
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an
advanced degree from Emory University, I hereby grant to Emory University and its agents
the non-exclusive license to archive, make accessible, and display my thesis or dissertation
in whole or in part in all forms of media, now or hereafter known, including display on
the world wide web. I understand that I may select some access restrictions as part of the
online submission of this thesis or dissertation. I retain all ownership rights to the copyright
of the thesis or dissertation. I also retain the right to use in future works (such as articles or
books) all or part of this thesis or dissertation.

Signature:

Pengfei Tang Date

Deep Learning with Differential Privacy and Adversarial Robustness

By

Pengfei Tang
Doctor of Philosophy

Department of Computer Science

Li Xiong, Ph.D.
Advisor

Lance Waller, Ph.D.
Committee Member

Liang Zhao, Ph.D.
Committee Member

Ming Li, Ph.D.
Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D, MPH
Dean of the James T. Laney School of Graduate Studies

Date

Deep Learning with Differential Privacy and Adversarial Robustness

By

Pengfei Tang
B.A., Zhejiang University, Hangzhou, China, 2015

Advisor: Li Xiong, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Department of Computer Science

2021

Abstract

Deep Learning with Differential Privacy and Adversarial Robustness
By Pengfei Tang

Deep learning models have been increasingly powerful on different tasks, such as im-
age classification and data synthesization. However, there are two major vulnerabilities
existing: 1) privacy leakage of the training data through inference attacks, and 2) adver-
sarial examples that are crafted to trick the classifier to misclassify. Differential privacy
(DP) is a popular technique to prevent privacy leakage, which offers a provable guarantee
on privacy of training data through randomized mechanisms such as gradient perturbation.
For attacks of adversarial examples, there are two categories of defense: empirical and the-
oretical approaches. Adversarial training is one of the most popular empirical approaches,
which injects adversarial examples with correct labels to the training dataset and renders
the model robust through optimization. Certified robustness is a representative of theoreti-
cal approaches, which offers a theoretical guarantee to defend against adversarial examples
through randomized mechanisms such as input perturbation. However, there are some lim-
itations in existing works that reduce the effectiveness of these approaches. For DP, one
challenge is the contradiction between a better utility performance and a certain level of pri-
vacy guarantee. For adversarial training, one challenge is that when the types of adversarial
examples are limited, the model robustness is confined. For certified robustness, existing
works fail to exploit the connection between input and gradient perturbation, which wastes
a part of randomization during training.

To solve these limitations, 1) we propose a novel framework IGAMT for data synthe-
sization. Compared with traditional frameworks, IGAMT adds less gradient perturbation
to guarantee DP, but still keeps the complex architecture of generative models to achieve
high utility performance. 2) We propose a distance constrained Adversarial Imitation Net-
work (AIN) for generating adversarial examples. We prove that compared with traditional
adversarial training, adversarial training with examples from AIN can achieve comparable
or better model robustness. 3) We propose a new framework TransDenoiser to achieve both
DP and certified robustness, which utilizes all randomization during training and saves the
privacy budget for DP.

Deep Learning with Differential Privacy and Adversarial Robustness

By

Pengfei Tang
B.A., Zhejiang University, Hangzhou, China, 2015

Advisor: Li Xiong, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Department of Computer Science
2021

Acknowledgments

Thanks to my advisor, Dr. Xiong, who gives me enlightenment and support on re-

searches, encourages me to explore and find the truth behind every challenge. Thanks to

my family, whose love is the source of strength that I count on all of my days. Thanks to

my grandpa and grandma, who gave me the infinite love during my childhood, supported

me with endless encouragement and taught me the primary principle of being a good man.

i

Contents

1 Introduction 1

1.1 Research Contributions . 3

1.2 Organization . 7

2 Related Works 8

2.1 EHR Representation Learning . 8

2.2 EHR Synthesization . 8

2.3 Differential Privacy . 10

2.3.1 Privacy-preserving Generative Models 11

2.4 Existing Adversarial Attacks . 12

2.5 Certified Robustness . 14

2.6 Differential Privacy with Certified Robustness 14

3 Preliminaries 16

3.1 Differential Privacy . 16

3.2 Certified Robustness . 18

3.3 Model Architectures . 19

4 IGAMT: Synthesizing Temporal Electronic Health Records with Differential

Privacy 21

4.1 Overview . 21

4.2 Imitative Generative Adversarial Mixed-embedding Transformer 22

4.2.1 Overview . 22

4.2.2 Representation Learning . 23

4.2.3 Generation . 25

4.2.4 Imitation . 27

4.2.5 Training . 28

4.2.6 DP and Synthesization . 31

4.3 Experiments . 32

4.3.1 Configurations . 33

4.3.2 EHR and Preprocessing . 34

4.3.3 Data Visualization and Comparison 35

4.3.4 Temporal Features Comparison 37

4.3.5 Missing Values and Irregular Measures 38

4.3.6 Differential Privacy . 39

5 Generating Adversarial Examples with Distance Constrained Adversarial Im-

itation Networks 40

5.1 Overview . 40

5.2 Adversarial Imitation Networks . 41

5.2.1 Objective Function . 42

5.2.2 Architecture . 43

5.2.3 Training Framework . 45

5.3 Experiments . 48

5.3.1 Targeted Attacks . 50

5.3.2 Untargeted Attacks . 55

5.3.3 Training Framework . 57

5.3.4 Adversarial Training . 59

5.3.5 AIN Training Time . 60

6 Achieving both Differential Privacy and Certified Robustness for Pre-trained

Classifiers via Input Perturbation 62

6.1 Overview . 62

6.2 TransDenoiser . 63

6.2.1 Denoiser and Certified Robustness 64

6.2.2 Perturbation Transformation and Multivariate Gaussian Mechanism 65

6.2.3 TransDenoiser Training Algorithm 67

6.3 Experiments . 71

6.3.1 Configurations . 72

6.3.2 Experimental Results . 73

7 Conclusions and Future Work 77

Appendices 86

.1 Details of Architecture . 87

.2 More Experiments of Work 1 . 88

.3 Brief Proof of Randomized Smoothing . 90

.4 Theorem 6 (wEGM) and Proof . 90

.5 Proof of Theorem 3 (MGM) . 92

.6 Proof of Lemma 1 (Perturbation Transformation) 95

.7 Theorem 7 (HGM) and Proof . 96

.8 Proof of Lemma 2 . 98

.9 Perturbation Transformation in Mini-batch SGD 99

.10 Proof of Theorem 9 (MMGA with MA) 101

.11 Proof of Lemma 4 (MA) . 102

.12 The implementation of C-Lipschitz . 107

.13 Parameters Slicing . 107

.14 Detailed Experiments of Work 3 . 108

iv

List of Figures

4.1 The framework of IGAMT, where Dec in red dashed box is virtually sepa-

rated into two parts and shares the latter with Deci. 22

4.2 EHR raw data, preprocessing and missing value mask, where “/” denotes

the missing value in features. 23

4.3 An illustration of time embedding and non-temporal feature embeddings,

where “+” denotes the element-wise addition. 24

4.4 An illustration of synthesization. 32

4.5 PCA for real EHRs and synthetic EHRs from baselines. 35

4.6 PCA for real EHRs and synthetic EHRs from ablation cases and IGAMT. . 35

4.7 Visualization of three features among all time steps 36

4.8 Missing values histogram of different EHRs 38

4.9 Irregular measures histogram of different EHRs 38

4.10 Overall Minkowski distance and cosine similarity on different models with

different ε. 39

4.11 Overall Minkowski distance and cosine similarity on different models with

different σ. 39

5.1 The training framework of AIN . 41

5.2 The architecture of AIN . 44

5.3 Illustration of the impact of distance bound B on optimization 46

5.4 Targeted adversarial examples of different attacks on MNIST 50

5.5 The targeted attack success rate vs. L∞ distance among different attacks . . 51

5.6 The targeted attack success rate vs. L∞ distance among AINs with different

loss . 52

5.7 The targeted attack success rate vs. L∞ distance among AINs with different

architectures . 52

5.8 The targeted attack success rate vs. L∞ distance among AINs with different

targeted labels . 53

5.9 Targeted adversarial examples of different attacks on tiny-imagenet 53

5.10 Detail of a targeted adversarial examples by AIN 54

5.11 Untargeted adversarial examples of different attacks on MNIST 55

5.12 The untargeted attack success rate vs. L∞ distance among different attacks . 56

5.13 The untargeted attack success rate vs. L∞ distance among AINs with dif-

ferent losses . 56

5.14 The untargeted attack success rate vs. L∞ distance among AINs with dif-

ferent architectures . 56

5.15 Untargeted adversarial examples of different attacks on tiny-imagenet . . . 57

5.16 The attack success rate for non-progressive training and progressive train-

ing with different initial bounds . 58

5.17 The attack success rate as L∞ distance constraint decreases during the

model training for different frameworks 58

6.1 Framework of TransDenoiser: given a clean image x, input perturbation is

added to generate perturbed image z. z is then reconstructed by denoiser g

to generate g(z), which is fed into the pre-trained classifier h for classifica-

tion. The input perturbation on x is utilized to achieve certified robustness

during testing. The denoiser is trained under DP by leveraging the input

perturbation added on x and additional gradient perturbation during train-

ing. 63

6.2 Comparison among TransDenoiser, baselines and ablation cases for certi-

fied accuracy vs. l2 radii on two datasets. The input perturbation scale

= 0.25, the overall gradient perturbation scale = 2.0 (≥ 2.0 for TransDe-

noiser), and guarantee (1.0, 1e−5)-DP for private models. 74

6.3 More comparison among TransDenoiser, baselines and ablation cases for

conventional accuracy vs. l2 radii on two datasets. The input perturbation

scale on CIFAR10 = 0.1, on MNIST = 0.25, the overall gradient perturba-

tion scale = 2.0 (≥ 2.0 for TransDenoiser), and guarantee (1.0, 1e−5)-DP

for private models. 76

6.4 Comparison among TransDenoiser, baselines and ablation cases for con-

ventional Accuracy vs. ε on two datasets. The input perturbation scale on

CIFAR10 = 0.1, on MNIST = 0.25, attack norm bound = 2.0, the overall

gradient perturbation scale = 2.0 (≥ 2.0 for TransDenoiser), and δ = 1e−5

for DP. 76

1 An illustration of sequence-to-sequence autoencoder. 87

2 The framework of EDGAMT. 87

3 PCA results for real EHRs and synthetic EHRs of baselines. 88

4 PCA results for real EHRs and synthetic EHRs of ablation cases and IGAMT. 88

5 Overall Minkowski distance and cosine similarity on different models with

different ε. 89

6 Overall Minkowski distance and cosine similarity on different models with

different σ. 89

7 Denoiser with sliced parameters . 108

8 Denoiser for two datasets, where each box denotes the layer, the digits

in each box denotes the shape of convolutional filter, “Conv” denotes and

“Trans Conv” denotes the boxes are convolutional and transposed convolu-

tional layers respectively. 109

9 More comparison among , baselines and ablation cases for conventional

accuracy vs. l2 radii on two datasets. The input perturbation scale on CI-

FAR10 = 0.1, on MNIST = 0.25, the overall gradient perturbation scale =

2.0 (≥ 2.0 for), and guarantee (1.0, 1e−5)-DP for private models. 110

viii

List of Tables

4.1 Overall similarity with σ = 1.0. 36

4.2 Temporal feature similarity with σ = 1.0. 37

5.1 Comparison of L∞ distances, targeted attack success rate and average gen-

eration time on MNIST among different attacks 51

5.2 Comparison of L∞ distances and targeted attack success rate on tiny-imagenet

among different attacks . 54

5.3 Comparison of L∞ distances and targeted attack success rate on tiny-imagenet

among different attacks . 54

5.4 Comparison of L∞ distances and untargeted attack success rate on MNIST

among different attacks . 55

5.5 Comparison of L∞ distances and untargeted attack success rate on tiny-

imagenet among different attacks . 57

5.6 Comparison of test classification accuracy on MNIST among models from

different adversarial training . 59

5.7 Comparison of test classification accuracy on tiny-imagenet among models

from different adversarial training . 59

5.8 Comparison of time costs on MNIST among models with different adver-

sarial examples . 60

1 Overall similarity with σ = 1.0. 89

ix

List of Algorithms

1 Training of IGAMT. 29

2 AIN training with adaptive bound decay . 48

3 TransDenoiser Training Algorithm . 68

1

Chapter 1

Introduction

Recent studies have shown that deep learning models are increasingly powerful for solving

difficult tasks in the real-world, including image classification [55, 51], natural language

processing [85] and data synthesization [20, 45]. This strong capability of deep learning

models requires a large amount of training data, which brings two major vulnerabilities:

1) privacy leakage of the training data through inference attacks on trained models, and

2) adversarial examples that are designed by adding small perturbations to clean examples

in order to trick the classifier to misclassify. Research has shown that inference attacks

[32, 88, 77] on models can incur privacy leakage on the training dataset. Differential pri-

vacy (DP) [26, 25, 27] is a commonly used technique to prevent privacy violation, which

offers a provable guarantee on privacy of training data through randomized mechanisms

such as gradient perturbation [79, 76]. On the other hand, more and more adversarial

attack algorithms [81, 15, 38] have been proposed to generate powerful adversarial ex-

amples that can incur models misclassify. Correspondingly, the defense approaches have

also been developed to against these attacks, which can be classified into two categories:

empirical and theoretical approaches. Adversarial training [64, 83] is one of the most pop-

ular empirical approaches, which injects adversarial examples with correct labels to the

training dataset and renders the model robust through optimization. Certified robustness

2

[60, 56, 61, 21, 58, 75, 74] is a representative of theoretical approaches, which offers a the-

oretical guarantee to defend against adversarial examples through randomized mechanisms

such as input perturbation.

