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Abstract

Crowdsourcing and Semi Supervised Learning for Detection and Prediction of
Hospital Acquired Pressure Ulcer Injury

By Mani Sotoodeh

Pressure ulcer injury (PUI) or bedsore is “a localized injury to the skin and/or under-
lying tissue due to pressure.” More than 2.5 million Americans develop PUI annually,
and the incidence of hospital-acquired PUI (HAPUI) is around 5% to 6%. Bedsores
are correlated with reduced quality of life, higher mortality and readmission rates,
and longer hospital stays. The Center for Medicare and Medicaid considers PUI as
the most frequent preventable event, and PUIs are the 2nd most common claim in
lawsuits. The current practice of manual quarterly assessments for a day to estimate
PUI rates has many disadvantages including high cost, subjectivity, and substantial
disagreement among nurses, not to mention missed opportunities to alter practices
to improve care instantly. The biggest challenge in HAPUI detection using EHRs
is assigning ground truth for HAPUI classification, which requires consideration of
multiple clinical criteria from nursing guidelines. However, these criteria do not ex-
plicitly map to EHRs data sources. Furthermore, there is no consistent cohort defini-
tion among research works tackling HAPUI detection. As labels significantly impact
the model’s performance, inconsistent labels complicate the comparison of research
works. Multiple opinions for the same HAPUI classification task can remedy this
uncertainty in labeling. Research works on learning with multiple uncertain labels
are mainly developed for computer vision. Unfortunately, however, acquiring images
from PUIs at hospitals is not standard practice, and we have to resort to tabular
or time-series data. Finally, acquiring expert nursing annotations for establishing
accurate labels is costly. If unlabelled samples can be utilized, a combination of an-
notated and unlabelled samples could yield a robust classifier. To overcome these
challenges, we introduce the following: 1) Proposing a new standardized HAPUI co-
hort definition applicable to EHR data loyal to clinical guidelines; 2) A novel model
for learning with unreliable crowdsourcing labels using sample-specific perturbations,
suitable for sparse annotations of HAPUI detection (CrowdTeacher); 3) Exploration
of unstructured notes for enhancement and gleaning better feature representations
for HAPUI detection; 4) Incorporating unlabelled data into HAPUI detection via
semi-supervised learning to reduce annotation costs.



Crowdsourcing and Semi Supervised Learning for Detection and Prediction of
Hospital Acquired Pressure Ulcer Injury

By

Mani Sotoodeh
B.Sc., University of Tehran, Tehran, 2015

M.Sc., Emory University, GA, 2020

Advisor: Joyce Ho, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Informatics
2021



Acknowledgments

I first want to thank my advisor, Dr. Joyce Ho, for allowing me find my way in the

academic maze instead of bounding me to any particular research topic. I’ve learned

so much from her, not only on how to creatively approach problems but also on how

to present myself and my ideas better and prioritize my academic goals toward what

I’d like to achieve the most while being realistic. Her tenacity in following up on ideas

and not giving up on intermediate not-so-interesting results has taught and inspired

me along the way. I’m also very grateful for her appreciation of my talents and skills

and always encouraging me to promote them, be proud of my accomplishments, and

never underestimate them. Having her as an academic advisor has made me feel safe

and comfortable and supported all along my academic journey as she’s been a truly

caring academic mentor, and she has genuinely acted in my best interest. Lastly,

I’ve also learned a lot from her about professional communication within academia

and effective academic relationships, and connection-making. I find her a very smart,

ambitious, punctual, respectful, and well-rounded researcher.

I also want to thank my Co-advisor, Dr. Li Xiong, for her endless curiosity,

insistence, warmness, willingness to unravel all the whys, attention to details, and

constant juxtaposition of how results measure up against one’s intuitions. I’ve learned

a great deal from her about effective academic writing, consistency in terminology

and the power of the words, and proper academic style. She’s also a great teacher,

and her class was the most engaging and enjoyable class I took in my Ph.D. year. I

appreciate all the good times I have spent with the AIMS group in lab outings which

made me feel part of a community beyond academic collaborations. I feel lucky to

have been part of such a supportive lab during my studies. I’m thankful to Dr. Vicki

Hertzberg, Dr. Imon Banerjee, Dr. Wenhui Zhang and Dr. Roy Simpson for their

insightful comments and discussions, making my research work stronger.

I also want to thank all the wonderful teachers I have had, from elementary school



till the end of college; Ms. Zahmatkesh, my 2nd grade teacher, for gifting me a book

every week so that I read more, my first English teacher in 6th grade for encouraging

me to improve my handwriting, Mr. Ashkboos my high school Arabic teacher for his

engaging etymology stories, Prof Peyman Nasehpoor and Mahmood Shabankhah for

being great instructors and their support when I applied to grad school. The faculty

at the Computer science department and other graduate students, especially AIMS

and PRADA lab members, LGS staff and CS department staff, have been essential

to my PhD experience, and I appreciate their presence.

I’m deeply grateful for my parents’ patience with me all these years away from

them and home, their encouragement, and their belief in my abilities. Their love

and affection have been a constant source of light and hope for me, even in the most

challenging times. The riddles my mom asked me as a child and the variety of books

she bought for me hooked me to science from an early age. My dad’s presence in my

school years for meetings and all the extracurricular classes they signed me up for and

took me despite their busy lives has significantly contributed to my understanding of

the world. Simply all my achievements would never exist without their support, care,

time, and love for me.

I’m also forever in debt to my brother for always being there for me emotionally

and letting me use his brainpower all these years. For always expressing I deserve

more from what I already have, that my potential is much higher than I think and

that everything will be alright. Thank you, Parsa, for listening to all my nonsense

and complaints all these years and helping me make better decisions as I grew and

found my way in the world.

I want to thank Farnaz for all the good times I had in her company and her advices

these years. She’s been a great friend ever since we became friends and was there

for me most of my hard times. Farnaz and Azad were also great neighbors whose

company and positive energy I enjoyed a lot. I also appreciate the presence of former



Iranian Atlanta friends who helped me better understand myself.

I’m grateful for all the Emory resources that kept me attached to this world and

sane during my Ph.D. Lovely members of Wednesday Compassion Meditation Group,

Emory Capoeira Club, staff and group members at CAPS interpersonal and men’s

group, staff at Emory office of LGBT life, especially people in the graduate queer

discussion group and all the kind people at ISSS office and ESLP program. These all

helped me see beyond myself and the limited knowledge I had of myself and enabled

me to grow as a person.

I also want to thank Ayda, Ellie, and Devin, for existing and their sweetness,

giving me a little burst of joy every time I see them, in real life or virtually.



i

Contents

1 Introduction 1

2 Background and Related Work 7

2.1 Truth Inference in Crowdsourcing . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Truth Inference Definition . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Truth Inference Methods . . . . . . . . . . . . . . . . . . . . . 8

2.2 Learning in the Context of Crowdsourcing . . . . . . . . . . . . . . . 10

2.2.1 Paradigms in Learning with Crowdsourcing Labels. . . . . . . 10

2.3 Synthetic Data Generation . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Selective Gradient Propagation and Co-teaching . . . . . . . . . . . . 12

2.5 Self-training, a Semi-Supervised Learning Paradigm . . . . . . . . . . 13

3 A Standardized HAPUI Cohort Compatible with Clinical Guide-

lines 15

3.1 PUI Terminology in EHR . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Challenges in PUI Cohort Definition . . . . . . . . . . . . . . . . . . 19

3.2.1 HAPUI Detection from Multiple EHR Sources . . . . . . . . . 19

3.2.2 Sources for PUI Hospital Stays in the MIMIC-III and Their

Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 The Existing Cohort Definitions v.s the New Cohort Definition 22

3.3 Experimental Settings for Cohort Comparison . . . . . . . . . . . . . 25



3.3.1 Feature Construction . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Classifiers and Evaluation Metrics . . . . . . . . . . . . . . . . 27

3.3.3 Defining Training and Test Sets in the Cohorts . . . . . . . . 27

3.4 Results for Cohorts Comparison . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Cohort Definition’s Impact on Classifiers’ Performance for HA-

PUI Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 Significant Features for Classifiers and Cohorts . . . . . . . . . 29

3.5 Cohort Definition for HAPUI Detection, Next steps and Reflections . 31

4 CrowdTeacher: Robust Co-teaching with Noisy Sparse Answers and

Sample-specific Perturbations 32

4.1 Crowdsourcing: Toward Labeling Unlabelled Data . . . . . . . . . . . 33

4.1.1 Notations for Learning with uncertain Crowdsourcing Labels . 34

4.2 Uncertainty-aware Perturbation Scheme and Modifying Co-Teaching 35

4.2.1 Generating Synthetic Samples . . . . . . . . . . . . . . . . . . 36

4.2.2 Sample-specific Perturbations . . . . . . . . . . . . . . . . . . 37

4.2.3 Knowledge-Distillation-based Co-teaching for Smaller Tabular

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 CrowdTeacher Experimental Settings . . . . . . . . . . . . . . . . . . 39

4.3.1 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.2 Annotation Simulation . . . . . . . . . . . . . . . . . . . . . . 41

4.3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 CrowdTeacher Results . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.2 PUI Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.3 Length of Stay Dataset . . . . . . . . . . . . . . . . . . . . . . 48

4.5 CrowdTeacher and HAPUI Detection . . . . . . . . . . . . . . . . . . 48



5 Discovering Better Features and Improving Performance Using Un-

structured Notes 50

5.1 Text features, Missing Piece For HAPUI Detection . . . . . . . . . . 50

5.2 Dataset and Labeling Details . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Negation Detection in Text Data . . . . . . . . . . . . . . . . 55

5.3.2 Transforming Text into Vectorized Features . . . . . . . . . . 56

5.3.3 PUI Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.1 Experiments Overview and Data Split . . . . . . . . . . . . . 58

5.4.2 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.3 Inferring Word Significance from Feature Importance . . . . . 59

5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.1 Impact of Negation Detection on AUC and F1 Score . . . . . 60

5.5.2 Classifiers Performance Comparison . . . . . . . . . . . . . . . 60

5.6 Conclusion and Potential for HAPUI detection using Text . . . . . . 64

6 Leveraging Unlabeled Samples for HAPUI Detection 65

6.1 Our model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.1 Self-training for Extremely Unbalanced Classes . . . . . . . . 67

6.1.2 Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 HAPUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.2 Length-of-stay . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 Results for HAPUI Detection . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Results for LOS Prediction . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



7 Conclusion and Future work 75

Bibliography 77



v

List of Figures

2.1 Answer Matrix example. . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 General framework of synthetic data generation. . . . . . . . . . . . . 12

2.3 General framework of Co-teaching. . . . . . . . . . . . . . . . . . . . 13

2.4 Basic schema of Self-training. . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Conflict of PUI sources in MIMIC III Dataset. . . . . . . . . . . . . . 22

3.2 Overlap of Case stays across the three cohorts. . . . . . . . . . . . . . 25

4.1 Conceptual Framework for Uncertainty-aware sample-specific pertur-

bations and CrowdTeacher. . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 CrowdTeacher Sensitivity to perturbation fraction and synthesizer choice

(in Figure 4.2a circles/crosses show gain w.r.t. P Coteach/V Coteach

accordingly). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 CrowdTeacher performance on Synthetic and PUI data as average num-

ber of labels per sample increases, averaged on 10 and 4 initializations

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Smoothing Coteach v.s. CrowdTeacher-Correlated Features. . . . . . 47

4.5 Smoothing Coteach v.s. CrowdTeacher-Loosely correlated Features. . 47

4.6 Smoothing Coteach v.s. CrowdTeacher-Very Loosely correlated Fea-

tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 CrowdTeacher performance for LOS prediction task across 20 seeds. . 49



5.1 Overview of PUI Detection: Negation Detection, Model Training, In-

terpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 Modified Self-training + Co-Teaching for HAPUI detection. . . . . . 73

6.2 Modified self-training + Co-Teaching for LOS Prediction. . . . . . . . 74



vii

List of Tables

3.1 Cohorts properties and composition. . . . . . . . . . . . . . . . . . . 24

3.2 Classifiers’ performance trained on the three PUI cohorts on the com-

bined expert annotations and non-conflicting test set. . . . . . . . . 29

3.3 Classifiers’ performance trained on the three PUI cohorts on the expert

annotations of 85 conflicting samples across the cohorts . . . . . . . 29

3.4 Significant words for combinations of classifiers and cohorts (sorted by

importance). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Summary of Notations for CrowdTeacher. . . . . . . . . . . . . . . . 35

5.1 Properties of different Stages of Cohort Selection in MIMIC-III Dataset. 53

5.2 Average AUC and F1 score of classifiers with and without negation

detection over 30 runs. * denotes a p-value < 0.05 under a one-sided

paired t-test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Top 10 most important features (words) in different experimental set-

tings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Most medically meaningful keywords in different experimental settings. 63



viii

List of Algorithms

1 CrowdTeacher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Modified Self-training. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



1

Chapter 1

Introduction

Pressure ulcer injury (PUI) or bedsore is formally defined as “a localized injury to the

skin and/or underlying tissue usually over a bony prominence or related to a medical

or other devices, as a result of pressure, or pressure in combination with shear”[25, 49].

More than 2.5 million Americans develop PUI annually [8] and incidence of hospital-

acquired PUI is estimated around 5% to 6% [8, 14, 67]. Bedsores are correlated

with reduced quality of life, higher mortality, higher readmission rates (75% higher

than other chronic conditions), longer hospital stays, more institutionalization after

hospitalization, and economic burdens on patients and healthcare units ($500-7,000

for each PUI) [8, 15, 51, 58, 60, 73]. Center for Medicare and Medicaid (CMS) reports

PUI as the most frequent preventable event, and PUI is also the 2nd most common

claim in lawsuits after a wrongful death [5].

Hospital-acquired pressure ulcer injury (HAPUI), that is, PUI developing after

initial admission evaluation, is a key metric for patient safety and a primary nursing

quality indicator, illuminating the caliber of nursing expertise within a hospital [8, 51].

CMS and Agency for Healthcare Research and Quality (AHRQ) have both defined

HAPUI quality indicators which should be periodically reported by care units [3, 7].

More specifically, from 2015, any HAPUI, is considered preventable, and Medicare pe-
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nalizes the bottom 25% of the lowest-performing hospitals [17]. Accurate estimation

of HAPUI incidence within any healthcare unit is vital for nursing quality assess-

ment and proper planning by hospital administrative staff. Also, to avoid financial

difficulties and increase their reputation, many healthcare institutions are trying to

more accurately evaluate HAPUI risks to allocate resources such as specialized pres-

sure mattresses for those cases and direct more nursing attention for monitoring skin

status [44]. The current practice of manual quarterly assessments of one hospital in

a single day by supervisor nurses for assuring/reporting quality metrics or inform-

ing nursing care through the estimated PUI rate has many disadvantages. High cost,

subjectivity, and substantial disagreement among nurses [71], missed opportunities to

instantly alter practices leading to inadequate care are all areas needing improvement

in HAPUI detection. Thus, the need for an accurate HAPUI detection tool arises to

inform nurses timely about appropriate interventions.

