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Abstract 

Developing enrichment analyzing methods at sub-cell type level to generate novel insights on 
complex disease pathogenesis 

By Boqi Wang 

The development of biotechnologies and the consequent high throughput experiments have led to 
an urgent need to utilize such an enormous amount of biomedical data. It is necessary to develop 
bioinformatics tools that perform gene enrichment analysis at the sub-cell type level in complex 
diseases and traits for the derivation of disease etiology and the development of new treatment 
strategies. 

In this study, we tackled the problem using newly emerged single-cell gene expression data and 
developed two approaches to accurately identify affected cell types in specific diseases. The first 
approach builds logistic regression models using cell type-specific marker genes, and the second 
one utilizes expression quantitative trait loci (eQTLs) colocalization and target gene read 
proportions in single nuclei RNA sequencing (snRNA-seq) data. The cell types are ranked based 
on the significance of cell types’ associations with diseases. The central hypothesis is that most 
disease-associated genes are expressed preferentially in affected cell types. The two methods 
take advantage of newly emerged single-cell gene expression data from hECA and GEO of 
NCBI. Other types of biomedical big data like eQTLs from GTEx and disease-associated genes 
from DisGeNET were utilized as well. 

Our approach has presented significantly more accurate results. Various cell type-disease 
combinations were revealed for 916 diseases and traits while some suggested potential 
explanations for disease pathogenesis. The results showed great consistency with previous 
findings. Overall, our methods have shown great potential in uncovering novel pathogenesis 
mechanisms of complex diseases. In-depth analysis and experimental validation are required to 
fully understand these discovered tissue-trait associations and their enriched genes. 
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1. Project 1: Loci2path 

As biotechnology and analytical tools develop rapidly, investigating biomedical big data 

has become an increasingly popular topic in life science. Genome-wide association studies 

(GWAS) have generated such a large quantity of data via high throughput experiments that there 

exists a consistent need for applications and tools to integrate and analyze the accumulating 

biomedical datasets [1]. The extensive quantity of data along with the development of 

biotechnology have also markedly decreased the difficulties of accessing data on public health as 

we can freely access a large variety of biomedical datasets from projects like Genotype-Tissue 

Expression (GTEx) and Encyclopedia of DNA Elements (ENCODE) [2-3]. Considering all goals 

in exploring the big data, identifying target genes critical in the pathogenesis of complex diseases 

and traits is arguably the most popular focus due to the high demand for treatments for diseases. 

The development of cutting-edge bioinformatic tools and methods to determine functional 

genomics could further our understanding of gene functions and what roles they play in disease 

etiology [4]. However, one major challenge in developing such tools and methods is integrating 

different types of datasets like function genomics and curated biochemical pathways into one 

analyzing frame. 

Expression quantitative trait loci (eQTLs) have attracted the attention of many researchers 

among all types of biomedical big data due to their nature of regulating their target gene’s 

expression. Thus, eQTL is a great tool for analyzing associations between genetic variants and 

complex diseases. Past studies have proven that using eQTLs to connect genomic loci and target 

genes (eGenes) has significantly higher accuracy than using genomic proximity, corroborating the 

functionality of eQTLs in determining gene expression [5]. Other studies have used tissue-specific 
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eQTLs to perform gene enrichment analysis on specific diseases and traits like nephrotic syndrome 

and fasting glucose [6-7]. 

Previously, we have extended an R package named loci2path that uses eQTLs localization 

near genomic variants to locate eGenes and perform enrichment analysis for ten diseases and traits 

at the gene pathway level [8]. Loci2path identifies eGenes based on tissue-specific eQTLs sets 

within the input disease-associated genomic intervals and maps them onto gene pathway sets, in 

which we use Fisher’s exact test adjusted by Benjamini & Hochberg correction method to calculate 

p-values representing significance of the association between the gene pathway and tissue for the 

input disease [9]. Our results have led to some interesting findings and generated novel hypotheses 

on pathogenesis of complex human diseases, and one example would be Alzheimer’s disease (AD). 

Currently, there are three major pathology divisions for AD: protein accumulation, neuron 

loss, and reactive process [10]. Past studies have shown that the extracellular accumulation and 

deposition of amyloid-beta (Aβ) protein induce the appearance of senile plaques and create an 

abnormal neuron environment, which causes cognitive disabilities [11-12]. Such accumulation of 

Aβ not only enhances the interaction between amyloid-forming protein and neuronal membrane 

and increases membrane permeability through hypothetical mechanisms like amyloid-forming 

protein’s channel-like conductance, but also contributes to the increase in the reactive oxygen 

species production and thus the disruption of neuronal membrane integrity [11, 13]. 

