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Abstract 
 

Hypothesis testing on the number of components in finite mixture models 
By Mingrui Zhang 

 
 

In this paper, we develop a mathematical framework for studying finite mixture models 
based on a quotient space, a parameter space viewing parameterizations corresponding to 
same probability distribution as same equivalence class. The quotient space is used to 
solve the issue of identifiability in finite mixture models, which makes the study of 
asymptotic properties of maximum likelihood estimation (MLE) possible. In the quotient 
space, we prove the consistency of MLE under some conditions and use simulation 
designs to show the performance of the point estimation of parameters by EM algorithm. 
Also, we propose a generalized Wald test based on resampling. By simulation studies, we 
show that our generalized Wald tests under two-component Gaussian mixture models 
may be more powerful than the likelihood ratio tests in many cases.  
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1 Introduction

Finite mixture models, used to model data sampled from multiple underlying sources, have been widely

applied to various fields; see McLachlan and Peel (2004) [1] for a general introduction to finite mixture models.

From a practical prospective, Schlattmann (2009) [2] illustrated the idea of heterogeneity in medicine and

introduced some medical applications of finite mixture models. A finite mixture model could be preferable

over some other models on dealing with unobserved heterogeneity, since it views the total variability of the

data as two parts: variability between latent groups and variability of individuals within each group [2].

The statistical issue of selecting the number of components in finite mixture models has received increasing

attention over years. One classical approach of the problem is the likelihood ratio test. Suppose we are

interested in testing the null hypothesis that there exists k0 components against the alternative hypothesis

that there exists k1 components, for some k1 > k0. The likelihood ratio test statistics can be obtained by

the unrestricted maximum likelihood estimation in the parameter space with k1 components, and restricted

maximum likelihood estimation in the parameter space with k0 components. However, the likelihood ratio

statistics fails to follow an asymptotic chi-squared distribution due to the violation of identifiability and the

singularity of Fisher information [3-4]. Some researchers [5-7] have shown that the asymptotic distribution is

related to the Gaussian Process by studying some specific distribution families. Hartigan (1985) [7] found that

the likelihood ratio statistics could be asymptotically unbounded, which makes it hard to obtain the asymptotic

distribution of the likelihood ratio statistics under the null hypothesis. Therefore, Chen et al. (2001) [8]

suggested a modified likelihood ratio test by modifying the likelihood function. Also, bootstrap can be served

as another solution to determine the rejection region, as discussed by McLachlan (1987) [9], for example.

Recently, under some assumptions of the distribution family, some other hypothesis tests have been developed,

including testings using measurement by weighted relative entropy [10], L2 distance [11], and goodness-of-fit

[12], moment-based tests [13], and local score tests [14]. Besides hypothesis testing, information criteria in

model selection, such as Akaike’s information criterion [15] (AIC) and Bayesian information criterion [16]

(BIC), can be applied to this statistical problem. However, information criterion cannot consistently estimate

the true number of components. For example, it has been studied that AIC may underestimate the order of a

model in various statistical scenarios [17-20]

In this paper, we develop a generalized Wald test on the number of components of finite mixture models.

Specifically, similar to Redner’s previous work [21], we define a quotient topological space as the new

parameter space. Since there are various parameterizations for finite mixture models, the mapping from the

original parameter space to the model space is not one-to-one. By viewing parameterizations corresponding to

same probability distribution as same equivalence class and defining the set of all equivalence classes as a

quotient space, we can solve the issue of identifiability in finite mixture models. Also, we define a metric on

the quotient space so that we can study the consistency of maximum likelihood estimation (MLE) under some
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conditions. Under the consistency of MLE, we construct the generalized Wald test by the use of resampling.

Finally, by simulation studies, we compare our generalized Wald tests with the likelihood ratio tests under

two-component Gaussian mixture models.

2 Methods

2.1 Finite mixture models

We are interested a general class of finite mixture models, which can be represented as

Mk =

⇢
�1f(x;µ1) + �2f(x;µ2) + ...+ �kf(x;µk)

����
kX

i=1

�i = 1, 0  �i  1, µi 2 C
�

where {f(x;µ)|µ 2 C} is a family of probability density (mass) function of interest, C is a compact set, and k

is the number of components in the mixture model. Let

⇥k =

⇢
(�1, ...�k, µ1, ..., µk)

����
kX

i=1

�i = 1, 0  �i  1, µi 2 C
�
.

Due to the label-switching problem and various parameterizations for degenerate mixture models, the mapping

from ⇥k to Mk is not one-to-one. Following Redner’s previous work [21], to satisfy the identifiability

condition, we define an equivalence relation ⇠ on the parameter space ⇥k satisfying the following three

properties

(1) (�1, ...,�i, ...,�j , ...,�k, µ1, ..., µi, ..., µj , ..., µk) ⇠ (�1, ...,�j , ...,�i, ...,�k, µ1, ..., µj , ..., µi, ..., µk),

for any (�1, ...,�k, µ1, ..., µk) 2 ⇥k, and for any 1  i, j  k,

(2) (�1, ...,�i�1, 0,�i+1, ...,�j , ...,�k, µ1, ..., µi, ..., µk) ⇠ (�1, ...,�i�1,�0
i,�i+1, ...,�0

j , ...,�k, µ1, ..., µi�1,

µj , µi+1, ..., µk), for any (�1, ...,�i�1, 0,�i+1, ...,�k, µ1, ..., µk) 2 ⇥k, and for any 1  i, j  k, �0
i,�

0
j � 0

and �0
i + �0

j = �j ,

(3) if ✓1 ⇠ ✓2 and ✓2 ⇠ ✓3 then ✓1 ⇠ ✓3 for all ✓1, ✓2, ✓3 2 ⇥k.

Consider the metric d on ⇥k such that

d((�1, ...,�k, µ1, ..., µk), (�
0
1, ...,�

0
k, µ

0
1, ..., µ

0
k)) =

X

1ik

(|�i � �0
i|+||µi � µ0

i||)

for every (�1, ...,�k, µ1, ..., µk) 2 ⇥k and (�0
1, ...,�

0
k, µ

0
1, ..., µ

0
k) 2 ⇥k, where |·| denotes the Euclidean

distance in R and ||·|| denotes the distance in C. It is easy to check d is a valid metric on ⇥k. Then we focus

on the quotient metric space (⇥k/⇠, d/⇠) defined by

⇥k/⇠
.
=

⇢
[✓]

����✓ 2 ⇥

�
=

⇢
{✓0 2 ⇥|✓0 ⇠ ✓}

����✓ 2 ⇥

�
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and

(d/⇠)([✓1], [✓2]) = inf

⇢
d(✓0a1

, ✓0b1)+...+d(✓0am
, ✓0bm)

����✓
0
a1

2 [✓1], ✓
0
b1 ⇠ ✓0a2

, ..., ✓0bm�1
⇠ ✓0am

, ✓0bm 2 [✓2]

�

where [✓1], [✓2] 2 ⇥k/⇠. By the above definition, it is easy to show that there exists a natural bijective mapping

�k from ⇥k/⇠ to Mk. Also, we can prove that (d/⇠) is a valid metric on ⇥k/⇠ satisfying non-negativity,

identity of indiscernible, symmetry, and subadditivity.

