This technique also involves jointly proposing updates for the field

parameters, allowing for more effective navigation of the posterior distribution. How-

ever, a more general and highly efficient MCMC method is Hamiltonian Monte Carlo

(HMC). First proposed by Neal (2011), Hamiltonian Monte Carlo (HMC) is an ad-

vanced MCMC technique that leverages concepts from Hamiltonian dynamics to ef-

ficiently explore high-dimensional probability distributions. Originally developed for

use in physics, HMC has been adapted for Bayesian inference and is particularly

well-suited to sampling from complex posterior distributions [90].

2.2.3.2 Hamiltonian Dynamics

Hamiltonian dynamics describe the evolution of a physical system in a state space

defined by position and momentum variables. For a system in a d-dimensional space,

the state of the system at any given time is described by the position vector q and the

momentum vector p. The total energy of the system is represented by the Hamiltonian

function H(q,p), which is the sum of the potential energy U(q) and the kinetic energy
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K(p):

H(q,p) = U(q) +K(p).

The potential energy U(q) is often associated with the height of a surface at position

q, while the kinetic energy K(p) is given by:

K(p) =
∥p∥2

2m
,

where m represents the mass of the object, and ∥p∥ is the norm of the momentum

vector.

The evolution of the system over time is governed by Hamilton’s equations:

dqi

dt
=

∂H

∂pi

=
∂K

∂pi

,

dpi

dt
= −∂H

∂qi

= −∂U

∂qi

,

for i = 1, . . . , d. These equations describe how the position and momentum variables

change over time, and they preserve the total energy of the system.

2.2.3.3 HMC in Bayesian Inference

In the context of Bayesian inference, the position variables q correspond to the param-

eters of the model, and the potential energy function U(q) is defined as the negative

log-posterior distribution:

U(q) = − logP (q | D) = − logP (q)− logL(q | D),

where P (q) is the prior distribution, and L(q | D) is the likelihood function given

the data D.
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The momentum variables p are auxiliary variables introduced to facilitate sampling,

and their distribution is typically Gaussian, governed by the kinetic energy function.

The joint distribution of q and p is given by:

P (q,p) ∝ exp(−H(q,p)) = exp(−U(q)) exp(−K(p)).

HMC uses the dynamics described by Hamilton’s equations to propose new states

(q∗,p∗) in the Markov chain. The advantage of HMC is that it can make large moves

in the parameter space while maintaining a high acceptance probability, which is

determined by the Metropolis criterion:

Accept (q∗,p∗)with probability min [1, exp(−∆H)] ,

where ∆H = H(q∗,p∗)−H(q,p) is the change in Hamiltonian.

2.2.3.4 Challenges and Advances in HMC

While HMC offers significant advantages in exploring complex posterior distributions,

it also has some challenges. One challenge is the need to compute gradients of the

log-posterior, which can be analytically difficult or computationally expensive. Tech-

niques such as automatic differentiation or numerical differentiation can be employed

to overcome this issue [84].

Another challenge is the sensitivity of HMC to the choice of step size ϵ and the

number of steps L. Poor choices can lead to inefficient sampling or even divergence

of the algorithm. To address this, Hoffman (2014) proposed the No-U-Turn Sampler

(NUTS), an adaptive variant of HMC that automatically adjusts the step size and

number of steps, greatly improving the algorithm’s robustness.
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2.2.3.5 The No-U-Turn Sampler (NUTS)

The No-U-Turn Sampler (NUTS) is an advanced variant of HMC designed to over-

come some of the practical challenges associated with the standard HMC algorithm,

particularly the sensitivity to the choice of step size and the number of leapfrog steps.

NUTS dynamically adjusts the trajectory length during the sampling process, thereby

eliminating the need to manually tune the number of steps [66].

Dynamic Step Adjustment in NUTS

In standard HMC, the trajectory length, which is determined by the number of

leapfrog steps L and the step size ϵ, must be carefully chosen to ensure efficient

exploration of the posterior distribution. Too few steps result in poor exploration,

while too many steps can lead to excessive computation without significant gains in

sampling efficiency. NUTS addresses this issue by automatically deciding when to

stop the trajectory based on the path it follows in the parameter space.

NUTS works by simulating multiple potential trajectories from the current position

q and determining on-the-fly how far to extend each trajectory. The key innovation

of NUTS is its ability to detect when a trajectory is about to double back on itself, or

“make a U-turn,” which would indicate that further steps are unlikely to contribute

to efficient exploration. When such a U-turn is detected, NUTS terminates the tra-

jectory and uses the points along the path to generate a proposal for the next state

in the Markov chain.

The NUTS Algorithm

The NUTS algorithm can be summarized as follows:

1. Initialization: Start at the current state (q,p), where q represents the model
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parameters, and p is the auxiliary momentum variable drawn from its Gaussian dis-

tribution.

2. Recursive Tree Building: NUTS builds a binary tree of possible states by

repeatedly applying the leapfrog integrator. The tree is constructed such that each

node represents a candidate state (q∗,p∗), and the tree expands until a U-turn is

detected. This is done by checking if the momentum p has changed direction relative

to the trajectory’s initial momentum, which would indicate that further exploration

along this path is unnecessary.

3. Termination and Proposal Selection: Once a U-turn is detected, NUTS stops

the trajectory and selects a proposal state (q′,p′) from the set of candidate states

generated during the tree-building process. The proposal is selected with a probability

proportional to the target distribution, ensuring that the sampling process remains

unbiased.

4. Metropolis Acceptance Criterion: The selected proposal q′ is accepted or

rejected based on the standard Metropolis criterion, which compares the Hamiltonian

at the current and proposed states. If the proposal is accepted, q′ becomes the new

state; otherwise, the algorithm retains the current state.

5. Adaptation: NUTS includes an adaptation phase where the step size ϵ is ad-

justed during the warm-up (or burn-in) period to optimize the acceptance rate. This

adaptive mechanism helps to balance the trade-off between exploration efficiency and

computational cost.

2.2.3.6 Applications of HMC in Hierarchical Models

Hamiltonian Monte Carlo (HMC) is particularly powerful when applied to hierarchical

models, which are common in many Bayesian statistical applications. Hierarchical
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models often involve multiple levels of parameters, where parameters at one level

depend on those at another. This layered structure introduces dependencies among

parameters, which can lead to slow mixing and poor convergence in standard MCMC

methods, such as Gibbs sampling.

2.2.3.6.1 The Challenge of Centered Parameterization In hierarchical mod-

els, a common issue arises with what is known as the centered parameterization. Con-

sider a simple hierarchical model where the observed data yi are normally distributed

with mean θi and known variance σ2, and the θi themselves are drawn from a normal

distribution with mean 0 and variance τ 2:

yi | θi ∼ N (θi, σ
2), θi ∼ N (0, τ 2).

In this centered parameterization, there can be strong correlations between the pa-

rameters θi and the hyperparameter τ , particularly when τ is small. This correlation

can cause inefficient sampling because small changes in τ can lead to large changes

in the θi, making the posterior distribution difficult to explore.

2.2.3.6.2 Non-Centered Parameterization To address this issue, a reparam-

eterization strategy known as non-centered parameterization is often employed. This

technique involves transforming the model in such a way that the dependencies among

parameters are reduced, leading to better mixing in the HMC algorithm. Specifically,

the model can be reparameterized by introducing a new variable zi defined as:

θi = τzi, zi ∼ N (0, 1).

The model now becomes:

yi | zi, τ ∼ N (τzi, σ
2), zi ∼ N (0, 1).
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In this non-centered parameterization, the zi are independent of τ a priori, which re-

duces the correlation between the parameters and the hyperparameters. This change

often leads to more efficient sampling by HMC, as the sampler can move more freely

in the parameter space without being constrained by the strong dependencies present

in the centered parameterization.

2.2.3.6.3 Benefits of HMC in Hierarchical Models The use of HMC in hi-

erarchical models, particularly when combined with non-centered parameterization,

offers several advantages:

- Efficient Exploration: HMC is well-suited to high-dimensional spaces, and its ability

to make large, informed jumps in the parameter space allows it to explore the posterior

distribution more efficiently than traditional MCMC methods. This is especially

important in hierarchical models, where the parameter space can be complex and

multi-modal.

- Reduction of Autocorrelation: By reducing the correlation between parameters

through non-centered parameterization, HMC can reduce the autocorrelation in the

Markov chain, leading to faster convergence and more reliable estimates of the pos-

terior distribution.

- Improved Convergence: HMC’s reliance on gradient information helps it navigate

the posterior landscape more effectively, which can lead to improved convergence

properties, particularly in models with challenging posterior geometries.

2.2.3.6.4 Practical Implementation in Stan The Stan software package (Stan

Development Team, 2015) has popularized the use of HMC and its variants, such as

the No-U-Turn Sampler (NUTS), in hierarchical models. Stan automates the imple-

mentation of non-centered parameterizations where appropriate, making it easier for
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users to apply these techniques without requiring deep expertise in MCMC methods.

Moreover, Stan leverages automatic differentiation to efficiently compute the gradi-

ents required by HMC, further enhancing its utility in complex models. This capabil-

ity is particularly valuable in hierarchical models, where the posterior distribution’s

complexity can make analytical gradient calculations infeasible.

2.2.3.6.5 Case Studies and Applications HMC has been successfully applied

in various hierarchical modeling scenarios, such as in the analysis of multi-level data,

random effects models, and spatio-temporal models. For instance, in disease mapping,

hierarchical models are used to account for spatial correlations between regions, and

HMC has been employed to estimate the posterior distribution of disease risk across

different geographic areas. By using non-centered parameterizations, researchers have

been able to obtain more accurate and reliable estimates of spatial patterns in disease

risk.

Overall, the application of HMC in hierarchical models represents a significant ad-

vancement in Bayesian computation, allowing for the effective handling of complex

models that were previously challenging to estimate. The combination of HMC with

non-centered parameterization techniques provides a robust framework for addressing

the unique challenges posed by hierarchical structures in Bayesian modeling.
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Chapter 3

Hierarchical Bayesian Disease

Mapping Model Performance in the

Presence of Spatially Concentrated

Prevalence

3.1 Introduction

In Chapter 1, we provided a detailed review of tuberculosis in the United States

as well as the concept of disease mapping. The focal point of this chapter is the

application and comparison of hierarchical Bayesian models, specifically the Besag,

York, and Mollié (BYM), BYM2, and Intrinsic Conditional Autoregressive (ICAR)

models, in disease mapping [120, 77, 97] and the introduction of a horseshoe prior

[24] to the disease mapping literature. These models are adept at depicting spatial

variations in disease risk and are essential for identifying areas with heightened risk,



67

which is critical for formulating effective public health interventions. Traditionally,

these models employ Gaussian priors, which are well-suited for shrinking estimates

towards spatial neighbors, a process that assumes spatial continuity and reduces local

noise by making neighboring areas appear more similar.

While shrinking to spatial neighbors can be beneficial, it may not always be appro-

priate, particularly in scenarios where disease rates are not spatially continuous or

where there are sharp boundaries or isolated hotspots. For instance, in metropolitan

and densely populated areas, the spatial dynamics of TB spread may involve abrupt

changes in disease prevalence between neighboring regions. In such cases, models

that overly shrink data towards spatial neighbors might obscure important spatial

patterns and lead to misleading conclusions [81].

To address these challenges, this study not only compares traditional disease mapping

models that use Gaussian priors with equivalent models incorporating Laplace priors

but also introduces the Horseshoe prior as a promising alternative. The Laplace

priors, which induce sparsity in the model, could provide a more refined and localized

understanding of disease distribution, enabling more accurate identification of high-

risk zones and sharp transitions in disease prevalence [14].

In addition, the Horseshoe prior is particularly suited for handling sparse signals and

managing spatial dependencies, which are often characteristic of TB distribution. The

Horseshoe prior applies global-local shrinkage to the model parameters, allowing for

significant effects to be preserved while shrinking less significant effects toward zero.

This approach is especially beneficial in settings where disease rates show discontinu-

ities or isolated spikes, as it can prevent overfitting in sparse data while maintaining

the ability to detect sharp contrasts in disease prevalence [24].

The Horseshoe model integrates the spatial structure of the data into the shrinkage
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process, making it ideal for cases where the underlying process is sparse, with only a

few regions exhibiting significant effects. By comparing the BYM, BYM2, and ICAR

models with both Laplace and Gaussian random effects to a horseshoe model, this

study seeks to evaluate which approach most effectively captures the complex spatial

patterns of TB incidence in Georgia.

Through this analysis, we contribute to the field of disease mapping by providing a

nuanced understanding of TB distribution, particularly in complex urban settings.

The outcomes of this study have the potential to significantly influence public health

strategies, ensuring that interventions are more closely aligned with the localized

realities of TB spread, thereby contributing to the global effort to reduce TB incidence

and mortality.

3.2 Methods

3.2.1 Study Area

Our study encompasses the 125 ZIP codes that make up the 5 core counties of the

Atlanta Metropolitan Statistical Area (MSA). We provide a detailed map illustrating

the population distribution by ZIP code across these counties (see Figure 3.1). The

ZIP code specific population size is relatively evenly distributed across the area, with

the densest populations located in the northeastern suburbs. All population and

socioeconomic data used in this study are sourced from the U.S. Census [112].
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Figure 3.1: Distribution of population by ZIP code in metro Atlanta, Decennial
Census (2020).

The CDC highlights that non-US born individuals significantly contribute to the

annual incidence of TB, despite representing only 14% of the total U.S. population

[26]. Limited access to healthcare is a known factor exacerbating TB prevalence in

various communities [23, 22]. The American Community Survey provides data on the

percentage of non-US born individuals by ZIP code, which is crucial for analyzing TB

count variations [113]. Figure 3.2a demonstrates that, across the 125 ZIP codes in

metro Atlanta, GA, there was an average of 15.33% non-US born residents. The lowest

and highest percentages of foreign-born populations in individual ZIP codes were

0.88% (Moreland, GA) and 52.55% (Clarkston, GA), respectively, with no missing

data at the ZIP code level.

Furthermore, our analysis incorporates critical factors commonly associated with

higher TB rates, such as the incidence of HIV and socioeconomic inequality, as mea-

sured by the Gini index. We specifically examine the percentage of the population
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living with HIV (Figure 3.2b) and the Gini index [56], which reflects income inequality

within these communities (Figure 3.2c), as these conditions are known to exacerbate

the spread of TB [38, 68]. Our data reveal that the average prevalence of individuals

living with HIV across these ZIP codes is approximately 0.197 cases per 1,000 people,

with certain areas showing higher rates, highlighting the significant overlap between

TB and HIV epidemics [3].

The Gini index ranges from 0, representing perfect equality where everyone has the

same income or wealth, to 1, representing perfect inequality where one individual

possesses all the income or wealth and others have none. The Gini index for ZIP codes

in the study area ranges from 0.3443 to 0.5772, indicating a considerable variation in

income inequality. Lower Gini index values suggest more equal income distribution,

while higher values indicate greater income disparity. In the context of TB, higher

income inequality, as reflected in the upper end of this range, may contribute to the

concentration of TB cases in specific areas by exacerbating conditions of poverty,

overcrowding, and limited access to healthcare. This variation in income inequality

across the studied ZIP codes provides crucial insight into the social determinants of

TB, suggesting that areas with greater income disparity might experience higher TB

rates due to these compounded socioeconomic vulnerabilities. The data for these

covariates, sourced from the U.S. Census and the American Community Survey, will

be detailed in subsequent analyses to highlight their relationships with TB cases in

the studied area.
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Figure 3.2: Proportion Foreign-Born, HIV prevalence, and Gini index by ZIP code in
metro Atlanta, American Community Survey 1-year estimates (2022).