Figure 1A demonstrated the eQTLs enrichment of AD-related genomic intervals in the 

BioCarta pathway set. There was a distinctly significant enrichment of the D4-GDI pathway in the 

brain amygdala (Figure 1A). D4-GDI represents the negative regulator of Ras-related Rho 

GTPases, and its removal is crucial to induce apoptosis since Rho GTPases increase the 

cytoskeletal and membrane modification related to apoptosis [14]. As an enzyme that cleaves D4- 
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Figure 1. Heatmap of Alzheimer’s disease’s eQTLs enrichment results in (A) BioCarta and (B) 
WikiPathways pathway sets, respectively. 

GDI, caspase-3 was found to be positively correlated with a mild cognitive deficiency in early AD 

pathology [15]. Clinical research suggested that Aβ could sequester caspase-3 via direct interaction 

and induce neuronal apoptosis via caspase-3 activation, thus strengthening AD development [16]. 

One possible hypothesis was that an increased level of caspase-3 in the amygdala leads to increased 

apoptosis and neuronal loss and thus contributes to the memory loss symptom of AD. 

Similarly, Figure 1B showed significant enrichment of sulfation biotransformation reaction 

and viral acute myocarditis pathways in brain cortex, IL2 and IL5 signaling pathways in brain 

cerebellum, and development and heterogeneity of the innate lymphoid cell (ILC) pathway in brain 

hippocampus for the WikiPathways set (Figure 1B). The significant enrichment of viral acute 
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myocarditis pathway in the brain cortex suggested that the correlation observed between heart 

failure and AD was due to not only the majority of patients’ age, but also genetic factors (Figure 

1B) [17]. Such findings were consistent with a previous study where the viral myocarditis pathway 

from other pathway sets was identified to be significantly associated with AD [18]. One population 

study also found a higher than 80% risk of developing AD for patients with heart failures when 

major confounders like vascular comorbidities were controlled [19]. The significant enrichment in 

the sulfation biotransformation reaction pathway could also be explained by previous findings 

(Figure 1B). One research found an increased frequency of reduced metabolism and impaired 

sulfation of xenobiotics among AD patients [20]. A clinical study showed that sulfated curcumin 

can bind to copper and iron ions that are enriched in the brain cortex of AD patients and induce 

Aβ peptide formation, thus indicating that impaired sulfation ability would increase risks of AD 

[21]. One possible connection between acute viral myocarditis and AD is kynurenine 3-

monooxygenase (KMO), which is a key regulatory enzyme in the kynurenine metabolism pathway 

that converts kynurenine to 3-hydroxykynurenine [22]. Studies have shown that the absence of 

KMO increased the production of kynurenine pathway metabolite, which lowered the synthesis of 

chemokine and thus resulted in the decrease of mortality of viral acute myocarditis by 

encephalomyocarditis virus in mice [22]. Interestingly, another study pointed out that JM6, a KMO 

inhibitor, was found to be able to prevent memory deficiency and synaptic loss in AD mouse 

models through the increase of the neuroprotective kynurenine metabolite kynurenic acid [23]. 

Such interaction may imply a hidden mechanism in AD’s pathogenesis that increases KMO 

production and thus decreases levels of neuroprotective kynurenine metabolite and enhances AD 

symptoms, which explains AD’s connection to acute viral myocarditis. 
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Figure 2. P-values of ten most significantly enriched tissues for Parkinson’s disease. 
 

2. Project 2: Loci2tissue 

While eQTL’s power in constructing and analyzing disease connections at the gene 

pathway level has been validated, it does not work well when dealing with the entire genome. To 

elaborate on individual genes’ contributions to diseases, we developed loci2tissue, a bioinformatic 

tool that identifies associations between diseases and tissues using eQTL sets and normalized gene 

expression matrices from GTEx [24].  

We have performed loci2tissue over thirteen diseases and analyzed their tissue enrichments. 