Proposition 1. (d/⇠) is a valid metric on ⇥k/⇠.

For different k, we can define the equivalence relation ⇠ and quotient space similarly. Here, we use the same

notation ⇠, for simplicity, across different choice of k.

Since we have a metric on ⇥k/⇠, we can measure the distance of two points in the quotient space, which

makes the study of consistency possible. Although Redner [21] used the topology of quotient space to study

consistency without a metric defined, the topology is not natural and it is hard for explanation, since the

topology is not based on a metric. That’s why we define a metric on the quotient space. It should be noted

that the metric defined on the quotient space is the infimum of sum of distance of any finite routes rather than

the simple the infimum of distance of representatives of two quotient sets, such that the subadditivity or the

triangle inequality can be satisfied. The metric d on space ⇥k is not arbitrary as well. A bad metric on ⇥k

may lead to the violation of identity of indiscernible for the induced metric on ⇥k/⇠. Here our choice makes

(d/⇠) both valid as a metric and easy for calculation.

2.2 Hypothesis test

Suppose that X1, ..., Xn are i.i.d. sampled from a distribution p(x) 2 Mk, with parameter [✓] =

[�1, ...,�k, µ1, ..., µk]. First, we can prove the consistency of MLE under some conditions.

Proposition 2. Let X1, ..., Xn be i.i.d. sampled from the distribution p(x; [✓0]) = �1,0f(x;µ1,0) +

�2,0f(x;µ2,0) + ... + �k,0f(x;µk,0), where p(x; [✓0]) 2 Mk. Denote [✓̂] = [(�̂1, ..., �̂k, µ̂1, ..., µ̂k)] as

the MLE in the quotient space ⇥k/⇠. If the distribution family satisfies

(1) f(x;µ) is continuous in µ for all µ 2 C and all x 2 X ;

(2) there exists a function d(x) such that |log p(x; [✓])|  d(x) for all [✓] 2 ⇥k/⇠ and all x 2 X , and

E[✓0][d(X)] < 1;

(3) Q0([✓]) = E[✓0][log p(X; [✓])] is uniquely maximized at [✓0];

Then

[(�̂1, ..., �̂k, µ̂1, ..., µ̂k)]
p�! [(�1,0, ...,�k,0, µ1,0, ..., µk,0)]

with respect to (d/⇠).
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Then we want to test the null hypothesis test H0 : k = k0 against the alternative hypothesis HA : k = k0 + 1.

To conduct the hypothesis test, we focus on the parameter space ⇥k0+1/⇠ and ⇥k0/⇠. Let

ln([�1, ...,�k0+1, µ1, ..., µk0+1]) =
nX

i=1

log

✓
�1f(Xi;µ1) + ...+ �k0+1f(Xi;µk0+1)

◆

where [�1, ...,�k0+1, µ1, ..., µk0+1] 2 ⇥k0+1/⇠ and

ln([�1, ...,�k0 , µ1, ..., µk0 ]) =
nX

i=1

log

✓
�1f(Xi;µ1) + ...+ �k0f(Xi;µk0)

◆

where [�1, ...,�k0 , µ1, ..., µk0+1] 2 ⇥k0/⇠. Then the likelihood ratio test statistic is

LR = 2

✓
sup

[✓]2⇥k0+1/⇠
ln([✓])� sup

[✓]2⇥k0/⇠
ln([✓])

◆
.

If the unrestricted MLE and restricted MLE can be expressed as

[✓̂] = [(�̂1, ..., �̂k0+1, µ̂1, ..., µ̂k0+1)] = argmax
[✓]2⇥k0+1/⇠

ln([✓])

and

[✓̃] = [(�̃1, ..., �̃k0 , µ̃0, ..., µ̃k0)] = argmax
[✓]2⇥k0/⇠

ln([✓]),

then the likelihood ratio test can be written as

LR = 2

✓
ln([✓̂])� ln([✓̃])

◆
.

Our proposed generalized Wald test statistic has the following form

g([✓̂]) =

✓
min

1ik0+1
�̂i

◆✓
min

1i<jk0+1
|µ̂i � µ̂j |

◆↵

where ↵ is a free positive real number. It can be shown easily that g([✓]) is a valid function that does not

depend on the choice of ✓ 2 [✓]. In fact, the functional forms of the test statistic are not unique, and there is

no guarantee that one form of the test statistic is uniformly powerful than others. Our generalized Wald test

statistic is only one of the possible choices that are simple and reasonable.

The idea of our proposed generalized Wald test is that we are more likely to reject the null hypothesis for

larger distance from unrestricted MLE to the restricted parameter space ⇥k0/⇠. However, the metric d/⇠

has some drawbacks. First, the distance contributed by the component of (�1, ...,�k0+1) and the component

of (µ1, ..., µk0+1) are not comparable, thus it is not reasonable to view them equally. Second, the distance

to the restricted parameter space is not smooth. For example, in the model of two-component mixture

model, the distance from (�̂1, �̂2, µ̂1, µ̂2) = (0.9, 0.1, 0, t) to the restricted parameter space (homogeneous

model) is min{0.1, |t|}. Therefore, we consider a function of unrestricted MLE as the test statistic which
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could measure the distance instead. To illustrate the advantages of the generalized Wald test over the

likelihood ratio test or score test, we simulate data of size 100 from a two-component Gaussian mixture model

0.3N(0, 1) + 0.7N(1, 1), and plot the likelihood function as Figure 1. We can learn from the plot that the

surface near the global maximum could be very flat. In fact, although the difference between unrestricted

MLE and restricted MLE may be large, their log likelihood values are very close in most cases. Therefore, we

would like to conduct a Wald-based test rather than the likelihood ratio test. Additionally, the restricted MLE

could be a saddle point of the log likelihood function, which makes the score test powerless as well.

