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Abstract 

 

Improving Precision in Mediation Analysis Through Efficient Use of Case Data 

By: Xi Fang 

 

Mediation analysis refers to a set of statistical techniques designed to explore the relationship 
between a dependent variable and one or more independent variables of primary interest, 
while also accounting for one or more intermediate (or mediating) variables. A traditional 
method for mediation analysis is the structural equation model (SEM) which is used to test for 
the existence of mediators. However, this SEM model can not be used to test the significance of 
the indirect effect generated by the effect of exposure on the outcome through a mediator. An 
alternative approach is based on causal inference developments. In the method suggested by 
VanderWeele et al., the total effect can be decomposed to the sum of the natural indirect 
effect (NIE) and natural direct effect (NDE). In this thesis, a new method based on results given 
by Satten and Kupper[9] and Satten and Carroll[10]is introduced to estimate the indirect effects 
more precisely in the case-control setting by making more efficient use of data on cases. This 
approach is compared with the VanderWeele proposal in terms of the precision of estimated 
direct and indirect effects. In this new method, the multivariate delta method was used to 
estimate the variance of log transformed causal effect estimates based on maximum likelihood 
and corresponding 95% confidence intervals and assessed for coverage of the true value. After 
multiple simulation studies, we found that in the model without interaction between exposure 
and mediator, the Satten method performed well in terms of precision for estimating causal 
effects. If interaction between exposure and mediator exists, although new method can 
estimate causal effects more precisely with small sample size, the distributions of these effects 
were left skewed. When increasing the sample size, the distributions were closer to normal as 
expected, but the difference in precision of causal effect estimates between these two methods 
was largely decreased. The simulations suggest that the Satten proposal attains better precision 
when interaction was not present. When interaction was present, the methods performed 
similarly, with the Satten approach showing some potential benefits when sample size is 
relatively small. 
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1. Introduction 
 
1.1 Overview of Mediation analysis 

Mediation analysis refers to a set of statistical techniques designed to explore how much of the 

relationship between a dependent variable and one or more independent variables of primary 

interest is accounted for one or more intermediate (or mediating) variables. The approach is 

prominent in the study of epidemiology, social science and psychology, and fits within the 

broader realm of causal inference. In mediation analysis, the overall effect of exposure is 

broken down into the effect explained by mediators and the effect not explained by the same 

mediators. These two effects are also commonly referred to as the indirect and direct effects, 

respectively. Rather than considering the simple association between two variables X and Y, 

mediation analysis adds a third variable, M, into the mix. This third variable is distinguished 

from a confounder, due to the assumption that X causes the mediator, M, and that M 

subsequently affects Y. Hence the notion that the effect of X on Y operates through the 

mediating variable M.  

In a simple mediation model as shown in Figure1.1, it is hypothesized that all variables 

are causally related, that is, X (the explanatory variable) causes changes in M (the mediator), 

and the effect of M on Y is then viewed as the indirect effect of X on Y mediated through M.[1,2] 

Figure 1.1 represents a simple example of a directed acyclic graph (DAG). 
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Figure 1.1 Mediation model. X is the explanatory variable(exposure), Y is the outcome, and M is a 

mediator. The causal change in M induced by X is represented by a, the causal change in Y induced by M 

is represented as b, and the direct effect of X on Y is represented as c. 

 

1.2 Structural Equation Modeling 

Traditional methods for mediation analysis were suggested by Baron and Kenny (1986), in a 

framework also known as structural equation modeling (SEM). This approach consists of three 

steps of regression models: XY, XM, and X+MY. In the first step, Y is predicted by X, and 

a significant relationship is supposed. However, in modern mediation analysis, we can still move 

forward to the next step even if the crude association between X and Y  not statistically 

significant. The second step is to predict M from X and check the significance of the path a. The 

final step is to regress X and M on Y simultaneously. In this method setup, the coefficient of M 

will be statistically significant but the coefficient of X will lack significance.[3] This is also a 

traditional method for testing for mediation. Generally, if there are significant relationships in 

the first and second steps, we consider full mediation to be present if X is not significant in final 

step when adjusting for M; if X remains significant at the final step, we will consider M to be a 

partial mediator. 

We note, however, that Baron and Kenny’s approach is not able to able to test the 

significance of the indirect effect, which is the pathway of X affecting Y through the mediator M 



 3 

as represented by a and b in Figure 1. Another problem is that this traditional method may miss 

some true mediation effects due to type II errors. To solve this problem, an alternative 

approach is to estimate the significance of indirect effect, where the coefficient for indirect 

effect can be interpreted as the change in Y that is due to the change of X mediated by M. Two 

of the most commonly used approaches are proposed by Judd and Kenny (1981) and Sobel 

(1982). One involves computing the difference between two regression coefficients and the 

other multiplying two coefficients. In the first approach, the two basic models are shown below 

(in the case of linear regression): 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑀 + 𝜖 

𝑌 = 𝛽0 + 𝛽𝑋 + 𝜖 

Then the indirect effect can be calculated as 𝛽 − 𝛽1.[4] These two coefficients are both 

interpreted as representing an effect of X on Y, but 𝛽 is the one from simple linear regression 

and 𝛽1 is the partial regression coefficient. The second approach entails multiplying two 

coefficients from the models below: 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑀 + 𝜖 

𝑀 = 𝛽0 + 𝛽𝑋 + 𝜖 

In this case, the indirect effect will by computed as 𝛽2𝛽. Note that in this approach, unlike the 

first, the model involving the relationship between X and M is applied.[5] 

After estimating the indirect effect, there are several ways to calculate the standard error 

which is used in test statistics or examine the existence of mediation in models. The Sobel test, 

Bootstrap and Monte Carlo method are the most widely used ones.[1] In Sobel Test, which is 

derived from delta method, the approximate estimate of the standard error of indirect effect 
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can be calculated by: 𝛽2
2𝑠𝛽

2 + 𝛽2𝑠𝛽2

2 , where 𝛽 and 𝛽2 are the coefficients in above equation, and 

𝑠𝛽 𝑠𝛽2
 are their standard errors.[11] . The Monte Carlo method can be implemented by using the 

parameter estimates and their associated variance and covariance to randomly draw from the 

joint distribution of 𝛽 and 𝛽2. After a large amount of random draws, the product of 𝛽 and 𝛽2, 