Figure 2 demonstrates tissue enrichments of Parkinson’s disease-related genomic intervals. The 

enrichments of the nucleus accumbens basal ganglia and brain hippocampus are relatively high 

with significant p-values compared to the rest of the body tissues (Figure 2). Although Parkinson’s 

disease (PD) patients mostly suffer from motor rigidity and bradykinesia, they experience multiple 

non-motor symptoms as well, including cognitive impairments [25]. The accumulation of alpha-

synuclein in brain tissues and the subsequent formation of Lewy bodies and neurites are the central 

characteristics of PD [26]. At stage 4 of the Lewy pathology, alpha-synuclein has reached the 
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hippocampal formation through the performant path and axons from the tuberomammillary 

nucleus to the second sector of Ammon’s horn, which initiates the cognitive impairment that 

completely develops in stages 5 and 6 [27]. Among all types of cognitive impairments exhibited 

by PD patients, episodic memory impairment is the most common, and subfields CA2 and CA3 of 

the hippocampus play a key role in episodic recollection [25]. The neurodegeneration of CA3 

among PD patients has also been found to influence the pattern recollection and separation, leading 

to failure in process of recollection [26]. Such a comprehensive correlation between PD and the 

hippocampus provides sufficient support for its high enrichment index as shown in Figure 2. 

The striatal dopamine (DA) depletion and the resulting cognitive dysfunctions in the early 

stage are considered hallmarks of PD [28]. Past studies have shown that the DA depletion of PD 

likely progresses from the dorsal to the ventral striatum [29-30]. In addition, Roshan and her 

colleagues have found that medication of L-DOPA, a precursor to dopamine, deteriorated the 

probabilistic reversal learning function among PD patients, and it affected reversal-related activity 

in the nucleus accumbens instead of the dorsal striatum and prefrontal cortex, indicating that 

nucleus accumbens plays an important role in dopaminergic modulation of reversal learning [31-

32]. Nucleus accumbens is also associated with apathy, a frequently occurring symptom of PD. 

The severity of apathy in PD patients was positively correlated with atrophy in the left nucleus 

accumbens, and changes in the left nucleus accumbens could be used as a biomarker for dopamine-

resistant apathy of PD [33]. Another study also demonstrated a significant decrease in grey matter 

volume at the left nucleus accumbens, further supporting the statement that the nucleus accumbens 

and the human reward circuit are closely involved in PD etiology [34]. 

As shown above, loci2tissue is capable of determining the affected tissues for certain 

diseases and ranking them based on levels of association, but it generates insignificant results. This 
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might be contributed by the fact that gene expression data are noisy with pseudogenes and novel 

transcripts, which increases the difficulty of integrating them into gene enrichment analysis [35]. 

Hence, gene expression data require an extensive level of filtering and preprocessing to be utilized 

in bioinformatic tools. 

3. Project 3: Single-cell approaches 

To overcome the challenge, we built a logistic regression-based method named 

LRDisTissue that performs tissue enrichment analysis using tissue-specific marker genes and 

disease-associated genes. This method calculates an enrichment score for each gene inside a tissue 

using the gene expression matrices and extracts the top 200 genes with the highest enrichment 

scores as the marker genes for this tissue. Compared to loci2tissue, LRDisTissue can more 

accurately determine the affected tissues with high significance and label enriched genes. However, 

simply locating the disease-influenced tissues is not specific enough for pathogenesis analysis, 

even with the help of enriched marker genes. It is necessary to get to the cell type level to develop 

a more comprehensive understanding of disease etiology. 

Another approach to deepen our knowledge in pathogenesis is through the use of single 

nuclei RNA sequencing (snRNA-seq) datasets. snRNA-seq is a novel technology developed to 

determine gene expression levels in cells using isolated nuclei, which prevails over whole cells by 

their easy and rapid isolation process and high production rate [36]. The technology is not only 

cost-efficient while producing similar gene detection results compared to single-cell RNA 

sequencing, but also powerful in cases when unimpaired cells are hard to be obtained from the 

studied tissues [37]. Unlike the common noisy gene expression data, snRNA-seq’s high resolution 

allows it to produce statistically significant results while keeping a relatively high accuracy. 

Eraslan and colleagues have used snRNA-seq data of skeletal muscles and found that the eQTLs 
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of type II diabetes are significantly enriched in skeletal muscle adipocytes and lymphatic 

endothelial cells, which is coherent with the observed tendency of type II diabetes patients in 

developing vascular diseases [38]. 

Both methods approach the problem from different angles and utilize different datasets, 

but they end up coming to the same conclusion that lowering gene enrichment analysis to the cell 

type and sub-cell type level would significantly increase the accuracy of statistical results and yield 

more insights about specific mechanisms in disease pathogenesis. The purpose of this research 

project is to design and develop R-based bioinformatic methods that take advantage of gene 

expression information at the sub-cell type level to perform enrichment analysis for a set of 

genomic variants. The program determines sub-cell type enrichment through both the cell type-

specific marker genes and the snRNA-seq datasets. It utilizes the eQTLs catalogs of GTEx v8 

public data release, disease-associated gene sets from DisGeNET, and snRNA-seq gene expression 

data from GTEx and Gene Expression Omnibus (GEO) from NCBI. 