2.3 Computation

The computation burden of both the generalized Wald test and the likelihood ratio test is large, because there is

not an analytical solution to the MLE of finite mixture model, and the asymptotic distribution of test statistics

fails to be regular. First, we review the expectation-maximization (EM) algorithm [22], an iterative method to

find the MLE in the presence of hidden variables. The classical application of EM algorithm is on the finite

mixture model, especially the Gaussian mixture models. Consider the latent random variable Z that takes

values 1, ..., k following the multinomial distribution

Z ⇠ Multi(�1, ...,�k).

Then, if the conditional random variable X|Z follows the distribution of interest

X|Z ⇠ f(x;µZ),

the marginal distribution of X follows the distribution

X ⇠ f(x;�1, ...,�k, µ1, ..., µk) = �1f(x;µ1) + �2f(x;µ2) + ...+ �kf(x;µk)

which gives an explanation of the finite mixture model. Consider the following complete likelihood function

L(✓;X,Z) =
nY

i=1

f(Xi, Zi; ✓).

The EM algorithm is to locate MLE as following [23]:

• Expectation step (E step): Define the Q function as the conditional expectation of complete log likeli-

hood function ln(✓) =
Pn

i=1 log f(Xi, Zi; ✓), given all the Xi and current estimates of parameters

✓(i):

Q(✓; ✓(i)) = E[log f(X,Z; ✓)|X, ✓(i)]

• Maximization step (M step): Find the parameters that maximize the quantity:
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✓(i+1) = argmax
✓

Q(✓; ✓(i))

Some works [24] have shown that the algorithm will converge to a local maximum, and the global maximum

can be elsewhere. However, EM algorithm is still the most popular way for finding MLE in finite mixture

models.

Next, there are various resampling approaches to determine the rejection region of the likelihood ratio test and

the generalized Wald test. In this paper, we will apply the following Monte-Carlo simulation-based procedure

[25] in the part of simulation study:

• Obtain the restricted MLE by EM algorithm.

• Repeat simulating data by restricted MLE for N times, obtain its unrestricted and restricted MLE by

EM algorithm, and calculate the test statistics.

• Determine the rejection region by the 0.95 quantile of N simulated statistics, N selected as 1000 for

the following study.

3 Study on Gaussian mixture models

In this section, we focus on the two-component Gaussian mixture models with known variance. We write the

model as

M =

⇢
�1N(µ1, 1) + �2N(µ2, 1)

�����1 + �2 = 1, 0  �1,�2  1, µ1, µ2 2 R
�

3.1 Evaluation of point estimation by EM algorithm

Since it is not guaranteed that the EM algorithm will converge to the global maximum of the likelihood

function, i.e. the MLE, we use simulation study to evaluate the estimate of parameters by EM algorithm.

In this special case of two-component Gaussian mixture model, the EM algorithm can be expressed in the

following iteration [23].

• Initialize the means and mixing coefficients �̂(0)
1 , �̂(0)

2 , µ̂(0)
1 , µ̂(0)

2 .

• (E step) Evaluate the responsibilities using current parameters �̂(i)
1 , �̂(i)

2 , µ̂(i)
1 , µ̂(i)

2 .

�̂(i+1)
jk =

�̂(i)
k �(Xj ; µ̂

(i)
k )

�̂(i)
1 �(Xj ; µ̂

(i)
1 ) + �̂(i)

2 �(Xj ; µ̂
(i)
2 )

1  j  n, 1  k  2

where �(x;µ) is the density function of normal distribution with mean µ and variance 1.

• (M step) Evaluate the parameters using current responsibilities

�̂(i+1)
k =

Pn
j=1 �̂

(i+1)
jk

n
1  k  2
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µ̂(i+1)
k =

Pn
j=1 �̂

(i+1)
jk Xj

Pn
j=1 �̂

(i+1)
jk

1  k  2

• Repeat E step and M step, until convergence of parameters.

We conduct the Monte-Carlo simulation. Consider the true model 0.3N(0, 1) + 0.7N(µ, 1), where µ is

chosen as 0.5, 1, and 1.5 respectively. Repeat sampling data with size M from the true model for 1000 times

and obtaining the estimate of parameters [✓̂] = [�̂1, �̂2, µ̂1, µ̂2], where M is chosen as 100, 1000 and 5000

respectively.

The mean squared error (MSE) of the point estimation are shown in Table 1. It should be noted that in Table 1,

µ⇤
1 refers to the smaller value between µ1 and µ2 in [�1,�2, µ1, µ2], and �⇤

1 refers to the mixing coefficient

corresponding to µ⇤
1; while µ⇤

2 refers to the larger value between µ1 and µ2 in [�1,�2, µ1, µ2], and �⇤
2 refers to

the mixing coefficient corresponding to µ⇤
2. From Table 1, we can see that the MSE of point estimation of

parameters decreases as µ increases, which implies that EM algorithm performs better when the heterogeneity

is more significant. Also, sample size is an important factor that influences the point estimation.

3.2 Simulation study on the power of hypothesis testing

In this subsection, we conduct the Monte-Carlo simulation study to compare the power of the likelihood ratio

test and the generalized Wald test. Consider the true model �N(0, 1) + (1� �)N(µ, 1), where µ is chosen as

0.1, 0.2, ..., 2.0, and � is chosen as 0.1, 0.3 and 0.5 respectively. Repeat sampling data with size 1000 from

the true model for 10000 times and conduct the generalized Wald test and the likelihood ratio test.

The results are shown in Table 2-4. From the results, we can learn that for ↵ < 1, the curve of power versus

the change of µ is not always increasing especially when � = 0.1, which suggests that ↵ < 1 is not a good

choice for general testing. By comparing the performance of ↵ = 1, 2, 3, 4, 5, although ↵ = 3 is better than

↵ = 2 when � = 0.1 and µ > 1, ↵ = 2 is a generally good choice for most cases, including when � = 0.1

and 0 < µ  1, � = 0.3, and � = 0.5. The Figure 2-4 show the change of power for the generalized Wald test

when ↵ = 2 and the likelihood ratio test. We can see that when � = 0.3 and � = 0.5, the curve of our test

is almost completely above the curve of the likelihood ratio test. In fact, by two-proportion z test, our test

is significantly powerful than the likelihood ratio test when � = 0.3 and µ = 0.3, 0.4, ..., 0.8, with average

power gain of 0.028, and when � = 0.5 and µ = 0.4, 0.5, ..., 0.9, with average power gain of 0.034. However,

when � = 0.1, our test is only significantly powerful than the likelihood ratio test when µ = 0.7, with a power

gain of 0.0175.