Electronic Health Records (EHRs) have recently been used to assist clinical decision-

making, and patient care [11]. EHRs can be mined to detect HAPUI as they encom-

pass multiple data sources indicating the development of a new or the presence of

existing PUIs. More frequent PUI incidence estimation rates through EHRs has the

potential to boost efficiency and outcomes for nurse-driven plans of care exponen-

tially. For example, once HAPUI is detected through machine learning, the RN has

the knowledge and power to direct caregivers in the tactical care of the patient for

eliminating the adverse outcomes associated with HAPUI. From the perspective of

efficient nursing quality assurance, the predicted incidence of HAPUI is a reliable

proxy for its incidence in reality. In the presence of EHR-based HAPUI classifiers,

to achieve more reliable HAPUI detection, we can present nurses with only the most

uncertain cases for confirmation, rather than overwhelming them with all hospital

stays.

Despite advances in clinical decision-making using EHRs, HAPUI detection has
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not been sufficiently studied, and it still remains a challenging task. Risk assessment

methods such as the Braden scale [12] has been used for its risk evaluation in the

past. However, these classical methods have unstable sensitivity and specificity due

to demographical drift [19], poor prognostic accuracy [21], and no apparent impact

on decreasing HAPUI incidence [46]. More recently, proposed personalized risk al-

gorithms have considered a broader range of patient-level factors than these earlier

studies but are mainly using structured data from EHRs [20, 21]. Unstructured clin-

ical notes contain often overlooked insights about HAPUI and should be one of the

key data sources. Moreover, most of these works aim at exploring HAPUI patients to

uncover risk factors retrospectively rather than detecting HAPUI development within

a reasonable time interval, which is of higher clinical significance.

The most salient challenge in identifying HAPUI using EHRs is that assigning

ground truth for HAPUI classification requires consideration of many clinical criteria

dictated by respective guidelines [1, 2, 3]. However, these criteria often do not explic-

itly map to EHRs data sources, preventing accurate labeling and evaluation. There

is no consistent cohort definition among research works that try to detect HAPUI

[22, 28, 56], even though they are using the same dataset. HAPUI cohorts within

these studies are divergent despite their similar claim of detecting HAPUI. More-

over, the labels significantly impact the model’s performance to classify HAPUI, and

inconsistent labels seriously complicate comparing these research works. Therefore,

inferring HAPUI labels from EHR data and defining a clinically meaningful cohort

based on regulatory guidelines is an essential task for any data-driven study for HA-

PUI detection.

However, even if we determine labels for HAPUI tasks as accurately as possible

based on available EHR sources and nursing guidelines, there is still some inherent

noise in these EHR sources. Additionally, clinical guidelines have some subjective

components too. These two factors represent the second challenge in EHR-based
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HAPUI detection, i.e., uncertain labels despite a standardized cohort. To tackle this

challenge we resort to learning with uncertain crowdsourcing paradigms since this

uncertainty in labeling naturally lends itself to a crowdsourcing problem: by obtaining

multiple opinions for the same HAPUI classification task and leveraging them for

learning, we can deal with the lack of reliable ground truth for the classifier. There

are many research works focusing on learning with uncertain crowdsourcing labels,

though mostly they are developed in conjunction with computer vision benchmark

tasks such as MNIST and CiFAR100 [9, 59].

Although some researchers have tackled crowdsourcing for biomedical applications

using typical hospital images [29, 66], acquiring images from PUIs at hospitals is not

currently a standard practice and, therefore, we have to resort to tabular or time-

series data in EHR for HAPUI detection, which renders these methods inapplicable.

We can explore another tangentially related topic to crowdsourcing with unreliable

labels, learning with noisy label paradigms. Data augmentation and selective gradient

propagation are two examples of this approach that have achieved great success in

robust learning despite noisy labels. Nevertheless, most of the proposed algorithms

are benchmarked on Computer Vision or Natural Language Processing (NLP) tasks

and cannot be directly used for tabular EHR data. Adopting these approaches to

tabular data is nontrivial and challenging. For instance, data augmentation for images

is routinely defined over standard transformations like rotations and resizing, but

similar transformations for tabular data do not exist. Similarly, these approaches are

highly dependent on training size, and generating healthcare data of the same scale

requires stricter privacy guarantees and inter-organizational coordination to ensure

integrated standardized EHR data across hospitals [31, 37, 79].

The third limitation in the current EHR-based HAPUI detection methods is the

failure to utilize rich hospital notes. Existing models are developed on structured

data [20, 21] and may not reflect all the patient information as hospital notes con-
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tain critical information about the prognosis of HAPUI that might not be present in

other structured EHR sources. Therefore exploration of notes in learning can signifi-

cantly improve the performance and thus the adoption of an EHR-based method for

detecting HAPUI.

The fourth challenge to developing an EHR-based HAPUI detection system is from

a practical perspective; acquiring expert nursing annotations for establishing high-

quality labels for HAPUI detection is costly. Therefore, it is unreasonable to require

thousands of multi-annotated records on a real-world scale. However, if unlabelled

samples can effectively contribute to model training, a combination of annotated

samples in addition to unlabelled ones could yield a robust classifier.

Considering these four-fold challenges and limitations for HAPUI detection using

EHRs, this dissertation presents the following four contributions:

• We propose a new standardized HAPUI cohort definition based on EHR data

that examines all available data sources, including text, chart events and pro-

cedures, and diagnosis codes, unlike the current cohort definitions. Our cohort

definition also incorporates clinical and regulatory guidelines, which have not

been fully considered in the previous works.

• We introduce a novel model for learning with unreliable crowdsourcing labels

using sample-specific perturbations, suitable for sparse annotations of HAPUI

detection (CrowdTeacher). CrowdTeacher connects ideas from noisy labeling,

synthetic sample generation, and crowdsourcing paradigms to fully harness the

uncertainty throughout the training process and learn a genuinely robust clas-

sifier with sparse uncertain annotations, which has not been proposed before.

CrowdTeacher outperforms the methods designed separately for each paradigm

on synthetic, HAPUI, and length of stay classification datasets in most sparsity

settings, demonstrating its generalizability.



6

• We explore unstructured notes for CrowdTeacher enhancement and gleaning

better feature representations for HAPUI detection. We are the first to consider

unstructured notes for HAPUI detection and further combine it with negation

detection and confirm its utility both computationally and in terms of inter-

pretability and compatibility with nursing knowledge.

• We leverage unlabeled data to reduce annotation costs for HAPUI detection

via a modified self-training algorithm for the first time. We propose a modified

self-training model combined with Co-teaching that is uniquely designed for im-

balanced classes and classifiers trained on noisy labels. We showcase its success

over vanilla self-training or Co-teaching alone on both HAPUI and length of

stay classification tasks.

We dedicate the first section to an overview of the related work and necessary back-

ground. Afterward, in each chapter corresponding to the four projects, we provide

details of motivations, challenges, and governing experimental settings, accompanied

by extensive experiments and analysis illustrating their efficacy compared to existing

methods. Finally, we summarize how each project fits with the others toward the

holistic goal of an efficient EHR-based HAPUI detection paradigm.
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Chapter 2

Background and Related Work

We provide a summary of previous literature relevant to our proposed work. We high-

light the most relevant research works on truth inference in crowdsourcing, learning

in the context of crowdsourcing, synthetic data generation, selective gradient propa-

gation and semi-supervised learning. We also formally define multiple subproblems

relevant to HPUI detection and detail their methodology.

2.1 Truth Inference in Crowdsourcing

Truth inference aims at inferring the most likely labels for crowdsourcing tasks, given

the conflicting multiple annotations for each task.

2.1.1 Truth Inference Definition

Consider a crowdsourcing system consisting of some samples and a pool of annota-

tors. Samples might be assigned to a subset of annotators. Truth inference aims to

determine the true label of samples based on available annotation for each sample.

Given that HAPUI detection is a binary classification, only binary truth inference

methods are discussed here. Examples of other binary crowdsourcing problems are
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Figure 2.1: Answer Matrix example.

determining the sentiment of sentences as positive or negative or reporting traffic

conditions on the road using smartphones.

Definition 2.1.1. Truth Inference [57]: Suppose there is a set of R annotators L =

{l1, .., lR} and N samples S = {s1, s2, ..., sN} where each sample sj has the truth label

z∗sj ∈ K. K is the set of all possible labels. Provided an answer matrix A where each

element alisj shows the answer from annotator li for sample sj, the truth inference goal

is to infer the true label ẑsj ∈ K for each sample sj ∈ S. If sample sj has not been

assigned to annotator li , alisj = −1

Figure 2.1 depicts a sample crowdsourcing system comprised of 3 annotators and

4 samples for binary classification. The truth inference method’s input is an answer

matrix A provided by the annotators. Annotators label samples with 0 or 1, while

−1 shows that the task was not assigned to that particular annotator. The output is

Ẑ, the inferred labels for the samples.

2.1.2 Truth Inference Methods

Four main classes of truth inference methods are 1) direct computation, 2) opti-

mization, 3) probabilistic graphical model (PGM), and 4) neural networks. Direct

computation learns from annotators’ answers by majority voting and treats annota-

tors equally or heuristically computes trust weights for them [33]. Optimization-based

methods [33, 38, 39, 80, 82] consider the estimated labels and reliability of annota-

tors as unknown variables and employ an optimization approach to estimate them.

Probabilistic graphical models (PGM) explicitly model the reliability of annotators to
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approximate the truth labels [23, 24, 35, 36, 68, 72]. Optimization and PGM-based

methods incorporate an iterative Expectation-Maximization (EM)-based algorithm

consisting of 1) inferring the samples label given the currently estimated reliabilities,

and 2) recomputing reliability of the annotators given the current samples’ inferred

labels. More recently, unsupervised neural network-based approaches [27, 76] have

been suggested that use as input each task’s answers in a neural network and gen-

erate the samples’ inferred label. Other methods rooted in tensor augmentation and

completion with limited performance have been proposed too [81].

Confusion Matrix: The confusion matrix, πli , captures reliabilites of annotators

across all classes. πli is a |K| ∗ |K| matrix in which element πlip,q shows the probability

of annotator li giving label q provided that the true label is p. Supposing a binary

classification problem with label set K = {0, 1}, then the number of matrix variables

is reduced to only two, αi and βi, with αi = pr(alisj = 1 | z∗ = 1) and βi = pr(alisj= 0

| z∗ = 0), showing the probability of annotator li truthfully reporting a sample given

its true label being 1 or 0 respectively.

Two recent surveys have concluded that the D&S truth inference method [23]

provides the best trade-off between computational efficiency and robustness and ac-

curacy [40, 65]. Therefore we employ this method for the rest of the experiments in

this thesis.

D&S truth inference method: The D&S [23] algorithm leverages EM to solve max-

imum likelihood estimation (MLE) for the inferred labels Ẑ and the confusion matrices

πL in an iterative manner. If Lsj is the set of annotators who have been assigned to

sample sj, then the objective function of this method is: maxẐ,πR

∏N
j=1

∑
k∈K pr(ẑsj =

k)
∏

li∈L:sj π
li

k,A
li
sj

.
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2.2 Learning in the Context of Crowdsourcing

There are many applications in the real world in which the ground truth of a classifica-

tion task is not available or conflicted. For example, in medicine, multiple pathologists

do not always necessarily agree on the malignancy status of a tumor in an image [45],

or multiple nurses with different backgrounds and experiences might not all agree

on the presence of hospital-acquired bedsores for a patient given their charts [71].

Similarly, acquiring ground truth from experts to train reliable classifiers can be ex-

pensive, as in the case of content filtering and regulation of posts on social media,

which are assigned to multiple non-expert annotators in order to obtain high-quality

labels [53]. Formally, we define learning with crowdsourcing labels as follows:

Definition 2.2.1. (Classification with crowdsourcing Annotations) Consider a set of

R annotators labeling N samples with K possible classes. Given an answer matrix

A ∈ RN×R where each element anr indicates the label for sample n provided by

annotator r, and the training feature matrix Xtr ∈ RN×M , the goal is to train a

classifier that accurately predicts the true labels for the test data using only its

feature matrix Xts.

Classification with noisy answers or multiple crowdsourced labels overlaps with

three other areas: learning with crowdsourcing labels, data augmentation and syn-

thetic data generation for robust learning, and selective gradient propagation.

2.2.1 Paradigms in Learning with Crowdsourcing Labels.

Learning a classifier from crowdsourced labels has been studied from 3 perspectives.

Here we summarize these high-level approaches for learning with multiple annotations.

Sequential. This approach first uses a truth inference method to approximate the

ground truth for training samples. The estimated label is then used to train a classi-

fier.
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Simultaneous. The second perspective jointly deals with the problem of learning

classifier parameters and the estimated ground truth of the samples. Albarqouni et al.

employ the Expectation-Maximization (EM) algorithm and Maximum a posteriori es-

timation to iteratively compute these two collections of parameters until convergence

[9]. Yet, this method is computationally restraining, especially for more complex

classifiers and a large number of samples.

Individual annotator’s label modeling. The last approach entail learning a

model for each individual annotator. Dr. Net was proposed to learn a classifier

to generate the labels of each annotator and is composed of two phases, individual

annotator modeling and learning labelers’ averaging weights for the final prediction

[29]. To better handle the computational challenge of simultaneous learning and Dr.

Net, multiple crowd-layer variants were introduced to remove the long runtime burden

due to the EM loop [59], by first approximating the ground truth of samples and then

attempting to replicate the individual annotator’s labels using a very simple neural

network. Unfortunately, such models require significant samples to properly learn a

robust classifier.

2.3 Synthetic Data Generation

To combat the obstacle of noisy labels or features, perturbation schemes and data

augmentations methods have been proposed. Perturbation of model parameters and

architecture has proven to provide resiliency against noisy inputs in deep neural net-

works [10]. Perturbing input space through estimation of the distribution of features

and augmenting the original sample points with multiple versions of such perturba-

tions has also shown great success in achieving robustness in the face of noisy data

[43, 78]. In computer vision, data augmentation is achieved through applying trans-

formations like cropping and rotation to combat potential mislabelled training data
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Figure 2.2: General framework of synthetic data generation.

[13, 61, 79]. Another line of work approaches robustness against noisy data by gen-

erating data synthesizers that achieve the same predictive performance as using real

data. Xu et al. have extended data augmentations to tabular data with heterogeneous

feature types using Generative Adversarial Networks and Variational Autoencoders

[74]. Despite their success, unfortunately, such synthesizers are modeled indepen-

dently of the labels or the conflicting annotations. Figure 2.2 shows the goal and the

flow of this approach.

