
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the re-
quirements for an advanced degree from Emory University, I hereby grant
to Emory University and its agents the non-exclusive license to archive,
make accessible, and display my thesis or dissertation in whole or in part in
all forms of media, now or hereafter known, including display on the world
wide web. I understand that I may select some access restrictions as part
of the online submission of this thesis or dissertation. I retain all ownership
rights to the copyright of the thesis or dissertation. I also retain the right
to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Denis Savenkov Date

Question Answering with User Generated Content

By

Denis Savenkov
Doctor of Philosophy

Mathematics and Computer Science

Eugene Agichtein, Ph.D.
Advisor

Jinho D. Choi, Ph.D.
Committee Member

Li Xiong, Ph.D.
Committee Member

Scott Wen-tau Yih, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the Graduate School

Date

Question Answering with User Generated Content

By

Denis Savenkov
M.S., Tula State University, 2007

Advisor: Eugene Agichtein, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the Graduate School

of Emory University in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
in Mathematics and Computer Science

2017

Abstract

Question Answering with User Generated Content
By Denis Savenkov

Modern search engines have made dramatic progress in answering many user
questions, especially about facts, such as those that might be retrieved or
directly inferred from a knowledge base. However, many other more complex
factual, opinion or advice questions, are still largely beyond the competence
of computer systems. For such information needs users still have to dig
into the “10 blue links” of search results and extract relevant information.
As conversational agents become more popular, question answering (QA)
systems are increasingly expected to handle such complex questions and
provide users with helpful and concise information.

In my dissertation I develop new methods to improve the performance of
question answering systems for a diverse set of user information needs using
various types of user-generated content, such as text documents, community
question answering archives, knowledge bases, direct human contributions,
and explore the opportunities of conversational settings for information seek-
ing scenarios.

To improve factoid question answering I developed techniques for com-
bining information from unstructured, semi-structured and structured data
sources. More specifically, I propose a model for relation extraction from
question-answer pairs, the Text2KB system for utilizing textual resources
to improve knowledge base question answering, and the EviNets neural net-
work framework for joint reasoning using structured and unstructured data
sources. Next, I present a non-factoid question answering system, which
effectively combines information obtained from question-answer archives,
regular web search, and real-time crowdsourcing contributions. Finally, the
dissertation describes the findings and insights of three user studies, con-
ducted to look into how people use dialog for information seeking scenarios
and how existing commercial products can be improved, e.g., by responding
with certain suggestions or clarifications for hard and ambiguous questions.

Together, these techniques improve the performance of question answer-
ing over a variety of different questions a user might have, increasing the
power and breadth of QA systems, and suggest promising directions for
improving question answering in a conversational scenario.

Question Answering with User Generated Content

By

Denis Savenkov
M.S., Tula State University, 2007

Advisor: Eugene Agichtein, Ph.D.

A dissertation submitted to the Faculty of the Graduate School
of Emory University in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

in Mathematics and Computer Science
2017

Acknowledgments

My very first words of gratitude are addressed towards my advisor Pro-
fessor Eugene Agichtein for his continuous support of my Ph.D. study, for
his limitless patience, motivation, and guidance during these years. My very
first interaction with Professor Agichtein happened in 2010 in Petrozavodsk,
Russia, where Eugene was teaching a course at the Russian Summer School
in Information Retrieval. I was really intrigued by the research done in his
lab, and captivated by Eugene’s personality traits. Therefore, when I de-
cided to pursue a Ph.D., the application to Emory University was a natural
choice. It took me a while to settle on the topic of this dissertation, and
Eugene was very supportive throughout the whole time. During our numer-
ous conversations I have learned so many different things from him: how to
spot interesting problems, be on top of recent research, structure and write
papers, and many others. During my Ph.D. years, Eugene helped me grow
not only as a researcher but also as a person. He helped me adopt a healthier
lifestyle, revive the love for running, lose 70 lbs (32 kg), and achieve the best
physical shape I have ever had. I am extremely fortunate to have Eugene
as a mentor and Ph.D. advisor.

Besides my advisor, I would like to thank the rest of my dissertation
committee: Prof. Jinho Choi, Prof. Li Xiong, and Dr. Scott Wen-tau Yih,
for their time and insightful comments and suggestions, which helped me
form and revise this dissertation.

A fraction of this thesis would be impossible without collaborations. The
work on relation extraction from question-answer pairs started as an intern-
ship project in Google’s Knowledge Vault team, where I had a chance to work
with Dr. Wei-Lwun Lu as my host, Dr. Evgeniy Gabrilovich, Dr. Jeff Dalton
and Dr. Amarnag Subramanya. This experience has taught me a number of
lessons, introduced to many great people, and had a big impact on me per-
sonally. A large portion of work on conversational question answering was
done in collaboration with Prof. Charles L.A. Clarke, Prof. Pavel Braslavsky,
and Alexandra Vtyurina. These collaborations helped me get valuable ex-
perience and widen my research horizons. I would like to thank all my
collaborators and co-authors in various other projects: David Carmel, Nick
Craswell, Jeff Dalton, Evgeniy Gabrilovich, Dan Gillick, Qi Guo, Dmitry La-
gun, Qiaoling Liu, Wei-Lwun Lu, Yoelle Maarek, Tara McIntosh, Dan Pelleg,
Edgar Gonzlez Pellicer, Marta Recasens, Milad Shokouhi, Idan Szpektor, Yu

Wang and Scott Weitzner. While some of these collaborations did not be-
come a part of this thesis, it would be difficult to overstate the impact they
had on some of my ideas, skills, and experience.

Special thanks goes to people, who planted and helped me grow the
grain of love towards the research, people who were my mentors during
the bachelor and masters studies, during the time at the wonderful Yandex
School of Data Science and life changing internship and work at Yandex:
Sergey Dvoenko, Vadim Mottl, Ilya Muchnik, Dmitry Leschiner and many
others.

I would like to thank my fellow labmates, past and present members and
visitors of the Emory IRLab: Noah Adler, Liquan Bai, Pavel Braslavsky,
David Fink, Qi Guo, Payam Karisani, Alexander Kotov, Dmitry Lagun,
Qiaoling Liu, Alexandra Vtyurina, Yu Wang, Zihao Wang and Nikita Zhiltsov.
Thank you for enriching my Ph.D. studies with insightful discussions, feed-
back, support and relaxing chitchats. The years of Ph.D. work would have
been unbearable without my friends in Atlanta, who helped to settle in a
new country and new city, and supported along the way. I want to thank
them for being here for me and for all the fun we have had in the last six
years. I hope to carry this friendship over the years.

And finally, I would like to thank people, without whom I could not
have achieved anything: my family. I thank my grandmother, who passed
away before I started my Ph.D., but who nurtured me and supported all my
endeavors since I was 3 years old. I thank my mom, who always believed in
me and spiritually contributed to this dissertation as much as I did. I know
it has been very hard for her to be that far from her son. And last, but
not least, all this would be impossible without my wife, who sacrificed her
career to join me in this journey. Words cannot describe my gratitude and
love to her. I thank her for all the understanding and support, and for the
son, who brought so much joy in our lives, and gave me the energy to work
and improve.

This research was funded by the Yahoo! Labs Faculty Research Engage-
ment Program, Google Faculty Research Award, NSF IIS-1018321, DARPA
D11AP00269 and by travel support from the ACM Special Interest Group
on Information Retrieval and Association for Computational Linguistics.

2

To my wife Jenny, who is supporting me throughout my career.

Contents

1 Introduction 1

1.1 Contributions . 7

2 Background and Related Work 9

2.1 Factoid Question Answering 10

2.1.1 Text-based Question Answering 10

2.1.2 Knowledge Base Question Answering 13

2.1.3 Information Extraction 18

2.1.4 Hybrid Question Answering 20

2.2 Non-factoid Question Answering 23

2.3 Crowdsourcing for Question Answering 26

2.4 Interactions between Users and QA Systems 28

2.4.1 User Assistance in Information Retrieval 28

2.4.2 Conversational Search and Question Answering 29

3 Combining Data Sources for Factoid Question Answering 33

3.1 Relation Extraction from Question-Answer Pairs 35

3.1.1 Relation Extraction Models 37

3.1.2 Experiments . 41

3.1.3 Analysis and Discussion 44

3.2 Text2KB: Augmenting Knowledge Base Question Answering

with External Text Data . 46

3.2.1 Baseline Approach . 49

3.2.2 Text2KB Model . 53

3.2.3 Experimental Results 59

3.2.4 Analysis . 65

3.3 EviNets: Joint Model for Text and Knowledge Base Question

Answering . 70

3.3.1 Model and Architecture 72

3.3.2 Experimental Evaluation 75

3.3.3 Discussion . 81

3.4 Summary . 82

4 Improving Non-factoid Question Answering 83

4.1 Ranking Answers and Web Passages for Non-factoid Question

Answering . 85

4.1.1 Candidate Answer Generation 87

4.1.2 Candidate ranking . 88

4.1.3 Evaluation . 93

4.2 CRQA: Crowd-powered Real-time Automatic Question An-

swering System . 96

4.2.1 Evaluating crowdsourcing for question answering . . . 97

4.2.2 System Design . 105

4.2.3 Experiments . 110

4.2.4 Analysis and Discussion 113

4.3 Summary . 118

5 Conversational Question Answering 120

5.1 Conversational Search With Humans, Wizards, and Chatbots 122

5.1.1 Motivation . 122

5.1.2 Study design . 124

5.1.3 Results . 127

5.1.4 Discussion and design implications 132

5.2 Search Hints for Complex Informational Tasks 134

5.2.1 User Study . 135

5.2.2 Results and Discussion 138

5.3 Clarifications in Conversational Question Answering 142

5.3.1 Dataset Description . 143

5.3.2 Results . 145

5.3.3 Discussion . 150

5.4 Summary . 151

6 Conclusions 153

6.1 Summary of the Results . 153

6.1.1 Combining KB and Text Data for Factoid Question

Answering . 154

6.1.2 Ranking Answer Passages for Non-factoid Question An-

swering . 156

6.1.3 Question Answering in Conversational Setting 157

6.2 Limitations and Future Work 158

6.3 Contributions and Potential Impact 161

Bibliography 164

4

List of Figures

3.1 QnA-based relation extraction model plate diagram. N - num-

ber of different entity pairs, M - number of mentions of an

entity pair, |Q| - number of questions where an entity pair

is mentioned, xi and xq - mention-based and question-based

features, wm and wq - corresponding feature weights, latent

variables zi - relation expressed in an entity pair mention, la-

tent variables y - relations between entity pair. 38

3.2 Precision-Recall curves for QnA-based vs sentence-based mod-

els and sentence-based model with and without question fea-

tures. 44

3.3 Web search results for the question “what year did tut became

king?”, which mention both the full name of the king and the

correct answer to the question. 48

3.4 The architecture of the Text2KB Question Answering system. 50

3.5 Example of a question and answer pair from Yahoo! Answers

CQA website. 56

3.6 A plot of Gini importances of different features of our answer

ranking random forest model (features marked * are not text-

based and are provided for comparison). 64

3.7 Distribution of problems with questions, where Text2KB re-

turns an answer with F1<1. 67

3.8 The architecture of EviNets Neural Networks for combining

textual and KB evidence in factoid question answering. 71

3.9 Layer-wise structure of the EviNets Neural Networks frame-

work for factoid question answering. Evidence matching (a),

aggregation (b) and answer scoring (c) stages correspond to

those in Figure 3.8. 72

4.1 Architecture of the EmoryQA non-factoid question answering

system, participated in TREC LiveQA shared task. 86

4.2 Dataset generation workflow for training logistic regression

and LSTM answer ranking models used in EmoryQA system

participated in TREC LiveQA 2015. 90

4.3 LSTM model for answer scoring used in EmoryQA system,

which participated in TREC LiveQA 2015 shared task. The

example shows a QnA pair where the question is “Best way to

reply to trolls on youtube?” and the answer is “Do not reply,

just ignore”. 91

4.4 User Interface for the answer quality judgment experiment

using real-time crowdsourcing. 99

4.5 Correlation between NIST assessor scores and crowdsourced

ratings with and without time limit on the work time for an-

swers from a sample of 100 questions from TREC LiveQA 2015

task. 100

4.6 Box plot of answer rating time by workers on Amazon Me-

chanical Turk platform with and without time pressure. 101

4.7 Distribution of answering times for experiments with and with-

out time pressure. 103

4.8 Average scores of different types of answers to Yahoo! Answers

questions. 104

4.9 Distribution of scores for different types of answers to Yahoo!

Answers questions. 105

4.10 The architecture of our Crowd-powered Real-time Question

Answering system, that uses crowdsourcing to augment a list

of automatically extracted candidate answers and to rate their

quality. 106

4.11 User Interface for workers in our Crowd-Powered Question An-

swering system. 107

4.12 Histogram and kernel density estimation of answer scores for

original candidate ranking, CPQA model re-ranking and Ya-

hoo! Answers answers. 114

4.13 Plot showing how the quality of the final answer depends on

the number of workers per question. 117

5.1 Description of the tasks used in the user study on conversa-

tional search. All the tasks were obtained from TREC Session

track 2014 [50]. 125

5.2 Automatic system (gray background) fails to maintain con-

text, which causes the participant 15 (blue background) to

reformulate his question twice. 130

5.3 A participant prefers web search to talking to a person. Part

of a conversation between participant 7 (blue background) and

Human agent (gray background). 131

5.4 Explicit user feedback could be used to recover from failure.

Part of a conversation between participant 12 (blue back-

ground) and Automatic system (gray background). 132

5.5 The interface of the search game used in the study of the

effect of strategic search hints on success in solving complex

informational tasks. 135

5.6 Results of the user study on the effectiveness of strategic search

tips on search task success rate. 140

5.7 Proportions of replies to some of the survey question for each

group of users. 140

5.8 Screenshot of a DIY question page from StachExchange CQA

platform with threaded conversation in comments. 143

5.9 Distribution of users’ reputation scores in the groups of ac-

cepted answers’ providers and commentators on questions (GAMES).146

8

List of Tables

1.1 Pros and cons of structured and unstructured data sources for

factoid and non-factoid question answering. 3

3.1 Examples of features used for relation extraction for “When

was Mariah Carey born? Mariah Carey was born 27 March

1970 ”. 40

3.2 Statistics of Yahoo! Answers and WikiAnswers datasets, used

in our experiments on relation extraction from question-answer

pairs. 41

3.3 Results for relation extraction of QnA-, sentence-based and

combined models on Yahoo! Answers and WikiAnswers datasets. 43

3.4 Examples of term-predicate pairs with high PMI scores, com-

puted using distant supervision from a CQA collection. 57

3.5 Example of entity pairs along with the most popular terms

mentioned around the entities in ClueWeb12 collection. 58

3.6 The list of text-based features used in the Text2KB model. . . 60

3.7 Average performance metrics of the Text2KB system on We-

bQuestions dataset compared to the existing approaches. The

differences of scores marked * from the baseline Aqqu system

are significant with p-value < 0.01. 62

3.8 Average Recall, Precision (Prec), and F1 of Aqqu and Text2KB

system with and without different components. +A means

that a component A is added to the Text2KB (base) system. . 65

3.9 Average Recall, Precision (Prec), and F1 of Text2KB with and

without features based on web search results, CQA data and

ClueWeb collection. 66

3.10 Average F1 for combinations of Text2KB and STAGG using

a simple heuristic based on the length of the answer list and

Oracle upper bound. 67

3.11 Signals used in EviNets to aggregate evidence in support for

each of the answer candidates a. 74

3.12 Statistics of the TREC QA, WikiMovies and Yahoo! Answers

factoid datasets. 75

3.13 Precision, Recall and F1 of KB- and Text-based question an-

swering methods on the TREC QA dataset. The improve-

ments over the Key-Value memory networks are statistically

significant at p-value < 0.01. 77

3.14 Accuracy of EviNets and baseline models on the WikiMovies

dataset. The results marked * are obtained using a different

setup, i.e., they use pre-processed entity window memories,

and the whole set of entities as candidates. 79

3.15 Precision, Recall and F1 of different methods on Yahoo! An-

swers factoid QA dataset. The Oracle performance assumes

candidate answers are ranked perfectly and is bound by the

performance of the initial retrieval step. 80

3.16 Precision, Recall and F1 of EviNets with bag-of-words and

bidirectional LSTM representations of questions and evidence. 81

4.1 The list of candidate answer ranking features used by the

EmoryQA non-factoid question answering system. 89

4.2 Top results of the TREC LiveQA 2015 and 2016 shared tasks.

EmoryQA is the described fully automatic question answering

system. EmoryCRQA is a system with the integrated crowd-

sourcing module, described in Section 4.2. 94

4.3 Statistics of different types of answers for Yahoo! Answers

questions. 103

4.4 EmoryCRQA crowdsourcing task instructions, displayed to

the user when she first gets to the task. 108

4.5 The list of features used for answer re-ranking based on crowd-

sourcing input in EmoryCRQA question answering system. . . 109

4.6 Aggregate statistics of the crowdsourcing tasks submitted dur-

ing TREC LiveQA 2016 shared task run. 111

4.7 Official evaluation results of Emory CRQA system from TREC

LiveQA 2016 shared task. Full results table is available in [3].

*Unlike other systems, average score for “crowd-answers only”

experiment was normalized by the number of answers rather

than questions. 112

4.8 Evaluation of the baselines and system answers quality based

on the ratings of answers obtained via crowdsourcing. The

scores are averaged over 100 different 50:50 splits of 1088 ques-

tions into the training and test set. The differences between

average score and precision of CRQA and the original ranking

are significant at p-value < 0.01. 113

4.9 Examples of questions, answers and their quality scores, pro-

vided by the crowd workers during TREC LiveQA 2016 shared

task. 116

5.1 Statistics on user satisfaction and success rates with human,

wizard and automatic agent in conversational search user study.128

5.2 Search tasks and specific search hints used for user study on

the effectiveness of strategic hints for complex informational

search tasks. 136

5.3 Statistics of the Stack Exchange datasets, used for the clarifi-

cation questions study. 144

5.4 The distribution of questions in StackExchange comments by

type. Some comments contain several clarQ of different

types, so the sum is more the 100%. 146

5.5 Question patterns in comments (sorted by frequency in GAMES)

from StackExchange dataset. 147

5.6 Performance metrics (P@1 – precision at 1, MAP – mean av-

erage precision, RR@10 – reciprocal rank at 10, ERR@10 –

expected reciprocal rank) of the ranking model for “ambigu-

ous” noun phrase selection problem. 150

1

Chapter 1

Introduction

It has long been a dream to communicate with a computer using natural

language, as one might with another human being. We are now closer to

this dream, as natural language interfaces become increasingly popular. Our

phones are already reasonably good at recognizing speech, and personal as-

sistants, such as Apple Siri, Google Assistant, Microsoft Cortana, Amazon

Alexa, etc., help us with everyday tasks and answer some of our questions.

Chatbots are arguably considered “the next big thing”, and a number of

startups developing this kind of technology have emerged in Silicon Valley

and around the world1.

Question answering is one of the major components of such personal as-

sistants. Existing techniques already allow users to get direct answers to

some of their questions. However, by some estimates2, for ∼ 70% of the

more complex questions, users still have to dig into the “10 blue links” from

search engine results pages, and extract or synthesize answers from informa-

tion buried within the retrieved documents. In order to make a shift towards

more intelligent personal assistants, this gap needs to be closed.

1http://time.com/4194063/chatbots-facebook-messenger-kik-wechat/
2https://www.stonetemple.com/the-growth-of-rich-answers-in-googles-search-results/

2

The research goal of my Ph.D. dissertation is to develop methods and

techniques for improving the performance of question answering systems for

different information needs, using various types of user generated content,

such as text documents, knowledge bases, community question answering

archives, and direct human contributions.

Questions come in many varieties, and each type has its own set of chal-

lenges [201, 232]. It is common to divide questions into factoid and non-

factoid. Factoid questions are inquiring about certain facts and can be an-

swered with entity names or attributes, such as dates or numbers. An ex-

ample of a factoid question is “What book did John Steinbeck wrote about

the people in the dust bowl?” (answer: “The Grapes of Wrath”). Of course,

there is a variety of questions, that do not fall into this category, e.g., how-

to, “why” questions, recommendation and opinion questions, etc. The lit-

erature usually refers to all such questions as “non-factoid”. An example

of a non-factoid question is “Why did John Steinbeck name his book the

Grapes of Wrath?”. Most of the research in automatic question answering

focused on factoid questions [22, 44, 201, 126], but relatively recently more

and more works have started targeting the category of non-factoid ques-

tions [2, 55, 75, 171, 187, 196, 232].

My approach is to leverage the knowledge contributed by Internet users.

More than 3.5 billion people in the world have access to the Internet, and

this number has increased tenfold from 1999 to 2013 3. Over the years,

Internet users have contributed a vast amount of data, and created many

highly valuable resources, such as encyclopedias (Wikipedia, WedMD, Bri-

tannica), community question answering websites (Quora, Yahoo! Answers,

Answers.com), social media (Twitter, Facebook, Snapchat), knowledge bases

(Freebase, WikiData, DBpedia, YAGO), and others. With more than a bil-

lion websites, the Internet stores a huge volume of information, which could

3http://www.internetlivestats.com/

3

Unstructured data Structured data

Factoid

questions

Text Knowledge Bases

+ easy to match against ques-

tion text

+ aggregate all the information

about entities

+ cover a variety of different in-

formation types

allow complex queries over this

data using special languages

(e.g. SPARQL)

- each text phrase encodes a

limited amount of information

about mentioned entities

- hard to translate natural lan-

guage questions into special

query languages

- KBs are incomplete (missing

entities, facts and properties)

Non-factoid

questions

Text Question-Answer pairs

+ contain relevant information

to a big fraction of user needs

+ easy to find a relevant answer

by matching the corresponding

questions

- hard to extract semantic

meaning of text and match

it against the question (lexical

gap)

- cover a smaller subset of user

information needs

Table 1.1: Pros and cons of structured and unstructured data sources for

factoid and non-factoid question answering.

be useful to answer user questions.

By their nature, data sources can be classified into unstructured (e.g., raw

natural language text), semi-structured (e.g., tables, question-answer pairs)

and structured (e.g., knowledge bases). Each of the formats offers a unique

set of features, which have their advantages and limitations for question

4

answering, and can often complement each other (Table 1.1). A number of

methods have been proposed for question answering using text collections,

knowledge bases (KB) or archives of question-answer (QnA) pairs. Most of

the developed systems use either a single source of data or combine multiple

independent pipelines, each of which operates over a separate data source.

Two major paradigms for factoid question answering are knowledge base

question answering (KBQA) and text-based question answer (TextQA). The

information contained in a huge volume of text data can be relatively easily

queried using terms and phrases from the original question in order to retrieve

sentences that might contain the answer. However, each sentence encodes

only limited amount of information about mentioned entities and aggregating

it over unstructured data is quite problematic.

On the other hand, modern large scale knowledge bases, such as Freebase

[34], DBpedia [15], YAGO [133], WikiData [202], accumulate information

about millions of entities into a graph of [subject, predicate, object]

RDF triples. One of the issues with KBs is that they are inherently incom-

plete and miss a lot of entities, facts, and predicates [62]. Some of these

issues are addressed by relation extraction techniques, which can derive fac-

tual knowledge from raw text data [138], web tables [44] or pages [45]. In

my dissertation, I develop a method to further extend this set of sources to

question-answer pairs, available in abundance on community question an-

swering platforms. This technique allows us to extract additional informa-

tion, which may not be easily accessible in other sources.

While extremely useful, relation extraction techniques are not perfect and

introduce both precision and recall errors. An alternative approach is to use

raw text and knowledge base data together for joint reasoning. However,

mapping between natural languages phrases and knowledge base concepts

is not trivial, and is traditionally done by building huge lexicons [22, 23].

The Text2KB model, which I developed in my Ph.D. work, takes a different

5

approach, and exploits techniques from text-based question answering to im-

prove different stages of the KBQA process at run-time, i.e., by retrieving

relevant pieces of information from unstructured and semi-structured data

sources, and using them to help KBQA system to generate and score candi-

date answers.

Unfortunately, not all user questions align well with a knowledge base

schema, even with large ones, such as Freebase [69]. The EviNets model

I developed in my dissertation, is a memory-augmented neural network ar-

chitecture, which aggregates evidence in support for answer candidates from

multiple different data sources, such as RDF triples and text sentences. The

proposed approach improves the performance over both Text and KB-based

question answering, by better utilization of all available information.

In non-factoid question answering, one of the main challenges is the diver-

sity of question and answer types. Reusing answers from previously posted

similar questions, which could be found, for example, in CQA archives, was

demonstrated to be quite effective to answer new questions [48, 174]. Unfor-

tunately, it is not always possible to find a similar question, that has already

been answered, because many information needs are unique in general or in

details. Alternative strategies include ranking text passages extracted from

retrieved web documents by estimating semantic similarity between the ques-

tion and an answer candidate [180]. TREC LiveQA shared task4, started in

2015 to advance research in complex question answering, asks participants to

build a system to answer real user questions in real-time using any informa-

tion available. In this dissertation, I developed an open source state-of-the-

art system, which utilizes both CQA archives and web search data sources,

and combines them in a single model.

No matter how good a QA system is, there likely to be cases when it is

unable to return a satisfactory response to a user question, e.g., existing data

4http://trec-liveqa.org

6

sources might not contain the necessary information, or a system might fail

to rank a good answer on top of others. Such failures can be detrimental

to the overall user experience with a QA system. One way to mitigate this

challenging situation is to put a human in the loop, e.g., let a system consult

a group of workers, who can provide some kind of feedback and help return

a more satisfactory answer. EmoryCRQA extends my automatic non-factoid

question answering system with a real-time crowdsourcing module. Crowd-

sourcing serves as an additional source of answer candidates and their quality

ratings, which are used for re-ranking to return a better final response. This

system achieved the top performance on TREC LiveQA 2016 shared task.

The scenarios described above follow a traditional one-way interaction set-

ting, where a user issues a single query and a system needs to come up with

a response. However, modern conversational interfaces open many opportu-

nities to enrich this scenario, and transition to information seeking dialogs,

where a system may ask additional clarification questions, accept user feed-

back, etc. In Chapter 5 of my dissertation I focus on conversational question

answering. I describe a formative user study, conducted to learn how users

use dialogue-based information seeking, either with humans or chatbots, to

solve informational needs. The results of the user study suggest directions

for future research in the area. Next, we turn to two particular types of inter-

actions, which a system can exploit to help users: search hints, designed to

assist a user with complex multi-step tasks, and clarification questions, which

may be asked to resolve certain ambiguities in user questions. Together, our

results and findings about conversational search provide a number of insights

and ideas, which can be helpful for future research.

7

1.1 Contributions

The main contributions of the dissertation are summarized as follows:

• Relation extraction from community generated question-answer

pairs: The dissertation develops a model for extracting factual knowl-

edge for KB completion from CQA question-answer pairs. This method

allows to extract more [subject, predicate, object] triples from available

information and helps with knowledge base incompletion problem (Sec-

tion 3.1).

• Techniques for augmenting knowledge base question answer-

ing with unstructured text data: The dissertation develops a novel

Text2KB model for knowledge base question answering, which utilizes

various available unstructured information, such as web search results,

CQA archives, and annotated document collections, and improves the

performance of a pure KBQA system (Section 3.2).

• Framework for combining text and knowledge base evidence

for factoid question answering: The dissertation develops EviNets,

a memory-augmented neural network architecture for aggregating mul-

tiple different pieces of information, as evidence in support of different

answer candidates. To show the efficiency of the proposed architecture

over a variety of user questions, I developed a new entity-centric factoid

QA dataset, derived from the Yahoo! Answers archive (Section 3.3).

• Non-factoid question answering system: The dissertation devel-

ops a state-of-the-art system for non-factoid question answering, which

showed very competitive results on both TREC LiveQA 2015 and 2016

shared tasks. The system combines vertical CQA and general web

searches to build candidates from both retrieved question-answer pairs

8

and web documents, which are then ranked with a trained learning-to-

rank model (Section 4.1).

• Techniques for real-time crowdsourcing for question answer-

ing: The dissertation proposes a method to incorporate crowdsourc-

ing into a real-time question answering system. EmoryCRQA system,

which extends our LiveQA approach with the crowdsourcing module

to obtain additional and rate existing answer candidates, shows signifi-

cant improvements over the baseline performance and achieves the top

result on TREC LiveQA 2016 task (Section 4.2).

• Exploration of conversational question answering: The disserta-

tion investigates user perception and behavior patterns in dialog-based

information seeking. We further study search hints and clarification

questions, as particular examples of actions available to a QA system

in dialog settings, and provide the results and implications of the anal-

ysis we conducted on the topics (Chapter 5).

Together, the results presented in this Ph.D. dissertation push research in

question answering forward by improving the key components in the QA

pipeline with techniques to combine different unstructured, semi-structured

and structured data source, and by exploring the possibilities of conversa-

tional interfaces for information seeking scenarios.

9

Chapter 2

Background and Related Work

The field of automatic questions answering has a long history of research

and dates back to the days when the first computers appear. By the early

60s, people have already explored multiple different approaches to question

answering and a number of text-based and knowledge base QA systems ex-

isted at that time [175, 176]. In the 70s and 80s, the development of re-

stricted domain knowledge bases and computational linguistics theories fa-

cilitated the development of interactive expert and text comprehension sys-

tems [14, 173, 221, 223]. The modern era of question answering research was

motivated by a series of Text Retrieval Conference (TREC1) question answer-

ing shared tasks, which were organized annually from 1999 to 2007 [201]. A

comprehensive survey of the approaches from TREC QA 2007 can be found

in [58]. To track the progress made during the years of active research in

question answering I can refer the readers to a number of surveys, such

as [9, 13, 82, 93, 115, 150, 209].

In this Chapter, I describe the works that provide the foundation and give

the context to the research of my Ph.D. dissertation.

1http://trec.nist.gov

10

2.1 Factoid Question Answering

Most of the research in the earlier days of QA have focused on questions,

which can be answered with a name of an entity, or its attributes, which

are usually referred to as factoid questions. In the 60s and 70s, researchers

explored different sources of information, which can be used for question

answering, which lead to the development of the two major approaches to

factoid QA: text-based (TextQA) and knowledge base question answering

(KBQA) [175]. I first describe related work in TextQA (Section 2.1.1),

then introduce KBQA (Section 2.1.2), and finally in Sections 2.1.3 and 2.1.4

present existing techniques for combining different information sources to-

gether.

2.1.1 Text-based Question Answering

A traditional approach to factoid question answering over text documents,

popularized by the TREC QA task, starts by querying a collection with a

possibly transformed question and retrieving a set of potentially relevant doc-

uments, which are then used to identify the answer. Information retrieval for

question answering has certain differences from traditional IR methods [110],

which are usually based on keyword matches. A natural language question

contains certain information, that is not expected to be present in the answer

(e.g., question words who, what, when etc.), and the answer statement might

use language that is different from the question (lexical gap problem) [25].

On the other side, there is a certain additional information about expected

answer statement, that a QA system might infer from the question (e.g., we

expect to see a number in response to the “how many” question). One way

to deal with this problem is to transform the question in certain ways before

querying a collection [5, 40]. Another idea is to extend the raw text data with

certain semantic annotations, e.g., part of speech tags, semantic role labels,

11

named entity tags, etc. By indexing these annotations a question answering

system gets an opportunity to query collection with additional attributes,

inferred from the question [33, 52, 238].

The next stage in TextQA is to select sentences, which might contain

the answer. One of the most frequently used benchmark datasets for the

task, designed by Mengqiu Wang et al. [211], is based on the questions

from the TREC QA tasks and sentences retrieved by participating systems2.

The early approaches for the task used mostly keyword matching strate-

gies [101, 181]. However, in many cases, keywords does not capture the

similarity in meaning of the sentences very well and researchers started look-

ing on syntactic information. Syntactic and dependency tree edit distances

and kernels help us measure the similarity between the structures of the

sentences [90, 151, 172, 210, 237]. Recent improvements on the answer sen-

tence selection task are associated with deep learning, e.g., recursive neural

networks using sentence dependency tree [102], convolutional neural net-

works [242, 161], recurrent neural networks [189, 207], and some techniques

for term matching in the embeddings space [88, 216, 231]. Another dataset,

called WikiQA [233], raises a problem of answer triggering, i.e., detecting

cases when the retrieved set of sentences does not contain the answer.

To provide a user with the concise response to her factoid question, QA

systems extract the actual answer phrase from retrieved sentences. This

problem is often formulated as a sequence labeling problem, which can be

solved using structured prediction models, such as CRF [237], or as a node

labeling problem in an answer sentence parse tree [134]. A couple of recently

developed benchmark datasets, such as WebQA [123], Stanford QUestion

2A table with all known benchmark results and links to the corresponding papers can

be found on

http://aclweb.org/aclwiki/index.php?title=Question Answering (State of the art)

12

Anwsering Dataset SQuAD [154]3, and Microsoft MARCO [142]4, have con-

siderable size (∼ 100K questions), which allows researchers to train and

reliably test different models, including various deep learning architectures.

Unfortunately, passages include very limited amount of information about

the candidate answer entities, i.e., very often it does not include the in-

formation about their types (person, location, organization, or more fine-

grained, CEO, president, basketball player, etc.), which is very important

to answer question correctly, e.g., for the question “what country did host

the 2016 summer olympics?” we need to know that Rio de Janeiro is a

city and Brazil is a country to be able to respond correctly. Therefore,

multiple works have put some effort into developing answer type typolo-

gies [95, 96], prediction, and matching of expected and true candidate answer

entity types [124, 125, 149]. Many approaches exploited external data, such

as large-scale open domain knowledge bases, and I will describe some of these

efforts in Section 2.1.4.

When dealing with large document collections, such as the Web, we often

have a situation of information duplication, e.g., same knowledge is stated

in text dozens, hundreds and sometimes thousands of times, possibly using

different language. It is also frequent to have contradictory or false infor-

mation, presented in some of the documents, intentionally or not. In such

circumstances, it is quite useful to aggregate the information across multiple

pieces of evidence and use redundancy for the benefit. AskMSR system was

one of the first to exploit this idea, and it achieved very impressive results on

TREC QA 2001 shared task [41]. The system starts by transforming a ques-

tion into search queries, extracts snippets of search results from a web search

engine, and consider word n-grams as answer candidates, ranking them by

frequency. A recent revision of the AskMSR QA system [195] introduced

3https://rajpurkar.github.io/SQuAD-explorer/
4http://www.msmarco.org/

13

several improvements to the original system, i.e., named entity tagger for

candidate extraction, and additional semantic similarity features for answer

ranking. It was also observed, that modern search engines are much better in

returning the relevant documents for question queries and query generation

step is no longer needed. Some other notable systems, that used the web as

the source for question answering are MULDER [118], Aranea [127], and a

detailed analysis of what affects the performance of the redundancy-based

question answering systems can be found in [53, 126].