4. Methods & Materials 

4.1.Overview 

To explore the full extent of utilizing single-cell gene expression data, we developed two 

different methods that used different types of data and strategies to perform enrichment analysis. 

The first method extracted sub-cell type-specific marker genes and plotted them on disease-

associated genes to build logistic regression models, while the second method compares 

proportions of snRNA-seq gene reads of genes targeted by eQTLs colocalization around genomic 

variants for diseases. The workflows of both methods are demonstrated in Figure 3. 
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Figure 3. A diagram depicting our study’s analysis pipeline, including input data, internal 
processes, and output results for (A) snRNA-seq approach and (B) cell type marker gene approach. 
 

4.2. Cell type-specific marker genes 

For the cell type-specific marker gene approach, we used the single-tissue cell-type gene 

expression matrices from human Ensemble Cell Atlas (hECA) and the disease-associated gene sets 

accessed via DisGeNET database [39-40]. The gene expression matrices of 105 sub-cell types 

from 10 various tissues will be treated to extract the top 200 most significant marker genes ranked 

by enrichment score for each sub-cell type. We will use the marker gene selection method provided 

in LRCell, in which the enrichment score is calculated by the multiplication of cell type-specific 

gene expression level and the fraction of samples within the cell type that express the gene [41]. 

Suppose there are a total of 𝑛 genes, 𝑚 cell types, and 𝑠!, 𝑠", …	𝑠# samples for each cell 

type that make up a total of 𝑆 samples. Here we use 𝑥$%& to represent the individual gene TPM of 

ith gene in the kth sample of the jth cell type. Hence, the average gene expression level of ith gene 

within jth cell type would be: 

𝑒𝑥𝑝$% =
1
𝑠%
-𝑥$%&

'

&(!
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 And the average gene expression level of ith gene in all samples would be: 

𝑒𝑥𝑝$ =
1
𝑆--𝑥$%&

)!

&(!

#

%(!

 

 Therefore, the cell type-specific gene expression level for ith gene in jth cell type is 

expressed as: 

𝑡𝑒𝑥𝑝$% =
𝑒𝑥𝑝$%
𝑒𝑥𝑝$

 

 After the cell type-specific gene expression, the cell type-sample fraction for ith gene in 

jth cell type is expressed as: 

𝑓𝑟𝑎𝑐$% =
1
𝑠%
-𝐼|+"!#,-|

)!

&(!

 

where I is the indicator function of whether kth sample in the jth cell type expresses the ith gene. 

The enrichment score for the ith gene in jth cell type is: 

𝑒𝑛𝑟𝑖𝑐ℎ$% = 𝑡𝑒𝑥𝑝$% × 𝑓𝑟𝑎𝑐$% 

For each cell type, genes with the highest enrichment scores may be considered cell type-

specific marker genes. For easy and fair comparisons, we use the same number of genes for all 

105 cell types. In this study, we tested 200 marker genes for each cell type, which has shown to be 

able to build valuable models in past experience. 

For this method’s input, we used disease-associated genes along with their gene-disease 

association (gda) scores cataloged in the DisGeNET database. The gda scores are calculated based 

on the number and types of sources and the number of publications supporting the matching 

associations [40]. A total of 3,261,324 gene-disease associations were used from DisGeNET’s 

SQLite file, which covers a total of 30,710 diseases and traits and 21,666 genes. Only 978 diseases 
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and traits with greater than or equal to 200 disease-associated genes were selected and used in this 

study to avoid the bias caused by small gene sizes. 

Our logistic regression model proceeds as follows, the disease-associated gene’s gda score 

being the explanatory variable and a binary indicator of whether the disease-associated gene 

overlaps with cell type-specific marker genes being the response variable. The number of genes 

used for cell type’s logistic regression model and the gene’s gda score remain the same for every 

sub-cell type in one disease or trait. Considering the possibility of cross-tissue progression in 

pathogenesis, sub-cell types from various tissues were combined and put in the results. The sub-

cell types were ranked based on their model’s p-values, and the overlapping genes for every sub-

cell type were recorded and sorted by gda scores. We considered sub-cell types ranked on top to 

be more relevant to the disease and the genes sorted upfront to be more involved in the associations 

between the sub-cell type and the disease. Individual results of diseases and traits were plotted and 

analyzed to generate novel hypotheses. Additionally, significant tissue-trait pairs were extracted 

to find potential patterns using a significance threshold of −𝑙𝑛(-.-/
!-/
). 