2.4 Selective Gradient Propagation and Co-teaching

The Co-teaching algorithm adaptively changes both the number of and the set of

participating samples used in stochastic gradient descent epochs for two differently

initialized classifiers to counter noisy labels and memorization effects in neural net-

works [31]. This algorithm modifies the samples fed to the network, with the logic

of first feeding clean certain samples and gradually adding the more noisy ones as

the classifier gets better at prediction. To distinguish cleans samples, these methods

use the sample’s associated loss as a proxy for its noisiness. Initialization of neural

networks can generate different classifiers; therefore, to improve the overall general-

izability, these methods use two classifiers with the same architecture but different

initializations. For each epoch, Co-teaching chooses a different number of samples

with the lowest loss (as a proxy for clean data) and updates each classifier using
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Figure 2.3: General framework of Co-teaching.

the clean samples of the other network. This is in contrast to the usual practice of

using all the samples or the clean samples of the classifier itself, which may result in

memorization and early overfitting that inhibits learning a generalizable and robust

classifier. Either one of the classifiers can be used at test time due to the convergence.

A parallel can be drawn to similarly deal with the inherent noisiness of aggregated

crowdsourcing labels. The Co-teaching mechanism of prioritizing a smaller set of con-

fident samples in the initial stages of learning and gradually incorporating more of the

uncertain samples in later epochs can be employed for the problem of classification

with crowdsourcing labels. Figure 2.3 depicts the flow of gradient of a Co-teaching

framework with sample parameters.

2.5 Self-training, a Semi-Supervised Learning Paradigm

Self-training is one of the most intuitive and earliest semi-supervised methods [55].

In self-training, the classifier is iteratively trained on an increasingly larger set of

labeled data. Given a labeled set, (XL, yL), the classifier is trained on XL, for each

iteration. The classifier prediction on an unlabelled set, XU is then utilized to extend

the labeled set by choosing a subset of the most certain samples from the unlabelled
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Figure 2.4: Basic schema of Self-training.

set and adding it to the already labeled set, (XL, yL). The criteria for the certainty of

predictions for unlabeled samples vary, and the most common ones are choosing the

top k most certain predictions from all classes and selecting samples whose certainty

is more than a specified threshold. A simple schema of the self training algorithm is

shown in Figure 2.4.

Some of the known disadvantages of self-training are its sensitivity to the quality

of the base classifier and its inability to correct already misclassified samples in the

labeled set added in the previous iterations [75].
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Chapter 3

A Standardized HAPUI Cohort

Compatible with Clinical

Guidelines

EHRs’ data sources, both structured and unstructured, can indicate HAPUI during

a hospital stay. These sources often do not agree on the existence or the stage of

HAPUI. However, making administrative decisions based on the HAPUI incidence,

either standalone or in conjunction with output from a computational model, requires

the cohorts and their labels to be well-defined and justified clinically. Moreover, rea-

sonable class assignment criteria permit meaningful comparison of the computational

models. In this chapter, we highlight the diverging nature of HAPUI sources within

electronic records, provide reasons for part of their conflicts or overlappings, and sug-

gest a new cohort for establishing HAPUI classification labels that more accurately

follows the clinical guidelines compared to the current cohort definition. Finally, we

analyze the performance of all cohorts on two types of classifiers.

EHRs can identify HAPUI as they include multiple data sources indicating the

development of a new or existing PUI. These sources are codes; itemized PUI-related
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events such as staging, depth, or location of PUI; and keywords extracted from semi-

structured or unstructured clinical notes documenting the existence of a PUI and/or

describing its features. Furthermore, multiple factors can impact the reliability of

PUI’s documentation: inherent complexity and subjectivity of its detection, screen-

ing, and staging; change in the nursing team composition within a hospital stay (i.e.,

continuity of care, nurse roles, and competencies); protocol changes for data entry,

and changes to the EHR system. These might result in contradictory information

across the data sources (e.g., regarding the presence of PUI). As a result, for the

same dataset and task, there have been different cohort proposals. Therefore, defin-

ing the HAPUI cohort is a function of one’s trust in each source’s data quality and

measurement reliability. Moreover, to genuinely assess the different machine learning

models for HAPUI detection on a fixed benchmark data (such as the publicly available

MIMIC-III dataset [34]) requires consideration of complex clinically justified criteria

that combines multiple data sources consistent with the regulatory guidelines [3, 7].

We illustrate the challenges in detecting HAPUI in EHRs using MIMIC-III [34]

as a case study. MIMIC-III is one of the most widely used open benchmark datasets,

built over CareVue and Metavision EHR systems that encompass about 59k stays.

It contains multiple tables for hospital stays, linking their vital signs, lab results,

physiological measurements, demographics, notes, and diagnosis. Given the clinical

context governing hospital stays, we employ nursing expertise to resolve some con-

flicts. We also categorize the required decisions to properly define a cohort for HAPUI

detection in EHRs. Additionally, we evaluate the impact of existing cohort definitions

on practical considerations such as generalizability and confidence in labels; and the

effects of the definition on various computational models’ performance. Finally, the

strengths of our proposed cohort definitions for HAPUI classification are discussed.

In summary, we aim to:

• Depict the challenges of finding evidence for HAPUI within different sources in
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the MIMIC-III dataset.

• Provide clinical reasoning to reduce some of the conflicts in data sources.

• Define core parameters for a meaningful HAPUI cohort construction.

• Showcase the cohort definition effects on the performance of tree-based and

neural network-based classifiers as two representative classifiers.

3.1 PUI Terminology in EHR

Here we define some terms used throughout the paper and their usage in EHRs.

HAPUI criteria. HAPUI is determined by regulatory authorities using many factors

[3, 7], such as PUI admission and discharge stage, whether the patient was recorded

deceased, changes in staging, and unit transfers during the stay. The CMS guideline

provides the following six criteria:

1. Patient stays for which the discharge assessment indicates the presence of one

or more new or worsened PUI (Stage 2–4, or unstageable pressure ulcers due to

slough/eschar, non-removable dressing/device, or deep tissue injury) compared

to admission, should be considered.

2. Patient stay is excluded if the patient died during the stay.

3. Patient stay is excluded if data on new or worsened Stage 2, 3, 4, and unstage-

able pressure ulcers, including deep tissue injuries, are missing on the planned

or unplanned discharge assessment

4. If on admission a PUI was unstageable but becomes and remains numerically

stageable later in the patient’s stay, it should be coded as present on admission

on the Discharge assessment at the stage at which it first becomes numerically

stageable.
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5. If a patient is transferred from the post-acute care (PAC) setting to an acute care

hospital and returns within 3 days (including the day of transfer), the transfer

is considered a program interruption and is not considered a new admission.

Therefore, any new PUI formation or increase in numerical staging that occurs

during the program interruption should not be coded as “present on admission.”

6. The general standard of practice for newly admitted patients is that patient

clinical admission assessments are completed as close to the actual time of ad-

mission as possible and usually within 24 hours.

AHRQ also recommends “ensure performance of comprehensive skin assessment

within 24 hours of admission” to accurately measure PUI rates [1]. NPIAP reference

guide [7] further defines facility acquired rate, Quality indicator 20, as “percentage of

individuals who did not have a pressure injury on admission who acquire a pressure

injury during their stay in the facility. ”

Discharge ICD-9 codes. For billing purposes, a limited set of ICD-9 codes is

chosen for each hospital stay at discharge. These codes’ composition usually shows

the most salient diagnoses made throughout the hospital stay. However, financial

concerns and the imperfect mapping of clinical findings to these codes may violate

the importance rule.

Clinical notes. For each hospital stay, numerous unstructured text might be ac-

cessible. These contain but are not limited to radiography reports, ECG and EKG

reports, discharge summaries, admission notes, and daily notes made by the care

team. We refer to the collective set of these textual data as clinical notes or notes for

short.

Chart events. Chart events constitute the main portion of structured clinical data

and include various medical services, such as lab tests, vital signs, nursing assessments,

and general markers like the mental status of a patient. Chart events are almost
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always time-stamped and give helpful information on a hospital stay’s clinical events’

time and order.

3.2 Challenges in PUI Cohort Definition

To highlight the existing limitations and justify the need for improvement for achiev-

ing our goal of developing an EHR-based classifier to identify HAPUI, we introduce

the current cohort definitions in MIMIC-III. We then explore PUI data sources in

MIMIC-III, showcase their conflicts, and provide some resolutions. We then analyze

the impact of cohort definition for HAPUI classification using two types of classifiers

on MIMIC-III.

3.2.1 HAPUI Detection from Multiple EHR Sources

Existing studies that leverage EHR data attempt to explore three perspectives:

• Explaining the most important indicators of HAPUI, such as particular comor-

bidities [20, 22, 50].

• Detecting the presence of HAPUI given all the records of a hospital stay [20,

21, 56]

• Leveraging earlier temporal lab data to predict HAPUI [28].

We compare our proposed cohort to existing cohorts for HAPUI classification/detection.

The constructed cohort by [20] was not replicated as their cohort inclusion criteria

were not clear, and [56] uses private local data.

CANTRIP[28]. This work attempts to predict HAPUI 48-96 hours before its first

appearance, defined as DOE (Date of Event).

Cramer[22]. This study aims at giving an estimate of HAPUI incidence and iden-

tifying HAPUI cases. The cohort is labeled using only charts of stays.
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3.2.2 Sources for PUI Hospital Stays in the MIMIC-III and

Their Reliability

PUI is documented in MIMIC-III across four different tables: chartevents, noteevents,

diagnoses-ICD, and CPT tables, and these tables are used to establish the labels for

cohort hospital stays. We further pulled data from the Admissions, Patients, and

ICU stays tables for our features.

Chartevents data. Each timed event in this table pairs an itemid with a medical

concept. We first selected all PUI-stage-related events with itemids in Definition

3.2.1 as they are related to PUI staging concepts. For example, itemid ‘224970’ is

paired with ‘Pressure Ulcer Stage #7’. This list is generated by taking the union of

the CANTRIP and Cramer cohorts (with only an overlap of around 30% for HAPUI

cases), since they both utilize chartevents to determine the label. For each specific

event (hospital stay and time), the value attribute may be a number between 1-4 or

other non-numerical values such as ‘Unable to assess.’ In the next step, we assign a

stage numeral to events based on their ‘value’ attribute and the mapping based on [6].

There is also a ‘valuenum’ integer attribute for stage, but since it has many missing

values, it isn’t used. Note that hospital stays may have multiple PUI staging events.

Definition 3.2.1 (PUI-staging itemids in chartevents). {551, 552, 553, 224631,

224965, 224966, 224967, 224968, 224969, 224970, 224971, 227618 227619}

*only bold itemids are used by Cramer cohort

ICD-9 Diagnosis data. We marked each hospital stay for the presence of PUI

using the ICD-9 codes in Definition 3.2.2 based on [4], guaranteeing a PUI case.

Unlike a previous study [28], we excluded ICD-9 codes that are regarded as non-

pressure ulcers in the ICD-10 system.

Definition 3.2.2 (PUI-indicative ICD-9 codes). {707, 707.1, 707.2, 707.3, 707.4,

707.5, 707.6, 707.7, 707.9, 707.11, 707.21, 707.22, 707.23, 707.24, 707.25}
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Notes. Notes of each stay are checked for the existence of any of the keywords or

regex patterns in Definition 3.2.3. This list covers most terms used to refer to PUI,

including common misspellings, and disregards structural matches, i.e., “bed sore:

none.” as suggested in [28].

Definition 3.2.3 (Keywords and Regex patterns indicating PUI). {bed sore($|[^ :

]), bed ulcer($|[^ :]), pressure sore($|[^ :]), pressure ulcer($|[^ :]), decub(\w ∗ \s∗)

sore($|[^ :]), decub(\w ∗ \s∗) ulcer($|[^ :])}

PUI-related CPT codes. CPT codes can indicate procedures to treat PUI, such

as skin surgeries and debridements.

Definition 3.2.4 (PUI ICD-9 Codes). {11042, 11043, 11044, 15999, 97598, 97597,

16020, 16030, 15835, 15878, 15879, 27027, 27057}

The conflict of these data sources for identifying MIMIC-III PUI case hospital

stays without considering the patient attributes or time limitations is shown in Figure

3.1. This plot shows that close to 50% of the patients with any sign of PUI in their

records only have them in their chartevent, while 10% only have a mention of PUI in

the notes. The data sources’ mismatch illustrates the need for reconciliation of these

data sources and careful cohort definitions for any HAPUI classification task. Notes

cannot be the only PUI case source since it results in false positives as the keywords

can be preceded by negation (i.e., no PUI) and/or serve as suggestions to the patient

to prevent PUI developments. Since ICD-9 codes focus on the most prominent ones

due to the length limitation and might include previous conditions diagnosed before

the hospital stay, they yield poor predictive performance on PUI tasks. Furthermore,

the lack of a time-stamp makes them incompatible with HAPUI criteria.
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Figure 3.1: Conflict of PUI sources in MIMIC III Dataset.

3.2.3 The Existing Cohort Definitions v.s the New Cohort

Definition

Based on the existing cohorts and the CMS HAPUI criteria, there are nine questions

relating to demographics and detection of PUI cases that need to be answered to

construct a cohort generally and for MIMIC-III specifically given its limitations.

Demographical Parameters.

• Q1: Do you exclude deceased patients?

• Q2: What is the minimum age to be included in a cohort?

HAPUI Case Criteria.

• Q3: What is the cutoff period (i.e., 24 or 48 hours after admission) beyond

which PUI is associated with the current hospitalization?

• Q4: What are the set of chartevents itemids used to determine PUI staging

data?
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• Q5: What numerical stages should be used for deep tissue injury and unable to

stage values?

• Q6: Should notes be used in addition to chart events staging data to establish

labels?

• Q7: Do you include healed PUIs or PUIs which have gotten better by discharge?

• Q8: Should ICD-9 codes be used to select HAPUI cases?

• Q9: What is the minimum numerical stage for HAPUI?

CANTRIP cohort [28]. In contrast to HAPUI criteria, this cohort includes de-

ceased patients, considers healed PUIs or PUIs that have gotten better during the

stay, and only uses staging at a single time point to determine HAPUI cases. Also,

the requirement for HAPUI cases is less strict as it allows stage 1, unconditioned

deep tissue injury, and unable to stage values. Furthermore, it considers 48 hours

instead of 24. If a stay has a staging of 1 or above, including deep tissue injury or

unable to stage that happens later than 48 hours of admission, it is detected as a PUI

case. Otherwise, if a note with a time later than 48 hours from admission has List

3 keywords, a PUI case is determined. All other stays fall into the control samples

category.

Cramer cohort [21]. This cohort only uses the staging chartevents data with a

more limited list of itemids to determine PUI cases. It also does not conform to the

HAPUI criteria as it considers dead patients and uses staging information from a

single time point. For each stay, if there is a staging of 2 or above, excluding unable

to stage and deep tissue injury that is timed later than 24 hours of admission, it is

marked as a HAPUI case. All the other stays make up the control population.