3.2.2 Bayesian Methodology for Disease Mapping

As detailed in Chapter 2, the Bayesian methodology is a widely used approach for

modeling disease incidence data. The Bayesian methodology allows for the incor-

poration of prior knowledge and uncertainty into the modeling process, providing a

flexible and coherent framework for estimating disease risk and generating disease

maps. Bayesian methods have been successfully applied to a wide range of disease

mapping problems, including tuberculosis incidence [27], cancer incidence [78], and

infectious diseases [4].

3.2.3 Hierarchical Bayesian Disease Mapping Models

Disease mapping models aim to identify areas of elevated disease risk. In contrast

to frequentist approaches that rely solely on data fit, these models also integrate

subjective prior information and typically result in estimates with higher bias but

less variance. A hierarchical Bayesian framework is particularly well-suited for disease

mapping models as it stabilizes the risk estimated by shrinking (smoothing) unstable

estimates to a weighted average of neighboring risks. It allows for borrowing of

information across small areas and multiple populations to produce more stabilized
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rates of disease [80, 77].

In hierarchical Bayesian disease mapping models, the parameter of interest is often the

Standardized Incidence Ratio (SIR), which measures the risk of disease in a specific

area relative to a reference area [12]. The SIR for a small area i is denoted by θi

and is defined as the ratio of the observed number of cases in the small area to the

expected number of cases in that area, based on the overall or background rate of

disease in the study population.

Mathematically, the SIR can be expressed as:

θi =
Yi

Ei

(3.1)

where Yi and Ei denote the observed and expected number of cases in the ith small

area, respectively.

The SIR provides a measure of the relative risk of disease in a small area compared

to the overall or background risk. If the SIR for a particular small area is greater

than 1, it suggests that the area has a higher risk of disease compared to the reference

population. Conversely, if the SIR is less than 1, it suggests a lower risk of disease in

the area compared to the reference population. An SIR of 1 indicates that the risk

of disease in the area is the same as the overall or background risk [12].

Hierarchical Bayesian models can estimate SIRs for each small area in the study

region, allowing for the identification of areas with elevated disease risk. These models

can also incorporate spatial dependence and other relevant covariates to improve the

accuracy of risk estimates and identify potential risk factors for the disease of interest.
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3.2.4 Three-Stage Bayesian Hierarchical Model

When modeling the risk of a rare disease across small areas, particularly when the

population of an area is relatively large compared to the disease counts, the resulting

risk estimates are subject to increased random variation [12]. This can make it difficult

to determine whether extreme risk estimates are indicative of a true increased (or

decreased) risk in a particular area or simply the result of extra variation due to

small numbers.

To address this issue, a three-stage parameter hierarchy can be used to reduce the

effect of variation on risk estimates by borrowing information from other regions.

The first stage of the model defines the likelihood function of parameters representing

spatial underlying disease risk to the data. In the second stage, random effects are

incorporated to allow for similarities in disease risk based on spatial proximity in the

form of a spatial prior distribution. Finally, in the third level, the parameters of the

prior distribution are related to a hyper-prior distribution [71].

This three-stage hierarchical Bayesian model has been shown to be effective in esti-

mating disease risk and identifying areas with elevated risk [12, 71]. By incorporating

prior information and spatial dependence, the model can produce more stable and ac-

curate risk estimates, making it a valuable tool in disease mapping and public health

research.

3.2.4.1 Stage 1: Likelihood

The first stage of the hierarchy assumes that the count of the disease in a specific

area follows a Poisson distribution given by:

Yi ∼ Pois(µi) (3.2)
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where:

µi = Eiθi (3.3)

The Poisson likelihood is expressed as:

L(θi) =
m∏
i=1

e−Eiθi(Eiθi)
Yi

Yi!
(3.4)

and the corresponding log-likelihood is given by:

ℓ(θi) =
m∑
i=1

Eiθi +
m∑
i=1

yiln(Eiθi)−
m∏
i=1

Yi! (3.5)

From here, we obtain the maximum likelihood estimator by setting the first derivative

of the log-likelihood equal to zero, yielding:

θ̂i =
Yi

Ei

, SIR associated with region i (3.6)

where θ̂i is the estimate of the SIR in area i.

In a conjugate Bayesian formulation we may assign a gamma prior distribution to θi.

In this case, θ̂i ∼ Γ(a, b) where a and b are the shape and scale parameters given by:

P (θ | a, b) = (θ)a−1

Γ(a)ba
e−θb (3.7)

When combined with the Poisson likelihood, this yields a gamma posterior distribu-
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tion, where θ̂i has the following posterior distribution:

θ̂i ∼ Gamma(a+ Yi, b+ Ei) (3.8)

This Gamma-Poisson likelihood formulation is ideal for measuring risk in large areas

such as a state, but for smaller areas such as counties or ZIP codes it is not as reliable

since the mean and variance are based on Ei and can yield overly large estimates of

risk in areas where the expected numbers of cases are low. Further, this likelihood

formulation is very restrictive in that it does not easily account for covariate effects

or allowing spatial correlation between risk in nearby areas [119]. In order to achieve

such goals, more sophisticated models that can smooth the extreme values when

estimating the risk and account for covariates and spatial correlation, these models

are provided in Stage 2.

3.2.4.2 Stage 2: Random Effects Models

The second stage of the Bayesian hierarchical disease mapping model incorporates

random effects to capture the unmeasured or unobserved risk factors in the study

population. These random effects can be further divided into spatially structured

and unstructured components, which account for the dependent and heterogeneous

variations of risks in space [77].

One of the simplest models used in stage 2 is the Poisson Log-Normal model, which

assumes that the count of the disease in a specific area follows a Poisson distribution.

In this model, a non-spatial random effect term is added to explain the unstructured

heterogeneity in SIRs for a particular disease in a specific region compared to the
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overall study area. The log-normal model is given by:

θi = eβ0+βXi+Vi (3.9)

where β0 + βXi
represents the overall log SIR of the disease in the study region

compared to the reference rate, and β’s are the weights describing the degree of

change in the log SIR for every unit change in the covariates Xi. Vi is a normally

distributed area-specific random effects term that captures the residual or unexplained

(log) relative risk of the event in area i [12]. τv is the precision parameter of Vi and

its density is given by:

P (V | τv) ∝ τ
n
2
v

(
1√
2πτv

)n

e−
1
2
V′QvV ∼ MVN(0, τvIn) (3.10)

where V = (V1, ..., Vn)
′ is the vector of random effects, Qv = τvIn is the precision

matrix and In is the n× n identity matrix [100].

The Poisson Log-Normal model is useful for capturing the unobserved heterogeneity

in SIRs but it does not account for spatial correlation between areas, which may result

in biased estimates. Addressing this required the addition of spatial random effects.

Conditional Autoregressive Models for Areal Data

Areal data, comprising measurements from defined regions, often exhibit variability

in small populations, which obscures underlying patterns. To clarify these patterns,

Conditional Autoregressive (CAR) models smooth this variability by sharing infor-

mation across neighboring regions. In a network of N regions, the adjacency relation,

denoted as i ≥ j (for i ̸= j), indicates neighboring regions [15].

Spatial dependencies between units i and j are modeled with a normal random vari-
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able U , expressed as an N -dimensional vector U = (U1, . . . , Un) | ·. Each Ui in its

conditional distribution is influenced by the aggregated weighted values of its neigh-

boring regions (wijUj), with conditional variance given by
∑

wijτ :

Ui | Uj, j ̸= i ∼ N(a, b), a =
N∑
j=1

wijUj (3.11)

A Gaussian Markov random field (GMRF) is defined by translating these local condi-

tional distributions into a global distribution. As established by Besag (1974), under

some regularity conditions, the joint distribution for U conforms to a multivariate

normal distribution centered at zero. The variance is given by a precision matrix Q,

which is the inverse of the covariance matrix Σ (Σ = Q−1) [11]:

U ∼ N(0, Q−1) (3.12)

The construction of Q for U involves the adjacency matrix A and the diagonal matrix

D. Matrix A indicates neighboring relationships, while D is the nxn diagonal matrix

where entries i, i are the number of neighbors of region i and the off-diagonal entries

are 0. In addition, Dτ = τD. For a map with N regions, the connectivity is defined

by A, and the number of connected components varies from 1 (fully connected) to N

(completely disconnected). Consider a map with regions n1, n2, n3, n4, and adjacency

relations (1 ≥ 2, 2 ≥ 3, 3 ≥ 4)[120]. The matrices are defined as:

A =



0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0


, D =



1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1


(3.13)
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The precision matrix Q is symmetric and positive definite, formulated as Q = D(I −

λA) with I the identity matrix and 0 < λ < 1:

Q =



1− 0.5 −0.5 0 0

−0.5 1.5 −0.5 0

0 −0.5 1.5 −0.5

0 0 −0.5 1− 0.5


(3.14)

The log probability density of U is:

log(det(Q))− 1

2
UTQU (3.15)

Computing det(Q) is computationally intensive, particularly for a large N , impacting

the efficiency of MCMC samplers that require recalculating U ’s density with each

new proposal[6].

Intrinsic Conditional Autoregressive Models

The Intrinsic Conditional Autoregressive (ICAR) model simplifies the Conditional

Autoregressive (CAR) model by setting a key parameter, denoted as α, to 1, effectively

removing it from the model. This adjustment simplifies the precision matrix Q from

D(I − A) to just D − A. For instance, in the given example, this results in D − A

taking the form:



1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1
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In this modified ICAR model, the determinant of Q becomes zero. It’s important

to note that the ICAR prior is considered improper, but it becomes proper when

incorporating data [12].

When employing Markov Chain Monte Carlo (MCMC) samplers to calculate log

probabilities, a notable advantage of the ICAR model is that the term n2 log(det(Q))

remains constant, allowing it to be omitted during calculations. This reduces the

computational complexity from N3 to N2, enabling efficient fitting of large areal map

datasets using an MCMC sampler on standard laptops within hours rather than days

[88].

In the ICAR model, each Ui follows a normal distribution with a mean equal to the

average of its neighboring regions. The variance decreases as the number of neighbors,

denoted as di, increases. The conditional specification of the ICAR model is expressed

as:

p(Ui | Ui≥j) = N

(
1

di

∑
i≥j

Uj,
τ 2

di

)

Here, τ 2 represents the unknown variance.

The joint specification of the ICAR random vector U , centered at 0 with a common

variance of 1, can be rephrased in terms of pairwise differences:

p(U) ∝ exp

(
1

2

∑
i≥j

(Ui − Uj)
2

)
(3.16)

Expressing the joint density in terms of pairwise differences facilitates understanding

of the model’s behavior: each (Ui − Uj)
2 term introduces a penalty based on the dif-
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ference between neighboring region values, ultimately encouraging spatial smoothing.

It’s important to note that the pairwise difference is non-identifiable, meaning that

adding a constant to all Ui values does not affect the term (Ui−Uj). To address this,

the constraint
∑

i Ui = 0 is imposed, which centers the model. With this constraint,

the log probability density is well-defined because the parameter integration is limited

to the set of parameters that sum to 1 [12].

The Intrinsic Conditional Autoregressive (ICAR) model first proposed in 1991 by

Besag, York and Mollié and in the case of our study is given by:

log(θi) = β0 + β1X1i + β2X2i + β3X3i + Ui (3.17)

Here, Ui represents the spatially structured random effects and are modeled condi-

tional on their neighbors given the equations [12] given by:

Ui | {Uj = uj, i ∼ j}︸ ︷︷ ︸
Neighbors of i

, τu, ωij ∼ N

(
ūi,

1∑n
j=1 τuωij

)
= ICAR(ωij,

1

τu
) (3.18)

where

ūi =

∑n
j=1 ωijuj∑n
j=1 ωij

(3.19)

ūi represents the mean disease count of the neighbors of area i and ωij is an indicator

that equals 1 where i and j are adjacent, 0 otherwise. i ∼ j denotes that areas

i and j are neighbors. τu is the precision parameter of Ui. The density of vector
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U = (U1, ..., Un)
′is given by

P (U | τu) ∝ τ
n−1
2

u e−
τu
2

∑
i∼j(Ui−Uj)

2

∝ τ
n−1
2

u e−
1
2
U′QuU (3.20)

here, Qu = τuRu being the precision matrix and Ru the n×n spatial structure matrix

[12, 101] defined as:

Ru =


ni if i = j

−1 if i ∼ j

0 otherwise

(3.21)

where ni is the number of neighbors of area i.

The Besag-York-Mollie (BYM) Model

The ICAR model is spatially adaptive in that the variation in the model is largely

dependent on the neighborhoods leading to conditions where adjacency is used as

a proxy for dependence. However, assuming spatial correlation between regions can

be problematic in practice. For this reason the ICAR model has been modified to

combine the spatial correlation from a traditional conditional autocorrelation model

with the unstructured heterogeneity component from the Poisson Log Normal model

to form a BYM model [12, 30]. This model in given by:

θi = eβ0+β1X1i+β2X2i+β3X3i+Ui+Vi (3.22)

log(θi) = β0 + β1X1i + β2X2i + β3X3i + Ui + Vi (3.23)
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Ui ∼ ICAR(ωij,
1

τU
)

Vi ∼ N(0,
1

τV
)

The BYM model employs both spatial (Ui) and non-spatial (Vi) error components to

address the extra variance not explained by the Poisson distribution. This approach

helps to manage the unaccounted variance that extends beyond the data’s spatial

structure. Nonetheless, the process of fitting the BYM model can be complex as

either the spatial component Ui or the non-spatial component Vi might excessively

influence the variance explanation. The lack of hyperpriors for these components can

lead to the exploration of a wide range of extreme posterior distributions, which may

slow down or even hinder successful model fitting [97].

To implement the BYM model, Besag, York, and Mollié (1991) utilized gamma hy-

perpriors on the precision parameters τU and τV , choosing specific parameters for

each. Subsequent adaptations have introduced constraints to ensure a balanced prior

that equally weights spatial and non-spatial variance. This balance is based on the

formula by Bernardinelli, Clayton, and Montomoli (1995) [10]:

sd(Vi) =
1

√
τU

≈ 1

0.7
√

m̄× τU)
≈ sd(Ui) (3.24)

where m̄ is the average number of neighbors for all regions. The choice of gamma

hyperpriors for τV depends on m̄, necessitating dataset-specific hyperprior evaluation

for each new analysis.

BYM-2 Model

The BYM model is robust but has several issues. Firstly, the structured and un-

structured components cannot be seen independently from each other, making it
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difficult to determine the true value of the model parameters under certain condi-

tions. Secondly, choosing the hyperpriors is difficult as τU and τV do not represent

variability on the same level, as τu is a joint hyperprior and τV is a conditional hy-

perprior. Lastly, it is not guaranteed that hyperpriors used in one application will

have the same interpretation in another application, as with the ICAR and Poisson

Log-Normal Models [71, 77]. To address these issues, Riebler et al.(2016) developed

a reparameterization of the BYM model that resolves the identifiability issues [97].

The BYM-2 model ensures that the hyperparameters of the Gaussian random field

are near orthogonal, facilitating clearer interpretation and intuitive prior assignment.