Most existing works solve one of these two vulnerabilities, i.e., either employ differ-

ential privacy to deep learning models or achieve model robustness, while a few works

achieve both goals independently [72, 71]. However, there are some limitations in exist-

ing works that reduce the effectiveness of these approaches. For DP, one challenge is the

contradiction between a better utility performance and a certain level of privacy guaran-

tee. The most popular technique to accomplish DP in deep learning models is the gradient

perturbation [79, 76], which perturbs the gradients of parameters with Gaussian noise and

commonly works with Moment accountant [2] to provide a tight privacy analysis. Al-

though gradient perturbation based DP is a general framework appropriate for all kinds of

deep learning models, it can degrade the utility performance when solving difficult tasks,

such as data synthesization [20, 45], in which the model architecture is complicated and

the parameter size is large. The reason behind this is intuitive, because the gradient per-

turbation introduces randomization during training and perturbs the optimization process.

A more complicated architecture with larger parameter size requires more randomization,

and the performance thus suffers.

For adversarial training [64], one potential issue is that the diversity and quality of

adversarial examples augmented to the training dataset affect the robustness of the final

model. Adversarial training is a training strategy that adds adversarial examples with cor-

rect label into the training dataset. This augmentation helps model learn the characteristics

of adversarial examples and thus defend against attacks. It is obvious that adding more

diverse adversarial examples into the training dataset can facilitate the model robustness.

Ensemble adversarial training [83] proves this by augmenting training data with different

adversarial examples crafted on other pre-trained models and getting better performance.

However, different types of adversarial examples generated from other models are not al-

3

ways accessible because of time and device constraints. When the types of adversarial

examples are limited, the model robustness is confined.

For certified robustness [60, 56, 61, 21, 58, 75, 74], one potential flaw is the waste

of randomization during training and the failure of utilizing this randomization for DP. Al-

though theoretically, certified robustness only needs perturbations at testing phase, all exist-

ing works require the randomization, e.g., input perturbation, during training for model util-

ity and robustness performance. This randomization added for certified robustness could

have been leveraged to provide a certain level of DP, but is ignored in existing works. We

observe that some works [72, 71] have achieved both DP and certified robustness on deep

learning models. However, these works independently accomplish two goals, i.e., utilize

input perturbation for certified robustness and gradient perturbation for DP. They fail to

exploit the connection between input and gradient perturbation, which wastes a part of

randomization during training and incurs the degradation of utility performance.

1.1 Research Contributions

This thesis proposes a set of techniques to improve the privacy and robustness of deep learn-

ing models. 1) For DP, we propose a novel framework IGAMT to solve difficult tasks, i.e.,

temporal data synthesization. Compared with traditional frameworks, IGAMT introduces

less randomization to guarantee DP, but still keeps the complex architecture of generative

models to achieve high utility performance. 2) For adversarial training, we propose a dis-

tance constrained Adversarial Imitation Network (AIN) to generate adversarial examples

of high quality and great diversity. We prove that compared with traditional adversarial

training, adversarial training with examples from AIN can achieve comparable or better

adversarial robustness. 3) For certified robustness, we propose a novel framework Trans-

Denoiser to achieve both DP and certified robustness, which utilizes all randomization

during training and saves the privacy budget for DP. The details are as follows:

4

Differentially Private Synthesization on Temporal Data (Chap. 4). We propose Imi-

tative Generative Adversarial Mixed-embedding Transformer (IGAMT) to generate differ-

entially private EHRs with sophisticated characteristics. IGAMT contains three genera-

tive adversarial networks (GANs) [37] and an autoencoder [41]. We claim that IGAMT

is the first framework to generate differentially private EHRs of high quality with hetero-

geneous features, missing values and irregular measures. IGAMT solves challenges in

existing works: 1) It leverages transformer [85] to capture both temporal and non-temporal

features and leverages features embeddings to better fit non-temporal features. It also uti-

lizes masks and time embedding to capture missing values and irregular measures. 2) It

combines sequence-to-sequence autoencoder with transformer and GAN to better generate

synthetic EHRs satisfying sophisticated characteristics. 3) It leverages a specific structure,

imitator, to reduce the randomization brought by DP technique while still keeping a com-

plex architecture and the same level of DP guarantee. This work is under review of ICLR

2022.

Contributions. Our key contributions are:

1. We propose IGAMT, the first generative model to generate differentially private

EHRs with heterogeneous features, missing values and irregular measures.

2. We leverage sequence-to-sequence transformer incorporated with missing value masks,

time embedding and non-temporal embedding to learn the sophisticated characteris-

tics of EHRs and generate synthetic data.

3. We add an imitator to IGAMT, which can imitate the behaviors of the decoder of

IGAMT and learn characteristics from different sources of EHRs. Applying gradient

perturbation to imitator based generative model reduces DP randomization , which

thus improves the synthesization performance while preserving the same level of DP.

4. We build several baseline models and ablation cases, and conduct a large volume

of experiments on two datasets to prove that IGAMT with differential privacy can

5

achieve best and state-of-art performance among these models.

Distance Constrained Adversarial Imitation Networks for Adversarial Training (Chap.

5). We propose a distance constrained Adversarial Imitation Network (AIN) for generat-

ing both targeted and untargeted adversarial examples. AIN combines the benefit of both

generative models and the traditional optimization based approaches, achieving fast gener-

ation and comparable performance with optimization based methods. This work has been

published in TDSC 2021. Our main contributions are as follows:

1. We propose a distance constrained Adversarial Imitation Network (AIN) for generat-

ing both targeted and untargeted examples. It i) explicitly uses distance constraint to

bound the perturbation scale and allows flexible tradeoff between perturbation scale

and attack success rate, ii) imitates adversarial examples created by optimization

based attacks in the learning process to achieve improved quality of the generated

adversarial examples, iii) generates multiple adversarial examples given one clean

example by injecting random noises into the central hidden layer of the autoencoder,

and iv) leverages improved network architecture, e.g., self-attention [85], residual

[63] and label conditioning [94, 101], to allow better quality of the generated exam-

ples.

2. We introduce a training framework that progressively and adaptively changes the

distance constraint to train AIN in a stable and effective way. By starting from a loose

constraint and progressively moving to a tighter constraint, the training framework

facilitates the optimization and dramatically improves the attack performance.

3. We conduct experiments on several datasets and the results show that: i) AIN can

provide high quality adversarial examples. Compared to existing state-of-the-art

generative models like ATN and AdvGAN, AIN generates more optimal adversar-

ial examples in terms of perturbation scale and attack success rate, and can generate

large scale adversarial examples even when clean examples are limited. Compared

6

to gradient-based attacks like i-FGSM, AIN can generate better adversarial examples

on MNIST and comparable examples on tiny-imagenet. AIN also achieves compara-

ble or better classification accuracy on tiny-imagenet and better accuracy on MNIST

in adversarial training compared with i-FGSM, thanks to the diversity and quality of

its adversarial examples. ii) AIN can generate adversarial examples more efficiently.

Compared with optimization based attack like C&W, AIN can generate comparable

adversarial examples in terms of attack success rate but at a significantly faster speed.

Achieving both Differential Privacy and Certified Robustness for Pre-trained Classi-

fiers (Chap. 6). We propose a novel framework TransDenoiser to simultaneously achieve

certified robustness and DP for models with pre-trained classifiers. TransDenoiser has a

similar architecture as [74] by adding a denoiser before pre-trained classifier. Compared

with [74], TransDenoiser can provide similar level of certified robustness without retrain-

ing the pre-trained model, as well as guarantee DP for the training data. Compared with

existing works that achieve both certified robustness and DP including SecureSGD [72]

and StoBatch [71], TransDenoiser 1) provides a tigher guarantee of DP by utilizing all the

randomization during training including input and gradient perturbations, and 2) achieves

more effective certified robustness by leveraging randomized smoothing on the input in-

stead of noisy layers in the model. This work is under review of TDSC 2022.

Contributions. Our key contributions are:

1. We propose a novel framework TransDenoiser that trains a denoiser through both

input and gradient perturbation for achieving DP and certified robustness simultane-

ously on deep learning models with pre-trained classifiers. The input perturbation for

achieving certified robustness is utilized to achieve partial DP and additional gradi-

ent perturbation is used as necessary for the overall DP, ensuring an enhanced privacy

and utility performance.

2. We present an analytical tool that leverages Taylor expansion to transform input per-

7

turbation into gradient perturbation so that it can be quantified and composed with

the explicit gradient perturbation for the DP guarantee. We propose a Multivariate

Gaussian Mechanism (MGM) to analyze DP of the multivariate Gaussian perturba-

tion and prove that MGM is a generalization of Heterogeneous Gaussian Mechanism

[72].

3. Observing that the transformed gradient perturbation itself cannot satisfy the DP

guarantee requirement in some scenario, we add additional perturbation following

isotropic Gaussian distribution to the gradient, and propose Mixed Multivariate Gaus-

sian Analysis (MMGA) to analyze the DP guarantee provided by transformed gra-

dient perturbation and additional gradient perturbation. We also prove that MMGA

can work with moments accountant [2] to provide a tight bound on the privacy cost.

4. We conduct extensive experiments on several benchmark datasets which demonstrate

that TransDenoiser can 1) provide a significantly tighter bound on privacy cost with

same utility performance, and 2) achieve similar level of certified robustness as other

state-of-the-art works.

1.2 Organization

The remainder of this thesis is organized as follows. In Section 2, we give a brief overview

of the related works. In Section 3, we provide some preliminaries on EHR, DP and certified

robustness. Section 4, Section 5 and Section 6 introduce our three works. Section ??

concludes research progresses.

8

Chapter 2

Related Works

2.1 EHR Representation Learning

Several works focus on representation learning of EHR data by building specific neural net-

works to capture these characteristics. Neil et al. [68] propose a novel recurrent network,

Phased-LSTM, to capture irregular measures of temporal data. Bang et al. [9] then lever-

ages Phased-LSTM to fit EHRs with missing values and irregular measures. BERT model

[23] of NLP area is also adapted to EHRs. Alsentzer et al. [4] propose ClinicalBERT to

fit EHR text data. However, the disadvantage of ClinicalBERT is that it can only works on

textual words, but cannot process numerical values of EHRs. Li et al. [62] propose an im-

proved BERT model, BEHRT, for clinical EHRs with textual data. BHERT takes temporal

features as embedding, and takes age and time steps of records as additional embedding to

incorporate these characteristics into training process. Similar to ClinicalBERT, BHERT

can neither handle numerical values, nor generate synthetic EHRs.

2.2 EHR Synthesization

There are also several works focus on EHR synthesization. Choi et al. [20] propose

medGAN to generate multi-label discrete records via a combination of autoencoder (AE)

9

[41] and generative adversarial network (GAN) [37]. However, medGAN only works on

discrete features but misses the potential privacy leakage issue. Hyland et al. [45] combine

conditional GAN [66] with recurrent network [44, 19] and propose recurrent conditional

GAN (RCGAN), which can generate temporal medical features. However, RCGAN does

not take non-temporal features, the missing values of medical data and privacy leakage

issue into consideration. Xu et al. [93] leverage conditional GAN to build CTGAN for

tabular medical data, whose characteristics are quite different from the EHRs listed before.