2.1.2 Knowledge Base Question Answering

Despite the abundance of knowledge available in textual resources, it is often

challenging for a computer system to extract and understand this informa-

tion. Knowledge bases, on the other hand, encode precise factual information,

which can be effectively queried and reasoned with, which is quite natural in

computer science.

Knowledge Bases and Datasets

In the early days of QA research, knowledge bases were relatively small and

contained information specific to a particular domain. Many approaches

have been developed to answer detailed questions about these domains, e.g.,

baseball [81], lunar geology [223], or geography [243]. Recent development

of large scale knowledge bases (e.g., DBpedia [15], Freebase [34], YAGO

[184], WikiData5) shifted attention towards open domain question answering.

One of the problems of techniques developed in the earlier days is domain

adaptation, as it is quite challenging to map from natural language phrases

to database concepts in open domain when the search space is quite large.

KBQA approaches can be evaluated on an annual Question Answering over

5http://www.wikidata.org

14

Linked Data (QALD6) shared task, and some popular benchmark dataset,

such as Free917 [46], WebQuestions [22] and WebQuestionsSP [240]. A series

of QALD evaluation campaigns has started in 2011, and since then a number

of different subtasks have been offered, i.e., since 2013 QALD includes a

multilingual task, and QALD-4 formulated a problem of hybrid question

answering. These tasks usually use DBpedia knowledge base and provide a

training set of questions, annotated with the ground truth SPARQL queries.

The hybrid track is of particular interest to the topic of this dissertation, as

the main goal in this task is to use both structured RDF triples and free

form text available in DBpedia abstracts to answer user questions. A survey

of some of the proposed approaches can be found in [197].

Systems Architecture

The architecture of most KBQA systems are based on one of the two major

approaches: semantic parsing and information extraction. Semantic parsing

starts from question utterances and works to produce the corresponding se-

mantic representations, e.g., logical forms. The model of J.Berant et al. [22]

uses a CCG parser, which can produce many candidates on each level of pars-

ing tree construction. A common strategy is to use beam search to keep top-k

options on each parsing level or agenda-based parsing [24], which maintains

current best parses across all levels. An alternative information extraction

strategy was proposed by Xuchen Yao et al. [236], and it can be very effective

for relatively simple questions. The idea of the information extraction ap-

proach is that for most of the questions the answer lies in the neighborhood

of the question topic entity. Therefore, it is possible to use a relatively small

set of query patterns to generate candidate answers, which are then ranked

using the information about how well involved predicates and entities match

the original question. A comparison of this approaches can be found in [235].

6www.sc.cit-ec.uni-bielefeld.de/qald/

15

Question entity identification and disambiguation is the key component in

such systems, they cannot answer the question correctly if the question entity

is not identified. Multiple systems used NER to tag question entities, which

are then linked to a knowledge base using an entity names lexicon [22, 23,

227]. However, NER can easily miss the right span, which would not allow

this question to be answered correctly. Most of the recently developed KBQA

systems consider a reasonable subset of token n-grams, each of which can map

to zero or more KB entities. Top entities according to some entity linking

scores are kept and disambiguated only at the answer ranking stage [20,

191, 234]. Ranking of candidates can be done using either a simple linear

classification model [234] or more complex algorithms, e.g., gradient boosted

trees ranking model [20, 191].

Some questions contain certain conditions, that require special filters or

aggregations to be applied to a set of entities. For example, the question

“who won 2011 heisman trophy?” contains a date, that needs to be used to

filter the set of heisman trophy winners, the question “what high school did

president bill clinton attend?” requires a filter on the entity type to filter

high schools from the list of educational institutions, and “what is the closest

airport to naples florida?” requires a set of airports to be sorted by distance

and the closest one to be selected. Information extraction approaches either

need to extend the set of candidate query templates used, which is usually

done manually, or to attach such aggregations later in the process, after

the initial set of entities have been extracted [191, 226]. An alternative

strategy to answer complex questions is to extend RDF triples as a unit of

knowledge with additional arguments and perform question answering over

n-tuples [241]. Z.Wang et al. [215] proposed to start from single KB facts and

build more complex logical formulas by combining existing ones while scoring

candidates using paraphrasing model. Such a template-free model combines

the benefits of semantic parsing and information extraction approaches.

16

Question to Query Mapping

One of the major difficulties in KBQA is the problem of a lexical gap and

lexicon construction for mapping natural language phrases to knowledge base

concepts [23, 68]. The earlier systems were mainly trained from questions

annotated with ground truth logical forms, which are expensive to obtain.

Such approaches are hard to scale to large open domain knowledge bases,

which contain millions of entities and thousands of different predicates.

An idea to extend a trained parser with an additional lexicon, built from

the Web and other resources, has been proposed by Q. Cai and A. Yates [46].

However, most of the parses of a question produce different results, which

means that it is possible to use question-answer pairs directly [22], however

Scott Wen-tau Yih et al. [240] showed that for relatively simple questions,

obtaining true semantic parse ground truth might be easier than correct an-

swers, and gives better system performance. PARALEX system of A.Fader

et al. [68] constructs a lexicon from a collection of question paraphrases from

WikiAnswers7. A reverse approach was proposed in ParaSempre model of

J.Berant et al. [23], which ranks candidate structured queries by first con-

structing a canonical utterance for each query and then uses a paraphrasing

model to score it against the original question.

Another approach to learning term-predicate mapping is to use patterns

obtained using distant supervision [138] labeling of a large text corpus, such

as the ClueWeb [235]. Such labeled collections can also be used to train a

KBQA system, as demonstrated by S.Reddy et al. [156, 157]. This approach

is very attractive as it does not require any manual labeling and can be easily

transferred to a new domain. However, learning from statements instead of

question-answer pairs has certain disadvantages, e.g., question-answer lexical

gap, and noise in distant supervision labeling.

7https://answers.wikia.com/

17

Modern knowledge bases also contain certain names or surface forms for

their predicates and entities, which makes it possible to convert KB RDF

triples into questions and use them for training [35]. Finally, many systems

work with distributed vector representations for words and RDF triples and

use various deep learning techniques for answer selection. A common strat-

egy is to embed question text and knowledge base concepts into the same

space and perform reasoning using operations in this vector space. For exam-

ple, character n-gram text representation as input to a convolutional neural

network can capture the gist of the question and help map phrases to enti-

ties and predicates [239]. Joint embeddings can be trained using multi-task

learning, e.g., a system can learn to embed a question and candidate answer

subgraph using question-answer pairs and question paraphrases at the same

time [35].

Memory Networks, developed by the Facebook AI Lab, can also be used to

return triples stored in network memory in a response to user questions [36].

This approach uses embeddings of predicates and can answer relatively sim-

ple questions, that do not contain any constraints and aggregations. A nice

extension of this idea is so called key-value memory networks [136], which

simplify retrieval by replacing a single memory cell, which has to be selected

using softmax layer, with a key-value pair. Thus, one can encode subject and

predicate of a KB triple as the key and let the model return the object as the

value of a memory cell. Both regular and Key-value Memory Networks sum-

marize the whole set of memories into a single vector, which is then used to

score answer candidates, and this can lead to information losses. This limi-

tation has been partially addressed in [91, 213], which propose to accumulate

evidence for each answer separately using a recurrent neural network. To ex-

tend deep learning framework to more complex questions, Li Dong et al. [61]

used a multi-column convolutional neural network to capture the embedding

of entity path, context, and type at the same time. Another idea that allows

18

memory networks to answer complex questions is multiple iterations over the

memory, which helps the model to focus on different parts of the question

and extend the current set of candidate facts, as shown by S.Jain et al. [104].

The described approaches have significantly advanced the state-of-the-art in

knowledge base question answering 8. However, one of the major drawbacks

of knowledge bases is their incompleteness, which means that many entities,

predicates, and facts are missing from knowledge bases, which limits the

number of questions one can answer using them. This brings up a question

of combining data from multiple sources, and in the next Section I describe

information extraction, which targets the problem of extending knowledge

bases with data, extracted from other available data sources.

2.1.3 Information Extraction

One approach to increase the coverage of knowledge bases is to extract infor-

mation from other resources, such as raw text [83, 107, 138], web tables [44],

or infer from existing knowledge [37, 79, 119]. As most of the information in

the world is present in unstructured format, relation extraction from natural

language text has been an active area of research for many years, and a num-

ber of supervised [177], semi-supervised [4] and unsupervised [67] methods

have been proposed. These techniques analyze individual sentences and can

extract facts stated in them using syntactic patterns, sentence similarity, etc.

One of the approaches for information extraction, that has received a con-

siderable attention in the recent years, thanks to the rise of neural network

research, is a joint representation of text and knowledge base data. The in-

troduction of text-based edges, extracted from sentences mentioning a pair

of entities, to the Path Ranking Algorithm was demonstrated to be supe-

8A table with some of the results on WebQuestions dataset are available at

https://goo.gl/sePBja

19

rior to KB data alone for knowledge base construction [119]. Such a graph,

consisting of KB entities, predicates, and textual data can be viewed as a

heterogeneous information network, and such a representation was effectively

used to represent text documents for clustering and classification [204, 205].

The idea of universal schemas for relation extraction is to represent KB and

natural language predicates with embeddings in low dimensional space. The

original work of Sebastian Riedel et al. [158] proposed factorizing a matrix,

in which rows correspond to entity pairs and columns to KB predicates and

natural language phrases connecting these entity mentions in text. These

techniques were further improved by learning embeddings of individual en-

tities [200], which allows the model to generalize to unseen entity pairs, and

compositionality-aware embeddings of natural language [193] to better cap-

ture the variability of the language. Zhen Wang et al. [214] showed how to

embed entities and words into the same space by preserving entity relations

and word co-occurrences in text. These approaches aim at computing a sim-

ilarity between KB predicates and the ways they are expressed in sentences,

and they do not attempt to solve a problem of detecting relations not present

in KB, which users might ask about, nor they are trying to cross the sentence

boundary and extract information scattered across multiple sentences. How-

ever, embedding of various modalities, such as knowledge base predicates

and text, into the same space have been effectively used for different tasks,

including question answering with so-called memory networks [36, 136].

However, the larger the knowledge base gets, the more difficult it is to

find a mapping from natural language phrases to KB concepts. Alterna-

tively, open information extraction techniques [66] can be used to extract a

schema-less knowledge base, which can be very effective for question answer-

ing. Open question answering approach of Anthony Fader et al. [69, 241]

combines multiple structured (Freebase) and unstructured (OpenIE) knowl-

edge bases together by converting them to string-based triples. User question

20

can be first paraphrased using a paraphrasing model learned from WikiAn-

swers data, then converted to a KB query, where certain query rewrite rules

can be applied, and all queries are ranked by a machine learning model.

Abstract Meaning Representation (AMR) [18] is an attempt to build a

universal semantic representation schema. The potential of AMR has been

demonstrated on many tasks, including reading comprehension [213], how-

ever it is not clear how this result can be scaled to the open domain setting.

The work I describe in my dissertation (Section 3.1) builds on the research

in relation extraction for knowledge base completion, and extends it to a

new domain: question-answer pairs, which helps to increase the amount of

information we can extract from available resources.

Relation extraction methods have made a big progress, however, they are

not perfect and still leave a lot of useful data behind, and add noise in a

form of the erroneously triples. In the next Section, I will describe research

on using the raw structured and unstructured data for joint reasoning in

question answering.

2.1.4 Hybrid Question Answering

A natural idea of combining available information sources to improve question

answering has been explored for a long time. A very detailed overview of these

approaches can be found in a recent book by Hannah Bast, Björn Buchhold

and Elman Haussmann [19].

Researchers have used various additional resources, such as WordNet [137],

Wikipedia9 and structured knowledge bases along with textual document col-

lections. WordNet lexical database was among the first resources, that were

adapted by QA community for such tasks as query expansion and definition

extractions [97, 146]. Next, Wikipedia, which can be characterized as an un-

9http://www.wikipedia.org

21

structured and semi-structured (infoboxes) knowledge base, quickly became

a valuable resource for answer extraction and verification [7, 43]. Developers

of the Aranea QA [127] system noticed that structured knowledge bases are

very effective in answering a significant portion of relatively simple questions.

They designed a set of regular expressions for popular questions that can be

efficiently answered from a knowledge base and fall back to regular text-based

methods for the rest of the questions. Knowledge bases can also be used as

an external source of structured data for some lower level text tasks, such as

language modeling [8].

Another great example of a hybrid question answering system is IBM Wat-

son, which is arguably the most important and well-known QA system ever

developed so far. It was designed to play the Jeopardy TV show10. The sys-

tem combined multiple different approaches, including text-based, relation

extraction and knowledge base modules, each of which generated candidate

answers, which were then pooled together for ranking and answer selection.

The full architecture of the system is well described in [72] or in the full

special issue of the IBM Journal of Research and Development [73]. Yo-

daQA [21] is an open source implementation of the ideas behind the IBM

Watson system.

On the other hand, knowledge base question answering systems can benefit

from lexical resources. After the information is encoded into RDF triples in

a knowledge base, we need to be able to map it back to natural language

in order to answer user questions. An idea of extended knowledge graphs

[65, 229] is to augment the RDF triples with keywords, which could be ex-

tracted from the context of the triple in a text, e.g., from a relation extraction

model. These keywords encode a context of a triple and can be used to match

against keywords in the question. To query such knowledge graphs authors

proposed an extension of the SPARQL language, that allows specifying key-

10https://en.wikipedia.org/wiki/Jeopardy!

22

words for some triple patterns. However, such queries now require special

answer ranking mechanism, e.g., based on a language model idea [65]. When

answering natural language questions, it is often hard to decide whether to

map phrases to some KB concepts and which ones. Therefore, many trans-

lated queries might become overspecific and return no results at all because

of the incorrect translation or lack of knowledge in a KB. Mohamed Yahya

et al. [229, 228] proposed to use query relaxation techniques to reduce a set

of triple patterns in translated SPARQL queries and use some of the ques-

tion phrases as keywords in the query instead. As an extreme case of such

relaxation, we can get a query with a single triple pattern, that retrieves all

entities of a certain type and then ranks them using all keywords from the

question.

Extension of knowledge bases with textual metadata is subject to some of

the above mentioned limitations of knowledge bases. There are several ap-

proaches that propose to use data in their original format for QA. K. Xu et

al. [226] proposed to use textual evidence to do answer filtering in a knowl-

edge base question answering system. On the first stage the system produces

a list of answers using traditional information extraction techniques, and then

each answer is scored using its Wikipedia page on how well it matches the

question. Knowledge bases can also be incorporated inside TextQA systems.

Modern KBs contain comprehensive entity type hierarchies, which were uti-

lized in QuASE system of [186] for answer typing. In addition, QuASE

exploited the textual descriptions of entities stored in Freebase knowledge

base as answer supportive evidence for candidate scoring. However, most

of the information in a KB is stored as relations between entities, therefore

there is a big potential in using all available KB data to improve question

answering.

QALD evaluation campaigns include a hybrid track in a couple of most

recent challenges. The goal of this track is to answer questions, that were

23

designed in such a way, that can only be answered by a combination of

a knowledge base and textual data. The targeted textual data is usually

descriptions of each entity, stored in DBpedia. These descriptions often rep-

resent an overview of the most important information about the entity and

can be matched against some parts of the question. The questions designed

for this task typically contain multiple parts, one or more of which require

textual resources. An example question is: “Who was vice president under

the president who approved the use of atomic weapons against Japan during

World War II?”. Due to this specifics and relatively small size of the dataset

(QALD-5 training set for multilingual question answering includes 300 ex-

amples and 40 examples for the hybrid task), most of the systems are based

on certain rules, e.g., splitting the question into parts and issuing individ-

ual queries into full-text index or KB [145, 198]. My dissertation focuses on

more open settings, where the text does not have to come from inside the

knowledge base.

Overall, this dissertation research advances the field of hybrid question

answering in two ways. Text2KB model, which I describe in Section 3.2,

proposes a set of techniques to improve knowledge base question answering

using unstructured and semi-structured textual resources, which allows us to

bring advances in TextQA over to the KBQA world. This approach relies

on KBQA as the primary method, whereas EviNets framework (Section 3.3)

proposes a neural network architecture, that aggregates information of dif-

ferent nature, as evidence in support for the extracted answer candidates.

2.2 Non-factoid Question Answering

During the earlier days of QA research, non-factoid questions received rela-

tively little attention. The TREC QA tasks started to incorporate certain

categories of non-factoid questions, such as definition questions, during the

24

last 4 years of the challenge. One of the first non-factoid question answering

systems was described by R. Soricut and E. Brill [180] and was based on

web search using chunks extracted from the original question. The ranking

of extracted answer candidates was done using a translation model, which

showed better results than the n-gram based match score.

The growth of the popularity of community question answering (CQA)

websites, such as Yahoo! Answers, Answers.com, etc., contributed to an

increased interest towards non-factoid QA. Some questions on CQA websites

are repeated very often and answers can easily be reused to answer new

questions, Y.Liu et al. [131] studied different types of CQA questions and

answers and analyzes them with respect to answer re-usability. A number of

methods for similar question retrieval have been proposed [26, 63, 105, 174].

The candidate answer passages ranking problem becomes even more diffi-

cult in non-factoid questions answering as systems have to deal with a larger

piece of text and need to “understand” what kind of information is expressed

there. WebAP is a dataset for non-factoid answer sentence retrieval, which

was developed in [232]. Experiments conducted in this work demonstrated,

that classical retrieval methods do not work well for this task, and multiple

additional semantic (ESA, entity links) and context (adjacent text) features

have been proposed to improve the retrieval quality. One of the first ex-

tensive studies of different features for non-factoid answer ranking can be

found in Mihai Surdeanu et al. [187], who explored information retrieval

scores, translation models, tree kernel and other features using tokens and

semantic annotations (dependency tree, semantic role labeling, etc.) of text

paragraphs. Alignment between question and answer terms can serve as a

good indicator of their semantic similarity. Such an alignment can be pro-

duced using a machine learning model with a set of features, representing

the quality of the match [217]. Alignment and translation models are usually

based on term-term similarities, which are often computed from a monolin-

25

gual alignment corpus. This data can be very sparse, and to overcome this

issue [75] proposed higher-order lexical semantic models, which estimates

similarity between terms by considering paths of length more than one on

term-term similarity graph. An alternative strategy to overcome the sparsity

of monolingual alignment corpora is to use discourse relations of sentences in

a text to learn term association models [171]. Some of the more recent works

proposed to use neural networks to encode and score the quality of answer

passages in non-factoid QA [55, 231].

Questions often have some metadata, such as categories on a community

question answering website. This information can be very useful for certain

disambiguations and can be encoded in the answer ranking model [244]. In-

formation extraction methods can also be useful for the more general case of

non-factoid question answering. For example, there is a huge number of on-

line forums, FAQ-pages and social media, that contain question-answer pairs,

which can be extracted to build a collection to query when a new question

arrives [56, 60, 106, 122, 230]. The structure of the web page, from which

the answers are extracted can be very useful as well. Wikipedia articles have

a good structure, and the information encoded there can be extracted in a

text-based knowledge base, which can be used for question answering [178].

The TREC LiveQA shared task organized by Yahoo and Emory University

started a series of evaluation campaigns for non-factoid question answering.

The task is to develop a live question answering system to answer real user

questions, that are posted to Yahoo! Answers community question answering

website. Most of the approaches from the TREC LiveQA 2015 and 2016

combined similar question retrieval and web search techniques [162, 206, 224].

Answers to similar questions are very effective for answering new questions

[48, 162]. However, when a CQA archive does not have any similar questions,

we have to fall back to regular web search. The idea behind the LiveQA

2015 winning system of CMU [206] is to represent each answer with a pair of

26

phrases: clue and answer text. A clue is a phrase that should be similar to

the given question, and the passage that follows should be the answer to this

question. The overview of the TREC LiveQA 2015 and 2016 shares tasks

and their results can be found in the following reports [2, 3].

In my dissertation I develop an open source question answering system

(Section 4.1), which retrieves an answer from a combination of vertical and

general web searches. The system achieves state-of-the-art results on TREC

LiveQA evaluations, and can be used as a baseline for future research in the

area.

2.3 Crowdsourcing for Question Answering

Using the wisdom of a crowd to help users satisfy their information needs

has been studied before in the literature. M.Bernstein et al. [28] explored

the use of crowdsourcing for an offline preparation of answers to tail search

queries. Log mining techniques were used to identify potential question-

answer fragment pairs, which were then processed by the crowd to generate

the final answer. This offline procedure allows a search engine to increase

the coverage of direct answers to user questions. In contrast, the focus of my

dissertation is on online question answering, which requires fast responses to

users, who are unlikely to wait more than a minute. Another related work is

targeting a different domain, namely SQL queries. The CrowdDB system [74]

is an SQL-like processing system for queries, that cannot be answered by

machines only. In CrowdDB human input is used to collect missing data,

perform computationally difficult functions or matching against the query.

In [17] authors explored efficient ways to combine human input for multiple

choice questions from the “Who wants to be a millionaire?” TV show. In

this scenario going with the majority for complex questions is not effective,

and certain answerer confidence weighting schemas can improve the results.

27

CrowdSearcher platform of [38] proposes to use crowds as a data source in

the search process, which connects a searcher with the information available

from the users of multiple different social platforms.

Many works have used crowdsourcing to get a valuable information that

could guide an automated system for some complex tasks. For example,

entity resolution system of [218] asks questions to crowd workers to improve

the results accuracy. Using crowdsourcing for relevance judgments has been

studied extensively in the information retrieval community, e.g.,, [11, 12, 80]

to name a few. The focus in these works is on document relevance and the

quality of crowdsourced judgments. Whereas in my dissertation I investigate

the ability of a crowd to quickly assess the quality of the answers in a nearly

real-time setting. The use of crowdsourcing in IR is not limited to relevance

judgments. The work of [85] explores crowdsourcing for query formulation

task, which could also be used inside an IR-based question answering system.

Matthew Lease et al. [121] provides a good overview of different applications

of crowdsourcing in information retrieval.

Crowdsourcing is usually associated with offline data collection, which re-

quires a significant amount of time. Its application to (near) real-time sce-

narios poses certain additional challenges. [27] introduced the retainer model

for recruiting synchronous crowds for interactive real-time tasks and showed

their effectiveness on the best single image and creative generation tasks.

VizWiz mobile application of [31] uses a similar strategy to quickly answer

visual questions. The works of [98, 99, 120] showed how multiple workers can

sit behind a conversational agent named Chorus, where human input is used

to propose and vote on responses. Another use of a crowd for maintaining

a dialog is presented in [29], who let the crowd handle difficult cases when

a system was not able to automatically retrieve a good response from the

database of Twitter data.

In my Ph.D. dissertation I show a successful example of integration of a

28

crowdsourcing module into a real-time QA system (Section 4.2). This work

shows that even regular workers without certain domain expertise can provide

feedback, which a QA system can use to re-rank and improve its response to

the user questions.

2.4 Interactions between Users and QA Sys-

tems

Most of the research in question answering have focused on improving the

core answer retrieval functionality. However, it is important to look into

question answering from a users perspective, which requires analyzing and

improving interactions patterns and interfaces. I refer readers to a deep book

by Ryen White [219], which focuses on user interactions with search systems.

In this section, I describe some of the existing research on improving user

experience with certain assistance techniques and studying search in a more

natural conversational setting. Several studies have focused on learning more

about user satisfaction with personal assistants, e.g., [113, 130, 143].

2.4.1 User Assistance in Information Retrieval

There has been a considerable amount of work on user assistance for general

web search and improving user experience with feedback, suggestions, and

hints. Results of the study in [225] demonstrate that in 59.5% of the cases

users need help to refine their searches or to construct search statements.

Individual term [159] or query suggestions [30, 47, 108] are among the most

popular techniques for helping users to augment their queries. The study

in Diane Kelly et al. [111] demonstrated that users prefer query suggestions

over term relevance feedback, and that good manually designed suggestions

improve retrieval performance. Query suggestion methods usually use search

29

logs to extract queries that are similar to the query of interest and work

better for popular information needs [30]. Query suggestions can also have a

learning effect. Harvey et al. [86] demonstrated, that users can learn formu-

late better queries by observing high-quality query suggestions. And search

by itself is a learning experience [199].

When query or term suggestions are not available, it is still possible to help

users by providing potentially useful search hints. An adaptive tool providing

tactical suggestions was presented in [117], and users reported overall satis-

faction with its automatic non-intrusive advice. Modern search engines have

many features that are not typically used by an average user but can be very

useful in particular situations as shown in [140]. The study demonstrated

the potential effectiveness and teaching effect of hints. In my dissertation,

rather than suggesting to use certain advanced search tools, I explore the

effectiveness of strategic search hints, designed to suggest a strategy a user

can adapt to solve a difficult information question.

2.4.2 Conversational Search and Question Answering

The topic of chatbots and conversational answer seeking has recently become

quite popular. F.Radlinski and N.Craswell [153] defined a set of required

properties and designed a theoretical model of interactions in a conversational

search. M.Iyyer et al. [103] released a dataset for conversational question an-

swering, which was built by a converting complex multi-part questions from

WikiTables dataset to a sequence of related questions using crowdsourcing.

Authors identified major challenges in this data as resolving references to

previously mentioned entities and semantic matching.

Much work has been done in the area of comparing user interactions with a

human and a computer. There are varying opinions on the subject. Edwards

et al. [64] found no significant differences in how Twitter users treated a

30

social bot, whether it was perceived as a human or not. In turn, Clément and

Guitton [54] report that the way bots are perceived varies with the role they

play. They found that “invasive” Wikipedia bots received more “polarizing”

feedback – both positive and negative – compared to the bots that carried out

“silent helper” functions. The similar result is reported by Murgia et al. [141]

– Stackoverflow bot receives more negative feedback for false answers when

its identity as an automatic program is revealed. Another work by Aharoni

and Fridlund [6] reports mixed results from participants who underwent a

mock interview with a human and an automatic system. The authors report

that there were no explicit differences in the interviewer perception described

by the participants, although the authors noticed significant differences in

people’s behavior – when talking to a human interviewer they made greater

effort to speak, smiled more, and were more affected by a rejection. In a

study by Luger and Sellen [132], 14 people were interviewed about their

experience with an intelligent assistant that they use in their daily life. The

authors report on people’s experiences, expectations, discuss scenarios of

successes and failures of conversational agents. They report that the most

frequent types of tasks are relatively simple – weather updates and checking

reminders.

Early QA studies considered users the sole proactive part asking refining

questions and clarifying on system’s response [59]. QA with a more active

system’s role was investigated within the complex interactive QA (ciQA)

TREC track: assessors provided additional information in various forms to

live QA systems as a follow-up to initial inquiry; systems produced updated

answers upon interactive sessions [58]. The track outcomes were mixed: in-

teractive phase degraded initial results in most cases; evaluation design was

found not quite appropriate for interactive QA.

Kotov and Zhai [116] introduced a concept of question-guided search, which

can be seen as a variant of query suggestion scenario: in response to an ini-

31

tial query the user is presented with a list of natural language questions that

reflect possible aspects of the information need behind the query. Each such

question had a ready to show answer, which a user would see if his intent

matched the intent of a suggested question. Tang et al. [190] proposed a

method for refining questions generation, which consists of two steps: 1) re-

finement terms are extracted from a set of similar questions retrieved from

a question archive; 2) terms are clustered using a WordNet-like thesaurus.

Cluster type (such as location or food) defines the question template to be

used. Sajjad et al. [160] described a framework for search over a collection

of items with textual descriptions exemplified with xbox avatar assets (ap-

pearance features, clothes, and other belongings). Multiple textual descrip-

tions for each item were gathered via crowdsourcing; attribute–value pairs

were extracted subsequently. In online phase, intermediate search results

are analyzed and yes/no questions about attributes and values are gener-

ated sequentially in order to bisect the result set and finally come to the

sought item. Gangadharaiah and Narayanaswamy [78] elaborated a similar

approach to search results refinement through clarification questions. The

authors considered customer support scenario using forum data. In offline

phase noun phrases, attribute–value pairs and action tuples are extracted

from forum collection. In online phase answers to automatically generated

questions help reduce the set of candidate answers.

The ability to ask clarification questions is one of the key desired compo-

nents of conversational search systems [153], and can be used for multiple

tasks, e.g., to resolve anaphora and coreferences [152]. In spoken dialog

systems, clarification questions can be used to resolve speech recognition un-

certainty, either of individual words or of whole utterances [183]. Kato et

al. [109] investigated clarification questions in the context of an enterprise

Q&A instant messaging in the software domain. Analysis has shown that

about one-third of all dialogues have clarification requests; 8.2% of all ut-

32

terances in the log are related to clarifications. The authors developed a

question classifier that prompted the asker to provide clarifications in case

the request was identified as underspecified. Pengwei Wang et al. [212] used a

set of shopping question-answer pairs to extract [subject, predicate, answer,

condition] quadruples from a set of shopping question-answer pairs using

question pattern mining and clustering techniques. The extractions can then

be used to either answer new user questions, or trigger clarifications if the

condition entity is missing and needs to be asked about.

The results described in Chapter 5 contributes to the research in conversa-

tional search in two aspects. The user study, described in Section 5.1, sheds

some lights on what features do people expect a conversational search sys-

tem to have and what aspects do existing commercial systems lack so far.

These results provide the insights and formulate the directions for future re-

search in the area. And one of such aspects, that a conversational system

should have, is an ability to ask clarification questions. In Section 5.3 of my

dissertation I describe the results of analyzing a dataset from the StackEx-

change CQA website, and demonstrate feasibility of generating clarification

questions automatically.

33

Chapter 3

Combining Data Sources for

Factoid Question Answering

The majority of user web searches are entity-centric, i.e., looking for some

information or transacting (e.g., buying, downloading) on entities [148]. Ques-

tions that are asking about certain entities (e.g., person, movie, product etc.)

or their attributes (e.g., date or number) are usually referred to as factoid

questions.

Factual information exists in many various formats: natural language state-

ments, tables, question-answer (QnA) pairs, structured databases (DB) and

knowledge bases (KB), images and other multimedia resources. These infor-

mation can be helpful for answering various user questions. Moreover, due to

the differences in nature of these data sources, their pros and cons are often

complimentary, and therefore their combination would have a synergistic ef-

fect. In particular, text document collections [115] and structured knowledge

bases [197] are very useful for automatic factoid question answering. Natural

language text is relatively easy to match against user questions, especially

given the redundancy of the information in large text collections, such as the

web [126]. On the contrary, for knowledge bases, translating a question into

34

one of the structured query languages can be very challenging [22]. More-

over, text encodes all kinds of factual knowledge, whereas knowledge base

schemes are often very limited, and a set of objects, predicates and facts are

far from being complete [62]. According to D.Wimalasuriya and D.Dou [222],

about 80% of the information contained in business documents is stated in

natural language, i.e., unstructured format. However, text fragments in-

clude a very limited amount of information about the mentioned entities,

which complicates the reasoning and often require certain prediction models

to be built [124]. Knowledge bases on the other hand aggregate all the in-

formation around entities and allow very complicated queries using special

languages such as SPARQL. Therefore, an idea to combine unstructured text

and structured knowledge bases for joint question answering is very appealing

and some existing research demonstrated its potential [21, 65, 68, 72, 186].

This chapter describes multiple different approaches I developed to com-

bine the information available in different unstructured, semi-structured and

structured data sources for factoid question answering. First, Section 3.1

details an approach for relation extraction from question-answer pairs for

knowledge base completion. Unlike existing techniques, which operate ei-

ther on individual sentences or on structured data like infoboxes or tables,

our method exploits the relationship between question and answer sentences,

and increases the volume of extracted information, eventually helping with

the KB incompleteness problem. Next, Section 3.2 describes the Text2KB

model for improving knowledge base question answering using a variety of

available unstructured and semi-structured data, such as document search

results, question-answer archives, and semantically annotated document col-

lections. Finally, in Section 3.3, I propose EviNets : a unified framework

for factoid question answering, which jointly processes and aggregates evi-

dence from various structured and unstructured data sources. EviNets is a

memory-based neural network architecture, which embeds unstructured text

35

and structured knowledge base triples into a low-dimensional space, which

is used to perform relevance matching and aggregation to improve answer

selection.

In summary, the contributions of this chapter are:

• A novel approach for information extraction from question-answer pairs,

which exploits the known relation between the question and answer sen-

tences to infer the relations between entities, mentioned in them. This

work was published in NAACL 2015 Student Research Workshop paper

titled “Relation extraction from community generated question-answer

pairs” [168].

• Text2KB : an approach for using various text data to improve precision

and recall of knowledge base question answering. It was presented as

SIGIR 2016 full paper “When a Knowledge Base Is Not Enough: Ques-

tion Answering over Knowledge Bases with External Text Data” [166].

• EviNets : Neural network framework for scoring and aggregating ev-

idence from structured and unstructured data sources in support for

answer candidates. The paper describing EviNets was presented as an

ACL 2017 short paper titled “EviNets: Neural Networks for Combining

Evidence Signals for Factoid Question Answering” [167].

3.1 Relation Extraction from Question-Answer

Pairs

Knowledge Bases were found to be quite effective in answering some of the

users’ factual information needs [197]. However, KBs are inherently incom-

plete, i.e., a lot of information is simply missing even from the largest existing

knowledge bases. According to Dong et al [62], 71% of people in Freebase

36

have no known place of birth, and 75% have no known nationality. One

approach to bridge this knowledge gap is automatic knowledge extraction

from other data sources, e.g., natural language sentence [4, 83, 107, 138],

tables [44], etc. In this section, I focus on yet another source of information:

question-answer pairs.

CQA websites, such as Yahoo! Answers1, Answers.com2, Quora3 etc., have

gained a lot of popularity in the recent years, and their archives store hun-

dreds of millions of user questions along with answers provided by the com-

munity. Many users’ information needs are not unique and arise again and

again, which makes it possible to reuse the information to answer new ques-

tions [174]. This idea makes CQA data attractive for knowledge base pop-

ulation. Although some of the facts mentioned in QnA pairs can also be

found in some other text documents, another part might be unique (e.g., in

Clueweb4 about 10% of entity pairs with existing Freebase relations men-

tioned in Yahoo! Answers documents cannot be found in other documents

[168]). Existing relation extraction techniques face some challenges when ap-

plied to CQA data, i.e., they typically consider sentences independently and

ignore the discourse of a QnA pair text. However, frequently, it is impossi-

ble to understand the answer without knowing the question. For example,

sometimes users simply give the answer to the question without stating it in

a narrative sentence (e.g., “What does ”xoxo” stand for? Hugs and kisses.“),

or the provided answer might contain ellipsis, i.e., some important informa-

tion is omitted (e.g., “What is the capital city of Bolivia? Sucre is the legal

capital, though the government sits in La Paz“).