4 Discussion

In this paper, we develop a mathematical framework for studying finite mixture models based on the quotient

space. To study the consistency of MLE in the quotient space, a distance function should be defined. We define
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the distance naturally induced by the equivalence relation. However, the property of the distance function is

not good enough, which makes it complicated to study the topological property of the quotient space. In future

studies, we can work on designing a metric with better topological property. In the study of consistency of

MLE, we assume that C is compact. However, when the parameter space is not compact, the MLE may not be

consistent unless more strong uniform consistency is satisfied.

In the proposed quotient space, a generalized Wald test is developed. For the hypothesis testing, we are

interested in the alternative hypothesis HA : k = k0 + 1, because it is straightforward to construct a

generalized Wald test statistic as a measure of distance from the unrestricted MLE in ⇥k0+1/⇠ to the restricted

parameter space ⇥k0/⇠. In practice, we can start with a small k0, say 1, and test upward. Actually, we can

also directly test against the hypothesis HA : k = k1 where k1 > k0, as long as we can construct a similar

test statistic to measures the distance from the unrestricted MLE in ⇥k1/⇠ to the restricted parameter space

⇥k0/⇠. Obviously, the same test statistic does not work, and we need to find another reasonable test statistic.

For the computation of determining the rejection region, there are some other nonparametric approaches.

Future studies may work on the choice of computational approaches to conduct the tests.

From the simulation studies, for some cases, our generalized Wald test could be significantly powerful than the

likelihood ratio tests. However, there are several issues for discussion. First, the choice of the functional form

of the generalized Wald test is not unique. The functional form that we propose is simple, but it may not be

the best. Also, ↵ = 2 is not the uniformly most powerful choice. For example, in our simulation study when

� = 0.1, a = 3 works better when µ is large. Therefore, the choice of ↵ needs further studies. Second, the

computational burden of both the generalized Wald test and the likelihood ratio test is large, due to the large

time complexity of both EM algorithm and resampling. Thus, we still need to study the asymptotic property

of the MLE and the test statistics. Finally, we need to study more generalized Gaussian mixture models by

theoretical approaches and simulation studies based on the quotient space.
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A Proof of Proposition 1-2

We first define the standard quotient representation and its order for elements in the quotient space ⇥k/⇠.

Definition 1. For each [✓] 2 ⇥k/⇠, there must exist unique k0  k and ✓0 = (�0
1, ...,�

0
k, µ

0
1, ..., µ

0
k) 2 [✓]

such that µ0
1 < µ0

2 < ... < µ0
k0

, µ0
k0+1 = ... = µ0

k = 0, �0
1�

0
2...�

0
k0

6= 0, and �0
k0+1 = ...�0

k = 0. Then, ✓0 is

defined as the standard quotient representation of [✓] and k0 is defined as the order of [✓].

It is easy to show that existence and uniqueness of the standard quotient representation and its order. Before

proving Proposition 1, we prove the following lemmas.

Lemma 1. Consider [✓1], [✓2] 2 ⇥k/⇠, and their standard quotient representations ✓0 =

(�0
1, ...,�

0
k, µ

0
1, ..., µ

0
k) 2 [✓1] with order k1 and ✓00 = (�00

1 , ...,�
00
k , µ

00
1 , ..., µ

00
k) 2 [✓2] with order k2. Then, we

have

inf
✓⇤2[✓1],✓⇤⇤2[✓2]

d(✓⇤, ✓⇤⇤) �
X

1ik1

S1i

where

S1i =

8
><

>:

min{max{0,�0
i � �00

j },min1lk2,l 6=j ||µ00
l � µ0

i||} if µ00
j = µ0

i for some 1  j  k2

min{�0
i,min1lk2 ||µ00

l � µ0
i||} if µ00

j 6= µ0
i for any 1  j  k2

and similarly

inf
✓⇤2[✓1],✓⇤⇤2[✓2]

d(✓⇤, ✓⇤⇤) �
X

1ik2

S2i

where

S2i =

8
><

>:

min{max{0,�00
i � �0

j},min1lk1,l 6=j ||µ0
l � µ00

i ||} if µ0
j = µ00

i for some 1  j  k1

min{�00
i ,min1lk1 ||µ0

l � µ00
i ||} if µ0

j 6= µ00
i for any 1  j  k1

Remark 1. Define the minimum over an empty set as infinity.

Proof. We just prove the first part of the lemma and the proof of the second part is very similar. For any

✓⇤ = (�⇤
1, ...,�

⇤
k, µ

⇤
1, ..., µ

⇤
k) 2 [✓1] and any ✓⇤⇤ = (�⇤⇤

1 , ...,�⇤⇤
k , µ⇤⇤

1 , ..., µ⇤⇤
k ) 2 [✓2], we are interested in

d(✓⇤, ✓⇤⇤). We introduce the index set Ti = {1  l  k|µ⇤
l = µ0

i} for 1  i  k1. Then,

d(✓⇤, ✓⇤⇤) �
X

1ik1

X

l2Ti

(|�⇤
l � �⇤⇤

l |+||µ⇤
l � µ⇤⇤

l ||)

For any 1  i  k1, if µ00
j = µ0

i and �00
j � �0

i for some 1  j  k2, then obviously

X

l2Ti

(|�⇤
l � �⇤⇤

l |+||µ⇤
l � µ⇤⇤

l ||) � 0.

If µ00
j = µ0

i and �00
j < �0

i for some 1  j  k2, then we write Ti = Ti,1 [ Ti,2, where
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Ti,1 = {l 2 Ti|µ⇤⇤
l = µ0

i or �⇤⇤
l = 0}

and

Ti,2 = {l 2 Ti|µ⇤⇤
l 6= µ0

i and �⇤⇤
l 6= 0},

thus we have
X

l2Ti,1

(|�⇤
l � �⇤⇤

l |+||µ⇤
l � µ⇤⇤

l ||) � �0
i � �00

j

and
X

l2Ti,2

(|�⇤
l � �⇤⇤

l |+||µ⇤
l � µ⇤⇤

l ||) � min
1lk2,l 6=j

||µ00
l � µ0

i||}

which implies

X

l2Ti

(|�⇤
l � �⇤⇤

l |+||µ⇤
l � µ⇤⇤

l ||) � min{�0
i � �00

j , min
1lk2,l 6=j

||µ00
l � µ0

i||}.

If µ00
j 6= µ0

i for any 1  j  k2, similarly we have

X

l2Ti

(|�⇤
l � �⇤⇤

l |+||µ⇤
l � µ⇤⇤

l ||) � min{�0
i, min

1lk2

||µ00
l � µ0

i||}.