Baowaly et al. [10] improve medGAN by replacing the GAN with more powerful vari-

ants, WGAN [5, 39] and boundary-seekinfg GAN (BGAN) [43]. The proposed models are

named medWGAN and medBGAN correspondingly. Similar to medGAN, this paper does

not take temporal features and privacy leakage into consideration. To obtain a privacy-

preserving generative model, Beaulieu [13] apply differential privacy [27] into the training

process of the discriminator of AC-GAN [69]. Thus attackers cannot infer private infor-

mation from the generated data. However, this work does not take the temporal features

and missing values into consideration. Chin et al. [18] propose a DP GAN to generate

heterogeneous EHRs. Heterogenous EHRs contains non-temporal features (e.g, Bernoulli

features, categocial features and numerical features) and missing values, which is more

complex than the dataset used in [20, 13, 10]. However, temporal features are still missed

in this work. Lee et al. [57] propose dual adversarial autoencoder (DAAE) to generate

temporal EHRs and employ differential privacy during training to prevent privacy leak-

age. DAAE is is the existing state-of-the-art generative model for EHRs, which leverages

autoencoder, WGAN and recurrent networks to generate synthetic temporal EHRs with

privacy guarantee, but is incapable of capturing non-temporal features, missing values and

irregular measures. We adopt the similar architectures of DAAE, but replace the recurrent

unit with more advanced network, i.e., transformer [85], to generate EHRs satisfying all 5

characteristics with better performance.

10

2.3 Differential Privacy

Gradient Perturbation. Gradient perturbation is a widely used technique that injects per-

turbation to the gradient of each parameter to guarantee DP for deep learning models. Song

et al. [79] first propose the gradient perturbation method by injecting perturbation to the

gradients during parameter updates with stocastic gradient descent (SGD). Bassily et al.

[12] improve the gradient perturbation by leveraging privacy amplification via sampling

[14] (Lemma II.2 in [12]) and strong composition [28] (Lemma II.3 in [12]) to achieve a

tighter bound. Abadi et al. [2] make further improvement by proposing a novel privacy

composition tool: moments accountant, which can compute the overall privacy cost during

training and achieve a tighter bound. Shokri et al. [76] propose the gradient perturbation

method under the distributed learning scenario. Wang et al. [86] replace SGD optimizer

used in previous work with stochastic variance-reduced gradient (SVRG) [90] to achieve a

faster optimization. However, it requires the loss function l to be convex, G-Lipschitz and

β-smooth. Lee et al. [59] and Yu et al. [96] improve the gradient perturbation method by

dynamically allocating the privacy budget per iteration and leverage zero-concentrated DP

(zCDP) [59] to analyze the privacy cost.

Input Perturbation. Input perturbation is a technique that adds noise to the original train-

ing data to achieve DP models. Fukuchi et al. [34] first attempted to use Taylor expansion

to transform input perturbation into gradient perturbation. Although input perturbation

framework theoretically guarantees that model trained with perturbed inputs is DP, this

work imposes several constraints on the loss function, which cannot be practically applied

with deep learning systems. Kang et al. [48] propose an input perturbation that generalizes

the constraints on the loss function to less strict conditions. They also take a further step by

finding that different training data will affect the model in different ways [47]. However,

this work requires a pre-trained model that should also be DP, which also requires privacy

budget. In summary, all the above works impose strict constraints on the loss function to

11

analyze DP for input perturbation. These constraints can not be satisfied by typical deep

learning models.

Matrix-valued Gaussian Mechanisms. Chanyaswad et al. [17] propose matrix-valued

Gaussian (MVG) Mechanism to guarantee DP of matrix-valued query. MVG can be re-

garded as a general form of our proposed Multuvariate Gaussian Mechanism (MGM)

However, there are several differences between our work and [17]. [17] focuses on DP

guarantee of matrix-valued query, while our work focuses on deep learning models. These

two settings are quite different: in deep learning setting, the perturbation is added to each

iteration during training, while in query setting, the perturbation is added only for a few

times. Compared with MVG, DP analysis of MGM in our work has less time cost, be-

cause it only requires the calculation of minimum singular value, while MVG requires all

singular values and harmonic numbers.In addition, MGM is a theoretical mechanism in

our work. We also propose Mixed multivariate Gaussian Analysis (MMGA) to analyze

the DP guarantee for empirical deep learning training algorithms, which has not been in-

troduced in other works. Based on MVG, Yang et al. [95] propose two specific types of

Matrix Gaussian Mechanisms and prove that the utility performance of these mechanisms

is better than MVG. However, these two mechanisms can not be applied to our framework.

Because the transformed gradient perturbation in our work follows a multivariate Gaussian

distribution that is neither of these two cases.

2.3.1 Privacy-preserving Generative Models

The generative models introduced in Section 2.2 are built for EHRs synthesization. There

are some generative models that are privacy-preserving but not for EHRs. Xie et al. [91]

propose DP-GAN which adds perturbation to the gradient of discriminator and uses mo-

ment accountant [2] to analyze the DP guarantee. This paper claims that the since the

discriminator is guaranteed as DP, the generator is correspondingly DP according to the

post-processing property [27]. Zhang et al. [100] improve the DP-GAN of [91] by us-

12

ing the improved WGAN [39] and employing multi-fold optimization strategies, which

include weight clustering, adaptive clipping and warm starting. Similarly, Xu et al. [92]

builds GANobfuscator based on the improved WGAN and adaptive clipping as in [100].

Frigerio et al. [33] propose a general DP GAN framework that can generate different

types of data with privacy preservation, from time-series to continuous data, and discrete

data. Torkzadehmahani et al. [82] propose DP-CGAN to generate synthetic data with

corresponding labels. The training process separates the discriminator loss between real

data and synthetic data to preserve information from discriminator loss on real data. DP-

CGAN also proposes RDP accountant to provide a tighter bound on DP guarantee com-

pared to moments accountant [2]. Augenstein et al. [6] incorporate differentially private

generative models with federated learning, where data is distributed among users and the

central server. This federated DP-GAN aims to identify the potential bugs in the data pre-

processing, and can only guarantee user-level differential privacy. Fan et al. [29] conduct

a survey to investigate and analyze the differentially private generative models. They com-

pare the detailed differences among different models w.r.t. application domains, training

procedure and evaluation metrics.

2.4 Existing Adversarial Attacks

Optimization based attacks. L-BFGS method [81] adds the distance constraint as a

penalty term into the objective function and line-searches its coefficient to craft adversarial

examples. Fast Gradient Sign Method [38] calculates the gradients on x in a single step to

formulate the perturbation, which is fast to execute but sacrifices perturbation scale. Itera-

tive FGSM (i-FGSM) [52] extends FGSM by iteratively adding gradients onto the image,

which enhances the quality with slightly more computation cost. JSMA [70] uses the gra-

dients to first compute a saliency map and then finds the most important pixel to increase

the likelihood of the targeted class after modification. As JSMA calculates the Jacobian

13

matrix of given inputs, it is relatively slow compared to other methods. DeepFool [67] iter-

atively adds gradient based perturbations to cause the change of the classification. Carlini

and Wagner (C&W) [16] leverages the minimization of a non-linear mapped perturbation

to achieve much smaller perturbation scale compared with all other attacks, sacrificing the

computation speed by three orders of magnitude. Decoupled Direction and Norm(DDN)

[73] improves the time efficiency of C&W while still keeping similar high attack success

rate by decoupling the direction and the norm of the adversarial perturbation. However, it

is still slower than i-FGSM and AIN. Boundary projection (BP) [98] is more of an iterative

method that uses two stages to generate adversarial examples: 1) leveraging the gradient

of loss to find an adversarial example, and 2) lowering the distortion while keeping the

image adversarial. This two-stage strategy can improve the attack success rate (compared

to i-FGSM), but impairs the time efficiency.

Model training based attacks. Instead of directly solving the optimization problem for

generating adversarial examples, several works proposed model training based methods

that learn to generate adversarial examples. Adversarial Transformation Network (ATN)

[8] presents an autoencoder based network which can generate a targeted adversarial ex-

ample x′ given a clean example x. A reranking function is designed to modify the softmax

probability of the target classifier given the clean example x and maximize the probability

value at the position of targeted class t. The autoencoder network is trained to minimize

‖x − x′‖2, and force the output of the target classifier given the adversarial example to be

similar to the reranked probability of the clean example. Other works [89, 80, 87] leverage

GANs to generate adversarial examples. Generators proposed in [80, 87] can generate ad-

versarial examples from random distributions. However, since the adversarial examples do

not have direct correspondence with clean examples, the perturbation can be significantly

large and visually noticeable compared with ATN and optimization based methods. [89]

proposes AdvGAN with an autoencoder based generator which takes a clean example x

and outputs the perturbation.

14

2.5 Certified Robustness

PixelDP. Lecuyer et al. [56] propose PixelDP to achieve certified robustness by considering

an input image as a database in DP parlance and each pixel of the image as each record in

DP. PixelDP shows that adding a randomization layer in the model to preserve DP on image

pixels guarantees certified robustness of the model against adversarial examples.

Randomized Smoothing. Randomized smoothing is another technique that adds random

noise to the input for achieving certified robustness and has been shown to outperform

PixelDP with tighter robustness guarantee. Li et al. [61] derive a certified bound for ro-

bustness to adversarial examples using Rényi Divergence [35] by adding additive random

noise to the input. Cohen et al. [21] leveraged Neyman-Person lemma to analyze the cor-

relation between the highest scored class and the second highest class. Compared to the

previous work, they provide a tight certified robustness guarantee for the model. All above-

mentioned work are certified within an L2 radius which means that the adversary cannot

alter the prediction within a L2 unit ball. Lee et al. [58] provide certified robustness for

discrete cases where the adversary is L0 bounded (the number of pixel changes in a figure).

Salman et al. [75] further employ adversarial training to improve the certified robustness

of models. To provide more efficient certified robustness, Salman et al. [74] also propose

to obtain a certified robust classifier from a fixed pre-trained model. Randomized Smooth-

ing is then applied during testing and provides certified robustness without retraining the

pre-trained model. In this paper, we adopt a similar setting as [74] but focus on achiev-

ing both certified robustness and DP at the same time via randomized smoothing (input

perturbation).

2.6 Differential Privacy with Certified Robustness

There are few works on simultaneously achieving both DP and certified robustness. Phan et

al. [72] first attempt to propose a framework called Secure-SGD to simultaneously achieve

15

certified robustness and differential privacy. They use a PixelDP [56] based approach to

achieve certified robustness and propose a Heterogeneous Gaussian Mechanism (HGM) to

improve the performance of certified robustness. To achieve DP, they use gradient perturba-

tion and propose a Heterogeneous Gaussian Mechanism (HGM) by adding heterogeneous

Gaussian noise instead of element-wise Gaussian noise. There are two major limitations

of this work: 1) The random perturbation used to achieve certified robustness during train-

ing should have contributed a certain degree of randomness to preserve DP but is ignored.

Instead, additional Gaussian perturbation is added onto the gradient to achieve DP. 2) The

robustness bound provided by PixelDP is loose compared with other randomized smooth-

ing [61, 21, 58] based approaches for certified robustness.

Another work from Phan et al. [71] developed StoBatch algorithm to guarantee DP and

certified robustness. It first leverages Autoencoder (AE) [42] and functional mechanism

(objective perturbation) [99] to reconstruct input examples with DP. Then, these recon-

structed DP data is used to train a deep neural network for classification. To make the neural

network robust and DP, they apply adversarial training [83] and functional mechanism as

mentioned earlier during training. Although this framework achieves better performance

compared to their previous work [72], there are still two limitations: 1) The approach is

only applicable to simple architectures of AE due to the constraints of function mechanism

and hence cannot learn complicated representation on high-dimensional or complex data.

2) Similar to Secure-SGD [72], the robustness bound provided by PixelDP is loose.

16

Chapter 3

Preliminaries

3.1 Differential Privacy

Differential Privacy (DP) [25, 26, 27] is a theoretical privacy framework for aggregate data

analysis. It ensures the output distributions of a randomized algorithm are indistinguishable

with a certain probability when running on two neighboring datasets differing in one record

or bounded by a distance metric.

Definition 1. ((ε, δ)-Differential Privacy) A randomized mechanism M : D → R with

domain D and range R satisfies (ε, δ)-differential privacy if for any two adjacent inputs

D,D′ ∈ D and for any subset of outputs S ⊆ R it holds that

Pr(M(D) ∈ S) ≤ eεPr(M(D′) ∈ S) + δ,

where ε is the privacy budget and δ is the probability that privacy is broken.

The common mechanism to achieve (ε, δ)-DP is Gaussian Mechanism that adds cali-

brated noise to the output.

Theorem 1. Gaussian Mechanism [27]. Let G : Rv → Rw be an arbitrary w-dimensional

function, and its sensitivity ∆G = maxD,D′ ‖G(D)− G(D′)‖2. A Gaussian MechanismM

17

with σ adds element-wise noise N (0, σ2) to the output. The mechanism M is (ε, δ)-DP,

with

ε ∈ (0, 1], σ ≥
√

2 ln(1.25/δ)∆G/ε.