𝛽 ∗ 𝛽2 is used to estimate the confidence interval. If 0 falls outside of the interval, the 

hypothesis of no mediation will be rejected.[14] 

Since mediation hypothesizes the potential causality and ordering among variables, 

some variables can either be a cause or an effect. Based on the linear regression model 

structure outlined above, SEM provides a framework for analysis and interpretation that also 

has the benefit of accounting for latent variables. This method can also be extended to deal 

with multiple independent variables and mediators as well, and the SEM modeling structure 

facilitates hypothesis testing.[6]  

If one or both of the mediator and the outcome are binary variables, standard SEM 

methods are no longer available and logistic regression is a better choice. Nevertheless, 

traditional Baron and Kenny steps can still be used to conduct mediation testing and estimate 

indirect effects. As for the proper test statistics to use for indirect effects, there has been some 

controversy. The Sobel test is no longer available, given the failure of a necessary independence 

assumption. If the Y and M are binary, the coefficients in the mediation model will be on 

difference scales.[12]  
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1.3 Causal Inference Considerations 

An alternative method to SEM is a formal causal inference approach, based upon the same 

causal structure that underlies SEM. This approach conceptualizes counterfactual and potential 

outcomes, which define the mechanistic process by which an exposure may causally affect the 

dependent variable conditional on mediators. This causal mechanism can be decomposed into 

direct and indirect effects as well.[7] In this framework, the following important assumptions are 

needed regarding confounders: 1) No unmeasurable confounders of the association between X 

and Y; 2) No unmeasurable confounders of the association between M and Y; 3) No 

unmeasurable confounders of the association between X and M. In the causal inference 

framework, all effects are defined using counterfactuals. Specifically, the potential outcome for 

exposure level x can be denoted as Y(x), for x=0,1. Then the effect of X on Y is defined as 

E[Y(1)]-E[Y(0)], which is the difference between the expectation of Y when X is 1 and X equals 0. 

Under the appropriate assumptions, this difference can be estimable even though only one of 

the potential outcomes can ever be observed for a given subject.  

In the causal inference approach, the total effect can be decomposed to the sum of 

what are known as the natural indirect effect (NIE) and the natural direct effect (NDE). Here, 

NIE is defined as 

𝑁𝐼𝐸 = 𝐸[𝑌(1, 𝑀1)] − 𝐸[𝑌(1, 𝑀0)] 

where 𝑀0 is the counterfactual value of the mediator M when X is equal to 0, and 𝑀1 is the 

counterfactual value of M when X is equal to 1. And NDE is defined as: 

𝑁𝐷𝐸 = 𝐸[𝑌(1, 𝑀0)] − 𝐸[𝑌(0, 𝑀0)] 

Then the total effect is the sum of NIE and NDE which can be written as: 
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𝑇𝑜𝑡𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡 = 𝑁𝐼𝐸 + 𝑁𝐷𝐸 = 𝐸[𝑌(1, 𝑀1)] − 𝐸[𝑌(0, 𝑀0)] = 𝐸[𝑌(1)] − 𝐸[𝑌(0)] 

For a fixed value of the mediator M, one can also define the controlled direct effect (CDE) as 

follows: 

𝐶𝐷𝐸(𝑀) = 𝐸[𝑌(1, 𝑀)] − 𝐸[𝑌(0, 𝑀)] 

Thus, the value of CDE can change for different values of M.  

Valeri and VanderWeele[8] focus attention on allowing for a possible M by X interaction 

in regression models for an outcome Y versus exposure X and mediator M. In the case of linear 

regressions, the models can be written as:[8] 

𝐸[𝑀|𝑋] = 𝛽𝑚 + 𝑎𝑋 

𝐸[𝑌|𝑋, 𝑀] = 𝛽𝑦 + 𝑏𝑀 + 𝑐𝑋 + 𝑑𝑋𝑀 

For a change in exposure from level x* to level x, the NDE and NIE will become: 

𝑁𝐷𝐸 = [𝑐 + 𝑑(𝛽𝑚 + 𝑎𝑥 ∗)](𝑥 − 𝑥 ∗) 

𝑁𝐼𝐸 = 𝑎(𝑏 + 𝑑𝑥)(𝑥 − 𝑥 ∗) 

and CDE can be expressed as: 

𝐶𝐷𝐸 = (𝑐 + 𝑑𝑚)(𝑥 − 𝑥 ∗) 

Similar counterfactual arguments are also available for binary variables (Y and M), and 

decomposition of the total effect of X can again be accomplished. Note that the above 

expressions readily simplify in the event that no M by X interaction is assumed in the model for 

the outcome Y. In the latter case, the CDE and the NDE definitions become equivalent. 

In the case-control study, Y is a binary variable, so E[Y] can be replaced by P[Y=1]. 

VanderWeele and colleagues have proposed a general approach to fit the full model for 

E[Y|X,M,C] and mediator model for E[M|X,C], where C represents one or more additional 
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covariates utilized in the modeling process. Upon specifying these two models, one can define a 

variety of causal effects as simple functions of the parameters. However estimation of E[M|X,C] 

is a bit difficult for case-control data, although under the rare disease assumption it can be 

closely approximated by E[M|X,C,Y=0]. VanderWeele recommends fitting this model using data 

from controls only, in order to obtain estimates of the parameters of the E(M|X,C) model.  

In this thesis, a formalism rooted in theory proposed by Satten and Kupper[9] and Satten 

and Carroll[10] is developed in order to allow simultaneous fitting of the response model and the 

mediator model to data from both cases and controls.  

 

2. Methods 
 
2.1 Estimation of Coefficients by Maximum Likelihood (the Satten Method) 

For binary variables, A and Y, the mediation model is illustrated as shown in Figure2.1. 

 

Figure2.1 Mediation model. A is exposure, Y is outcome, M is mediator, C’s are confounders. 