4.3. eQTLs and snRNA-seq 

For the eQTLs-snRNA-seq approach, we used the 49 multi-tissue QTL data from GTEx 

v8 data release, in which each dataset was filtered with a p-value threshold of 10-4 to extract 

significant eQTLs. We used the snRNA-seq gene expression data of immune-related cells in the 

blood, kidney cells, and neurons in the prefrontal cortex from GTEx and GEO in NCBI. The 

genomic variants of specific diseases and traits were accessed from the Phenotype-Genotype 

Integrator (PheGenI) website. 

The program takes in the genomic variants as input and creates a list of genomic intervals 

by flanking 50 thousand base pairs on each of the left and right sides of the variant’s location, 
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which spans 100 thousand base pairs. For each tissue, eQTLs within the genomic intervals are 

pulled out, and the corresponding eGenes’ snRNA-seq data are extracted for each sub-cell type. 

The proportion of reads of eGenes to reads of all genes within the sub-cell type is calculated for 

each sub-cell type. The overall proportion of eGene reads to all gene reads of all sub-cell types 

from the input tissue is calculated, and each sub-cell type’s eGene read proportion is compared to 

the overall proportion using a normal distribution test, in which the p-values and negative natural 

log of them are recorded. We want to find the sub-cell types with the most significant p-values, 

which may indicate a potential association between the studied disease or trait and the cell cluster 

from this tissue. Such a relationship could be further analyzed in-depth, and we could deduce a 

novel hypothesis on the disease or trait’s pathogenesis. The genes with the most read counts from 

the list were annotated for analytical purposes as well. 

5. Results 

5.1. Marker gene 

We have generated valid results for 916 diseases and traits using the cell type-specific 

marker gene approach from 978 input diseases. 62 diseases and traits did not produce valid results 

because their disease-associated genes have unified gda scores, in which the logistic regression 

models were unable to be built. Using a significance threshold of −𝑙𝑛(-.-/
!-/
) for the negative-

natural-log transformation of p-values, a total of 857 significant cell type-disease association pairs 

were extracted and recorded into Supplementary Table 1, in which Table 1 shows the top 20 most 

significant pairs. As demonstrated in Table 1, most of the diseases among the top association pairs 

are related to cancer. 
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Table 1. Top 20 Most Significant Disease-Cell Type Associations 
Diseases and traits Cell types P-values 
Liver carcinoma Kidney proliferating cell 4.02E-23 
Neoplasms Ileum macrophage 4E-14 
Liver carcinoma Kidney mesenchymal cell 1.85E-13 
Neoplasm Metastasis Ileum mast cell 2.37E-13 
Neoplasms Ileum goblet cell 1.01E-12 
Rheumatoid Arthritis Ileum macrophage 1.06E-12 
Neoplasm Metastasis Bladder stromal cell 2.1E-12 
Primary malignant neoplasm Prostate endothelial cell 2.34E-12 
Tumor Cell Invasion Ileum fibroblast 6.89E-12 
Tumor Cell Invasion Ileum goblet cell 7.82E-12 
Tumor Cell Invasion Bladder endothelial cell 7.98E-12 
Primary malignant neoplasm Adipose adipocyte 8.03E-12 
Neoplasm Metastasis Bladder mast cell 9.74E-12 
Tumor Cell Invasion Spinal cord vascular epithelial cell 1.39E-11 
Primary malignant neoplasm Kidney principle cell 1.48E-11 
Primary malignant neoplasm Adipose macrophage 2.11E-11 
Neoplasm Metastasis Ileum dendritic cell 6.82E-11 
Neoplasms Prostate macrophage 7.44E-11 
Primary malignant neoplasm Prostate macrophage 9.15E-11 
Dermatologic disorders Ileum dendritic cell 1.27E-10 

 
During the construction of the results, we combined logistic regression models of cell types 

from different tissues and ranked them instead of separating cell types by tissues. The built models 

measure the inclination of one specific type of cells’ significant marker genes having associations 

with certain diseases. Since the gda scores are obtained from DisGeNET for each disease, cell 

types of different tissues could be directly compared with each other as we are only using marker 

genes’ existence in disease-associated genes and list of gda scores to build the models. This 

provides a natural advantage of the cell type-specific marker gene approach compared to other 

methods out there that only test cell type enrichment within the same tissue or have to perform 

treatments on their data to apply on multiple tissues. The result of obesity was taken out and further 

analyzed. 
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Figure 4. Negative natural log of p-values of twenty most significantly enriched cell types for 
obesity. 