Gaussian mechanism also works for deep learning models. Depending on where to

inject the perturbations, we mainly introduce input perturbation and gradient perturbation

that will be used in this paper.

Input Perturbation. Input perturbation [34, 47, 48] directly adds calibrated noise to input

data to achieve DP. As a result, the objective function is generalized as,

Jpriv(θ) =
1

N

N∑
i=1

l((x̂(i), ŷ(i)), θ),

θpriv = argminJpriv(θ),

where θ denotes the model parameters, Jpriv denotes the perturbed objective function due

to the perturbed input, θpriv denotes the parameters of the final model, N is the size of the

training dataset, (x̂(i), ŷ(i)) denote the perturbed data and l is the loss function.

Gradient Perturbation. Gradient perturbation [79, 12, 76, 2, 3, 86, 59, 96] injects cali-

brated noise to the gradient during training with the following objective function and update

steps.

J (θt) =
1

N

N∑
i=1

l(xi, yi, θt),

θt+1 = θt − η(∇J (θt) + p),

where θt denotes the parameter at training step t, ∇J (θt) denotes the gradient, and p

denotes the gradient perturbation. The gradient ∇J (θt) is bounded by the clipping norm

or constrained by Lipschitz continuity of loss function l.

18

3.2 Certified Robustness

Adversarial Examples. Adversarial examples are designed by adding small perturbations

to clean examples, which are imperceptible to human eyes but can easily fool a deep learn-

ing model to produce incorrect output.

Generating an adversarial example x′ can be expressed as a constrained optimization

problem. For untargeted adversarial examples, it can be expressed as: given a clean input

x, its label y, and a classifier f , minimize L(x,x′), such that the prediction score at label

y is not the maximum among all labels: fy(x′) 6= maxj=1,..,c fj(x
′), where L is a distance

metric, such as l2 or l∞, and c is the number of classes. The quality of adversarial examples

is measured by both the perturbation scale, i.e. L(x,x′), and the misclassfication rate or

attack success rate.

Certified Robustness. Certified robustness is a principled technique to defend against

adversarial examples. A classifier f is certified robust if for any input x ∈ Rv, its prediction

maxj=1,...,c fj(x) is constant within some set around x, that is:

∀τ ∈ lp(κ) : fy(x + τ) > max
j 6=y

fj(x + τ),

where y is the label of x, and lp(κ) denotes ∀τ ∈ Rv, ‖τ‖p ≤ κ.

Randomized Smoothing. Randomized smoothing is the state-of-the-art approach to achieve

certified robustness. Given a classifier f , the random smoothing technique converts f into

a smooth classifier g, s.t., for input x, f̃ returns

f̃(x) = argmax
j=1,...,c

Pr[f(x + b) = j],

where b ∼ N (0, σ2I).

19

Randomized smoothing calculates a certified radius κ, s.t.,

∀τ ∈ lp(κ) : f̃(x + τ) = y,

where y is the label of x, and lp(κ) denotes ∀τ ∈ Rv, ‖τ‖p ≤ κ.

Theoretically, randomized smoothing only works during the testing phase by injecting

input perturbation to the testing samples. However, there is a common practice during the

training phase, which perturbs the training samples with the input perturbation to improve

the utility performance.

3.3 Model Architectures

VAE. Variational Autoencoder (VAE) [50] is a fundamental generative model, which in-

cludes an encoder and a decoder. The encoder transforms input into mean and standard

deviation of Gaussian distribution, and the decoder takes samples from this distribution

and generate synthetic data. The objective function of VAE contains two parts: a recon-

struction loss and a Kullback–Leibler divergence loss that works on the distribution in VAE

and the standard Gaussian distribution.

GAN. Generative Adversarial Network (GAN) [37] is one of the most powerful and pop-

ular generative model in deep learning, which contains a generator and a discriminator.

During training, these two parts compete with each other and are optimized in an adversar-

ial process. The discriminator aims to distinguish real data from synthetic data generated by

generator, while the generator aims to generate synthetic data that cannot be distinguished.

WGAN. Wasserstein-GAN (WGAN) [5, 39] is an improved variant of GAN, which 1)

creatively leverages Wasserstein distance as the measure of discrimination, and 2) applies

gradient penalty to guarantee Lipschitz property. WGAN has been proved by a large vol-

ume of researches as a powerful variant of GAN.

20

AAE. Adversarial Autoencoder (AAE) [65] can be regarded as a variant, which leverages a

discriminator to distinguish the central hidden state in AE and the samples from a standard

Gaussian distribution. AAE utilizes this discrimination to replace the Kullback–Leibler

divergence used in traditional VAE.

VAE-GAN. VAE-GAN [53] can also be regarded as a variant of VAE, which adds a dis-

criminator to distinguish real data from reconstructed data and synthetic data. Besides the

reconstruction loss and the Kullback–Leibler divergence loss, VAE-GAN requires discrim-

inate loss during training.

DAAE. Dual Adversarial Autoencoder (DAAE) [57] combines AAE and VAE-GAN to-

gether by leveraging two discriminators to not only distinguish the central hidden state in

AE, but also distinguish real data from reconstructed data and synthetic data. Its objective

function contains the reconstruction loss and discrimination loss in two GANs.

21

Chapter 4

IGAMT: Synthesizing Temporal

Electronic Health Records with

Differential Privacy

4.1 Overview

Recent studies have shown that generating private electronic health records (EHRs) is in-

creasingly meaningful for a wide range of clinical usage. However, there are still three ma-

jor challenges: 1) The heterogeneous characteristic of containing both temporal and non-

temporal features in EHRs makes it difficult to employ deep learning models. 2) Missing

values and irregular measures of EHRs frequently encountered in practice pose further chal-

lenges. 3) The privacy issue of generated data can incur sensitive information leakage. In

this paper, we propose a novel model, Imitative Generative Adversarial Mixed-embedding

Transformer (IGAMT), to solve these three challenges. We leverage state-of-the-art ar-

chitecture and networks to not only learn the characteristics of EHRs with heterogeneous

features, missing values and irregular measures, but also generate synthetic data of high

quality. We also propose a novel architecture to reduce the randomization brought by dif-

22

ferential privacy technique while still keeping the same level of privacy guarantee. We

conduct a large volume of experiments to prove that IGAMT significantly outperforms

baselines and we also conduct extensive experiments about ablation cases to prove the ef-

fectiveness of the architecture and techniques applied in IGAMT.

Figure 4.1: The framework of IGAMT, where Dec in red dashed box is virtually separated into two
parts and shares the latter with Deci.

4.2 Imitative Generative Adversarial Mixed-embedding Trans-

former

As introduced in Section 1, generating differentially private EHRs with heterogeneous fea-

tures, missing values and irregular measures has three challenges: 1) Representation learn-

ing of heterogeneous features, missing values and irregular measures. 2) Generation of

synthetic EHR satisfying these characteristics. 3) Achieving differential privacy without

compromising utility performance. In this section, we will 1) give an overview of our

novel model IGAMT (Fig. 4.1), 2) present how IGAMT solves three challenges, and 3)

introduce the training and synthesization of IGAMT.

4.2.1 Overview

As can be seen in Figure 4.1, IGAMT has a complicated architecture. It contains a seq2seq

AE and three GANs: 1)Enc andDec compose the seq2seq AE for representation learning.

2) Two GANs are crafted for Synthesization: G and Dz compose one GAN; G, Dec and

23

Dx compose another GAN. 3) G, Deci, the last layer of Dec and Dx compose the last

GAN to synthesize EHRs while providing DP guarantee. Deci is the imitator we creatively

proposed to reduce the randomization from gradient perturbation when achieving DP.

Figure 4.2: EHR raw data, preprocessing and missing value mask, where “/” denotes the missing
value in features.

4.2.2 Representation Learning

In IGAMT, Enc and Dec compose the sequence-to-sequence autoencoder (seq2seq AE).

Different from traditional autoencoder, seq2seq AE takes data with multiple time steps and

generate data shifted with one time step. In IGAMT, non-temporal features are padded as

the start features and concatenated to the start of input data. Thus seq2seq AE of IGAMT

can learn characteristic of both non-temporal and temporal features during optimization.

Moreover, seq2seq AE adopts the transformer [85] as the architecture and incorporates

time embedding and non-temporal features embeddings into it, which further improve its

capability of capturing heterogeneous characteristics. The detailed illustration of seq2seq

AE can be found in Figure 1 of Appendix .1.

To capture missing values in EHRs, masks (Fig. 4.2) are crafted to element-wisely

mark-off the missing value positions. Seq2seq AE of IGAMT will take both EHR data

x and its mask m as the input, and generate corresponding synthetic data and mask. To

capture irregular measures, time steps are extracted from EHRs and transformed into em-

24

bedding vectors. These embbeddings are then applied to the hidden states during training.

Other non-temporal features like gender and race are also transformed into embedding

vectors respectively and are broadcasted to all time steps before applying to hidden states.

Time embedding renders IGAMT capturing irregular measures, and non-temporal features

embeddings renders it further learning from non-temporal features. The details of embed-

dings can be found in Figure 4.3.

Figure 4.3: An illustration of time embedding and non-temporal feature embeddings, where “+”
denotes the element-wise addition.

Losses on masked data. IGAMT takes both EHRs and missing value masks as input

during training. Loss functions are thus designed on the masked data that element-wisely

multiply EHR with its corresponding mask. We claim that losses on masked data can render

IGAMT capturing characteristics related to missing values. In remains of Section 6.2, the

element-wise multiplication is represented by “×” and the masked data is represented by

“data × mask”.

Loss for representation learning. Sequence-to-sequence transformer autoencoder with

specific embeddings in IGAMT is leveraged to capture the characteristics related to hetero-

geneous features, missing values and irregular measures. This autoencoder takes x and its

mask m as the input and generate synthetic data x̂ and mask m̂, its reconstruction loss is

either the cross-entropy loss (xEntropy):

lrecon = xEntropy(x×m, x̂× m̂) + xEntropy(m, m̂),

25

or the mean square error (MSE):

lrecon = MSE(x×m, x̂× m̂) + MSE(m, m̂).

In our work, we employ the xEntropy as reconnstruction loss.

4.2.3 Generation

In IGAMT, GANs collaborates with seq2seq AE to generate synthetic EHRs with afore-

mentioned sophisticated characteristics. The GeneratorG of GAN takes the random vectors

s sampled from standard Gaussian distribution as the input and generate synthetic hidden

state z̃. z̃ will be fed into Dec of seq2seq AE to generate corresponding synthetic data x̃

and mask m̃. Because during the reconstruction process of seq2seq AE, the hidden state

z from Enc will be optimized to contain compressed information of EHRs. To improve

the synthesization capability of generator, we leverage a discriminator Dz to discriminate

z from z̃. This discriminator Dz and the generator G compose a GAN in IGAMT.

Besides x̃ and mask m̃, another source of synthetic data is from the novel structure of

IGAMT imitator Deci, which has the same architecture as Dec except that Deci excludes

the last layer of Dec. As shown in Figure 4.1, Dec is virtually separated into two parts:

last layer and all other layers. Deci takes z̃ from G as input, and the output of Deci will

firstly go through the last layer of Dec and then generate corresponding synthetic data x̄

and mask m̄.

To discriminate origin data and mask from others, discriminator Dx is crafted to take

four different sources of data and masks as input: 1) the origin data x and its mask m, 2)

the reconstructed data x̂ and mask m̂ from seq2seq AE, 3) the data and mask generated

from z̃, i.e., x̃ and m̃ , and 4) x̄ and m̄ from Deci. Therefore, discriminator Dx, Dec, and

G compose one GAN in IGAMT, and G, Deci, the last layer of Dec works with Dx to

compose the last GAN in IGAMT. We claim that we utilize WGAN in IGAMT and will

26

not differentiate between GAN and WGAN in the remaining of this paper. Any statement

about GAN should be regraded as WGAN without explicit clarification.

Losses for generation. Deci and Dec are generators in two GANs resepectively, they

share the last layer of Dec and the discriminator Dx. The discriminate loss for Dx is as

follows:

ldx =(Dx(x̂× m̂) +Dx(x̃× m̃) +Dx(x̄× m̄))−

3Dx(x×m),

the discriminate loss for Dec is as follows:

lde = −(Dx(x̂× m̂) +Dx(x̃× m̃)),

and the loss for imitator Deci is as follows:

ldi = −Dx(x̄× m̄).

As shown in these definitions, ldx encourages Dx to discriminate x, m from all other

synthetic data and masks; lde and ldi respectively encourages Dec and Deci to generate

synthetic data that are more close to real data. Because reconstruction loss lrecon renders

autoencoder capturing characteristics of real EHRs, the reconstructed data x̂ and mask m̂

are more challenging to be distinguished by Dx, which, in certain degree, benefits the gen-

eration of other two sources of synthetic data and masks.