 

Consider two logistic regression models and a single confounder C, as follows: 
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𝑙𝑜𝑔𝑖𝑡[Pr(𝑌 = 1|𝐴 = 𝑎, 𝑀 = 𝑚, 𝐶 = 𝑐)] = 𝛽0 + 𝛽𝑎𝑎 + 𝛽𝑚𝑚+𝛽𝑎𝑚𝑎𝑚 + 𝛽𝑐𝑐 (Model 1) 

and 

𝑙𝑜𝑔𝑖𝑡[Pr(𝑀 = 1|𝐴 = 𝑎, 𝐶 = 𝑐) = 𝛾𝑚 + 𝛾𝑎𝑎 + 𝛾𝑐𝑐     (Model 2) 

Now, note that Model 1 is equivalent to 

𝜃(𝑎, 𝑚, 𝑐) =
Pr (𝑌 = 1|𝐴 = 𝑎, 𝑀 = 𝑚, 𝐶 = 𝑐)

Pr (𝑌 = 0|𝐴 = 𝑎, 𝑀 = 𝑚, 𝐶 = 𝑐)
= 𝑒𝛽0+𝛽𝑎𝑎+𝛽𝑚𝑚+𝛽𝑎𝑚𝑎𝑚+𝛽𝑐𝑐 

As before, we will refer to Model 1 as the response model, while Model 2 is known as the 

mediator model. 

If the outcome is rare, then Model 2 holds at least approximately among the controls so 

that: 

𝑙𝑜𝑔𝑖𝑡[Pr(𝑚 = 1|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 0)]   𝛾𝑚 + 𝛾𝑎𝑎 + 𝛾𝑐𝑐 

Following the Valeri and VanderWeele method[8], the odds ratios for NDE, CDE and NIE for 

exposure moving from a*=0 to a=1 can be defined as: 

𝑂𝑅𝐶𝐷𝐸 = 𝑒𝛽𝑎+𝛽𝑎𝑚𝑚 

𝑂𝑅𝑁𝐷𝐸 𝑒𝛽𝑎
1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛾𝑚+𝛾𝑐𝑐
 

𝑂𝑅𝑁𝐼𝐸 
[1 + 𝑒𝛾𝑚+𝛾𝑐𝑐][1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑎+𝛾𝑐𝑐]

[1 + 𝑒𝛾𝑚+𝛾𝑎+𝛾𝑐𝑐][1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐]
 

Note that these definitions simplify easily by setting am to 0 if the interaction between A and M 

is assumed not to be present. 

Under the assumption of rare disease and extending for the moment to the case of a 

polytomous mediator M, the estimation of E[M|A,C] is approximately equal to E[M|A,C,Y=0]. 

The mediator model can then be rewritten as: 
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log (
Pr(𝑀 = 𝑚|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 0)

Pr(𝑀 = 1|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 0)
) = 𝛾𝑚 + 𝛾𝑎𝑎 + 𝛾𝑐𝑐, 𝑚 > 1 

Then we have: 

𝑃𝑟(𝑀 = 𝑚|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 0) =
𝑒𝛾𝑚+𝛾𝑎𝑎+𝛾𝑐𝑐

1 + ∑ 𝑒𝛾𝑚′+𝛾𝑎𝑎+𝛾𝑐𝑐
𝑚′

 

Now following arguments analogous to those in Satten and Kupper[9] and Satten and 

Carroll[10], the distribution of the mediator among cases can be written as: 

𝑃(𝑀 = 𝑚|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 1) =
𝜃(𝑎,𝑚,𝑐)𝑃𝑟(𝑀=𝑚|𝐴=𝑎,𝐶=𝑐,𝑌=0)

∑ 𝜃(𝑎,𝑚′,𝑐)𝑃𝑟𝑚′ [𝑀=𝑚′|𝐴=𝑎,𝐶=𝑐,𝑌=0]
  Model 3 

so that 

Pr(𝑀 = 𝑚|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 1) =  
𝑒𝛾𝑚+𝛾𝑎𝑎+𝛾𝑐𝑐+𝛽0+𝛽𝑎𝑎+𝛽𝑚𝑚+𝛽𝑎𝑚𝑎𝑚+𝛽𝑐𝑐

1 + ∑ 𝑒𝛾𝑚+𝛾𝑎𝑎+𝛾𝑐𝑐+𝛽0+𝛽𝑎𝑎+𝛽𝑚𝑚+𝛽𝑎𝑚𝑎𝑚+𝛽𝑐𝑐
𝑚′

 

 

Next we also have[9,10]: 

𝜃(𝑎, 𝑐) =
Pr (𝑌=1|𝐴=𝑎,𝐶=𝑐)

Pr (𝑌=0|𝐴=𝑎,𝐶=𝑐)
= ∫ 𝜃(𝑎, 𝑚, 𝑐)𝑑Pr (𝑀 = 𝑚|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 0) Model 4 

Given the marginal odds 𝜃(𝑎, 𝑐), the likelihood Pr [𝑌 = 𝑦|𝐴 = 𝑎, 𝐶 = 𝑐] will be 

𝑃[𝑌 = 𝑦|𝐴 = 𝑎, 𝐶 = 𝑐] =
𝜃(𝑎, 𝑐)𝑦

1 + 𝜃(𝑎, 𝑐)
 

As a result, the case-control likelihood can be written as 

𝑃[𝑌, 𝑀|𝐴, 𝐶] = 𝑃[𝑀|𝐴, 𝐶, 𝑌]𝑃[𝑌|𝐴, 𝐶] 

 

Binary mediator case: 

If M is a binary variable, Model 3 can be written as: 
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Pr(𝑀 = 1|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 1)

=
𝜃(𝑎, 1, 𝑐)𝑃𝑟(𝑀 = 1|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 0)

𝜃(𝑎, 1, 𝑐)𝑃𝑟(𝑀 = 1|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 0) + 𝜃(𝑎, 0, 𝑐)𝑃𝑟(𝑀 = 0|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 0)
 

Similarly, Model 4 can be rewritten as: 

𝜃(𝑎, 𝑐) =
𝑒𝛽0+𝛽𝑎𝑎+𝛽𝑐𝑐 + 𝑒𝛾𝑚+𝛾𝑎𝑎+𝛾𝑐𝑐+𝛽0+𝛽𝑎𝑎+𝛽𝑚𝑚+𝛽𝑎𝑚𝑎𝑚+𝛽𝑐𝑐

1 + 𝑒𝛾𝑚+𝛾𝑎𝑎+𝛾𝑐𝑐
 

 

Since both Y and M are binary variables, we have 4 types of observations based on y and m. The 

likelihood construction for each type of observation is: 

1) 𝑌 = 1, 𝑀 = 1: Pr(𝑀 = 1|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 1) × Pr(𝑌 = 1|𝐴 = 𝑎, 𝐶 = 𝑐) = 𝑃1 

2) 𝑌 = 1, 𝑀 = 0: Pr(𝑀 = 0|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 1) × Pr(𝑌 = 1|𝐴 = 𝑎, 𝐶 = 𝑐) = 𝑃2 