In my dissertation I propose a novel model for relation extraction from

CQA data, that uses the discourse of a QnA pair to extract facts between

1http://answers.yahoo.com/
2http://www.answers.com
3http://quora.com
4http://www.lemurproject.org/clueweb12/

37

entities mentioned in the question and answer sentences. The conducted

experiments confirm that many of such facts cannot be extracted by existing

sentence-based techniques and thus it is beneficial to combine their outputs

with the output of our model.

More formally, the target problem is relation extraction from QnA data,

which is a collection of (q, a) pairs, where q is a question text (can contain

multiple sentences) and a is the corresponding answer text (can also contain

multiple sentences). By relation instance, r we mean an ordered binary rela-

tion between subject and object entities, which is commonly represented as

[subject, predicate, object] triple. For example, the fact that Brad Pitt mar-

ried Angelina Jolie can be represented as [Brad Pitt, married to, Angelina

Jolie]. In this work we use Freebase, an open schema-based KB, where all

entities and predicates come from the fixed alphabets E and P correspond-

ingly. Let e1 and e2 be entities that are mentioned together in a text (e.g.,

in a sentence, or e1 in a question and e2 in the corresponding answer), we

will call such an entity pair with the corresponding context a mention. The

same pair of entities can be mentioned multiple times within the corpus, and

for all mentions i = 1, ..., n the goal is to predict the expressed predicate

(zi ∈ P) or to say that none applies (zi = ∅). Individual mention predictions

z1, ..., zn are combined to infer a set of relations y = {yi ∈ P} between the

entities e1 and e2.

3.1.1 Relation Extraction Models

Models for relation extraction from QnA data incorporates the topic of the

question and can be represented as a graphical model (Figure 3.1). Each

mention of a pair of entities is represented by a set of mention-based features

xi and question-based features xq. A multinomial latent variable zi represents

a relation (or none) expressed in the mention and depends on the features

38

y

P

zi

xi

xq

wqwm

|Q|M

N

Figure 3.1: QnA-based relation extraction model plate diagram. N - number

of different entity pairs, M - number of mentions of an entity pair, |Q| - num-

ber of questions where an entity pair is mentioned, xi and xq - mention-based

and question-based features, wm and wq - corresponding feature weights, la-

tent variables zi - relation expressed in an entity pair mention, latent variables

y - relations between entity pair.

and a set of weights wm for mention-based and wq for question-based features:

ẑi = arg max
z∈P∪∅

p(zi|xq, xi, wq, wm)

To estimate this variable we use L2-regularized multinomial logistic regres-

sion model, trained using the distant supervision approach for relation extrac-

tion [138], in which mentions of entity pairs related in Freebase are treated

as positive instances for the corresponding predicates, and negative examples

are sampled from mentions of entity pairs which are not related by any of the

39

predicates of interest. Finally, to predict a set of possible relations y between

the pair of entities we take logical OR of individual mention variables zi, i.e.,

yp = ∨Mi=1[zi = p, p ∈ P], where M is the number of mentions of this pair of

entities.

Sentence-based baseline model

Existing sentence-based relation extraction models can be applied to individ-

ual sentences of a QnA pair and will work well for complete statements, e.g.,

“Who did Brad Pitt marry? Brad Pitt and Angelina Jolie married at secret

ceremony ...”. In sentence-based scenario, when the set of question-based

features is empty, the above model corresponds to the Mintz++ baseline

described in [188], which was shown to be superior to the original model

of [138], is easier to train than some other state of the art distant supervision

models and produces comparable results.

Sentence-based model with question features

In many cases, an answer statement is hard to interpret correctly without

knowing the corresponding question. To give the baseline model some knowl-

edge about the question, we include question features (Table 3.1), which are

based on dependency tree and surface patterns of a question sentence. This

information can help the model to account for the question topic and improve

predictions in some ambiguous situations.

QnA-based model

The QnA model for relation extraction is inspired by the observation, that

often an answer sentence do not mention one of the entities at all, e.g.,,

“When was Isaac Newton born? December 25, 1642 Woolsthorpe, England”.

To tackle this situation we make the following assumption about the discourse

40

Sentence-based model

Dependency path between entities [PERSON]→nsubjpass(born)tmod←[DATE]

Surface pattern [PERSON] be/VBD born/VBN [DATE]

Question features for sentence-based model

Question template when [PERSON] born

Dependecy path from a verb to the ques-

tion word

(when)→advmod(born)

Question word + dependency tree root when+born

QnA-based model

Question template + answer entity type Q: when [PERSON] born A:[DATE]

Dependency path from question word to

entity

Q:(when)→advmod(born)nsubj←[PERSON]

and answer entity to the answer tree root A: (born)tmod←[DATE]

Question word, dependency root and an-

swer pattern

Q: when+born A:born [DATE]

Table 3.1: Examples of features used for relation extraction for “When was

Mariah Carey born? Mariah Carey was born 27 March 1970 ”.

of a QnA pair: an entity mentioned in a question is related to entities in the

corresponding answer and the context of both mentions can be used to infer

the relation predicate. Our QnA-based relation extraction model takes an

entity from a question sentence and entity from the answer as a candidate

relation mention, represents it with a set of features (Table 3.1) and predicts

a possible relation between them similar to sentence-based models. The

features are conjunctions of various dependency tree and surface patterns

of a question and answer sentences, designed to capture their topics and

relation.

41

Y!A WA

Number of QnA pairs 3.8M 19.6M

Average question length (in chars) 56.67 47.03

Average answer length (in chars) 335.82 24.24

Percent of QnA pairs with answers that do not have any verbs 8.8% 18.9%

Percent of QnA pairs with at least one pair of entities related in

Freebase

11.7% 27.5%

Percent of relations between entity pairs in question sentences only 1.6 % 3.1%

Percent of relations between entity pairs in question and answer sen-

tences only

28.1% 46.4%

Percent of relations between entity pairs in answer sentences only 38.6% 12.0%

Table 3.2: Statistics of Yahoo! Answers and WikiAnswers datasets, used in

our experiments on relation extraction from question-answer pairs.

3.1.2 Experiments

For experiments we used 2 publicly available CQA datasets: Yahoo! Answers

WebScope L6 Comprehensive Questions dataset5 and a crawl of WikiAn-

swers6 collected by A.Fader et al.[69]. The Yahoo! Answers dataset contains

4,483,032 questions (3,894,644 in English) with the corresponding answers

collected on 10/25/2007. The crawl of WikiAnswers has 30,370,994 question

clusters, tagged by WikiAnswers users as paraphrases, and only 3,386,256

of them have answers. From these clusters, we used all possible pairs of

questions and corresponding answers (19,629,443 pairs in total).

For each QnA pair we applied tokenization, sentence detection, named

entity tagging, parsing and coreference resolution from Stanford CoreNLP

[135]. Our cascade entity linking approach is similar to [51] and considered

all noun phrase and named entity mentions as candidates. First, all named

entity mentions are looked up in Freebase names and aliases dictionary. The

5http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
6http://wiki.answers.com/

42

next two stages attempt to match mention text with the dictionary of En-

glish Wikipedia concepts [182] and its normalized version. Finally for named

entity mentions we try spelling correction using Freebase entity names dic-

tionary. We did not disambiguate entities and instead took top-5 ids for each

coreference cluster (using the p(entity|phrase) score from the dictionary or

number of existing Freebase triples). All pairs of entities (or entity and date)

in a QnA pair that are directly related7 in Freebase were annotated with the

corresponding relations.

Table 3.2 gives some statistics on the datasets used in this work. The

analysis of answers that do not have any verbs shows that ∼8.8% of all QnA

pairs do not state the predicate in the answer text. The percentage is higher

for WikiAnswers, which has shorter answers on average. Unfortunately, for

many QnA pairs, we were unable to find relations between the mentioned

entities (for many of them no or few entities were resolved to Freebase).

Among those QnA pairs, where some relation was annotated, we looked at

the location of related entities. In Yahoo! Answers dataset 38.6% (12.0%

for WikiAnswers) of related entities are mentioned in answer sentences and

can potentially be extracted by sentence-based model, and 28.1% (46.4% for

WikiAnswers) between entities mentioned in question and answer sentences,

which are not available to the baseline model and our goal is to extract some

of them.

For our experiments, we use a subset of 29 Freebase predicates that have

enough unique instances annotated in our corpus, e.g., date of birth, profes-

sion, nationality, education institution, date of death, disease symptoms and

treatments, book author, artist album, etc. We train and test the models on

each dataset separately. Each corpus is randomly split for training (75%)

and testing (25%). Knowledge base facts are also split into training and

7We also consider some paths that come through a mediator node, e.g.,

/people/person/spouse s./people/marriage/spouse

43

Yahoo! Answers WikiAnswers

QnA Sent. Comb. QnA Sent. Comb.

F-1 score 0.219 0.276 0.310 0.277 0.297 0.332

Number of correct extrac-

tions

3229 5900 7428 2804 2288 3779

Correct triples not extracted

by other model

20.5% 56.5% - 39.4% 25.8% -

Table 3.3: Results for relation extraction of QnA-, sentence-based and com-

bined models on Yahoo! Answers and WikiAnswers datasets.

testing sets (50% each). QnA and sentence-based models predict labels for

each entity pair mention, and we aggregate mention predictions by taking

the maximum score for each predicate. We do the same aggregation to pro-

duce a combination of QnA- and sentence-based models, i.e.,, all extractions

produced by the models are combined and if there are multiple extractions of

the same fact we take the maximum score as the final confidence. The preci-

sion and recall of extractions are evaluated on a test set of Freebase triples,

i.e., an extracted triple is considered correct if it belongs to the test set of

Freebase triples, which are not used for training (triples used for training are

simply ignored). Note, that this only provides a lower bound on the model

performance as some of the predicted facts can be correct and simply missing

in Freebase.

Figure 3.2 shows Precision-Recall curves for QnA-based and sentence-based

baseline models and some numeric results are given in Table 3.3. As 100%

recall we took all pairs of entities that can be extracted by either model. It

is important to note, that since some entity pairs occur exclusively inside the

answer sentences and some in pairs of the question and answer sentences,

none of the individual models is capable of achieving 100% recall, and max-

imum possible recalls for QnA- and sentence-based models are different.

44

Figure 3.2: Precision-Recall curves for QnA-based vs sentence-based models

and sentence-based model with and without question features.

Results demonstrate that from 20.5% to 39.4% of correct triples extracted

by the QnA-based model are not extracted by the baseline model, and the

combination of both models is able to achieve higher precision and recall.

Unfortunately, comparison of the sentence-based model with and without

question-based features (Figure 3.2) did not show a significant difference.

3.1.3 Analysis and Discussion

To get an idea of typical problems of the QnA-based model we sampled and

manually judged extracted high confidence examples that are not present in

Freebase (and thus are considered incorrect for precision-recall analysis).

45

The major reason (40%) of false positive extractions is errors in entity

linking. For example: “Who is Tim O’Brien? He was born in Austin on

October 1, 1946 ”. The model was able to correctly extract [Tim O’Brien,

date of birth, October 1, 1946], however, Tim O’Brien was linked to a wrong

person. In a number of cases (16%) our discourse model turns out to be too

simple and fails for answers, that mention numerous additional information,

e.g., “How old is Madonna really? ...Cher was born on 20 May 1946 which

makes her older that Madonna...”. A possible solution would be to either

restrict QnA-based model to cases when no additional information is present

or design a better discourse model with deeper analysis of the answer sen-

tence and its predicates and arguments. Some mistakes are due to distant

supervision errors, for example for the music.composition.composer predicate

our model extracts singers as well as composers (which are in many cases the

same).

Of course, there are a number of cases, when our extractions are indeed

correct but are either missing (33%) or contradicting with Freebase (8%).

An example of an extracted fact, that is missing in Freebase is “Who is Wole

Soyinka? He studied at the University College, Ibadan(1952-1954) and the

University of Leeds (1954-1957)”, and [Wole Soyinka, institution, University

of Leeds] is currently not present in Freebase. Contradictions with Freebase

occur because of different precision levels (“pianist” vs “jazz pianist”, city

vs county, etc.), different calendars used for dates or “incorrect” information

provided by the user. An example, when existing and extracted relation

instance are different in precision is:“Who is Edward Van Vleck? Edward

Van Vleck was a mathematician born in Middletown, Connecticut” we ex-

tract [Edward Van Vleck, place of birth, Middletown], however, the Freebase

currently has the USA as his place of birth.

The problem of “incorrect” information provided in the answer is very in-

teresting and worth special attention. It has been studied in CQA research,

46

e.g., [170], and an example of such QnA pair is: “Who is Chandrababu Naidu?

Nara Chandra Babu Naidu (born April 20, 1951)”. Other authoritative re-

sources on the Web give April 20, 1950, as Chandrababu Naidu’s date of

birth. This raises a question of trust to the provided answer and expertise

of the answerer. Many questions on CQA websites belong to the medical

domain, e.g., people asking advice on different health related topics. How

much can we trust the answers provided to extract them into the knowledge

base? We leave this question to the future work.

Finally, we have seen that only a small fraction of available QnA pairs was

annotated with existing Freebase relations, which shows a possible limitation

of Freebase schema. A promising direction for future work is the automatic

extraction of new predicates, which users are interested in and which can be

useful to answer more future questions.

3.2 Text2KB: Augmenting Knowledge Base

Question Answering with External Text

Data

Existing relation extraction tools are not perfect, in particular, due to recall

losses a lot of information is left behind. Moreover, extractions contain a

certain level of incorrect information due to precision losses. Therefore, by

applying relation extraction we are lowering the upper bound of the perfor-

mance of an underlying question answering system. An alternative approach

is to keep the information in its raw unstructured format and design a way

to use it along with KB. In this section, I describe a novel factoid question

answering system, that utilizes available textual resources to improve differ-

ent stages of knowledge base question answering (KBQA). This work was

presented as a full paper at SIGIR 2016 conference [166].

47

KBQA systems must address three challenges, namely, question entity iden-

tification (to anchor the query process); candidate answer generation; and

candidate ranking. We will show that these challenges can be alleviated by

the appropriate use of external textual data. Entity identification seeds the

answer search process, and therefore the performance of the whole system

greatly depends on this stage [234]. The question text is often quite short,

may contain typos and other problems, that complicate entity linking. Exist-

ing approaches are usually based on dictionaries that contain entity names,

aliases and some other phrases, used to refer to the entities [182]. These

dictionaries are noisy and incomplete, e.g., to answer the question “what

year did tut became king?” a system needs to detect a mention “tut”, which

refers to the entity Tutankhamun. If a dictionary does not contain a mapping

“tut” → Tutankhamun, as happens for one of the state-of-the-art systems, it

will not be able to answer the question correctly. Such less popular name

variations are often used along with full names inside text documents, for

example, to avoid repetitions. Therefore, we propose to look into web search

results to find variations of question entity names, which can be easier to link

to a KB (Figure 3.3). This idea has been shown effective in entity linking for

web search queries8 [57].

After question entities have been identified, answer candidates need to be

generated and ranked to select the best answer. A candidate query includes

one or multiple triple patterns with predicates, corresponding to words and

phrases in the question. Existing knowledge base question answering ap-

proaches [20, 22, 23, 24, 35, 235] rely on a lexicon, learned from manually

labeled training data, and supported by additional resources, such as ques-

tion paraphrases [23] and weakly labeled sentences from a large text collec-

tion [236]. Such training data tends to be small compared to the number of

different predicates in a KB, and therefore the coverage of these lexicons is

8http://web-ngram.research.microsoft.com/ERD2014/

48

Figure 3.3: Web search results for the question “what year did tut became

king?”, which mention both the full name of the king and the correct answer

to the question.

limited. By our estimate, in a popular WebQuestions KBQA dataset [22],

the answers to ∼5.5% of test questions (112 out of 2032) involve a predicate

that does not appear as a ground truth in the training set. For example, the

RDF triple [Bigos, food.dish.type of dish1, Stew] answers the ques-

tion “what are bigos?”, but no other examples in the training set involve this

predicate. In addition, a lexicon needs to cover all different ways a predi-

cate can be asked about. For example, questions “who did jon gosselin cheat

with?” and “who is the woman that john edwards had an affair with?” are

answered by the same KB predicate but use different language. Therefore,

the presence of the first question in a training set may not help to answer the

49

second question. On the other hand, traditional Text-QA systems benefit

from the redundancy of the information on the Web, where the same facts

are stated multiple times in many different ways [126]. This increases the

chances of a good lexical match between a question and answer statements,

which makes even some relatively simple counting-based techniques quite

effective [41]. The model I developed adapts these ideas from text-based

question answering for KBQA.

The general architecture and an example use case of Text2KB is presented

on Figure 3.4. Text2KB is based on the information extraction approach

to knowledge base question answering [236], in particular, it extends the

Aqqu system of H.Bast et al. [20], which is one of the best performing open

source KBQA system on the WebQuestions dataset. The left part of the

Figure 3.4 describes a typical architecture of IE-based KBQA systems, and

the right part introduces additional external text data sources, namely Web

search results, community question answering (CQA) data, and a collection

of documents with detected KB entity mentions. First, I describe the main

stages of the information extraction approach to knowledge base question

answering using Aqqu, the baseline system, as an example.

3.2.1 Baseline Approach

The first stage of the knowledge base question answering process is the iden-

tification of question topic entities, which are used as sources for the answer

search process. For concreteness, consider a question from the WebQuestions

dataset “who is the woman that john edwards had an affair with?”. Here, the

entity John Edwards with Freebase id /m/01651q is the main question en-

tity. However, Freebase contains millions of entities and it can be difficult to

identify the topical ones (e.g., entities Woman and Affair are also present in

Freebase), or to disambiguate and choose between John Edwards a politician

50

Figure 3.4: The architecture of the Text2KB Question Answering system.

(/m/01641q), an American racing driver (/m/06zs089) and other people with

the same name. Aqqu considers all spans of question words under certain

conditions on part of speech tags and uses an entity names lexicon [182] to

map phrases to potential entities. Most reported systems, including Aqqu,

do not disambiguate entities at this stage, but rather keep a set of candi-

dates along with some information about their popularities (e.g., number of

mentions in the collection), and mention scores p(entity|mention text).
At the next stage, SPARQL query candidates are generated by exploring

the neighborhood of the question topic entities using a predefined set of query

templates. Each query template has question entities, predicates and answer

51

placeholders. The majority of the answers in the WebQuestions dataset can

be covered by just 3 templates (q entity - question entity, a entity - answer

entity, cvt node - Freebase mediator node, which represents tuples with more

than 2 arguments):

SELECT DISTINCT ? a e n t i t y {
<q ent i ty> <pred i cate> ? a e n t i t y .

}

SELECT DISTINCT ? a e n t i t y {
<q ent i ty> <pred i ca t e 1> ? cvt node .

? cvt node <pred i ca t e 2> ? a e n t i t y .

}

SELECT DISTINCT ? a e n t i t y {
<q e n t i t y 1> <pred i ca t e 1> ? cvt node .

? cvt node <pred i ca t e 2> <q e n t i t y 2> .

? cvt node <pred i ca t e 3> ? a e n t i t y .

}

The first template retrieves a set of entities that are directly connected

to the given question entity via a certain predicate. The second template

accounts for the presence of a mediator node, that groups together arguments

of a multi-argument relation. And the last template looks for cases when a

question also mentions another argument of a multi-argument relation, e.g.,

Captain Kirk and Star Trek for the question “who played captain kirk in

star trek movie?”.

Each query candidate is represented with a set of features, that includes

the scores for linked question entities, various scores for matching between

question term n-grams and query predicates, the size of the results list, etc.

The final stage of the question answering process is filtering and ranking. The

Aqqu system employs a pairwise learning-to-rank model, trained on part of

52

the dataset. For each pair of candidate answers, Aqqu creates an instance,

which contains 3 groups of features: features of the first, the second candidate

in the pair and the differences between the corresponding features of the

candidates. Specifically, a Random Forest model is used in the provided

Aqqu implementation. A pair where the first candidate is better than the

second belongs to class +1, and -1 otherwise. To reduce the number of pairs

for the final ranking, Aqqu includes a simplified linear filtering model, which

is trained to detect incorrect answers with high precision.

In Text2KB we also introduced a couple of extensions to the original Aqqu

system, which does not involve external text data. We noticed that since

Aqqu does not use information about the answer entity Freebase types, in

many cases it returns an answer that is incompatible with the question: e.g.,

state instead of county etc. Therefore, we trained a model to return a score

that measures compatibility between the question and answer entities, based

on the entity notable types and question uni- and bi-grams as features, sim-

ilar to Aqqu’s relations score model. A second extension introduced a new

date range query template, which helps solve cases like “what team did david

beckham play for in 2011?”, where we need to look at the ranges of dates to

determine whether an answer candidate satisfies the question.

SELECT DISTINCT ? a e n t i t y {
<q e n t i t y 1> <pred i ca t e 1> ? cvt node .

? cvt node <f rom pred icate> ? date from .

? cvt node <t o p r e d i c a t e> ? date to .

? cvt node <pred i ca t e 2> ? a e n t i t y .

FILTER (<ques t ion date> >= ? date from AND

<ques t ion date> <= ? date to)

}

53

3.2.2 Text2KB Model

Text2KB improves the baseline knowledge base question answering model

by utilizing textual resources on various stages of the pipeline. Our model

uses web search results to improve question analysis, i.e., identify question

topic, and extract additional features to support generated answer candi-

dates. Question-answer pairs from CQA archives are used to learn asso-

ciations between question words and KB predicates, and score candidate

SPARQL queries. Finally, a text collection annotated with KB entity men-

tions is used to build a language model for entity pairs, and generate answer

ranking features.

Web search results for question understanding and answer rank-

ing. Traditional TextQA systems rely on search results to retrieve relevant

documents, which are then used to extract answers to users’ questions. Rel-

evant search results mention question entities multiple times and in various

forms, which can be helpful for entity linking [57]. Furthermore, retrieved

document set often contains multiple occurrences of the answer, which can

be a strong signal for candidate ranking [126].

To obtain related web search results, Text2KB issues the question as a query

to a search engine9, extracts top 10 result snippets and the corresponding

documents. Next, Text2KB uses Aqqu entity linking module to detect KB

entity mentions in both snippets and documents.

Question text provides only a limited context for entity disambiguation and

linking; additionally, the entity name can be misspelled or an uncommon

variation used. This complicates the task of entity identification, which is

the foundation of KB question answering process. Fortunately, web search

results help with these problems, as they usually contain multiple mentions

9In our experiments, we use the Bing Web Search API

https://www.microsoft.com/cognitive-services/en-us/bing-web-search-api and local

Wikipedia search using Lucene

54

of the same entities and provide more context for disambiguation. Text2KB

uses the search result snippets to expand the set of detected question entities.

More specifically, we count the frequencies of each entity mentioned in search

snippets, and most popular ones with names similar to some of the question

terms are added to the list of topical entities. The goal of this similarity

condition is to keep only entities that are likely mentioned in the question

text and filter out related, but different entities. To estimate the similarity

between a name and question tokens, we use Jaro-Winkler string distance.

An entity is added to the list of question entities if at least one of its tokens

et has high similarity with one of the question tokens qt excluding stopwords

(Stop):

maxet∈M\Stop,qt∈Q\Stop1− dist(et, qt) ≥ 0.8

The information stored in KBs can also be present in other formats, e.g.,

text statements. For example, on Figure 3.3 multiple search snippets mention

the date when Tutankhamun became a king. TextQA systems use such pas-

sages to extract answer to users’ questions. However, text may not provide

sufficient context information about the mentioned entities, and systems have

to infer the useful details, e.g., entity types, which can be problematic [239].

On the other hand, KBQA systems can utilize all the available KB knowledge

about the entities in a candidate answer and would benefit from additional

text-based information to improve ranking. More specifically, Text2KB pro-

ceeds as follows (full list of features is given in Table 3.6):

1. Precompute term and entity IDFs. We used Google n-grams cor-

pus to approximate terms IDF by collection frequencies and available

ClueWeb Freebase entity annotations10 to compute entity IDF scores.

2. Each snippet si and document di are represented by two TF-IDF vec-

tors of lowercased tokens (tsi and tdi) and mentioned entities (esi and

10http://lemurproject.org/clueweb09/FACC1/

55

edi).

3. In addition, vectors of all snippets and all documents are merged to-

gether to form combined token and entity vectors: t∪si , t∪di , e∪si and

e∪di .

4. Each answer candidate aj is also represented as TF-IDF vector of terms

(from entity names), and entities: taj and eaj

5. Cosine similarities between answer and each of 10 snippet and docu-

ment vectors are computed: cos(tsi , taj), cos(tdi , taj) and cos(esi , eaj),

cos(edi , eaj). We use the average score and the maximum score as fea-

tures.

6. We also compute answer similarities with the combined snippet and

document vectors: cos(t∪si , taj), cos(e∪si , eaj), cos(t∪di , taj), cos(e∪di , eaj).

CQA data for matching questions to predicates. Recall that a major

challenge in KBQA is that natural language questions do not easily map to

entities and predicates in a KB. An established approach for this task is su-

pervised machine learning, which requires labeled examples of questions and

the corresponding answers to learn this mapping, which can be expensive

to construct. Researchers have proposed to use weakly supervised methods

to extend a lexicon with mappings learned from single sentence statements

mentioning entity pairs in a large corpus [236]. However, the language used

in questions to query about a certain predicate may differ from the language

used in statements. In Section 3.1 we demonstrated how distant supervision

can be applied to question-answer pairs from CQA archives for a related task

of information extraction for knowledge base completion. In a similar way,

we use weakly labeled collection of question-answer pairs to compute asso-

ciations between question terms and predicates to extend system’s lexicon

(Figure 3.5). We emphasize that this data does not replace the mappings

56

Figure 3.5: Example of a question and answer pair from Yahoo! Answers

CQA website.

learned from single sentence statements, which are already used by our base-

line system, but rather introduces the new ones learned from the CQA data.

For our experiments, we use 4.4M questions from Yahoo! WebScope L6

dataset11. Question and answer texts were run through an entity linker, that

detected mentions of Freebase entities. Next, we use distant supervision as-

sumption to label each question-answer pair with predicates between entities

mentioned in the question and in the answer. These labels are used to learn

associations between question terms and predicates by computing pointwise

mutual information scores (PMI) for each term-predicate pair. Examples of

scores for some terms are given in Table 3.4.

In Text2KB we evaluate candidate answer predicates by using the associa-

tion (e.g., PMI) scores between predicates and the question terms (missing

pairs are given a score of 0). The minimum, average and maximum of these

values are used as features to represent a candidate answer. Such associations

data can be sparse, we also use pretrained word2vec word embeddings12. We

compute predicate embeddings by taking a weighted average of term vectors

from predicate’s PMI table. Each term vector is weighted by its PMI value

11https://webscope.sandbox.yahoo.com/
12https://code.google.com/p/word2vec/

57

Term Predicate PMI

born people.person.date of birth 3.67

people.person.date of death 2.73

location.location.people born here 1.60

kill people.deceased person.cause of death 1.70

book.book.characters 1.55

currency location.country.currency formerly used 5.55

location.country.currency used 3.54

school education.school.school district 4.14

people.education.institution 1.70

sports.school sports team.school 1.69

illness medicine.symptom.symptom of 2.11

medicine.decease.causes 1.68

medicine.disease.treatments 1.59

win sports.sports team.championships 4.11

sports.sports league.championship 3.79

Table 3.4: Examples of term-predicate pairs with high PMI scores, computed

using distant supervision from a CQA collection.

(terms with a negative score are skipped). Then, we compute cosine similari-

ties between predicate vector and each of the question term vectors and take

their minimum, average, maximum as features. Finally, we average embed-

dings of question terms and compute its cosine similarity with the predicate

vector (full list of features is given in Table 3.6).

Estimating entity associations using a semantically annotated text

collection. A key step for ranking candidate answers is to estimate whether

the question and answer entities are related in a way asked in the question.

Existing KBQA approaches usually focus on scoring the mappings between

58

Entity 1 Entity 2 Frequent terms

Rielle Hunter campaign, affair, mistress, child, former ...

Cate Edwards daughter, former, senator, courthouse,

greensboro, eldest ...

John Edwards Elizabeth Edwards wife, hunter, campaign, affair, cancer,

rielle, husband ...

Frances Quinn daughter, john, rielle, father, child, for-

mer, paternity...

Table 3.5: Example of entity pairs along with the most popular terms men-

tioned around the entities in ClueWeb12 collection.

question phrases and KB concepts from a candidate SPARQL query. How-

ever, textual data can provide another angle on the problem, as question and

answer entities are likely to be mentioned together somewhere in text pas-

sages. For example, in the bottom right corner of Figure 3.4 we can see some

passages that mention a pair of people, and the context of these mentions ex-

plains the nature of the relationships. This data can be viewed as additional

edges in a KB, which connect pairs of entities and have associated language

models, estimated from text phrases, that mention these entities. Such edges

do not have to coincide with the existing KB edges and can connect arbitrary

pairs of entities, that are mentioned together in the text, therefore extend

the KB.

We use the ClueWeb12 corpus with existing Freebase entity annotations

and count different terms that occur in the context of a mention of a pair

of different entities (we only consider mentions within 200 characters of each

other). To compute this unigram language model we use the terms separating

the entities, as well as the terms within a small window (e.g., 100 characters)

before and after the entity mentions. A small sample of this data is presented

in Table 3.5.

59

We use this data to compute candidate ranking features as follows. Con-

sider question words Q and an answer candidate, which contains a question

entity e1 and one or more answer entities e2. For each answer candidate, we

compute a language model score:

p(Q|e1, e2) =
∏
t∈Q

p(t|e1, e2)

and use the minimum, average and maximum over all answer entities as

features. To address the sparsity problem, we again use embeddings, i.e., for

each entity pair a weighted (by counts) average embedding vector of terms is

computed and minimum, average and maximum cosine similarities between

these vectors and question token embeddings are used as features (full list of

features is given in Table 3.6).

Internal text data to enrich entity representation. In addition to

external text data, many knowledge bases, including Freebase, contain text

data as well, e.g., Freebase includes a description paragraph from Wikipedia

for many of its entities. These text fragments provide a general description

of entities, which may include information relevant to the question [186]. For

completeness, we include them in our system as well. Each entity description

is represented by a vector of tokens, and a vector of mentioned entities. We

compute cosine similarities between token and entity vectors of the question

and description of each of the answers and use the minimum, average and

maximum of the scores as features.

The final list of text-based features used in Text2KB model is presented in

Table 3.6.

3.2.3 Experimental Results

This section reports the experimental setup, including the dataset and met-

rics, as well as the main methods compared for evaluating the performance

60

Data Source Feature

Search results (Wiki or Web) - number of entity mentions in search results

- max and average tf-idf cosine similarity be-

tween answer and search snippets/documents

- max and average embeddings cosine similarity

between question tokens and search snippets/-

documents

CQA data (CQA) - sum, average, minimum and maximum PMI

scores between question tokens and answer pred-

icates

- sum, average, minimum and maximum embed-

dings cosine similarity scores between question

tokens and PMI-weighted answer predicates to-

kens

Text collection (CL) - min, max and average entity-pair language

model score for question topic and answer en-

tities

- min, max and average entity-pair embeddings

score for question topic and answer entities

Table 3.6: The list of text-based features used in the Text2KB model.

of our Text2KB system. Additionally, we describe a series of ablation studies

to analyze the contribution of different system components.

Methods Compared. We compare our system, Text2KB, to state-of-the-

art approaches, notably:

• Aqqu: a state-of-the-art baseline KBQA system [20], described in Sec-

tion 3.2.1.

• Text2KB(Web search): Our Text2KB system, using the Bing search

engine API over the Web.

61

• Text2KB(Wikipedia search): Our Text2KB system, using the stan-

dard Lucene search engine over the February 2016 snapshot of the En-

glish Wikipedia, in order to validate our system without the potential

“black-box” effects of relying on a commercial Web search engine (Bing)

and changing corpus (Web).

• STAGG: One of the best13 current KBQA systems [191] as measured

on the WebQuestions dataset.

Additionally, other previously published results on WebQuestions are in-

cluded to provide context for the improvements introduced by our Text2KB

system.

Datasets. I followed the standard evaluation procedure for the WebQues-

tions dataset and used the original 70-30% train-test split (3,778 training

and 2,032 test instances). Within the training split, 10% was set aside for

validation to tune the model parameters and only the best-performing set of

parameters selected on the validation data was used to report the results on

the official test split.

Evaluation Metrics. Recent papers using the WebQuestions dataset have

primarily used the average F1-score as the main evaluation metric, defined

as: avg F1 = 1
|Q|

∑
q∈Q f1(a∗q, aq)

f1(a∗q, aq) = 2
precision(a∗q, aq)recall(a

∗
q, aq)

precision(a∗q, aq) + recall(a∗q, aq)

precision(a∗q, aq) =
|a∗q∩aq |
|aq | and recall(a∗q, aq) =

|a∗q∩aq |
|a∗q |

, a∗q and aq are correct

and given answers to the question q, which can be lists of entities. Addition-

ally, I report average precision and recall, to gain a better understanding of

the trade-offs achieved by different methods.

13It was the best result published before summer 2016, i.e., the camera-ready version

of my paper, describing Text2KB system.

62

System Recall Precision F1 of P &

R

F1

OpenQA [69] - - - 0.35

YodaQA [21] - - - 0.343

Jacana [236] 0.458 0.517 0.486 0.330

SemPre [22] 0.413 0.480 0.444 0.357

Subgraph Embed [35] - - 0.432 0.392

ParaSemPre [23] 0.466 0.405 0.433 0.399

Kitt AI [234] 0.545 0.526 0.535 0.443

AgendaIL [24] 0.557 0.505 0.530 0.497

DepLambda [157] 0.611 0.490 0.544 0.503

STAGG [239] 0.607 0.528 0.565 0.525

Textual Evidence[226] - - - 0.533

FMN [104] 0.649 0.552 0.597 0.557

Aqqu (baseline) [20] 0.604 0.498 0.546 0.494

Text2KBWikiSearch 0.632∗(+4.6%) 0.498 0.557∗(+2.0%) 0.514∗(+4.0%)

Text2KBWebSearch 0.635∗(+5.1%) 0.506∗(+1.6%) 0.563
∗
(+3.1%) 0.522∗(+5.7%)

Table 3.7: Average performance metrics of the Text2KB system on WebQues-

tions dataset compared to the existing approaches. The differences of scores

marked * from the baseline Aqqu system are significant with p-value < 0.01.

Main Results. The results of existing approaches and our Text2KB sys-

tem are presented in Table 3.7. We should note, that text-based QA systems

typically return a ranked list of answers, whereas many answers on WebQues-

tions dataset are lists, which complicates the comparison between KBQA and

text-based systems. The result reported for YodaQA system is the F1 score

at position 1. As we can see, Text2KB significantly improves over the baseline

system.