Additionally, akin to the approach by Leroux, Lei, and Breslow (2000), it employs

a unified precision (scale) parameter ϕ for the aggregate components and a mixing

parameter ρ to balance spatial and non-spatial variations. For ϕ to accurately repre-

sent the standard deviation of the combined components, it’s essential that for each i,

Var(Ui)×Var(Vi) ≈ 1. To achieve this, a scaling factor s is introduced in the model,

adjusting the variance proportion ρ. Since s varies depending on the dataset, it is

treated as data within the model. Riebler et al. (2016) suggest normalizing the model

so that the geometric mean of these variances equals 1. For implementation using R,

this scaling factor is typically calculated using the INLA::inla.scale.model function in

R and then incorporated into the stan model as data. This model is given by:

θi = eβ0+β1X1i+β2X2i+β3X3i+ρi (3.25)

log(θi) = β0 + β1X1i + β2X2i + β3X3i + ρi (3.26)

ρi =
1

τρ
(Vi

√
1− ϕ+ U∗

i

√
ϕ

s
) (3.27)

Ui ∼ ICAR(ωij,
1

τU
)
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Vi ∼ N(0,
1

τV
)

Here, ϕ ∈ [0, 1] is a mixing parameter, τρ is the precision parameter, and Ui are

the spatially structured random effects. These parameters address the identifiability

issues and facilitate interpretation and transition priors [97].

3.2.5 Laplace Priors in Bayesian Disease Mapping

To address the limitations of traditional models in capturing abrupt spatial transi-

tions in TB incidence, we introduce models with spatial Laplace priors. These models

are designed to provide a more nuanced understanding of disease distribution, par-

ticularly in areas where disease incidence exhibits stark geographical contrasts. By

leveraging Laplace regularization, these models aim to produce more localized esti-

mates of disease risk, potentially leading to more effective identification of high-risk

areas [123, 118].

Laplace priors, are characterized by their ability to induce sparsity in the parameter

estimates. This is particularly useful in situations where it is believed that only a

small subset of covariates contributes to the model, a common scenario in disease

mapping when identifying key risk factors. The Laplace prior is defined as:

p(U) ∝ exp

(
1

2

∑
i≥j

|Ui − Uj|

)
(3.28)

Here, the spatial random effects takes of the values of the absolute difference instead

of the squared difference as the ICAR model. The Laplacian distribution has a

sharper peak and heavier tails compared to a Gaussian distribution, leading to more

parameters being driven to zero and some having larger absolute values, thereby
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promoting sparsity [13].

The use of Laplace priors in a Bayesian framework can be implemented through

various computational methods, such as the Lasso or Bayesian Lasso, which can

effectively handle high-dimensional data by selecting a subset of relevant covariates

while shrinking the others towards zero.

3.2.5.1 Choosing Between Laplace and Gaussian Priors

In the Bayesian hierarchical modeling of disease risk, the selection between Laplace

and Gaussian priors is pivotal and should be closely aligned with the specific charac-

teristics of the data and the objectives of the study. Laplace priors are particularly

beneficial when the goal is to pinpoint specific risk factors (via fixed effects) or areas

(via random intercepts) that significantly contribute to the TB incidence, given their

capability to identify localized patterns and sharp variations within the data. This

feature is crucial in a metropolitan setting like Atlanta, where disease incidence may

vary sharply between different neighborhoods or ZIP codes.

On the other hand, Gaussian priors are more appropriate for generalizing and smooth-

ing disease incidence rates across a metro area. They are particularly useful when the

data exhibits gradual trends or when mitigating overfitting is a concern, a common

scenario in disease mapping studies. Gaussian priors help in obtaining more stable

and continuous risk estimates across the geographic landscape, which may be crucial

for understanding broader spatial trends in disease incidence.

3.2.6 Smoothing vs. Shrinkage in Disease Mapping

In the context of disease mapping, spatial smoothing techniques are commonly used

to reduce local noise and highlight broader spatial patterns by enforcing spatial co-

herence. The fundamental assumption of smoothing methods is that disease rates
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should vary smoothly over space, implying that neighboring regions are likely to ex-

hibit similar disease rates [77].

While smoothing can be valuable in many settings, it is not universally appropriate,

particularly in cases where the assumption of spatial continuity does not hold. In

some disease mapping scenarios, disease rates may exhibit sharp discontinuities or

be concentrated in distinct hotspots rather than varying smoothly across space. For

example, environmental barriers, social determinants, or behavioral factors might

lead to stark differences in disease rates between neighboring regions. In such cases,

smoothing can blur these sharp boundaries, leading to misleading conclusions by

artificially merging distinct areas and obscuring critical epidemiological features [49].

Moreover, in situations where the disease is sparse—meaning that only a few regions

exhibit significant deviations from the baseline rate—smoothing can dilute these sig-

nificant signals by averaging them with neighboring areas where the disease is less

prevalent or absent. This can result in an over-smoothed map that fails to capture the

true extent and intensity of disease clusters, potentially undermining public health

interventions that rely on accurate identification of high-risk areas.

3.2.6.1 The Horseshoe Model

To address the limitations of traditional methods to smooth or shrink to spatial neigh-

bors, shrinkage techniques such as the horseshoe prior offer a compelling alternative,

particularly in scenarios where disease rates exhibit sparsity or discontinuities. Unlike

smoothing, which shrinks towards the values of spatial neighbors, the horseshoe prior

employs a global-local shrinkage mechanism that allows for selective shrinkage of the

data. This means that small or insignificant effects are shrunk towards zero, while

larger, more significant effects are preserved, allowing the model to capture sharp

contrasts and isolated hotspots that smoothing might obscure [24].
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The horseshoe prior is a type of Bayesian hierarchical model that is particularly

well-suited for handling sparse signals in high-dimensional settings, such as those

encountered in disease mapping. The model is specified for spatial random effects Ui

at location i as follows:

Ui | λi, τ ∼ N
(
0, λ2

i τ
2
)

where:

• Ui represents the spatial random effect at location i, capturing the deviation of

the disease rate at that location from the global mean.

• λi is the local shrinkage parameter for location i, which controls the degree

of shrinkage applied to Ui. The local shrinkage is governed by a half-Cauchy

distribution: λi ∼ C+(0, 1). This distribution is heavy-tailed, allowing the

horseshoe prior to retain large effects while shrinking smaller, less significant

effects more aggressively towards zero.

• τ is the global shrinkage parameter, also modeled as τ ∼ C+(0, 1). The global

parameter τ influences the overall level of shrinkage across all locations, deter-

mining the general tendency of the model to shrink effects towards zero, thereby

promoting sparsity [24, 39]

This hierarchical structure ensures that the horseshoe prior can adapt to different

spatial patterns, applying minimal shrinkage in areas with strong signals (such as

disease hotspots) while shrinking weaker signals towards zero to avoid overfitting.
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3.2.7 Implementation in Disease Mapping

The conditional distribution of the spatial random effects Ui, given the neighboring

effects and shrinkage parameters, can be expressed as:

p(Ui | Uj ̸=i, λi) = N

(∑
i∼j

Ujd
−1
i,i ,

1

di,iλ2
i τ

2

)

Here, di,i represents the diagonal elements of the spatial precision matrix D, which

encodes the spatial relationships between different locations. This formulation inte-

grates the spatial structure of the data directly into the shrinkage process, allowing

the model to account for spatial dependencies while applying appropriate levels of

shrinkage [120].

3.2.8 Comparison of Smoothing Techniques

The choice between smoothing (shrinking to neighbors values) and shrinkage to zero

methods in disease mapping should be guided by the nature of the spatial variation

in the disease rates:

• Shrinking to neighbors is most appropriate when the disease rates are ex-

pected to vary smoothly across space. Smoothing is effective in highlighting

broad spatial trends and reducing noise, particularly in settings where spatial

continuity is a reasonable assumption [77, 119].

• Shrinkage to zero is ideal when the disease rates are sparse, with only a few

regions showing significant effects, or when the data exhibits sharp discontinu-

ities or isolated spikes. The horseshoe prior’s global-local shrinkage mechanism

allows it to shrink small effects towards zero, preserving significant spatial het-

erogeneities without imposing unnecessary continuity [24, 16].
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For example, in a scenario where tuberculosis (TB) prevalence is concentrated in

specific neighborhoods due to localized factors (such as housing conditions, access

to healthcare, or community transmission dynamics), the horseshoe prior might be

more effective than smoothing in capturing these distinct clusters. Smoothing might

inadvertently blend high-prevalence areas with surrounding lower-prevalence areas,

leading to an underestimation of the true risk in the hotspots.

While spatial smoothing focuses on creating coherence by shrinking towards spatial

neighbors, it may not be suitable in all disease mapping scenarios, particularly when

dealing with sharp spatial contrasts or sparse data. The horseshoe prior offers a

flexible and robust alternative, leveraging its global-local shrinkage mechanism to

handle sparse and discontinuous data effectively. This makes it an invaluable tool

for capturing complex spatial patterns in disease mapping, ensuring that significant

effects are preserved while minimizing the risk of overfitting [120, 77, 24, 7].

3.2.8.1 Stage 3: Hyperpriors

In Bayesian disease mapping models, particularly those employing hierarchical struc-

tures, the selection of appropriate hyperpriors for spatial and non-spatial random

effects is crucial. The choice of hyperpriors significantly influences the model’s sta-

bility and the interpretability of its results. The following subsections detail typical

hyperprior settings for both spatial and non-spatial random effects.

Non-Spatial Random Effects

For non-spatial random effects, which capture unstructured variability in the data,

Gaussian distributions are commonly used as priors. A typical choice is a zero-mean

normal distribution with a precision parameter (the inverse of variance). Specifically,

a common hyperprior for the precision parameter of the non-spatial random effects is

a Gamma distribution, often with small shape and rate parameters to ensure a non-
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informative or weakly informative prior. This approach allows the data to primarily

inform the estimates.

Spatial Random Effects

For spatial random effects, which account for structured variability due to spatial

relationships, Intrinsic Conditional Autoregressive (ICAR) models or Besag-York-

Mollié (BYM) models are often utilized. The hyperprior for the precision parameter of

the spatial random effect in ICAR or BYM models is typically a Gamma distribution,

akin to the non-spatial case. These parameters control the degree of spatial smoothing

the model is able to achieve. A parameter like Gamma(5, 0.2) is relatively informative

and indicates a lower level of smoothing, as it concentrates the prior distribution

around smaller values. Conversely, a parameter like Gamma(0.5, 0.01) represents a

weakly informative prior, allowing for greater flexibility and resulting in a higher

degree of smoothing. The choice of these parameters directly impacts the model’s

ability to balance local variation and global trends in the spatial data.

Hyperpriors in BYM2 Models

In the BYM2 model, a reparameterization of the BYM model, hyperpriors are set for

the precision of the combined random effect and a mixing parameter (often denoted

as ϕ). The precision parameter typically has a Gamma hyperprior. The mixing

parameter, which controls the balance between structured and unstructured variation,

is usually given a Beta distribution hyperprior, like Beta(1, 1).

The choice of these hyperpriors should reflect the level of prior knowledge and the

specific characteristics of the data. For instance, more informative priors can be

employed if there is strong prior knowledge about the parameter values. It is crucial

to conduct sensitivity analyses to assess the impact of different hyperprior choices on

the model’s results. These hyperprior settings serve as guidelines and can vary based
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on specific modeling needs and data characteristics. The goal is to provide sufficient

flexibility for the model to learn from the data while incorporating any available prior

knowledge.

3.3 Simulation Study

3.3.1 Generating Simulated Data

To compare the performance of the different disease mapping models, a simulation

study was conducted. Simulated data was generated to establish a realistic ground

truth for disease risk variation. We assume a total of 1016 cases in the study area

with 125 ZIP codes and a population of 4,781,945 with an overall rate of 0.000165

cases per person. To generate the simulated data, we first calculated the expected

number of cases Ei in each ZIP code by multiplying the overall rate by the population

of each ZIP code. We then generated 1000 samples of observed case counts Yi for

each ZIP code from a Poisson distribution with the expectation µi as Ei × eθi , where

θi represents the underlying disease risk for ZIP code i. The log-linear predictor

θi was specified as log(θi) = β0 + β1X1i + β2X2i + β3X3i, where X1i represents the

proportion of the population in ZIP code i that is foreign born, where X2i represents

the HIV prevalence in ZIP code i and where X3i represents the Gini index for ZIP

code i. The fixed effects were set to β0 = −0.521, β1 = 2.64, β2 = −.00399, and

β3 = 0.762, to model the observed prevalence of tuberculosis under normal conditions

in metro Atlanta. To illustrate, Figure 3.3a shows the geographical distribution of one

realization of simulated case counts based on a total count of 1016 cases in Atlanta.

Figure 3.3b depicts the expected case counts based on the total number of simulated

cases.
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Figure 3.3: Simulated and expected case counts for 1016 total cases in Atlanta. (A)
Displays the geographical distribution of a single realization of the simulated case
counts. (B) Shows the corresponding expected case counts, offering a comparison
between simulated variability and the underlying expected pattern across the region.

3.3.2 Hamiltonian Monte Carlo Settings

For a single replication, we use cmdstanr version 0.8.1 [46] and R software version

4.4.1 [96] to obtain 4 chains of length 30,000. Convergence is assessed using the

Gelman-Rubin diagnostic (R̂). The Gelman-Rubin diagnostic evaluates MCMC con-

vergence by analyzing the difference between multiple Markov chains [51]. Specifically,

convergence is assessed by comparing the estimated between-chains and within-chain

variances for each model parameter, where large differences between these variances

indicate nonconvergence. After discarding the first 29,000 iterations for each replica-

tion, we are left with a posterior sample of 1,000 SIR estimates per ZIP code.

To ensure the models run appropriately, several key Hamiltonian Monte Carlo (HMC)

parameters are fine-tuned based on the complexity of the model. For the ICAR

model, we set the adapt_delta to 0.8, the max_treedepth to 10, and use 5,000
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warmup iterations. The BYM and BYM2 models require a adapt_delta of 0.9, a

max_treedepth of 12, and 10,000 warmup iterations to ensure proper convergence

and sampling. For the more complex Horseshoe model, we employ a adapt_delta of

0.95, a max_treedepth of 15, and extend the warmup period to 30,000 iterations.

The selected adapt_delta values help control the target acceptance rate of the HMC

sampler, with higher values mitigating the risk of divergent transitions, particularly in

more complex models. The max_treedepth parameter is adjusted according to model

complexity to allow the sampler to explore the posterior distribution comprehensively.

The number of warmup iterations is tailored to each model type to provide sufficient

time for the sampler to adapt and stabilize before collecting samples for the posterior

distribution.

These settings are critical for obtaining reliable and accurate posterior estimates

while minimizing computational challenges such as divergences, non-convergence, or

inefficient exploration of the posterior space. By applying these configurations, we

ensure the acquisition of 1,000 high-quality samples per ZIP code, resulting in robust

and representative posterior distributions across all model types.

3.3.3 Model Comparison

For model selection in disease mapping, we use two primary metrics: the Deviance In-

formation Criterion (DIC) and the Watanabe-Akaike Information Criterion (WAIC).

DIC is widely used to evaluate hierarchical models by balancing model fit and com-

plexity, defined as the sum of the expectation of the deviance and the effective number

of parameters. It provides a trade-off between goodness-of-fit and model simplicity.