3) 𝑌 = 0, 𝑀 = 1: Pr(𝑀 = 1|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 0) × Pr(𝑌 = 0|𝐴 = 𝑎, 𝐶 = 𝑐) = 𝑃3 

4) 𝑌 = 0, 𝑀 = 0: Pr(𝑀 = 0|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌 = 0) × Pr(𝑌 = 0|𝐴 = 𝑎, 𝐶 = 𝑐) = 𝑃4 

Then the likelihood function can be written as: 

𝐿 = ∏{𝑃1𝑖
𝑦𝑖𝑚𝑖×𝑃2𝑖

𝑦𝑖(1−𝑚𝑖)×𝑃3𝑖
(1−𝑦𝑖)𝑚𝑖×𝑃4𝑖

(1−𝑦𝑖)(1−𝑚𝑖)}

𝑛

𝑖=1

 

The estimates of the 𝛽′𝑠 and 𝛾′𝑠 can be obtained by numerically maximizing this likelihood 

function. 

 

2.2 Variance of causal effect estimates based on the delta method 

The variance of the log transformed causal effects including ORcde, ORNDE and ORNIE can be 

estimated by using the multivariate delta method based on the estimated parameters from 

Satten’s method. These log transformed causal effects can be expressed as: 
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log(𝑂𝑅𝐶𝐷𝐸) = 𝑔1(𝛽0, 𝛽𝑎, 𝛽𝑚 , 𝛽𝑎𝑚 , 𝛽𝑐 , 𝛾𝑚 , 𝛾𝑎 , 𝛾𝑐) =  𝛽𝑎 + 𝛽𝑎𝑚𝑚 

 

log(𝑂𝑅𝑁𝐷𝐸) = 𝑔2(𝛽0, 𝛽𝑎, 𝛽𝑚 , 𝛽𝑎𝑚 , 𝛽𝑐, 𝛾𝑚 , 𝛾𝑎, 𝛾𝑐)

=  𝛽𝑎 + log[1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐] − log [1 + 𝑒𝛽𝑚+𝛾𝑚+𝛾𝑐𝑐] 

 

log(𝑂𝑅𝑁𝐼𝐸) = 𝑔3(𝛽0, 𝛽𝑎, 𝛽𝑚 , 𝛽𝑎𝑚 , 𝛽𝑐, 𝛾𝑚 , 𝛾𝑎, 𝛾𝑐)

= log[1 + 𝑒𝛾𝑚+𝛾𝑐𝑐] + log[1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑎+𝛾𝑐𝑐] − log[1 + 𝑒𝛾𝑚+𝛾𝑎+𝛾𝑐𝑐]

− log[1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐] 

 

The partial derivatives of the log odds ratio are: 

𝐷′𝐶𝐷𝐸 = (
𝜕𝑔1

𝜕𝛽0
,
𝜕𝑔1

𝜕𝛽𝑎
,

𝜕𝑔1

𝜕𝛽𝑚
,

𝜕𝑔1

𝜕𝛽𝑎𝑚
,
𝜕𝑔1

𝜕𝛽𝑐
,
𝜕𝑔1

𝜕𝛾𝑚
,
𝜕𝑔1

𝜕𝛾𝑎
,
𝜕𝑔1

𝜕𝛾𝑐
) = (0,1,0, 𝑚, 0,0,0,0,0)    (𝑚 = 0,1) 

 

𝐷′𝑁𝐷𝐸 = (
𝜕𝑔2

𝜕𝛽0
,
𝜕𝑔2

𝜕𝛽𝑎
,

𝜕𝑔2

𝜕𝛽𝑚
,

𝜕𝑔2

𝜕𝛽𝑎𝑚
,
𝜕𝑔2

𝜕𝛽𝑐
,
𝜕𝑔2

𝜕𝛾𝑚
,
𝜕𝑔2

𝜕𝛾𝑎
,
𝜕𝑔2

𝜕𝛾𝑐
)

= (0, 1,
𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐

−
𝑒𝛽𝑚+𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛾𝑚+𝛾𝑐𝑐
,

𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐
, 0,

𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐

−
𝑒𝛽𝑚+𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛾𝑚+𝛾𝑐𝑐
, 0,

𝑐𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐
−

𝑐𝑒𝛽𝑚+𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛾𝑚+𝛾𝑐𝑐
) 

 

𝐷′𝑁𝐼𝐸 = (
𝜕𝑔3

𝜕𝛽0
,
𝜕𝑔3

𝜕𝛽𝑎
,

𝜕𝑔3

𝜕𝛽𝑚
,

𝜕𝑔3

𝜕𝛽𝑎𝑚
,
𝜕𝑔3

𝜕𝛽𝑐
,
𝜕𝑔3

𝜕𝛾𝑚
,
𝜕𝑔3

𝜕𝛾𝑎
,
𝜕𝑔3

𝜕𝛾𝑐
)) 
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= (0, 0,
𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑎＋𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑎＋𝛾𝑐𝑐
−

𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐
, 

𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑎＋𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑎＋𝛾𝑐𝑐
−

𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐
, 

0,
𝑒𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛾𝑚+𝛾𝑐𝑐
+

𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑎＋𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑎＋𝛾𝑐𝑐
−

𝑒𝛾𝑚+𝛾𝑎+𝛾𝑐𝑐

1 + 𝑒𝛾𝑚+𝛾𝑎+𝛾𝑐𝑐

−
𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐
, 

𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑎＋𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑎＋𝛾𝑐𝑐
−

𝑒𝛾𝑚+𝛾𝑎+𝛾𝑐𝑐

1 + 𝑒𝛾𝑚+𝛾𝑎+𝛾𝑐𝑐
,

𝑐𝑒𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛾𝑚+𝛾𝑐𝑐

+
𝑐𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑎＋𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑎＋𝛾𝑐𝑐
−

𝑐𝑒𝛾𝑚+𝛾𝑎+𝛾𝑐𝑐

1 + 𝑒𝛾𝑚+𝛾𝑎+𝛾𝑐𝑐

−
𝑐𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐

1 + 𝑒𝛽𝑚+𝛽𝑎𝑚+𝛾𝑚+𝛾𝑐𝑐
) 

 

 

By using the above derivatives, the delta method-based approximated variance can be 

calculated by 𝑉𝑎𝑟(log(𝑂𝑅)) = 𝑫′𝑽𝑫, where the elements of each D vector are replaced by 

their MLEs and V is the variance-covariance matrix of the vector of estimated coefficients based 

on maximizing the likelihood function. 