Therefore,

d(✓⇤, ✓⇤⇤) �
X

1ik1

S1i

and by taking infimum on the left side,

inf
✓⇤2[✓1],✓⇤⇤2[✓2]

d(✓⇤, ✓⇤⇤) �
X

1ik1

S1i.

The following result is a direct corollary of Lemma 1.

Corollary 1. Consider [✓1], [✓2] 2 ⇥k/⇠, and their standard quotient representations ✓0 =

(�0
1, ...,�

0
k, µ

0
1, ..., µ

0
k) 2 [✓1] with order k1 and ✓00 = (�00

1 , ...,�
00
k , µ

00
1 , ..., µ

00
k) 2 [✓2] with order k2. Then, we

have

inf
✓⇤2[✓1],✓⇤⇤2[✓2]

d(✓⇤, ✓⇤⇤) � min{A,B}

where

A =
X

1ik1

Ai

Ai =

8
><

>:

max{0,�0
i � �00

j } if µ00
j = µ0

i for some 1  j  k2

�0
i if µ00

j 6= µ0
i for any 1  j  k2
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and

B = min
1ik1

Bi

Bi =

8
><

>:

min1lk2,l 6=j ||µ00
l � µ0

i|| if µ00
j = µ0

i for some 1  j  k2

min1lk2 ||µ00
l � µ0

i|| if µ00
j 6= µ0

i for any 1  j  k2

Lemma 2. Consider [✓1], [✓2] 2 ⇥k/⇠, and their standard quotient representations ✓0 =

(�0
1, ...,�

0
k, µ

0
1, ..., µ

0
k) 2 [✓1] with order k1 and ✓00 = (�00

1 , ...,�
00
k , µ

00
1 , ..., µ

00
k) 2 [✓2] with order k2. Then, we

have

(d/⇠)([✓1], [✓2]) � min{A,B}

where

A =
X

1ik1

Ai

Ai =

8
><

>:

max{0,�0
i � �00

j } if µ00
j = µ0

i for some 1  j  k2

�0
i if µ00

j 6= µ0
i for any 1  j  k2

and

B = min
1ik1

Bi

Bi =

8
><

>:

min1lk2,l 6=j ||µ00
l � µ0

i|| if µ00
j = µ0

i for some 1  j  k2

min1lk2 ||µ00
l � µ0

i|| if µ00
j 6= µ0

i for any 1  j  k2

Proof. Consider any finite route from [✓1] to [✓2]: [✓1] ! [✓a1 ] ! ... ! [✓am ] ! [✓2] where [✓ai ] 2 ⇥k/⇠

for 1  i  m. Let their standard quotient representations be ✓(ai) = (�(ai)
1 , ...,�(ai)

k , µ(ai)
1 , ..., µ(ai)

k ) 2 [✓ai ]

with order kai where 1  i  m. We prove the conclusion by mathematical induction. First, when m = 0,

according to the Corollary 1, the conclusion is correct. Then, if the conclusion is correct for m = 0, 1, 2, ..,m0,

when it comes to m = m0 + 1, we analyze the route [✓1] ! [✓a1 ] and [✓a1 ] ! ... ! [✓am ] ! [✓2] separately.

Consider any ✓⇤ = (�⇤
1, ...,�

⇤
k, µ

⇤
1, ..., µ

⇤
k) 2 [✓1] and any ✓⇤⇤ = (�⇤⇤

1 , ...,�⇤⇤
k , µ⇤⇤

1 , ..., µ⇤⇤
k ) 2 [✓a1 ]. We

introduce the index set Ti = {1  l  k|µ⇤
l = µ0

i} for 1  i  k1. We write Ti = Ti,1 [ Ti,2 [ Ti,3, where

Ti,1 = {l 2 Ti|�⇤⇤
l = 0}

Ti,2 = {l 2 Ti|µ⇤⇤
l = µ0

i,�
⇤⇤
l 6= 0}

and

Ti,3 = {l 2 Ti|µ⇤⇤
l 6= µ0

i and �⇤⇤
l 6= 0}.

Then, along the route [✓1] ! [✓a1 ],
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X

l2Ti

(|�⇤
l � �⇤⇤

l |+||µ⇤
l � µ⇤⇤

l ||) �
X

l2Ti,1

�⇤
l +

X

l2Ti,2

|�⇤
l � �⇤⇤

l |+
X

l2Ti,3

(|�⇤
l � �⇤⇤

l |+||µ0
i � µ⇤⇤

l ||).

We consider the following two cases:

(1) If there exists l 2 Ti,3 such that ||µ⇤⇤
l � µ0

i||� min1pk2 ||µ0
i � µ00

p ||, then the sum of distance along

[✓1] ! [✓a1 ] ! ... ! [✓am ] ! [✓2] is no less than min{A,B}.

(2) If ||µ⇤⇤
l � µ0

i||< min1pk2 ||µ0
i � µ00

p || for any l 2 Ti,3, then for any l 2 Ti,3, µ⇤⇤
l 62 {µ00

1 , .., µ
00
2}, and by

triangle inequality,

min
1pk2

||µ⇤⇤
l � µ00

p ||+||µ0
i � µ⇤⇤

l ||� min
1pk2

||µ0
i � µ00

p ||.

Then, we need to consider the sum of distance along the route [✓a1 ] ! ... ! [✓am ] ! [✓2]. By the induction,

we have

(d/⇠)([✓a1 ], [✓2]) � min{A0, B0}

where

A0 =
X

1ika1

A0
i

A0
i =

8
><

>:

max{0,�(a1)
i � �00

j } if µ00
j = µ(a1)

i for some 1  j  k2

�(a1)
i if µ00

j 6= µ(a1)
i for any 1  j  k2

and

B0 = min
1ika1

B0
i

B0
i =

8
><

>:

min1lk2,l 6=j ||µ00
l � µ(a1)

i || if µ00
j = µ(a1)

i for some 1  j  k2

min1lk2 ||µ00
l � µ(a1)

i || if µ00
j 6= µ(a1)

i for any 1  j  k2

Therefore, we have

X

1ik1

X

l2Ti

(|�⇤
l � �⇤⇤

l |+||µ⇤
l � µ⇤⇤

l ||) + (d/⇠)([✓a1 ], [✓2])

�
X

1ik1

✓ X

l2Ti,1

�⇤
l +

X

l2Ti,2

|�⇤
l � �⇤⇤

l |+
X

l2Ti,3

(|�⇤
l � �⇤⇤

l |+||µ0
i � µ⇤⇤

l ||)
◆
+min{A0, B0}

�min{
X

1ik1

✓ X

l2Ti,1

�⇤
l +

X

l2Ti,2

|�⇤
l � �⇤⇤

l |+
X

l2Ti,3

|�⇤
l � �⇤⇤

l |
◆
+A0,

X

1ik1

X

l2Ti,3

||µ0
i � µ⇤⇤

l ||+B0}

�min{A,B}

The conclusion is correct for m = m0 + 1. By mathematical induction, the conclusion is correct for any finite

route.
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Proposition 1. (d/⇠) is a valid metric on ⇥k/⇠.