Data Source and Features Contribution. To analyze the contribution

63

of the features and data sources I introduced, I report results from a series

of ablation studies. For convenience, I introduce the following short-hand

notations for different components of our system:

• T - notable type score model as a ranking feature

• DF - date range filter-based query template

• WebEnt - using web search result snippets for question entity identifi-

cation

• WikiEnt - using wikipedia search result snippets for question entity

identification

• Web - using web search results for feature generation

• Wiki - using wikipedia search results for feature generation

• CQA - using CQA-based [question term, KB predicate] PMI scores

for feature generation

• CW - features, computed from entity pairs language model, estimated

on ClueWeb

In the results table I will use the notation +<comp> for a system with a

certain component added, and -<comp> when it is removed. For example,

the baseline system will be denoted as “Aqqu”. The same system with ad-

ditional date range filter query templates and notable types score model is

denoted as “Aqqu +DF+T”, which represents the same system as “Text2KB

-WebEnt-Web-CQA-CL” (we will call it Text2KB (base)). Our full system

“Text2KB” can be also denoted as “Aqqu +DF+T+WebEnt+Web+CQA+CL”.

First, I analyze the improvements introduced by different components of

the system (Table 3.8). As we can see, additional date range filters and

notable types model (Aqqu+DF+T) are responsible for an increased recall and

a drop in precision compared to the baseline model. Features generated

from Wikipedia search results, CQA data and ClueWeb entity pair language

models (+Wiki+CQA+CL) improve average F1 by 0.007 (+1.4%) compared to

64

Figure 3.6: A plot of Gini importances of different features of our answer

ranking random forest model (features marked * are not text-based and are

provided for comparison).

the base model, adding entity linking using Wikipedia search results improves

results even more (+3%).

Web search results (+Web+CQA+CL) turned out to be more helpful than

Wikipedia results (+Wiki+CQA+CL), which is natural since Wikipedia is a sub-

set of the web. This was one of the reasons we did not combine Wikipedia

and Web search together. Finally, entity linking and all text-based features

combined achieves an even higher score, proving that their contributions are

independent.

I now analyze the contribution of the different data sources. I will remove

a group of web search, CQA or Clueweb-based features and see how the

performance of the whole system changes (Table 3.9). As we can see, all

data sources have an impact on the system performance, and web search

results based features provide the most useful signal for answer ranking.

Figure 3.6 plots a subset of features ranked by their Gini index-based im-

portance scores. The figure supports the observation that web search results

features are the most useful, however, other text data sources also contribute

to the improvement.

65

System Recall Prec F1

Aqqu 0.604 0.498 0.494

Text2KB (base) = Aqqu+DF+T 0.617 0.481 0.499

+Wiki+CQA+CL 0.623 0.487 0.506

+WikiEnt +Wiki+CQA+CL 0.632 0.498 0.514

+WebEnt 0.627 0.492 0.508

+Web+CQA+CL 0.634 0.497 0.514

+WebEnt +Web+CQA+CL 0.635 0.506 0.522

Table 3.8: Average Recall, Precision (Prec), and F1 of Aqqu and Text2KB

system with and without different components. +A means that a component

A is added to the Text2KB (base) system.

In summary, Text2KB significantly outperforms the baseline system, and

each of the introduced components contributes to this improvement. Web

search results data turned out to be the most useful resource, and it signifi-

cantly improves the quality by helping with question entity identification and

candidate ranking. Next, I analyze the system performance in more detail

and investigate factors for future extension.

3.2.4 Analysis

I now investigate how Text2KB compares to other systems on the same

benchmark; then, I investigate in depth the different error modes, which

helps identify the areas of most substantial future improvements.

I took an existing KBQA system and demonstrated that by combining ev-

idence from a knowledge base and external text resources we can boost the

performance. A reasonable question is whether the same approach will be

helpful for other systems, e.g., the best system at the moment of our paper

publication – STAGG [191]. STAGG differs from the baseline system Aqqu

66

System Recall Prec F1

Text2KB (Web search) 0.635 0.506 0.522

Text2KB -Web 0.633 0.496 0.513

Text2KB -CQA 0.642 0.499 0.519

Text2KB -CL 0.644 0.505 0.523

Text2KB -CQA-CL 0.642 0.503 0.522

Text2KB -Web-CQA 0.631 0.498 0.514

Text2KB -Web-CL 0.622 0.493 0.508

Table 3.9: Average Recall, Precision (Prec), and F1 of Text2KB with and

without features based on web search results, CQA data and ClueWeb col-

lection.

in the components: entity linking algorithm, a set of query templates and

ranking methods. Therefore, my approach is “orthogonal” to these improve-

ments and should be helpful for STAGG as well. To support this claim, I

made an experiment to combine answers of STAGG and Text2KB. One of

the advantages of the former is its set of filters, that restricts list results to

entities of certain type, gender, etc. Therefore, I combined answers of STAGG

and Text2KB using a simple heuristic: I chose to use the answer returned by

STAGG if the number of answer entities is less than in the Text2KB answer,

otherwise, I used the answer of Text2KB. Table 3.10 gives the results of the

experiment, and as we can see the combination achieves a slightly better av-

erage F1 score. Alternatively, we can look at the Oracle combination of the

systems, which always selects the answer with the higher F1. As we can see

such a combination results in a performance of 0.606, which is much higher

than either of the systems.

As I mentioned earlier, answers to 112 of the test questions in the We-

bQuestions dataset involve predicates that were not observed in the training

67

System avg F1

Text2KB 0.522

STAGG [191] 0.525

Text2KB + STAGG 0.532 (+1.3 %)

Text2KB + STAGG (Oracle) 0.606 (+15.4 %)

Table 3.10: Average F1 for combinations of Text2KB and STAGG using a

simple heuristic based on the length of the answer list and Oracle upper

bound.

Figure 3.7: Distribution of problems with questions, where Text2KB returns

an answer with F1<1.

set, which may be a problem for approaches that rely on a trained lexicon.

I evaluated both systems on these questions, and indeed the performance is

very low, i.e., the average F1 score of Text2KB is 0.1640 compared to 0.1199

for STAGG14.

To get better insights into the problems that remain, I collected 1219 ques-

tions for which Text2KB did not return a completely correct answer, i.e., F1

score < 1. I manually looked through a couple of hundreds of these examples

14Unfortunately, the number of questions is too low to show statistical significance (p-

value=0.16) of the difference.

68

and grouped the problems into several clusters (Figure 3.7).

As we can see candidate ranking is still the major problem, and it accounts

for ∼ 31% of the cases. The second problem is incorrect ground truth labels

(almost 25% of reported errors). Another set of questions has incomplete or

overcomplete ground truth answer list. Typical examples are questions asking

for a list of movies, books, landmarks, etc. The ground truth answer usually

contains ∼ 10 entities, whereas the full list is often much larger. This seems

to be an artifact of the labeling process, where the answer was selected from

the Freebase entity profile page, which shows only a sample of 10 entities,

while the rest are hidden behind the “N values total” link. About 20% of

the questions are ambiguous, i.e., questions have no strict 1-1 correspondence

with any of the predicates and can be answered by multiple ones without any

obvious preferences. For example, the question “what did hayes do?” can

be answered by profession, occupied position or some other achievements.

Another problem is when there is no predicate that answers the question.

For example, the question “what do people in france like to do for fun?”

does not have a good match among the facts stored in Freebase. The ground

truth entity Cycling comes from the list Olympic sport competitions country

participated15.

Text2KB components were quite effective in resolving some of the prob-

lems. Web search results helped identify the right question topical entity in

a number of cases, e.g., “what did romo do?” mentions only the last name of

the Dallas Cowboys quarterback and the baseline system were unable to map

it to the right entity. Web search results provides more than enough evidence

that “romo” refers to Tony Romo. However, there is a number of loses, intro-

duced by added unrelated entities. For example, the entity I Love Lucy was

added for the question “what was lucille ball?”, because the term lucy had

high similarity with lucille. A portion of these problems can be fixed by a bet-

15olympics.olympic participating country.athletes

69

ter entity linking strategy, e.g., [57]. An interesting example, when external

text resources improved the performance is the question “what ship did dar-

win sail around the world?”. This is actually a hard question because the ship

entity is connected to the Charles Darwin entity through the “knownFor”

predicate along with some other entities like Natural selection. Thus, the

predicate itself is not related to the question, but nevertheless, the name of

the ship HMS Beagle is mentioned multiple times in the web search results,

and entity pair model computed from ClueWeb also has high scores for the

terms “ship” and “world”.

There are several major reasons for the loses, introduced by features based

on external text resources. Some entities often mentioned together and

therefore one of them gets high values of co-occurrence features. For ex-

ample, the baseline system answered the question “when did tony romo

got drafted?” correctly, but since Tony Romo is often followed by Dallas

Cowboys, Text2KB ranked the team name higher. Another common prob-

lem with our features is an artifact of entity linking, which works better for

names and often skips abstract entities, like professions. For example, the

correct answer to the question “what did jesse owens won?” is an entity with

the name Associated Press Male Athlete of the Year, which is rarely

mentioned or it is hard to find such mentions. Some problems were intro-

duced by a combination of components. For example, for “where buddha

come from?” a topical entity Buddhism was introduced from search results,

and it generated Gautama Buddha as one of the answer candidates. This an-

swer was ranked the highest due to a large number of mentions in the search

results.

In summary, in this section, I demonstrated that unstructured text re-

sources can be effectively utilized for knowledge base question answering

to improve query understanding, candidate answer generation and ranking.

Textual resources can help KBQA system mitigate the problems of matching

70

between knowledge base entities and predicates and textual representation

of the question.

Unfortunately, Text2KB does not help with the problem of knowledge base

incompleteness, i.e., my system will not be able to respond to the question,

which refers to an entity, a predicate or a fact, which is missing in a KB.

Section 3.3 describes a neural network framework, that naturally combines

evidence of different nature for factoid question answering.

3.3 EviNets: Joint Model for Text and Knowl-

edge Base Question Answering

A critical task for question answering is the final answer selection stage, which

has to combine multiple signals available about each answer candidate. Most

of the recent works in QA have focused on the problem of semantic match-

ing between a question and candidate answer sentences [88, 155, 231]. The

datasets used in these works, such as Answer Sentence Selection Dataset [211]

and WikiQA [233], typically contain a relatively small set of sentences, and

the task is to select those that state the answer to the question. However,

for many questions, a single sentence does not provide sufficient information,

and it may not be reliable in isolation. At the same time, the redundancy

of information in large corpora, such as the Web, has been shown useful to

improve information retrieval approaches to QA [53].

One approach for joint representation of diverse information is embedding

into a low-dimensional space, i.e., as achieved by various neural network ar-

chitectures. In particular, Memory Networks [185] and their extensions [136]

use embeddings to represent relevant data as memories, and summarize them

into a single vector, therefore losing information about answers provenances.

In this section, I describe EviNets, a novel neural network architecture for

71

Figure 3.8: The architecture of EviNets Neural Networks for combining tex-

tual and KB evidence in factoid question answering.

factoid question answering, which provides a unified framework for aggre-

gating evidence, supporting answer candidates. Given a question, EviNets

retrieves a set of relevant pieces of information, e.g., sentences from a cor-

pora or knowledge base triples, and extracts mentioned entities as candidate

answers. All the evidence signals are then embedded into the same vector

space, scored and aggregated using multiple strategies for each answer candi-

date. Experiments on the TREC QA, WikiMovies and new Yahoo! Answers

datasets demonstrate the effectiveness of the proposed approach, and its abil-

ity to handle both unstructured text and structured KB triples as evidence.

This work was published as a short paper at the Annual Meeting of the

Association for Computational Linguistics 2017 [167].

72

Figure 3.9: Layer-wise structure of the EviNets Neural Networks framework

for factoid question answering. Evidence matching (a), aggregation (b) and

answer scoring (c) stages correspond to those in Figure 3.8.

3.3.1 Model and Architecture

The high level architecture of EviNets is illustrated in Figure 3.8. For a

given question, we extract potentially relevant information, e.g., sentences

from documents retrieved from text corpora using a search system. Next,

we can use an entity linking system, such as TagMe [70], to identify entities

mentioned in the extracted information, which become candidate answers.

EviNets can further incorporate additional supporting evidence, e.g., textual

description of candidate answer entities, and potentially useful KB triples,

such as types [186]. Finally, question, answer candidates and supporting

evidence are given as input to the EviNets neural network.

73

Let us denote a question by q, and {qt ∈ R|V |}, as a one-hot encoding

of its tokens from a fixed vocabulary V . ai is a candidate answer from

the set A, and we will assume, that each answer is represented as a single

entity. For each question, we have a fixed set E = Etext ∪ EKB of evi-

dence statements e(i), i = 1..M , and their tokens e
(i)
t . A boolean function

mention : A × E → {0, 1} provides the information about which answer

candidates are mentioned in which evidences. Individual tokens qt, ai, e
(i)
t

are translated into the embedding space using a matrix WD× |V |, where D is

the dimension of the embeddings, i.e., qemb,t = Wqt, aemb,i = Wat and

e
(i)
emb,t = We

(i)
t . In the experiments, I use the same matrix for questions, evi-

dence, and answers. KB entities are considered to be individual tokens, while

predicates and type names are tokenized into constituent words, i.e., by split-

ting on underscore and dot characters for Freebase predicates. A layer-wise

architecture of EviNets is displayed on Figure 3.9. The evidence matching

module ((a) on Figures 3.8 and 3.9) estimates the relevance of each statement

in the memory, and computes their weights using the softmax function. The

evidence aggregation module (b) uses multiple ways to compute the aggre-

gated statistics of evidences, mentioning each answer candidate. Finally, the

answer scoring module (c) uses a fully connected network to predict a score

for each answer candidate. EviNets selects the answer with the highest score

as the final response.

Evidence Matching Module

Evidence matching is responsible for estimating the relevance of each of

the pieces of evidence to the question, i.e., we = softmax(match(q, e)).

The function match(q, e) can be implemented using any of the recently

proposed semantic similarity estimation architectures16. One of the sim-

plest approaches is to average question and each evidence token embed-

16e.g., see the ACL Wiki on Question Answering (State of the art).

74

dings and score the similarity using the dot product: qemb = 1
Lq

∑
t qemb,t

and e
(i)
emb = 1

Le

∑
t e

(i)
emb,t and match(q, e(i)) = qTemb · e

(i)
emb.

Evidence Aggregation Module

Evidence Feature Description

Maximum evidence score men-

tioning the answer

maxe{we|mention(a, e)}, e ∈ E,Etext or EKB

Average evidence score men-

tioning the answer

avge{we|mention(a, e)}, e ∈ E,Etext or EKB

Sum of evidence scores men-

tioning the answer

∑
e{we|mention(a, e)}, e ∈ E,Etext or EKB

Number of mentions
∑

e{1|mention(a, e)}, e ∈ Etext

Weighted memory similarity to

the question

(1
M

∑
iwee

(i)
emb) · qemb

Weighted memory similarity to

the answer [185]

(1
M

∑
iwee

(i)
emb) · aemb or RT (1

M

∑
iwee

(i)
emb +

qemb) · aemb, where RD× D is a rotation matrix

Weighted memory answer men-

tions similarity to the an-

swer [136]

(1
M

∑
ewe[

∑
a aemb | mention(e, a)]) · aemb

Table 3.11: Signals used in EviNets to aggregate evidence in support for each

of the answer candidates a.

After all the evidence signals have been scored, EviNets aggregate the sup-

port for each answer candidate. Table 3.11 summarizes the aggregation fea-

tures used. With these features, EviNets captures different aspects, i.e., how

well individual sentences match the question, how frequently the candidate

is mentioned and how well a set of answer evidences covers the information

requested in the question.

75

Dataset Example Questions

TREC QA Where is the highest point in Japan?

1236 train What is the coldest place on earth?

202 test Who was the first U.S. president to appear on TV?

WikiMovies what films did Ira Sachs write?

96185 train what films does Claude Akins appear in?

10000 dev the movie Victim starred who?

9952 test what type of film is Midnight Run?

Yahoo! Answers What is Elvis’s hairstyle called?

1898 train Who is this kid in Mars Attacks?

271 dev who invented denim jeans?

542 test who’s the woman on the progressive.com commercials?

Table 3.12: Statistics of the TREC QA, WikiMovies and Yahoo! Answers

factoid datasets.

Answer Scoring Module

Finally, EviNets uses the aggregated signals to predict the answer scores, to

rank them, and to return the best candidate as the final answer to the ques-

tion. For this purpose, we use two fully-connected neural network layers with

the ReLU activation function, with 32 and 8 hidden units respectively. The

model was trained end-to-end by optimizing the cross entropy loss function

using the Adam algorithm [112].

3.3.2 Experimental Evaluation

To test our framework we used TREC QA [186], WikiMovies [136] bench-

marks and the new Yahoo! Answers dataset17 derived from factoid questions

posted on the CQA website (Table 3.12). In all experiments, embeddings

17available for research purposes at http://ir.mathcs.emory.edu/software-data/

76

were initialized with 300-dimensional vectors pre-trained with Glove [147].

Embeddings for multi-word entity names were obtained by averaging the

word vectors of constituent words.

Baselines

As baselines for different experiments depending on availability and specifics

of a dataset we considered the following methods:

• IR-based QA systems: AskMSR [41] and AskMSR+ [195], which select

the best answer based on the frequency of entity mentions in retrieved

text snippets.

• KBQA systems: SemPre [22] and Aqqu [20], which identify possible

topic entities of the question, and select the answer from the candidates

in the neighborhood of these entities in a KB.

• Hybrid system QuASE [186] detects mentions of knowledge base enti-

ties in text passages, and uses the types and description information

from the KB to support answer selection.

• Hybrid system Text2KB [166], which uses textual resources to improve

different stages of the KBQA pipeline, described in Section 3.2.

• Memory Networks: MemN2N [185] and KV MemN2N [136] represent

relevant information with embeddings, and summarize the memories

into a single vector using the soft attention mechanism. Additionally,

KV MemN2N splits memories into key-value pairs, where keys are used

for matching against the question, and values are used to summarize

the memories.

TREC QA dataset

The TREC QA dataset is composed of factoid questions, which can be an-

swered with an entity, and were used in TREC 8-12 question answering

77

Method P R F1

SemPre 0.157 0.104 0.125

Text2KB 0.287 0.287 0.288

AskMSR+ 0.493 0.490 0.491

QuASE (text) 0.550 0.550 0.550

QuASE (text+kb) 0.579 0.579 0.579

MemN2N 0.333 0.328 0.330

KV MemN2N 0.517 0.500 0.508

EviNets (text) 0.580 0.560 0.569

EviNets (text+kb) 0.585 0.564 0.574

Table 3.13: Precision, Recall and F1 of KB- and Text-based question an-

swering methods on the TREC QA dataset. The improvements over the

Key-Value memory networks are statistically significant at p-value < 0.01.

tracks. Similarly to [186] we used web search (using the Microsoft Bing Web

Search API) to retrieve top 50 documents, parsed them, extracted sentences

and ranked them using tf-idf similarity to the question. To compare our

results with the existing state-of-the-art, we used the same set of candidate

entities as used by the QuASE model. We note that the extracted evidence

differs between the models, and we were unable to match some of the can-

didates to our sentences. For text+kb experiment, just as QuASE, we used

entity descriptions and types from Freebase knowledge base.

Table 3.13 summarizes the results. EviNets achieves competitive results on

the dataset, beating KV MemN2N by 13% in F1 score, and, unlike QuASE,

does not rely on expensive feature engineering and does not require any

external resources to train.

78

WikiMovies dataset

The WikiMovies dataset contains questions in the movies domain along

with relevant Wikipedia passages and the OMDb knowledge base. Since

KVMemN2N already achieves an almost perfect result answering the ques-

tions using the KB, we focus on using the provided movie articles from

Wikipedia. We followed the preprocessing procedures described in [136].

Unlike TREC QA, where there are often multiple relevant supporting pieces

of evidence, answers in the WikiMovies dataset usually have a single relevant

sentence, which, however, mentions multiple entities. To help the model dis-

tinguish the correct answer, and explore its abilities to encode structured and

unstructured data, we generated additional entity type triples. For example,

if an entity e appears as an object of the predicate directed by in OMDb,

we added the [e, type, director] triple. As baselines, we used MemN2N

and KV MemN2N models, and the results are presented in Table 3.14. As we

can see, with the same setup using individual sentences as evidence/mem-

ories EviNets significantly outperforms the KV MemN2N model by 27%.

Moreover, the proposed approach can effectively incorporate additional en-

tity type RDF triples, and significantly improve the performance over the

text-only version. It is important to emphasize that the best-reported re-

sults of memory networks were obtained using entity-centered windows as

memories, which requires special pre-processing and increases the number of

memories. Additionally, these models used all of the KB entities as candi-

date answers, whereas EviNets relies only on the mentioned ones, which is a

more scalable scenario for open-domain question answering, where it is not

realistic to score millions of candidate answers in real-time.

79

Method Accuracy

MemN2N (wiki windows) 0.699*

KV MemN2N (wiki windows) 0.762*

AskMSR (entities) 0.314

KV MemN2N (wiki sent) 0.524

EviNets (wiki sent) 0.616

EviNets (wiki sent + entity types) 0.667

Table 3.14: Accuracy of EviNets and baseline models on the WikiMovies

dataset. The results marked * are obtained using a different setup, i.e., they

use pre-processed entity window memories, and the whole set of entities as

candidates.

New Yahoo! Answers factoid questions dataset

Yahoo! recently released a dataset with search queries, which lead to clicks

on factoid Yahoo! Answers questions, identified as questions with the best

answer containing less than 3 words and a Wikipedia page as the specified

source of information18. This dataset contains 15K queries, which correspond

to 4725 unique Yahoo! Answers questions (Table 3.12). We took these ques-

tions, and mapped answers to KB entities using the TagMe entity linking

library [70]. We filtered out questions, for which no answer entities with a

good confidence19 were identified, e.g., date answers, and randomly split the

rest into training, development and test sets, with 2711 questions in total.

Similarly to the TREC QA experiments, we extracted textual evidence using

Bing Web Search API, by retrieving top 50 relevant documents, extracting

the main content blocks, and splitting them into sentences. We applied the

TagMe entity linker to the extracted sentences, and considered all entities

18L27 dataset https://webscope.sandbox.yahoo.com
19A minimum ρ score of 0.2 from TagMe was required.

80

Method P R F1

Aqqu 0.116 0.117 0.116

Text2KB 0.170 0.170 0.170

AskMSR (entities) 0.175 0.319 0.226

MemN2N 0.072 0.131 0.092

KV MemN2N 0.126 0.228 0.162

EviNets (text) 0.210 0.383 0.271

EviNets (text+kb) 0.226 0.409 0.291

Oracle 0.622 1.0 0.767

Table 3.15: Precision, Recall and F1 of different methods on Yahoo! Answers

factoid QA dataset. The Oracle performance assumes candidate answers are

ranked perfectly and is bound by the performance of the initial retrieval step.

of mentions with the confidence score above the 0.2 threshold as candidate

answers. For candidate entities we also retrieved relevant KB triples, such as

entity types and descriptions, which extended the original pool of evidences.

Table 3.15 summarizes the results of EviNets and some baseline methods

on the created Yahoo! Answers dataset. As we can see, knowledge base

data is not enough to answer most of these questions, and a state-of-the-art

KBQA system Aqqu gets only 0.116 precision. Adding textual data helps

significantly, and Text2KB improves the precision to 0.17, which roughly

matches the results of the AskMSR system, that ranks candidate entities by

their popularity in the retrieved documents. EviNets significantly improves

over the baseline approaches, beating AskMSR by 28% and KV MemN2N

by almost 80% in F1 score. Using text along with KB evidence gave higher

performance metrics, boosting F1 from 0.271 to 0.291.

In the above-mentioned experiments we used bag-of-words representation

for questions and evidence, and a reasonable question is whether more com-

81

Method P R F1

EviNets (text+kb): BOW 0.226 0.409 0.291

EviNets (text+kb): biLSTM 0.196 0.356 0.252

Table 3.16: Precision, Recall and F1 of EviNets with bag-of-words and bidi-

rectional LSTM representations of questions and evidence.

plicated methods could achieve higher results. Table 3.16 compares bag-

of-words representation with bidirectional LSTM [207]. On Yahoo! Answers

dataset BOW representation showed better performance, which is most likely

due to a relatively low size of the dataset for the variety of questions present

there.

3.3.3 Discussion

EviNets, described in this section, is a neural network for question answering,

which encodes and aggregates multiple evidence signals to select answers. Ex-

periments on TREC QA, WikiMovies and Yahoo! Answers datasets demon-

strate that EviNets can be trained end-to-end to use both the available tex-

tual and knowledge base information. EviNets improves over the baselines,

both in cases when there are many or just a few relevant pieces of evidence,

by helping build an aggregate picture and distinguish between candidates,

mentioned together in a relevant memory, as is the case for WikiMovies

dataset. The results of the experiments also demonstrate that EviNets can

incorporate signals from different data sources, e.g., adding KB triples helps

to improve the performance over text-only setup. As a limitation of the

approach and a direction for future research, EviNets could be extended to

support dynamic evidence retrieval, which would allow retrieving additional

answer candidates and evidence as needed.

82

3.4 Summary

This Chapter introduced several approaches for combining unstructured,

semi-structured and structured data sources to improve factoid question an-

swering. Relation extraction from question-answer pairs aims at filling some

gaps in KB fact coverage. The experiments show, that we can use distant

supervision to extract factual knowledge from community question answer-

ing archives and increase the recall of the existing sentence-based relation

extraction techniques. However, extraction techniques are not perfect and

suffer from both precision and recall losses. As an alternative strategy, we

can use semantic annotations of entity mentions in a text to connect knowl-

edge base and textual data. Such annotation allows to quickly find relevant

textual resources and improve KBQA methods, as demonstrated by Text2KB

model, or use both data sources together, as pieces of supporting evidence

for generated answer candidates. Diverse information can be mapped into

the embedding space and aggregated together with a neural network archi-

tecture, such as EviNets.

Factoid questions represent just a part of user information needs. Many

problems require a more elaborate response, such as a sentence, list of instruc-

tions or, in general, a passage of text. Such questions are usually referred to

as non-factoid questions and they will be the focus of Chapter 4.

83

Chapter 4

Improving Non-factoid

Question Answering

Factoid questions studied in Chapter 3 represent only a fraction of user infor-

mation needs, and there are many other types of questions, which cannot be

answered with entity names or dates. The variety of user information needs

is reflected in different types of questions, that people post to community

question answering websites [84, 100, 131]. Such questions usually require a

longer response, e.g., a paragraph of text, list of instructions, etc. For the

majority of such questions, modern search engines still return the “10 blue

links”, and delegate the task of digging into the information and extracting

relevant pieces of knowledge to the user, which can be quite time-consuming.

In this Chapter, I focus on improving question answering for such generic

information needs.

Previous research on non-factoid question answering either focused on a

small subset of questions (e.g., definition questions [92]), or considered this

as a problem of ranking existing answers in CQA archives, which can be

reused to answer new questions [48, 174]. To advance the research in the

area of automatic question answering for a general class of user information

84

needs in 2015 TREC started a series of LiveQA evaluation campaigns1. The

task of TREC LiveQA track is to develop a real-time system to answer real

user questions, that are posted live to Yahoo! Answers2 community question

answering platform.

This chapter describes the methods and ideas I implemented in a system,

that participated in 2015 and 2016 versions of the track. The system uses a

combination of semi-structured information, i.e., question-answer pairs from

different CQA platforms, with unstructured information, which can be ex-

tracted from regular web documents. The former strategy of retrieving sim-

ilar previously posted questions was shown to be quite effective [48, 174], as

it allows a system to return a naturally looking answer in cases when a good

match was found. However, many similar questions are formulated differ-

ently, which complicates the retrieval problem, additionally, many incoming

information needs are still unique and there are simply no similar questions

in the archive. In this case a system can extract its answer from potentially

relevant passages of regular web documents. In Section 4.1 I will describe

the architecture of EmoryQA: the system I developed to participate in the

TREC LiveQA shared task.

Despite the indisputable improvements in automatic answer selection3, the

analysis of results of TREC LiveQA 2015 task demonstrated, that we still

have a big gap in performance between human and automatic question an-

swering. Mistakes, that were made by trained machine learning models for

answer passage selection, could be easily spotted by a human in fractions

of a second even when a person does not have enough expertise in the area

of the question. To build on this observation, we looked into how an auto-

matic system can integrate crowdsourcing to improve its performance. More

1http://trec-liveqa.org
2http://answers.yahoo.com/
3http://aclweb.org/aclwiki/index.php?title=Question Answering (State of the art)

85

specifically, we propose to use feedback of a crowd of workers to extend the

answers pool and obtain quality labels for generated answer candidates. Sec-

tion 4.2 describes the design of the crowdsourcing component and the results

of TREC LiveQA 2016, which demonstrated its effectiveness for near real-

time question answering.

In summary, the main contributions of this chapter include:

• An open-source state-of-the-art automatic question answering system

for a general class of user information needs, evaluated at TREC LiveQA

2015 and 2016 tracks. The architecture of the system and evaluation

results were published in TREC conference proceedings [162, 165].

• A novel hybrid question answering system, that incorporates a crowd-

sourcing module, but still operates in near real-time, and significantly

improves performance over the pure automatic approach. This work

was presented as a full paper at HCOMP 2016 [164].

4.1 Ranking Answers and Web Passages for

Non-factoid Question Answering

In this section, I describe the architecture of EmoryQA (Figure 4.1), the

automatic question answering system, which combines semi-structured data

from CQA archives and unstructured web document passages to cover a

variety of questions that users have.

Community Question Answering websites became quite popular and mil-

lions of users post their questions there and hope to receive a response from

the community. The questions on these websites typically consist of question

title, body, and category. Since CQA archives accumulated a lot of question

data, we chose this question format for our development, similar to the setup

86

Figure 4.1: Architecture of the EmoryQA non-factoid question answering

system, participated in TREC LiveQA shared task.

proposed for the TREC LiveQA shared task. Below you can see an example

question from a CQA website:

Question category: Astronomy & Space

Question title: Why do people claim the Earth is not the center

of the universe?

Question body: Clearly the sun and moon are moving around

the Earth otherwise we would not have night and day.

People often have similar tasks and situations which pose the same ques-

tions, and therefore community question answering platforms receive many

similar questions, which can be answered in a similar way. Researchers have

found out, that a good reply to similar questions can be reused to answer

new user questions [48, 174], and a number of approaches have been pro-

posed to rank candidate answer passages [75, 171, 180, 187, 232]. EmoryQA

builds on these works and includes components to retrieve a set of candidate

answers from a number of community question answering platforms, such as

Yahoo! Answers 4, Answers.com 5 and WikiHow 6. Besides some frequent

4http://answers.yahoo.com/
5http://answers.com/
6http://wikihow.com/

87

questions, there is always a long tail of requests, which are either unique

or phrased differently from those that were previously submitted to a CQA

website [28]. To help a user with such questions, EmoryQA includes a gen-

eral web search module, which extracts passages from regular web pages to

extend the pool of candidate answers.

All candidate answers, extracted from either CQA verticals or regular web

documents, are ranked together by a trained answer ranking model, and

EmoryQA returns the top scoring passage as the final answer to the ques-

tion. Next, I will describe candidate generation and ranking modules in more

detail.

4.1.1 Candidate Answer Generation

When the EmoryQA system receives a user question, it first generates a set of

candidate answers from CQA vertical and regular web search data sources.

User questions vary in language [5] and the level of details, therefore, to

increase the recall and retrieve as many relevant results as possible, for each

question we generate multiple search queries:

• Question title, which most often captures the gist of the question

• Two longest question sentences (detected by the presence of the ques-

tion word at the beginning or question mark at the end of a sentence)

from the title and body of the question. In some cases, the real user

question is hidden inside the body, while the title just provides the

overall topic of the question.

• Concatenation of the question word, verbs and top-5 terms from the

question title by inverse document frequency7.

7IDF of terms are estimated using Google N-gram corpus:

https://catalog.ldc.upenn.edu/LDC2006T13

88

For CQA verticals, EmoryQA issues the queries to the built-in search in-

terfaces of Yahoo! Answers, Answers.com and WikiHow.com and extracts

top-10 similar questions with the corresponding answers, posted by the com-

munity, and adds them to the candidates pool. For regular web search, we

rely on the Bing Web Search API8, which we query to retrieve top-10 rele-

vant documents and extract paragraphs of text from their main content, as

detected by a method based on [114].

In addition to the candidate answers themselves, EmoryQA extracts certain

meta-data, that helps to estimate the relevance of a passage to the current

question. For regular web page paragraphs, it is useful to know the topic

of the page (e.g., its title) and the context (such as text that immediately

precedes the paragraph in the document), as shown by Di Wang and Eric

Nyberg in [206]. For CQA answers, our system stores the text of the cor-

responding question title, body, and category. For convenience, we will refer

to this question title and web page title as “answer topic”, while the body

of the retrieved question and the preceding text block for web candidates as

“answer context”.

4.1.2 Candidate ranking

EmoryQA represents each candidate answer with a set of features (Table 4.1).

To predict the quality of the accumulated candidates and select the best

answer we use a trained learning-to-rank model, which sorts the answers

and selects the top response as the final answer to the question. There are

multiple ways to train such a ranking model depending on the type of data

available.

8https://datamarket.azure.com/dataset/bing/searchweb

89

Answer statistics

— Length in chars, words and sentences

— Average number of words per sentence

— Fraction of non-alphanumeric characters

— Number of question marks

— Number of verbs

Answer source

— Binary feature for each of the search verticals: Web, Yahoo! Answers,

Answers.com, WikiHow.com

N-gram matches

— Cosine similarities using uni-, bi- and tri-gram representations of the ques-

tion title and/or body, and answer text, topic or context

— The lengths of longest spans of matched terms between question title and/or

body, and answer text, topic or context

Information Retrieval score

— BM25 scores between question title and/or body, and answer text, topic or

context

Table 4.1: The list of candidate answer ranking features used by the

EmoryQA non-factoid question answering system.

Training answer ranking model using unlabeled CQA data

The problem of learning to rank for information retrieval usually assumes

the presence of labeled data, that provides some kind of partial order of

documents for a set of queries [129]. For question answering that would

mean that one needs to provide relevance labels for passages, which can be

retrieved for a question. This process is more expensive than for regular

document search, since there are many more passages than documents, and

a QA system is not even restricted to return a continuous text from a single

document.

90

Figure 4.2: Dataset generation workflow for training logistic regression and

LSTM answer ranking models used in EmoryQA system participated in

TREC LiveQA 2015.