 

2.3 Simulation Studies 

All simulation processes were conducted in SAS 9[13] with the initial settings of: 

𝛽0 = −4.25, 𝛽𝑎 = 1, 𝛽𝑚 = −0.5, 𝛽𝑎𝑚 = 0.7, 𝛽𝑐 = 0.5 

where , 𝛽𝑎𝑚 = 0 when excluding interaction between exposure and mediator, and 
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𝛾𝑚 = 0.5, 𝛾𝑎 = 0.25, 𝛾𝑐 = −0.25 

 

Cross-sectional data with total sample sizes of 50,000 and 2,000,000 were generated, followed 

by elimination of large numbers of controls at random in order to mimic case oversampling. The 

SAS NLMIXED procedure[13] was used for ML estimation, utilizing the ‘general’ log-likelihood 

optimization facility after specifying the likelihood function as outlined on pg. 10. 

The joint ML procedure yields estimates of the coefficients in both the outcome and the 

mediator model, and we obtained MLEs of the causal effect measures as the appropriate 

functions of the coefficient estimates. The simulation data was generated via the following 

schemes: 

 

C follows the normal distribution with mean=0, sd=1; 

If C is greater than 0, A follows the Bernoulli distribution with p=0.2; 

If C is smaller than 0 , A follows the Bernoulli distribution with p=0.4; 

The probability pm of M is calculated from the logistic regression model with the above 

coefficients; 

M follows the Bernoulli distribution with probability pm; 

The probability py of Y can be calculated from the logistic regression model with the above 

coefficient as well; 

Y follows the Bernoulli distribution with probability py; 

To mimic oversampling of cases, all cases but only 2% of the non-cases in each original large 

cross-sectional sample were kept. 
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Bootstrap simulations: 

As an alternative to the delta method, we also conducted bootstrapping[15] as an 

approach to estimate standard errors and confidence intervals for the causal effects of interest. 

The generated data were separated into 2 groups, the case group (Y=1) and control group (Y=0). 

For each group, the data were bootstrapped with replacement and the same size as in the 

original data set for that group. After bootstrapping, separately, we combined the 

bootstrapped case group and control group data sets to form a complete bootstrap sample. 

We estimate the causal effects from each bootstrap sample and repeated this procedure 50 

times for each simulated dataset (bootstrap sample size=50). The standard errors of the original 

estimated causal effects were then derived as the empirical standard deviation of the 

estimated effect across the bootstrap samples. 

3. Results 

 
Sample size = 50,000 without interaction term: 

 

To begin, the interaction between exposure and mediator was excluded from the 

outcome model. The mean estimated coefficients from both the VanderWeele et al. and the 

Satten method are listed in Table3.1. The estimated coefficients from both methods are similar 

to each other, and the empirical standard deviations of the estimated 𝛽′𝑠 are also close to each 

other. However, we note that the standard deviations of the estimated mediator model () 

coefficients are much smaller based on the Satten method. This implies that the new method 
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has the potential to more precisely estimate the coefficients in the mediator model than 

traditional method, and has similar precision in estimating coefficients in overall model. 

Table3.1 Estimated coefficients from both VanderWeele’s method and Satten’s method with sample 

size = 50,000 and number of simulations=1000 (excluding interaction term) 

Method  

True value 

VanderWeele’s method Satten’s method 

Coefficient Mean 

Estimate 

Standard Deviation Mean 

Estimate 

Standard Deviation 

𝛽0 -4.35* -0.338* 0.070 -0.338 0.070 

𝛽𝑎 1 0.999 0.101 0.999 0.101 

𝛽𝑚 -0.5 -0.504 0.104 -0.504 0.104 

𝛽𝑐 0.5 0.503 0.054 0.503 0.054 

𝛾𝑚 -0.5 -0.494 0.081 -0.494 0.074 

𝛾𝑎  -0.25 -0.242 0.158 -0.239 0.105 

𝛾𝑐  0.5 0.507 0.074 0.506 0.054 

*estimated 𝛽0 does not matched the true 𝛽0 because rejection smapling was used. 

 

The relevant causal effects including direct and indirect effects were calculated from the 

coefficients estimated by the two methods, and the log transformation was applied to compare 

the empirical standard deviations of the Satten estimates with the estimated standard errors 

derived from the Delta method. Results are summarized in Table 3.2. Since C was simulated to 

follow a normal distribution with mean 0, odds ratios were evaluated with c equal to 0 as well 

as with c equal to its 25th and 75th percentile. Note that without interaction, the controlled 
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direct effects and natural direct effects are the same by definition and they do not involve the 

parameters of the mediation model (see expressions on pg. 8, with am set to 0). For these 

measures, there is no noticeable change in precision due to using full ML via the Satten’s 

approach. But note that the natural indirect effect involves one or more parameters from the 

mediation model. The Satten’s method yields better precision for estimating the NIE effect, due 

to the improvement in precision with regard to the mediation coefficients offered by the joint 

ML approach. That is, more efficient use of case data in estimating the mediation model 

parameters has yielded better precision in the NIE effect estimate.  Delta method outputs the 

similar standard error estimations for CDE and NDE effects, and slightly different estimation for 

NIE effects which is still close to those from Satten’s method. 

The 95% confidence intervals for all causal effects based on the Satten approach were 

calculated by using the standard error from Delta method. We summarize the percentage 

coverage of these confidence intervals in Table3.3. In this table, all causal effects have almost 

95% coverage rate, except the NIE effect for the 75th percentile of C, which has a somewhat 

conservative coverage rate. This reveals that under this no interaction condition, the standard 

errors estimated from the Delta method relatively reliable and associated with reasonable 

coverage. 

The histograms in Figure3.1 show the distribution of the estimated causal effects with 

log transformation. Note that all display a roughly normal distribution, which is consistent with 

the confidence interval coverage results. 
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Table3.2 Estimation of causal effects based on VanderWeele’s method and Satten’s method. Mean 

estimated standard errors from the Delta Method are presented to compare with empirical SDs. Sample 

size = 50,000 and number of simulations=1000 (excluding interaction term). 