For the GAN consists of the encoder Enc, the generator G and discriminator Dz. In

this GAN, Enc provides “real” hidden states z, G synthesize “fake” states z̃, and Dz aims

to distinguish z from z̃. Therefore, the discriminate loss for Dz is:

ldz = Dz(z̃)−Dz(z),

27

the loss for Enc is:

len = Dz(z),

and the loss for G is:

lg = −Dz(z̃).

Since the central hidden state z captures the compressed characteristics of EHR given the

reconstruction optimization on autoencoder, z̃ that is more similar to z can encourage Dec

and Deci to generate synthetic data and masks that are more similar to x and m.

4.2.4 Imitation

Directly applying DP technique to IGAMT without imitator Deci will bring overwhelmed

randomization to training process. Because both the decoder Dec and the discriminator

Dz access the origin data, in order to release a differentially private generative model,

perturbations require to be added to the gradients of Dec and Dz. As a comparison, DP

GANs only adds gradient perturbations to the discriminators. Since the parameter size

of Dec is much larger than discriminators, directly achieving DP on Dec and Dz will

introduce overwhelmed randomization and thus degrades the utility performance.

To reduce the DP randomization in training, we leverage the novel structure of IGAMT,

imitator Deci, which works with G the last layer of Dec and Dx to compose an extra

GAN in IGAMT. This GAN is optimized in an adversarial process and encourages Deci

to imitate the behavior of Dec during training. Compared with Dec, Deci will not directly

access origin data x and mask m, and all indirect accesses come from back-propagation

during training.

As shown in Figure 4.1, IGAMT has two configurations of generative models: 1) Dec

based model, which includes generator G and decoder Dec, and 2) Deci based model,

which includes D, Deci and last layer of Dec. In Dec based model, since Dec accesses

origin data x and m, perturbations require to be added to the gradients of Dec and G

28

to guarantee DP. While in Deci based model, since only the last layer of Dec, Dx and

Dz access origin data and mask, gradient perturbations on these parts and post-processing

property can guarantee Deci and G to be DP.

Comparing these two configurations, we observe that Deci based model can avoid the

complex architecture of Dec when achieving DP, and thus reduces overwhelmed random-

ization introduced by only adding gradient perturbations to Dx, Dz and last layer of Dec.

The only potential concern is whether Deci can generate synthetic data as “real” as Dec

or even as the real data. We claim that by leveraging a complicated and well-designed ob-

jective function, Deci can imitate the behaviors of Dec and learn characteristics from real

EHRs and other sources of synthetic EHRs.

Loss for imitation. The imitative loss is creatively proposed to encourage the imitation

of Dec’s behaviors and the learning of characteristics from different sources of EHRs. We

claim that a well-learned Deci can not only synthesize EHRs of high quality, but also save

privacy costs during training. The loss for imitator Deci is as follows:

lim =MSE(x̂× m̂, x̄× m̄) + MSE(x̃× m̃, x̄× m̄)+

MSE(x×m, x̄× m̄).

As can be seen in this definition, lim encourages Deci to generate x̄ and m̄ that close to

real data and other two sources of synthetic data, which encourages Deci to imitate the

behaviors of Dec, and learn characteristics from real EHRs and other sources of synthetic

EHRs.

4.2.5 Training

In previous sub-sections, we have introduced different losses to solve different challenges.

During training, these losses works with different parts of IGAMT. In summary, the loss to

29

Algorithm 1: Training of IGAMT.
Input: preprocessed training EHRs x and masks m, total training epoch T , gradient perturbation

scale σ, learning rate η, batch size B, discriminators update frequency base fb and
frequency hit fh, gradient clipping norm C

1 t = 0;
2 initialize parameters of IGAMT;
3 while t < T do
4 get mini-batch EHRs x(t) and masks m(t);
5 z(t) = Enc(x(t),m(t));
6 x̂(t), m̂(t) = Dec(x(t),m(t), z(t));
7 z̃(t) = G(B);
8 start features sf are sampled, start masks sm are crafted;
9 x̂(t), m̂(t) = Decsyn(sf , sm, z̃(t));

10 x̄(t), m̄(t) = Imi(sf , sm, z̃(t));
11 if t % fb ¡ fh then

// Update Dx with perturbation
12 ldx = (Dx(x̂(t) × m̂(t)) +Dx(x̃(t) × m̃(t)) +Dx(x̄(t) × m̄)(t))−Dx(x(t) ×m(t));
13 calculate the gradient: graddx,(t) = 1

B∇θdx,(t)
ldx;

14 clip the gradient: graddx,(t) = graddx,(t)/max(1, ‖graddx,(t)‖/C);
15 update parameter of Dx: θdx,(t+1) = θdx,(t) − η (graddx,(t) +N (0, σ2));

// Update Dz with perturbation
16 ldz = Dz(z̃(t))−Dz(z(t));
17 calculate the gradient: graddz,(t) = 1

B∇θdz,(t) ldz;
18 clip the gradient: graddz,(t) = graddz,(t)/max(1, ‖graddz,(t)‖/C);
19 update parameter of Dz: θdz,(t+1) = θdz,(t) − η (graddz,(t) +N (0, σ2));
20 end
21 denote parameters of Dec excluding the last layer as θprev;
22 denote parameters of Dec’s last layer as θlast;

// Update Dec excluding the last layer
23 ldec = xEntropy(x(t) ×m(t), x̂(t) × m̂(t)) + xEntropy(m(t), m̂(t))− (Dx(x̂(t) × m̂(t)) +

Dx(x̃(t) × m̃(t)));
24 θprev,(t+1) = θprev,(t) − η 1

B∇θprev,(t)
ldec;

// Update Enc
25 lenc = xEntropy(x(t) ×m(t), x̂(t+1) × m̂(t)) + xEntropy(m(t), m̂(t)) + Dz(z(t));
26 update parameter of Enc: θenc,(t+1) = θenc,(t) − η 1

B∇θenc,(t)
lenc;

// Update Dec’s last layer with perturbation
27 calculate the gradient: gradlast,(t) = 1

B∇θlast,(t)
ldec;

28 clip the gradient: gradlast,(t) = gradlast,(t)/max(1, ‖gradlast,(t)‖/C);
29 θlast,(t+1) = θlast,(t) − η (gradlast,(t) +N (0, σ2));

// Update Deci
30 limi = −Dx(x̄(t) × m̄(t)) + MSE(x̂(t) × m̂(t), x̄(t) × m̄(t)) + MSE(x̃(t) × m̃(t), x̄(t) ×

m̄(t)) + MSE(x(t) ×m(t), x̄(t) × m̄(t));
31 update parameter of Deci: θimi,(t+1) = θimi,(t) − η 1

B∇θimi,(t)
limi;

// Update G
32 lg = −Dz(z̃(t));
33 update parameter of G: θg,(t+1) = θg,(t) − η 1

B∇θg,(t) lg;
34 end
35 θ(T) := {θdx,(T), θdz,(T), θprev,(T), θlast,(T), θimi,(T), θg,(T)};
36 Output θ(T) and compute overall privacy cost through moments accountant.

30

update Dx is

ldx =(Dx(x̂× m̂) +Dx(x̃× m̃) +Dx(x̄× m̄))−

3Dx(x×m);

(4.1)

the loss to update Dz is

ldz = Dz(z̃)−Dz(z); (4.2)

the loss to update Dec is

ldec =lrecon + lde

=xEntropy(x×m, x̂× m̂) + xEntropy(m, m̂)−

(Dx(x̂× m̂) +Dx(x̃× m̃));

(4.3)

the loss to update Enc is,

lenc =lrecon + len

=xEntropy(x×m, x̂× m̂) + xEntropy(m, m̂) + Dz(z),

(4.4)

the loss to update Deci is,

limi =ldi + lim

=−Dx(x̄× m̄) + MSE(x̂× m̂, x̄× m̄)+

MSE(x̃× m̃, x̄× m̄) + MSE(x×m, x̄× m̄);

(4.5)

the loss to update G is

lg = −Dz(z̃). (4.6)

With these objective functions, different parts of IGAMT can be optimized during train-

ing. Algorithm 1 shows the training process of IGAMT. In this algorithm, we choose

xEntropy for lrecon and use subscript (t) to denote the data at iteration t. At the start of

31

training,Enc andDecwork as a autoencoder to reconstruct EHRs and masks: 1)Enc takes

a batch of EHRs x(t) and masks m(t) as input and outputs central hidden states z(t) (line

5). 2) Dec then generates synthetic x̂(t) and m̂(t) (line 6). Dec then works as a generator

(line 9), which takes start features sf , start masks sm and synhtetic central states z̃(t) from

G as inputs, and synthesize x̂(t) and m̂(t). Different from reconstruction process of Dec,

in synthesization process, Dec firstly generates synthetic output at first time step, and then

it repeats this synthesization by taking output generated at previous time step as input and

generating output of current step. We use Decsyn to distinguish the synthesization from

reconstruction of Dec. The synthesization of Deci is similar to Decsyn, which generates

x̄(t) and m̄(t) (line 10).

The remains of iteration t (line 11 - 27) show the optimization of different parts in

IGAMT, which can be roughly divided into two stages: stage of updating discriminators

(line 11 - 16) and stage of updating generators (line 17 - 27). In the former stage, the

frequency of updating discriminators can be controlled by hyper-parameters fb and fh. To

guarantee DP, gradient perturbations are added when updating discriminators (line 13, 15)

and last layer of Dec (line 23).

4.2.6 DP and Synthesization

After training, the differentially private generative model of IGAMT can be leveraged to

synthesize EHRs. The total privacy budget can be calculated follows Theorem 1 in [2], i.e.,

Theorem 2. Given training batch size B, the total training size N , the number of training

steps T , there exists constants c1 and c2 for any ε < c1(B
N

)2T , Algorithm 1 is (ε, δ)-DP for

any δ > 0, if we choose

σ ≥ c2

B/N
√
T log(1/δ)

ε
.

As can be seen in Figure 4.4, this generative model contains G, Deci and the last layer

of Dec.

32

Figure 4.4: An illustration of synthesization.

The synthesization process can be divided into five stages. 1) Sampling of random

states: random states s are sampled from a Gaussian distribution. 2) Generation of central

hidden states: G takes s as the input and generate central hidden states z̃. 3) Sampling

of start features and masks: non-temporal features are randomly sampled from their cor-

responding ranges and assembled as the start features, their masks are crafted correspond-

ingly. 4) Generation of temporal features and masks: Deci and the last layer takes features

and masks generated at previous time steps as input and output features and masks for cur-

rent time step. The features and masks at time step 0 are the start features and masks from

stage 3. 5) Assembling: start and temporal features are concatenated to obtain complete

EHRs, which are then marked with missing values by masks.

The synthetic EHRs from the last stage of this process includes heterogeneous features,

missing values and irregular measures. Moreover, because the generative model is differ-

entially private, these synthetic EHRs are correspondingly privacy preserving.

4.3 Experiments

In this section, we prove that IGAMT can generate DP synthetic EHRs 1) that are most

visually-similar to real EHRs after PCA [31] and 2) that achieves highest similarity to real

EHRs on downstream application such as clustering.

33

4.3.1 Configurations

Baseline and ablation studies. We slightly adapt the DAAE code to render it capable

of taking and generating both EHR data and missing value mask. We also build three

more baselines: GAN, VAE-GAN and AAE, and all of them take and generate EHR

and mask. Besides these baselines, we build four ablation cases: IGAMT w/o emb,

IGAMT only t emb, IGAMT w/o imi and IGAMT w/o imi var. IGAMT w/o emb

is IGAMT without imitator and any embedding, IGAMT only t emb is IGAMT without

imitator but with only time embedding, IGAMT w/o imi is IGAMT without imitator,

and IGAMT w/o imi var is a variant of IGAMT w/o imi, which enhances Dx with

an extra discriminator Dm, which has been introduced in Appendix .1.

Implementation details. All models are implemented using Pytorch 1.8.1 and trained

with a system equipped with Nvidia GeForce RTX 2070S. The learning rates for different

parts of IGAMT are different: 5e − 4 for Enc, Dec, G and Deci; 1e − 4 for Dx and

Dz. We leverage exponential learning rate decay with rates being 0.99 for all parts. For

DP training, we set the ε as 1.5, δ as 1e − 5, and use moment accountant to analyze DP

cost. The detailed architectures for these models and the code are available here: https:

//github.com/urihsam/Temporal-Synthesization.