WAIC, on the other hand, is a fully Bayesian criterion that approximates cross-
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validation using the posterior distribution. It addresses some of the limitations of

DIC, particularly regarding overfitting and the estimation of effective parameters.

A more detailed review of both criteria will be provided in Chapter 4.

An additional approach to model comparison in Bayesian hierarchical modeling is

Leave-One-Out Cross-Validation (LOO-CV). LOO-CV is particularly relevant in hi-

erarchical models because it assesses the model’s predictive accuracy by systematically

leaving out one observation at a time and predicting its value based on the remaining

data. This method provides a robust estimate of the model’s predictive performance,

as it directly evaluates how well the model generalizes to unseen data.

In the context of Bayesian hierarchical modeling, LOO-CV is typically implemented

using the Pareto Smoothed Importance Sampling (PSIS) method [114], which effi-

ciently approximates the leave-one-out distribution without the need for extensive

recomputation. The PSIS-LOO approach is advantageous because it scales well with

complex models, where direct computation of LOO-CV would be computationally

expensive.

The LOO-CV estimate of the predictive accuracy is given by the expected log point-

wise predictive density (elpd), which sums the log-likelihoods of the observed data

points given the posterior distribution, with each data point left out in turn. This

metric is closely related to WAIC, but LOO-CV is often preferred in practice be-

cause it is less sensitive to the choice of prior and provides a more direct measure of

out-of-sample predictive performance.

elpdLOO-CV =
n∑

i=1

log p(yi | y−i, θ) (3.29)
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where p(yi | y−i, θ) represents the predictive distribution for yi given all other data

points y−i. A model with a higher elpd is considered to have better predictive accuracy

[115, 128].

In practice, both WAIC and LOO-CV are useful tools for model comparison, and

they often yield similar results. However, LOO-CV is generally regarded as more

robust, particularly in hierarchical models with complex structure and varying levels

of spatial smoothing [83]. By directly evaluating the model’s ability to predict new

data points, LOO-CV provides an intuitive and reliable measure of model performance

that complements the information provided by DIC and WAIC.

3.3.4 Simulation Results

3.3.5 Exploration of Random Effects Posterior Density

In addition to analyzing the spatial distribution of Standardized Incidence Ratios

(SIR) estimates, we explored the posterior densities of the spatial random effects

across different models. This exploration is crucial for understanding how each model

captures the underlying spatial structure of TB incidence that is not explained by

the covariates. The random effects are essential as they reveal spatial autocorrelation

and local variability in disease risk.

Figure 3.4a presents the posterior density plots of the spatial random effects for

ZIP codes 30009 (median number of TB cases) and 30021, an area identified with

an extremely high number of TB cases compared to its neighboring ZIP codes. In

the traditional spatial models (ICAR, BYM, BYM2), the density plots are relatively

smooth and symmetric, resembling a normal distribution. This indicates that these

models attribute the high incidence in ZIP code 30021 to both the fixed effects and

the spatial random effects, with the random effects capturing additional local risk
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not explained by the covariates. The density plots for the L1-regularized models

(ICAR Laplace, BYM Laplace, BYM2 Laplace). L1 regularization introduces sparsity

by shrinking many of the smaller random effects towards zero, while allowing for

larger deviations in areas with significant risk. In ZIP code 30021, the density plots

remain relatively spread out, similar to the traditional models, indicating that the

L1-regularization does not overly shrink the random effect in this high-risk area. This

suggests that the model effectively identifies and preserves significant spatial signals

corresponding to TB hotspots.

Finally, we analyze the posterior density of the horseshoe model. This model employs

a horseshoe prior, which is known for its ability to handle sparse signals by strongly

shrinking small coefficients towards zero while allowing large coefficients to remain

relatively unaffected. In ZIP codes with a median number of cases (such as 30009)

the Horseshoe model produces posterior densities that are highly peaked around zero.

This sharp peak reflects the model’s strong shrinkage of small random effects towards

zero in areas where the TB incidence does not significantly deviate from the overall

mean or is adequately explained by the covariates. The horseshoe prior effectively

filters out negligible spatial signals, leading to sparser and more interpretable random

effects.

Comparing the posterior densities between ZIP code 30021 (high TB incidence) and

ZIP code 30009 (low TB incidence) under the Horseshoe model highlights how the

horseshoe prior prevents areas with high numbers of cases from pulling their neighbors’

estimates upward. In ZIP code 30009, where the number of TB cases is close to the

median and there is no substantial deviation from neighboring areas, the horseshoe

prior strongly shrinks the random effects toward zero. This results in a posterior

density that is sharply peaked, indicating minimal unexplained spatial variability.

The model suggests that the observed cases in this area are adequately explained by
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the fixed effects and overall spatial trend.

In contrast, ZIP code 30021 exhibits a sharp increase in TB cases compared to its

neighbors. The horseshoe prior allows the large random effect in this high-incidence

area to escape shrinkage, maintaining its magnitude to capture the substantial local

risk. The posterior density for this ZIP code is more spread out and resembles a

normal distribution centered away from zero. Importantly, because the horseshoe

prior heavily shrinks the random effects of neighboring areas toward zero, it prevents

the high incidence in ZIP code 30021 from artificially elevating the random effects of

adjacent ZIP codes like 30009. This property preserves distinct boundaries between

high-risk and average-risk areas, ensuring that the model accurately reflects areas

with true elevated risk without spreading this effect to neighboring regions.
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(a) Posterior density plots of the random ef-
fect U for the ZIP code 30009 across all spa-
tial models.

(b) Posterior density plots of the random ef-
fect U for ZIP code 30021 (Clarkston) across
all spatial models.

3.3.6 Simulated Data Analysis

In this section, we evaluate the performance of seven spatial models—ICAR, ICAR

Laplace, BYM, BYM Laplace, BYM2, BYM2 Laplace, and Horseshoe—using simu-

lated case count data. Although these models are designed with different underlying

assumptions and regularization techniques, the resulting Standardized Incidence Ra-

tios (SIR) are surprisingly similar across all models. This consistency suggests that

the spatial patterns in the simulated data are relatively stable and well-captured by

each model, despite their methodological differences.
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Figures 3.5 and 3.6 illustrate the geographical distribution of posterior SIR estimates

across Metro Atlanta. While each model is intended to address spatial variability

in different ways—whether through strong smoothing (as with traditional ICAR and

BYM) or by introducing sparsity (as with the Laplace regularized models and the

Horseshoe model)—the SIR estimates do not vary significantly between models.

One possible explanation for this similarity is that the underlying simulated data may

not contain strong local variations or anomalies that would highlight the differences

in model behavior. In such scenarios, where spatial signals are relatively uniform

across the region, the benefits of advanced regularization techniques like Laplace

regularization or global-local shrinkage might be less pronounced. As a result, all

models converge to similar SIR estimates, focusing more on capturing the overall

spatial trend rather than identifying distinct local deviations.

Despite expectations that models incorporating Laplace regularization or the Horse-

shoe model would reveal sharper or more localized differences, the SIR estimates re-

main consistent with those produced by traditional models. This consistency across

models underscores the robustness of SIR estimates in the face of varying modeling

approaches, especially when the data itself lacks strong local heterogeneity.

Table 3.1 provides a summary of the goodness-of-fit metrics and DIC scores. These

metrics, while showing some variation, generally support the observation that the

models perform similarly in terms of SIR estimation. Particularly of note in the

table is the ICAR, ICAR Laplace, and horseshoe models perform best across all three

indicators. The modest differences in DIC scores across models suggest that while the

models employ different regularization techniques, the overall fit to the data remains

comparable.

This analysis indicates that, in the context of the simulated data, the choice of spa-
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tial model may have a limited impact on the estimated SIRs, particularly when the

data lacks significant local variability. However, this consistency among models also

highlights their reliability in capturing broad spatial trends, setting the stage for their

application to more complex real-world data in the subsequent section.

Figure 3.5: Geographical distribution of posterior SIR estimates for Metro Atlanta
using the ICAR, BYM, BYM2, and Horseshoe models applied to simulated data.
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Figure 3.6: Geographical distribution of posterior SIR estimates for Metro Atlanta
using the ICAR Laplace, BYM Laplace, and BYM2 Laplace models applied to sim-
ulated data.

Table 3.1: Goodness-of-fit metrics for the seven spatial models based on simulated
data across Metro Atlanta.

Model DIC WAIC LOO-CV

ICAR 471.492 472.970 473.056

ICARLaplace 471.636 472.866 472.927

BYM 501.246 524.893 531.363

BYMLaplace 502.087 527.475 535.298

BYM2 485.761 497.389 499.330

BYM2Laplace 487.430 500.888 503.390

Horseshoe 474.334 473.760 473.795
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3.3.7 Sensitivity Analysis

This sensitivity analysis investigates the impact of increasing the Standardized Inci-

dence Ratio (SIR) for ZIP code 30021, the most affected area in our study, on the

model fit as measured by the Deviance Information Criterion (DIC) across seven spa-

tial models: ICAR, ICAR Laplace, BYM, BYM Laplace, BYM2, BYM2 Laplace,

and Horseshoe. The plot shown in Figure 3.7 illustrates the relationship between the

increase in SIR and the corresponding changes in DIC for each model.

To assess the impact, we conducted 20 simulations where the case count in ZIP

code 30021 was incrementally increased by 25% in each simulation, starting from

the baseline case count. For each instance, 1,000 samples were generated, the SIR

recalculated, and the DIC recomputed for each model. DIC serves as a metric that

balances goodness-of-fit and model complexity, with lower DIC values indicating a

better-fitting model. Tracking changes in DIC as the SIR increases provides insight

into how well each model adapts to localized increases in disease incidence.

The plot in Figure 3.7 reveals distinct patterns in how DIC values responded to the

incremental increases in SIR across the different models. For the ICAR and BYM

models, which emphasize global spatial smoothing, the DIC values showed a steady

increase as the SIR rose. These models initially maintained relatively stable DIC

values, but as the SIR continued to rise, there was a noticeable upward trend in

DIC. This suggests that while ICAR and BYM are robust in capturing overall spatial

trends, they may struggle to adapt to significant local changes, leading to a less

optimal fit as reflected in the rising DIC.

The ICAR Laplace and BYM Laplace models showed a more complex response. Ini-

tially, there was a sharp increase in DIC as the SIR began to rise, reflecting these

models’ sensitivity to the localized changes in data. However, as the SIR continued to
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increase, the DIC values stabilized, albeit at higher levels compared to the traditional

ICAR and BYM models. This behavior suggests that while Laplace regularization en-

hances sensitivity to local variations, it also introduces additional complexity, which

is penalized in the DIC calculation.

The **BYM2 Laplace** model exhibited a similar pattern to the other Laplace-

regularized models, with an initial sharp increase in DIC followed by stabilization.

The sharp rise indicates the model’s quick response to the increasing SIR, but the

subsequent leveling off suggests that the model may be adjusting to the increased local

incidence rates, though at the cost of a higher overall DIC due to the complexity.

Interestingly, the Horseshoe model displayed a unique behavior compared to the other

models. As the SIR for ZIP code 30021 increased, the DIC for the Horseshoe model

initially rose but then decreased, indicating an improvement in model fit in certain

instances as the SIR increased. This pattern suggests that the Horseshoe model,

known for its ability to handle sparse signals and adapt to varying data, effectively

balanced model complexity and fit, particularly when dealing with the significant

localized increases in SIR. The Horseshoe model’s flexibility allowed it to adjust to

the changing data in a way that improved fit in some scenarios, resulting in a lower

DIC compared to other models.

The sensitivity analysis shows that traditional models like ICAR and BYM are less

responsive to localized increases in SIR, leading to a gradual increase in DIC as local

incidence rates rise. In contrast, the Laplace-regularized models, while initially more

sensitive to local changes, tend to stabilize at higher DIC values, reflecting their added

complexity. However, the Horseshoe model stands out for its ability to improve fit

in response to increased SIR in certain cases, as evidenced by the reduction in DIC

after the initial increase. This suggests that the Horseshoe model may be particularly
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well-suited for scenarios involving significant localized variations in disease incidence.

This analysis highlights the importance of selecting the appropriate model based

on the specific characteristics of the data. For regions with substantial localized

variations, the Horseshoe model may offer a better balance between fit and complexity,

as reflected by its ability to lower DIC in response to increasing SIR. In contrast,

traditional models may provide more stable performance when broader spatial trends

are of primary concern.



105

Figure 3.7: Change in DIC across the seven spatial models as the SIR for ZIP code
30021 increases. Each line represents the DIC trend as the case count is increased by
25% increments across 20 simulations.

This sensitivity analysis provides valuable insights into the responsiveness of different
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spatial models to localized increases in disease incidence, particularly highlighting the

Horseshoe model’s potential to improve fit in response to significant changes. These

findings are critical for guiding model selection in disease mapping applications, de-

pending on whether the focus is on broad spatial patterns or detailed local variations.

3.4 Case Study: Analysis of TB Incidence in Metro

Atlanta Using Real Data

Building on the methodology established in the simulation study, we applied the same

suite of spatial models—ICAR, ICAR Laplace, BYM, BYM Laplace, BYM2, BYM2

Laplace, and Horseshoe—to analyze real-world tuberculosis (TB) incidence data from

Metro Atlanta. This section presents the results of applying these models to the real

data, with a focus on identifying areas of elevated TB risk and evaluating the models’

performance by examining the density of the spatial random effects.

3.4.1 Model Application and Results

Using the previously described data on TB cases and population estimates for Metro

Atlanta ZIP codes, we calculated the Standardized Incidence Ratio (SIR) for each

area. The same spatial models used in the simulation study were fitted to this data,

incorporating the relevant socioeconomic and demographic covariates.

The results from the model fitting reveal how each model performs when applied

to real data. Figures 3.8 and 3.9 show the spatial distribution of posterior SIR

estimates for the traditional and L1-regularized models, respectively, highlighting

areas of elevated TB risk. Notably, the Horseshoe model continues to exhibit a strong

ability to adapt to varying data, often yielding a lower DIC, especially in areas with

higher TB incidence.
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Figure 3.8: Spatial distribution of posterior SIR estimates for TB incidence in Metro
Atlanta, comparing results from the ICAR, BYM, BYM2, and Horseshoe models.
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Figure 3.9: Spatial distribution of posterior SIR estimates for TB incidence in
Metro Atlanta, comparing results from the ICAR Laplace, BYM Laplace, and BYM2
Laplace models.

Table 3.2 summarizes the goodness-of-fit metrics for each model. The DIC, WAIC,

and Leave One Out Cross Validation (LOO-CV) values provide insights into the

trade-offs between model complexity and fit. Lower values for these metrics indicate

better model performance. Using the actual TB data from metro Atlanta yields a
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different model as the best fit for each metric.

Table 3.2: Goodness-of-Fit Metrics for Spatial Models Applied to TB Incidence in
Metro Atlanta

Model DIC WAIC LOO-CV

ICAR 545.311 604.488 626.551

ICAR Laplace 540.584 606.322 628.607

BYM 527.331 601.387 631.575

BYM Laplace 535.779 600.942 631.595

BYM2 542.119 603.223 629.334

BYM2 Laplace 537.422 602.763 627.127

Horseshoe 532.117 602.967 628.541

3.5 Discussion

The application of the seven spatial models—ICAR, ICAR Laplace, BYM, BYM

Laplace, BYM2, BYM2 Laplace, and Horseshoe—to real TB incidence data from

Metro Atlanta provided valuable insights into the performance and behavior of these

models in a practical setting. Despite the varying methodologies and regularization

techniques employed by each model, the Standardized Incidence Ratios (SIR) pro-

duced across the majority of ZIP codes were remarkably consistent. This consistency

suggests that the spatial distribution of TB incidence in Metro Atlanta is relatively

stable and effectively captured by all models, regardless of the specific approach used.