Golden cohort. We propose a new cohort based on the most updated versions of

HAPUI criteria as determined by the CMS, NPIAP, and AHRQ guidelines [1, 2, 3,
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7]. Stays of patients younger than 15 or resulting in death were excluded. More

importantly, the cohort only considers new PUIs or PUIs which have gotten worse

by discharge. Thus, it is necessary to determine the admission and discharge PUI

stages for each stay. The admission stage is the first numerical staging which happens

within 24 hours of admission. Deep tissue injury is coded as stage 4, and unable to

stage is ignored. Since all stays must have an admission stage, if no staging meets

the above criteria, the admission stage is set to 0. The discharge stage is set as the

last numerical staging above 2, considering deep tissue injury as stage 3 and unable

to stage as stage 5, which occurs 24 hours after admission. Unable to stage is set to

stage 5, since regardless of admission stage, a PUI case is identified. Based on the

NPIAP documentation [42], deep tissue injury is either a stage 3 or 4 PUI. Therefore

to have the most certainty, we code deep tissue injury as stage 4 at admission and

stage 3 at discharge. Only stays with discharge stage worse than admission stage are

considered as PUI cases.

The properties of all three cohorts are shown in Table 3.1 and the overlap between

the case stays for them is shown in Figure 3.2. Around 7% of positive samples are

unique to our cohort, which separates it from the rest. Our cohort has the highest

overlap with CANTRIP with over 21%. Only around 5% of HAPUI cases are shared

among all three cohorts emphasizing the importance of cohort definition in HAPUI

detection.

Table 3.1: Cohorts properties and composition.

Cohort

Exclude
de-

ceased?
(Q1)

Min
Age
(Q2)

Cutoff
period
(Q3)

Uses all PUI
stages codes

(Q4)

Inc DTI or
unstage-
able as
+?(Q5)

Uses
notes
(Q6)

Only
worsened
or new

PUIs?(Q7)

Uses ICD9
codes for+

(Q8)

Cutoff
stage
(Q9)

#of +
(all)

samples
%of
+
class

Golden Yes 15 24 Yes
Yes (con-
ditional)

Yes Yes No 2
3012

(44859)
6.7
%

CANTRIP
[28]

No 15 48 Yes Yes Yes No No 1
4261

(50376)
8.4%

Cramer
[22]

No 18 24 No No No No No 2
1572

(50276)
3.1%
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Figure 3.2: Overlap of Case stays across the three cohorts.

3.3 Experimental Settings for Cohort Comparison

Here we describe the details of the experiments we carried out to analyze the perfor-

mance of different cohorts for HAPUI detection task.

3.3.1 Feature Construction

We construct hospital stays’ features using a subset of their notes. For each hos-

pital stay, we determine the feature cutoff time using two criteria. First, from the

chartevents data, the time for the first staging occurring at least 24 hours after the

admission time, regardless of its stage value, is extracted. Second, if any of the List

3 keywords appear in notes, the earliest time among them is considered. Then the

feature cutoff point is the earliest time between these two times. If none of the two

times exist, the features’ cutoff point is determined as follows.
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All the admissions not in this set (i.e. admissions containing PUI events of interest)

are put into one class, with their notes’ durations regarded as a random variable.

We then fit a collection of distributions from scikit-learn package [16] and choose

the most appropriate distribution for this duration of notes. We then sample from

this estimated distribution for our admissions with no PUI event. To account for

matching between this duration of notes and the actual full length of notes, we sorted

both sampled note durations from the distribution and admissions themselves based

on their actual note length and used the sorting index to assign limited durations for

notes to admissions. If the assigned note duration is more than the full-length note,

full-length notes is used for feature construction (i.e. the feature’s cutoff point would

be the last note’s time).

Stays with an earlier admission than discharge time, no notes before the feature

cutoff time, and admission notes where the main complaints had any variant of the

List 3 keyword were removed from our study. After the feature’s cutoff time is deter-

mined for each stay, all notes timed before that are aggregated into one document.

This is to prevent labels from leaking into the features. As such, List 3 keywords will

not appear in the constructed documents. Similarly, suppose the first staging is be-

fore the first keyword mention, or there is no mention in notes. In that case, since we

anticipate broader PUI-indicative words appearing in notes after that staging time,

we do not permit the concatenation of these later notes into the feature vector. The

term frequency, inverse document frequency (TF-IDF) of this document is the feature

vector of each stay for the tree-based classifier (considering a total of 5000 words in

the vocabulary). For our sequential-based neural network, a sequence of 800 words of

each document is used for training and prediction. All cohorts use the same features,

as the features’ cutoff point is independent of the cohorts’ definitions, ensuring that

all cohorts have access to the same amount of data, enabling us to fairly compare

their performance.
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3.3.2 Classifiers and Evaluation Metrics

We chose two classifiers to illustrate that the cohorts’ relative performance is inde-

pendent of the classifier choice, as long as it performs well enough. Gradient boosting,

a tree-based classifier, and a sequential neural network-based classifier, consisting of

input word embedding, global max-pooling layer, and several dense layers were se-

lected because of their superior performances compared to the other classifiers tried

(i.e., decision tree, logistic regression, support vector machine, multi-layer percep-

tron, random forest, and AdaBoost). For the experiments, data is split into 80%

training and 20% test. 5-fold cross-validation is used to determine the best classifier

hyperparameters. Finally, we report the test performance across ten test and training

data partitions. Given the unbalanced class distributions, we report AUPRC (Area

Under the Precision-Recall Curve) and AUROC (Area Under the Receiver Operating

Characteristic Curve) metrics.

3.3.3 Defining Training and Test Sets in the Cohorts

Due to the different cohort criteria, the samples for each are different. Despite that,

cohorts’ samples have much overlap, as shown in Figure 3.2. For a fair comparison,

we created two different test sets for all three cohorts. Firstly, we asked an expert

nurse to manually label 85 admissions based on their notes and chart data. These 85

admissions were chosen from the conflicting samples whose labels are different across

the three cohorts. Each constituent subset is proportional to the size of the conflicting

samples of the two particular cohorts. Out of the 85 admissions, our expert marked

29 as positive for HAPUI.

Separately, once we obtained these expert annotations, we further augmented

this small test set by considering the admission which the three cohorts all have

consensus on. Considering the 29 HAPUI positive admissions and the 219 HAPUI

positive admissions in the consensus set, to maintain the actual prevalence of around
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7%, we added 3846 negative admissions from the consensus set. Sampling these

3846 negative consensus admissions were repeated ten times to obtain 10 different

partitions of training and test data.

For each cohort, the training samples are then the samples not part of the chosen

fixed test set, and the labels are determined by the respective cohort criteria for

HAPUI. Therefore, even though the test samples are the same for the cohorts, each

cohort has a different training set and training labels.

3.4 Results for Cohorts Comparison

In this section, we describe our experiments for comparison of cohorts and interpre-

tation of classifiers.

3.4.1 Cohort Definition’s Impact on Classifiers’ Performance

for HAPUI Detection

We summarize the performance of the gradient boosting, and neural network clas-

sifiers trained on labels determined by the three cohort definitions. We report the

AUPRC and AUROC in each case in Table 3.2 and Table 3.3 for both test sets, ten

combined test sets and the expertly annotated test sets, respectively. Our cohort

definition outperforms the other two cohorts for both classifiers and both metrics.

A one-sided paired t-test between our proposed golden cohort and the next best

performing cohort definition (CANTRIP) showed a p-value of 0.0149 and 0.0245 for

AUPRC and AUC of the better performing gradient boosting classifier and machine

epsilon for the rest of the classifiers and cohorts. This proves the merits of the golden

cohort definition.
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Table 3.2: Classifiers’ performance trained on the three PUI cohorts on the combined
expert annotations and non-conflicting test set.

Cohort
GB Average

AUPRC (SD)
p-value

GB Average
AUC (SD)

p-value

NN Average
AUPRC (SD)

p-value

NN Average
AUC (SD)

p-value
Golden 0.4908 0.9045 0.4714 0.8943

(±0.0126) (±0.0021) (±0.0180) (±0.0041)
CANTRIP[28] 0.4797 0.8991 0.4439 0.8912

(±0.0182) (±0.0035) (±0.0189) (±0.0046)
[0.0937] [4.31e-08] [0.0005] [0.0572]

Cramer[21] 0.3739 0.8789 0.3941 0.8665
(±0.0237) (±0.0044) (±0.0129) (±0.0065)

[6.347 e-07] [0.0004] [2.399 e-07] [3.831 e-06]

Table 3.3: Classifiers’ performance trained on the three PUI cohorts on the expert
annotations of 85 conflicting samples across the cohorts

Cohort GB AUPRC GB AUC NN AUPRC NN AUC
Golden 0.4424 0.6071 0.4835 0.5714

CANTRIP[28] 0.4329 0.5751 0.4192 0.5511
Cramer[21] 0.3858 0.5775 0.3727 0.5480

3.4.2 Significant Features for Classifiers and Cohorts

For each cohort, we analyzed the sensible words that were recognized as the most

important words by the two classifiers. For gradient boosting, we directly used the

feature importance of the classifier determined by the purity criteria. For the sequen-

tial neural network, we used the ‘shap’ [42] package by using the first 1000 samples of

the training data to explain the first positive test sample. Since our focus is not on

preprocessing data, some of the important words discovered were general terms like

‘sex’ or ‘patient.’ Table 3.4 illustrates the non-general important features generated.

Our cohort extracted the most specific HAPUI terms among the three cohorts using

both classifiers.
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Table 3.4: Significant words for combinations of classifiers and cohorts (sorted by
importance).

Cohort Gradient Boosting Neural Networks

Golden

line, svc, vent, coarse,
aspirin, suctioned, picc,

lower, changes, disposition,
coccyx, vanco, abgs,

chamber, facility, tan,
paralyzed, dialysis,

osteomyelitis, wound,
abscess, abnormalities

coherent, extended, motrin,
qtc, syncope, bradycardia,
plaque, fracture, pressure,
valve, echo, ibuprofen, sat,

reassess, ventricular, facility

CANTRIP[28]

doppler, line, picc, resp, lower,
remains, ed, allergies, pa, tan,
dictated, svc, weaning, tracing,

coccyx, suctioned, residuals,
abnormalities, breath,
myocardial, fascicular

ambulatory, sutures, delayed,
consciousness, instructions, asa,

clopidogrel, facility,
chlorhexidine, bisacodyl, shower,

syncope, fracture, prolapse,
disposition, plavix, sodium,

injury, hgb, spinal, qtc, trauma,
sat, bradycardia, stenosis

Cramer[22]

doppler, abg, paracentesis,
habitus, peep, lower, anasarca,

sedation, anesthesia,
debridement, cavity, respiratory,

weaning, coarse, paralyzed,
desaturation, ciprofloxacin, fent

shower, sah, walking, clopidogrel,
chlorhexidine, stairs, procedural,
gluconate, aid, coumadin, hgb,

consciousness, systolic,
bisacodyl, central, perfusion, bid,
veins, rehab, instructed, fluids,
ultrasound, extremity, femoral,

mid, syndrome
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3.5 Cohort Definition for HAPUI Detection, Next

steps and Reflections

We defined a new standardized HAPUI cohort criterion using EHR data that considers

all available data sources, including text, chartevents and procedures, and diagnosis

codes, unlike the current cohort definitions. Our cohort definition is also based on

clinical and regulatory guidelines, which have not been fully incorporated into the

previous cohort definitions. We validated the usefulness and accuracy of our cohort

definition using two carefully designed test sets of fully manually labeled set, and

a larger hybrid set of fully manually labeled set and samples with label agreements

across cohorts, by showing its superiority on both AUPRC and AUROC while using

two kinds of classifiers, neural network and gradient boosting.

Perfect abidance by the CMS guideline of only considering worsening and non-

healed PUIs requires matching of admission and discharge PUIs. A patient may be

admitted with more than one PUI and discharged with more or fewer ones. The

worsening condition should be checked for each distinct PUI individually. However,

given limited data in the chartevents table in MIMIC-III, our cohort criteria assume

all stays are associated with one PUI.

Yet even if the perfect criteria for HAPUI is achieved, depending on the con-

struction of the cohorts, we still need to deal with the uncertainty of the sources

and subjectivity of guidelines; therefore, leveraging a computational framework that

explicitly deals with uncertainty would be extremely helpful. This lays out the founda-

tions for the next piece in this thesis, uncertainty-aware sample-specific perturbations

Co-teaching based classifier.
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Chapter 4

CrowdTeacher: Robust

Co-teaching with Noisy Sparse

Answers and Sample-specific

Perturbations

A standard criterion for HAPUI helps with benchmarking it but, unfortunately, will

not eradicate the uncertainty of the sources. Thus, developing a computational frame-

work that is designed to leverage the uncertainty of samples is truly advantageous.

The intuitive idea is to transfer the uncertainty of labels into the features used for

learning. In this project, we adapt some of the recently proposed algorithms for

noisy labeling with newly developed crowdsourcing with uncertain labels methods

and attempt to bridge these methods for more robust classification.
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4.1 Crowdsourcing: Toward Labeling Unlabelled

Data

Labeled data is critical for the success of increasingly more complex classifiers. Un-

fortunately, getting access to large quantities of high-quality labels can be cost-

prohibitive in many applications. For example, in the medical domains, it may take

a clinician a long time to annotate the health records of thousands of patients. One

alternative to this cumbersome process is to gather labels using crowdsourcing, where

remotely located workers are utilized to perform the task of labeling the data. Al-

though these crowdworkers individually may not be as accurate as an expert, con-

structing the true label from their aggregated opinions can approximate the accuracy

of an expert. However, the subjectivity of annotators and their different level of ex-

pertise adds noise to the labeling process. To model this noise, most studies either

focus on modeling the reliability of annotators and their correlations to reflect it in

the label aggregation phase or coupling classifier training with learning the annota-

tors’ trust parameters. Yet, learning through crowdsourcing-based models may still

fail in the presence of differing annotations, and unreliable annotators [64].

A promising approach for dealing with noisy labels within complex classifiers is

Co-teaching [31]. Under the Co-teaching paradigm, two peer neural networks are

trained separately, and particular samples are exchanged between the networks to

decrease the error of the two models and obtain a more accurate model. Co-teaching

methods have shown great promise for computer vision problems with noisy labels.

Co-teaching can naturally counteract crowdsourcing noise since it filters out noisy

samples initially and only adds them at later training stages when they will be of

greater value. However, Co-teaching applies the same weight to each sample. This

can result in the classifier incorrectly learning from samples because they either have

fewer annotations or diverging human labels.
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To accommodate this limitation, we propose to leverage the certainty of sam-

ples from the label aggregation phase to inform the filtering process of Co-teaching,

which has not been investigated before. Our model, CrowdTeacher, uses a pertur-

bation scheme based on the samples’ uncertainty to improve the robustness of the

Co-teaching paradigm. Given the availability of samples’ uncertainty from the label

aggregation step, our model takes advantage of this information to counter the inher-

ent noise through perturbation of the input space. In addition, the framework gives

more priority to the more confident samples of the classifier during the learning pro-

cess. Thus, we tackle the problem of classification with features and crowdsourcing

labels using three mechanisms:

• Estimation of the features’ distributions to generate synthetic data, which is

then used to perturb each sample in an additive manner, proportional to its

estimated label’s uncertainty.