Method  

 

True causal 

effect 

VanderWeele’s method Satten’s method  

Delta Method 

Causal effect Estimate Standard 

Deviation 

Estimate Standard 

Deviation 

Mean Standard 

Error 

log (𝑂𝑅𝐶𝐷𝐸) 1.000 0.999 0.101 0.999 0.101 0.101 

log (𝑂𝑅𝑁𝐷𝐸) 1.000 0.999 0.101 0.999 0.101 0.101 

log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐼𝐸 ) 0.026 0.025 0.017 0.024 0.011 0.012 

log (𝑂𝑅25𝑡ℎ
𝑁𝐼𝐸 ) 0.022 0.021 0.014 0.021 0.010 0.012 

log (𝑂𝑅75𝑡ℎ
𝑁𝐼𝐸 ) 0.029 0.028 0.019 0.027 0.013 0.012 

 

Table3.3 95% Confidence Interval coverage of causal effects based on Satten approach using the 

standard error from Delta method with sample size = 50,000 and number of simulations=1000 

(excluding interaction term). 

Causal effect log (𝑂𝑅𝐶𝐷𝐸) log (𝑂𝑅𝑁𝐷𝐸) log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐼𝐸 ) log (𝑂𝑅25𝑡ℎ

𝑁𝐼𝐸 ) log (𝑂𝑅75𝑡ℎ
𝑁𝐼𝐸 ) 

Percentage % 0.95 0.95 0.95 0.952 0.981 
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Figure3.1 The histogram of log transformed causal effects with sample size = 50,000 and number of 

simulations=1000 (excluding interaction term). 
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Sample size = 50,000 with interaction term: 

To consider the case where there is interaction between exposure and mediator in the 

overall model, the predictor 𝛽𝑖 was included in the model for further simulations. Again, the 

mean estimated coefficients and empirical standard deviations from the two methods are 

almost the same for the 𝛽′𝑠. However, although both methods lead to similar estimated 

coefficients, the Satten method can produce smaller standard deviations particularly for the 

mediator model coefficient estimates. This reflects the same trend that we observed in the 

model without interaction.  

 

Table3.4 The estimated coefficients from VanderWeele’s method and Satten’s method with sample size 

= 50,000 and number of simulations =1000 

Method  

True value 

VanderWeele’s method Satten’s method 

Coefficient Mean 

Estimate 

Standard 

Deviation 

Mean 

Estimate 

Standard 

Deviation 

𝛽0 1.000* -0.342* 0.076 -0.342 0.075 

𝛽𝑎 0.500 1.008 0.123 1.009 0.122 

𝛽𝑚 -0.500 -0.504 0.132 -0.502 0.130 

𝛽𝑎𝑚 0.700 0.708 0.209 0.704 0.204 

𝛽𝑐 0.500 0.503 0.054 0.503 0.054 

𝛾𝑚 -0.500 -0.496 0.081 -0.495 0.079 

𝛾𝑎  -0.250 -0.263 0.166 -0.264 0.163 

𝛾𝑐  0.500 0.506 0.073 0.502 0.050 

*estimated 𝛽0 does not matched the true 𝛽0 because rejection smapling was used. 
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For causal effects under this condition, natural direct effects are no longer the same as 

controlled direct effects. However, the precision for estimating these two effects appears to 

remain about the same for both methods. Whereas, for natural indirect effects, Satten’s 

method only produces a small decrease in standard deviations, with both methods producing 

almost the same estimated effects. Nevertheless, the Satten method is still able to improve the 

precision of estimating indirect natural effects at least slightly, which is consistent with our 

observations in the model without interaction. Under this condition, the Delta method 

estimates of the standard errors are noticeably different on average from the empirical SDs for 

either method. This indicates that the standard errors might be a biased estimate based on the 

Delta method. The summary of causal effects estimates is in Table3.5. 

From the confidence interval coverage output which is calculated by using standard 

errors from the Delta method (Table 3.6), we find that all direct effects have approximately 95% 

coverage rates. However, for NIE effects, the coverage rates are noticeably smaller than the 

expected 95 percent, which likely reflects the bias in the standard error estimates of indirect 

effects from the Delta Method in the model with interaction. 

By plotting the distributions shown in Figure3.2 of all estimated causal effects, the 

reason for this low coverage rate can also be explained. The distributions of all estimated direct 

effects follow approximate normal distributions, whereas those of the indirect effects are 

largely left-skewed. This means the log transformation of indirect effects cannot normalize the 

distribution well, and due to this, the Delta method cannot produce unbiased standard errors. 

We attempted other transformations (including the identity), but found that the problem of left 

skewness was persistent. 
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Table3.5 Estimation of causal effects from VanderWeele’s method and Satten’s method. Mean 

estimated standard errors from the Delta Method are presented to compare with empirical SDs. Sample 

size = 50,000 and number of simulations=1000 (including interaction term).  

Method  

True causal 

effect 

VanderWeele’s method Satten’s method Delta 

Method 

Causal effect Mean 

Estimate 

Standard 

Deviation 

Mean 

Estimate 

Standard 

Deviation 

Mean 

Estimtated 

Error 

log (𝑂𝑅𝐶𝐷𝐸) 1.000 1.008 0.123 1.009 0.122 0.120 

log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐷𝐸 ) 1.241 1.256 0.102 1.256 0.102 0.100 

log (𝑂𝑅25𝑡ℎ
𝑁𝐷𝐸 ) 1.191 1.205 0.102 1.205 0.102 0.101 

log (𝑂𝑅75𝑡ℎ
𝑁𝐷𝐸 ) 1.296 1.312 0.106 1.311 0.106 0.100 

log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐼𝐸 ) -0.012 -0.017 0.020 -0.017 0.019 0.017 

log (𝑂𝑅25𝑡ℎ
𝑁𝐼𝐸 ) -0.010 -0.015 0.018 -0.015 0.017 0.017 

log (𝑂𝑅75𝑡ℎ
𝑁𝐼𝐸 ) -0.012 -0.018 0.021 -0.018 0.020 0.017 

 

Table3.6 95% Confidence Interval coverage of causal effects confirmation by using the standard error 

from Delta method with sample size = 50,000 and number of simulations=1000 

Causal effect log (𝑂𝑅𝐶𝐷𝐸) log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐷𝐸 ) log (𝑂𝑅25𝑡ℎ

𝑁𝐷𝐸 ) log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐼𝐸 ) log (𝑂𝑅25𝑡ℎ

𝑁𝐼𝐸 ) log (𝑂𝑅75𝑡ℎ
𝑁𝐼𝐸 ) 