However, one notable exception emerged in ZIP code 30036, which has a very small

population of 327 people and recorded 3 TB cases during the study period. In this ZIP

code, the Horseshoe model produced a significantly higher SIR of 41, which sharply

contrasts with the estimates from the other models. This discrepancy is likely due
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to the Horseshoe model’s sensitivity to sparse signals and extreme values. The small

population and relatively high number of cases in ZIP code 30036 created conditions

where the Horseshoe model amplified the impact of this data point, leading to an

unusually high SIR.

The divergence in the Standardized Incidence Ratio (SIR) for ZIP code 30036 high-

lights both the strengths and limitations of the Horseshoe model. The model’s ability

to detect and amplify localized anomalies is evident, as it maintains a high SIR for

30036 while the posterior SIRs in its neighboring ZIP codes remain lower than else-

where. This indicates that the Horseshoe model does not automatically smooth excess

risk into adjacent areas, preserving sharp contrasts in the data. This characteristic is

beneficial for pinpointing potential hotspots, especially in regions with low population

density where extreme values may signify a true area of concern. However, it also

underscores the need for careful interpretation, as the model may overestimate risk

in areas with small populations due to statistical fluctuations. Therefore, while the

Horseshoe model is adept at highlighting significant local variations, analysts must

consider the broader context to avoid misinterpretation of the results.

The overall consistency in SIR estimates across the models, apart from ZIP code

30036, indicates that for most areas in Metro Atlanta, the choice of spatial model

may have a limited impact on the estimated TB risks. This uniformity suggests that

the broad spatial patterns of TB incidence are robust and can be captured effectively

by any of the traditional or L1-regularized models. This finding is particularly rele-

vant for public health applications where the primary concern is understanding and

addressing broad spatial trends rather than pinpointing highly localized anomalies.

Despite this consistency, the behavior of the Horseshoe model in ZIP code 30036 serves

as a reminder of the importance of model selection based on the specific characteris-
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tics of the data. In areas where the population is small and case counts are sparse,

models like the Horseshoe, which are more sensitive to outliers and extreme values,

may produce significantly different results from traditional models. This makes the

Horseshoe model a powerful tool for identifying potential risk areas that might be

overlooked by more conservative approaches, but also highlights the need for cau-

tious interpretation, particularly in public health contexts where resource allocation

decisions are made based on model outputs.

The slight differences in goodness-of-fit metrics, such as the Deviance Information

Criterion (DIC), Watanabe-Akaike Information Criterion (WAIC), and Leave-One-

Out Cross-Validation (LOO-CV), reflect the varying complexity and assumptions

inherent in each model. While these differences are generally modest, they provide

additional context for understanding how each model balances fit and complexity.

The Horseshoe model, for example, showed a nuanced ability to balance these aspects,

which may explain its distinctive performance in regions like ZIP code 30036.

In conclusion, the analysis suggests that while all the models examined provide reliable

estimates of TB risk in most areas, the choice of model can become critical in regions

with small populations or anomalous data. The Horseshoe model, with its sensitivity

to local variations, may offer advantages in detecting potential hotspots but requires

careful consideration to avoid overinterpretation of statistical outliers. This case

study underscores the importance of tailoring model selection to the specific needs

and characteristics of the data, particularly in public health applications where the

stakes of misidentifying risk areas can be high. Future research could explore the

application of these models to other diseases or geographic regions, further refining

the understanding of how model choice impacts the identification and interpretation

of spatial risk patterns.
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Future work in this area could benefit from the incorporation of local measures of fit to

better assess how well the models capture spatial variability across different regions.

While global metrics like DIC, WAIC, and LOO-CV provide valuable insights into

overall model performance, they can sometimes obscure regional differences in fit. By

utilizing geographically weighted diagnostics or locally estimated posterior predictive

checks, researchers could identify areas where the model performs particularly well or

poorly. This would allow for a more nuanced understanding of spatial heterogeneity

in model performance, potentially leading to more targeted model improvements and

refinements.

Additionally, exploring spatially varying covariates could enhance the models’ ability

to capture localized effects and improve overall fit. Traditional models often assume

that the relationship between covariates and the outcome is constant across space,

which may not hold true in practice. Incorporating spatially varying coefficients

would allow the model to account for differences in how covariates influence TB risk

in different regions, providing a more accurate and context-sensitive analysis. This

approach could be particularly valuable in public health applications, where the goal

is to understand not only where high-risk areas are located but also why those areas

are at increased risk.

By combining local measures of fit with spatially varying covariates, future models

could offer more precise and actionable insights into the spatial dynamics of disease

risk. This would not only improve the models’ predictive power but also enhance

their utility in informing public health interventions and policy decisions. As public

health challenges become increasingly complex, the ability to accurately model and

understand spatial risk patterns at a local level will be essential for effective disease

prevention and control.
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Chapter 4

A Localized Approach to Model

Adequacy: Zooming in on Sharp

Spatial Transitions in Disease

Surveillance Models

4.1 Introduction

In the field of spatial statistics, assessing model adequacy is a critical concern, espe-

cially in the context of public health and disease surveillance. Public health models

must be robust and reliable to ensure that the interventions they inform are both

effective and efficient. Traditional global measures, such as the Deviance Information

Criterion (DIC), have been extensively used to evaluate the overall fit of Bayesian

hierarchical models. The DIC, as described by Spiegelhalter et al. (2002), balances

the goodness of fit with model complexity by incorporating a penalty term for the
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effective number of parameters, making it a valuable tool in model selection and ad-

equacy assessment [107]. However, while these global measures are essential, they

often fail to capture the local variations in data, which are particularly crucial in

spatial models dealing with geographically diverse regions.

This issue is particularly relevant in the context of tuberculosis (TB) in Metro Atlanta,

where the spatial distribution of the disease is influenced by a complex interplay of

socio-economic, demographic, and environmental factors. TB is a public health con-

cern in this region, with prevalence rates varying significantly across different neigh-

borhoods. These variations are driven by factors such as population density, access

to healthcare, and the percentage of foreign-born residents, all of which contribute to

the localized nature of TB outbreaks. Effective monitoring and intervention strategies

require models that can accurately capture these spatial heterogeneities, making the

assessment of local model adequacy crucial.

This chapter focuses on exploring the local pattern of TB in Clarkston, GA, is partic-

ularly significant due to the unique demographic and socio-economic characteristics

of the area. Clarkston is known as one of the most ethnically diverse cities in the

United States, often referred to as “the Ellis Island of the South.” It has become a

primary resettlement site for refugees from around the world, leading to a population

with a high percentage of foreign-born residents. This demographic factor is critical

when studying TB, as foreign-born individuals are often at higher risk for TB due to

various factors, including limited access to healthcare, previous exposure in countries

with higher TB prevalence, and the challenges associated with integrating into a new

health system. Moreover, the socio-economic challenges faced by many residents, such

as overcrowded living conditions and limited access to healthcare, further exacerbate

the risk of TB transmission. Therefore, understanding the local pattern of TB in

Clarkston not only provides insights into the effectiveness of current public health



115

interventions but also highlights areas where targeted efforts are needed to address

the unique vulnerabilities of this population. This focus on Clarkston underscores

the importance of localized model adequacy in accurately capturing and responding

to the health needs of diverse and at-risk communities[102].

Spatial models, such as those used in disease mapping, often rely on the assump-

tion of spatial correlation among study units. This assumption, while simplifying

the modeling process, can obscure local patterns that are critical for understanding

disease dynamics in specific areas. For instance, Wheeler et al. (2010) emphasize

that traditional global diagnostics might not adequately reflect the local model fit,

potentially leading to erroneous conclusions about model adequacy [126]. This short-

coming is particularly concerning in the context of public health, where localized

patterns of disease incidence, such as those observed with TB in Metro Atlanta, can

vary significantly across regions due to differences in socio-economic factors, access

to healthcare, and other local determinants.

To address this limitation, recent advancements have focused on partitioning the DIC

into local components, enabling a more granular assessment of model adequacy. The

concept of a localized DIC allows researchers to evaluate the model fit at the level

of individual observations or specific geographic units, rather than relying solely on

a global assessment. This approach, detailed in Wheeler et al. (2010), provides a

more nuanced understanding of how well the model captures local variations in the

data [126]. Additionally, by visualizing local DIC and comparing it across differ-

ent model specifications, researchers can identify regions where the model may be

underperforming or where additional covariates might improve the fit.

Moreover, the complexity of Bayesian hierarchical models, particularly those used in

spatial analysis, requires careful consideration of model parsimony to avoid overfit-
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ting. Spiegelhalter et al. (2002) discuss the importance of balancing model fit with

complexity, noting that an overly complex model may perform well on the training

data but fail to generalize to new datasets [107]. This issue is particularly relevant

in spatial models where the number of parameters can be large and difficult to esti-

mate accurately. The partitioned DIC addresses this by incorporating a complexity

penalty, ensuring that models remain interpretable and generalizable.

The relevance of these local diagnostic tools is further emphasized in the work by Jun

et al. (2014), which provides a comprehensive Bayesian perspective on model com-

plexity and the trade-offs involved in model selection. They discuss the importance of

penalizing model complexity to prevent overfitting, particularly in hierarchical mod-

els where the number of parameters can be difficult to estimate. The authors argue

that while global measures of fit, such as the DIC, are useful for overall model com-

parison, they may not fully capture the intricacies of local data structures, especially

in complex models [67]. By decomposing the DIC into its component parts, including

the penalty for model complexity and the fit of individual data points, researchers

can gain deeper insights into the adequacy of their models. This partitioning allows

for the identification of local inadequacies in model fit, which is crucial for accu-

rately modeling spatial variations in disease prevalence, such as those observed in TB

surveillance in Metro Atlanta.

In the context of TB in Metro Atlanta, where disease mapping models must account

for sharp spatial transitions in disease prevalence, the use of localized diagnostics

becomes even more critical. Disease mapping models, such as the Bayesian hierarchi-

cal models used in this study, are designed to capture the spatial distribution of TB

while accounting for various covariates, including socio-economic factors and demo-

graphic variables. However, the accuracy of these models depends on their ability to

adequately capture local variations in disease incidence, which can only be assessed
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through localized diagnostic tools.

In this chapter, we build on these foundations to explore a localized approach to model

adequacy in the context of TB surveillance models in Metro Atlanta. By employing

localized DIC and other diagnostic tools, we aim to identify and address sharp spatial

transitions in TB incidence, ultimately leading to more accurate and reliable models.

This approach is not only academically significant but also has practical implications

for public health, particularly in regions like Metro Atlanta where TB burden is

unevenly distributed. Through the use of localized diagnostics, public health officials

can develop more targeted interventions tailored to the specific needs of different

communities, thereby improving health outcomes at the population level.

The following sections will delve into the methods employed, present the results of a

simulation study, and discuss the broader implications of this localized approach to

model adequacy for future research and public health practice.

4.2 Methods

4.2.1 Overview of Global Measures of Model Fit

Global measures of model fit are essential tools in Bayesian modeling, providing a

comprehensive assessment of a model’s performance by balancing goodness of fit

with model complexity. The Deviance Information Criterion (DIC) is one of the

most widely used global measures, particularly in the context of complex hierarchical

models. Introduced by Spiegelhalter et al. (2002), DIC has become a standard for

comparing Bayesian models [107].

4.2.1.1 Deviance Information Criterion (DIC)

The DIC is defined as:



118

DIC = D(θ̄) + 2pD (4.1)

Where:

• D(θ̄) represents the deviance at the posterior mean of the model parameters.

• pD is the effective number of parameters, providing a penalty for model com-

plexity.

Deviance, in this context, measures how well the model’s predictions match the ob-

served data. The complexity term, pD, penalizes models with more parameters, aim-

ing to prevent overfitting. The DIC is particularly useful in model comparison, where

it helps identify models that provide a balance between fit and complexity.

4.2.1.2 Limitations of DIC

While DIC is a valuable tool for assessing global model fit, it has several limitations,

especially when applied to spatial models. One of the main drawbacks is its reliance

on the posterior mean of the model parameters, which may not adequately capture

the full uncertainty in complex models. Additionally, DIC assumes that the posterior

distribution is approximately multivariate normal, which may not hold in cases of

highly non-linear models or models with multimodal posterior distributions.

Moreover, DIC does not account for local variations in the data, which can be par-

ticularly problematic in spatial models where the disease distribution may vary sig-

nificantly across different regions. This limitation necessitates the use of alternative

measures that can provide a more nuanced understanding of model adequacy.
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4.2.2 Watanabe–Akaike information criterion (WAIC)

To address some of the limitations of DIC, the Watanabe–Akaike Information Cri-

terion (WAIC) has been proposed as a more robust alternative. WAIC, introduced

by Watanabe (2010), is fully Bayesian and does not rely on approximations like the

posterior mean or assumptions of normality [124]. WAIC is considered more suitable

for complex models, particularly in the context of hierarchical and spatial models.

4.2.2.1 Calculation of WAIC

WAIC is calculated using the log-likelihood of the data given the model, averaged

over the posterior distribution of the parameters. The WAIC for a model is defined

as:

WAIC = −2

(
n∑

i=1

log

(
1

S

S∑
s=1

p(yi | θs)

)
− VWAIC

)
(4.2)

Where:

• yi represents the observed data for the i-th observation.

• θs represents the s-th sample from the posterior distribution of the parameters.

• p(yi | θs) is the likelihood of yi given the parameter sample θs.

• S is the total number of posterior samples.

• VWAIC is the variance of the log-likelihood, defined as:

VWAIC =
n∑

i=1

Varθ∼p(θ|y)[log p(yi | θ)] (4.3)

WAIC provides a measure of model fit that is averaged over the entire posterior dis-

tribution, making it a more accurate reflection of the model’s predictive performance.

Additionally, WAIC accounts for the effective number of parameters, similar to DIC,
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but does so in a fully Bayesian manner[124].

4.2.2.2 Advantages of WAIC

WAIC has several advantages over DIC, particularly in the context of complex and

hierarchical models. Since WAIC is fully Bayesian, it better captures the uncertainty

in the model parameters by averaging over the entire posterior distribution rather

than relying on point estimates. This makes WAIC more robust in cases where the

posterior distribution is highly skewed, multimodal, or otherwise non-normal[124].

Another advantage of WAIC is its applicability to a wide range of models, including

those with non-standard likelihoods or non-conjugate priors. WAIC is also asymp-

totically equivalent to leave-one-out cross-validation (LOO-CV), providing an inter-

pretable measure of out-of-sample predictive accuracy [115].

4.2.2.3 Limitations of WAIC

Despite its advantages, WAIC is not without limitations. The calculation of WAIC

involves computing the variance of the log-likelihood, which can be computationally

intensive, especially in large datasets or models with many parameters. Additionally,

while WAIC is generally more robust than DIC, it may still struggle in cases where

the model is misspecified or where the data exhibits extreme heterogeneity.