• Enhancement of Co-teaching by knowledge distillation, i.e., a student-teacher

model of a simple and a complex network to accommodate smaller tabular data.

• Utilization of the perturbed samples as input to the above classifier to further

differentiate uncertain and certain training points based on their loss in each

epoch

4.1.1 Notations for Learning with uncertain Crowdsourcing

Labels

We refer the reader to Definition 2.2.1 for defining the classification with crowdsourc-

ing annotations problem (in Section 2.2). Here we introduce the notations we will

use in the rest of this chapter to tackle this problem.
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Table 4.1: Summary of Notations for CrowdTeacher.

Symbol Description
N Number of Samples
R Number of Annotators
K Number of Classes
α Perturbation Fraction

Xtr Training feature matrix
A Answer matrix of all annotators
S Synthetic feature matrix

X̃tr Perturbed training samples feature matrix
Fc Set of continuous features
Fd Set of all discrete features
P Class probability matrix
ci Certainty of i -th

4.2 Uncertainty-aware Perturbation Scheme and

Modifying Co-Teaching

Our idea is to enhance the Co-teaching framework in Section 2.4 to account for the

uncertainty associated with the estimated truth label of the sample. We posit that

employing uncertainty-aware perturbations will yield more robust classifiers since

these perturbations can potentially counter the noisiness of the labels by introducing

explicit, directed, and intentional randomness in the input feature space proportional

to the level of uncertainty in samples’ estimated labels, inspired by works that show

the equivalency of perturbations in labels, input and network structure space [10].

We introduce a perturbation-based scheme to the Co-teaching framework so the

trained model will be more robust to sparsity and unreliability in the annotations

and potential incorrect annotations. For each mini-batch update of Co-teaching,

synthetic samples are generated and used in perturbation of each sample dependent

on the certainty of the estimated truth label. Thus a sample that has more certainty

in its label will be perturbed more, whereas a sample with fewer annotations is likely

to have less perturbation. The perturbed samples are subsequently used to train the
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classifier. The flowchart of CrowdTeacher showing its different components is shown

in Figure 4.1a.

4.2.1 Generating Synthetic Samples

To improve the robustness of the Co-teaching framework, CrowdTeacher generates

synthetic samples of the data, previously introduced in Section 2.3, which are then

used to perturb the samples for classifier’s training. Since in many real-world prob-

lems, features are intricately correlated, to preserve this correlation structure, syn-

thetic sample generation is often a more realistic approach than perturbing each fea-

ture separately. Any data synthesizer with reasonable data generation performance

may be used. For the purpose of our project, we selected three representative data

synthesizers: Conditional GAN (CTGAN) [74], TVAE [74], and Gaussian copula

[54]. CTGAN can handle mixed feature types (discrete and continuous) and has been

shown to perform competitively with other GAN-based, VAE-based, and Bayesian

network-based data synthesizers for vision benchmark datasets [54]. It is noteworthy

to mention that the data synthesizer is not tied to the learning task and can be used

as a stand-alone tool.

To generate synthetic data within CrowdTeacher, the training feature matrix Xtr

is fed to the synthesizer. For the CTGAN synthesizer, the discrete features Fd are

explicitly specified as they are modeled differently from the continuous features Fc.

Once the synthesizer has estimated the data distribution, any number of samples

can be drawn. For CrowdTeacher, we generate the synthetic set S ∈ RN×M with N

synthetic samples once and assume each synthetic sample is a unique perturbation

source. Although S is drawn once and is the same size as our training data to

minimize the computational footprint of our model, the synthetic set can potentially

be re-drawn at each mini-batch of the Co-teaching framework for a larger population.
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(a) End to End flowchart of CrowdTeacher
(b) Uncertainty-aware sample-specific pertur-
bations

Figure 4.1: Conceptual Framework for Uncertainty-aware sample-specific perturba-
tions and CrowdTeacher.

4.2.2 Sample-specific Perturbations

The generated synthetic samples, S, fail to account for the uncertainty of the esti-

mated sample label as the synthetic samples are only dependent on the initial train-

ing data. Thus, we introduce a mechanism to take advantage of the uncertainty that

arises from the truth inference method to individually perturb each sample. For the

purpose of illustration and experimentation, we focus on the D&S algorithm [23], but

note that CrowdTeacher can be used with any robust truth inference method that

quantifies the label uncertainty for each sample. The D&S algorithm (defined in Sec-

tion 2.1.2) takes as an input the matrix of annotations (A) and models annotators

by a confusion matrix 2.1.2, in addition to the class priors. D&S outputs a matrix

P ∈ RN×K , where the Pik element shows the probability that sample i is of class k.

The certainty of each sample, ci, is then determined to be the maximum probability

across all the classes:

ci = max
k∈K

(Pik) ∀i ∈ N (4.1)

Choosing an appropriate simulated sample for perturbation. Since the data

synthesizer may generate synthetic samples that are quite different from the original

dataset and may lead to more uncertainty with respect to the truth label, we use
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k-nearest neighbors (KNN) to identify reasonable close samples from S. For each

sample, KNN algorithm is run to find the top 10% closely simulated samples to it. A

simulated data point, si, is then randomly chosen from this top 10% and used in the

CrowdTeacher process to perturb the original point.

Perturbation. Each sample xi is perturbed using the simulated data point si based

on the uncertainty, ci and a user-specified perturbation fraction α ∈ [0, 1] to generate

the perturbed sample x̃i. Let sij represent the jth feature of sample si. If the jth

feature is continuous, the value for the synthetic, perturbed sample x̃ij is a convex

combination of the original and simulated sample:

x̃ij = (1− αci)xij + (αci)sij, ∀i ∈ N, ∀j ∈ Fc (4.2)

For the discrete features, we use ci and α to calculate the number of discrete features

to swap. Let |Fd| denote the number of discrete features in the dataset, then the

number of discrete features to swap for each sample xi, f
i
d is calculated as:

f id = round(αci|Fd|) (4.3)

Then f id features are randomly selected for perturbation from the original discrete

feature set and denoted as F i
dp

. For each feature, j in this perturbation set, the

feature values are replaced with the synthetic sample value sij.

x̃ij = sij, ∀i ∈ N, ∀j ∈ F i
dp (4.4)

The complete procedure for generating uncertainty aware sample-specific pertur-

bations is depicted in Figure 4.1b.
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4.2.3 Knowledge-Distillation-based Co-teaching for Smaller

Tabular Data

To combat the large performance variations associated with running the Co-teaching

algorithm on smaller-sized tabular data, we incorporated the student-teacher idea

from knowledge distillation [32]. In essence, instead of two peer networks with the

same architecture, we used one simple and one complex network in the classifier such

that the number of hidden units for the simpler network is half of the more complex

one. Also, the variance of the initial weights for the simpler network is twice that

of the more complex one. Our experimental results proved these modifications to

be helpful for both the convergence of the two networks in achieving more similar

evaluation metrics and overall better performance across different synthetic datasets.

Algorithm 1 provides the pseudo-code for CrowdTeacher.

4.3 CrowdTeacher Experimental Settings

Here we describe the baseline methods for comparison, introduce the datasets and

the describe annotation generation process.

4.3.1 Baseline Methods

The best-performing methods from crowdsourcing studies (see Section 2.2) and incre-

mental variants for ablation study of CrowdTeacher are chosen as comparison models.

That is, the original Co-teaching algorithm and Co-teaching using only uniformly

perturbed input are also compared to illustrate the advantage of certainty-aware per-

turbation and perturbation in general. All methods share the same base classifier,

a neural network with one hidden layer of |Fc|+|Fd|
4

units. Sequential methods dis-

cussed in Section 2.2.1 all employ the same truth inference method (D&S) and are

distinguished with * below.
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Algorithm 1: CrowdTeacher.

1 Input: Training Features Xtr, Answer matrix A, Perturbation Fraction α
2 Output: Model
3 Train synthesizer to generate synthetic data:

Data sampler ←− Synthesizer(Xtr)
4 Generate N samples from resulting sampler: S←− Data sampler(N)
5 Run truth inference method to get class probabilities:

P ←− D&S Algorithm(A)

6 /* Generate perturbed samples X̃tr */
7 for i = 1, · · · , N do
8 Set sample’s certainty using Eq. (4.1)
9 Sample si from 10% closest samples of synthetic samples S to xi using

KNN
10 /* Generate continuous features */
11 for j ∈ Fc do
12 Generate feature x̃ij according to Eq. (4.2)
13 end
14 /*Generate discrete features*/
15 Calculate f id using Eq. (4.3)
16 Sample discrete features to perturb: F i

dp
from Fd such that |F i

dp
| = f id

17 for j ∈ F i
dp

do

18 Generate single feature value x̃ij according to Eq. (4.4)
19 end

20 end
21 Train Co-teaching Algorithm on Perturbed Samples:

Model ←− Co teaching(X̃tr)

• Naive baseline*(Base clf) [23]: Base classifier trained with D&S labels.

• Simultaneous Expectation-Maximization (S-EM) [9]: An algorithm that jointly

learns the classifier and annotators’ parameters using the EM algorithm.

• Dr. Net [29]: An individual annotation based model that separately learns each

annotator’s labels and their weights.

• CrowdLayer (CL MW and CL VW) [59]: An algorithm that estimates ground

truth first and replicates each annotator’s labels via a simple final layer. This

final layer is removed at test time. The number of parameters for the last layer

determines the CrowdLayer variant. We evaluated the vector of weights (VW)
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and matrix of weights (MW) variants.

• Vanilla Co-teaching*(V Coteach) [31]: The original Co-teaching algorithm trained

with D&S labels.

• Co-teaching with uniform perturbation*(P Coteach): The Co-teaching algo-

rithm trained on D&S labels and synthetic samples.

• CrowdTeacher*: Our proposed method with the Co-teaching algorithm trained

on D&S labels and sample-specific certainty-informed perturbed samples.

As S-EM and Dr. Net constantly performed poorly compared to the other meth-

ods, we removed them from the plots for better readability.

4.3.2 Annotation Simulation

For our evaluations, we fix the number of annotators to be 5 (R = 5). To simulate

the annotators’ behavior, we use two parameters: (1) mean reliability or the average

chance of the annotators labeling a positive sample correctly and (2) variability in

annotators’ expertise or the difference in their competency. We set the distribution

of samples having 1 to 5 labels as [τ , 0.55(1−τ), 0.27(1−τ), 0.13(1−τ), 0.05(1−τ)]

and vary the parameter τ for our experiments. Note that τ also dictates the aver-

age number of labels per sample. Conventionally in crowdsourcing, to generate each

annotator’s reliability, the Beta distribution is used. After specifying each annota-

tor’s reliability from the previous step, its labels are produced by randomly selecting

(100-reliability) percent of positive cases and switching their labels into negative 0.

Flipping negative samples to positives occurs at 0.01 times this rate. Samples not

assigned to specific annotators are designated with −1 in the answer matrix (A).

For HAPUI detection task, based on nursing research [63] we set the mean relia-

bility of annotators to 77%. Similarly, for the length of stay prediction, we use these
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research works that estimate the accuracy of physicians in predicting the length of

stay of patients at admission [30, 47] and set their mean of reliability at 77% percent,

assuming more senior physicians.

4.3.3 Datasets

Synthetic Datasets. To analyze the performance of our framework on a non-specific

dataset for which we already know the ground truth, we generated synthetic data that

mimics real-world features and a range of annotator reliabilities.

Statistical distribution families: To mimic real-world features, each set of features,

which resembles correlated features encountered in practice, families of continuous

and discrete distributions were used to generate the synthetic data. Specifically, we

used Normal, Beta, Wald, Laplace, Binomial, Multinomial, Geometric and Poisson

distributions. The parameters of the distribution for a feature within each family are

randomly selected from a specified range. 5 features were chosen from each family to

have a total of 40 features.

Output: The ground truth labels are assigned based on a polynomial combination

of feature values. Each feature’s coefficient value is chosen randomly. The exponent

for each feature is also randomly chosen in the range [1,4]. To assign labels and model

class balance (% of positive samples), outputs falling in percentiles below the level of

balancedness are assigned to the positive class.

Noise level : Two versions of labels are created. Labels for a specified percentage of

samples are flipped to obtain the noisy truth used for annotation generation. However,

the true labels before flipping are the ones used for evaluation purposes. This mimics

the availability of noisy labels in practice.

HAPUI Dataset. We included hospital stays of individuals over 20 years old with

the length of stays between 2 days and 120 days. A hospital stay was considered

positive if there was a presence of the ICD-9 diagnosis code associated with pressure
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ulcers, and there was a mention of PUI in the notes. A hospital stay was negative

if there was no indication of PUI in both the ICD-9 codes or the notes. 10518

samples were included in the total, with 31% of them belonging to the positive class.

Features used are the demographics, the number of ICD-9 diagnosis codes (except

PUI-related codes), and the average of lab measurements during the first and second

day of admission.

Length of Stay Dataset.

For this task, we randomly sampled 5000 hospital stays from the MIMIC-III

dataset. We set the class for by assigning hospital stays with a duration greater

than 7 days as class 1, and class 0 otherwise, similar to [70]. The ratio of positive

samples in this task is 28%. Given that we have some uncertain annotations regard-

ing patients length of stay from admitting physicians in the beginning, we focus on

using only their lab measurements on the first day and also add the number of ICD-9

diagnosis codes to see if we can classify new patients’ stay as short (less than 7 days)

or long (more than 7 days).

4.4 CrowdTeacher Results

Since the datasets are imbalanced, we evaluate all the models based on AUPRC.

AUPRC offers a holistic picture of CrowdTeacher’s predictive performance, indepen-

dent of the classification threshold choice. We partition each dataset into 80% training

& 20% test.

4.4.1 Synthetic Dataset

Sensitivity to the choice of synthesizer. To reason about the effect of using

different synthesizers on CrowdTeacher performance, we compared the average gain

gleaned from using CrowdTeacher with CTGAN, TVAE, and Gaussian copula synthe-
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(a) Different synthesizers.
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(b) Perturbation fraction.
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Figure 4.2: CrowdTeacher Sensitivity to perturbation fraction and synthesizer choice
(in Figure 4.2a circles/crosses show gain w.r.t. P Coteach/V Coteach accordingly).

sizers compared to using the next two top-performing baseline methods of P Coteach

and V Coteach, respectively shown by circle and cross markers in Figure 4.2a. Firstly,

we can observe that the Gaussian copula has the largest gain among the three synthe-

sizers. However, employing the two other synthesizers for CrowdTeacher would still

be advantageous in terms of predictive performance for many of the sparsity settings.

Since the Gaussian copula synthesizer performed well, we use the Gaussian copula

for all the experiments after this.