When no explicit labeled data is available, we can use implicit informa-

tion available in CQA archives, e.g., selected best answers. The version of

EmoryQA, developed to participate in TREC LiveQA 2015, had two trained

models: LSTM recurrent neural network based model, used as one of the

features for the final logistic regression model that scores all candidates and

selects the best one as the answer. To train these models I used WebScope

Yahoo! Answers dataset9, and the process of building the training datasets

is explained on Figure 4.2.

LSTM model. Deep learning models had a huge success in image and

speech problems and showed very promising results in natural language pro-

cessing and question answering, e.g., [242, 207] to name a few. Long Short-

Term Memory (LSTM) [94] is a particular architecture of recurrent neural

networks that helps with the vanishing gradients problems. The model reads

the question and answer tokens and produces a probability score based on a

vector representation of a QnA pair. Figure 4.3 shows the structure of the

model.

Question (title with the body) and answer texts are tokenized, punctuation

9https://webscope.sandbox.yahoo.com/catalog.php?datatype=l

91

Figure 4.3: LSTM model for answer scoring used in EmoryQA system, which

participated in TREC LiveQA 2015 shared task. The example shows a QnA

pair where the question is “Best way to reply to trolls on youtube?” and the

answer is “Do not reply, just ignore”.

characters are removed and for each token lowercased lemma is taken. The

sequences are limited to 100 elements and concatenated through a sentinel

separator character so the model could learn where the question ends and

the answer starts. The hidden state of the model after the whole sequence

is processed is used by logistic regression unit to output a probability, that

a candidate answers the question well.

The model was trained in a pointwise learning-to-rank fashion [129], i.e.,

we trained the model to distinguish between the selected best answer and

some negative examples. Random negative examples would be too unrelated

to the current question, therefore I chose to use answers to similar questions

only. All QnA pairs were indexed with Lucene10 and similar questions were

retrieved using the built-in BM25 retrieval model. For each question and

correct answer pair from the dataset 10 similar questions were retrieved and

the corresponding answers were used as negative examples for training, even

though some of them can indeed be relevant to the original question.

The model was implemented using the Keras11 library. I used an embedding

10https://lucene.apache.org/
11http://keras.io

92

and hidden layers of dimension 128 and the vocabulary size of 1M words. The

model was trained using the Adam optimization technique [112] with mini

batches of 200 instances for 100 epochs.

Logistic regression model. The final model that ranks all answer can-

didates is a linear L2-regularized logistic regression model. To train the

model I used a different from LSTM model split of QnA pairs from Ya-

hoo! Answers WebScope dataset. For each question, the corresponding

“best answer” is taken as the correct one. To get a sample of negative

examples Lucene index is used again and answers to 10 most similar ques-

tions are retrieved. Different from LSTM model training, here I took a pair-

wise approach for learning-to-rank and generated training examples from

pairs of different answers to the same question, where one answer is the

correct one. That is, let the current question be Q, its “correct” answer

A∗, and retrieved candidates A1, ..., An. Each candidate is represented with

a set of features: f(Q,A∗), f(Q,A1), ..., f(Q,An). For each i = 1..n we

create two training instances, i.e. class 1: 〈A∗, Ai〉 and class -1: 〈Ai, A
∗〉.

Each such instance is represented with pairwise differences of features, e.g.

〈A∗, Ai〉 : fpair(Q, 〈A∗, Ai〉) = f(Q,A∗)− f(Q,Ai). The trained model is lin-

ear, therefore if w(f(Q,A∗)−f(Q,Ai)) > 0 then wf(Q,A∗) > wf(Q,Ai) and

we can rank candidates by the score produced by the model, i.e. wf(Q,Ai).

Learning to rank answers with graded relevance data

The approach described in the previous section works well, but the automatic

labeling introduces a certain level of noise. When we have a set of candidate

answers with specified graded relevance, as was the case for TREC LiveQA

2016, it is possible to utilize this cleaner data to train an answer ranking

model. Therefore, in TREC LiveQA 2016 for EmoryQA we used the listwise

approach to learning-to-rank and trained a LambdaMART model [42], which

gave the best results on the development set. This model was trained using

93

the RankLib library12 on the data from the previous year TREC LiveQA

task13. This data includes 1087 questions with answers provided by the

participants, each of which was rated on a scale from 1(bad) to 4(excellent)

by professional NIST assessors.

4.1.3 Evaluation

The experimental evaluation of our EmoryQA non-factoid question answering

system was done on TREC LiveQA 2015 and 2016 tasks. The task was to

build a live question answering system to respond to user questions, which

were sampled from the live stream of questions posted to the Yahoo! Answers

community question answering website by its users. Each input question

consisted of a short question title, body, and category. A QA system had to

provide an answer of 1000 characters or less within a 1 minute period using

any available data source. A reader can refer to [2, 3] for more details on

TREC LiveQA 2015 and 2016 results and analysis.

During the evaluation periods, each system received 1,087 and 1,088 ques-

tions correspondingly, and responses were recorded by the organizers. The

answers to the questions were judged by the organizers on a scale:

4: Excellent - a significant amount of useful information, fully answers the

question.

3: Good - partially answers the question.

2: Fair - marginally useful information.

1: Bad - contains no useful information for the question.

-2 - the answer is unreadable (only 15 answers from all runs were judged as

unreadable).

The official performance metrics used for the tasks are:

12https://sourceforge.net/p/lemur/wiki/RankLib/
13https://sites.google.com/site/trecliveqa2016/liveqa-qrels-2015

94

avg

score

(0-3)

succ@2+ succ@3+ succ@4+ prec@2+ prec@3+ prec@4+

Results from TREC LiveQA 2016

HUMANqual 1.561 0.655 0.530 0.375 0.855 0.692 0.490

HUMANspeed 1.440 0.656 0.482 0.302 0.784 0.576 0.362

1. EmoryCRQA 1.260 0.620 0.421 0.220 0.644 0.438 0.228

2. CMU OAQA 1.155 0.561 0.395 0.199 0.596 0.420 0.212

3. EmoryQA 1.054 0.519 0.355 0.180 0.530 0.362 0.184

Avg results 0.643 0.329 0.212 0.104 0.422 0.271 0.131

Results from TREC LiveQA 2015

1. CMUOAQA 1.081 0.532 0.359 0.190 0.543 0.367 0.179

2. ecnucs 0.677 0.367 0.224 0.086 0.401 0.245 0.094

3. NUDTMDP1 0.670 0.353 0.210 0.107 0.369 0.219 0.111

...

7. EmoryQA 0.608 0.332 0.190 0.086 0.408 0.233 0.106

Avg results 0.467 0.262 0.146 0.060 0.284 0.159 0.065

Table 4.2: Top results of the TREC LiveQA 2015 and 2016 shared tasks.

EmoryQA is the described fully automatic question answering system.

EmoryCRQA is a system with the integrated crowdsourcing module, de-

scribed in Section 4.2.

• avg-score(0-3): average score over all questions, where scores are

translated to 0-3 range (1 is subtracted from each judgment). This

metric considers “Bad”, unreadable answers and unanswered questions,

as scored 0.

• succ@i+: success at i+ metrics measures the fraction of answers with

score i or greater (i=1..4).

• prec@i+: precision at i+ measures the number of questions with score

i or greater (i=2..4) divided by the number of answered questions.

Table 4.2 provides the results of the challenge in 2015 and 2016. The full

95

results can be found in the official overview reports [2, 3]. As we can see,

EmoryQA achieves competitive results during both 2015 and 2016 evaluation

campaigns. Improvements made in 2016, i.e., additional data sources, list-

wise learning to rank model, trained on data from previous year task, helped

to improve the average answer score by ≈ 70%.

Yahoo! Answers (qual) and Yahoo! Answers (speed) are answers, collected

by the organizers from the original questions after a week from the postings.

The speed answers are those submitted chronologically first, while qual were

selected as best answers by the asker, or by Yahoo’s quality scoring algorithm.

As we can see, the quality of community answers are still far better, than

those of QA systems. In particular almost ∼ 50% of the questions received a

perfect answers from Yahoo! Answers community, compared to ∼ 22% from

the winning system. However, ∼ 20% of the questions did not receive any

response from the community, even though human had the whole week to

respond, which stresses an importance of developing automatic approaches

even more.

The distribution of answer quality scores and the difference in precision

between community and QA systems show, that the later often returns an

answer, which is not relevant to the question. In addition, a quick error

analysis also revealed that automatic systems often have trouble recognizing

non-relevant passages, which are easily detected by a human even without

domain expertise. The next section describes EmoryCRQA, the winning

approach from TREC LiveQA 2016, which utilizes crowdsourcing inside a

real-time question answering system, and significantly improves performance

over the fully automatic approach.

96

4.2 CRQA: Crowd-powered Real-time Auto-

matic Question Answering System

As we have seen in the previous section, existing question answering systems

are still far from being able to handle every human question. Answers, sub-

mitted by the community users for TREC LiveQA 2016 questions, are ≈ 35%

better than the answers from the best performing fully automatic system:

CMU OAQA (Figure 4.2). One way to overcome the above-mentioned chal-

lenges in complex question answering is to develop a hybrid human-computer

question answering system, which could consult a crowd of workers in order

to generate a good response to the user question. This section first describes

the initial analysis of the feasibility of obtaining different types of feedback

from a crowd in real-time. Then, I present EmoryCRQA, a crowd-powered,

near real-time automated question answering system for complex informa-

tional tasks, that incorporates a crowdsourcing module for augmenting and

validating the candidate answers.

More specifically, in this section we answer the following questions:

1. Can crowdsourcing be used to judge the quality of answers to non-

factoid questions under a time limit?

2. Is it possible to use crowdsourcing to collect answers to real user ques-

tions under a time limit?

3. How does the quality of crowdsourced answers to non-factoid ques-

tions compare to original CQA answers, and to automatic answers from

TREC LiveQA systems?

4. Can crowdsourcing be used to improve the performance of a near real-

time automated question answering system?

5. What is the relative contribution of candidate answer ratings and an-

swers provided by the workers to the overall question answering per-

formance?

97

6. What are the trade-offs in performance, cost, and scalability of using

crowdsourcing for real-time question answering?

Part of the described results was published at Human-Computer Question

Answering workshop at NAACL 2016 conference [169], and another appeared

as a full paper titled “CRQA: Crowd-powered Real-time Automated Question

Answering System” on HCOMP 2016 conference [164].

4.2.1 Evaluating crowdsourcing for question answering

In this section I explore two ways crowdsourcing can assist a question answer-

ing system that operates in (near) real-time: by providing answer validation,

which could be used to filter or re-rank the candidate answers, and by creat-

ing the answer candidates directly. To test the hypothesis that crowd workers

can quickly provide reliable feedback we conducted a series of crowdsourcing

experiments using the Amazon Mechanical Turk platform14. I used questions

from the TREC LiveQA 2015 shared task, along with the systems answers,

rated by the NIST assessors15. The questions for the task were selected by the

organizers from the live stream of questions posted to the Yahoo! Answers

CQA platform on the day of the challenge (August 31, 2015). For these

questions, we also crawled their community answers, that were eventually

posted on Yahoo! Answers16.

Answer validation experiment

To check if crowdsourcing can be used to judge the quality of answers under

a time limit, I asked workers to rate answers to a sample of 100 questions

using the official TREC rating scale:

14http://mturk.com
15https://sites.google.com/site/trecliveqa2016/liveqa-qrels-2015
16As the answer we took the one selected as the “Best answer” by the author of the

question or by the community.

98

1. Bad — contains no useful information

2. Fair — marginally useful information

3. Good — partially answers the question

4. Excellent — fully answers the question

We chose to display 3 answers for a question, which were generated by

three of the top-10 automatic systems from TREC LiveQA 2015 evaluation

[2]. To study the effect of time pressure on the quality of judgments we split

participants into two groups. One group made their assessments with a 1-

minute countdown timer shown to them, while the other could complete the

task without worrying about a time limit. Within each group, we assigned

three different workers per question, and the workers were compensated at a

rate of $0.05 per question for this task.

The interface for collecting answer ratings is illustrated in Figure 4.4a17.

On top of the screen, workers were shown the instructions on the task, and

question and answers were hidden at this time. They were instructed to read

the question, read the answers, and rate each answer’s quality on a scale from

1 (Bad) to 4 (Excellent), and finally, choose a subset of candidates that best

answer the question. Upon clicking a button to indicate that they were done

reading the instructions, the question, a 60-second countdown timer and 3

answers to the question appeared on the screen. At the 15 second mark,

the timer color changed from green to red. In the experiments without time

pressure, the timer was hidden, but we still tracked the time it took for the

workers to complete the task.

At the end, we collected 6 ratings (3 with and 3 without time pressure) for

each of three answers for a sample of 100 questions, which makes it a total

of 1800 judgments. Each answer also has an official NIST assessor rating on

the same scale. Figure 4.5 shows the correlation between the official NIST

17The screenshots show the final state of the form, as we describe later in this sections

fields were unhidden step-by-step for proper timing of reading, answering and validation.

99

(a) Answer validation form (b) Answer crowdsourcing form

Figure 4.4: User Interface for the answer quality judgment experiment using

real-time crowdsourcing.

assessor relevance judgments and the ratings provided by our workers. The

Pearson correlation between the scores is ρ = 0.52. The distribution of scores

shows that official assessors were very strict and assigned many extreme

scores of 1 or 4, whereas mechanical turk workers preferred intermediate

2s and 3s. The results did not show any significant differences between

experiments with and without time pressure. Figure 4.6 shows that even

100

Figure 4.5: Correlation between NIST assessor scores and crowdsourced rat-

ings with and without time limit on the work time for answers from a sample

of 100 questions from TREC LiveQA 2015 task.

though the median time to rate all three answers is around 22-25 seconds in

both experiments, the upper bound is significantly lower in the experiment

with the time pressure.

Therefore, we conclude that in general we can trust crowdsourced ratings,

and on average one minute is enough to judge the quality of three answers

to CQA questions.

Answer generation experiment

In another experiment, designed to check whether crowd workers can provide

an answer to a given question within a limited amount of time, we asked

different workers to answer the questions from TREC LiveQA 2015. I split

the workers into two groups and displayed a one-minute countdown timer for

one of them. We left a grace period and let the workers submit their answers

after the timer had run out. The workers received a $0.10 compensation for

101

Figure 4.6: Box plot of answer rating time by workers on Amazon Mechanical

Turk platform with and without time pressure.

each answer. The form for answer crowdsourcing is shown in Figure 4.4b,

and similar to the answer rating form, it starts with a set of instructions

for the task. We let the users browse the internet if they were not familiar

with the topic or could not answer the question themselves. To prevent them

from finding the original question on Yahoo! Answers, we included a link to

Google search engine with a date filter enabled18. Using this link, workers

could search the web as it was on 8/30/2015, before TREC LiveQA 2015

questions were posted and therefore workers were in the same conditions

as automatic systems on the day of challenge19. Initially, the question was

hidden for proper accounting of question-reading and answering times. Upon

clicking a button to indicate that they were done reading the instructions, a

question appeared along with a button, which needed to be clicked to indicate

that they were done reading the question. After that, the answering form

appears, it contained four fields:

1. Does the question make sense: “yes” or “no” to see if the question was

18https://www.google.com/webhp?tbs=cdr:1,cd max:8/30/2015
19The ranking of search results could be different on the day of the challenge and for

our workers

102

comprehensible

2. Are you familiar with the topic: A yes or no question to evaluate

whether the worker has had prior knowledge regarding the question

topic

3. Answer: the field to be used for the user’s answer to the given question

4. Source: the source used to find the answer: URL of a webpage or NA

if the worker used his own expertise

At the end, we collected 6 answers (3 with and without time pressure) for

each of the 1087 LiveQA’15 questions. Since we have answers from different

sources, let’s introduce the following notations:

• Yahoo! Answers - answers eventually posted by users on Yahoo! An-

swers for the original questions

• Crowd - answers collected from Mechanical Turk workers without time

pressure

• Crowd-time - answers collected from Mechanical Turk workers with one

minute time pressure

• LiveQA winner - answers from the TREC LiveQA’15 winning system

Table 4.3 summarizes some statistics on the answers. The first thing to no-

tice is that, unlike CQA websites, where some questions are left unanswered,

by paying the crowd workers we were able to get at least one answer for all

LiveQA questions (after filtering “No answer” and “I do not know” kind of

responses). The length of the answers, provided by Mechanical turk users is

lower, and time pressure forces users to be even more concise. The majority

of workers (∼ 90%) did not use the web search and provided answers based

on their experience, opinions and common knowledge.

103

Statistic Y!A mTurk mTurk-time LiveQA’15 winner

% answered 78.7% 100.0% 100.0% 97.8%

Length (chars) 354.96 190.83 126.65 790.41

Length (words) 64.54 34.16 22.82 137.23

Table 4.3: Statistics of different types of answers for Yahoo! Answers ques-

tions.

Figure 4.7: Distribution of answering times for experiments with and without

time pressure.

From Figure 4.7 we can see that adding time pressure shifts the distribu-

tion of answering times20. The tail of longer work times for no time limit

experiment becomes thin with time restrictions and the distribution peaks

around one minute.

20We had separate timers for reading the instructions, the question, and writing the

answer, the inclusion of instruction-reading time is why the total time could be more than

1 minute

104

Figure 4.8: Average scores of different types of answers to Yahoo! Answers

questions.

Answer quality comparison

Finally, to compare the quality of the collected answers with the automatic

system and CQA responses we pooled together the crowdsourced answers,

the answers from the winning and EmoryQA systems from LiveQA’15, and

the original answers crawled from Yahoo! Answers. We took a sample of

100 questions and repeated the answer rating experiment on this data. Each

answer was judged by 3 different workers (without time pressure), and their

scores were averaged. Figure 4.8 displays the plot with average score for

answers from different sources. Quite surprisingly the quality of collected

answers turned out to be comparable to those of CQA website users. Average

rating of answers produced by the winning TREC LiveQA system is also

pretty close to human answers. Finally, as expected, time pressure had its

negative effect on the quality, however, it is still significantly better than the

quality of EmoryQA answers.

Analysis of the score distribution (Figure 4.9) sheds some light on the na-

ture of the problems with automatic and human answers. The automatic

systems generate non-relevant answers (score = 1) more often than human,

either because the systems fail to retrieve relevant information or to distin-

105

Figure 4.9: Distribution of scores for different types of answers to Yahoo!

Answers questions.

guish between useful and non-useful answer candidates. However, by having

a larger information store, e.g., the Web, automated QA systems can often

find a perfect answer (score = 4), while crowd workers tend to give generally

useful, but less perfect responses (score = 2, 3).

Our results suggest that the “crowd” can quickly give a reasonable answer

to most CQA questions. However, some questions require a certain expertise,

which a common crowd worker might not possess. One idea to tackle this

challenge is to design a QA information support system, which a worker can

use to help them find additional information. For example, in our experiment,

we let workers use a web search to find answers if they were unfamiliar with

the topic; more effective search interfaces may be helpful.

4.2.2 System Design

The findings described in the previous section were used to implement our

EmoryCRQA system (or simply CRQA), which stands for Crowd-powered

Real-time Question Answering. CRQA integrates a crowdsourcing module

into an automated question answering system within an overall learning-to-

106

Figure 4.10: The architecture of our Crowd-powered Real-time Question

Answering system, that uses crowdsourcing to augment a list of automatically

extracted candidate answers and to rate their quality.

rank framework for selecting answers to complex questions. I report exten-

sive experiments of stress-testing the CRQA system, by participating in the

TREC LiveQA 2016 evaluation challenge, which provided a realistic evalua-

tion setup.

The high-level architecture is presented in Figure 4.10. The automated part

of the CRQA system is based on EmoryQA system, described in Section 4.1.

The crowdsourcing module is designed to overcome two of the most common

problems of the automated QA approaches: lack of good candidate answers

and ranking errors. More particularly, CRQA asks crowd workers to provide

answers to the given questions if they can, and additionally rate the quality of

candidate answers, generated by the automated system. After the candidate

answers are generated, instead of returning the final answer, as EmoryQA

does, in CRQA we send the question and top-7 ranked candidates to the

crowd workers and wait for the responses. I chose to give 7 answers based on

the average number of rated answers per minute in the preliminary studies.

Figure 4.11 presents the user interface of our crowdsourcing module.

The overall algorithm for obtaining crowd input for real-time question an-

107

Figure 4.11: User Interface for workers in our Crowd-Powered Question An-

swering system.

swering is the following:

1. When the system receives a question, it is posted to the workers, who

will have 50 seconds to provide their input

2. Workers are asked to write an answer if they can provide one (it is

optional)

3. Otherwise they are waiting for the answer candidates to arrive

4. When the system is done with generating and ranking candidates it

posts top-7 scoring answers to the workers for the rating (which usually

leaves ∼ 35 seconds for rating)

5. Workers receive a list of answers21 and rate them until the timer runs

off. Each answer is rated on a scale from 1 to 4, using the official TREC

LiveQA rating scale:

• 1 — Bad: contains no useful information

• 2 — Fair: marginally useful information

21Answers submitted by workers are also sent for ratings to all workers except the author

108

• 3 — Good: partially answers the question

• 4 — Excellent: fully answers the question

6. The interface displays 3 answers at a time when an answer gets rated,

it disappears and its place is taken by another answer from the pool.

The interface displays only the first 300 characters of the answer, which

was experimentally shown to be enough on average to make a good

judgment. Full answer can be revealed upon clicking the “show all”

link.

7. When the timer runs off, the question and all the answers disappear,

and workers wait for the next question

Instructions

1. This HIT will last exactly 15 minutes

2. Your HIT will only be submitted after these 15 minutes

3. In this period of time, you will receive some questions, that came from real

users on the Internet

4. Each question has a time limit after which it will disappear and you will

need to want for the next one

5. If you know the answer to the question, please type it in the corresponding

box

6. At some point, several candidate answers will appear at the bottom of the

page

7. Please rate them on a scale from 1 (bad) to 4 (excellent)

8. Do not close the browser or reload the page as this will reset your assign-

ment.

Table 4.4: EmoryCRQA crowdsourcing task instructions, displayed to the

user when she first gets to the task.

To hire the workers we used Amazon Mechanical Turk platform22. Since

22http://mturk.com

109

the question answering system needs to provide a near real-time response

whenever it receives a question, we adapted the “retainer” model for real-

time crowdsourcing, inspired by the success of this model reported in previous

works [27, 31]. Specifically for TREC LiveQA 2016 task, to obtain an even

distribution of workers over the 24-hour period, we posted 10 tasks every 15

minutes, and they expired after the next set of tasks became available. Since

not all assignments were accepted right away, the number of workers for each

question varied and could be greater than 10. When a worker first gets to

our crowdsourcing interface, she is shown task instructions (Table 4.4) and

asked to wait for the questions to arrive. The workers were paid $1.00 for

the whole 15 minutes task, no matter how many questions they got23.

Answer-based

— The length of the answer

— Source of the answer (Crowd, Web, Yahoo! Answers, Answers.com or

WikiHow.com)

— Original rank of the candidate answer or -1 for answers provided by

the crowd workers

Worker ratings

— Number of ratings provided

— Minimum, maximum, median and average ratings

Table 4.5: The list of features used for answer re-ranking based on crowd-

sourcing input in EmoryCRQA question answering system.

The last stage in CRQA is answer re-ranking, which aggregates all the

information received from the crowdsourcing and produces the final answer

to the question. The input of the re-ranking module is a set of candidate

23In TREC LiveQA task questions are sent to the systems one by one, therefore there

is no concurrency, however, the delays between the questions are possible.

110

answers with quality ratings provided by the crowd workers. Candidates

can include the answers posted by the workers, which might also be rated if

workers had enough time to do that. To re-rank the answers we trained a

gradient boosting regression trees (GBRT) model [76]. To build this model

we used a training set of questions with answers generated by our system.

The quality of each answer was manually assessed using the official LiveQA

scale from 1 (bad) to 4 (excellent). The features, used for answer re-ranking

are listed in Table 4.5. CRQA sorts the candidates by the quality score

predicted by the model, and returns the top candidate as the final answer.

4.2.3 Experiments

We now describe the experimental setup used to evaluate the performance

of CRQA and other methods for near real-time question answering.

The experimental evaluation of our CRQA system was done on the official

run of TREC LiveQA 2016 shared task, which happened on May 31, 2016.

All participating systems were running for 24 hours and received questions

sampled from the live (real-time) stream of questions, posted by real users

to Yahoo! Answers platform. In total, each system received 1,088 questions,

and system responses were recorded by the organizers.

Overall statistics are provided in Table 4.6. As we can see, on average

workers were able to provide at least one answer for each question, and the

provided answers got about 6 ratings.

The official TREC LiveQA 2016 evaluation results for our system are pre-

sented in Table 4.7. EmoryCRQA achieved the highest scores of all partic-

ipating systems, and improved results of fully automatic setup (EmoryQA)

by 20%. Unfortunately, there is a noticeable gap in performance between

community responses and answers of our system.

To perform a full analysis of the system, we used traditional (batch-mode)

111

Name Value

Number of questions received 1088

Number of completed assignments (15 mins each) 889

Average number of questions per assignment 11.44

Total cost per question $0.81

Average number of answers provided by workers 1.25

Average number of ratings per answer 6.25

Table 4.6: Aggregate statistics of the crowdsourcing tasks submitted during

TREC LiveQA 2016 shared task run.

crowdsourcing to obtain the quality labels for all answer candidates that were

given to the workers during the task, as well as the answers provided by the

workers. In addition, on June 2, two days after the TREC LiveQA challenge

has completed, I crawled the current answers provided by the community

for the questions, used for the task. All the answers for each question were

randomly shuffled and rated on a scale from 1 (bad) to 4 (excellent) by

workers hired on Amazon Mechanical Turk. As we have shown in the previous

section, crowdsourced labels correlate well with the official ratings, provided

by the professional NIST assessors. Each answer was labeled by 3 different

workers, and we averaged the scores to get the final quality labels for the

candidates.

We compared CRQA system against several baselines:

• EmoryQA: automated QA system described in Section 4.1.

• Re-ranking by score: a simplified version of the EmoryCRQA re-ranking

model, which select the answer with the highest average ratings, pro-

vided by the crowd workers.

• Yahoo Answers : traditional, non-real-time community question an-

swering site (Yahoo! Answers), from which the challenge question orig-

112

avg

score

(0-3)

succ@2+ succ@3+ succ@4+ prec@2+ prec@3+ prec@4+

Results from TREC LiveQA 2016

HUMANqual 1.561 0.655 0.530 0.375 0.855 0.692 0.490

HUMANspeed 1.440 0.656 0.482 0.302 0.784 0.576 0.362

1. EmoryCRQA 1.260 0.620 0.421 0.220 0.644 0.438 0.228

- crowd-answers only 1.298* 0.206 0.128 0.072 0.659 0.410 0.230

2. CMU OAQA 1.155 0.561 0.395 0.199 0.596 0.420 0.212

3. EmoryQA 1.054 0.519 0.355 0.180 0.530 0.362 0.184

Avg results 0.643 0.329 0.212 0.104 0.422 0.271 0.131

Table 4.7: Official evaluation results of Emory CRQA system from TREC

LiveQA 2016 shared task. Full results table is available in [3]. *Unlike other

systems, average score for “crowd-answers only” experiment was normalized

by the number of answers rather than questions.

inated. The answers were collected two days after the challenge, thus

allowing the Yahoo Answers community extra two days to collect the

answers through traditional (community-based) crowdsourcing.

To evaluate the methods we used the metrics proposed by the organizers of

the LiveQA task (Section 4.1.3). Table 4.8 summarizes the performance of

the baselines and our system. As we can see, the average score and precision

of answers generated by CRQA system are higher than the baseline ranking

and even community answers on the Yahoo! Answers platform. However, Ya-

hoo! Answers community answers have a higher percentage of “4 (excellent)”

scores. Figure 4.12 shows the distribution of scores for the original system

ranking, our crowdsourcing system and Yahoo! Answers. Two peaks on the

distribution of scores from Yahoo! Answers community suggest, that there

are essentially two kinds of responses: non-useful (e.g., spam) or excellent

that fully answers the question. In addition, around 20% of the questions did

113

Method score prec s@2+ s@3+ p@2+ p@3+

EmoryQA 2.321 2.357 0.697 0.297 0.708 0.302

Re-ranking by score 2.416 2.421 0.745 0.319 0.747 0.320

Yahoo! Answers 2.229 2.503 0.656 0.375 0.737 0.421

EmoryCRQA 2.550 2.556 0.799 0.402 0.800 0.402

without worker answers 2.432 2.470 0.750 0.348 0.762 0.354

without worker ratings 2.459 2.463 0.759 0.354 0.760 0.355

Table 4.8: Evaluation of the baselines and system answers quality based on

the ratings of answers obtained via crowdsourcing. The scores are averaged

over 100 different 50:50 splits of 1088 questions into the training and test

set. The differences between average score and precision of CRQA and the

original ranking are significant at p-value < 0.01.

not get any answer from the community. Automatically generated answers,

on the contrary, are rarely empty, but on average provide only marginally

relevant information, which often does not answer the questions, and there-

fore rated “2 (fair)”. The introduction of the crowdsourcing module allowed

CRQA to cover an additional couple of percents of the questions, for which

the automated system was not able to generate any candidates, as well as

select better candidates when it was possible using crowd ratings.

4.2.4 Analysis and Discussion

In this section, we will analyze some of the results of our experiments and

discuss their implications.

Worker answers vs ratings. First, let’s look at the contribution of ad-

ditional answers and answer ratings provided by the workers. These two

types of contributions are complimentary to each other and attempt to solve

different problems. Table 4.8 shows the performance of our question an-

114

Figure 4.12: Histogram and kernel density estimation of answer scores for

original candidate ranking, CPQA model re-ranking and Yahoo! Answers

answers.

swering system using each of these types of feedback independently. The

results demonstrate that both answers and ratings have a positive effect on

the performance. Even with limited time, workers were able to reliably rate

candidate answers, which helped the system to select a better final answer

and improve the model precision. However, this method does not help the

system in cases, when it was not able to generate a good candidate in the

first place, therefore using ratings only has lower average answer score than

using worker generated answers. By asking the crowd to provide a response

if they can answer the question, CRQA covers this gap, which is important

as in a real scenario even a fair answer would probably be better for the user

than no answer at all. Of course, given limited time and the fact that a ran-

dom worker might not possess an expertise required to answer the question,

such answers do not always perfectly answer the question. We also looked at

official evaluation results for answers, produced by the crowd and returned

115

as the final response by CRQA (Table 4.7). Crowd-generated answers ac-

counted for ∼ 30% of all system responses, and their average quality was

1.298, which is better than the quality of fully automatic EmoryQA system,

but significantly lower than scores of community generated responses.

Table 4.9 gives some examples of worker-generated answers with low and

high-quality scores.

Selection of answer candidate for rating. We have seen that crowd

workers are able to provide reliable answer ratings, which can be used to re-

rank them and select a better final response. However, since a system usual

has hundreds or thousands of candidate passages, the capacity of crowd-

sourcing is limited. We chose to show top-7 answers according to the trained

learning-to-rank model, however, the order in which the answers are shown

can also have a strong effect on the system performance, because the answers

are typically rated one by one in the order they are displayed on the screen.

Our system included two strategies for answer ordering: random or accord-

ing to their ranking score. The former strategy provides a uniform coverage

for all the answers selected for rating, while the later puts more emphasis

on the currently top scoring candidates. We randomly selected one of the

strategies for each user and question. To analyze the performance of each of

the strategies we compute the average score of answers, generated using the

corresponding ratings. The average score for answers generating when can-

didates are shuffled is 2.508, and it is 2.539 when the candidates are sorted

according to their model ranking score. This suggests, that it is beneficial to

allocate more of the worker’s attention on the top scoring candidate answers.

Cost analysis. The results of our experiments clearly demonstrated that

crowdsourcing can improve the performance of near real-time question an-

swering system. The next reasonable question is what is the price of this

improvement. In our study, we paid workers $1.00 per single 15 minutes

task, and each 15 minutes we had 10 assignments, which translates to $15.00

116

Question Answer Score

Is Gotu Kola a good herb for mental

health? How long does it take to

work??

yes 1.66

Can I write any number on line

number 5 of a W2? would like to

set up my W2 were I get the most

out of my paycheck...

W2 1.33

...i randomly asked my mother why

when I lived with you in your home

country a man that was our neigh-

bour used to call me his daughter...?

yes 1.0

Is it bad not wanting to visit your

family?

It is nt bad. Just be hon-

est with them. They may be

upset but they should under-

stand

3.0

Any health concerns with whey pro-

tein?...

As long as you use it as di-

rected, there should not be

any major problems. You

may want to consult your doc-

tor just in case.

3.0

Foot pain unable to walk? Hi so to-

day woke with some pain, I am able

to put weight on my heel with no

problem or pain...

Possible gout in your foot,

also possible you may have

strained it during the previous

day.

3.0

What is a good remedy/medicine

for stomach aches? Specifically ones

caused by stress or anxiety?

Chamomile tea should help 3.66

Table 4.9: Examples of questions, answers and their quality scores, provided

by the crowd workers during TREC LiveQA 2016 shared task.

117

(a) avg-score: Average score per question (b) avg-prec: Average score per answer

(ignoring non-answered questions)

Figure 4.13: Plot showing how the quality of the final answer depends on the

number of workers per question.

per 15 minutes. Overall, our experiment cost $0.88 per question, and in this

section, we will discuss some ideas to reduce this cost.

First, we will study the effect of the number of workers on the performance

of our CRQA system. For this experiment, we randomly sampled a certain

percentage of workers and removed all contributions (answers and ratings)

of others. Figure 4.13 plots the dependency of the performance of our QA

system on the number of workers.

Obviously, more workers mean more reliable answer ratings and more an-

swer candidates, which improves the performance of the question answering

system. However, we can observe diminishing returns: the cost per extra gain

in performance metrics decreases as the number of workers grows. Half of

the overall performance improvement could be achieved with only 3 workers

per question, which would save 70% of the costs.

An alternative cost-reduction strategy is selective triggering of crowdsourc-

ing, which would only ask for workers feedback for some of the questions.

Such a strategy would be necessary to scale a crowd-powered question an-

118

swering system to a higher volume of questions. There are multiple different

approaches for such selective crowdsourcing: e.g., a system can only ask for

crowd contributions if it did not generate enough candidate answers or the

predicted quality of the top scoring candidates is low [49, 87]. We leave this

questions for the future work, as here we focused on the scenario, proposed

by the organizers of the TREC LiveQA shared tasks, where questions arrive

one by one and it is possible to utilize crowd input for every question.

To summarize, in the explored real-time QA scenario it is possible to reduce

the costs of crowdsourcing by reducing the number of workers, although

with some performance losses. Our analysis suggests that paying 30% of the

original cost would give 50% of the performance improvement.