4.2.3 Localized Measures of Fit: Local DIC and Local WAIC

Given the limitations of global measures like DIC and WAIC, there is a growing need

for localized measures that can assess model adequacy at finer spatial resolutions.

This is particularly important in spatial models used for disease mapping, where local

variations in disease prevalence can significantly impact the effectiveness of public

health interventions [126].
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4.2.3.1 Local DIC for Administrative Units

Local DIC extends the concept of DIC to smaller administrative units, such as ZIP

codes or census tracts, allowing for a more detailed assessment of model performance

across different geographic areas. The Local DIC for a specific unit is computed as:

DICi = D̄i(θ) + pDi (4.4)

Where:

• D̄i(θ) is the mean deviance for individual observation i, indicating how well the

model predicts each specific data point.

• pDi represents the complexity contribution from observation i, analogous to

leverage in classical regression.

Local DIC provides a more granular understanding of model performance, particularly

in areas with sharp spatial transitions. This can help identify regions where the model

may require refinement or where additional covariates might improve the model’s

accuracy [126]. Notably, the sum of the local DICs across all observations equals the

global DIC, ensuring that these localized assessments collectively reflect the overall

model performance.

4.2.3.2 Local WAIC for Administrative Units

Local WAIC extends the concept of WAIC to individual observations or geographic

units, providing a localized measure of model adequacy. Local WAIC is calculated

similarly to global WAIC but focuses on the contribution of individual data points or

small groups of data points.
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The Local WAIC for the i-th observation or unit is defined as:

WAICi = −2

(
log

(
1

S

S∑
s=1

p(yi | θs)

)
− Varθ∼p(θ|y)[log p(yi | θ)]

)
(4.5)

Where the terms are defined as before, but focused on the specific observation or unit.

Local WAIC, like Local DIC, allows for the identification of areas where the model

may be underperforming, enabling more targeted model refinement and public health

interventions. Importantly, the sum of the local WAIC values across all observations

is equal to the global WAIC, ensuring that these localized assessments collectively

reflect the overall model performance.

4.3 Case Study: Local Measures of fit for TB in

Clarkston, GA

The objective of this simulation study is to evaluate the effectiveness of model ade-

quacy tools in identifying and addressing local inadequacies within spatial models of

tuberculosis (TB) Standardized Incidence Ratios. Specifically, the study assesses the

performance of the Deviance Information Criterion (DIC) and the Watanabe–Akaike

Information Criterion (WAIC) in distinguishing between models that vary in their

levels of spatial smoothing and regularization.

As detailed in Chapter 3, this study employs seven disease mapping models to sim-

ulate TB incidence in Clarkston, GA and its immediate surroundings 38 ZIP codes.

The models include the Intrinsic Conditional Autoregressive (ICAR), Besag-York-

Mollié (BYM), and the extended Besag-York-Mollié (BYM2) models, each of which

is analyzed in both its traditional form and with L1 Laplace regularization. Addi-

tionally, the horseshoe model is incorporated due to its capability to handle sparse
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signals and mitigate overfitting in regions with low data support. The primary aim

is to compare these models’ ability to detect local variations in disease incidence and

to evaluate the trade-offs between global and local smoothing.

4.3.1 Approach

The study utilizes existing TB data from Clarkston, GA, known for its diverse pop-

ulation and significant TB burden[91]. The approach begins with TB case counts

obtained between 2017 and 2021 obtained from the Georgia Department of Public

Health (GDPH), allowing for a controlled comparison of the seven disease mapping

models outlined in Chapter 3.

Each model is fitted to the GDPH data, and their performance is evaluated using

both DIC and WAIC. These criteria are computed at local levels (ZIP codes). The

goal is to identify regions where the models may underperform, thus requiring further

refinement or the incorporation of additional covariates. The analysis focuses on

the models’ ability to capture overall spatial patterns and their sensitivity to local

variations in TB incidence.

4.3.2 Identifying Areas of Concern

The analysis begins with the computation of global DIC and WAIC for each model,

followed by the calculation of Local DIC and Local WAIC for ZIP codes surrounding

Clarkston, GA. These localized measures are crucial for detecting regions where the

models fail to adequately capture the underlying TB incidence patterns.
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Figure 4.1: Geographical distribution of Deviance Information Criterion (DIC) Values
around Clarkston, GA using the ICAR, BYM, BYM2, and Horseshoe models. Higher
DIC values indicate regions with poor model fit.
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Figure 4.2: Geographical distribution of DIC Values around Clarkston, GA using the
L1 Regularized Models. Higher DIC values indicate regions with poor model fit.

Figures 4.1 and 4.2 presents the spatial distribution of DIC values across Clarkston,

highlighting areas with poorer model fit. These regions are identified as areas of

concern, where the models may require additional refinement or the integration of

further covariates to improve predictive accuracy.

Similarly, WAIC values are computed for the same regions to offer a comparison with

DIC. Figures 4.3 and 4.4(models with L1 Laplace Regularization) presents the spa-

tial distribution of DIC values across Clarkston, highlighting areas with poor model

fit. Since WAIC is a fully Bayesian measure that accounts for the entire posterior

distribution, it often provides a more robust evaluation of model fit, particularly in

regions with complex spatial structures. The results indicate that both criteria are
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effective in detecting local inadequacies, with WAIC sometimes offering additional

insights due to its comprehensive nature.

Figure 4.3: Geographical distribution of Watanabe–Akaike Information Criterion
(WAIC)Values around Clarkston, GA using the ICAR, BYM, BYM2, and Horse-
shoe models. Higher WAIC values indicate ZIP codes with poor model fit.
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Figure 4.4: Geographical distribution of WAIC Values around Clarkston, GA using
the L1 Regularized Models.

4.3.3 Leverage versus Model Adequacy Criteria

To further explore the relationship between model influence and adequacy, we examine

the leverage of individual data points or spatial units against their corresponding DIC

and WAIC values. Leverage, in this context, refers to the degree to which certain

observations influence the overall model fit. High leverage points can skew model

results, leading to potential misinterpretations if not properly accounted for.

Figure 4.5 illustrates the relationship between leverage and DIC. Regions with both

high leverage and high DIC values are of particular concern, as they may indicate

areas where the model is overly sensitive to specific local data points.



128

Figure 4.5: Leverage versus DIC: Analysis of the relationship between leverage and
DIC in Clarkston, GA. Regions with high leverage and high DIC values are of par-
ticular concern.

4.4 Discussion

This study aimed to assess the local adequacy of various Bayesian hierarchical mod-

els in capturing the spatial distribution of tuberculosis (TB) in Metro Atlanta, with

a particular emphasis on Clarkston, GA. Clarkston’s unique demographic charac-

teristics—especially its high percentage of foreign-born residents and socio-economic

diversity—make it a critical area for TB surveillance and intervention. The results
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underscore the importance of selecting appropriate models that can account for the

socio-economic and demographic heterogeneity in accurately reflecting the complexi-

ties of TB prevalence in this region.

4.4.1 Model Adequacy and Local Patterns of TB

The evaluation of model adequacy through localized diagnostic tools such as the De-

viance Information Criterion (DIC) and the Watanabe-Akaike Information Criterion

(WAIC) provided nuanced insights into the performance of different models across

Metro Atlanta. Clarkston, with its significant percentage of foreign-born residents

(over 50% in some areas), exemplifies the necessity of models that accurately account

for socio-economic and demographic disparities.

The DIC and WAIC values for the Horseshoe, ICAR, BYM, and their respective L1-

regularized versions were calculated and compared across different geographic units.

The results indicate substantial variation in model performance, reflecting the spatial

heterogeneity of TB incidence in the region. Notably, the ICAR and BYM models,

particularly in their L1-regularized forms, demonstrated superior fit and predictive

accuracy in areas like Clarkston, where we observe sharp transitions between this

particular ZIP code and its neighbors. The lower WAIC values for these models

suggest that they are more effective in capturing the local nuances of TB spread,

likely due to their ability to flexibly incorporate spatial correlations.

4.4.2 Implications for TB Surveillance in Clarkston

The findings from this study have significant implications for public health practice,

particularly in regions like Clarkston, where the TB burden is disproportionately high.

The high percentage of foreign-born residents, many of whom may have been exposed

to TB in countries with higher prevalence, presents a unique challenge for TB control
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efforts. Traditional global models may not adequately capture these localized risks,

potentially leading to underestimation of TB incidence in such communities.

The superior performance of localized diagnostics in this study suggests that more

granular models, which consider the specific socio-economic and demographic con-

text of areas like Clarkston, are essential for accurate TB surveillance. Public health

officials can leverage these findings to develop more targeted interventions that ad-

dress the unique needs of high-risk communities. For instance, increasing access to

TB screening and treatment in refugee communities, enhancing public health educa-

tion, and tailoring interventions to the socio-economic conditions in Clarkston could

significantly reduce the TB burden in this area.

4.4.3 Future Work: Spatially Varying Coefficient Models

While this study has provided valuable insights into the spatial dynamics of TB in

Metro Atlanta, particularly in Clarkston, there is a need for further research that

explores the use of spatially varying coefficient (SVC) models. These models offer the

potential to capture the complex interactions between covariates and spatial location,

allowing for the effects of socio-economic and demographic factors on TB risk to

vary across space. This would enable a more refined understanding of how different

factors contribute to TB prevalence in specific areas, providing an even more localized

assessment of disease risk.

SVC models could improve upon the limitations observed in the current models by

allowing coefficients to vary spatially, thereby accommodating the heterogeneous im-

pact of variables like foreign-born population percentage and income inequality across

different regions. This approach would be particularly valuable in areas with high

socio-economic diversity, such as Clarkston, where the relationships between risk fac-

tors and TB incidence may not be uniform across space.
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Moreover, the integration of SVC models with dynamic data sources, such as real-

time health surveillance data, could further enhance the accuracy and timeliness of

TB risk predictions. Future work should focus on the development and application of

SVC models in TB surveillance, with the goal of providing public health officials with

more precise tools for targeting interventions and resources in the most vulnerable

communities.

In conclusion, this study highlights the critical importance of using localized diagnos-

tics and advanced spatial models to accurately capture the spatial heterogeneity of

TB in areas like Clarkston, GA. By advancing research into spatially varying coeffi-

cient models, future work can contribute to the development of more effective public

health strategies tailored to the specific needs of diverse and high-risk populations.

This approach has the potential to significantly improve TB surveillance and control

efforts, ultimately reducing the burden of this disease in vulnerable communities.
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Chapter 5

Novel Insights in Spatial

Epidemiology: Comparing Bayesian

Spatially Varying Coefficient Models

5.1 Introduction

In spatial epidemiology, accurately capturing the distribution of infectious diseases

such as tuberculosis (TB) is essential for effective public health interventions, partic-

ularly in heterogeneous urban settings. Traditional Bayesian hierarchical frameworks,

have been valuable in identifying factors influencing disease distribution. However,

these models often assume stationarity, meaning that they treat the relationship be-

tween covariates and disease outcomes as constant across space. This assumption

ignores local variations that are essential for precise disease mapping and effective

intervention strategies. These models, including the widely used intrinsic conditional

autoregressive (ICAR) models [13], have provided valuable insights into disease risk
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patterns. However, ICAR models, despite their ability to account for spatial correla-

tion, suffer from several limitations when applied to regions with sharp socioeconomic

transitions between small areas, such as Metro Atlanta.

The most significant challenge with ICAR models is their tendency to over-smooth

across areas with local heterogeneity. By applying global smoothing parameters,

ICAR models often fail to capture abrupt changes in disease risk between neighboring

regions, leading to oversimplified and sometimes misleading results. This lack of

adaptability to local discontinuities, coupled with sensitivity to outliers even when

using heavy-tailed priors, calls for more flexible models that can better accommodate

complex spatial patterns.

To address these limitations, Bayesian Spatially Varying Coefficient Models (BSVCMs)

have emerged as a powerful alternative. BSVCMs introduce location-specific effects,

allowing for more local adaptability in the relationships between covariates and dis-

ease outcomes. By allowing coefficients to vary spatially, BSVCMs are able to cap-

ture regional differences in covariate effects that traditional ICAR models smooth

over, making them better suited for heterogeneous environments like Metro Atlanta.

These models like one proposed by [121] offer significant advantages in reducing over-

smoothing, providing a more direct assessment of spatial risk factors, and offering

greater flexibility in capturing the local variability of disease drivers.

However, despite their advantages, BSVCMs present their own challenges. Estimat-

ing a large number of location-specific coefficients increases computational complexity,

especially when dealing with high-dimensional data. Additionally, the flexibility of

these models introduces a risk of overfitting, which can diminish predictive accu-

racy when applied to new data. The complexity of these models also complicates

interpretation, making it more difficult to communicate results to stakeholders.



134

To address these challenges, this chapter introduces a novel approach—Locally Adap-

tive Smoothing (LAS). LAS modifies spatial weights dynamically based on differences

in expected disease counts between neighboring regions, enhancing the model’s ability

to detect local discontinuities and prevent over-smoothing. By incorporating LAS,

our proposed Bayesian Spatially Varying Coefficient Model (BSVCM) retains the flex-

ibility needed to capture complex spatial patterns while addressing key limitations

related to over-smoothing and adaptability.

In this chapter, we will outline the theoretical foundations of Bayesian Spatially Vary-

ing Coefficient Models and detail the enhancements introduced through LAS. A case

study of TB incidence in Metro Atlanta will demonstrate the practical benefits of the

proposed model, focusing on how it improves upon traditional methods by capturing

sharp transitions in TB risk across neighborhoods. Special attention will be given to

areas such as Clarkston, GA, which have unique demographic profiles that present

challenges for traditional spatial models.

The proposed method offers a significant contribution to spatial epidemiology, partic-

ularly in urban environments with high levels of socioeconomic diversity. By provid-

ing a more nuanced understanding of the spatial distribution of TB risk, the Locally

Adaptive Smoothing-enhanced BSVCM enables public health professionals to design

more targeted and effective intervention strategies.

5.2 Methods

5.2.1 Bayesian Hierarchical Disease Mapping: Overview

Spatial epidemiology plays a crucial role in understanding and mitigating the spread

of infectious diseases. Accurate disease mapping enables public health officials to

identify high-risk areas, allocate resources efficiently, and implement targeted inter-
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ventions. Bayesian hierarchical models have emerged as a powerful tool for disease

mapping, offering robust frameworks to estimate disease risk across small geograph-

ical areas. These models account for spatial correlation by leveraging information

from neighboring regions, a process often referred to as “borrowing strength.” Among

these, the Intrinsic Conditional Autoregressive (ICAR) model is widely utilized due

to its ability to model spatial dependence effectively.

5.2.2 Extensions to the ICAR Model

To enhance the flexibility and robustness of Bayesian hierarchical models in spatial

disease mapping, various extensions to the traditional Intrinsic Conditional Autore-

gressive (ICAR) model have been developed. These extensions incorporate different

prior distributions, each addressing specific limitations inherent in the ICAR frame-

work. The Laplace prior [13, 14], for example, introduces sparsity in spatial differ-

ences, enabling the model to capture sharp spatial transitions between neighboring

areas more effectively. This is particularly advantageous in regions where abrupt

changes in disease risk are expected, ensuring that the model does not overly smooth

these critical boundaries.