Sensitivity to perturbation fraction (α). To better analyze the effect of the per-

turbation fraction, α, we varied it between [0.01, 0.2] and evaluated the performance

of CrowdTeacher and P Coteach (the two perturbation-based algorithms). Figure

4.2b depicts the average AUPRC of P Coteach and CrowdTeacher as α increases

with the average number of labels set to 2.34. It can be seen that CrowdTeacher con-

stantly outperforms P Coteach regardless of the chosen perturbation fraction, signal-

ing its robustness. From the results, we can observe that there is an optimal range

of α for achieving the greatest benefit from CrowdTeacher and that both a very low

(α ≤ 0.05) and a very high (α ≥ 0.2) perturbation fraction reduces the usefulness

of CrowdTeacher but does not diminish it. Given this trend, the remainder of our

experiments uses α = 0.11.

Predictive Performance. Figure 4.3a shows the performance of baseline crowd-
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sourcing and Co-teaching variants against CrowdTeacher for various density settings

on the synthetic dataset. Matching our intuition, all methods experience an increase

in AUPRC as the average number of labels per sample increases, which exposes

methods to less noisy annotation. All Co-teaching based methods (CrowdTeacher,

V Coteach, and P Coteach) always outperform both crowdlayer variants and also

Dr.Net and S-EM. The last two always performed the worst and therefore were ex-

cluded from these plots. Even though the base classifier performance improves with

more labels, its performance gap with Co-teaching based methods still remains large

in all densities. Across a wide range of label densities, using CrowdTeacher leads to

a significant boost in AUPRC, compared to the other two Co-teaching based meth-

ods, even with as low as only 1.68 labels per sample. Furthermore, we observe that

V Coteach performs worse than P Coteach in very sparse settings (average number

of labels < 2.1), but as the number of labels increases, it catches up with P Coteach

and even outperforms it at higher densities. Another interesting observation is that

beyond an average of 2 labels per sample, all three methods reach a plateau of per-

formance and only improve negligibly as a function of the increased number of labels.

(a) Synthetic dataset.
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(b) PUI dataset.
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Figure 4.3: CrowdTeacher performance on Synthetic and PUI data as average number
of labels per sample increases, averaged on 10 and 4 initializations respectively.

Smoothing Perturbation with Coteach. We compared the impact of the per-

turbations achieved through synthetic samples on our method CrowdTeacher and

a simpler perturbation scheme we denote as Smoothing Coteach, where we perturb
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each feature independently. For continuous features, we use the feature value of that

sample itself to either increase or decrease it weighted by its certainty and perturba-

tion fraction. For discrete features, we first determine the number of discrete features

that should be perturbed according to the sample’s certainty and perturbation frac-

tion. We then choose a discrete value among the valid choices for each chosen feature

(excluding the feature value of the sample itself) based on its estimated prevalence

randomly. Here the Dj denotes the estimated multinomial distribution for feature

j. The smoothing perturbations can be described using Equations (4.5), (4.6), and

(4.7). Here Dj shows the approximation for the multinomial distribution of discrete

feature j.

x̃ij = (1− αci)xij + (αci)xij, ∀i ∈ N, ∀j ∈ Fc (4.5)

f id = round(αci|Fd|) (4.6)

x̃ij = xîj, ∀i ∈ N, ∀j ∈ F i
dp , such that i 6= î and xîj ∼ Dj (4.7)

We generated 3 synthetic datasets of varying complexities with regard to their fea-

tures and their correlations. Our experiments confirm the significance of synthesizer in

CrowdTeacher performance. As shown in Figures 4.4, 4.5 and 4.6, depending on how

correlated the features are, Smoothing Coteach performs worse than CrowdTeacher

across different sparsity settings, especially in lower sparsities. Since in many practi-

cal settings, features can be quite correlated, using a synthesizer instead of smoothing

perturbation will result in higher predictive power.

4.4.2 PUI Dataset

To assess CrowdTeacher’s performance on real data, we evaluated it on the bedsore de-

tection task with 10k samples. Figure 4.3b shows how the performance of the selected
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Figure 4.4: Smoothing Coteach v.s. CrowdTeacher-Correlated Features.

Figure 4.5: Smoothing Coteach v.s. CrowdTeacher-Loosely correlated Features.

Figure 4.6: Smoothing Coteach v.s. CrowdTeacher-Very Loosely correlated Features.
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methods changes as the average number of labels per sample increases. We observed

similar trends to the synthetic dataset here, too, in terms of Co-teaching variants’

overall predictive benefit over other methods; however, the gap between Co-teaching

variants and other methods is less noticeable. The range of AUPRC for all models

on this dataset proves that this is a tougher learning problem, yet CrowdTeacher is

able to outperform both P Coteach and V Coteach at multiple points, especially at

lower densities, which are actually more practical for obtaining labels for hospital-

acquired bedsores, while at other sparsity points it has comparable performance to

these methods.

4.4.3 Length of Stay Dataset

To validate the performance of CrowdTeacher on another real-world dataset, we ana-

lyzed its performance across different sparsity settings for the length of stay prediction

task. In Figure 4.7, we vary the average number of labels per sample from 1.85 to

2.85. The vertical axis shows the average test AUPRC of the methods across 20 runs.

The perturbation-based variants of Smoothing Coteach and CrowdTeacher have bet-

ter performance than the other baseline methods, with CrowdTeacher often providing

more boost than Smoothing Coteach, especially with sparser annotations. Similar to

synthetic and HAPUI datasets, V Coteach and P Coteach often perform better than

the base classifier, demonstrating that incorporating uncertainty in learning through

Co-teaching alone or Co-teaching and uniform perturbation boosts performance al-

though less than the CrowdTeacher enhancements.

4.5 CrowdTeacher and HAPUI Detection

We proposed CrowdTeacher, a novel Co-teaching based approach that leverages cer-

tainty of samples from truth inference algorithms to apply sample-specific perturba-
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Figure 4.7: CrowdTeacher performance for LOS prediction task across 20 seeds.

tions on training points and combines it with the Co-teaching paradigm to further fil-

ter noisy annotations and blend that knowledge in the training process. Our proposed

approach bridges overarching themes and ideas from data augmentation, crowdsourc-

ing, and learning with noisy labels and is agnostic to the truth inference method

and the synthesizer used. To illustrate the predictive benefits of CrowdTeacher over

similar methods, we conducted experiments on both synthetic and real datasets of

different scales, and our results for both tasks (including for two real-world medical

classification tasks) confirmed CrowdTeacher’s performance edge for learning with

crowdsourced labels.

Reflecting upon the consistently better performance of CrowdTeacher across den-

sities for the synthetic dataset and its marginally better performance for the HAPUI

task, we realized that using only the structural features for this task may have con-

tributed to this poor performance. From Section 3, we observed how using unstruc-

tured features like notes considerably boosted the performance of all cohorts. Based

on that, our next logical step for HAPUI detection is employing unstructured data

for constructing features and developing an interpretable model that would help us

get deeper insights into the most useful features.
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Chapter 5

Discovering Better Features and

Improving Performance Using

Unstructured Notes

We’ve already seen that searching for the existence of HAPUI significantly increased

the number of HAPUI cases for our analysis. Also, from Section 3 we observed

that using text data, we were able to harness more predictive power for classifiers

trained on all cohort definitions. In this section, we focus on textual features and

a new preprocessing step to get a better understanding of the reasons behind these

improvements, which would ultimately lead to better feature constructions benefiting

the CrowdTeacher paradigm.

5.1 Text features, Missing Piece For HAPUI De-

tection

Many of the works using EHR for HAPUI focus on structured and static data. One

Korean risk assessment study [19] developed a decision support tool based on a
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Bayesian network risk model, resulting in a significant incidence reduction from 21%

to 4%. This finding supported the usefulness of PUI risk alert tools. Unfortunately,

this tool also similarly only used structured EHR data such as billing codes, which

cannot provide real-time and accurate detection for PUI. Moreover, the model per-

formance could be further improved by including unstructured data such as nursing

notes, which contain useful patient information.

In practice, responsibilities for PUI prevention and treatment fall to the nurse.

Yet nurse-collected data is not actively mined for valuable patient information. Nurs-

ing notes are one of the common unstructured data that includes the changes of

patient vital signs, symptoms, and care may thus be more valuable and informa-

tive in PUI prediction and detection than the structured data. However, due to the

high workload and insufficient communication between healthcare professionals, com-

pared to structured data, unstructured data are very unlikely to be routinely used for

decision-making. For example, the National Pressure Ulcer Adversary Panel devel-

oped a template with the needed documents to facilitate the discovery of severe PUI

development through a review of the timeline of events [48]. In this 18-page general

template, most PUI risk factors could only be captured by unstructured data such

as skin outlook descriptions, re-positioning, and support surface as documented in

nursing notes.

Therefore, it would be beneficial if PUI-related unstructured data, especially nurs-

ing notes, could be leveraged for PUI prediction prior to its occurrence for early

detection or to inform nurses to implement appropriate interventions in time. Our

proposed approach attempts to address some of these challenges through setting up

a PUI detection pipeline that takes advantage of hospital notes and a negation-aware

processing step before feeding it to a classifier for detection of PUI.
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5.2 Dataset and Labeling Details

Here we describe the dataset we used and details of our cohort selection.

MIMIC-III Dataset: To ensure the replicability of our experiments and results, we

used the openly available MIMIC-III dataset [34]. This dataset contains information

of patients admitted to intensive care units (ICU) of a populated tertiary care hospital

from 2001 to 2012. There are 49,785 unique hospital admissions for patients aged 16

years and older. These records come from 38,597 unique adult individuals [34].

Cohort selection: We chose hospital stays as the unit of analysis in this problem to

reflect the real-world assessment of all the charts for a stay by nurses. After removing

hospital stays with illogical attributes, e.g. those with a negative length of stay, about

50k unique stays remained. Since in MIMIC-III comparatively very few positive cases

of PUI were present in the younger population, hospital-stays of individuals 20 years

and younger were removed. We restricted our analysis to stays longer than 2 days and

shorter than 120 days, since shorter stays provide insufficient notes for satisfactory

representation, and extremely long stays are most probably erroneous records in this

specific dataset. This further cuts down the number of unique hospital stays to about

26K. The available notes for each stay, therefore, will be its features.

Establishing Presence of PUI: For the purpose of deriving the most indicative

HAPUI words, here we employ a more certain cohort than the cohorts defined in

Section 3. Two sources of information for each hospital-stay, ICD-9 diagnosis codes,

and notes, are used to determine the presence or absence of PUI. A hospital-stay

is indicative of PUI from an ICD-9 perspective if any of the PUI ICD-9 codes in

Definition 3.2.2 are found in its diagnosis codes. Similarly if any of the PUI keywords

in Definition 5.2.1 or string versions of ICD-9 codes in Definition 3.2.2 are found in

the notes, that stay is indicative of PUI from a notes perspective. Hospital-stays

that indicate PUI in both sources constitute our positive class, and those with no

indication of PUI in either will be labeled as negative. To avoid ambiguity in our
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dataset, we discard stays that indicate PUI only in notes or only in ICD-9 codes.

Note that ICD-9 codes at discharge time are only used for establishing labels and are

never used as features in the prediction.

Definition 5.2.1 (PUI Explicit Keywords). [Pressure Ulcer Prevention, Skin Surveil-

lance, Decubitus Ulcers, Impaired Tissue Integrity, Impaird Skin Integrtiy, Bed Sores,

Pressure Ulcer, Pressure sore]

Determination of PUI Case/Control Samples

Given that the ratio of positive samples (PUI) to negative ones (no PUI) is very

low (3.5%), heavily inhibiting the learning algorithm’s ability in distinguishing the

two, we decide to apply a case-control design as a solution. A given positive sample

is matched with 4 negative samples (stays), closest to it in terms of age, gender,

the total length of stay, and ICU length of stay. To accomplish this matching, a 4

nearest neighbor algorithm was trained with all the negative samples, and then for

each positive stay, the 4 closest negative samples without PUI were added to the

pool. Negative samples do not have to be unique for each positive sample, and some

negative samples might be matched with multiple positive ones, i.e, the selection

process happened with replacement.

In total, 856 stays were marked as positive for PUI and using the case-control

study, 2733 negative stays for PUI were selected for our experiments. Our final

cohort consists of 3589 hospital samples, with a 31.3% positive to negative sample

ratio.

Table 5.1: Properties of different Stages of Cohort Selection in MIMIC-III Dataset.

Cohort Total # of Unique stays # of PUI stays # of no PUI stays

MIMIC-III total hospital-stays 50,027 1,249 (2.4%) 46,227 (92%)

Target age and length of stay cases 26,838 856 (3.1%) 23,886 (89%)

Case controlled stays 3,589 856 (23.8%) 2,733 (76.2%)
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5.3 Data Analysis

Medical documents usually contain terms that only when considered in the context of

a sentence can be interpreted as a symptom for the presence/absence of a condition

[18]. Therefore, we propose a negation-aware processing step on hospital-stays notes.

Our process identifies the negative mention of conditions according to the sentence

context, putting a negation prefix right before its mention in the processed notes

(e.g. no edema) to create a distinguished word. After the negation, we transform

each hospital stay’s nursing notes (both before and after negation-aware processing

step) into a vectorized feature representation. We explored three different classifiers

to answer the following two questions:

• What is the effect of our proposed negation-aware framework on the perfor-

mance of PUI detection?

• What are the most significant text features, and do they overlap with known

medical factors of PUI?

Figure 5.1 provides an overall illustration of our proposed methodology.

Negation Detection 
"Abdominal incision with no 
signs of infection. There are 
no issues of constipation or 

diarrhea"

"Abdominal incision with no 
signs of no_infection* there 

are no issues of 
no_constipation* or 

no_diarrhea* "

TF-IDF 
Representation
(# of words = 

4000)

Sequential word 
embedding 

representation
(Embedding Size = 100, 
Sequence Length = 600)

Classifier                
Logistic Regression (LR) 

Neural Networks (NN) 
Random Forest (RF)

Probability of PUI 
Incidence (e.g. 80%)

 Important Features 
(Only LR and RF 

classifiers)

Feature Representation

Model Training

Prediction and Interpretation

Figure 5.1: Overview of PUI Detection: Negation Detection, Model Training, Inter-
pretation.
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5.3.1 Negation Detection in Text Data

It is common for healthcare professionals to describe the absence of specific patient

findings in clinical notes. For example, the sentence “showed no evidence of conges-

tive heart failure or pneumonia” rejects the existence of congestive heart failure and

pneumonia. Unfortunately, standard text processing does not handle negations. As

a result, in many natural language processing pipelines, these can easily be mistaken

for the presence of the conditions.

Before applying our negation detection scheme, notes were cleaned syntactically.