4.3 Summary

This chapter described two QA systems aimed at answering a general class

of user information needs, often referred to as non-factoid questions. A fully

automatic EmoryQA system has information retrieval techniques at its basis,

i.e., it extracts relevant passages from multiple semi-structured and unstruc-

tured sources, represents them with a set of features, uses a learning-to-rank

model to sort the candidate answers and selects the top one as the final an-

swer. The system was experimentally tested on TREC LiveQA 2015 and

2016 shared tasks, achieving very competitive results. The source code of

the system is available at https://github.com/emory-irlab/liveqa.

The analysis of the TREC LiveQA results revealed that automatic sys-

tems often have problems distinguishing between information, that is totally

irrelevant and something, that might be of potential use to a user. As a

result, compared to community generated responses, automatic QA systems

have a higher fraction of answers, rated “bad”. Many of these mistakes can

easily be spotted by a human, even without a specific domain expertise.

119

EmoryCRQA extends the fully automatic QA system with a crowdsourc-

ing module, which obtains feedback from a crowd of workers in a form of

additional answer candidates and ratings of existing passages, while still op-

erating in near real-time. Results of TREC LiveQA 2016 task confirmed

the effectiveness of crowdsourcing in this scenario. The analysis presented in

Section 4.2.4 shows that both worker contributed answers and ratings make

an equal impact on the overall answer quality. The described CRQA imple-

mentation is a promising step towards the efficient and close integration of

crowd work and automatic analysis for real-time question answering.

These contributions have laid the groundwork for future research in non-

factoid question answering, using various types of semi-structured (QnA

pairs), unstructured (web documents) and real-time crowdsourcing data. To-

gether, the proposed methods enabled substantial performance improvements

in answering a wider class of user information needs.

120

Chapter 5

Conversational Question

Answering

Chapters 3 and 4 focused on improving the answer retrieval performance for

different types of user information needs. However, question answering is

not a one-way communication, where a user is only responsible for issuing

requests and a system has to generate answers. This setup is quite limited

because it does not provide any means for the user to affect the behavior of

a question answering system except by issuing new questions. Similarly, it

does not allow QA systems to request any additional information from the

user, nor learn from the previous interactions.

Proliferation of mobile devices and more “natural” interfaces [89] are chang-

ing the way people search for information on the web. Many experts envision

that search in the near future will be a dialog between a user and an intel-

ligent assistant, rather than just “ten blue links” in response to a one-shot

keyword query.1 Participants of the SWIRL’2012 workshop foresaw a fusion

of traditional IR and dialog systems [10]: “Dialogue would be initiated by

the searcher and proactively by the system. The dialogue would be about

1http://time.com/google-now/

http://time.com/google-now/

121

questions and answers, with the aim of refining the understanding of ques-

tions and improving the quality of answers.” Today we can witness this

trend embodied in such products as Amazon Alexa, Google Home, Microsoft

Cortana, Apple Siri, and others.

This chapter presents the research towards designing better conversational

search interfaces. Section 5.1 describes the user study we performed to learn

how people use dialogs for information seeking scenarios and how the ex-

perience with modern personal assistants compares to a human-to-human

dialog. Sections 5.2 and 5.3 focus on two particular interaction strategies,

which allows a QA system to help the user either formulate or clarify their

questions.

The contributions of the research described in this chapter are:

• A user study on conversational search, which provides actionable feed-

back on what people expect from such systems, how the expectations

towards an automatic system differ from those towards humans, and

what are some of the problems with using existing commercial personal

assistants. This work will be presented at CHI 2017 conference [203].

• A study of the effect of strategic hints, that a system might provide to

the user, on search experience and success rate for complex informa-

tional tasks. This work has been published as a short paper at SIGIR

2014 [163].

• An extensive analysis of clarification questions on community question

answering platforms, and a model to predict the subject of a popu-

lar type of clarification questions, which shows the potential of such

an approach. This results were published in CHIIR 2017 conference

proceedings [39].

122

5.1 Conversational Search With Humans, Wiz-

ards, and Chatbots

Chatbots and conversational assistants are becoming increasingly popular.

However, for information seeking scenarios, these systems still have very

limited conversational abilities, and primarily serve as proxies to existing

web search engines. In this section, we ask: what would conversational search

look like with a truly intelligent assistant? To begin answering this question

empirically, we conduct a user study, in which 21 participants are each given

3 information seeking tasks to solve using a text-based chat interface. To

complete each task, participants conversed with three conversational agents:

an existing commercial system, a human expert, and a perceived experimental

automatic system, backed by a human “wizard” behind the curtain. The

observations and insights of our study help us understand the aspirations

of users and the limitations of the current conversational agents – and to

sharpen a frontier of work required to improve conversational assistants for

search scenarios.

5.1.1 Motivation

Personal assistants, such as Amazon’s Alexa, Google Home, etc. are becoming

increasingly popular, and people are integrating them in everyday life, e.g.,

for simple tasks like setting up a timer, checking the calendar, requesting the

latest news, a song, etc.2. The popularity of text-based chatbots is also on the

rise in many areas of the web [71]. Most of them are template-based and are

designed to fulfill a single, often monotonous, job [54, 64]. At the same time,

a growing proportion of web search queries is formulated as natural language

questions [16, 128, 144], which is partially explained by the increasing usage of

2https://arc.applause.com/2016/09/26/amazon-echo-alexa-use-cases/

123

voice interfaces [220]. Alas, for information seeking scenarios, existing chat-

bots and intelligent assistants are usually implemented as simply a “proxy”

to existing web search engines, even though question-answering technology

has made dramatic progress handling such question-like queries [195]. Fur-

thermore, conversation provides additional opportunities to improve search

quality. For example, a conversational system should be able to ask clar-

ification questions [39] to better identify searcher’s intent, and incorporate

explicit user feedback [153] – something that is not normally available in a

traditional web search scenario. However, before jumping into implementing

additional features for conversational search systems, it is important to gain

a better understanding what the users’ expectations are when interacting

with a truly intelligent conversational search agent. It is equally impor-

tant to anticipate how users might behave when faced with a conversational

search system since behavioral feedback is critical for system evaluation and

improvements. To this end, we explore the following research questions:

• RQ1: What are the main expectations from a conversational search

system?

• RQ2: What are the differences between human-to-human and human-

to-computer conversations?

• RQ3: What characteristics prevent existing conversational agents from

becoming effective tools for complex information seeking?

As no truly intelligent conversational search systems exist yet, we explore

these research questions with a mixture of survey methods and user stud-

ies. In the user study, the participants are faced with 3 complex information

search tasks, derived from TREC Session track tasks [50]. To eliminate the

voice recognition quality variable, we chose to use text messaging as the

interface between a participant and conversational systems. We use three

different conversational systems answering user requests: an existing com-

124

mercial intelligent assistant, a human expert and a human disguised as an

automatic system. The results of our exploration suggest: (1) people do

not have biases against automatic conversational systems, as long as their

performance is acceptable; (2) existing conversational assistants are not yet

up to the task, i.e., they cannot be effectively used for complex information

search tasks; (3) by addressing a few requests from users that we identified,

even current search systems might be able to improve their effectiveness and

usability, with feasible modifications.

5.1.2 Study design

We recruited 21 participants (graduate and undergraduate students at Emory

University), to complete 3 different complex search tasks, taken from the

TREC Session track 2014 [50] (Figure 5.1). The participants were asked to

use an assigned text messenger-based conversational agent. They were not

given any instructions on how to use the agent and therefore were free to

interact with it in any way they chose. They were allowed to spend up to

10 minutes working on each task, after which they were asked to move on a

topical quiz, consisting of 3 questions, designed for the topic. After seeing

the topical quiz questions, the participants were not allowed to talk to the

agent anymore. By doing so we ensured that the task stayed exploratory

in nature, i.e., the participants did not have a set of predefined points to

cover. After completing a topical quiz, the participants filled out a preference

questionnaire, where they were asked to rate their experience with the agent,

provide feedback about advantages and disadvantages of the agent. After

completing all tasks they filled out a final questionnaire. The communication

was implemented through the Facebook Messenger interface3. Participants

used a Facebook account created specifically for the purpose of the study.

3http://www.messenger.com

125

Figure 5.1: Description of the tasks used in the user study on conversational

search. All the tasks were obtained from TREC Session track 2014 [50].

Message history was cleared prior to every experiment.

Wizard agent

Our first research question explores human behavior in human-computer

communication. There are currently no general purpose intelligent conver-

sational search systems, that we could use for our purposes. Therefore we

“faked” one by substituting the backend with a person. However, the partici-

pants were told that it was an experimental automatic system, thus following

126

a general Wizard-of-Oz setup. We will be further referring to this system as

the Wizard agent, and the person in the backend as the Wizard. The Wizard

had done the research about the topics of the 3 tasks prior to the experi-

ment and compiled a broad set of passages covering most of the aspects of

each topic. At the time of the experiment, the Wizard tried to find the

best passage to reply to the participant’s question/comment. However, in

cases where such passage could not be found, the Wizard would reply with

a passage retrieved from web search, or write a new passage. In case the

participant’s question or comment was ambiguous, the Wizard was allowed

to ask a clarification question to better identify the information need of the

participant. Our Wizard agent was allowed to maintain the context of the

conversation, respond to vague questions, understand implied concepts, and

provide active feedback in form of clarification questions when needed (all

of these capabilities do not yet exist in commercial systems). At the same

time, by partially restricting the Wizard to a pre-compiled set of passages,

we could maintain some consistency of answers between participants, i.e.,

for the same question any participant would receive the same answer. By

analyzing the ways the participants communicated with the Wizard agent,

we could gain insights about strategies people use in a human-computer dia-

logue for solving complex tasks and look for design implications for automatic

conversational systems.

Human agent

To answer our second research question, about the differences between human-

to-human and human-to-computer communication, we devised our second

conversational agent – the Human agent. In this case, the Wizard from the

previous setup was still serving as a backend, but the participants were ex-

plicitly informed that they were talking to a live person. Another difference

was that the Human agent was restricted to the pre-retrieved set of pas-

127

sages, but was free to slightly reformulate or revise the passages to better

respond to the question. By including both the Human and Wizard agents

in the study, we were able to maintain a constant level of intelligence for

both agents, thus comparing not the accuracy of each agent, but rather the

participants’ attitude and expectations towards a perceived automatic agent

compared to a known human.

Automatic agent

For a comparison with an existing conversational agent, we used the Google

Assistant4 as a backend for our third agent. Every message sent by a par-

ticipant was forwarded to the Google Assistant app, and the response was

forwarded back to the participant. Most of the time, the response consisted

of an URL and a text snippet. The participants were told that they were

interacting with another experimental conversational system, but were not

given any specific information about it. By using a system representative of

the state-of-the-art technology, we were able to evaluate its drawbacks, and

situations where it failed to respond properly.

5.1.3 Results

After running the study, we analyzed message logs, answers to topical quizzes,

and preference questionnaires and found the most popular trends and an-

swers. This section describes our findings in detail.

Overall satisfaction

After completing each task participants rated their overall experience of

working with each agent on a 1 to 5 Likert scale. Average ratings for each

4https://assistant.google.com/

128

Agent Human Wizard Automatic

Overall satisfaction 4.1 3.8 2.9

Able to find information 1.5 1.3 1.0

Topical quiz success 1.6 1.6 1.3

Table 5.1: Statistics on user satisfaction and success rates with human, wiz-

ard and automatic agent in conversational search user study.

agent are shown in Table 5.1. The differences in ratings of Human vs. Au-

tomatic systems, and the Wizard vs. Automatic systems were statistically

significant (p < 0.0001 and p < 0.0005 respectively), while the difference

between the Human vs. Wizard systems was not significant. In the final

questionnaire, after completing all the tasks, participants were asked which

system they liked the most. Out of 21 people, 8 people preferred the Hu-

man agent, 6 – the Wizard agent, 4 – the Automatic agent, 2 people said

they would use the Wizard or the Human depending on their goals, and 1

person said he would choose between the Human and the Automatic agent

depending on her goals.

Able to find information

Participants were asked whether they were able to find all the information

about the topic they were looking for. We coded each answer on a 0-2 scale (0

- no, I couldn’t; 1 - partially; 2 - yes, I found everything I needed). Average

results for each agent are shown in Table 5.1.

Topical quiz success

After completing each task participants were also asked 3 questions about

the topic. We evaluated those questions on a scale 0-2, where 0 meant no

answer, 1 - poor answer, 2 - good answer. On average, participants showed

129

a similar level of success with each agent. The average user ratings for each

agent are shown in Table 5.1.

These results confirm our initial intuition that human-to-human conversa-

tion is more natural for the open-ended problem of the complex search task,

compared with automatic conversational agents. This could be because peo-

ple have experience talking to other people, and the results match their initial

expectations. On the other hand, for any system that people have no expe-

rience with, they have to learn its functionality and ways to interact with it

effectively.

We now turn to qualitative results, reporting the comments participants

provided in the post-study questionnaire. The participants’ comments broke

down into the areas of maintaining context, trustworthiness, and social bur-

den.

Maintaining context

Participant 19 (P19): “It didn’t use contextual information so there was no

way to expand on the previous answer it gave me.” Within a conversation,

people expect that the main topic of the discussion is maintained, and they

tend to ask short questions, omitting the subject, or referring to the subject

using pronouns. Formulating a full question takes effort and is unnatural.

For the Automatic system, anaphora resolution did not always work, which

annoyed the participants. Similarly, when dealing with the Human and Wiz-

ard systems, participants pointed out the ease of use, because their partially

stated questions were understood, and relevant answers were returned (Fig-

ure 5.2).

130

Figure 5.2: Automatic system (gray background) fails to maintain context,

which causes the participant 15 (blue background) to reformulate his question

twice.

131

Figure 5.3: A participant prefers web search to talking to a person. Part of

a conversation between participant 7 (blue background) and Human agent

(gray background).

Trustworthiness of the sources is crucial

P7: “I ... like to be able to verify the credibility of the sources used.” Even

though the Automatic system did not always respond with a relevant result, it

received approval from our participants for providing sources of its answers.

Out of 21 participants, 13 people said that being able to access the URL

allowed them to assess the trustworthiness of the source and therefore to

accept or reject the answer. On the other hand, in spite the Human and

Wizard systems returning more relevant results, they were both criticized

for not providing the sources (Figure 5.3).

Social burden

P15: “you have to think about social norms, asking too much, being too

stupid, not giving them enough time to respond, troubling them.” When

dealing with the Human system, 4/22 participants reported that they felt

uncomfortable talking to a person, thought more about the social norms,

were afraid to ask too many questions, were not sure how to start and end

a conversation. This additional burden of interacting with humans further

motivates research in the area of automated conversational agents as the

medium of choice for a notable fraction of use cases (Figure 5.4).

132

Figure 5.4: Explicit user feedback could be used to recover from failure. Part

of a conversation between participant 12 (blue background) and Automatic

system (gray background).

5.1.4 Discussion and design implications

Based on our findings we devised a list of recommendations for a conversa-

tional agent design, that according to our empirical study will improve user

experience significantly.

Context. Maintaining a context of the conversation to enable short ques-

tions and comments is crucial to user experience since formulating long sen-

tences each time feels unnatural and takes longer.

Provide sources of answers. Finding relevant and precise answers is

important. But trustworthy sources are equally important, and their absence

may diminish the credibility of the system. While the Automatic agent

supported each answer with an URL, Human and Wizard did not, unless

specifically asked.

Use feedback. One crucial difference of conversational setup from web

search is the ability of a user to provide the system with explicit feedback.

It is likely to contain essential information that may help the system to get

back up from failure and improve upon the previous result.

133

Opinion aggregation. According to the participants, sometimes what

is needed is the experience of other people in similar situations. A good

conversational system should be able to aggregate opinions and present them

to the user in a short summary, perhaps explaining each one. Participant 17

said: “It would be nice if I could see a summarization of different opinions

that there exist – from different sources.”

Direct answers vs. expanded information. For this aspect, our par-

ticipants split into 2 camps: those who prefer getting direct answers to the

question provided, and those who prefer also getting a broader context. Peo-

ple from Camp 1 complained that the answers returned by the systems were

too long (even for the Wizard and Human), and preferred to have their ques-

tions answered directly with minimum extra information. Camp 2, on the

other hand, said that they prefer talking to a person, who would recognize

their true information need (beyond the immediate question) and provide

the relevant information.

In this section, we investigated human behavior when using conversational

systems for complex information seeking tasks. We also compared participant

behavior when talking to a human expert, vs. a perceived automatic system.

We observed that people do not have biases against automatic systems, and

are glad to use them as long as their expectations about accuracy were met.

However, existing agents often fail to provide a reasonable response, and users

often struggle with finding the right way to ask or reformulate a question. In

the next section, we will investigate search hints, which a system can provide

to its users in order to help them solve complex informational search tasks.

134

5.2 Search Hints for Complex Informational

Tasks

Some informational needs are more complex than others. While existing

technologies can handle relatively simple questions pretty well, they might

leave users frustrated with their responses for more difficult requests. Bilal

and Kirby [32] reported that about half of the participants of their user

study felt frustration when searching. Xie and Cool [225] demonstrated that

most of the time users have problems with formulating and refining search

queries. Besides good retrieval performance, a successful search requires users

to possess certain skills. Search skills can be trained, e.g., Google offers a

course5 on improving search efficiency. Although very useful, such courses are

time-consuming and detached from real search problems of these particular

users. Displaying search hints is another technique that has both learning

effect and offers immediate assistance to the user in solving her current search

task. Moraveji et al. [140] demonstrated that hints, suggesting certain search

engine functionality, help people find answers more quickly, and the effect is

retained after a week without hints.

In this section, I explore strategic search hints, that are designed to guide

a user in solving her search problem. More specifically, for complex search

tasks users might find it helpful to choose the divide-and-conquer strategy,

i.e., splitting an original difficult question into smaller problems, searching

answers to the subtasks and combining them together. Two sets of strate-

gic hints were manually designed: generic hints describing the divide-and-

conquer strategy in general and task-specific hints providing a concrete strat-

egy to solve the current search task. To evaluate the effect of the hints on

behavior and search success we conducted a user study with 90 participants.

The results of the user study demonstrate that well-designed task-specific

5http://www.powersearchingwithgoogle.com

135

Figure 5.5: The interface of the search game used in the study of the effect

of strategic search hints on success in solving complex informational tasks.

hints can improve search success rate. In contrast, generic search hints,

which were too general and harder to follow, may have the negative effect on

user performance and satisfaction.

5.2.1 User Study

To estimate the effect of strategic search hints on user behavior we conducted

a study in a form of a web search game similar to “a Google a Day”6 and

6http://www.agoogleaday.com/

136

Question Correct Answer Specific hints

1 I can grow body back

in about two days if cut

in half. Many scientists

think I do not undergo

senescence. What am I?

Senescence means “bi-

ological aging”. Hy-

dra is considered biolog-

ically immortal and re-

generates fast.

1. Find what is senes-

cence

2. Find who does not

undergo senescence

3. Find who can also

regenerate body and

choose the one that sat-

isfies both conditions
2 Of the Romans ”group

of three” gods in the Ar-

chaic Triad, which one

did not have a Greek

counterpart?

Archaic Triad includes

Jupiter, Mars, and

Quirinus. Among those

Quirinus did not have a

Greek counterpart.

1. Find the names of

the gods from the Ar-

chaic triad

2. For each of the gods

find a Greek counter-

part

3 As George surveyed the

“waterless place”, he

unearthed some very

important eggs of what

animal?

”Gobi” in Mongolian

means “Waterless

place”. The first whole

dinosaur eggs were

discovered there in

1923.

1. Find what is the

“waterless place” men-

tioned in the question?

2. Search for impor-

tant eggs discovery in

this “waterless place”

4 If you were in the

basin of the Somme

River at summers end

in 1918, what language

would you have had

to speak to understand

coded British communi-

cations?

Cherokee served as code

talkers in the Second

Battle of the Somme.

1. Find the name of the

battle mentioned in the

questions

2. Search for which

coded communications

language was used in

this battle

Table 5.2: Search tasks and specific search hints used for user study on the

effectiveness of strategic hints for complex informational search tasks.

137

uFindIt [1]. Participants were hired using Amazon Mechanical Turk7.

The goal of the web search game was to find answers to several questions

with the provided web search interface (Figure 5.5). Players are instructed

not to use any external tools. The questions are given one by one and since

tasks might be too difficult, a chance to skip a question was provided, al-

though users were instructed that effort put into solving a question will be

evaluated. To answer a question each player needs to provide a link to a

page containing the answer as well as its text. The answer is automatically

verified and a pop-up box notifies a player if the answer is incorrect (since the

answer can be formulated differently, the presence of a keyword was checked).

A player can then continue searching or skip the question when she gives up.

A bonus payment was made to players who answer all questions correctly.

We used Bing Search API8 as a back-end of the game search interface. All

search results and clicked documents were cached so users asking the same

query or clicking the same page got the same results. At the end of the game,

a questionnaire was presented asking for feedback on user satisfaction with

the game, prior experience, and other comments.

The tasks for the study were borrowed from the “A Google a Day” questions

archive. Such questions are factual, not ambiguous and usually hard to find

the answer to a single query, which makes them interesting for user assistance

research. We filtered search results to exclude all pages that discuss solutions

to “A Google a Day” puzzles. To do this we removed pages that mention a

major part of the search question or “a google a day” phrase. To keep users

focused throughout the whole game we limited the number of questions to 4.

The tasks are described in Table 5.2 and were presented to all participants

in the same order to ensure comparable learning effects.

The questions have multiple parts and to solve them it is helpful to search

7http://www.mturk.com/
8https://www.microsoft.com/cognitive-services/en-us/bing-web-search-api

138

for answers to parts of the questions and then combine them. In one of

the previous studies, we observed, that most of the users did not adopt the

divide-and-conquer strategy, but kept trying to find the “right” query. We

decided to estimate the effect of strategic search hints, suggesting users to

adopt the new strategy.

We built 2 sets of strategic hints: task specific and generic. Task-specific

hints described steps of one of the possible solutions to each question (Table

5.2). The second set contained a single hint, which was shown for all tasks.

Generic hint described the divide-and-conquer strategy:

1. Split the question into 2 or more logical parts

2. Find answers to the parts of the question

3. Use answers to the parts of the question to find answer to the full

question

For example, the question: “The second wife of King Henry VIII is said to

haunt the grounds where she was executed. What does she supposedly have

tucked under her arm?”

1. Search [second wife King Henry VIII] to find Anne Boleyn.

2. Search [Anne Boleyn under arm] to find that her ghost is in the London

Tower where she is said to carry her head tucked underneath her arm.

To control for the learning effect demonstrated in [140], each user was

assigned to one of the three groups: (1) users who did not get any hints; (2)

users who got task-specific hints; (3) users who got the generic hints.

5.2.2 Results and Discussion

From 199 unique participants, who clicked the HIT on Amazon Mechanical

Turk only 90 players finished the game. We further examined all games

139

manually and filtered out 9 submissions for one of the following reasons: lack

of effort (e.g., skipped several tasks after none or a single query) or usage

of external resources (e.g., the answer was obtained without submitting any

queries or results explored did not contain the answer). Furthermore, 10

players from the group which received hints indicated in the survey that

they did not see them, so we filtered out those submissions and finally, we

had 71 completed games (29 for no hints, 20 for task-specific hints and 22

for generic hints groups).

Effects of Search Tips on Performance. In order to measure search

success rate we looked at the number of questions answered correctly by

different groups of users9. Figure 5.6a shows that success rate is higher

for users who saw task-specific hints compared to users who did not get

such assistance. Surprisingly, having the generic hint decreased the success

rate, although users could easily ignore a hint they did not like. A possible

explanation is: generic hints were harder to follow and users who tried and

failed became frustrated and did not restart their searches.

The plot of average time to answer a question on Figure 5.6b does not show

an improvement for the task-specific hints group, except for the question 1.

Our task-specific hints represent a possible way to solve a problem and there

is no guarantee, that it is the fastest one. It is worth noting, that users

from the generic search hint group had slightly higher variance in success

time, which can probably be explained by the fact that some users were

successful in finding the right way to follow the hint and some other users

struggled with it much longer. Another insight comes from the number of

incorrect attempts users made. Figure 5.6c demonstrates the average number

of incorrect answer attempts for all groups of users. Although the variance is

high, there is a tendency for users who saw task-specific hints to make fewer

9Since users were allowed to skip a question we are counting the number of questions

that were eventually solved correctly even if a player made some incorrect attempts.

140

(a) Success rate per task

for each group of partici-

pants

(b) Task completion time

for each group of players

(c) The number of incor-

rect submission attempts

per question for all groups

of users

Figure 5.6: Results of the user study on the effectiveness of strategic search

tips on search task success rate.

attempts than both other groups. This is not in direct correspondence with

time spent on the game. It seems that the users who saw a clear strategy to

solve the question were less likely to notice plausible, but incorrect solution.

Moreover, we analyzed texts of incorrect answers and can conclude that a

big part of incorrect submission are due to users trying all possible options

they found on the way, even if these options are clearly wrong.

(a) How did you like the

game?

(b) How difficult was the

game?

(c) Were search hints use-

ful to you?

Figure 5.7: Proportions of replies to some of the survey question for each

group of users.

141

We also looked at other search behavior characteristics: number of queries

submitted, the number of clicks made, the average length of the queries.

The variance in these characteristics was too high to make any speculations

regarding their meaning.

Effects of Search Tips on User Experience. Finally, we looked at the

surveys filled out by each group of users. Figure 5.7 presents proportions of

different answers to three of the questions: “How did you like the game?”,

“How difficult was the game?” and “Were search hints useful to you?”.

Surprisingly, user satisfaction with the game was lower for users who saw

hints during the game and users who did not get any assistance enjoyed it

more. The replies to the question about game difficulty are in agreement

with the success rate: users who saw task-specific hints rated difficulty lower

than participants who struggled to find the correct answers. The game was

very difficult on average, however, some participants from the group who

received task-specific hints surprisingly rated it as very easy, which suggests

that our hints do help users. This is supported by the answers to the last

question on whether hints were helpful (Figure 5.7c).

Summary

In this section, we studied the effect of strategic search hints on user behavior.

The conducted user study in a form of a web search game demonstrated the

potential of good hints in improving search success rate. However, to be

useful, they should be designed carefully. Search hints that are too general

can be detrimental to search success. We also find that even searchers who

are more effective using specific search hints, feel subjectively less satisfied

and engaged than the control group, indicating that search assistance has to

be specific and timely if it is to improve the searcher experience.

In addition to providing users with some hints on how to continue their

search process, it is important for a QA system to improve question under-

142

standing skills. Unfortunately, some questions contain certain ambiguity. In

conversational settings, a natural thing to do for such requests is to ask a

clarification question, which is the focus of the next section of this disserta-

tion.

5.3 Clarifications in Conversational Question

Answering

One key capability required to make conversational question answering ef-

fective is asking clarification questions (clarQ) proactively, when a user’s

intent is not clear, which could help the system provide more useful responses.

With this in mind, we make the first attempt to examine the clarification

questions (clarQ) that users ask on the Stack Exchange community ques-

tion answering (CQA) platform. We analyze Stack Exchange data in two

domains corresponding to about 300K questions and comments. The contri-

butions of this study are threefold:

• To learn about user behavior associated with clarQ and about their

role in CQA communications. We find that clarQ are quite common

on Stack Exchange, and therefore represent a good source of data for

analysis.

• To study the types of clarQ users ask in different situations. We

classify clarification questions into several categories according to their

target as well as syntactic patterns, which help define the space of

clarQ for future research;

• To make the first step towards automatic generation of clarQ: we

build a model to predict the subject of a popular type of clarifica-

tion questions, which shows the potential of such approach for future

research.

143

Figure 5.8: Screenshot of a DIY question page from StachExchange CQA

platform with threaded conversation in comments.

5.3.1 Dataset Description

For our analysis we took two Stack Exchange sites – Home improvements

(DIY)10 and Arqade (GAMES)11. These two domains are quite different –

the former is devoted to purely practical real-world problems, the latter –

to the virtual world of video games. Stack Exchange users can comment

on the questions and answers; sometimes it leads to multi-turn forum-like

discussions (see Figure 5.8). The data dumps provided by Stack Exchange12

10http://diy.stackexchange.com/
11http://gaming.stackexchange.com/
12https://archive.org/details/stackexchange

144

cover a period of 5.5 years – from July 2010 to January 2016.

We define clarQ in a straightforward manner: sentences in comments to

the initial questions ending with the question mark, provided by the users

different from the asker of the initial question, four words and longer. This

heuristic is not perfect, as clarification requests can be formulated as a declar-

ative sentence, e.g., Please provide details... or question mark can be just

missed. At the same time, these interrogative comments may be rhetori-

cal questions, or not on the initial question’s subject. Nevertheless, manual

inspection showed that this definition of clarQ is operational and allows

extraction of clarQ with precision acceptable for an exploratory study.

Basic statistics of the two datasets are reported in Table 5.3.

DIY GAMES

of questions 20,702 62,511

of answers 36,580 105,167

of accepted answers 8,381 40,049

of comments 87,238 228,074

average question length in words 130.8 86.5

average comment length in words 33.8 25.8

of comments on questions 37,296 96,247

of non-asker comments on questions 27,873 72,495

of comments on questions with ‘?’ 11,040 21,448

clarQ followed by asker’s comments 3,679 8,021

clarQ followed by post editing 4,270 9,038

clarQ followed by post editing by asker 1,631 3,772

Table 5.3: Statistics of the Stack Exchange datasets, used for the clarification

questions study.

145

5.3.2 Results

User behavior

As Table 5.3 shows, the presence of clarQ in CQA is substantial. Many

characteristics such as questions/answers, accepted answers/all answers ra-

tios are similar for both domains. Questions and comments in DIY are longer

then in GAMES, which is expected: DIY implies richer and more diverse con-

texts. Askers are engaged in communication even after the initial question

is posted: they comment on questions and edit them (however, questions

are edited by community members more often). Although there are more

comments on questions in DIY, GAMES seem to be somewhat more conver-

sational: askers respond to questions on questions more often. Interestingly,

thousands of initial questions are followed by clarifications, and in many

cases, these are followed by the original question being edited, presumably

in response to the clarification request.

Unfortunately, we see that questions followed by clarQ do not differ

much from questions without any comments in length – a simple assump-

tion that clarQ are targeted at short underspecified questions does not

hold. The hypothesis that questions asked by novice and less experienced

community members (based on users’ ratings) receive more clarQ is not

supported either. We also did not find any topical specificity of questions

with clarQ based on tags.

Figure 5.9 shows rating distribution of the GAMES users, who ask clarQ and

those who provide accepted answers (i.e., the best answerers in the commu-

nity). We can observe that distribution for the former group is shifted to-

wards higher scores (DIY exhibits a very similar distribution). However, the

users who ask for clarifications provide answers for the initial questions very

rarely. This observation suggests that clarQ in CQA are a form of ‘quality

control measures’ undertaken by most experienced users.

146

Figure 5.9: Distribution of users’ reputation scores in the groups of accepted

answers’ providers and commentators on questions (GAMES).

Question types and patterns

Category % Example

More Info 28.6 What OS are you using?

Check 29.3 Are you on a 64-bit system?

Reason 8.5 What is the reason you want a drip pan?

General 10.2 Can you add more details to this question?

Selection 9.9 Are you using latex or oil based Kilz?

Experience 10.2 Have you tried to update video card drivers?

Not a clarQ 13.9 Out of curiosity what elo are you?

Table 5.4: The distribution of questions in StackExchange comments by type.

Some comments contain several clarQ of different types, so the sum is more

the 100%.

In order to investigate clarQ breakdown by type, we sampled 294 com-

ments on questions from both domains, and two authors performed manual

147

Pattern DIY GAMES Example

have you tried 256 1,123 Have you tried reinstalling the

game yet?

do you have 592 692 Do you have enough disk space

left?

do you mean 248 552 Do you mean a separate tub and

shower?

are you sure 206 366 Are you sure you have timber

frame construction?

what (is—are) the 558 361 What is the slope of the floor?

what do you 103 284 What do you mean by squeak-

ing?

(are—is) there any 154 147 Are there any airflow ducts in the

room already?

can you (post—provide) 204 125 can you post some pictures?

how X (is—are) 290 117 how old is the water heater?

is it a 186 112 is it a constant 18-22 fps?

what (kind—type) of 344 106 What kind of texture is on the

wallpaper?

why do you 73 101 Why do you need to run it from

the Flash drive?

have you checked 66 98 Have you checked the frequency

of the outlets?

is it possible 78 84 Is it possible the tank is just over

filling?

do you know 120 64 Do you know the manufacturer of

the fixture?

Table 5.5: Question patterns in comments (sorted by frequency in GAMES)

from StackExchange dataset.

148

annotation analogously to [109], see results in Table 5.4. Comments that

are not aimed at clarifying the main question contain rhetorical or humorous

questions, questions to previous comments, citations of other questions on

the platform, etc. Interestingly, the breakdown of clarQ by type is roughly

the same as in [109].

Further, upon examining the sample we identified a list of common three-

word question starting patterns, and calculated their frequency in the whole

dataset, see Table 5.5. As can be seen from the Table 5.5, some patterns

are quite indicative for the clarification type (e.g., what kind of corresponds

to More info category, whereas have you tried – to Experience). This ob-

servation suggests that recognition of clarification question type is a feasible

task.

Clarification subject prediction

As we have shown, there are many different kinds of questions that users

ask in comments. Many of them address a certain ambiguity present in

questions, e.g., what kind of questions inquire about a subtype of a mentioned

object. These questions are quite common (Table 5.5) and have a simple

structure, which makes them a quite appealing target for automatic question

generation. The first step for such question generation is to predict the

object to ask about. We collected questions, which received at least one

what (kind—type) of clarQ in DIY. From these comments and questions,

we extracted noun phrases using Stanford CoreNLP parser [135], and kept

only those questions that have a common pair of noun phrases in the question

and comment. We formulated the task as the noun phrase ranking problem,

where the noun phrase from the comment should be placed higher on the

list than other noun phrases from the question. Each candidate phrase was

represented by the following set of features:

• prior: number of times the noun phrase was used in comments (sepa-

149

rate from the training and test sets)

• topicality: number of occurrences of the phrase in the current question

(in title and body together)

• position: position of the first occurrence of the noun phrase relative

to the beginning of the question

• entropy: collection-based statistic, computed using all noun phrases

that contain the given noun phrase, which estimates the number of

different modifications of the current noun phrase object

• length: number of words in the noun phrase

To train the ranking model we used a random forest algorithm implemented

in the RankLib library13. We optimized DCG@10 and Table 5.6 summarizes

the performance metrics on 10-fold cross validation. As we can see, even

with a limited set of features our model was able to place the true subject

of a clarification question above other candidates in 35% of the cases. To

study the contributions of different feature groups we conducted a series of

experiments to train the model with each group individually. The results in

Table 5.6 suggest, that the number of occurrences of a phrase and the position

of the first occurrence are strong features, and confirms our intuition that

clarQ are usually asked about the main topic of the question. However,

some noun phrases are more ambiguous in general, therefore the prior feature

also contributed significantly to the quality of the model.