5.1.1. Obesity 

Figure 4 demonstrated the enrichment of various cell types for obesity. While the 

adipocytes’ relatively high enrichment for obesity is well expected considering that excessive 

accumulation of body fat is a common trait of obesity, the significant p-values of other lesser-

known cell types like ileal and prostate macrophage definitely attract more attention (Figure 4). 

Mice treated with a high-fat diet have shown increased expressions of ileal inflammation 

markers like MCP1 and TLR4 and a decreased expression of the anti-inflammatory cytokine IL-

12B in the ileum due to macrophage infiltration, which was likely caused by the more abundant 

mucosal sulfidogenic bacteria that impairs epithelium integrity in intestines and colons [42]. Hence, 

the macrophage level in the ileum could serve as an indicator of ileal bacterial invasion due to 

high-fat diet. Coherently with this finding, another study showed that there was a decrease in anti-

inflammatory cytokine IL-10 and an increase in pro-inflammatory cytokine 1L-1B and paracellular 
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permeability at ileum after one week of high-fat diet treatment to subject rats [43]. A decrease in 

expression level of ileal antimicrobial peptides like Mmp-7 and ang4 was observed among mice 

treated with high-fat diet for 30 days, which led to the development of microbiota in the intervillous 

zone of ileum that was supposed to be bacteria-free [44]. The mice treated with high-fat diet also 

experienced lower expression levels of cystic fibrosis transmembrane conductance regulator and 

Na-K-2Cl cotransporter 1 that decreased chloride secretion in ileum and disrupted mucus layer 

phenotype, which may induce metabolic disorders and hence further strengthen the phenotype of 

obesity [44-45]. Additionally, Breznik et al. observed a relatively lower expression level of tumor 

necrosis factor, which also affects intestinal epithelium integrity during homeostasis by ileal 

macrophage in high-fat diet mice, indicating that the change in ileal macrophage population 

originates from the same changes that disrupt intestinal homeostasis and eventually induce obesity 

[46]. Interestingly, most changes mentioned above were reversible in these studies by providing a 

standard diet regardless of whether the high-fat diet treatment was conducted for one or four weeks, 

suggesting that the microbiota formation in ileum and the following macrophage invasion could 

be treated in early stage of obesity by switching to a healthy diet. In general, such a strong 

association validates ileal macrophage’s position as the most significantly enriched cell type in 

obesity. IL-1B was also listed as one of the overlapping genes between obesity-associated genes 

and ileal macrophage marker genes, which corroborates the effectiveness of our tool in 

establishing associations between tissue-specific cell types and complex traits (Supplementary 

Table 1). 

The connections between prostate macrophage and obesity take from the aspect of prostate 

tumor, considering that the prostate gland is surrounded by fat tissues and obesity induces the 

accumulation of adipocytes. A higher expression level of CCL2, a major recruiter of macrophage 
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secreted by prostate cancer and stromal cells, was observed in mice under obese conditions [47-

48]. Macrophages treated with media of obese sera-conditioned prostate tumor cells exhibited 

significantly higher expression of IL-10, TGF-β, and arginase-1, which are anti-inflammatory 

molecules serving as markers of tumor-associated macrophages [48]. This indicates that obese sera 

could induce normal macrophage’s polarization into tumor-associated macrophage at prostate. 

COX-2 and PGE2 have also shown an increase in prostate cancer epithelial cells under obese 

conditions compared to those under regular conditions, in which PGE2 may contribute to 

macrophage polarization as well [48]. Prostatic M2 macrophage responsible for 

immunosuppression was found to have a significantly higher ratio in prostate cancer mice models 

treated with a high-fat diet and may participate in the following tumor growth by stimulating the 

secretion of IL-6 that phosphorylates STAT3 and proliferates myeloid-derived suppressor cells 

under pro-tumor microenvironment [49]. In one study, Huang et al. demonstrated an association 

between the high macrophage inhibitory cytokine-1 (MIC1) level in prostate cancer patients and 

patient’s obesity, suggesting that high-fat diet containing palmitic acid could induce MIC1 in 

prostate cancer cells and hence disrupts metabolic homeostasis [50]. On the other hand, evidence 

also showed that MIC1 was downregulated among benign prostate hyperplasia patients with 

obesity as a result of gland destruction by inflammatory infiltrates [51]. Central obesity can lead 

to a decrease in adiponectin, which may lead to chronic inflammation in prostate since it originally 

inhibits phagocytic macrophage activity to reduce inflammation [51]. All combined evidence 

supports prostatic macrophage’s third highest enrichment in obesity as indicated in our results. 