All punctuation signs are taken out except for full stop and colon, which are used as

a boundary for sentence segmentation. Standard stop-words that do not indicate the

existence of a negation tone (words such as not and doesn’t) are removed. We also

remove all kinds of tab characters, end of line carriage return characters, consecutive

multiple white space characters, and all special characters used to anonymize personal

data such as [****]. Finally, all the characters in the text are lower-cased. To deter-

mine whether diseases or symptoms mentioned in the clinical notes were negated by

the dictating physician, we combined two clinical text processing methods, Scispacy

[52] and NegEX [18]. Scispacy extracts all mentions of named entities, including dis-

ease, medication, symptoms, and chemicals. NegEX uses defined regular expressions

that cover several phrases indicating negation, filters out sentences with phrases that

falsely appear to be negation phrases, and limits the scope of the negation phrase.

First, our text processing determines the sentence boundaries in each text using the

full stop and colon as the boundary to limit the scope of the negation. The mentions

of named entities in each sentence are identified using Scispacy. NegEx is then run on

the sentence to determine which named entities should be negated. As an example

of our preprocessing step, the above example will be replaced by “showed evidence

of no congestive heart failure or no pneumonia”. Thus, our negation-aware process-

ing step helps with the recognition of positive and negative mentions of a condition,
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which we expect to enhance the predictive ability of our algorithm.

5.3.2 Transforming Text into Vectorized Features

For classification, we utilize two common standard text vector representations. A

vectorized form of a hospital stay’s aggregated notes was created using either the

term frequency-inverse document frequency (TF-IDF) representation or a sequential

word embedding representation.

Term Frequency–Inverse Document Frequency (TF-IDF representation)

The TF-IDF representation assigns weights to each unique word in the document.

The weight accounts for the number of times a word appears in a document (or

hospital-stay) and also adjusts for the frequency of the words in the overall corpus

(across all hospital stays). Thus, words that occur more frequently in a document

will have a higher impact, while rare words will have little influence. However, words

that frequently appear across many documents will be less important. Under this

representation, the sequence of words in the notes is not modeled as each document

is viewed as a collection of words.

Sequential Word Embedding Representation

A major limitation of TF-IDF is the inability to preserve the word order in the

text. To address this, the sequential word embedding representation assigns each word

token a unique token number that preserves the word order in the text. A maximum

number of words are specified for each document, and shorter documents are padded

with zeros while longer ones are trimmed to the maximum number of words. These

vectorized text representations were later passed to an embedding input layer where

a dense representation of the word is learned.
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5.3.3 PUI Classifiers

After curating the 2 versions of nursing notes (raw notes and negation-detected notes)

and transforming the text to the appropriate vectorized representation, we predicted

PUI incidence within each stay using only these features. We explored three different

classifiers: logistic regression, random forest, and neural networks. Below, an overall

view of each classifier is provided.

Logistic Regression: Interpretable and Intuitive

The logistic regression (LR) classifier is chosen since it is a straightforward and

highly interpretable model. There is a one-to-one mapping from weights to features,

which can be interpreted as the relative contribution (importance) of that feature to

LR’s decision toward the positive class. The TF-IDF feature representation is used

as input for the LR classifier.

Random Forest: Trading Less Interpretability for Better Performance

The random forest (RF) classifier combines multiple learners for more accurate

predictions. Due to its ensemble nature, it often achieves better predictive perfor-

mance. RF also calculates feature importance based on the number and level of splits

made with each feature across all the trees; however, the exact contribution is not

readily apparent. The TF-IDF feature representation is also used as input for the

RF classifier. In summary, applying RF on our PUI detection task can attain better

performance at the expense of losing some interpretability.

Neural Networks: Many Parameters, Data Hungry

NN classifiers have been increasingly adopted for text data due to their stellar

success [77]. We note that some NN architectures are more suitable than others

for certain application domains and kinds of data. We fed the sequence of notes’

words embedding vectors to a sequential model consisting of input word embedding,

global max-pooling layer, and several dense layers, with the output layer yielding the

probability of PUI incidence. We also tried the long short-term memory (LSTM )
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network, given the sequential nature of the text. However, we excluded it from the

results due to its poor performance.

5.4 Experimental Setup

Here we outline our experiments along with measures taken to ensure the robustness

of our results, provide detailed parameters of classifiers, and describe our metric for

evaluation. Finally, we report how feature importance pertaining to each classifier

is leveraged to reveal keywords specific to its criteria for distinguishing PUI vs no

PUI, where applicable. These extracted keywords for classifiers pave the way for

more intuitive comparison across classifiers and more exploration of these keywords’

compatibility with clinical characteristics of PUI.

5.4.1 Experiments Overview and Data Split

Our classification task is predicting the incidence of PUI in our test data given the

training set. We used stratified sampling (i.e., the prevalence of PUI is maintained)

to obtain three splits: 68% training, 12% validation, and 20% test data. To ensure

our comparisons across the various predictive models and input data were general-

izable, we repeated each experimental setting 30 times (i.e., over 30 different splits

of training/validation/test). For a given split, all three classifiers were trained on

the same training data, their hyperparameters were tuned on the same validation

set, and made decisions about the labels of the same test data. Once the optimal

hyperparameters for each classifier are found using the validation set, the classifier

is retrained with these parameters on the training and validation data. For the final

comparison, we report the average and variance of the predictive performance on the

test data across all 30 splits.

Given our constructed versions of collapsed notes of each stay, untouched notes as
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they’re found in MIMIC-III, and processed notes using negation detection, and the

three chosen classifiers Logistic Regression (LR), Random Forest (RF), and Neural

Network (NN), we will have a total of 6 experimental settings.

5.4.2 Evaluation Metric

Our chosen cohort is unbalanced in terms of positive and negative cases of PUI. Thus,

to truly capture the performance of our classifiers in different settings, we report the

Area Under the Receiver Operating Characteristic Curve (AUC ROC) and F1 score

on the test set.

5.4.3 Inferring Word Significance from Feature Importance

We assess the feature importance of specific words using the final trained model. Note

that this is only applicable to LR and RF models, as NN requires additional methods

to extract feature importance. For LR, we use the learned weights as indicators of

feature importance. By sorting the weights in descending order, the features positively

correlated with a PUI stay appear in the beginning, while the ones associated with

the absence of PUI appear at the end. For RF, we report the feature importance

that is calculated using the number and level of splits made on each feature across

all decision trees.

5.5 Results and Discussion

We provide our evaluation results for the 2 versions of data (raw notes from MIMIC-

III and the negation-aware notes) and the 3 chosen classifiers (LR, RF, and NN) and

discuss the patterns observed. We first assess the merit of the negation detection step

for PUI detection in multiple experimental settings and compare the performance of

classifiers in predicting PUI. A comparison of extracted significant words with and
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without applying negation detection is presented to illuminate the reasons for better

performance of the negation detection step. Lastly, we discuss how relevant some of

the significant words are to known medical contributors and/or certain comorbidities

of PUI.

5.5.1 Impact of Negation Detection on AUC and F1 Score

Table 5.2 presents the average AUC and F1 score of LR, NN, and RF along with their

standard deviation across the 30 splits. From the results, the negation detection step

leads to AUC and F1 score improvements in all three classifiers. The greatest gain

is for LR (around 3% and 5% for AUC and F1, respectively), followed by NN and

RF. We did a one-sided paired t-test for each classifier to determine whether the

improvement had a p-value below 0.05. The p-value for LR was less than machine

precision for both metrics, while for NN and RF it was 0.2309 (0.0802) and 0.3826

(0.2599) (p-value for F1 is reported in parentheses). This further portrays the greatest

utility of negation detection for boosting LR performance relative to improvement for

NN and RF. Since RF performs random subsampling for each tree, these minority

negative words are even less likely to be included in individual trees. However, in

the NN and LR models, there is no random feature subsampling; therefore these

same minority negative words have a higher chance of inclusion in the final model.

This is also further supported by comparing the number of negative words among the

important features when negation detection is used for these three classifiers.

5.5.2 Classifiers Performance Comparison

A comparison of the test AUC and F1 scores in Table 5.2 reveals that NN performs

the worst. This is likely due to over-fitting as NN has an exponential number of

parameters with respect to the number of layers and units. Given our small cohort,

we anticipated NN to not perform well, as confirmed by our results.
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Table 5.2: Average AUC and F1 score of classifiers with and without negation detec-
tion over 30 runs. * denotes a p-value < 0.05 under a one-sided paired t-test.

Classifier Average Test AUC (SD) Average Test F1 (SD)
Negation-
Aware

w/o Negation
Detection

Negation-
Aware

w/o Negation
Detection

Neural Networks
(NN)

0.8462
(0.0169)

0.8440
(0.0161)

0.6252
(0.0291)

0.6189
(0.0302)

Logistic Regres-
sion (LR)*

0.9022
(0.0120)

0.8720
(0.0155)

0.6905
(0.0188)

0.6455
(0.0248)

Random Forest
(RF)

0.9533
(0.0086)

0.9530
(0.0071)

0.7887
(0.0226)

0.7862
(0.0219)

Impact of Negation Detection on Extracted Features (Words) from Mod-

els

Next, we compare the extracted significant words’ lists for the original notes and

negation-aware notes. In particular, we look at the significance of words for the

negative class in the two versions of data, and especially those containing the prefix

no in the negation-aware version. These are especially interesting since they highlight

the efficacy of our proposed negation detection approach. The top 10 most influential

words by feature importance alluding to the absence or presence of PUI are presented

for both untouched notes and negation-aware notes. Table 5.3 summarizes the words

for both LR and RF.

We first see that among the 10 most important words indicating no PUI in LR

and RF, 5 and 4 words respectively are the direct product of the negation detection

step, proving its utility. Furthermore, the words from the negation-aware version

have comparatively higher weights than their untouched notes counterparts (-0.2566

vs. -0.1955 for LR, and 0.0067 vs. 0.00038 for RF). This means the 10 features

have a higher correlation (e.g., for logistic regression, higher log-odds) with the out-

come. Furthermore, some of the words in the top 10 words for the model trained on

untouched notes are only non-specific general descriptors, which is rare in negation-

aware versions (e.g. all words in RF untouched notes case except “ganx” and “fio2”
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Table 5.3: Top 10 most important features (words) in different experimental settings.
Classifier Found

only in
Indicating

PUI
Words in the Set (importance)

LR Negation-
aware
notes

Absence {mso (-0.3182), groundglass (-0.2953), swanganz
(-0.2915), preoperative (-0.2730), no ectopy
(-0.2632), no edema (-0.2560), independent

(-0.2531), no sob (-0.2137), no pneumothorax
(-0.2107), number (-0.1918), no pulmonary

(-0.1881)}
LR Untouched

notes
Absence {ganz (-0.3563 ), mso4 (-0.3431), lat (-0.3431 ),

ward (-0.2286), lima (-0.1443), hyperthermia
(-0.1169), pepcid (-0.1156), neoplasm (-0.1043),

Sao2 (-0.1023), pyrexia (-0.1006)}
RF Negation-

aware
notes

Presence
or

Absence

{no wound (0.0016), apply (0.0011), multipodus
(0.0011), swanganz (0.0008), sch (0.0005), clip
(0.0004), [no skin, no pneumothorax, unit,

no infection] (all 0.0003)}
RF Untouched

notes
Presence

or
Absence

{lat (0.0007 ), ptitle (0.0006), ganz (0.0005),
name (0.0004), [followup, numeric, lastname,

identifier] (all 0.0003), [fi02, defined] (all
0.0002)}

are non-specific).

Inferred Salient Features and their Overlap with Leading Medical Factors

of PUI

We investigate how closely the most significant contributing words resemble known

medical covariates of PUI. After review by our diverse team of computer, nursing,

biostatistics, and health informatics scientists, we present the high importance key-

words that are aligned with the established evidence on PUI guidelines, including the

definition, staging, Braden Scale, personalized algorithms, and root cause analysis

template. Table 5.4 shows these keywords extracted from the model for different

experimental settings of note version, classifier, and the direction of the words con-

tribution. For example, the keyword no erythema is consistent with the updated

definition of “Stage 1 Pressure Injury: Non-blanchable erythema of intact skin” [25].

The keywords swangaz (abbreviation for ”Swan-Ganz catheterization”) and no tube
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indicate PUI related to medical devices [25]. Keywords such as sedate or PACU

(post anesthesia care unit); no secretions or no stool ; independent ; no obstruction

and multipodus are related to the Braden risk categories of sensory perception, mois-

ture, mobility or activity, nutrition as well as friction and shear respectively [12]. Also,

Keywords diuresis and multipodus are consistent with recently identified predictive

features for PUI in the intensive care unit [21]. Diabetes glycemic control indicated by

no insulin, no hypotension and no infection were also related to the risky comorbidi-

ties in the root cause analysis template [48] . Although some keywords with relatively

high importance did not stand out in the past evidence, they could inform future PUI

research directions. For example, no her could indicate gender difference.

Table 5.4: Most medically meaningful keywords in different experimental settings.

Classifier Type of
Words

(or
notes)

Indicating
PUI

Most Medically Meaningful
Keywords in the Set (importance)

LR Only no
.... words

Presence {no wound (0.2951), no erythema (0.2303),
no skin (0.1629), no infection (0.1420),
no obstruction (0.1403), no ct (0.1291),

no secretions (0.0850), no lesions (0.0728)}
LR Only no

.... words
Absence {no edema (-0.2560 ), no stool (-0.1241),

no pain (-0.0923 ), no diuresis (-0.0744),
no hemorrhage (-0.0677), no bleed
(-0.0589), no bleeding (-0.0523)}

LR Only
Negation-

aware

Absence {swanganz (-0.2915 ), no edema (-0.2560),
independent (-0.2531 ), pacu (-0.1765),

bloodtinged (-0.1314), no stool (-0.1241)}
RF Only no

.... words
Presence

or
Absence

{no wound (0.0016), [no skin, no tube]
(0.0003), [no infection, no blood,

no insulin, no erythema, no hypotension]
(all 0.0002), [no diuresis, no abscess,

no pain, no stool, no edema, no gtt] (all
0.0001)}

RF Only
Negation-

aware

Presence
or

Absence

{no wound (0.0016 ), multipodus (0.0010),
[no skin , no infection , no tube, no insulin]

(all 0.0003), sedate (0.0002)}
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5.6 Conclusion and Potential for HAPUI detec-

tion using Text

Our proposed method leverages collective notes acquired from the entire care team

in one hospital stay for HAPUI detection for the first time. We proposed a negation

detection step for notes that moves the presence or absence of medical conditions

closer to their location in a sentence. Through experimental results with three repre-

sentative classifiers for the PUI detection task, we showed the efficacy of the negation

detection method in improving models’ predictive performance. We further separated

the keywords in notes and analyzed the keywords contributing the most to the detec-

tion of PUI and their encouraging overlap with medical knowledge on PUI. We also

observed that many of the negated condition keywords were actually among the most

important words for PUI detection and were compatible with nursing knowledge on

PUI. Based on these promising results, we believe applying negation detection can

also improve the performance of CrowdTeacher. Also, frequency of some of the words

determined by the classifiers like edema and erythema can be specifically utilized for

our future HAPUI detection tasks.
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Chapter 6

Leveraging Unlabeled Samples for

HAPUI Detection

Current HAPUI detection suffers from a major limitation – a high number of labeled

annotations for reasonable performance. Obtaining high-quality annotations for the

HAPUI detection task can be daunting. As a motivating example, for our experiments

in Chapter 3, our nurse annotator spent more than 50 hours labeling 85 hospital

admissions, which clearly shows that a high number of annotations is not practical for

real-word adoption. Thus there is the need for leveraging semi-supervised techniques

to reduce the annotation burden. Some of the known disadvantages of self-training

are its sensitivity to the quality of the base classifier and its inability to correct

already misclassified samples in the labeled set added in the previous iterations [75].