Overall, our experiment showed promising results for predicting the subject

for a certain type of clarQ. As a next step, our model can be combined

with an ambiguity detection classifier, which would trigger clarification as a

response from a conversational search agent.

13https://sourceforge.net/p/lemur/wiki/RankLib

150

Model P@1 MAP RR@10 ERR@10

random 0.077 0.215 0.231 0.015

+ entropy 0.143 0.334 0.350 0.024

+ length 0.148 0.337 0.345 0.024

+ position 0.165 0.335 0.357 0.024

+ prior 0.214 0.402 0.427 0.030

+ topicality 0.319 0.426 0.473 0.032

all features 0.350 0.508 0.549 0.038

Table 5.6: Performance metrics (P@1 – precision at 1, MAP – mean average

precision, RR@10 – reciprocal rank at 10, ERR@10 – expected reciprocal

rank) of the ranking model for “ambiguous” noun phrase selection problem.

5.3.3 Discussion

As a step towards general-purpose interactive QA system, we analyzed clar-

ification questions asked by CQA users. In particular, we examined user in-

teractions related to clarQ, as well as the role and place of these questions

in CQA. We analyzed a large sample of clarQ according to their type and

identified most common syntactic patterns in a large collection of clarQ.

Finally, we conducted an experiment aimed at automatically detecting the

subject of clarification question of a particular type.

Based on our analyses, we can conclude that clarQ are common in CQA

archives, and introduce a valuable resource for user behavior studies and QA

research. Clarification questions asked by community members are an im-

portant component in maintaining the quality of user-generated content in

CQA. Furthermore, we see that clarification questions are quite diverse in

topic and style, are highly dependent on context and individual characteris-

tics of the users. However, there are several types of questions and syntactic

patterns that are common within each domain. As a first step towards au-

151

tomatically generating clarification questions, we show promising results on

identifying the subject of clarQ based on a small set of shallow features.

Our findings suggest that CQA data may be useful for research in the field

of interactive QA.

5.4 Summary

This Chapter described the research I have done on conversational question

answering, which gives a system opportunities to exploit a rich set of possible

interactions with its users. First, I described the design and implications of

the user study we conducted to investigate the current state in conversational

search, and looked into what users expect from a dialog agent compared to

a human interlocutor, and what is missing from an existing state-of-the-art

commercial system. We learned, that users do not have any prejudice to-

wards automatic question answering agents, and for some people they are

actually preferable, avoiding certain social norm issues. We identified some

directions for future research in order to move existing systems towards user

expectations, by providing a diverse set of opinions as well as information

sources, improving context maintenance techniques, and learning from user

feedback. As the first steps in these directions, I discussed search hints and

clarification questions, which can be provided by the system to either help

users structure their search process or clarify some of the ambiguities. The re-

sults of the conducted research showed that hints tailored to a specific search

problem can effectively guide the user through the search process. However,

generic hints might actually take away the feeling of control from the user

and lower both satisfaction and success rate. To study the phenomenon

of clarification questions, we analyzed the data from one of the community

question answering platforms and identified different types of clarifications,

e.g., “what type of ...” questions, that aim at requesting information on a

152

particular type of an object mentioned in the question. The model we built

to predict the subject of such questions showed a reasonable performance,

and demonstrate the potential of this approach for automatic clarification

generation.

Together, the research described in this chapter provides desiderata for

future developments in conversational search and question answering and

shows promising first steps in some of these directions.

153

Chapter 6

Conclusions

This chapter concludes the dissertation by providing the summary of the

findings, limitations, potential future directions, and the main contributions

of my work.

6.1 Summary of the Results

In the era of information overload, we have to rely on intelligent systems to

help us organize and search the knowledge about the world. The research

described in this dissertation aims to improve the technology behind question

answering systems, which can sift through the constantly growing piles of

information and give the user the needed response. In the next sections, I

will describe the main results of my research, and how it helps to get closer

to the above-mentioned goal.

154

6.1.1 Combining KB and Text Data for Factoid Ques-

tion Answering

When we type a question like “What is the capital of Peru?” into a favorite

search engine, we can expect to see a direct answer shown on top of search

results. However, for the majority of more complex tail questions users still

have to browse through retrieved web documents and search for the answer

themselves. My Ph.D. research targets the problem of improving both pre-

cision and recall of factoid question answering by combining available data

sources. Chapter 3 described 3 different approaches to this problem.

Relation extraction became a common tool for transforming knowledge

from one format to another, e.g., from natural language text into structured

knowledge base triples. Existing approaches target some particular subsets

of data, e.g., facts expressed in statements, such as “The capital of Peru is

Lima”. The proposed model for relation extraction from community gen-

erated question-answer pairs (Section 3.1) provides an extension of existing

techniques to a new domain and helps to extract additional factual triples,

therefore increasing the coverage of knowledge bases. Our experiments on

Yahoo! Answers and WikiAnswers datasets suggest, that by adding the pro-

posed model, which focuses on entity pairs mentioned in the question and

answer texts, we can extract ≈ 20%...40% more triples combined with exist-

ing sentence-based techniques. This means, that using the relation extraction

model proposed in my Ph.D. dissertation, from the same data source we will

be able to extract more factual knowledge, therefore significantly improving

the recall of the relation extraction methods. Extracted triples can be further

injected into a knowledge base, e.g., using approaches like Google Knowledge

Vault [62], eventually leading to more answered user questions.

Besides increasing the coverage of underlying data, the dissertation pro-

poses a set of techniques to improve the performance of the core question

155

answering pipeline. Text2KB model, described in Section 3.2, brings the

power of text-based question answering to KBQA to improve question in-

terpretation, candidate generation and ranking. By identifying mentions of

knowledge base concepts in text documents it is possible to use text match-

ing techniques to understand the question topic, relate question terms to

KB predicates and better rank the generated answer candidates. The exper-

iments conducted on the WebQuestions benchmark dataset demonstrated,

that the proposed techniques can improve the performance of a state-of-the-

art KBQA system by ≈ 8%. I believe, that this work makes progress in one

of the key directions for improving QA systems: integration of different data

sources for joint reasoning, and we can expect more researches to be done in

this area in the upcoming years.

Finally, the dissertation proposes the EviNets neural network architecture,

which can aggregate answers supporting evidence from different sources, in-

cluding text and knowledge base data. By embedding text and KB triples

into the same space, the model can estimate the relevance of each statement

to the question, and score candidate answers based on all available evidence.

The experiments performed on TREC QA, WikiMovies and new developed

Yahoo! Answers datasets confirm these expectations and demonstrate that

the model indeed can combine KB and text data in a unified framework, im-

proving the performance over existing baseline approaches. EviNets makes

the next step from relevance matching techniques towards systems, that make

decisions based on all available information. By demonstrating the effective-

ness of evidence aggregation for QA performance, I believe this work will

motivate future research on designing better methods for combining various

sources of information for joint reasoning.

Combined, these techniques allow us to achieve both higher precision and

recall in factoid question answering.

156

6.1.2 Ranking Answer Passages for Non-factoid Ques-

tion Answering

The challenges in non-factoid question answering are due to a diverse na-

ture and types of these questions and answers. During my Ph.D. studies, I

developed a system, that combines vertical search in CQA archives and gen-

eral web search to retrieve similar question-answer pairs and text passages

from relevant documents. The system achieves state-of-the-art performance

in TREC LiveQA 2015 and 2016 shared tasks and can be used as a baseline

for future experiments. According to the results of TREC LiveQA 2016, for

more than half of the questions the system was able to return a relevant

response, and for ≈ 20% of the questions it gave a perfect answer. The sys-

tem is open sourced, and can be used as a baseline for future research on

improving the state-of-the-art in non-factoid QA.

The crowdsourcing module, integrated into the EmoryCRQA system for

obtaining additional answer candidates, and rating of existing ones, allowed

us to significantly boost the performance of the fully automatic QA system.

This hybrid approach achieved the highest score among participants of the

TREC LiveQA 2016 shared task, with the average answer score of 1.260

on the 1-4 Likert scale. This score is only within ≈ 20% of the quality of

the community-generated response, which was obtained a week after. The

experiment demonstrates, that it is possible to use a crowd of non-expert

workers to obtain additional feedback and relevance judgments in real-time,

and these signals can significantly improve the performance of an automatic

QA system. With crowdsourcing, our system was able to generate a rea-

sonable response to more than 60% of the questions, compared to only 50%

for the fully automatic setup. The crowdsourcing expenses can be reduced

by limiting the number of workers per single task and selectively request-

ing feedback for more complex questions only. These findings can be useful

157

for building hybrid question answering systems, that would rely on human

feedback to improve the performance on difficult tasks.

6.1.3 Question Answering in Conversational Setting

While gaining some popularity, personal assistants like Amazon Alexa, Google

Home, Microsoft Cortana and Apple Siri, are still mostly used for simple

routine tasks, like playing music and checking the news and weather. In

Section 5.1 we described a user study, designed to learn what is missing from

commercial products to be the major tool for informational tasks. The find-

ings of the study suggest, that users still often prefer search engines because

they can offer a variety of information with sources, and give more control

over what information a user consumes. The abilities of existing personal

assistants often do not allow natural ways of forming questions, like a person

would do in a conversation with an expert. For example, the commercial

chatbot we tested could not properly maintain the context of the conversa-

tion, e.g., resolve pronouns to the previously mentioned topics. However,

the participants of the user study expressed their interest in such systems, as

they allow to shortcut some social rules and get straight into the information

finding while providing concise responses.

In Sections 5.2 and 5.3 the dissertation describes some of the first steps

in the discovered directions. For complex search tasks, it is quite important

to learn to formulate good search queries, as confirmed by the popularity of

query suggestion and other assistance techniques. The user study we con-

ducted tested how users would react and benefit from strategic search hints,

which propose a way to split the original difficult search task into simpler

intermediate goals. When dealing with a complex multi-step question, a con-

versational system can report a failure to answer and use hints to suggest

next steps to resolve the issue to the user. The results of the user study

158

reveal, that such hints can be helpful if designed carefully. However, this

assistance takes away some satisfaction from the search process.

As some of the user questions are ambiguous, a conversational system

should be able to ask clarifications. By analyzing the data from StackEx-

change CQA platform we can conclude that clarifications are a common

phenomenon in human information seeking dialogs. Clarification questions

vary by type and form, however, there are some frequent patterns, which

can be used to automatically generate questions to resolve ambiguities about

objects, mentioned in the question. As a proof of concept, we built a model

to predict objects of “what kind of ...” clarification questions. The perfor-

mance of this model proves the feasibility of the template-based clarification

question generation.

6.2 Limitations and Future Work

In this Section, I summarize some of the limitations of the described ap-

proaches and propose directions for future research.

Community question answering websites became quite popular and accu-

mulate millions of questions people ask along with suggested answers. There-

fore, CQA websites are quite valuable as a knowledge source. Relation ex-

traction approach, proposed in this dissertation, was designed to extract

subject-predicate-object triples for a schema-based knowledge base, such as

Freebase. However, many of the user questions do not align well with exist-

ing schema, which restricts the scope of the model. To resolve this issue, the

future work can include developing methods for open information extraction

from question-answer pairs, and extracting new predicates for schema-based

KBs, e.g., using approaches similar to [83].

Text2KB model, proposed in this dissertation to improve KBQA by em-

ploying techniques from text-based question answering, demonstrated its ef-

159

fectiveness on the WebQuestions benchmark. However, for candidate gener-

ation, it mainly relies on KB data, which, as we saw, often does not contain

predicates or entities, that user is asking about. The EviNets model was

designed to resolve this issue by considering both KB and Text data equally,

and score answer candidates based on the support extracted from the various

pieces of evidence. One of the limitations of EviNets is that sets of candidate

answers and pieces of evidence are “pre-computed” and cannot be extended

during the model evaluation. A possible future direction is to extend the

evidence pool at run-time and turn to the reinforcement learning techniques

for training. In this case, the problem could be cast as a graph search prob-

lem, where entity nodes are connected with either retrieved textual evidence,

or KB predicates, or both. Another limitation of EviNets is the focus on

single entities, whereas answers to many real user questions might be lists,

and contain attributes, such as dates, numbers, etc. To cover these answer

types we can look into existing research on answer extraction, such as the

research conducted on the SQuAD dataset [154], where the goal is to extract

an answer span from a passage of a Wikipedia article. It is possible to adopt

these techniques to generate candidates, and aggregate all the evidence for

each of them using EviNets.

Most of the existing approaches to non-factoid question answering, includ-

ing the system presented in this dissertation, rely on ranking existing pas-

sages, extracted from somewhere on the web. The limitation of such an

approach is that it does not give a big picture of all the relevant informa-

tion available out there, suggests an answer, which might not be trustworthy,

and/or gives a one-sided opinion on the issue. In the user study on conversa-

tional search, we found out that users care about the source of the informa-

tion, and want to get a diverse set of opinions. While some approaches for

answer summarization have recently been proposed [139, 179, 192, 208, 77],

the problem is still far from being solved.

160

The crowdsourcing approach for real-time question answering, proposed

in this dissertation, was shown to be effective, but is also quite expen-

sive. EmoryCRQA involved crowdsourcing for every question, which requires

maintaining a pool of workers constantly ready to assist. While we presented

an analysis to reduce the costs by using less human resources, the future

research should look into how to optimally plan question answering and op-

timize the cost/quality trade-off. A question answering system or personal

assistant should turn to crowdsourcing selectively when it was not able to

come up with a good response itself. On the other hand, some of the user

questions might not be urgent, which allows the system to engage slower,

but more reliable community of experts on one of the domain-specific CQA

websites. I believe, that future personal assistants should be able to plan

and route questions more effectively given the type of question, their time

and cost requirements.

The research on chatbots and conversational question answering is at the

beginning, and the findings of the presented user study shed some light into

the areas the research community should focus on, e.g., methods for main-

taining context in a conversation, generating clarification questions, taking

positive and negative feedback, etc. The limitation of our user study is that

we did not consider the voice interface, which adds certain specifics to how a

system should present its results [194]. Some of the participants of our user

study also raised an interesting point, that web search offers a possibility to

browse related information and stumble upon something unexpected. For

example, when doing a research into the economics behind hydro-power, a

typical web page will cover multiple related topics, such as history, efficiency,

environmental concerns, etc. In a conversation, responses are typically fo-

cused around the asked question, which makes it harder to learn about related

topics. It requires a user to ask multiple questions, and actually assumes she

is aware of all these aspects beforehand. Research into ways to discover and

161

present such related information in a conversational search setting might

change the user experience significantly, and bring serendipity to the chat

and voice interfaces.

In this dissertation, I mainly focused on improving the accuracy of question

answering systems. However, there are other metrics, which are quite impor-

tant to users, e.g., trustworthiness of answers, their completeness in terms

of the number of covered subtopics, as well as opinions. All these aspects

should be taken into account by the developers of intelligent assistants.

6.3 Contributions and Potential Impact

My Ph.D. dissertation covers a spectrum of aspects related to answering user

information needs, primarily focusing on those expressed as natural language

questions. The common thread throughout the thesis is the goal of combin-

ing and aggregating valuable information from various unstructured (text),

semi-structured (question-answer pairs) and structured (Knowledge Base)

data sources, as well as direct human contributions (through Crowdsourcing

and dialog utterances). Combining such diverse sources of information al-

lowed us to exploit advantages of one source to overcome the disadvantages

of the other sources, and improve precision and recall of automatic factoid

and non-factoid question answering. I believe, that this idea of information

aggregation will be the key component of future intelligent systems, which

should be able to reason with all the available knowledge, rather than simply

returning the best matching item. The models I developed in my dissertation

demonstrate the potential of such an approach and provide some insights for

future research in this direction. In particular, I investigated both feature-

engineered and feature learning-based (deep learning) methods for evidence

aggregation, and introduced EviNets, a principled method for combining di-

verse sources of evidence for answer ranking in question answering.

162

In addition to improving the core question answering techniques, it is im-

portant to improve the ways a system communicates with users. A conversa-

tion or dialog is a natural activity that humans perform on daily basis, and

proliferation of mobile personal assistants suggests that conversations might

be the next step for information seeking scenarios. In my dissertation, I pre-

sented results of of an initial user study of how people use conversations for

information seeking tasks, what are the expectations from the personal assis-

tants, and what is currently missing from the commercial systems. I believe

that the results and insights gained from this user study will help build the

next generations of conversational systems, which will receive wider adop-

tion and will be quite helpful in everyday life. I hope this work will be used

by the academic and industry communities as a guide for future research in

conversational question answering. Additionally, we explored two particular

dialog scenarios for complex informational tasks. Search hints and clarifica-

tion questions are two possible response types a question answering system

can return for complex or ambiguous questions, instead of returning empty

or irrelevant answers. Both of these types of interactions integrate nicely

into a dialog scenario and enrich the arsenal of tools a conversational system

possess in order to help a user satisfy her goals.

Overall, this dissertation describes methods and techniques for improving

the performance of question answering systems by combining various user-

generated content, including those created on the fly with crowdsourcing or

in dialogs with users. These techniques can be integrated into a conver-

sational personal assistant, and the dissertation gives some insights on the

expectations and desiderata from such a system, obtained via user studies.

The contributions of this dissertation should help develop the next generation

of information access systems, that will serve some of more than 1.2 trillion

information searches per year 1 for more than 3.5 billion Internet users.

1http://www.internetlivestats.com/google-search-statistics/

163

Bibliography

[1] Mikhail Ageev, Qi Guo, Dmitry Lagun, and Eugene Agichtein. Find it

if you can: A game for modeling different types of web search success

using interaction data. In Proceedings of the 34th International ACM

SIGIR Conference, pages 345–354, New York, NY, USA, 2011. ACM.

[2] Eugene Agichtein, David Carmel, Donna Harman, Dan Pelleg, and

Yuval Pinter. Overview of the trec 2015 liveqa track. In Proceedings of

TREC, 2015.

[3] Eugene Agichtein, David Carmel, Donna Harman, Dan Pelleg, and

Yuval Pinter. Overview of the trec 2016 liveqa track. In Proceedings of

TREC, 2016.

[4] Eugene Agichtein and Luis Gravano. Snowball: Extracting relations

from large plain-text collections. In Proceedings of the Fifth ACM Con-

ference on Digital Libraries, DL, pages 85–94, New York, NY, USA,

2000. ACM.

[5] Eugene Agichtein, Steve Lawrence, and Luis Gravano. Learning search

engine specific query transformations for question answering. In Pro-

ceedings of the Tenth International World Wide Web Conference, pages

169–178, 2001.

164

[6] Eyal Aharoni and Alan J Fridlund. Social reactions toward people vs.

computers: How mere lables shape interactions. Computers in human

behavior, 23(5):2175–2189, 2007.

[7] DD Ahn, Valentin Jijkoun, GA Mishne, KE Müller, Maarten de Rijke,

and KS Schlobach. Using wikipedia at the trec qa track. In The

Thirteenth Text Retrieval Conference, 2005.

[8] Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and Yoshua Bengio. A

neural knowledge language model. arXiv preprint arXiv:1608.00318,

2016.

[9] Ali Mohamed Nabil Allam and Mohamed Hassan Haggag. The question

answering systems: A survey. International Journal of Research and

Reviews in Information Sciences (IJRRIS), 2(3), 2012.

[10] James Allan, Bruce Croft, Alistair Moffat, and Mark Sanderson. Fron-

tiers, challenges, and opportunities for information retrieval. SIGIR

Forum, 46(1):2–32, 2012.

[11] Omar Alonso and Ricardo Baeza-Yates. Design and implementation of

relevance assessments using crowdsourcing. In Advances in information

retrieval, pages 153–164. Springer, 2011.

[12] Omar Alonso, Daniel E. Rose, and Benjamin Stewart. Crowdsourcing

for relevance evaluation. SIGIR Forum, 42(2):9–15, November 2008.

[13] Andrea Andrenucci and Eriks Sneiders. Automated question answer-

ing: Review of the main approaches. In Information Technology and

Applications, 2005. ICITA 2005. Third International Conference on,

volume 1, pages 514–519. IEEE, 2005.

165

[14] Ion Androutsopoulos, Graeme D Ritchie, and Peter Thanisch. Natural

language interfaces to databases–an introduction. Natural language

engineering, 1(01):29–81, 1995.

[15] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard

Cyganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data.

Springer, 2007.

[16] Anne Aula, Rehan M Khan, and Zhiwei Guan. How does search be-

havior change as search becomes more difficult? In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, pages

35–44. ACM, 2010.

[17] Bahadir Ismail Aydin, Yavuz Selim Yilmaz, Yaliang Li, Qi Li, Jing

Gao, and Murat Demirbas. Crowdsourcing for multiple-choice question

answering. In Proceedings of AAAI, pages 2946–2953, 2014.

[18] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira

Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer,

and Nathan Schneider. Abstract meaning representation for sembank-

ing. Citeseer, 2013.

[19] Hannah Bast, Björn Buchhold, Elmar Haussmann, et al. Semantic

search on text and knowledge bases. Foundations and Trends R© in

Information Retrieval, 10(2-3):119–271, 2016.

[20] Hannah Bast and Elmar Haussmann. More accurate question answer-

ing on freebase. In Proceedings of CIKM, 2015.

[21] Petr Baudǐs. Yodaqa: a modular question answering system pipeline.

In POSTER 2015-19th International Student Conference on Electrical

Engineering, pages 1156–1165, 2015.

166

[22] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Seman-

tic parsing on freebase from question-answer pairs. In Proceedings of

the 2013 Conference on Empirical Methods in Natural Language Pro-

cessing, pages 1533–1544, 2013.

[23] Jonathan Berant and Percy Liang. Semantic parsing via paraphras-

ing. In Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics, ACL, pages 1415–1425, 2014.

[24] Jonathan Berant and Percy Liang. Imitation learning of agenda-based

semantic parsers. Transactions of the Association for Computational

Linguistics, 3:545–558, 2015.

[25] Adam Berger, Rich Caruana, David Cohn, Dayne Freitag, and Vibhu

Mittal. Bridging the lexical chasm: statistical approaches to answer-

finding. In Proceedings of the 23rd annual international ACM SIGIR

conference on Research and development in information retrieval, pages

192–199. ACM, 2000.

[26] Delphine Bernhard and Iryna Gurevych. Combining lexical semantic

resources with question & answer archives for translation-based answer

finding. In Proceedings of the Joint Conference of the 47th Annual

Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP: Volume 2, pages 728–736.

ACL, 2009.

[27] Michael S Bernstein, Joel Brandt, Robert C Miller, and David R

Karger. Crowds in two seconds: Enabling realtime crowd-powered

interfaces. In Proceedings of the 24th annual ACM symposium on User

interface software and technology, pages 33–42. ACM, 2011.

167

[28] Michael S Bernstein, Jaime Teevan, Susan Dumais, Daniel Liebling,

and Eric Horvitz. Direct answers for search queries in the long tail. In

Proceedings of the SIGCHI conference on human factors in computing

systems, pages 237–246. ACM, 2012.

[29] Fumihiro Bessho, Tatsuya Harada, and Yasuo Kuniyoshi. Dialog sys-

tem using real-time crowdsourcing and twitter large-scale corpus. In

Proceedings of the 13th Annual Meeting of the Special Interest Group

on Discourse and Dialogue, SIGDIAL, pages 227–231, 2012.

[30] Sumit Bhatia, Debapriyo Majumdar, and Prasenjit Mitra. Query sug-

gestions in the absence of query logs. In Proceedings of the 34th In-

ternational ACM SIGIR Conference, pages 795–804, New York, NY,

USA, 2011.

[31] Jeffrey P Bigham, Chandrika Jayant, Hanjie Ji, Greg Little, Andrew

Miller, Robert C Miller, Robin Miller, Aubrey Tatarowicz, Brandyn

White, Samual White, et al. Vizwiz: nearly real-time answers to visual

questions. In Proceedings of the 23nd annual ACM symposium on User

interface software and technology, pages 333–342. ACM, 2010.

[32] Dania Bilal and Joe Kirby. Differences and similarities in information

seeking: Children and adults as web users. Inf. Process. Manage.,

38(5):649–670, September 2002.

[33] Matthew W Bilotti, Paul Ogilvie, Jamie Callan, and Eric Nyberg.

Structured retrieval for question answering. In Proceedings of the 30th

annual international ACM SIGIR conference on Research and devel-

opment in information retrieval, pages 351–358. ACM, 2007.

[34] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie

Taylor. Freebase: A collaboratively created graph database for struc-

168

turing human knowledge. In Proceedings of the 2008 ACM Interna-

tional Conference on Management of Data, SIGMOD ’08, pages 1247–

1250, New York, NY, USA, 2008.

[35] Antoine Bordes, Sumit Chopra, and Jason Weston. Question answering

with subgraph embeddings. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing, EMNLP 2014,

pages 615–620, 2014.

[36] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston.

Large-scale simple question answering with memory networks. arXiv

preprint arXiv:1506.02075, 2015.

[37] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio.

Learning structured embeddings of knowledge bases. In Conference on

Artificial Intelligence, number EPFL-CONF-192344, 2011.

[38] Alessandro Bozzon, Marco Brambilla, and Stefano Ceri. Answering

search queries with crowdsearcher. In Proceedings of the 21st Interna-

tional Conference on World Wide Web, WWW, pages 1009–1018, New

York, NY, USA, 2012.

[39] Pavel Braslavski, Denis Savenkov, Eugene Agichtein, and Alina Duba-

tovka. What do you mean exactly? analyzing clarification questions in

cqa. In Proceedings of CHIIR, 2017.

[40] E. Brill, J. Lin, M. Banko, S. Dumais, and A. Ng. Data-intensive

question answering. In Proceedings of TREC 2001, January 2001.

[41] Eric Brill, Susan Dumais, and Michele Banko. An analysis of the

askmsr question-answering system. In Proceedings of the ACL-02 con-

ference on Empirical methods in natural language processing-Volume

10, pages 257–264. Association for Computational Linguistics, 2002.

169

[42] Chris J.C. Burges. From ranknet to lambdarank to lambdamart: An

overview. Technical report, Miscrosoft Research, June 2010.

[43] Davide Buscaldi and Paolo Rosso. Mining knowledge from wikipedia for

the question answering task. In Proceedings of the International Con-

ference on Language Resources and Evaluation, pages 727–730, 2006.

[44] Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and

Yang Zhang. Webtables: Exploring the power of tables on the web.

Proc. VLDB Endow., 1(1):538–549, August 2008.

[45] Michael J. Cafarella, Jayant Madhavan, and Alon Halevy. Web-scale

extraction of structured data. SIGMOD Rec., 37(4):55–61, March 2009.

[46] Qingqing Cai and Alexander Yates. Large-scale semantic parsing via

schema matching and lexicon extension. In Proceedings of the 51st

Annual Meeting of the Association for Computational Linguistics, ACL

2013, pages 423–433, 2013.

[47] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong

Chen, and Hang Li. Context-aware query suggestion by mining click-

through and session data. In Proceedings of the 14th ACM International

Conference on Knowledge Discovery and Data Mining, KDD ’08, pages

875–883, New York, NY, USA, 2008.

[48] David Carmel, Menachem Shtalhaim, and Aya Soffer. eresponder:

Electronic question responder. In International Conference on Coop-

erative Information Systems, pages 150–161. Springer, 2000.

[49] David Carmel and Elad Yom-Tov. Estimating the query difficulty for

information retrieval. Synthesis Lectures on Information Concepts, Re-

trieval, and Services, 2(1):1–89, 2010.

170

[50] Ben Carterette, Evangelos Kanoulas, Mark Hall, and Paul Clough.

Overview of the trec 2014 session track. Technical report, DTIC Doc-

ument, 2014.

[51] Angel X Chang, Valentin I Spitkovsky, Eneko Agirre, and Christo-

pher D Manning. Stanford-ubc entity linking at tac-kbp, again. In

Proceedings of Text Analysis Conference, TAC’11, 2011.

[52] Tongfei Chen and Benjamin Van Durme. Discriminative information

retrieval for knowledge discovery. arXiv preprint arXiv:1610.01901,

2016.

[53] Charles LA Clarke, Gordon V Cormack, and Thomas R Lynam. Ex-

ploiting redundancy in question answering. In Proceedings of the 24th

annual international ACM SIGIR conference on Research and devel-

opment in information retrieval, pages 358–365. ACM, 2001.

[54] Maxime Clément and Matthieu J Guitton. Interacting with bots on-

line: Users reactions to actions of automated programs in wikipedia.

Computers in Human Behavior, 50:66–75, 2015.

[55] Daniel Cohen and W Bruce Croft. End to end long short term memory

networks for non-factoid question answering. In Proceedings of the

2016 ACM on International Conference on the Theory of Information

Retrieval, pages 143–146. ACM, 2016.

[56] Gao Cong, Long Wang, Chin-Yew Lin, Young-In Song, and Yueheng

Sun. Finding question-answer pairs from online forums. In Proceedings

of the 31st annual international ACM SIGIR conference on Research

and development in information retrieval, pages 467–474. ACM, 2008.

[57] Marco Cornolti, Paolo Ferragina, Massimiliano Ciaramita, Hinrich

Schütze, and Stefan Rüd. The smaph system for query entity recog-

171

nition and disambiguation. In Proceedings of the First International

Workshop on Entity Recognition and Disambiguation, ERD ’14, pages

25–30, New York, NY, USA, 2014. ACM.

[58] Hoa Trang Dang, Diane Kelly, and Jimmy J Lin. Overview of the trec

2007 question answering track. In TREC, volume 7, page 63. Citeseer,

2007.

[59] Marco De Boni and Suresh Manandhar. Implementing clarification

dialogues in open domain question answering. Natural Language Engi-

neering, 11(04):343–361, 2005.

[60] Shilin Ding, Gao Cong, Chin-Yew Lin, and Xiaoyan Zhu. Using condi-

tional random fields to extract contexts and answers of questions from

online forums. In ACL, volume 8, pages 710–718. Citeseer, 2008.

[61] Li Dong, Furu Wei, Ming Zhou, and Ke Xu. Question answering over

freebase with multi-column convolutional neural networks. In Proceed-

ings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Lan-

guage Processing, volume 1, pages 260–269, 2015.

[62] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao,

Kevin Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang.

Knowledge vault: A web-scale approach to probabilistic knowledge fu-

sion. In Proceedings of the 20th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, KDD, pages 601–610,

New York, NY, USA, 2014.

[63] Huizhong Duan, Yunbo Cao, Chin-Yew Lin, and Yong Yu. Searching

questions by identifying question topic and question focus. In Proceed-

ings of ACL, pages 156–164, 2008.

172

[64] Chad Edwards, Autumn Edwards, Patric R Spence, and Ashleigh K

Shelton. Is that a bot running the social media feed? testing the

differences in perceptions of communication quality for a human agent

and a bot agent on twitter. Computers in Human Behavior, 33:372–

376, 2014.

[65] Shady Elbassuoni, Maya Ramanath, Ralf Schenkel, Marcin Sydow, and

Gerhard Weikum. Language-model-based ranking for queries on rdf-

graphs. In Proceedings of the 18th ACM conference on Information

and knowledge management, pages 977–986. ACM, 2009.

[66] Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S. Weld.

Open information extraction from the web. Commun. ACM, 51(12):68–

74, December 2008.

[67] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying rela-

tions for open information extraction. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing, EMNLP, pages

1535–1545, Stroudsburg, PA, USA, 2011.

[68] Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Paraphrase-

driven learning for open question answering. In Proceedings of the

51st Annual Meeting of the Association for Computational Linguistics,

pages 1608–1618, 2013.

[69] Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Open question

answering over curated and extracted knowledge bases. In Proceedings

of the 20th ACM International Conference on Knowledge Discovery

and Data Mining, KDD ’14, pages 1156–1165, New York, NY, USA,

2014. ACM.

173

[70] Paolo Ferragina and Ugo Scaiella. Tagme: on-the-fly annotation of

short text fragments (by wikipedia entities). In Proceedings of the 19th

ACM international conference on Information and knowledge manage-

ment, pages 1625–1628. ACM, 2010.

[71] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and

Alessandro Flammini. The rise of social bots. Communications of

the ACM, 59(7):96–104, 2016.

[72] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David

Gondek, Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric

Nyberg, John Prager, et al. Building watson: An overview of the

deepqa project. AI magazine, 31(3):59–79, 2010.

[73] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David

Gondek, Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric

Nyberg, John Prager, et al. This is watson. IBM Journal of Research

and Development, 56, 2012.

[74] Michael J Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh,

and Reynold Xin. Crowddb: answering queries with crowdsourcing. In

Proceedings of the 2011 ACM SIGMOD International Conference on

Management of data, pages 61–72. ACM, 2011.

[75] Daniel Fried, Peter Jansen, Gustave Hahn-Powell, Mihai Surdeanu,

and Peter Clark. Higher-order lexical semantic models for non-factoid

answer reranking. Transactions of the Association for Computational

Linguistics, 3:197–210, 2015.

[76] Jerome H Friedman. Stochastic gradient boosting. Computational

Statistics & Data Analysis, 38(4):367–378, 2002.

174

[77] Mahak Gambhir and Vishal Gupta. Recent automatic text summariza-

tion techniques: a survey. Artificial Intelligence Review, 47(1):1–66,

2017.

[78] Rashmi Gangadharaiah and Balakrishnan Narayanaswamy. Natural

language query refinement for problem resolution from crowdsourced

semi-structured data. In Proceedings of IJCNLP, pages 243–251, 2013.

[79] Matt Gardner and Tom Mitchell. Efficient and expressive knowledge

base completion using subgraph feature extraction. In Proceedings of

the 2015 Conference on Empirical Methods in Natural Language Pro-

cessing, pages 1488–1498, 2015.

[80] Catherine Grady and Matthew Lease. Crowdsourcing document rele-

vance assessment with mechanical turk. In Proceedings of the NAACL

HLT 2010 workshop on creating speech and language data with Ama-

zon’s mechanical turk, pages 172–179. Association for Computational

Linguistics, 2010.

[81] Bert F Green Jr, Alice K Wolf, Carol Chomsky, and Kenneth Laughery.

Baseball: an automatic question-answerer. In Papers presented at the

May 9-11, 1961, western joint IRE-AIEE-ACM computer conference,

pages 219–224. ACM, 1961.

[82] Poonam Gupta and Vishal Gupta. A survey of text question answering

techniques. International Journal of Computer Applications, 53(4),

2012.

[83] Rahul Gupta, Alon Halevy, Xuezhi Wang, Steven Euijong Whang, and

Fei Wu. Biperpedia: An ontology for search applications. Proc. VLDB

Endow., 7(7):505–516, March 2014.

175

[84] F Maxwell Harper, Joseph Weinberg, John Logie, and Joseph A Kon-

stan. Question types in social q&a sites. First Monday, 15(7), 2010.