Evaluation metrics. Different evaluation metrics are used in out experiments. 1) PCA

takes each record as a vector and reduces the dimension of data. It can visually display

the result and show the difference between real and synthetic data. 2) Clustering with

Minkowski distance. Clustering is a commonly-used application for unlabeled data, two

similar datasets can have similar clustering results. We use Minkowski distance to measure

this similarity of clustering centers from two datasets. The smaller minkowski distance is,

the higher similarity is. 3) Clustering with cosine similarity. Cosine similarity is another

similarity measurement. It measures the cosine of the angle between two vectors projected

in a multi-dimensional space. We also apply it to two sets of clustering centers.

https://github.com/urihsam/Temporal-Synthesization
https://github.com/urihsam/Temporal-Synthesization

34

4.3.2 EHR and Preprocessing

EHRs. We use two EHR datasets in this work. One is Physionet MIMIC-IV-ED [36,

46]. The other one is from Emory Synergy project, which include “GLUCOSE”, “DBP”,

“SBP”, “BMI” and several other medical features. The left of the Figure 4.2 shows an

example of EHR raw data, which includes two different types of features: non-temporal

and temporal features, and missing values denoted as “/” exist among different features

at different time steps. To better capture these features, EHR data is preprocessed before

feeding into the model. After pre-processing, each record has 50 time steps with each time

step having 9 and 10 features for MIMIC-IV-ED and Emory Synergy respectively. Because

of the page limitation, we only show results of MIMIC-IV-ED in this section, the results of

Emory Synergy will be shown in Appendix .2.

Non-temporal features preprocessing. For non-temporal features, we calculate the max-

imum and minimum values among all EHRs in the training dataset, and scale them to the

range of [0, 1]. For discrete features, we transform them into one-hot vectors. For instance

in Figure 4.2, start time 38.8 and age 40 are scaled to 0.049 and 0.63 respectively, and

discrete features race 2 and gender 1 are transformed into

1

0

0

and

1

0

respectively. These

transformed features along with zero padding are concatenated together to form the start

features, which have the same size as the temporal features of each time step.

Temporal features preprocessing. EHRs contain several medical temporal features and

an extra time features. For medical temporal features, we calculate the maximum and

minimum values among all EHRs in the training data, and scale them to the range of [0, 1].

For time features, we first calculate the increment of two neighbouring time steps, and add

0 as the initial increment. Then we follow the similar process to scale these time increments

to the range of [0, 1]. We also set the maximum number of time steps to 50, and pad some

records having fewer time steps with 0.

35

Missing values and masks. As can be seen in Figure 4.2, EHR raw data contains missing

values among different temporal features at different time steps. We first craft the masks

to mark-off these missing values with 0 and mark on others with 1, and then replace the

missing values with 0’s among EHR features.

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
VAE

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
GAN

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
VAE_GAN

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
AAE

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
DAAE

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
VAE_DP

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
GAN_DP

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
VAE_GAN_DP

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
AAE_DP

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
DAAE_DP

Figure 4.5: PCA for real EHRs and synthetic EHRs from baselines.

−1 0 1 2 3 4 5

−1.0

−0.5

0.0

0.5

1.0

1.5 Real
IGAMT_w/o_emb

−2 −1 0 1 2 3 4

−1

0

1

2

3
Real
IGAMT_only_t_emb

−1 0 1 2 3

−1

0

1

2

3

4
Real
IGAMT_w/o_imi

−1 0 1 2 3

−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0 Real

IGAMT_w/o_imi_var

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
IGAMT

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
IGAMT_DP_w/o_emb

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
IGAMT_DP_only_t_emb

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
IGAMT_DP_w/o_imi

−1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0

1.5
Real
IGAMT_DP_w/o_imi_var

−2 −1 0 1 2 3

−1

0

1

2

3 Real
IGAMT_DP

Figure 4.6: PCA for real EHRs and synthetic EHRs from ablation cases and IGAMT.

4.3.3 Data Visualization and Comparison

PCA Visualization

We use PCA to compress the real and synthetic data to 2 dimensional space and visually

show the difference between real and synthetic EHRs. In Figure 4.5 and 4.6, the blue dots

represents the compressed real EHRs and green dots represents the compressed synhtetic

EHRs from different models.

Baselines. The first row of Figure 4.5 shows the results from five baselines; and second

row shows the results from DP version of models corresponding to the first row. As can be

observed, none of these models shows a similar pattern as the real EHRs. This indicates that

1) the architectures of these baseline models are not well-designed for the synthesization of

temporal EHRs with missing values and irregular measures, and 2) DP technique applied

during training can degrade the performance of models.

36

Table 4.1: Overall similarity with σ = 1.0.

Model Minkowski Distance Cosine Similarity

V AEDP 5.907236 0.294431
GANDP 5.566364 −0.008107

V AE GANDP 5.873504 0.015184
AAEDP 5.555181 0.000039
DAAEDP 5.578734 0.000111

IGAMT w/o embDP 5.547475 0.026667
IGAMT only t embDP 5.486770 0.171710
IGAMT w/o imiDP 5.174218 0.239063

IGAMT w/o imi varDP 5.111574 0.240675
IGAMTDP 3.974107 0.542739

IGAMT and ablation cases. The first row of Figure 4.6 shows the results from four

ablation models and IGAMT; and the second row also shows the DP version of these

models. As can be seen, for non-DP version of models in the first row, DGAMT and

IGAMT w/o imi var show better results than others. However, for DP version in the

second row, IGAMT provides the best result. For these four ablation cases and their corre-

sponding DP versions, the model architecture becomes more and more complex from left

to right. Therefore the results indicate that 1) for non-DP models, a more complex DGAT-

based architecture can result in a better performance on synthesization, and 2) for DP mod-

els, a more complex architecture cannot improve the performance when the perturbation is

directly applied on the gradient of generative parts. IGAMT leverages imitator to circum-

vent this challenge and adds perturbation on discriminate parts. As a result, IGAMT can

not only have an architecture as complex as IGAMT w/o imi var, but also reduce the

randomization introduced by DP and achieve best performance.

0 10 20 30 40 50
Time steps

0.0

0.2

0.4

0.6

0.8

Fe
at
ur
e
va
lu
es

REAL
VAE_DP
GAN_DP
VAE_GAN_DP
AAE_DP
DAAE_DP
IGAMT_DP_w/o_emb
IGAMT_DP_only_t_emb
IGAMT_DP_w/o_imi
IGAMT_DP_w/o_imi_var
IGAMT_DP

(a) Feature #0

0 10 20 30 40 50
Time steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fe
at
ur
e
va
lu
es

REAL
VAE_DP
GAN_DP
VAE_GAN_DP
AAE_DP
DAAE_DP
IGAMT_DP_w/o_emb
IGAMT_DP_only_t_emb
IGAMT_DP_w/o_imi
IGAMT_DP_w/o_imi_var
IGAMT_DP

(b) Feature #4

0 10 20 30 40 50
Time steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fe
at
ur
e
va
lu
es

REAL
VAE_DP
GAN_DP
VAE_GAN_DP
AAE_DP
DAAE_DP
IGAMT_DP_w/o_emb
IGAMT_DP_only_t_emb
IGAMT_DP_w/o_imi
IGAMT_DP_w/o_imi_var
IGAMT_DP

(c) Feature #7
Figure 4.7: Visualization of three features among all time steps

37

Table 4.2: Temporal feature similarity with σ = 1.0.

Model
Feature #0 Feature #4 Feature #7

Minko Cosine Minko Cosine Minko Cosine

V AEDP 1.098199 −0.04414 0.608728 0.404317 1.082422 −0.304460
GANDP 0.745575 −0.026782 0.778295 0.409500 1.461837 −0.348899

V AE GANDP 1.018855 0.008946 0.470880 0.321513 0.923906 −0.213162
AAEDP 0.801268 −0.000005 0.829536 0.069183 1.433803 −0.054064
DAAEDP 0.724391 −0.012399 0.526601 0.342976 1.230185 −0.241429

IGAMT w/o embDP 0.799430 −0.07822 0.756629 −0.307154 1.407064 −0.070328
IGAMT only t embDP 1.061087 0.047748 1.335685 0.270278 1.285006 0.335499
IGAMT w/o imiDP 1.502581 0.041217 0.482319 0.514935 1.130135 0.310963

IGAMT w/o imi varDP 0.742870 0.008119 0.585838 0.485914 1.164596 0.359482
IGAMTDP 0.428964 0.38103 0.389896 0.580232 0.785058 0.333837

Similarity Comparison

We calculate overall similarity between real clusters and synthetic clusters as follows, 1)

pairing centers among real and synthetic clustering centers, 2) calculating pairwise similar-

ity (e.g., Minkowski distances or cosine similarity) for these pairs, and 3) calculating the

summation over all pairwise Minkowski distances or the average over all pairwise cosine

similarity. As shown in Table 4.1, IGAMT outperforms all other models by achieving the

smallest Minkowski distance and highest cosine similarity overall models.

4.3.4 Temporal Features Comparison

To provide a more detailed comparison of temporal features between real and synthetic

EHRs, we pick three different temporal features, apply clustering on these features sepa-

rately and calculate the similarity between clustering centers. We set the number of clusters

as 3.

Table 4.2 shows the similarity results of different models, where “Feature #0”, “Feature

#4”, “Feature #7” denote “time in year”, “heart rate”, “SBP” in temporal features respec-

tively, “Minko” denotes Minkowski distance and “Cosine” denotes cosine similarity. As

can be seen in this table, IGAMT almost dominate all other models w.r.t. both Minkowski

distance and cosine similarity among three different features, esp. on feature #0 (“time

38

in year”), which proves that IGAMT not only captures the sophisticated characteristics of

EHR features, but also preserves DP of training data with less randomization.

Besides the similarity comparison, we randomly samples 100 EHRs from real test data

and synthetic data from DP models, and plot the average value of three selected features

over 50 time steps. The results is as shown in Figure 4.7. Among different colored curves,

the blue curve represents the real EHRs, black represents EHRs from IGAMTȦs can be

seen in all three feature plots, black curves partially match the patterns of real features and

outperform curves of all other models.

0 1
Real

0

500

1000

0 1
VAE_DP

0 1
GAN_DP

0 1
VAE_GAN_DP

0 1
AAE_DP

0 1
DAAE_DP

0 1
IGAMT_DP_w/o_emb

0 1
IGAMT_DP_only_t_emb

0 1
IGAMT_DP_w/o_imi

0 1
IGAMT_DP_w/o_imi_var

0 1
IGAMT_DP

Missing value percentage

of

 sa
m

pl
es

Figure 4.8: Missing values histogram of different EHRs

0.0 0.5
Real

0

50

100

150

0.0 0.5
VAE_DP

0.0 0.5
GAN_DP

0.0 0.5
VAE_GAN_DP

0.0 0.5
AAE_DP

0.0 0.5
DAAE_DP

0.0 0.5
IGAMT_DP_w/o_emb

0.0 0.5
IGAMT_DP_only_t_emb

0.0 0.5
IGAMT_DP_w/o_imi

0.0 0.5
IGAMT_DP_w/o_imi_var

0.0 0.5
IGAMT_DP

Missing value percentage

of
 sa

m
pl
es

Figure 4.9: Irregular measures histogram of different EHRs

4.3.5 Missing Values and Irregular Measures

Missing values and Irregular Measures commonly exist in real EHRs. We incorporate

missing value masks and time embedding into complicated architecture to capture these

characteristics. To illustrate the statistics of missing values and irregular measures in EHRs,

we 1) count the mark-off positions per feature in masks and plot the histogram of counted

number averaged over features among 1000 samples, and 2) calculate the increased time

between two neighbouring time steps and plot the histogram of increased time averaged

over time steps among 1000 samples.

The results of missing values and irregular measures can be found in Figure 4.8 and Fig-

ure 4.9 respectively. As can be seen, IGAMT and ablation models contains time embedding

have better performance than models without time embedding (i.e., baseline models and

39

IGAMT w/o emb). It is intuitive to explain for irregular measures, since time embedding

can capture irregular characteristics and enhance the performance. For missing values, it

reflects two points: 1) baseline architectures are not complicated enough to capture missing

value characteristics, and 2) time embedding and the grasp of irregular characteristic can

enhance model’s capability of learning missing values.

0.059 0.235 0.945 5.87 138.5 853.4
Epsilon

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
os
in
e
Si
m
ila
rit
y

Real
VAE_DP
GAN_DP
VAE_GAN_DP
AAE_DP
DAAE_DP
IGAMT_DP_w/o_emb
IGAMT_DP_only_t_emb
IGAMT_DP_w/o_imi
IGAMT_DP_w/o_imi_var
IGAMT_DP

0.059 0.235 0.945 5.87 138.5 853.4
Epsilon

0

2

4

6

8

10

12

14

16

M
in
 o
w
s
i D

is
ta
nc
e

Real
VAE_DP
GAN_DP
VAE_GAN_DP
AAE_DP
DAAE_DP
IGAMT_DP_w/o_emb
IGAMT_DP_only_t_emb
IGAMT_DP_w/o_imi
IGAMT_DP_w/o_imi_var
IGAMT_DP

Figure 4.10: Overall Minkowski distance and cosine similarity on different models with different ε.