Similarly, the Student-t prior [111] accommodates outliers by employing heavy-tailed

distributions, thereby enhancing the model’s robustness to extreme values in spatial

risk estimates. This feature is essential in scenarios where certain regions may exhibit

unusually high or low disease counts that deviate significantly from the surrounding

areas. Additionally, the Horseshoe prior [24] promotes sparsity by shrinking most

spatial effects towards zero while allowing significant effects to remain unaltered.

This selective shrinkage focuses the model on areas with meaningful spatial variation,

effectively highlighting regions of interest without diluting the influence of substantial

spatial effects.
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These extensions collectively improve the ICAR model’s ability to accurately repre-

sent complex spatial patterns by addressing issues related to over-smoothing, outlier

sensitivity, and the identification of significant spatial effects. By incorporating these

advanced priors, Bayesian hierarchical models become more adept at capturing the

nuanced spatial dynamics that characterize heterogeneous environments, thereby pro-

viding more reliable and interpretable disease risk maps.

5.2.3 Limitations of Traditional ICAR Models and Their Ex-

tensions

Despite the advancements introduced by these extensions, traditional ICAR models

continue to exhibit limitations, particularly when applied to regions with complex

spatial dynamics such as Metro Atlanta. One of the foremost challenges is the ten-

dency of ICAR models to over-smooth in heterogeneous regions, which results in the

failure to capture abrupt changes in disease risk between neighboring areas. This

over-smoothing undermines the model’s ability to identify and represent critical lo-

cal variations, leading to oversimplified disease maps that do not accurately reflect

underlying spatial patterns.

Furthermore, the use of global smoothing parameters in ICAR models impedes their

adaptability to local discontinuities. These parameters are applied uniformly across

all regions, disregarding region-specific variations that may be crucial for accurately

modeling disease dynamics. Consequently, ICAR models are less sensitive to local

changes in disease risk, reducing their effectiveness in diverse and heterogeneous urban

settings where socio-economic factors can vary markedly over short distances.

Additionally, ICAR models remain sensitive to outliers and extreme values, even when

incorporating heavy-tailed priors such as the Student-t distribution. This sensitiv-
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ity can lead to poor estimation of spatial risk, particularly in areas where disease

counts significantly deviate from the norm. The presence of outliers can dispropor-

tionately influence spatial risk estimates, compromising the model’s reliability and

interpretability.

These limitations underscore the necessity for enhanced models that offer greater

local adaptability and flexibility, enabling more accurate capture of complex spatial

patterns. Bayesian Spatially Varying Coefficient Models (BSVCMs) represent the

next step in addressing these challenges. By allowing for location-specific effects,

BSVCMs improve the model’s ability to reflect true spatial heterogeneity, thereby

providing a more nuanced and accurate representation of disease risk across diverse

and dynamic urban landscapes.

5.2.4 Bayesian Spatially Varying Coefficient Models

To overcome the limitations of traditional ICAR models, Bayesian Spatially Varying

Coefficient Models (BSVCMs) have been developed [125, 48, 121]. BSVCMs introduce

location-specific effects, thereby enhancing the model’s ability to adapt to local spatial

variations and capturing complex spatial dependencies more accurately.

5.2.4.1 Model Structure

The BSVCM extends the traditional Bayesian hierarchical framework by allowing the

coefficients of covariates to vary spatially. The general form of the model is expressed

as:

log(θi) = β0 +
K∑
k=1

βk,iXk,i + Ui (5.1)

where:
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• θi represents the log-relative risk of disease at location i.

• β0 is the global intercept term.

• βk,i denotes the spatially varying coefficient for covariate k at location i.

• Xk,i is the value of covariate k at location i.

• Ui captures the spatially structured random effect, accounting for unobserved

heterogeneity.

Each spatially varying coefficient βki is modeled as:

βk,i = βk + sk,i (5.2)

where βk is the global effect of covariate k, and sk,i is the spatially varying component

modeled using a multivariate ICAR prior.

5.2.4.2 Key Advantages

Bayesian Spatially Varying Coefficient Models (BSVCMs) offer several key advantages

over traditional spatial models, primarily due to their inherent flexibility and adapt-

ability to local spatial variations. A significant benefit of BSVCMs is their ability

to provide local adaptability. By allowing the coefficients of covariates to adjust for

each specific location, BSVCMs effectively reduce over-smoothing—a common issue

in traditional models that tend to average effects across regions. This localized ad-

justment ensures that the unique characteristics of each area are accurately captured,

leading to more precise and meaningful estimates of disease risk.

Moreover, BSVCMs exhibit a high degree of flexibility in modeling regional differ-

ences in covariate effects. This flexibility is crucial in heterogeneous environments

where the influence of socioeconomic and demographic factors on disease incidence

can vary markedly from one neighborhood to another. By accommodating these re-
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gional disparities, BSVCMs provide a more nuanced understanding of the underlying

determinants of disease distribution, facilitating the identification of area-specific risk

factors.

Additionally, BSVCMs enable direct assessment of spatial risk factors by explicitly

modeling the spatially varying relationships between covariates and disease outcomes.

This capability allows researchers to evaluate how the impact of each covariate differs

across locations, offering deeper insights into the spatial dynamics of disease transmis-

sion. Such detailed assessments are invaluable for informing targeted public health

interventions and policy decisions, as they highlight the specific factors driving disease

risk in different regions.

5.2.5 Challenges Associated with Bayesian Spatially Varying

Coefficient Models

Despite their enhanced flexibility and numerous advantages, Bayesian Spatially Vary-

ing Coefficient Models (BSVCMs) present several challenges that must be addressed

to ensure their effective application. One primary challenge is computational com-

plexity. Estimating a large number of location-specific coefficients significantly in-

creases the computational burden, especially when dealing with extensive datasets or

a multitude of covariates. This heightened computational demand can limit the scal-

ability of BSVCMs and may require the use of advanced computational techniques or

high-performance computing resources to achieve feasible run times.

Another notable challenge is the risk of overfitting. The high degree of flexibility

inherent in BSVCMs allows the model to fit the training data very closely, potentially

capturing noise rather than the underlying signal. This overfitting can lead to reduced

predictive accuracy when the model is applied to new, unseen data, undermining its
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utility for generalization and practical application in public health surveillance.

Moreover, BSVCMs often suffer from interpretability issues. The introduction of

numerous spatially varying coefficients can complicate the model structure, making

the results more difficult to interpret and communicate effectively to stakeholders.

This complexity can pose challenges in translating statistical findings into actionable

public health strategies, as stakeholders may find it challenging to grasp the nuanced

spatial relationships modeled by BSVCMs.

These challenges highlight the necessity for models that strike a balance between flex-

ibility and interpretability. It is imperative to develop methodologies that maintain

the ability to capture complex spatial patterns while ensuring that the results remain

comprehensible and actionable for decision-makers. Addressing these challenges is es-

sential for the broader adoption and practical implementation of BSVCMs in spatial

epidemiology and public health research.

5.2.6 Proposed Method: Locally Adaptive Smoothing (LAS)

To address the limitations inherent in both traditional ICAR models and BSVCMs,

this study introduces a novel approach termed Locally Adaptive Smoothing

(LAS). LAS enhances the adaptability and flexibility of spatial models by dynam-

ically adjusting spatial weights based on local differences in expected disease counts.

This method aims to preserve local spatial details while preventing over-smoothing,

thereby providing a more accurate representation of disease risk patterns.

5.2.6.1 Dynamic Spatial Weights

LAS modifies the spatial weights between neighboring regions by incorporating a

function that accounts for differences in expected disease counts. This dynamic ad-

justment ensures that regions with large differences in covariate values are treated
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distinctly, allowing the model to adapt to local variations more effectively.

5.2.6.2 Adjusted Spatial Weights

The LAS-adjusted spatial weights are defined as:

ωLAS
ij = ωij × exp

(
−|Ei − Ej|

ζ

)
(5.3)

where:

• ωij represents the original spatial weight between regions i and j, typically

based on adjacency or distance. If ωij is zero, the adaptive weights remain zero

(i.e., the weights assigned to neighbors are adaptive, not the set of neighbors

themselves).

• Ei and Ej are the estimated disease counts at locations i and j, respectively.

• ζ is a smoothing parameter that controls the sensitivity of the weight adjustment

to differences in expected disease counts.

The introduction of Locally Adaptive Smoothing (LAS) brings several significant ad-

vancements to Bayesian Spatially Varying Coefficient Models (BSVCMs). One of the

foremost contributions of LAS is its ability to reduce over-smoothing. By dynamically

reducing the influence of dissimilar neighboring regions, LAS preserves intricate lo-

cal spatial details that are often lost in traditional models. This preservation ensures

that distinct disease risk patterns remain clearly identifiable, thereby maintaining the

integrity of sharp spatial transitions without them being inadvertently blended with

surrounding areas.

Furthermore, LAS enhances the adaptability of the model by allowing it to respond

effectively to local discontinuities and heterogeneity. This adaptability is crucial in
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accurately representing regions with unique spatial characteristics, ensuring that ar-

eas exhibiting unusual or contrasting disease dynamics are distinctly captured. By

accommodating such regional variations, LAS ensures that the model remains sensi-

tive to the specific socioeconomic factors influencing disease risk in different locales.

Collectively, these contributions enable BSVCMs to provide a more precise and nu-

anced understanding of spatial disease distribution, facilitating the development of

targeted and effective public health interventions.

5.2.7 Restructured Spatially Varying Coefficient Model with

LAS

Building upon the LAS approach, this study introduces a restructured BSVCM that

integrates LAS-adjusted spatial weights to further enhance model performance. This

restructured model addresses multiple limitations of existing models, offering im-

proved accuracy and flexibility in capturing complex spatial patterns.

5.2.7.1 Model Specification

The restructured model is specified as follows:

θi = β0 +
K∑
k=1

βk(xk,i) + ULAS
i (5.4)

where:

• θi is the log-relative risk of disease at location i.

• β0 + ULAS
i in the spatially varying intercept term.

• βk,i(xk,i) represents the effect of covariate k at location i, allowing for spatial

variation in covariate effects.
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• ULAS
i denotes the spatially structured random effect incorporating LAS-adjusted

weights, capturing residual spatial variation not explained by covariates.

The spatial random effects ULAS
i are modeled as:

[ULAS
i |{Uj = uj, i ∼ j}, τu, ωLAS

ij ] ∼ N

(
ūi,

1∑n
j=1 τuω

LAS
ij

)
(5.5)

where:

• ūi is the mean disease count of neighboring regions, serving as the conditional

mean in the ICAR prior.

• τu is the precision parameter controlling the variance of the spatial random

effects.

• ωLAS
ij = ωij ·exp

(
− |Ei−Ej |

ζ

)
represents the LAS-adjusted spatial weight between

regions i and j.

Integrating Locally Adaptive Smoothing (LAS) into the Bayesian Spatially Vary-

ing Coefficient Model (BSVCM) offers several significant advancements. Primarily,

the incorporation of LAS-adjusted weights effectively mitigates the over-smoothing

and adaptability issues inherent in traditional Intrinsic Conditional Autoregressive

(ICAR) models. This enhancement allows for a more nuanced and accurate repre-

sentation of spatial disease patterns by ensuring that significant local variations are

preserved and accurately depicted in the disease risk estimates.

Furthermore, the dynamic adjustment of spatial weights through LAS substantially

enhances the model’s accuracy and flexibility. By responding to complex spatial

dependencies and local variations, the model becomes adept at capturing intricate

spatial dynamics that are often present in heterogeneous environments such as Metro
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Atlanta. This capability results in more precise estimates of disease risk, as the

model can adapt to the unique spatial characteristics of different regions without

being constrained by global smoothing parameters.

Additionally, the restructured model with LAS maintains an optimal balance between

flexibility and interpretability. This balance facilitates clearer communication of spa-

tial risk factors to stakeholders, as the model retains the ability to model intricate

spatial patterns while ensuring that the results remain comprehensible and action-

able. The enhanced interpretability of the model aids in the effective dissemination

of findings and supports informed decision-making in public health interventions.

5.2.8 Case Study: Application to Tuberculosis Mapping in

Metro Atlanta

To demonstrate the efficacy of the proposed LAS-enhanced Bayesian Spatially Vary-

ing Coefficient Model (BSVCM), we applied the model to a case study of tuberculosis

(TB) incidence in Metro Atlanta. This region presents a challenging environment for

spatial disease mapping due to its significant socio-economic diversity, varying popu-

lation densities, and disparate access to healthcare services. These factors contribute

to a complex spatial landscape, where disease risk can vary markedly over short dis-

tances, necessitating advanced modeling techniques to capture the underlying spatial

dynamics accurately.

5.2.8.1 Model Implementation

The LAS-enhanced BSVCM was implemented using the cmdstanr package in R [47],

which interfaces with the CmdStan backend for Bayesian inference. The model was

configured to run 4000 warmup iterations and 1000 sampling iterations per chain,

ensuring adequate exploration of the posterior distribution while maintaining com-
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putational efficiency. Multiple Markov Chain Monte Carlo (MCMC) chains were

employed to verify convergence, with diagnostics including the potential scale reduc-

tion factor (R̂) and effective sample size (ESS) being meticulously evaluated. These

diagnostics confirmed the reliability of the posterior estimates, with R̂ values close to

1.00 and high ESS values indicating effective sampling and model convergence.

The implementation process involved specifying appropriate priors for all model

parameters to ensure proper regularization and facilitate efficient sampling. The

smoothing parameter τ is pivotal in determining the influence of neighboring regions

based on the differences in their expected disease counts. To appropriately model τ ,

a Gamma distribution was selected as the prior, specifically tau ∼ Gamma(2, 1).

The Gamma distribution is a preferred choice for positive continuous parameters

within Bayesian hierarchical models due to its flexibility and conjugacy properties,

which facilitate analytical tractability and efficient computation. The selection of the

Gamma distribution with shape parameter α = 2 and rate parameter β = 1 reflects a

balance between informativeness and flexibility. This configuration yields a mean of

α/β = 2 and a variance of α/β2 = 2, providing a moderately informative prior that

incorporates prior knowledge without imposing overly restrictive constraints on the

parameter.

By setting τ to follow a Gamma(2, 1) distribution, the model allows for sufficient

variability in the smoothing parameter, enabling the LAS mechanism to adapt dy-

namically to the spatial heterogeneity present in the data. This prior facilitates the

reduction of the influence of dissimilar neighbors, thereby preserving local spatial de-

tails and preventing the over-smoothing of distinct disease risk patterns. Furthermore,

the chosen prior supports the model’s capacity to respond to localized discontinuities

and heterogeneity, ensuring that regions with unique spatial characteristics are accu-
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rately represented in the disease risk estimates.

The developed model estimates the log-relative risk θi for each ZIP code. The in-

corporation of LAS-adjusted spatial random effects ULAS
i captures residual spatial

variation not explained by the covariates, thereby accounting for unobserved het-

erogeneity and localized disease dynamics. This comprehensive modeling approach

facilitates the generation of detailed and precise maps of TB incidence, effectively

highlighting areas with elevated risk and supporting the implementation of targeted

public health interventions.

5.2.9 Model Validation and Evaluation

To ensure the robustness and validity of the proposed Locally Adaptive Smoothing

(LAS)-enhanced Bayesian Spatially Varying Coefficient Model (BSVCM), the model

underwent rigorous validation and evaluation procedures. A fundamental component

of this evaluation was the implementation of posterior predictive checks. These checks

involved comparing the posterior predictive distributions generated by the model with

the observed TB incidence data. This comparison served as a critical assessment of the

model’s ability to accurately capture the underlying data-generating process, allowing

for the identification of any discrepancies between the model’s predictions and the

actual observations. By examining the alignment between predicted and observed

values, we were able to ascertain the model’s effectiveness in representing the spatial

distribution of TB cases.