Proof. First, the non-negativity

(d/⇠)([✓1], [✓2]) � 0, for any [✓1], [✓2] 2 ⇥k/⇠

and the symmetry

(d/⇠)([✓1], [✓2]) = (d/⇠)([✓2], [✓1]), for any [✓1], [✓2] 2 ⇥k/⇠

are obvious due to the non-negativity and symmetry of distance d.

Next, we prove the identity of indiscernible. For any [✓] 2 ⇥k/⇠, there exists a ✓0 2 ⇥k, and

0  (d/⇠)([✓], [✓])  d(✓0, ✓0) = 0,

which implies

(d/⇠)([✓], [✓]) = 0.

On the other hand, if there exists [✓1], [✓2] 2 ⇥k/⇠ such that

(d/⇠)([✓1], [✓2]) = 0,

consider their standard quotient representations ✓0 = (�0
1, ...,�

0
k, µ

0
1, ..., µ

0
k) 2 [✓1] with order k1 and ✓00 =

(�00
1 , ...,�

00
k , µ

00
1 , ..., µ

00
k) 2 [✓2] with order k2, then by Lemma 2, we have min{A,B} = 0. Since B is always

positive, we can know that A =
P

1ik1
Ai = 0 which implies Ai = 0 for every 1  i  k1. Thus, for

every 1  i  k1, there exists different ji such that µ0
i = µ00

ji and �0
i  �00

ji . Since
P

1ik1
�0
i = 1, we have

1 
P

1ik1
�00
ji  1, which implies �0

i = �00
ji for every 1  i  k1. Therefore, ✓0 ⇠ ✓00 and [✓1] = [✓2].

Finally, we prove the subadditivity

(d/⇠)([✓1], [✓2])  (d/⇠)([✓1], [✓3]) + (d/⇠)([✓2], [✓3])

for any [✓1], [✓2], [✓3] 2 ⇥k/⇠. For any fixed ✏ > 0, there exists ✓0a1
2 [✓1], ✓0b1 ⇠ ✓0a2

, ..., ✓0bm1�1
⇠

✓0am1
, ✓0bm1

2 [✓3] such that

(d/⇠)([✓1], [✓3]) +
✏

2
� d(✓0a1

, ✓0b1) + d(✓0a2
, ✓0b2) + ...+ d(✓0am1

, ✓0bm1
)

and there exists ✓0a0
1
2 [✓2], ✓0b01

⇠ ✓0a0
2
, ..., ✓0b0m2�1

⇠ ✓0a0
m2

, ✓0b0m2
2 [✓3] such that

(d/⇠)([✓2], [✓3]) +
✏

2
� d(✓0a1

, ✓0b1) + d(✓0a2
, ✓0b2) + ...+ d(✓0am2

, ✓0bm2
).

Therefore,
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(d/⇠)([✓1], [✓2])  (d/⇠)([✓1], [✓3]) + (d/⇠)([✓2], [✓3]) + ✏.

By taking ✏ ! 0, we have

(d/⇠)([✓1], [✓2])  (d/⇠)([✓1], [✓3]) + (d/⇠)([✓2], [✓3])

Lemma 3. (⇥k, d) is a compact metric space.

Proof. We just need to prove that if (X1, d1) and (X2, d2) are compact, then (X1 ⇥X2, d) is compact, where

d((x1, x2), (x
0
1, x

0
2)) = d1(x1, x

0
1) + d2(x2, x

0
2).

For any sequence {(x1,n, x2,n)}n2N in X , since (X1, d1) and (X2, d2) are compact, they are sequentially

compact, which implies that there exists a convergent subsequence {x1,an}n2N whose limit x1,ab1
is in X1,

and there exists a convergent subsequence {x2,abn
}n2N whose limit x2,ab1

is in X2. For any ✏ > 0 there

exists N1, N2 2 N such that for any n > N1,

d1(x1,abn
, x1,ab1

) <
✏

2

and for any n > N2,

d2(x2,abn
, x2,ab1

) <
✏

2

which implies for any n > max{N1, N2},

d((x1,abn
, x2,abn

), (x1,ab1
, x2,ab1

)) < ✏

Thus, {(x1,abn
, x2,abn

)}n2N is a convergent subsequence whose limit (x1,ab1
, x2,ab1

) is in X . Therefore,

(⇥k, d) is sequentially compact. By the equivalence of sequential compactness and compactness in metric

space, (⇥k, d) is compact.

Lemma 4. (⇥k/⇠, (d/⇠)) is a compact metric space.

Proof. Let {O!}!2⌦ be any open cover of ⇥k/⇠. For any point [✓] 2 ⇥k/⇠, there exists an !([✓]) 2 ⌦ such

that [✓] 2 O!([✓]), and there exists an r([✓]) > 0 such that the open ball B([✓], r([✓])) ⇢ O!([✓]) centering at

[✓] with radius r([✓]) in ⇥k/⇠. Since for any ✓ 2 [✓], the open ball B(✓, r([✓])) centering at ✓ with radius

r([✓]) in ⇥k satisfies

B(✓, r([✓])) ⇢
⇢
✓⇤ 2 [✓⇤]

����[✓
⇤] 2 B([✓], r([✓]))

�
⇢

⇢
✓⇤ 2 [✓⇤]

����[✓
⇤] 2 O!([✓])

�
.
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Therefore, {B(✓, r([✓]))}✓2⇥k is an open cover of ⇥k. By the compactness of (⇥k, d), there exists a finite set

U ⇢ ⇥k such that {B(✓, r([✓]))}✓2U is a subcover of ⇥k, which implies that {O!(✓)}✓2U is a finite subcover

of ⇥k. Therefore, (⇥k/⇠, (d/⇠)) is compact.