There are also special challenges that arise in self-training in the case of extremely

unbalanced datasets [62]. For instance, a classifier trained using self-training may get

exceedingly good at predicting majority class, while failing to distinguish minority

class samples. Since in most applications, such as medicine and fraud detection [69],

performance on the minority class is of higher importance, applying self-training

without remedying these concerns is not a viable option for these applications. Given



66

these limitations, we propose to combine self-training with Co-teaching since Co-

teaching can theoretically account for the uncertainty of the newly labeled samples

in the training process and can also down weight the misclassified samples in the

growing labeled set in each iteration to mitigate its negative impacts on performance.

In this chapter, we propose a new self-training algorithm that reduces the annotation

burden for HAPUI detection while addressing these challenges.

6.1 Our model

The main goal of our new model is to reduce the number of labels required for learn-

ing a robust classifier. The self-training algorithm introduced in Section 2.5 serves

as the basis for our proposed algorithm. Given the downfalls of self-training, we

propose to combine self-training with Co-teaching since Co-teaching can compensate

for the uncertainty of the newly labeled samples in the training process and can also

down weight the misclassified samples in the augmented labeled set in each iteration.

However, applying self-training for unbalanced classification problems is challenging

[62]. The minority class in the labeled set may be insufficiently small for the classifier

to distinguish them from the other classes; therefore, the intermediate classifiers in

self-training will have less predictive value for the minority class. This problem is

exacerbated by the iterative nature of self-training, as the additionally labeled subset

used to extend the training set in each iteration will contain relatively higher per-

centages of the majority class. This, in time, further decreases the prevalence of the

minority class and, therefore, the classifier’s performance with regard to the minority

class. Alternatively, this can be viewed as the classifier overestimation of the certainty

of its predictions on unlabelled samples from the majority class.



67

6.1.1 Self-training for Extremely Unbalanced Classes

Our preliminary experiments indicate that just using traditional approaches of dealing

with unbalanced data, such as undersampling, alone, can not eradicate the overpre-

diction of the majority class. We hypothesize this is due to the lower number of

samples overall which prohibits the classifier from learning a generalizable enough

feature representation for both classes, especially the minority class. To combat this,

our method attempts to incorporate more instances of the minority class in the self-

training process through three mechanisms including undersampling.

Undersampling of the majority class Recent research work suggest an

oversampling of the minority class, or undersampling of the majority class is beneficial

in self-training based algorithms [41]. To supply a more balanced dataset to the Co-

teaching algorithm in each training, we randomly drop 10% of negative samples in

each self-training round. We experimented with oversampling of the minority class,

but found it ineffective when combating extreme imbalanced classes.

Monte Carlo dropout to differentiate certainty of the samples Monte

Carlo dropout has been successfully used to boost the performance of neural networks

[26]. Monte Carlo dropout provides a more accurate class probability prediction

by applying multiple instances of dropout on the learned network to generate the

estimated probability, compared to not having any dropout at the prediction time in

the standard setting. We employ Monte Carlo drop out ten times to compute the

prediction on both the unlabelled set and test set for our proposed algorithm. Because

of the randomness involved in network units, the predicted probabilities across the

majority class are more varied, making their ranking for the next iteration of self-

training more meaningful. Our empirical result showed that this more meaningful

ranking indeed mitigated the problem of classifier overestimation of its certainty for

majority class prediction or failing to finely distinguish the confidence of the majority

class samples during the self-training process.
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Normalizing minority class certainties and prioritizing minority class

samples over majority class samples with the same certainty During the

initial iterations of self-training, the certainty of the minority class is significantly

lower than that of the majority class. To ensure that at least most certain samples

predicted by the current version of the classifier are added to the labeled section, we

normalize both the certainty of the majority and minority class by their respective

maximum certainty.

6.1.2 Algorithm Details

As mentioned earlier, the original self-training algorithm is unable to boost classi-

fier performance in extremely unbalanced classes, when high-quality labels are not

available, and when there is uncertainty in the labels [62, 75]. Thus we introduce the

above three techniques to remedy these challenges and learn a more robust classifier.

Starting with our labeled set, XL and unlabeled set XU , we first undersample a

fraction, ω, of the majority-class samples in the labeled set to obtain samples used in

classifier training, (Xtr,ytr):

(Xtr,ytr)←− Undersample((XL,yL), ω) (6.1)

We run the Co-teaching algorithm on this undersampled set to obtain the current

model in the next step.

Model ←− Co teaching((Xtr,ytr), ε, nmc) (6.2)

Next, our model generates pseudo-labels for the unlabeled set XU using the trained

model, i.e., we get class probabilities and classes for the unlabeled data while utilizing

nmc rounds of Monte Carlo dropout. Here ε denotes the dropout rate. We set the

certainty of each sample as the maximum probability across the k classes. To increase
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the chance of minority-class samples within the unlabeled set for addition to the

labeled set, we normalize all classes’ probabilities:

(PU ,yU)←−Model(XU , ε, nmc) (6.3)

cnormi = ci/c
max
k where cmaxk = max(ci) for i ∈ U if k = arg max

k∈K
(Pik) (6.4)

We then pick the atop most certain unlabeled samples while prioritizing the minor-

ity class in case of certainty ties to obtain the highly reliable samples ((Xcertain,ycertain)

and add them to the current labeled set while removing them from the unlabeled set

of the current iteration.

(Xcertain,ycertain) = (XU ,yU)[chosen idxs] s.t |chosen idxs| = atop (6.5)

(XL,yL) = Concatenate((XL,yL), (Xcertain,ycertain)) (6.6)

(XU ,yU) = (XU ,yU).Remove((Xcertain,ycertain)) (6.7)

This process of pseudo-labeling continues till the unlabeled set size reduces to less

than atop.

The model trained from the last iteration of the labeled set is used as the final

model from our algorithm.

ŷT ←−Modelfinal(XT , ε, nmc) (6.8)

Throughout the modified self-training algorithm, we always multiply gradients of

different classes according to the relative count of classes. The details of the modified

self-training can also be found in Algorithm 2.
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Algorithm 2: Modified Self-training.

1 Input: Labeled Dataset (XL,yL), Unlabeled samples XU , Test samples XT ,
# of Monte Carlo epochs nmc, # of added unlabeled samples per epoch atop,
Dropout rate ε, Majority-class undersampling fraction ω, # of classes K

2 Output: Test predictions ŷT
3 while |XU | > atop do
4 Undersample majority-class samples:

(Xtr,ytr)←− Undersample((XL,yL), ω)
5 Run Co teaching with Monte Carlo dropout on it:

Model ←− Co teaching((Xtr,ytr), ε, nmc)
6 Get class probabilities and predicted classes for unlabeled samples:

(PU ,yU)←−Model(XU , ε, nmc)
7 Set certainty for unlabeled samples: ci ←− maxk∈K (Pik) ∀i ∈ U
8 Normalize certainties:

cnormi = ci/c
max
k where cmaxk = max(ci) for i ∈ U if k = arg maxk∈K (Pik)

9 Pick the atop most certain points prioritizing minority class for ties:
(Xcertain,ycertain) = (XU ,yU)[chosen idxs] s.t |chosen idxs| = atop

10 Add these highly reliable samples to the labeled dataset:
(XL,yL) = Concatenate((XL,yL), (Xcertain,ycertain))

11 Shrink unlabeled dataset:
(XU ,yU) = (XU ,yU).Remove((Xcertain,ycertain))

12 end
13 Run Co teaching with Monte Carlo dropout on final XL and get ŷT :

(Xtr,ytr)←− Undersample((XL,yL), ω)
Modelfinal ←− Co teaching((Xtr,ytr), ε, nmc) ŷT ←−Modelfinal(XT , ε, nmc)

14 Return ŷT

6.2 Experimental Settings

We test our model on two real-world prediction tasks, HAPUI and Length-of-Stay in

MIMIC-III.

6.2.1 HAPUI

We define the following cohort and starting with 8237 labels for 5742 samples, we

examine how much we can lower the number of labels without significantly compro-

mising performance.

1. Admissions whose patients are younger than 65 years old.
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2. Admissions that were admitted through the emergency department.

3. Admission with a duration greater than ten days.

This yielded 5742 samples total, with 822 admissions marked for the presence

of HAPUI. To ensure the most confident labels are being assigned for annotation

generation, we used the admissions with the same labels based on both our golden

criteria and CANTRIP criteria introduced in Chapter 3.

For generating different experimental settings, for the given training dataset from

a 80/20 split of our cohort, we varied the ratio of samples used as unlabeled data

in the interval [0.03, 0.166] in 0.03 increments. We annotated the labeled samples

based on the following distribution across the number of labels using 5 annotators

[0.51(1 − τ), 0.25(1 − τ), 0.13(1 − τ), 0.07(1 − τ), 0.04(1 − τ)]. Here τ denotes the

fraction of unlabeled samples. The average number of annotations per labeled sample

is 1.87 and the same across all settings. Notice as unlabeled sample ratio goes up,

the labeled set is shrunk too so the total number of annotations is reduced too.

6.2.2 Length-of-stay

For the cohort, we used the same one described in Section 4.3.3. To create anno-

tations, we varied the ratio of samples used as unlabeled data in the interval [0.03,

0.6] in 0.03 increments. We set the labels for the labeled samples based on the fol-

lowing distribution across different number of labels using 5 annotators [0.15(1− τ),

0.2(1−τ), 0.35(1−τ), 0.25(1−τ), 0.05(1−τ)]. Here τ shows the fraction of unlabeled

samples. The average number of annotations per labeled sample is 2.87 and is the

same across all settings. Note tha as unlabeled sample ratio goes up, the labeled set

is shrunk too so the total number of annotations is reduced too.
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6.3 Results for HAPUI Detection

We compare the performance of our model, with the base classifier comprised of a

single layer neural network of 20 units shared across all methods, Vanilla self-training

with the base classifier and Co-teaching with no self-training.

Figure 6.1 demonstrates that our model, the modified self-training plus Co-teaching,

is performing better than the above baselines across different ratios of unlabeled set

and across varying total numbers of labels in terms of AUPRC. As the number of

labeled set decreases on the horizontal axis, the base classifier AUPRC plummets.

However, despite this decreasing AUPRC, we still observe that our model continues

to boost performance, compared to using Vanilla self-training on the base classifier

or only using the Co-teaching algorithm without leveraging unlabeled data.

Another pattern is that initially with more labeled samples, self-training does

better than Co-teaching, but as this number goes down and the classifier on the

labeled set becomes weaker, from 0.1 onwards, Co-teaching is the better method for

prediction. We hypothesize this is due to the lower accuracy of the pseudo labels as

the performance of classifiers on labeled set becomes worse, which makes self-training

on inaccurate pseudo-labels harmful rather than useful. Notice how this is not the

case on our combined modified self-training and Co-teaching since Co-teaching helps

with reducing the impact of inaccurate labels within the pseudo labels set.

6.4 Results for LOS Prediction

We also evaluated our model across different ratios of samples used in the unlabeled

set for the length of stay prediction task introduced in Section 4.3.3.

In Figure 6.2, we change the ratio of samples used in the unlabeled set and self-

training from 3% to 60% in 3% increments. The vertical axis shows the test AUPRC.

We can see that regardless of the ratio of the unlabeled set, our modified self-training
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Figure 6.1: Modified Self-training + Co-Teaching for HAPUI detection.

combined with Co-teaching performs better than base classifier with only the labeled

set, Co-teaching with only the labeled data, and Vanilla self-training with base clas-

sifier using both unlabeled and labeled data. Furthermore, we can observe by having

only annotations for half of the data, we can still get a reasonable AUPRC of 0.6.

Unlike the HAPUI task, here self-training is performing worse than Co-teaching

and base classifier regardless of the ratio of unlabeled samples. We believe this is

due to the higher AUPRC compared to the HAPUI task, which makes enhancements

more challenging, and therefore to achieve performance boost, the floor threshold for

accuracy of pseudo labels is higher, which makes the Vanilla self-training the weakest

method at almost all points.
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Figure 6.2: Modified self-training + Co-Teaching for LOS Prediction.

6.5 Conclusion

We first introduced the challenges arising in self-training with extreme unbalanced

classes settings and uncertain classes for labeled sets. We introduced the combina-

tion of three countermeasures that enable self-training to boost performance in these

situations, Monte Carlo dropout, and certainly normalization and prioritization for

minority class combined with undersampling. Finally, we formally introduced our

new algorithm and showed its utility in increasing AUPRC on both HAPUI detection

and the length of stay prediction tasks. Our work is the first to employ self-training

for extreme imbalanced datasets using uncertain annotations and proposes the mix-

ture of several techniques to accommodate unbalanced classes and uncertain labels

using the modified self-training plus Co-teaching algorithm.
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Chapter 7

Conclusion and Future work

In this thesis, we explored how EHRs can be efficiently used for detecting HAPUI.

We first presented the challenges surrounding establishing ground truth from multiple

EHR sources and their conflicts. We proposed a novel standardized cohort definition

that is more faithful to the clinical guidelines compared to the already available

alternatives, which makes the comparison of algorithms detecting HAPUI using EHRs

possible. In the next chapter, we introduced CrowdTeacher a novel uncertainty-

aware sample-specific perturbation scheme that performs better than the existing

baselines for learning with uncertain crowdsourcing labels, a practical formulation

for HAPUI detection. To glean better feature representations, we analyzed how

hospital notes can be leveraged for HAPUI detection and whether the words classifiers

most relied on, overlapped with known literature on HAPUI. In the last chapter,

we devised a modified Self-training algorithm in conjunction with Co-teaching to

show how unlabeled samples can be beneficial for HAPUI detection by decreasing the

annotation costs.

There are several future directions based on this work. For Chapter 5, we note

that there exists a tool extension, ConText, that provides more accurate identifi-

cation of medical terms and also provides uncertainty associated with the negation
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detection. Thus instead of hard classification of negated phrases, we can incorporate

the estimated probability of negation of the conditions into the learning process to

further enhance the prediction. In addition, one can also consider further extending

our modified self-training algorithm to leverage crowdsourcing uncertainty. Finally,

another potential area of future work is to explore the use of even fewer number of

labels to learn a robust classifier for HAPUI.
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