Percentage % 94.9 94.7 95.3 93.8 83.2 85.8 
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Figure3.2 The histogram of log transformed causal effects with sample size = 50,000 and number of 

simulation=1000  

 

Sample size = 2,000,000 with interaction term: 

Since in the case with sample size of 50,000, the log transformed indirect causal effects 

displayed non-normal distributions, we performed additional simulations after increasing the 

sample size. After increasing the initial sample size to 2,000,000, the mean overall coefficient 

estimates do not change much from those with smaller sample size (Table 3.7). Notably, 

however, the Delta method produces mean standard errors for the indirect causal effect 

estimates much closer to the empirical SDs from the Satten and VanderWeele methods 

(Table3.8). For the standard errors of other causal effects, both methods have consistent 

results. The confidence interval coverage where all of the causal effects have a coverage rate 

close to 95% also reveals that under this condition, standard errors from the Delta method are 

not biased seriously (Table3.9). At the same time, the NIE effects with C in a 75th percentile has 

a higher coverage rate which is similar to the trend in the model without interaction. From the 

overall distribution shown in Figure 3.3, larger sample size can make the estimated causal 

effects more closely follow a normal distribution, and this helps the Delta method have better 

performance on estimating causal effect standard errors. In this case, with a large enough initial 

sample, size, the precision and ability of these two methods to estimate the causal effects and 

to estimate coefficients in mediation model (with the exception of the coefficient for the 

covariate C) are similar 
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Table3.7 The estimated coefficients from both VanderWeele’s method and the Satten method with 

sample size = 2,000,000 and number of simulations=1000 

Method  

True value 

VanderWeele’s method Satten’s method 

Coefficient Mean 

Estimate 

Standard 

Deviation 

Mean 

Estimate 

Standard 

Deviation 

𝛽0 1.000* -0.338* 0.012 -0.339 0.012 

𝛽𝑎 0.500 1.002 0.019 1.003 0.019 

𝛽𝑚 -0.500 -0.500 0.021 -0.498 0.021 

𝛽𝑎𝑚 0.700 0.697 0.033 0.694 0.032 

𝛽𝑐 0.500 0.500 0.008 0.499 0.008 

𝛾𝑚 -0.500 -0.494 0.012 -0.494 0.012 

𝛾𝑎  -0.250 -0.262 0.023 -0.263 0.023 

𝛾𝑐  0.500 0.501 0.012 0.500 0.008 

*estimated 𝛽0 does not matched the true 𝛽0 because rejection smapling was used. 
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Table3.8 Estimation of causal effects based on VanderWeele and Satten method. Estimated standard 

errors from Delta Method with sample size = 2,000,000 and number of simulations=1000  

Method  

 

True causal 

effect 

VanderWeele’s method Satten’s method Delta 

Method 

Causal effect Mean 

Estimate 

Standard 

Deviation 

Mean 

estimate 

Standard 

Deviation 

Mean 

Standard 

Error 

log (𝑂𝑅𝐶𝐷𝐸) 1.000 1.002 0.019 1.003 0.019 0.019 

log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐷𝐸 ) 1.241 1.243 0.016 1.243 0.016 0.016 

log (𝑂𝑅25𝑡ℎ
𝑁𝐷𝐸 ) 1.191 1.193 0.016 1.193 0.016 0.016 

log (𝑂𝑅75𝑡ℎ
𝑁𝐷𝐸 ) 1.296 1.298 0.016 1.297 0.016 0.016 

log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐼𝐸 ) -0.012 -0.012 0.002 -0.012 0.002 0.002 

log (𝑂𝑅25𝑡ℎ
𝑁𝐼𝐸 ) -0.010 -0.011 0.002 -0.011 0.002 0.002 

log (𝑂𝑅75𝑡ℎ
𝑁𝐼𝐸 ) -0.012 -0.013 0.003 -0.013 0.003 0.002 

 

Table3.9 95% Confidence Interval coverage of causal effects confirmation by using the standard error 

from Delta method with sample size = 2,000,000 and number of simulations=1000 

Causal effect log (𝑂𝑅𝐶𝐷𝐸) log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐷𝐸 ) log (𝑂𝑅25𝑡ℎ

𝑁𝐷𝐸) log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐼𝐸 ) log (𝑂𝑅25𝑡ℎ

𝑁𝐼𝐸 ) log (𝑂𝑅75𝑡ℎ
𝑁𝐼𝐸 ) 

Percentage % 95.1 93.6 94.4 93.5 95.3 97.5 
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Figure3.3 The histogram of log transformed causal effects with sample size = 2,000,000 and number of 

simulations=1000 

 

Bootstrap Standard Error Estimation: 

For estimation of standard errors, an alternative to the Delta method is the bootstrap. 

Table3.10 and Table3.11 summarize the results from bootstrapping separately among cases 

and controls (see Methods) and compares mean bootstrap standard errors vs. those based on 

the Delta method as well as the empirical SDs for the VanderWeele and Satten methods for 

estimating log transformed causal effects from the model containing interaction between 

exposure and mediator. The estimated standard errors of estimated natural direct effects from 

the bootstrap are larger on average, but in general the 95% confidence interval coverage rates 

are much better based on the bootstrap.  

When eliminating the interaction between exposure and mediator, bootstrap outputs 

similar standard error estimations for CDE and NDE effects but larger estimations for NIE as 

shown in Table3.12 and Table3.13, which reflects similar trends as in the case of the model 

containing interaction. Also, the 95% confidence interval coverage rates remain favorable again 

when computing CIs based on bootstrap standard errors. 
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Table3.10 Estimation of causal effects (containing interaction between exposure and mediator) based 

on VanderWeele’s and Satten’s methods. Estimated standard errors from Delta Method and bootstrap 

with sample size = 50,000 and number of simulations=500, bootstrap sample size=50 