5.2. eQTL-SnRNA-seq 

For the eQTL-SnRNA-seq approach, we have performed cell type-enrichment analysis of 

fourteen diseases and traits using snRNA-seq data of three types of tissues (kidney, frontal cortex,  
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Figure 5. Negative natural log of p-values of twenty most significantly enriched cell types for 
(A) lupus nephritis and (B) diabetic nephropathy. 

blood). Even though we used the same method for the three snRNA-seq tissue data inputs, p-values 

of cell types from different tissues could not be directly compared with each other since the 

snRNA-seq data were collected from different studies and their methods to calculate read counts 

were different. The results generated using snRNA-seq data of kidney tissues for lupus nephritis 

and diabetic nephropathy were further analyzed for their significance. 

5.2.1. Lupus Nephritis 

For lupus nephritis, the endothelial cells at ascending (AVR) and descending vasa recta 

(DVR) were shown to exhibit the top two most significant enrichments (Figure 5A). The relatively 
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higher expression levels of disease-associated genes like NOTCH4 were observed in AVR and 

DVR of healthy samples compared to lupus nephritis patients [52]. NOTCH4 is known to repress 

TGF-β gene expression by degrading phosphorylated SMAD3 protein, and the overexpression of 

NOTCH4 could lead to the fibrogenesis in kidney [53-54]. Interestingly, TGF-β increases the 

mRNA expression level of endothelin-1 and endothelin receptors in kidney cells, and the latter 

two were shown to be upregulated among patients with lupus nephritis [55-56]. Endothelin-1 

production in kidney has also been used to measure levels of renal inflammation in lupus nephritis, 

especially among patients with chronic kidney diseases [57]. Hence, we suspect that a loss-of-

function mutation in the NOTCH4 gene or epigenetic modifications that repress its expression 

levels in kidney vasa recta endothelial cells could cause an increase in TGF-β gene expression that 

stimulates endothelin-1 and endothelin receptors, which leads to additional signaling cascades and 

eventually the development of lupus nephritis. This not only supports AVR and DVR endothelial 

cells’ high enrichments, but it also demonstrates our method’s potential in coming up with novel 

hypotheses in complex disease pathogenesis. 

The relatively high enrichments of principal cells and type A intercalated cells at the 

collecting duct reveal interesting biological insights into lupus nephritis. Studies have shown that 

the proinflammatory IL-18 secreted by intercalated cells of collecting duct is upregulated in lupus 

nephritis patients compared to healthy individuals, and this phenomenon was observed in animal 

models as well [58]. Faust et al. also suggested that the upregulation of IL-18 was correlated with 

the severity of lupus nephritis and was likely due to posttranscriptional processing [59]. The higher 

IL-18 level leads to more production of IFN-γ induced by IL-12, which causes cytokine imbalance 

and yields towards T helper 1 immune response [60]. This increase of IL-18 is accompanied by 

the preservation of vacuolar H+-ATPase in collecting duct intercalated cells among patients with 
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lupus nephritis [58, 61]. Most H+-ATPase within the collecting duct exists in the apical membrane 

of type A intercalated cells, in which they contribute to the acid-base homeostasis by transporting 

protons across apical membrane and thus facilitating movements of other ions like Cl- and 

bicarbonate [62]. Hence, the type A intercalated cells’ enrichment in lupus nephritis is well 

supported by past literature findings. 

5.2.2. Diabetic nephropathy 

 For diabetic nephropathy, the AVR endothelial cells again rank as the most enriched cell 

types within the disease followed by thick and thin ascending limbs (Figure 5B). Thick ascending 

limb reabsorbs 30% of filtered Na+ and Cl-, which in turn regulates urinary concentration, defends 

artery perfusion, and balances extracellular fluid volume [63]. It also participates in the 

transportation of ammonium and bicarbonate to maintain acid-base balance [63]. Human serum 

glucocorticoid-regulated kinase (hSGK) can stimulate the activity of epithelial Na+ channels and 