In addition to posterior predictive checks, several performance metrics were employed

to comprehensively evaluate the model’s effectiveness and reliability. The Expected

Log Predictive Density (ELPD) was calculated to assess the model’s predictive ac-

curacy. Higher ELPD values indicated superior performance in terms of the model’s

ability to predict new data points accurately. Furthermore, the Watanabe-Akaike In-
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formation Criterion (WAIC) was utilized to balance model fit and complexity. WAIC

provided a means to evaluate how well the model explained the data while penaliz-

ing for unnecessary complexity, with lower WAIC values signifying a better trade-off

between fit and complexity.

Convergence diagnostics were meticulously monitored to ensure the reliability of the

posterior estimates. The potential scale reduction factor (R̂) was used to assess

whether the Markov Chain Monte Carlo (MCMC) chains had converged to the target

distribution. Values of R̂ approaching 1.00 indicated that the chains had sufficiently

converged, thereby guaranteeing the reliability of the posterior estimates. Addition-

ally, the Effective Sample Size (ESS) was evaluated to determine the efficiency of the

sampling process. Higher ESS values reflected better exploration of the posterior dis-

tribution and more reliable parameter estimates, ensuring that the model’s inferences

were both accurate and stable.

These validation and evaluation steps collectively ensured that the LAS-enhanced

BSVCM provided reliable and accurate estimates of TB incidence across the study

area. By rigorously assessing the model’s predictive capabilities and convergence,

we confirmed its suitability for detailed and precise spatial disease mapping, thereby

supporting informed public health interventions and policy decisions.

5.3 Results

5.3.1 Posterior SVC Estimates

The application of the proposed Locally Adaptive Smoothing (LAS)-enhanced Bayesian

Spatially Varying Coefficient Model (BSVCM) to tuberculosis (TB) incidence data

in Metro Atlanta provided robust insights into the spatial variability of disease in-

cidence. The model produced spatially varying coefficients (SVCs) for the key co-
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variates—percentage of foreign-born residents, HIV prevalence, and the Gini in-

dex—allowing for more nuanced interpretations of how these socio-economic factors

influence TB risk in different areas. The random intercepts and slopes for each co-

variate confirmed significant spatial heterogeneity across the study region, supporting

the need for location-specific adjustments in the model.

The posterior estimates for the spatially varying intercept (β0) revealed clear regional

clusters where the baseline risk of TB was either elevated or diminished. The co-

efficients for foreign-born residents (β1) showed a strong positive association with

TB incidence in areas with high immigrant populations, while HIV prevalence (β2)

had a similarly strong positive impact on TB risk in urban centers. The Gini index

(β3), representing income inequality, exhibited more localized effects, with high values

contributing to elevated TB risk in certain high-poverty neighborhoods.

These findings underscore the importance of modeling spatial heterogeneity in TB

incidence, as the impact of each covariate varies substantially across the region. The

inclusion of LAS-adjusted spatial random effects (ULAS
i ) allowed for even finer ad-

justments to local spatial trends, further improving the model’s predictive accuracy.

Figure 5.1: Posterior estimates of spatially varying coefficients (SVCs) for TB inci-
dence across Metro Atlanta comparing the proposed versus existing models.
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5.3.2 Posterior Predictive Checks

Posterior predictive checks (PPCs) were conducted to assess the model’s ability to

capture the underlying data-generating process. By comparing the predicted TB case

counts to the observed values, we evaluated how well the LAS-enhanced BSVCM

aligned with the actual incidence data. The PPC plots (Figure 5.2) demonstrated

that the proposed model provided a close fit to the observed data, particularly in

areas with higher TB counts.

Notably, the LAS-enhanced model outperformed the existing BSVCM in regions with

sharp spatial transitions, such as areas experiencing rapid demographic changes or

significant socio-economic disparities. These transitions were often under- or over-

estimated by traditional models, but the adaptive smoothing provided by the LAS

mechanism captured these nuances effectively.

5.3.3 Predictive Interval Coverage

To further assess the model’s performance, we evaluated the coverage of observed TB

counts within the 95% posterior predictive intervals. The proposed LAS-enhanced

BSVCM achieved a predictive interval coverage of 88.71%, exceeding the 86.52%

coverage achieved by the current BSVCM. This improvement in coverage reflects the

model’s enhanced ability to quantify uncertainty in its predictions, particularly in

regions with high spatial variability. The higher coverage rate indicates that the

LAS-enhanced model better captures the true variability in TB counts, making it a

more reliable tool for public health decision-making.
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Figure 5.2: Posterior predictive checks comparing the proposed versus existing mod-
els, showing predicted versus observed TB counts across Metro Atlanta.
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Figure 5.3: Coverage of observed TB counts within 95% posterior predictive intervals
for both the LAS-enhanced BSVCM and the current BSVCM. The LAS-enhanced
model achieved a coverage of 88.71%, while the current BSVCM achieved a coverage
of 86.52%.
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5.4 Discussion

5.4.1 Comparison to Existing Models

The LAS-enhanced BSVCM demonstrated significant improvements over the exist-

ing BSVCM in both predictive performance and model convergence. The median

posterior estimate for the Standardized Incidence Ratio for the proposed model was

1.37, with a median absolute deviation (MAD) of 0.56, indicating a moderate level of

variability that reflects the true spatial heterogeneity in TB incidence across Metro

Atlanta. By contrast, the existing model had a lower median of 1.22 and a smaller

MAD of 0.46, suggesting that it failed to capture some of the spatial variability present

in the data.

Convergence diagnostics were particularly robust for the proposed model, with all

chains exhibiting R̂ = 1.00, signaling near-perfect convergence. The existing BSVCM,

on the other hand, had minor convergence issues, with R̂ = 1.07, indicating some

instability in the posterior estimates. The effective sample size (ESS) for the proposed

model was also considerably higher (5117 for bulk ESS, 3106 for tail ESS) compared

to the existing model, which had much lower ESS values (39 for bulk, 59 for tail).

These metrics indicate that the proposed model explored the parameter space more

efficiently, leading to more reliable posterior estimates.

While the runtime for the LAS-enhanced model was longer (3552 seconds compared

to 252 seconds for the existing model), the additional computational cost is justified

by the improvements in model performance and predictive accuracy.

Model Median MAD
LAS-enhanced BSVCM 1.37 0.56

Current BSVCM 1.22 0.46

Table 5.1: Comparison of posterior medians and median absolute deviations (MAD)
between the proposed and existing BSVCM models.
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5.4.2 Predictive Accuracy and Model Complexity

The proposed model exhibited superior predictive accuracy as evidenced by improve-

ments in Expected Log Predictive Density (ELPD) and Watanabe-Akaike Informa-

tion Criterion (WAIC). The ELPD difference for the proposed model was -6.5, which

marginally outperformed the current model’s ELPD of -7.6. Similarly, the WAIC for

the proposed model was 606.5, lower than the 608.8 WAIC of the existing model,

indicating a better balance between model complexity and predictive accuracy.

Moreover, the Mean Absolute Error (MAE) for the proposed model was 0.097, a

substantial improvement over the 1.14 MAE of the current model. This reduction in

error demonstrates the effectiveness of the LAS mechanism in improving prediction

accuracy, particularly in areas with sharp spatial boundaries or localized clusters of

high TB incidence.

Model ELPD WAIC
LAS-enhanced BSVCM -6.5 606.5

Current BSVCM -7.6 608.8

Table 5.2: Comparison of ELPD and WAIC values between the proposed and existing
BSVCM models.

5.4.3 Implications for Public Health Interventions

The LAS-enhanced BSVCM offers substantial improvements in the spatial mapping of

TB incidence, which directly informs public health interventions. By capturing both

the local and global effects of socio-economic and demographic factors on TB inci-

dence, the model provides more accurate identification of high-risk areas. This allows

public health officials to allocate resources more effectively, focusing interventions on

the most vulnerable populations.

The model’s improved uncertainty quantification also enhances its utility in decision-

making. Public health strategies, especially in regions like Metro Atlanta where
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socio-economic disparities are prominent, benefit from the model’s ability to capture

complex spatial patterns and provide reliable predictions of TB incidence. This is par-

ticularly important when considering the resource limitations faced by public health

agencies, as targeted interventions can now be based on more reliable data.

In summary, the proposed Locally Adaptive Smoothing (LAS) approach significantly

enhances Bayesian Spatially Varying Coefficient Models (BSVCMs) by addressing

their inherent limitations. By dynamically adjusting spatial weights based on local

differences in expected disease counts, LAS prevents over-smoothing and improves the

model’s ability to capture complex spatial patterns. The application of this enhanced

model to tuberculosis mapping in Metro Atlanta demonstrates its practical utility

and effectiveness in uncovering nuanced spatial risk factors. These advancements not

only contribute to the field of spatial epidemiology but also hold substantial promise

for improving public health interventions and policy formulation.
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Chapter 6

Conclusions and Future Directions

6.1 Summary of Contributions

This dissertation makes several key contributions to the field of spatial disease mod-

eling through the development and application of advanced Bayesian methodologies.

In Aim 1, hierarchical Bayesian modeling was explored for the purpose of disease

mapping, with a particular focus on spatially concentrated disease prevalence. The

use of the Laplace Prior, commonly employed in genetic mapping, was adapted to

capture sharp spatial transitions in disease incidence, demonstrating its effectiveness

in improving model flexibility and accuracy in regions with concentrated health dis-

parities.

In Aim 2, the utility of local Deviance Information Criterion (DIC) as a diagnostic

tool was introduced to detect local lack of fit in regions with sharp changes in disease

prevalence. This contribution provided a novel approach to evaluating model fit in

spatial epidemiology, offering a more granular method for identifying areas where
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traditional models may fail to capture the nuances of disease distribution.

Finally, Aim 3 focused on the development of an enhanced Bayesian Spatially Vary-

ing Coefficient Model (BSVCM) integrated with Locally Adaptive Smoothing (LAS).

This model was specifically designed to address the limitations of over-smoothing in

traditional models while also capturing spatial outliers. The LAS-enhanced BSVCM

demonstrated significant improvements in modeling accuracy, particularly in regions

with high spatial variability, making it a valuable tool for more accurate disease risk

mapping and public health interventions.

These contributions collectively advance the methodological landscape of spatial dis-

ease modeling, providing more accurate, flexible, and diagnostic-rich tools for analyz-

ing and predicting disease prevalence in heterogeneous environments.

6.2 Future Directions and Conclusion

While this research has improved our understanding of spatial disease modeling, there

are several areas to explore further to enhance and apply these methods.

6.2.1 Application to Middle-Income Countries with Wealth

Disparities

A key future direction is to apply these advanced Bayesian spatial models to study

TB in middle-income countries outside the United States. Countries like India and

South Africa have large wealth disparities and diverse socioeconomic conditions that

greatly affect the spatial distribution of TB. In these countries, urban areas often

have a sharp contrast between wealthy neighborhoods and informal settlements or

townships, where overcrowding, poor sanitation, and limited access to healthcare

make TB spread more easily.
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In India, for example, the mix of rapidly developing urban centers and densely popu-

lated slums creates a complex environment for TB transmission. Applying our models

here would involve including detailed socioeconomic data to capture the sharp changes

in TB incidence due to wealth disparities. Similarly, in South Africa, the history of

apartheid has led to noticeable spatial segregation, with under-resourced areas expe-

riencing higher TB rates. Our models can help understand how these historical and

socioeconomic factors affect current disease patterns.

Understanding the spatial distribution of socioeconomic groups offers valuable insights

for effectively monitoring and surveying TB, especially in countries with significant

wealth disparities. Socioeconomic factors influence many health determinants, in-

cluding nutrition, living conditions, education, and access to medical care. Mapping

socioeconomic data alongside TB incidence reveals which communities are most at

risk. In India, this could highlight rural areas with limited healthcare access or ur-

ban slums with high population density. Socioeconomic conditions often determine

living environments that can either hinder or facilitate disease spread; for example,

overcrowded housing in Mumbai’s Dharavi slum contributes to higher TB transmis-

sion rates. Spatial analysis can uncover systemic differences in healthcare access and

disease burden, informing interventions focused on equity. In South Africa, dispari-

ties in healthcare infrastructure between urban and rural areas can be identified and

addressed.

Utilizing this approach we will be able regions where TB rates are much higher due

to socioeconomic factors. For instance, mapping TB incidence in relation to income

levels in Mumbai’s slums or Cape Town’s townships can highlight areas needing ur-

gent attention. Additionally, this approach will allow public health officials in those

areas to direct limited healthcare resources to the communities that need them most,

improving intervention strategies. This is especially critical in countries where health-
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care funding is limited, so targeting resources effectively is crucial. By focusing on

countries with significant wealth disparities like India and South Africa, we can con-

tribute to global TB control efforts, especially in regions where the disease burden is

high and resources are limited.

6.2.2 Adjusting Spatial Weighting Schemes

Another promising area for future work is adjusting the weighting scheme to use

covariate values instead of expected disease counts. By basing spatial weights on

differences in covariates—such as socioeconomic status, access to healthcare, or envi-

ronmental factors—between neighboring regions, the models become more sensitive

to underlying risk factors. This adjustment allows the models to capture spatial dif-

ferences in covariate values, leading to more accurate risk estimates. For instance,

considering air pollution levels in different parts of Delhi that may influence TB in-

cidence. This is especially important in areas where population density does not

directly correlate with TB risk due to varying living conditions. Lastly, adjusting

the spatial weights to covariate similarities in neighboring areas will provide insights

that inform more effective, targeted public health interventions based on specific local

needs. Tailoring interventions to address factors like malnutrition or HIV co-infection

rates in specific communities.

6.2.3 Broadening Applicability to Other Infectious Diseases

The flexibility of Locally Adaptive Smoothing Bayesian Spatially Varying Coefficient

Models makes them suitable for mapping other infectious diseases with complex spa-

tial dynamics, such as malaria, HIV/AIDS, or COVID-19. Comparative studies across

different diseases can help validate and refine the models’ applicability, ensuring they

are robust and generalize well across various epidemiological contexts. For instance,

applying the models to malaria incidence in sub-Saharan Africa could test their effec-
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tiveness in different transmission settings. These models can also provide cross-disease

insights by identifying common spatial patterns and risk factors present in multiple

diseases. Exploring how socioeconomic factors influence both TB and HIV/AIDS dis-

tribution in South Africa may reveal underlying connections. Additionally, enhancing

public health preparedness is possible by offering tools that can be quickly adapted

to new infectious diseases, improving response times. Modifying the models to map

the spread of emerging diseases like COVID-19 could aid in rapid response efforts.

Conclusion

This dissertation has advanced the field of spatial disease modeling through Bayesian

methods, addressing important challenges in accurately mapping and predicting TB

incidence. By extending these models to new contexts—particularly middle-income

countries with significant wealth disparities like India and South Africa—and in-

cluding socioeconomic data, we can enhance disease monitoring, surveillance, and

intervention strategies.

Future work building on these foundations holds significant potential for reducing the

global burden of TB and improving public health outcomes. By continuing to refine

these models and apply them to diverse settings, we contribute to a better under-

standing of disease dynamics and support efforts to achieve health equity worldwide.
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