Method VanderWeele’s 

method 

Satten’s method Delta 

method 

Bootstrap 

Causal effects Mean 

Estimate 

Standard 

Deviation 

Mean 

Estimate 

Standard 

Deviation 

Mean 

Standard 

Error 

Mean 

Standard 

Error 

log (𝑂𝑅𝐶𝐷𝐸) 1.006 0.117 1.007  0.116 0.120 0.119 

log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐷𝐸 ) 1.248 0.097 1.247 0.097 0.100 0.100 

log (𝑂𝑅25𝑡ℎ
𝑁𝐷𝐸 ) 1.198 0.097 1.198 0.097 0.101 0.100 

log (𝑂𝑅75𝑡ℎ
𝑁𝐷𝐸 ) 1.302 0.101 1.302 0.101 0.100 0.103 

log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐼𝐸 ) -0.015 0.017 -0.015 0.016 0.016 0.018 

log (𝑂𝑅25𝑡ℎ
𝑁𝐼𝐸 ) -0.014 0.015 -0.014 0.015 0.016 0.017 

log (𝑂𝑅75𝑡ℎ
𝑁𝐼𝐸 ) -0.016 0.017 -0.016 0.017 0.016 0.019 

 

Table3.11 95% Confidence Interval coverage of causal effects confirmation by using the standard error 

from bootstrap method with sample size = 50,000 and number of simulations=500, bootstrap sample 

size=50 

Causal effect log (𝑂𝑅𝐶𝐷𝐸) log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐷𝐸 ) log (𝑂𝑅25𝑡ℎ

𝑁𝐷𝐸 ) log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐼𝐸 ) log (𝑂𝑅25𝑡ℎ

𝑁𝐼𝐸 ) log (𝑂𝑅75𝑡ℎ
𝑁𝐼𝐸 ) 

Percentage % 95.2 95.6 95.0 94.8 95.4 94.8 
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Table3.12 Estimation of causal effects (without interaction between exposure and mediator) based on 

VanderWeele’s and Satten’s methods. Estimated standard errors from Delta Method and bootstrap with 

sample size = 50,000 and number of simulations=500, bootstrap sample size=50 

Method VanderWeele’s 

method 

Satten’s method Delta 

method 

Bootstrap 

Causal effects Mean 

Estimate 

Standard 

Deviation 

Mean 

Estimate 

Standard 

Deviation 

Mean 

Standard 

Error 

Mean 

Standard 

Error 

log (𝑂𝑅𝐶𝐷𝐸) 1.002 0.105 1.002 0.105 0.101 0.101 

log (𝑂𝑅𝑁𝐷𝐸) 1.002 0.105 1.002 0.105 0.101 0.101 

log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐼𝐸 ) 0.024 0.016 0.024 0.011 0.011 0.012 

log (𝑂𝑅25𝑡ℎ
𝑁𝐼𝐸 ) 0.021 0.014 0.020 0.009 0.011 0.010 

log (𝑂𝑅75𝑡ℎ
𝑁𝐼𝐸 ) 0.027 0.018 0.027 0.012 0.011 0.013 

 

Table3.13 95% Confidence Interval coverage of causal effects confirmation by using the standard error 

from bootstrap method with sample size = 50,000 and number of simulations=500, bootstrap sample 

size=50 

Causal effect log (𝑂𝑅𝐶𝐷𝐸) log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛
𝑁𝐷𝐸 ) log (𝑂𝑅𝑚𝑒𝑑𝑖𝑎𝑛

𝑁𝐼𝐸 ) log (𝑂𝑅25𝑡ℎ
𝑁𝐼𝐸 ) log (𝑂𝑅75𝑡ℎ

𝑁𝐼𝐸 ) 

Percentage % 95.8 95.2 93.4 93.4 93.4 

 

4. Conclusion 
 
In this study, an alternative method to estimate causal effects in mediation analysis was 

conducted and compared with traditional mediation analysis method. Since this modeling 
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framework often allows for elimination of stratum-specific intercepts for matched data, it may 

also be possible to fit this model to matched data and still estimate the causal effects that 

VanderWeele has defined.  In the case of smaller initial sample size without interaction 

between mediator and exposure, Satten’s method can improve the precision in estimating the 

coefficients in mediator model and consequently in estimating natural indirect effects. In the 

model eliminating interaction, the Delta method can provide a good way to estimate the 

unbiased standard error since the estimated log transformed odds ratios follow approximately 

normal distribution for both direct effects and indirect effects. However, things appeared to 

change a lot if there exists interaction between exposure and mediators. In this case, since the 

distribution of log transformed indirect causal effect estimates do not follow normal 

distributions, the Delta method did not produce virtually unbiased standard errors anymore. 

The Satten method can still have better performance in estimating coefficients in the mediator 

model and in estimating indirect natural effects, in the sense that the empirical standard 

deviations were slightly decreased. Increasing the initial sample size can help to normalize the 

distribution of estimated causal effects. On the other hand, the efficiency advantages of 

Satten’s method appeared muted under large sample sizes in the case where the response 

model included an interaction. Alternatively, the bootstrap can help to improve estimated 

standard errors of causal effects for Satten’s method when the model contains the interaction 

term or not under smaller sample size. Further simulation studies under a wider variety of 

parameter and covariate settings will be needed to generalize these findings.  
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5. Discussion 
 
In addition to the findings related to the methods for estimating causal effects in mediation 

analysis, this project revealed some limitations in the Delta method for standard error 

estimation when the distribution of the estimated function of parameters is far from normal 

When the overall sample size was relatively small, from the histogram of estimates based on 

the model containing an interaction term, the log transformed natural indirect effects was not 

approximately normally distributed but rather noticeably left skewed. In this case, the Delta 

method was not a good choice to estimate standard errors of some of the estimated causal 

effects. However, the bootstrap method used here is a nonparametric method that does not 

rely as heavily on assumptions of normal distributions. Instead, the assumption of this 

technique is that sampling from the empirical distribution of the data is comparable to sampling 

from the real distribution of the data.[16] In the model with the interaction term, the bootstrap 

showed a better coverage rate for the confidence interval of indirect natural effect, and can 

correct the biased estimator of standard error to asymptotic order.  On the other hand, since 

bootstrapped standard error is an alternative of the asymptotic standard error, the assumption 

of asymptotically normal distribution of the indirect causal effects were needed, and this 

requirement is met when the sample size is large enough.[17] Therefore, if the sample size is not 

large enough, to correct the biased standard error estimators of causal effects, bootstrap 

performs better than the Delta method. When the sample size was larger (original N = 

2,000,000 in our empirical studies), all log transformed causal effect estimates followed 

approximately normal distributions and the Delta method was effective in estimating the 

standard error.   
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In this study, the mediator was considered as a binary variable. However in future work, models 

with continuous mediators can also be built and studied. For a continuous mediator, the model 

with or without interaction can also studied separately to see the performance of the Satten’s 

method for making more efficient use of case data.  
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