5.0 2.0 1.0 0.5 0.2 0.1
Sigma

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
os
in
e
Si
m
ila
rit
y

Real
VAE_DP
GAN_DP
VAE_GAN_DP
AAE_DP
DAAE_DP
IGAMT_DP_w/o_emb
IGAMT_DP_only_t_emb
IGAMT_DP_w/o_imi
IGAMT_DP_w/o_imi_var
IGAMT_DP

5.0 2.0 1.0 0.5 0.2 0.1
Sigma

0

2

4

6

8

10

12

14

16

M
in
ko
w
sk
i D
is
ta
nc
e

Real
VAE_DP
GAN_DP
VAE_GAN_DP
AAE_DP
DAAE_DP
IGAMT_DP_w/o_emb
IGAMT_DP_only_t_emb
IGAMT_DP_w/o_imi
IGAMT_DP_w/o_imi_var
IGAMT_DP

Figure 4.11: Overall Minkowski distance and cosine similarity on different models with different σ.

4.3.6 Differential Privacy

We plot the overall Minkowski distance and cosine similarity of models with different DP

budget ε and different perturbation standard deviation σ. The results are shown in Figure

4.10 and Figure 4.11. These figures show that 1) when σ < 2.0 (ε > 0.235), IGAMT

outperforms all other models; 2) when σ > 2.0, the DP budget ε < 0.235, which brings

overwhelmed randomization to training process, and all models suffer, esp. those models

having complex structures.

In summary, the experimental results w.r.t. overall Minkowski distance and cosine

similarity show that IGAMT can achieve better performance than all other models.

40

Chapter 5

Generating Adversarial Examples with

Distance Constrained Adversarial

Imitation Networks

5.1 Overview

Recent studies have shown that neural networks are vulnerable to adversarial examples

that are designed by adding small perturbations to clean examples in order to trick the clas-

sifier to misclassify. Various approaches based on optimization have been proposed for

generating adversarial examples with minimal perturbation. Model training based methods

such as Adversarial Transformation Network (ATN) provide a fundamentally new way to

directly transform an input into an adversarial example, which promises fast generation

of adversarial examples. However, the adversarial examples may have suboptimal quality

with significantly large perturbations or low attack success rate at small perturbations. In

this paper, we propose a distance constrained Adversarial Imitation Network (AIN), which

enhances ATN and is capable of generating both targeted and untargeted examples with an

explicit distance constraint. AIN can not only generate large scale adversarial examples ef-

41

ficiently as achieved in ATN, but also imitate the behavior of state-of-the-art optimization-

based methods, hence achieving improved quality. Extensive experiments show that AIN

significantly outperforms ATN and other Generative Adversarial Networks (GAN) based

methods in the quality of generated adversarial examples, and is much more efficient than

optimization based methods while achieving comparable quality.

5.2 Adversarial Imitation Networks

Figure 5.1: The training framework of AIN

In this section, we present our proposed Adversarial Imitation Networks (AIN). Fig. 5.1

shows the training framework of AIN. Given a clean example x and an adversarial example

xadv that can be generated by any of the state-of-the-art optimization based methods, AIN

generates a perturbation p which can be used to create an adversarial example x′ = x + p.

Both x′ and xadv are then fed into the target classifier F to get their classification logits

F(x′) and F(xadv) respectively. F is a well-trained white box model, whose parameters are

fixed during the training. AIN is trained in such a way that 1) the distance between x and

x′ is bounded and minimized (distance constraint); 2) x′ imitates the example xadv both

in its feature space and its classification output (imitation); and 3) x′ will be misclassified

by the target classifier (misclassification). Next, we present the objective function and the

architecture of AIN in details followed by the training framework.

42

5.2.1 Objective Function

The key innovation of AIN is an imitation based objective function to have the output

perturbation imitate the behavior of adversarial examples xadv provided by optimization

based attacks. Given the goals of the adversarial example attacks, our objective function L

consists of the distance loss Ld, the imitation loss Lm, and the misclassfication loss Lc:

L = βdLd + βmLm + βcLc, (5.1)

where βd, βm and βc denote positive coefficients that control the contributions of each loss.

Distance loss. AIN generates perturbations p and crafts x′ = x + p. Ld minimizes the L2

distance between x and x′, i.e.

Ld = ‖p‖2. (5.2)

We impose an explicit element-wise bound B on p by clipping range [−B,B], where

each element of B is a small positive value which bounds ‖p‖∞. This explicit bound

ensures a perturbation distance guarantee, and also makes it directly comparable with opti-

mization based L∞ attacks such as FGSM, i-FGSM, and C&W:

p = min(max(z,−B),B), (5.3)

where z is the output of the last layer.

Imitation loss. The adversarial examples xadv generated from optimization based attacks

are provided during the model training. Lm forces x′ to imitate the example xadv both in

its feature space and its classification output,

Lm = βm,1‖x′ − xadv‖2 + βm,2‖F(x′)− F(xadv)‖2, (5.4)

where F is the target classifier, F(·) represents the classification output, and βm,1 and βm,2

denote positive coefficients that control the contributions of the two parts.

Misclassification loss. For targeted attacks, our goal is to classify x′ as the target class t,

i.e. maximize F(x′)t, where F(·)t represents the logits value on the position t. To further

43

reinforce this objective, and facilitate the optimization, we incorporate an additional objec-

tive to minimize the output probability for all classes other than t, i.e. minimize F(x′)s,

where s = argmaxi∈{0,...,n−1}−{t}F(x′)i. Therefore, we can formulate Lc for targeted at-

tacks as:

Lc
targeted = F(x′)s − F(x′)t. (5.5)

For untargeted attacks, our goal is to have the classifier misclassify the adversarial ex-

ample, i.e. to minimize F(x′)y, where y is the original class label of the clean example.

Similar to targeted attacks, to facilitate this optimization, we incorporate an additional ob-

jective to maximize the output probability for all classes other than y, i.e. maximize F(x′)s,

where s = argmaxi∈{0,...,n−1}−{y}F(x′)i. Therefore, we can formulate Lc for untargeted

attacks as:

Lc
untargeted = F(x′)y − F(x′)s. (5.6)

5.2.2 Architecture

AIN is based on a conditional self-attention autoencoder. The key idea is to utilize the

categorical information of the original class label y together with the input x to improve

the performance of generated adversarial example. In this section, we present our label

conditioning approach followed by the structure of AIN and random noise injection to

allow more diverse adversarial example generation.

Label conditioning. Traditionally, concatenation based approach incorporates label infor-

mation into generative model by directly concatenating one-hot encoding of y to inputs.

However, since the dimensionality and domain of the one-hot encoded y can be signif-

icantly different from the feature space of x, direct concatenation can destroy the space

dependencies among each pixel and weaken the functionality of the convolutional layers in

AIN. To solve this challenge, we propose a novel method that can incorporate conditional

information into AIN while preserving space dependencies.

We build a conditional state extractor to transform the one-hot encoded y into the

44

Figure 5.2: The architecture of AIN

conditional state hc and set hc ∈ Rh×w, where h and w are the height and width of input

images x. We use a basic autoencoder as the conditional state extractor, which takes input

y and generates output ŷ and is trained by optimizing the cross-entropy loss between y

and ŷ. We also leverage the sigmoid activation function and the layer normalization in the

extractor to constrain the numerical value of hc, so that it has the same domain as x. hc is

then concatenated to x along the channel dimension to produce the concatenated input xc

while still preserving the space dependencies of x.

Block structure. AIN consists of two parts, a convolutional encoder and a convolutional

decoder. As shown in the left of Fig. 5.2, for the encoder, each convolutional layer (black

rectangle) is followed by a residual block (red rectangle). The residual technique [40] has

been proved to avoid the gradient vanishing problem that usually occurs in deep networks.

As shown in the top middle of Fig. 5.2, the residual block is formed by several convolu-

tional layers along with residual operations and can guarantee that the shapes of its input

and output remain the same. A self-attention block (green rectangle) is added before one

convolutional-residual structure to capture the correlation among pixels of the input. The

45

structure of the self-attention block we used here is from [97]. It facilitates the encoder

to efficiently encode the inputs into the representative states, by effectively capturing the

long-range dependency and the non-local correlation among pixels.

The decoder has a similar architecture, consisting of multiple residual and transposed

convolutional structures, as shown in the right of Fig. 5.2. We also incorporate a self-

attention block to efficiently decode the representative states into the reconstructed pertur-

bations.

Random noise injection. Both ATN and AdvGAN can only generate one perturbation for

one clean example in the testing phase. As a result, their capability of generating large

scale adversarial examples is limited by the availability of clean examples. AIN extends

this capability by injecting random noise into the central representative state, which is

shown in Fig. 5.2. Because the random noise is injected in both training and testing phases,

the adversarial examples generated by AIN differ from each other in different runs but

all satisfy the distance constraint and the goal of misclassification. Therefore, AIN can

generate even larger scale adversarial examples compared to ATN and AdvGAN, esp. when

clean examples are limited.

5.2.3 Training Framework

Recall that Ld and Lc of our objective function optimize the distance given a bound and

misclassification respectively. Since the two goals contradict with each other, directly opti-

mizing the objective function is difficult and unstable. Therefore, we propose a progressive

and adaptive training framework to train AIN in a stable and effective way, by starting from

a loose distance bound, and progressively adapting to a tight distance bound.

Bound Decay

We first illustrate the motivation of the proposed progressive training in Fig. 5.3. The red

and blue points represent images of two different classes, the dashed black line denotes the

46

Figure 5.3: Illustration of the impact of distance bound B on optimization

classification boundary, the green circle denotes the adversarial example space for a tight

distance bound B1 and the brown circle for a loose bound B2. We can see that it is difficult

to find an adversarial example given the tight bound (green circle) that is misclassified,

while it is much easier given a loose bound (brown circle). When an adversarial example is

found with loose bound, we can gradually tighten the bound which will help us eventually

obtain an adversarial example within the green circle.

We use three different decay methods adopted from learning rate decay [96] to decay

the distance bound:

i) Step decay decreases the bound by a decay rate d every few epochs:

Bi = B0 × dbi/vc (5.7)

where i is the epoch index, v is the step size, B0 is the initial bound, Bi is the bound in the

i-th epoch, and d (0 < d < 1) is the decay rate.

ii) Exponential decay decreases the bound by an exponential function every epoch:

Bi = B0 × ed×i (5.8)

where d (d < 0) is the decay rate.

iii) Time-based decay decreases the bound linearly in the initial iterations (when i <

1/d) and then with a dampened decay rate in the later iterations:

Bi = B0/(1 + d× i) (5.9)

where d (d > 0) is the decay rate.

47

Adaptive Bound Decay

As shown in Fig. 5.3, given a tighter distance bound, it is more difficult to find an adver-

sarial example for misclassification. However, during our experiment studies, we observed

that the misclassification or attack success rate is not monotonically or proportionally de-

creasing as the bound decays. This can be contributed to the fact that the bound decay may

dramatically change the possible adversarial example space in certain ranges, but less in

others. A decay rate that dramatically changes the adversarial example space can make it

difficult for AIN to find optimal perturbations. On the other hand, a decay rate that does not

sufficiently change the search space will make the training slow to converge. To address

this, we propose an adaptive bound decay, which adaptively adjusts the bound decay rate d

according to the relative change of the attack success rate r.

Specifically, the relative change between the current epoch’s attack success rate S1 and

the previous epoch’s S0 is defined as r, i.e., r = S0−S1

S1
. r is compared with two hyper-

parameters Tup and Tlow (Tup > Tlow), both of which have a range from 0 to 1 and are

close to 0. When r is larger than Tup, it means that the relative change of the attack success

rates caused by the bound decay is too large. Therefore, we roll back our model to the

previous epoch and increase the decay rate as d = (1 + γ1)d to slow down the decay,

where γ1 is a positive hyper-parameter close to 0. On the other hand, when r is smaller

than Tlow, it means that relative change of the attack success rates is too small. We can

decrease the decay rate as d = (1 − γ2)d to speedup the decay, where γ2 is also a positive

hyper-parameter close 0. After every epoch’s training, either the model rolls back to the

previous one or the bound B is updated by one of the decay methods with the decay rate d.

The details of the adaptive training process is presented in Algorithm 2.