Proposition 2. Let X1, ..., Xn be i.i.d. sampled from the distribution p(x; [✓0]) = �1,0f(x;µ1,0) +

�2,0f(x;µ2,0) + ... + �k,0f(x;µk,0), where p(x; [✓0]) 2 Mk. Denote [✓̂] = [(�̂1, ..., �̂k, µ̂1, ..., µ̂k)] as

the MLE in the quotient space ⇥k/⇠. If the distribution family satisfies

(1) f(x;µ) is continuous in µ for all µ 2 C and all x 2 X ;

(2) there exists a function d(x) such that |log p(x; [✓])|  d(x) for all [✓] 2 ⇥k/⇠ and all x 2 X , and

E[✓0][d(X)] < 1;

(3) Q0([✓]) = E[✓0][log p(X; [✓])] is uniquely maximized at [✓0];

Then

[(�̂1, ..., �̂k, µ̂1, ..., µ̂k)]
p�! [(�1,0, ...,�k,0, µ1,0, ..., µk,0)]

with respect to (d/⇠).

The proof of Proposition 2 is easy by the following results.

Lemma 5. If X1, ..., Xn are i.i.d. sampled from the distribution p(x; ✓0) 2 {p(x; ✓)|✓ 2 ⇥}, where ⇥ is

compact, log p(x; ✓) is continuous in ✓ for all ✓ 2 ⇥ and all x 2 X , and if there exists a function d(x) such

that |log p(x; ✓)| d(x) for all ✓ 2 ⇥ and x 2 X , and E✓0 [d(X)] < 1, then

(1) Q0(✓) = E✓0 [log p(X; ✓)] is continuous in ✓;

(2) sup✓|Q(✓;Xn)�Q0(✓)|
p�! 0

where Q(✓;Xn) =
1
n

P
1in log p(Xi; ✓).

Lemma 6. Suppose Q(✓;Xn) is continuous in ✓ and there exists a function Q0(✓) such that

(1) Q0(✓) is uniquely maximized at ✓0;

(2) ⇥ is compact;

(3) Q0(✓) is continuous in ✓;

(4) Q(✓;Xn) converges uniformly in probability to Q0(✓);

then ✓̂(Xn) defined as the value of ✓ 2 ⇥ which maximizes Q(✓;Xn) satisfies ✓̂(Xn)
p�! ✓0.

The proof of the above two lemmas can be found from Frangakis’ lecture notes [26]
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B Tables and Figures

Table 1: MSE of point estimation of parameters by EM algorithm

µ = 0.0 µ = 0.5

µ⇤
1 µ⇤

2 �⇤
1 �⇤

2 µ⇤
1 µ⇤

2 �⇤
1 �⇤

2

M = 100 0.502 0.492 0.083 0.083 0.527 0.478 0.092 0.092

M = 1000 0.319 0.344 0.085 0.085 0.449 0.440 0.128 0.128

M = 5000 0.142 0.213 0.055 0.055 0.212 0.135 0.100 0.100

Table 1 Continued: MSE of point estimation of parameters by EM algorithm

µ = 1.0 µ = 1.5

µ⇤
1 µ⇤

2 �⇤
1 �⇤

2 µ⇤
1 µ⇤

2 �⇤
1 �⇤

2

M = 100 0.563 0.517 0.104 0.104 0.310 0.198 0.052 0.052

M = 1000 0.109 0.040 0.035 0.035 0.029 0.008 0.005 0.005

M = 5000 0.019 0.005 0.008 0.008 0.006 0.002 0.001 0.001
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Table 2: Power of the generalized Wald test and the likelihood ratio test when � = 0.1

µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7

↵ = 1
5 0.0519 0.0565 0.0604 0.0704 0.0857 0.1035 0.1310

↵ = 1
4 0.0504 0.0551 0.0606 0.0719 0.0878 0.1052 0.1362

↵ = 1
3 0.0515 0.0555 0.0593 0.0731 0.0906 0.1088 0.1380

↵ = 1
2 0.0522 0.0560 0.0605 0.0743 0.0958 0.1132 0.1486

↵ = 1 0.0507 0.0554 0.0620 0.0808 0.1063 0.1273 0.1774

↵ = 2 0.0462 0.0547 0.0689 0.0908 0.1196 0.1677 0.2351

↵ = 3 0.0442 0.0502 0.0694 0.0816 0.1109 0.1564 0.2010

↵ = 4 0.0482 0.0521 0.0629 0.0654 0.0846 0.1045 0.1243

↵ = 5 0.0476 0.0538 0.0581 0.0633 0.0771 0.0908 0.1013

LRT 0.0425 0.0495 0.0715 0.0897 0.1147 0.1597 0.2176

Table 2 Continued: Power of the generalized Wald test and the likelihood ratio test when � = 0.1

µ = 0.8 µ = 0.9 µ = 1.0 µ = 1.1 µ = 1.2 µ = 1.3 µ = 1.4

↵ = 1
5 0.1644 0.1717 0.2108 0.1987 0.1965 0.1477 0.1306

↵ = 1
4 0.1675 0.1777 0.2180 0.2060 0.2045 0.1563 0.1389

↵ = 1
3 0.1736 0.1895 0.2279 0.2202 0.2247 0.1798 0.1618

↵ = 1
2 0.1840 0.2052 0.2461 0.2535 0.2624 0.2245 0.2163

↵ = 1 0.2261 0.2663 0.3307 0.3761 0.4220 0.4621 0.5073

↵ = 2 0.3296 0.4341 0.5568 0.7017 0.8116 0.9151 0.9640

↵ = 3 0.3070 0.3922 0.5496 0.7062 0.8362 0.9294 0.9768

↵ = 4 0.1673 0.2088 0.3086 0.4345 0.6026 0.7467 0.8680

↵ = 5 0.1237 0.1397 0.1964 0.2430 0.3617 0.4979 0.6416

LRT 0.3283 0.4226 0.5879 0.7351 0.8580 0.9416 0.9801

Table 2 Continued: Power of the generalized Wald test and the likelihood ratio test when � = 0.1

µ = 1.5 µ = 1.6 µ = 1.7 µ = 1.8 µ = 1.9 µ = 2.0

↵ = 1
5 0.0943 0.0686 0.0406 0.0300 0.0085 0.0075

↵ = 1
4 0.1057 0.0831 0.0492 0.0378 0.0124 0.0110

↵ = 1
3 0.1281 0.1153 0.0676 0.0611 0.0241 0.0278

↵ = 1
2 0.1956 0.1923 0.1341 0.1619 0.0994 0.1239

↵ = 1 0.5877 0.6886 0.7067 0.8411 0.8580 0.9356

↵ = 2 0.9892 0.9965 0.9992 0.9999 0.9999 1.0000

↵ = 3 0.9943 0.9987 0.9998 1.0000 1.0000 1.0000

↵ = 4 0.9539 0.9834 0.9967 0.9994 1.0000 1.0000

↵ = 5 0.8239 0.8992 0.9732 0.9926 0.9991 0.9999

LRT 0.9961 0.9989 0.9999 1.0000 1.0000 1.0000
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Table 3: Power of the generalized Wald test and the likelihood ratio test when � = 0.3

µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7

↵ = 1
5 0.0496 0.0625 0.0769 0.1050 0.1579 0.2264 0.3013

↵ = 1
4 0.0496 0.0647 0.0771 0.1072 0.1626 0.2354 0.3149

↵ = 1
3 0.0495 0.0652 0.0819 0.1111 0.1714 0.2493 0.3345

↵ = 1
2 0.0494 0.0686 0.0860 0.1140 0.1886 0.2714 0.3791

↵ = 1 0.0543 0.0711 0.0907 0.1396 0.2299 0.3534 0.4903

↵ = 2 0.0553 0.0745 0.1072 0.1699 0.3005 0.4887 0.6792

↵ = 3 0.0523 0.0630 0.0944 0.1376 0.2313 0.4059 0.5909

↵ = 4 0.0523 0.0589 0.0722 0.0891 0.1036 0.1731 0.2541

↵ = 5 0.0512 0.0611 0.0683 0.0803 0.0781 0.1053 0.1076

LRT 0.0558 0.0682 0.0985 0.1530 0.2631 0.4558 0.6324

Table 3 Continued: Power of the generalized Wald test and the likelihood ratio test when � = 0.3

µ = 0.8 µ = 0.9 µ = 1.0 µ = 1.1 µ = 1.2 µ = 1.3 µ = 1.4

↵ = 1
5 0.4031 0.5024 0.5877 0.6854 0.7516 0.7970 0.8604

↵ = 1
4 0.4167 0.5260 0.6096 0.7098 0.7811 0.8320 0.8941

↵ = 1
3 0.4427 0.5601 0.6548 0.7608 0.8314 0.8810 0.9399

↵ = 1
2 0.4984 0.6327 0.7347 0.8439 0.9105 0.9538 0.9837

↵ = 1 0.6546 0.7985 0.9144 0.9673 0.9944 0.9989 1.0000

↵ = 2 0.8587 0.9543 0.9937 0.9994 1.0000 1.0000 1.0000

↵ = 3 0.7897 0.9329 0.9861 0.9989 1.0000 1.0000 1.0000

↵ = 4 0.4135 0.6529 0.8424 0.9676 0.9965 0.9998 1.0000

↵ = 5 0.1337 0.2428 0.4356 0.7320 0.9291 0.9883 0.9995

LRT 0.8332 0.9509 0.9916 0.9994 1.0000 1.0000 1.0000

Table 3 Continued: Power of the generalized Wald test and the likelihood ratio test when � = 0.3

µ = 1.5 µ = 1.6 µ = 1.7 µ = 1.8 µ = 1.9 µ = 2.0

↵ = 1
5 0.8845 0.9533 0.9728 0.9931 0.9925 0.9988

↵ = 1
4 0.9274 0.9743 0.9879 0.9977 0.9976 0.9998

↵ = 1
3 0.9671 0.9913 0.9971 0.9998 0.9998 0.9999

↵ = 1
2 0.9962 0.9997 1.0000 1.0000 1.0000 1.0000

↵ = 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

↵ = 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

↵ = 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

↵ = 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

↵ = 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

LRT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 4: Power of the generalized Wald test and the likelihood ratio test when � = 0.5

µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.7

↵ = 1
5 0.0550 0.0678 0.0836 0.1324 0.1786 0.2538 0.3632

↵ = 1
4 0.0528 0.0690 0.0860 0.1363 0.1864 0.2691 0.3843

↵ = 1
3 0.0543 0.0711 0.0864 0.1395 0.1965 0.2953 0.4181

↵ = 1
2 0.0553 0.0719 0.0889 0.1514 0.2183 0.3364 0.4785

↵ = 1 0.0566 0.0737 0.0987 0.1816 0.2706 0.4448 0.6310

↵ = 2 0.0581 0.0809 0.1131 0.2269 0.3675 0.5926 0.8098

↵ = 3 0.0616 0.0771 0.1046 0.1736 0.2867 0.4819 0.7120

↵ = 4 0.0601 0.0630 0.0853 0.1080 0.1433 0.1942 0.3234

↵ = 5 0.0578 0.0598 0.0763 0.0921 0.0932 0.0965 0.1008

LRT 0.0616 0.0814 0.1088 0.1876 0.3234 0.5383 0.7697

Table 4 Continued: Power of the generalized Wald test and the likelihood ratio test when � = 0.5

µ = 0.8 µ = 0.9 µ = 1.0 µ = 1.1 µ = 1.2 µ = 1.3 µ = 1.4

↵ = 1
5 0.5022 0.6581 0.8033 0.9225 0.9730 0.9937 0.9997

↵ = 1
4 0.5353 0.6892 0.8294 0.9364 0.9807 0.9956 0.9998

↵ = 1
3 0.5767 0.7306 0.8649 0.9567 0.9892 0.9979 0.9999

↵ = 1
2 0.6478 0.7990 0.9197 0.9787 0.9961 0.9996 1.0000

↵ = 1 0.8074 0.9291 0.9820 0.9980 1.0000 1.0000 1.0000

↵ = 2 0.9415 0.9905 0.9988 0.9998 1.0000 1.0000 1.0000

↵ = 3 0.8897 0.9785 0.9968 0.9999 0.9999 1.0000 1.0000

↵ = 4 0.5211 0.7905 0.9394 0.9935 0.9996 1.0000 1.0000

↵ = 5 0.1490 0.3392 0.6033 0.8642 0.9895 0.9991 1.0000

LRT 0.9202 0.9854 0.9980 0.9999 1.0000 1.0000 1.0000

Table 4 Continued: Power of the generalized Wald test and the likelihood ratio test when � = 0.5

µ = 1.5 µ = 1.6 µ = 1.7 µ = 1.8 µ = 1.9 µ = 2.0

↵ = 1
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

↵ = 1
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

↵ = 1
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

↵ = 1
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

↵ = 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

↵ = 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

↵ = 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

↵ = 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

↵ = 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

LRT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Figure 1: Log likelihood function of two-component Gaussian mixture model �N(µ1, 1) + (1� �)N(µ2, 1).
Left: x-axis and y-axis refer to µ1 and µ2 respectively, z-axis refers to the log likelihood, and � is fixed as 0.3.
Right: contour plot of the left 3D surface plot

Figure 2: Power of the generalized Wald test and the likelihood ratio test when � = 0.1

Figure 3: Power of the generalized Wald test and the likelihood ratio test when � = 0.3
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Figure 4: Power of the generalized Wald test and the likelihood ratio test when � = 0.5