[85] Christopher G Harris and Padmini Srinivasan. Comparing crowd-

based, game-based, and machine-based approaches in initial query and

query refinement tasks. In Advances in Information Retrieval, pages

495–506. Springer, 2013.

[86] Morgan Harvey, Claudia Hauff, and David Elsweiler. Learning by ex-

ample: Training users with high-quality query suggestions. In Pro-

ceedings of the 38th International ACM SIGIR Conference on Research

and Development in Information Retrieval, SIGIR, pages 133–142, New

York, NY, USA, 2015.

[87] Ben He and Iadh Ounis. Query performance prediction. Information

Systems, 31(7):585–594, 2006.

[88] Hua He and Jimmy Lin. Pairwise word interaction modeling with deep

neural networks for semantic similarity measurement. In Proceedings

of NAACL-HLT, 2016.

[89] Marti A Hearst. ’natural’search user interfaces. CACM, 54(11):60–67,

2011.

[90] Michael Heilman and Noah A Smith. Tree edit models for recogniz-

ing textual entailments, paraphrases, and answers to questions. In

Human Language Technologies: The 2010 Annual Conference of the

North American Chapter of the Association for Computational Lin-

guistics, pages 1011–1019. Association for Computational Linguistics,

2010.

176

[91] Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann

LeCun. Tracking the world state with recurrent entity networks. arXiv

preprint arXiv:1612.03969, 2016.

[92] Wesley Hildebrandt, Boris Katz, and Jimmy J Lin. Answering defi-

nition questions using multiple knowledge sources. In Proceedings of

HLT-NAACL, pages 49–56, 2004.

[93] Lynette Hirschman and Robert Gaizauskas. Natural language question

answering: the view from here. natural language engineering, 7(4):275–

300, 2001.

[94] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

[95] Eduard Hovy, Ulf Hermjakob, and Deepak Ravichandran. A ques-

tion/answer typology with surface text patterns. In Proceedings of

the Second International Conference on Human Language Technology

Research, HLT ’02, pages 247–251, San Francisco, CA, USA, 2002.

Morgan Kaufmann Publishers Inc.

[96] Eduard H Hovy, Laurie Gerber, Ulf Hermjakob, Michael Junk, and

Chin-Yew Lin. Question answering in webclopedia. In TREC, vol-

ume 52, pages 53–56, 2000.

[97] Eduard H Hovy, Ulf Hermjakob, Chin-Yew Lin, et al. The use of

external knowledge of factoid qa. In TREC, volume 2001, pages 644–

52, 2001.

[98] Ting-Hao Kenneth Huang, Walter S Lasecki, Amos Azaria, and Jef-

frey P Bigham. is there anything else i can help you with?: Challenges

in deploying an on-demand crowd-powered conversational agent. In

Proceedings of HCOMP, 2016.

177

[99] Ting-Hao Kenneth Huang, Walter S Lasecki, and Jeffrey P Bigham.

Guardian: A crowd-powered spoken dialog system for web apis. In

Third AAAI Conference on Human Computation and Crowdsourcing,

2015.

[100] Kateryna Ignatova, Cigdem Toprak, Delphine Bernhard, and Iryna

Gurevych. Annotating question types in social q&a sites. In Tagungs-

band des GSCL Symposiums Sprachtechnologie und eHumanities, pages

44–49. Citeseer, 2009.

[101] Abraham Ittycheriah, Martin Franz, and Salim Roukos. Ibm’s sta-

tistical question answering system-trec-10. In Proceedings of TREC,

2001.

[102] Mohit Iyyer, Jordan L Boyd-Graber, Leonardo Max Batista Claudino,

Richard Socher, and Hal Daumé III. A neural network for factoid

question answering over paragraphs. In EMNLP, pages 633–644, 2014.

[103] Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. Answering com-

plicated question intents expressed in decomposed question sequences.

arXiv preprint arXiv:1611.01242, 2016.

[104] Sarthak Jain. Question answering over knowledge base using factual

memory networks. In Proceedings of NAACL-HLT, pages 109–115,

2016.

[105] Jiwoon Jeon, W. Bruce Croft, and Joon Ho Lee. Finding similar ques-

tions in large question and answer archives. In Proceedings of the 14th

ACM International Conference on Information and Knowledge Man-

agement, CIKM, pages 84–90, New York, NY, USA, 2005.

[106] Valentin Jijkoun and Maarten de Rijke. Retrieving answers from fre-

quently asked questions pages on the web. In Proceedings of the 14th

178

ACM International Conference on Information and Knowledge Man-

agement, CIKM ’05, pages 76–83, New York, NY, USA, 2005. ACM.

[107] Valentin Jijkoun, Maarten De Rijke, and Jori Mur. Information ex-

traction for question answering: Improving recall through syntactic

patterns. In Proceedings of the 20th international conference on Com-

putational Linguistics, page 1284. Association for Computational Lin-

guistics, 2004.

[108] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. Gen-

erating query substitutions. In Proceedings of the 15th International

Conference on World Wide Web, pages 387–396, New York, NY, USA,

2006.

[109] Makoto P Kato, Ryen W White, Jaime Teevan, and Susan T Dumais.

Clarifications and question specificity in synchronous social q&a. In

CHI’2013 Extended Abstracts on Human Factors in Computing Sys-

tems, pages 913–918, 2013.

[110] Mostafa Keikha, Jae Hyun Park, W Bruce Croft, and Mark Sanderson.

Retrieving passages and finding answers. In Proceedings of the 2014

Australasian Document Computing Symposium, page 81. ACM, 2014.

[111] Diane Kelly, Karl Gyllstrom, and Earl W. Bailey. A comparison of

query and term suggestion features for interactive searching. In Pro-

ceedings of the 32Nd International ACM SIGIR Conference, pages 371–

378, New York, NY, USA, 2009.

[112] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[113] Julia Kiseleva, Kyle Williams, Jiepu Jiang, Ahmed Hassan Awadallah,

Aidan C Crook, Imed Zitouni, and Tasos Anastasakos. Understanding

179

user satisfaction with intelligent assistants. In Proceedings of the 2016

ACM on Conference on Human Information Interaction and Retrieval,

pages 121–130. ACM, 2016.

[114] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boil-

erplate detection using shallow text features. In Proceedings of the

Third ACM International Conference on Web Search and Data Min-

ing, WSDM, pages 441–450, New York, NY, USA, 2010.

[115] Oleksandr Kolomiyets and Marie-Francine Moens. A survey on ques-

tion answering technology from an information retrieval perspective.

Information Sciences, 181(24):5412–5434, December 2011.

[116] Alexander Kotov and ChengXiang Zhai. Towards natural question

guided search. In WWW’2010, pages 541–550, 2010.

[117] Sascha Kriewel and Norbert Fuhr. Evaluation of an adaptive search

suggestion system. In Advances in Information Retrieval, volume 5993

of Lecture Notes in Computer Science, pages 544–555. Springer Berlin

Heidelberg, 2010.

[118] Cody Kwok, Oren Etzioni, and Daniel S Weld. Scaling question answer-

ing to the web. ACM Transactions on Information Systems (TOIS),

19(3):242–262, 2001.

[119] Ni Lao, Amarnag Subramanya, Fernando Pereira, and William W Co-

hen. Reading the web with learned syntactic-semantic inference rules.

In Proceedings of the 2012 Joint Conference on Empirical Methods

in Natural Language Processing and Computational Natural Language

Learning, pages 1017–1026. Association for Computational Linguistics,

2012.

180

[120] Walter S. Lasecki, Rachel Wesley, Jeffrey Nichols, Anand Kulkarni,

James F. Allen, and Jeffrey P. Bigham. Chorus: A crowd-powered

conversational assistant. In Proceedings of the 26th Annual ACM Sym-

posium on User Interface Software and Technology, UIST, pages 151–

162, New York, NY, USA, 2013.

[121] Matthew Lease and Emine Yilmaz. Crowdsourcing for information

retrieval: introduction to the special issue. Information retrieval,

16(2):91–100, 2013.

[122] Baichuan Li, Xiance Si, Michael R Lyu, Irwin King, and Edward Y

Chang. Question identification on twitter. In Proceedings of the 20th

ACM international conference on Information and knowledge manage-

ment, pages 2477–2480. ACM, 2011.

[123] Peng Li, Wei Li, Zhengyan He, Xuguang Wang, Ying Cao, Jie

Zhou, and Wei Xu. Dataset and neural recurrent sequence labeling

model for open-domain factoid question answering. arXiv preprint

arXiv:1607.06275, 2016.

[124] Xin Li and Dan Roth. Learning question classifiers. In 19th Interna-

tional Conference on Computational Linguistics, COLING 2002, 2002.

[125] Xin Li and Dan Roth. Learning question classifiers: the role of semantic

information. Natural Language Engineering, 12(3):229–249, 2006.

[126] Jimmy Lin. An exploration of the principles underlying redundancy-

based factoid question answering. ACM Transactions on Information

Systems (TOIS), 25(2):6, 2007.

[127] Jimmy Lin and Boris Katz. Question answering from the web using

knowledge annotation and knowledge mining techniques. In Proceed-

181

ings of the twelfth international conference on Information and knowl-

edge management, pages 116–123. ACM, 2003.

[128] Qiaoling Liu, Eugene Agichtein, Gideon Dror, Yoelle Maarek, and Idan

Szpektor. When web search fails, searchers become askers: understand-

ing the transition. In Proceedings of the 35th international ACM SIGIR

conference on Research and development in information retrieval, pages

801–810. ACM, 2012.

[129] Tie-Yan Liu et al. Learning to rank for information retrieval. Founda-

tions and Trends R© in Information Retrieval, 3(3):225–331, 2009.

[130] Yandong Liu, Jiang Bian, and Eugene Agichtein. Predicting infor-

mation seeker satisfaction in community question answering. In Pro-

ceedings of the 31st Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, SIGIR ’08, pages

483–490, New York, NY, USA, 2008. ACM.

[131] Yuanjie Liu, Shasha Li, Yunbo Cao, Chin-Yew Lin, Dingyi Han, and

Yong Yu. Understanding and summarizing answers in community-

based question answering services. In Proceedings of the 22Nd Interna-

tional Conference on Computational Linguistics - Volume 1, COLING,

pages 497–504, Stroudsburg, PA, USA, 2008.

[132] Ewa Luger and Abigail Sellen. Like having a really bad pa: The gulf

between user expectation and experience of conversational agents. In

Proceedings of the 2016 CHI Conference on Human Factors in Com-

puting Systems, pages 5286–5297. ACM, 2016.

[133] Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. Yago3:

A knowledge base from multilingual wikipedias. In 7th Biennial Con-

ference on Innovative Data Systems Research. CIDR Conference, 2014.

182

[134] Christopher Malon and Bing Bai. Answer extraction by recursive parse

tree descent. ACL 2013, page 110, 2013.

[135] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel,

Steven J. Bethard, and David McClosky. The Stanford CoreNLP natu-

ral language processing toolkit. In Proceedings of 52nd Annual Meeting

of the Association for Computational Linguistics: System Demonstra-

tions, pages 55–60, 2014.

[136] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi,

Antoine Bordes, and Jason Weston. Key-value memory networks for

directly reading documents. arXiv preprint arXiv:1606.03126, 2016.

[137] George A Miller. Wordnet: a lexical database for english. Communi-

cations of the ACM, 38(11):39–41, 1995.

[138] Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. Distant

supervision for relation extraction without labeled data. In ACL 2009,

Proceedings of the 47th Annual Meeting of the Association for Com-

putational Linguistics and the 4th International Joint Conference on

Natural Language Processing of the AFNLP, pages 1003–1011, 2009.

[139] Bhaskar Mitra, Grady Simon, Jianfeng Gao, Nick Craswell, and

Li Deng. A proposal for evaluating answer distillation from web data.

In Proceedings of the WebQA workshop at SIGIR, 2016.

[140] Neema Moraveji, Daniel Russell, Jacob Bien, and David Mease. Mea-

suring improvement in user search performance resulting from optimal

search tips. In Proceedings of the 34th International ACM SIGIR Con-

ference, pages 355–364, New York, NY, USA, 2011.

[141] Alessandro Murgia, Daan Janssens, Serge Demeyer, and Bogdan

Vasilescu. Among the machines: Human-bot interaction on social q&a

183

websites. In Proceedings of the 2016 CHI Conference Extended Ab-

stracts on Human Factors in Computing Systems, pages 1272–1279.

ACM, 2016.

[142] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Ti-

wary, Rangan Majumder, and Li Deng. Ms marco: A human

generated machine reading comprehension dataset. arXiv preprint

arXiv:1611.09268, 2016.

[143] Chorng-Shyong Ong, Min-Yuh Day, and Wen-Lian Hsu. The measure-

ment of user satisfaction with question answering systems. Information

& Management, 46(7):397–403, 2009.

[144] Bo Pang and Ravi Kumar. Search in the lost sense of query: Question

formulation in web search queries and its temporal changes. In Proceed-

ings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies: short papers-Volume 2,

pages 135–140. Association for Computational Linguistics, 2011.

[145] Seonyeong Park, Soonchoul Kwon, Byungsoo Kim, and Gary Geunbae

Lee. Isoft at qald-5: Hybrid question answering system over linked

data and text data. In Proceedings of CLEF, 2015.

[146] Marius Pasca and Sanda Harabagiu. The informative role of word-

net in open-domain question answering. In Proceedings of NAACL-01

Workshop on WordNet and Other Lexical Resources, pages 138–143,

2001.

[147] Jeffrey Pennington, Richard Socher, and Christopher D Manning.

Glove: Global vectors for word representation. In EMNLP, volume 14,

pages 1532–43, 2014.

184

[148] Jeffrey Pound, Peter Mika, and Hugo Zaragoza. Ad-hoc object retrieval

in the web of data. In Proceedings of the 19th international conference

on World wide web, pages 771–780. ACM, 2010.

[149] John Prager, Jennifer Chu-Carroll, Eric W Brown, and Krzysztof

Czuba. Question answering by predictive annotation. In Advances

in Open Domain Question Answering, pages 307–347. Springer, 2006.

[150] John M Prager. Open-domain question-answering. Foundations and

trends in information retrieval, 1(2):91–231, 2006.

[151] Vasin Punyakanok, Dan Roth, and Wen-tau Yih. Mapping dependen-

cies trees: An application to question answering. In Proceedings of

AI&Math 2004, pages 1–10, 2004.

[152] Silvia Quarteroni and Suresh Manandhar. Designing an interactive

open-domain question answering system. Natural Language Engineer-

ing, 15(01):73–95, 2009.

[153] Filip Radlinski and Nick Craswell. A theoretical framework for conver-

sational search. In Proceedings CHIIR, 2017.

[154] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.

Squad: 100,000+ questions for machine comprehension of text. arXiv

preprint arXiv:1606.05250, 2016.

[155] Jinfeng Rao, Hua He, and Jimmy Lin. Noise-contrastive estimation

for answer selection with deep neural networks. In Proceedings of the

25th ACM International on Conference on Information and Knowledge

Management, 2016.

[156] Siva Reddy, Mirella Lapata, and Mark Steedman. Large-scale semantic

parsing without question-answer pairs. TACL, 2:377–392, 2014.

185

[157] Siva Reddy, Oscar Täckström, Michael Collins, Tom Kwiatkowski, Di-

panjan Das, Mark Steedman, and Mirella Lapata. Transforming de-

pendency structures to logical forms for semantic parsing. Transactions

of the Association for Computational Linguistics, 4:127–140, 2016.

[158] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M

Marlin. Relation extraction with matrix factorization and universal

schemas. NAACL HLT 2013, pages 74–84, 2013.

[159] Ian Ruthven and Mounia Lalmas. A survey on the use of relevance

feedback for information access systems. The Knowledge Engineering

Review, 18(02):95–145, 2003.

[160] Hassan Sajjad, Patrick Pantel, and Michael Gamon. Underspecified

query refinement via natural language question generation. In COL-

ING’2012, pages 2341–2356, 2012.

[161] Cicero dos Santos, Ming Tan, Bing Xiang, and Bowen Zhou. Attentive

pooling networks. arXiv preprint arXiv:1602.03609, 2016.

[162] Denis Savenkov. Ranking answers and web passages for non-factoid

question answering: Emory university at trec liveqa. In Proceedings of

TREC, 2015.

[163] Denis Savenkov and Eugene Agichtein. To hint or not: exploring the

effectiveness of search hints for complex informational tasks. In Pro-

ceedings of the 37th international ACM SIGIR conference on Research

& development in information retrieval, pages 1115–1118. ACM, 2014.

[164] Denis Savenkov and Eugene Agichtein. Crqa: Crowd-powered real-time

automated question answering system. In will appear in the proceedings

of HCOMP, 2016.

186

[165] Denis Savenkov and Eugene Agichtein. Emory university at trec liveqa

2016: Combining crowdsourcing and learning-to-rank approaches for

real-time complex question answering. In TREC, 2016.

[166] Denis Savenkov and Eugene Agichtein. When a knowledge base is not

enough: Question answering over knowledge bases with external text

data. In Proceedings of the 39th International ACM SIGIR Conference

on Research and Development in Information Retrieval, SIGIR ’16,

pages 235–244, New York, NY, USA, 2016. ACM.

[167] Denis Savenkov and Eugene Agichtein. Evinets: Neural networks for

combining evidence signals for factoid question answering. In Proceed-

ings of ACL, 2017.

[168] Denis Savenkov, Wei-Lwun Lu, Jeff Dalton, and Eugene Agichtein.

Relation extraction from community generated question-answer pairs.

In Proceedings of the Student Research Workshop at the Conference

of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 96–102, 2015.

[169] Denis Savenkov, Scott Weitzner, and Eugene Agichtein. Crowdsourcing

for (almost) real-time question answering. In NAACL Workshop on

Human-Computer Question Answering, 2016.

[170] Chirag Shah and Jefferey Pomerantz. Evaluating and predicting an-

swer quality in community qa. In Proceedings of the 33rd international

ACM SIGIR conference on Research and development in information

retrieval, pages 411–418. ACM, 2010.

[171] Rebecca Sharp, Peter Jansen, Mihai Surdeanu, and Peter Clark. Spin-

ning straw into gold: Using free text to train monolingual alignment

187

models for non-factoid question answering. In Proceedings of the Con-

ference of the North American Chapter of the Association for Com-

putational Linguistics-Human Language Technologies (NAACL HLT),

2015.

[172] Dan Shen, Geert-Jan M Kruijff, and Dietrich Klakow. Exploring syn-

tactic relation patterns for question answering. In Natural Language

Processing–IJCNLP 2005, pages 507–518. Springer, 2005.

[173] Edward H Shortliffe and Bruce G Buchanan. A model of inexact rea-

soning in medicine. Mathematical biosciences, 23(3):351–379, 1975.

[174] Anna Shtok, Gideon Dror, Yoelle Maarek, and Idan Szpektor. Learn-

ing from the past: Answering new questions with past answers. In

Proceedings of the 21st International Conference on World Wide Web,

WWW, pages 759–768, New York, NY, USA, 2012.

[175] R. F. Simmons. Answering english questions by computer: A survey.

Communications of ACM, 8(1):53–70, January 1965.

[176] Robert F. Simmons. Natural language question-answering systems:

1969. Commun. ACM, 13(1):15–30, January 1970.

[177] Rion Snow, Daniel Jurafsky, and Andrew Y Ng. Learning syntactic

patterns for automatic hypernym discovery. Advances in Neural Infor-

mation Processing Systems 17, 2004.

[178] Parikshit Sondhi and ChengXiang Zhai. Mining semi-structured online

knowledge bases to answer natural language questions on community

qa websites. In Proceedings of the 23rd ACM International Confer-

ence on Conference on Information and Knowledge Management, pages

341–350. ACM, 2014.

188

[179] Hongya Song, Zhaochun Ren, Shangsong Liang, Piji Li, Jun Ma, and

Maarten de Rijke. Summarizing answers in non-factoid community

question-answering. In Proceedings of WSDM conference, 2017.

[180] Radu Soricut and Eric Brill. Automatic question answering using the

web: Beyond the factoid. Information Retrieval, 9(2):191–206, 2006.

[181] Martin M Soubbotin and Sergei M Soubbotin. Patterns of potential

answer expressions as clues to the right answers. In TREC, 2001.

[182] Valentin I. Spitkovsky and Angel X. Chang. A cross-lingual dictionary

for english wikipedia concepts. In Proceedings of the Eight Interna-

tional Conference on Language Resources and Evaluation (LREC’12),

Istanbul, Turkey, may 2012.

[183] Svetlana Stoyanchev, Alex Liu, and Julia Hirschberg. Modelling human

clarification strategies. In Proceedings of SIGDIAL, pages 137–141,

2013.

[184] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a

core of semantic knowledge. In Proceedings of the 16th international

conference on World Wide Web, pages 697–706. ACM, 2007.

[185] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end

memory networks. In Advances in neural information processing sys-

tems, pages 2440–2448, 2015.

[186] Huan Sun, Hao Ma, Wen-tau Yih, Chen-Tse Tsai, Jingjing Liu, and

Ming-Wei Chang. Open domain question answering via semantic en-

richment. In Proceedings of the 24th International Conference on World

Wide Web, WWW, pages 1045–1055, 2015.

189

[187] Mihai Surdeanu, Massimiliano Ciaramita, and Hugo Zaragoza. Learn-

ing to rank answers to non-factoid questions from web collections. Com-

putational Linguistics, 37(2):351–383, 2011.

[188] Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and Christo-

pher D. Manning. Multi-instance multi-label learning for relation ex-

traction. In Proceedings of the 2012 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural

Language Learning, EMNLP-CoNLL, pages 455–465, Stroudsburg, PA,

USA, 2012.

[189] Ming Tan, Bing Xiang, and Bowen Zhou. Lstm-based deep

learning models for non-factoid answer selection. arXiv preprint

arXiv:1511.04108, 2015.

[190] Yang Tang, Fan Bu, Zhicheng Zheng, and Xiaoyan Zhu. Towards inter-

active qa: suggesting refinement for questions. In SIGIR’2011 Work-

shop on “entertain me”: Supporting Complex Search Tasks, pages 13–

14, 2011.

[191] Wen tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Se-

mantic parsing via staged query graph generation: Question answering

with knowledge base. In Proceedings of the Joint Conference of the 53rd

Annual Meeting of the ACL and the 7th International Joint Conference

on Natural Language Processing of the AFNLP, 2015.

[192] Mattia Tomasoni and Minlie Huang. Metadata-aware measures for

answer summarization in community question answering. In Proceed-

ings of the 48th Annual Meeting of the Association for Computational

Linguistics, pages 760–769, 2010.

190

[193] Kristina Toutanova, Danqi Chen, Patrick Pantel, Pallavi Choudhury,

and Michael Gamon. Representing text for joint embedding of text

and knowledge bases. ACL Association for Computational Linguistics,

2015.

[194] Johanne R Trippas, Damiano Spina, Mark Sanderson, and Lawrence

Cavedon. Results presentation methods for a spoken conversational

search system. In Proceedings of the First International Workshop on

Novel Web Search Interfaces and Systems, pages 13–15. ACM, 2015.

[195] C Tsai, Wen-tau Yih, and C Burges. Web-based question answering:

Revisiting askmsr. Technical report, Technical Report MSR-TR-2015-

20, Microsoft Research, 2015.

[196] Kateryna Tymoshenko, Daniele Bonadiman, and Alessandro Moschitti.

Learning to rank non-factoid answers: Comment selection in web fo-

rums. In Proceedings of the 25th ACM International on Conference

on Information and Knowledge Management, pages 2049–2052. ACM,

2016.

[197] Christina Unger, André Freitas, and Philipp Cimiano. An introduction

to question answering over linked data. In Reasoning Web. Reasoning

on the Web in the Big Data Era, pages 100–140. Springer, 2014.

[198] Ricardo Usbeck and Axel-Cyrille Ngonga Ngomo. Hawk@ qald5–trying

to answer hybrid questions with various simple ranking techniques. In

Proceedings of CLEF, 2015.

[199] Pertti Vakkari. Searching as learning: A systematization based on

literature. Journal of Information Science, 42(1):7–18, 2016.

[200] Patrick Verga and Andrew McCallum. Row-less universal schema.

arXiv preprint arXiv:1604.06361, 2016.

191

[201] Ellen M Voorhees. The trec question answering track. Natural Lan-

guage Engineering, 7(04):361–378, 2001.

[202] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative

knowledgebase. Communications of the ACM, 57(10):78–85, 2014.

[203] Alexandra Vtyurina, Denis Savenkov, Eugene Agichtein, and

Charles L.A. Clarke. Exploring conversational search with humans,

search engines, and wizards. In In Proceedings of CHI, 2017.

[204] Chenguang Wang, Yangqiu Song, Ahmed El-Kishky, Dan Roth, Ming

Zhang, and Jiawei Han. Incorporating world knowledge to document

clustering via heterogeneous information networks. In Proceedings of

the 21th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 1215–1224. ACM, 2015.

[205] Chenguang Wang, Yangqiu Song, Haoran Li, Ming Zhang, and Jiawei

Han. Text classification with heterogeneous information network ker-

nels. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[206] Di Wang and Eric Nyberg. Cmu oaqa at trec 2015 liveqa: Discov-

ering the right answer with clues. Technical report, Carnegie Mellon

University Pittsburgh United States, 2015.

[207] Di Wang and Eric Nyberg. A long short-term memory model for answer

sentence selection in question answering. In Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and

the 7th International Joint Conference on Natural Language Processing

of the Asian Federation of Natural Language Processing, pages 707–712,

2015.

192

[208] Lu Wang, Hema Raghavan, Claire Cardie, and Vittorio Castelli. Query-

focused opinion summarization for user-generated content. arXiv

preprint arXiv:1606.05702, 2016.

[209] Mengqiu Wang. A survey of answer extraction techniques in factoid

question answering. Computational Linguistics, 1(1), 2006.

[210] Mengqiu Wang and Christopher D Manning. Probabilistic tree-edit

models with structured latent variables for textual entailment and ques-

tion answering. In Proceedings of the 23rd International Conference on

Computational Linguistics, pages 1164–1172, 2010.

[211] Mengqiu Wang, Noah A Smith, and Teruko Mitamura. What is the

jeopardy model? a quasi-synchronous grammar for qa. In EMNLP-

CoNLL, volume 7, pages 22–32, 2007.

[212] Pengwei Wang, Lei Ji, Jun Yan, Lianwen Jin, and Wei-Ying Ma. Learn-

ing to extract conditional knowledge for question answering using dia-

logue. In Proceedings of the 25th ACM International on Conference on

Information and Knowledge Management, pages 277–286. ACM, 2016.

[213] Xun Wang, Katsuhito Sudoh, Masaaki Nagata, Tomohide Shibata,

Kawahara Daisuke, and Kurohashi Sadao. Reading comprehension us-

ing entity-based memory network. arXiv preprint arXiv:1612.03551,

2016.

[214] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowl-

edge graph and text jointly embedding. In EMNLP, pages 1591–1601.

Citeseer, 2014.

[215] Zhenghao Wang, Shengquan Yan, Huaming Wang, and Xuedong

Huang. Large-scale question answering with joint embedding and proof

193

tree decoding. In Proceedings of the 24th ACM International on Con-

ference on Information and Knowledge Management, pages 1783–1786.

ACM, 2015.

[216] Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-

perspective matching for natural language sentences. arXiv preprint

arXiv:1702.03814, 2017.

[217] Zhiguo Wang and Abraham Ittycheriah. Faq-based question answering

via word alignment. arXiv preprint arXiv:1507.02628, 2015.

[218] Steven Euijong Whang, Peter Lofgren, and Hector Garcia-Molina.

Question selection for crowd entity resolution. Proc. VLDB Endow.,

6(6):349–360, April 2013.

[219] Ryen W White. Interactions with search systems. Cambridge Univer-

sity Press, 2016.

[220] Ryen W White, Matthew Richardson, and Wen-tau Yih. Questions

vs. queries in informational search tasks. In Proceedings of the 24th

International Conference on World Wide Web, pages 135–136. ACM,

2015.

[221] Robert Wilensky, David N Chin, Marc Luria, James Martin, James

Mayfield, and Dekai Wu. The berkeley unix consultant project. Com-

putational Linguistics, 14(4):35–84, 1988.

[222] Daya C Wimalasuriya and Dejing Dou. Ontology-based information

extraction: An introduction and a survey of current approaches. Jour-

nal of Information Science, 2010.

[223] William A Woods and R Kaplan. Lunar rocks in natural english: Ex-

plorations in natural language question answering. Linguistic structures

processing, 5:521–569, 1977.

194

[224] GuoShun Wu and Man Lan. Leverage web-based answer retrieval and

hierarchical answer selection to improve the performance of live ques-

tion answering. In Proceedings of TREC, 2015.

[225] Iris Xie and Colleen Cool. Understanding help seeking within the con-

text of searching digital libraries. Journal of the American Society for

Information Science and Technology, 60(3):477–494, 2009.

[226] Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang, and Dongyan

Zhao. Question answering on freebase via relation extraction and tex-

tual evidence. In Proceedings of ACL, 2016.

[227] Kun Xu, Sheng Zhang, Yansong Feng, and Dongyan Zhao. Answering

natural language questions via phrasal semantic parsing. In Natural

Language Processing and Chinese Computing, pages 333–344. Springer,

2014.

[228] Mohamed Yahya, Denilson Barbosa, Klaus Berberich, Qiuyue Wang,

and Gerhard Weikum. Relationship queries on extended knowledge

graphs. In Proceedings of the Ninth ACM International Conference on

Web Search and Data Mining, pages 605–614. ACM, 2016.

[229] Mohamed Yahya, Klaus Berberich, Shady Elbassuoni, and Gerhard

Weikum. Robust question answering over the web of linked data. In

Proceedings of the 22nd ACM international conference on Conference

on information & knowledge management, pages 1107–1116. ACM,

2013.

[230] Jiang-Ming Yang, Rui Cai, Yida Wang, Jun Zhu, Lei Zhang, and Wei-

Ying Ma. Incorporating site-level knowledge to extract structured data

from web forums. In Proceedings of the 18th International Conference

195

on World Wide Web, WWW ’09, pages 181–190, New York, NY, USA,

2009. ACM.

[231] Liu Yang, Qingyao Ai, Jiafeng Guo, and W Bruce Croft. anmm: Rank-

ing short answer texts with attention-based neural matching model. In

Proceedings of the 25th ACM International on Conference on Informa-

tion and Knowledge Management, 2016.

[232] Liu Yang Yang, Qingyao Ai, Damiano Spina, Ruey-Cheng Chen, Liang

Pang, W. Bruce Croft, Jiafeng Guo, and Falk Scholer. Beyond factoid

qa: Effective methods for non-factoid answer sentence retrieval. In

Proceedings of ECIR, 2016.

[233] Yi Yang, Wen-tau Yih, and Christopher Meek. Wikiqa: A challenge

dataset for open-domain question answering. In Proceedings of the

2015 Conference on Empirical Methods in Natural Language Process-

ing, pages 2013–2018. Citeseer, 2015.

[234] Xuchen Yao. Lean question answering over freebase from scratch. In

Proceedings of NAACL Demo, 2015.

[235] Xuchen Yao, Jonathan Berant, and Benjamin Van Durme. Freebase

qa: Information extraction or semantic parsing? ACL 2014, page 82,

2014.

[236] Xuchen Yao and Benjamin Van Durme. Information extraction over

structured data: Question answering with freebase. In Proceedings of

the 52nd Annual Meeting of the Association for Computational Lin-

guistics, ACL 2014, pages 956–966, 2014.

[237] Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, and Peter

Clark. Answer extraction as sequence tagging with tree edit distance.

In HLT-NAACL, pages 858–867. Citeseer, 2013.

196

[238] Xuchen Yao, Benjamin Van Durme, and Peter Clark. Automatic cou-

pling of answer extraction and information retrieval. In ACL (2), pages

159–165, 2013.

[239] Scott Wen-tau Yih, Xiaodong He, and Christopher Meek. Semantic

parsing for single-relation question answering. In ACL (2), pages 643–

648. Citeseer, 2014.

[240] Scott Wen-tau Yih, Matt Richardson, Chris Meek, Ming-Wei Chang,

and Jina Suh. The value of semantic parse labeling for knowledge base

question answering. In Proceedings of ACL, 2016.

[241] Pengcheng Yin, Nan Duan, Ben Kao, Junwei Bao, and Ming Zhou. An-

swering questions with complex semantic constraints on open knowl-

edge bases. In Proceedings of the 24th ACM International on Confer-

ence on Information and Knowledge Management, pages 1301–1310.

ACM, 2015.

[242] Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pul-

man. Deep learning for answer sentence selection. arXiv preprint

arXiv:1412.1632, 2014.

[243] John M Zelle and Raymond J Mooney. Learning to parse database

queries using inductive logic programming. In Proceedings of the na-

tional conference on artificial intelligence, pages 1050–1055, 1996.

[244] Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu. Learning continu-

ous word embedding with metadata for question retrieval in community

question answering. In Proceedings of ACL, pages 250–259, 2015.

	Introduction
	Contributions

	Background and Related Work
	Factoid Question Answering
	Text-based Question Answering
	Knowledge Base Question Answering
	Information Extraction
	Hybrid Question Answering

	Non-factoid Question Answering
	Crowdsourcing for Question Answering
	Interactions between Users and QA Systems
	User Assistance in Information Retrieval
	Conversational Search and Question Answering

	Combining Data Sources for Factoid Question Answering
	Relation Extraction from Question-Answer Pairs
	Relation Extraction Models
	Experiments
	Analysis and Discussion

	Text2KB: Augmenting Knowledge Base Question Answering with External Text Data
	Baseline Approach
	Text2KB Model
	Experimental Results
	Analysis

	EviNets: Joint Model for Text and Knowledge Base Question Answering
	Model and Architecture
	Experimental Evaluation
	Discussion

	Summary

	Improving Non-factoid Question Answering
	Ranking Answers and Web Passages for Non-factoid Question Answering
	Candidate Answer Generation
	Candidate ranking
	Evaluation

	CRQA: Crowd-powered Real-time Automatic Question Answering System
	Evaluating crowdsourcing for question answering
	System Design
	Experiments
	Analysis and Discussion

	Summary

	Conversational Question Answering
	Conversational Search With Humans, Wizards, and Chatbots
	Motivation
	Study design
	Results
	Discussion and design implications

	Search Hints for Complex Informational Tasks
	User Study
	Results and Discussion

	Clarifications in Conversational Question Answering
	Dataset Description
	Results
	Discussion

	Summary

	Conclusions
	Summary of the Results
	Combining KB and Text Data for Factoid Question Answering
	Ranking Answer Passages for Non-factoid Question Answering
	Question Answering in Conversational Setting

	Limitations and Future Work
	Contributions and Potential Impact

	Bibliography