Na+, K+, 2Cl- cotransporter BSC-1, and a high transcription level of hSGK was observed in the 

thick ascending limb of kidney samples from diabetic nephropathy patients [64]. Such stimulations 

could enhance the Na+ reabsorption at thick ascending limb, which decreases the NaCl delivery to 

macula densa to increase the glomerular filtration rate that leads to diabetic hyperfiltration, a key 

phenomenon in early diabetic nephropathy [64]. As a result, hSGK level in thick ascending limbs 

could conveniently function as a marker of diabetic nephropathy levels. TGF-β has been shown to 

exhibit regulation over hSGK in human intestinal tissues and suspected to have such function 

among other tissues, and a remarkedly higher TGF-β expression level was observed in kidney 

tissues of rats with type II diabetes mellitus, further validating its potential role in the development 

of diabetic nephropathy [65-66]. On the other hand, a single-cell study on diabetic nephropathy 

patients showed that there was a decrease in the Na+/K+-ATPase (NKA) subunits and WNK-1 and 
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STK39 that regulates the Na+, K+, 2Cl- cotransporter NKCC2 in thick ascending limb cells [67]. 

Both NKA and NKCC2 perform Na+ and K+ transportation in thick ascending limbs, and their 

reduction should lower Na+ and K+ reabsorption, which contradicts with the findings of Lang et al. 

[67]. This inconsistency in evidence suggested a more complicated mechanism of Na+ reabsorption 

and hyperfiltration within thick ascending limbs for diabetic nephropathy. Additionally, there are 

not many connections between the thin ascending limb and diabetic nephropathy. 

6. Discussion 

In this study, we have developed two novel bioinformatic methods to uncover interesting 

associations between complex diseases and specific sub-cell types using single-cell gene 

expression data. The results generated by our methods have revealed potential mechanisms of 

disease pathogenesis for obesity, lupus nephritis, and diabetic nephropathy. The proposed 

mechanism of how the decreased level of NOTCH4 enhances TGF-β mRNA level and stimulates 

endothelin-1 and its receptor production in kidney vasa recta endothelial cells to promote lupus 

nephritis progression was well supported by multiple studies’ findings. The high enrichments of 

ileal and prostate macrophages in obesity were consistent with past studies’ findings as well. 

Our results have generated significant cell type-disease associations that were coherent 

with past studies’ findings in both approaches. The cell type-specific marker gene approach 

exhibits a key advantage over other existing methods since only the binary indicators of whether 

marker genes overlap with disease-associated genes change when different cell types were applied, 

which do not involve with the gene read counts and thus are free from data bias of different tissues. 

The selection of cell type-specific marker genes and the direct use of disease-associated genes 

from DisGeNET also avoid potential noises caused by uninvolved genes, which greatly improves 

the accuracy of this approach. However, the marker gene selection may overlook certain genes not 
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enriched within a cell type but play a key role in some disease etiology and pathogenesis. This is 

where our eQTLs-snRNA-seq approach comes in. Our second method takes all genes into 

consideration and uses eQTLs colocalization to identify target genes of the disease’s genomic 

variants, which provides a broader range for query and hence produces more comprehensive 

results. Thus, the two approaches can make up for each other’s shortcomings and work well when 

applied to the same diseases and traits together. Overall, both methods have generated novel 

biological insights into disease etiology by examining diseases’ associations with various sub-cell 

types. Interpretation and analysis of these results could generate hypothesis on specific 

mechanisms of disease pathogeneses, which can guide genetic laboratories to develop a 

comprehensive understanding of the disease. 

Our study still has room for improvement. While the sub-cell type data brings out more 

insights into our understanding of disease and trait pathogenesis at the cell level, the marker gene 

data provided by hECA were relatively limited in terms of tissue types. Only one tissue out of ten 

from hECA is related to the brain, and it is the spinal cord, which makes evaluating 

neurodegenerative diseases like bipolar disorder and schizophrenia using the cell type-specific 

marker gene approach relatively difficult. Such limitation also exists in the eQTLs-snRNA-seq 

approach since currently we have only been using snRNA-seq data from three tissue types. 

Additionally, some associations like thin ascending limb with diabetic nephropathy did not make 

much sense and have little literature covering it, indicating room for improvement in our statistical 

tests and algorithms. It is also noteworthy that the proposed mechanisms and hypotheses on 

pathogenesis from both approaches came from statistical tests of existing data and thus should be 

carefully examined and validated by molecular biology labs. 
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In future works of our study, we plan to incorporate more single-cell data from hECA and 

GEO, which would make our methods more accurate and comprehensive. Additional statistical 

tests and methods to connect eQTLs colocalization genes and snRNA-seq data will be explored to 

find the optimal approach. We could also add SNPs and RS ID as the input for the snRNA-seq 

approach to broaden the usage of our methods. 

7. Supplementary Materials 

Supplementary Table 1. Significant disease-cell type associations using cell type-specific marker 

genes. 
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