Bound Constraint at Inference. Bound constraint B works as a hyper-parameter and

progressively decreases during training. Once training phase ends, a well-trained AIN and

a final bound constraint Bfinal are obtained. Therefore, at inference phase, AIN can be

applied with any distance constraint Binfer to generate adversarial examples as long as

48

Algorithm 2: AIN training with adaptive bound decay
Input: initial bound B, total training epoch N , thresholds Tup, Tlow, bound decay function

fdecay, bound decay rate d, rate changing coefficients γ1, γ2, training dataset
Dtrain, validation dataset Dvalid

1 i = 0;
2 S0 = 1.0 ;
3 while i < N do
4 mini-batch training AIN on Dtrain with perturbation bound B;
5 calculate validation attack success rate S1;
6 r = S0−S1

S1
;

7 if r > Tup then
8 roll back AIN to previous epoch’s setting;
9 d = (1 + γ1)d;

10 else
11 if r < Tlow then
12 d = (1− γ2)d;
13 end
14 B = fdecay(B, d);
15 S0 = S1;
16 end
17 end

Binfer ≥ Bfinal.

5.3 Experiments

In this section, we present our experimental studies evaluating AIN in comparison with

existing methods using the benchmark MNIST [54] and tiny-imagenet datasets [22].

Implementation details. All models are implemented using Tensorflow 1.14 [1] and

trained with a system equipped with Nvidia GTX 1080 Ti GPU. We use Adam [49] for

optimization. AIN uses adversarial images generated by i-FGSM for imitation. The initial

learning rate is set to 1×10−3 on MNIST and 5×10−4 on tiny-imagenet with a 0.99 decay

rate. By default, we use exponential decay in our training framework, while we compare

different decay methods in one of the experiments. The initial distance bound B is set to

0.8. The decay rate d is set to−0.02, γ1 and γ2 are set to 0.5. The threshold Tup = 1×10−4

and Tlow = 1 × 10−5. We use the open source code of AdvGAN, i-FGSM and C&W to

49

conduct experiments. In this paper, we apply L∞ attacks of i-FGSM and C&W to target

models. We implemented ATN ourselves since the source code for ATN is not available.

The ATN results reported in our experiments are the best results we achieved. The code of

this paper is available at https://github.com/Emory-AIMS/AIN.

Comparison. For targeted attacks, we compare AIN with model based methods including

ATN and AdvGAN and optimization based attacks. For untargeted attacks, we compare

AIN with AdvGAN and optimization based methods since the current implementation of

ATN does not support untargeted attacks. For optimization based methods, we use i-FGSM

and C&W, which are the most popular and state-of-the-art attack methods. We note that

C&W is used as a reference for the optimal result one can achieve but not directly com-

parable with AIN since it incurs a significant computation overhead. We perform ablation

studies and evaluate the benefit of 1) different components of our objective function in-

cluding distance loss, imitation loss, and misclassification loss by comparing AIN with

AIN trained without distance loss, AIN with only distance loss, AIN trained without imi-

tation, AIN with only imitation, AIN trained without misclassification loss, and AIN with

only misclassification loss; 2) different components of AIN architecture including self-

attention, residual technique, and label conditioning by comparing AIN with AIN without

self-attention, AIN without residual, and AIN without label conditioning; 3) different ad-

versarial examples to be imitated in AIN training by comparing AIN imitating i-FGSM,

and AIN imitating i-FGSM and C&W, and 4) our adaptive training framework. To fur-

ther evaluate the utility and diversity of the adversarial examples generated by AIN besides

the quality, we also conduct adversarial training experiments to compare performance of

adversarial training using examples generated by AIN and i-FGSM respectively.

Evaluation metrics. We evaluate the quality of adversarial examples in terms of pertur-

bation distance and attack success rate. We evaluate the efficiency of the methods by the

average time cost for generating each adversarial example. We also report the time for

training AIN. For the utility of the adversarial examples for adversarial training, we evalu-

https://github.com/Emory-AIMS/AIN

50

ate models obtained from adversarial training in terms of classification accuracy on clean

examples and different adversarial examples.

Target models. In our paper, AINs are trained with white-box access to the target classifier.

For MNIST dataset, the target classifier is a 24-layer deep convolutional network trained

by ourselves, which achieves 98.9% classification accuracy on the validation dataset. For

tiny-imagenet dataset, the target classifier is a pre-trained Resnet-18 [40] network which

achieves 80.5% validation accuracy.

5.3.1 Targeted Attacks

We conduct targeted attacks on MNIST and tiny-imagenet datasets to compare the perfor-

mace of AIN with ATN, AdvGAN, i-FGSM and C&W. Our experiments show that AIN

1) significantly outperforms ATN in terms of perturbation scale and attack success rate,

2) slightly outperforms AdvGAN in terms of L∞ and attack success rate, and 3) achieves

comparable performance with i-FGSM and C&W. More importantly, AIN can generate ad-

versarial examples with different distance bound (thanks to its explicit distance constraint)

and allow flexible tradeoff between perturbation scale and attack success rate compared to

AIN and AdvGAN.

Figure 5.4: Targeted adversarial examples of different attacks on MNIST

MNIST experiments. For MNIST experiments, we set the targeted class as 8, which

means that all attacks attempt to generate targeted adversarial images to be classified as

8. Fig. 5.4 shows sample adversarial examples on MNIST for the different models under

selected settings. The first row is clean images and the second row is adversarial images

51

Table 5.1: Comparison of L∞ distances, targeted attack success rate and average generation time
on MNIST among different attacks

Attacks L∞ Attack success rate Avg time
ATN 0.200 42.22% 0.003s

AINt1 0.200 90.94% 0.003s
AINt2 0.300 100.00% 0.003s

AdvGAN 0.300 99.40% 0.0008s
i-FGSM 0.200 90.10% 0.007s
C&W 0.180 98.00% 112s

generated by ATN. The third to the fourth rows represent images generated by AIN with

the perturbation bound (L∞ distance) of 0.2 and 0.3 respectively. The two AIN settings are

aimed to show the trade-off between perturbation scale and attack success rate. The last

three rows are AdvGAN, i-FGSM, and C&W respectively. AIN images are comparable to

i-FGSM which is a successful imitation of i-FGSM.

Table 5.1 shows the average values of L∞, attack success rate, and average generation

time over the test dataset for the corresponding models illustrated in Fig. 5.4. Compared

with ATN, with more strict perturbation bound (AINt1), AIN can achieve much higher

attack success rate with same L∞ distance. With looser bound (AINt2), AIN achieves

100.00% attack success rate. Compared with AdvGAN, AIN (AINt2) achieves better at-

tack success rate with same L∞ and similar average time cost. Compared with i-FGSM,

AIN (AINt1) achieves higher attack success rate with the same L∞ and less average time

cost. C&W achieves a higher attack success rate with smaller L∞. However, C&W costs

too much time to generate one adversarial example, around 112 seconds, which can be

prohibitively high for real time or large scale generation.

Figure 5.5: The targeted attack success rate vs. L∞ distance among different attacks

52

Fig. 5.5 shows a more comprehensive comparison of the different models with respect

to varying perturbation distances. In addition to AIN which uses all i-FGSM examples

as input for imitation, we included a variant AIN w/ C&W which is trained with a small

amount of C&W examples (less than 10%) together with i-FGSM examples (more than

90%)). Compared with AIN, AIN w/ C&W has higher attack success rate, which shows

that the adversarial examples used for imitation can affect the capability of AIN and more

“powerful” imitated adversarial examples such as those generated by C&W can improve the

attack success rate of AIN. Compared with ATN, AdvGAN, and i-FGSM, AIN outperforms

them on any L∞ distances. Note that ATN and AdvGAN do not allow explicit tradeoff by

different distance bounds.

Figure 5.6: The targeted attack success rate vs. L∞ distance among AINs with different loss

Figure 5.7: The targeted attack success rate vs. L∞ distance among AINs with different architec-
tures

Fig. 5.6 shows a comparison of AINs with different losses including: AIN w/o imi-

tation, AIN with only imitation, AIN w/o distance loss, AIN w/o misclassification loss,

and AIN with only misclassification loss. AIN with only distance loss has attack success

rate lower than 0.1 at any L∞ distances, which is not shown here. Comparing AIN with

these ablation cases, AIN has higher attack success rate at any different L∞ distance, which

53

proves the effectiveness of different parts of the loss function and the effectiveness of the

combined loss.

Fig. 5.7 shows a comparison of AINs with different architectures including: AIN w/o

self-attention, AIN w/o residual technique, and AIN w/o label conditioning. Comparing

AIN with these ablation cases, AIN has higher attack success rate at any different L∞ dis-

tance, which proves the effectiveness of these different technique applied to the architecture

and the effectiveness of the combination.

The previous experiments use 8 as the targeted class. We also conduct experiments

with different targeted labels. Figure 5.8 shows the results of targeted AIN attacks with

randomly selected classes. We observe that AIN is a general attack model that works for

all different targeted attacks.

å

Figure 5.8: The targeted attack success rate vs. L∞ distance among AINs with different targeted
labels

Figure 5.9: Targeted adversarial examples of different attacks on tiny-imagenet

Tiny-imagenet experiments. For Tiny-imagenet experiments, we set the targeted class as

“espresso”. The sample generated adversarial examples are shown in Fig. 5.9.

If we look at the highlighted adversarial example generated by AIN in Fig. 5.10, we can

see that there is a pattern of a cup of espresso in the left bottom corner. This pattern shows

that AIN can learn to add specific noises on the clean image to incur the misclassification.

54

Figure 5.10: Detail of a targeted adversarial examples by AIN
Table 5.2: Comparison of L∞ distances and targeted attack success rate on tiny-imagenet among
different attacks

Attacks L∞ Attack success rate Avg time
ATN 0.10 32.82% 0.02s

AINt1 0.10 97.66% 0.02s
AINt2 0.28 100.00% 0.02s

AdvGAN 0.28 97.61% 0.006s
i-FGSM 0.01 97.60% 0.08s
C&W 0.009 100.0% 558.8s

Table 5.2 shows the details of these adversarial examples. The second and the third

rows represent images generated by AIN with the perturbation bound (L∞ distance) of 0.1

and 0.28 respectively. As can be seen, compared with i-FGSM, both AINt1 and AINt2

have larger L∞ distances, and better attack success rate. Compared with AdvGAN, AINt2

achieves better attack success rate with same L∞. Compared with ATN, AIN has signif-

icantly higher attack success rate with same L∞. AIN, like ATN, is 4 times faster than

i-FGSM and 1000 orders of magnitude faster than C&W.

We also conduct experiments for targeted AIN with different targeted labels on tiny-

imagenet. Table 5.3 shows the results of different targeted AIN attacks on tiny-imagenet

with 3 more randomly selected classes among 200 in addition to “expresso”, where AINt8,

AINt71, AINt99, and AINt183 target “espresso”, “teapot”, “butcher shop, meat market”, and

”tailed frog, etc”, respectively. The results show AIN is generalizable for different targets.

Table 5.3: Comparison of L∞ distances and targeted attack success rate on tiny-imagenet among
different attacks

Attacks L∞ Attack success rate Avg time
AINt8 0.10 97.66% 0.02s
AINt71 0.10 98.02% 0.02s
AINt99 0.10 96.97% 0.02s
AINt183 0.10 97.74% 0.02s

55

5.3.2 Untargeted Attacks

As ATN is not able to generate untargeted adversarial examples, we compare the perfor-

mance of AIN with AdvGAN, i-FGSM, and C&W. Our experiments show that AIN out-

performs AdvGAN and has comparable performance with i-FGSM and C&W, especially

on MNIST.

MNIST experiments. Fig. 5.11 compares the adversarial examples generated by AIN,

AdvGAN, i-FGSM and C&W on MNIST dataset. The two AIN models shown have the

perturbation bound of 0.2 and 0.3 respectively. As can be seen from Fig. 5.11 and Table

5.4, C&W outperforms others but costs 1000 orders of magnitude more time for generation.

Compared with AdvGAN, AIN (AINu2) can achieve 100% attack success rate with same

L∞. Compared with i-FGSM, AIN (AINu1) also achieves higher attack success rate with

same distance.

Figure 5.11: Untargeted adversarial examples of different attacks on MNIST

Table 5.4: Comparison of L∞ distances and untargeted attack success rate on MNIST among dif-
ferent attacks

Attacks L∞ Attack success rate Avg time
AINu1 0.200 98.70% 0.003s
AINu2 0.300 100.00% 0.003s

AdvGAN 0.300 99.6% 0.0008s
i-FGSM 0.200 97.05% 0.006s
C&W 0.13 100.00% 98.1s

Fig. 5.12 shows a more comprehensive comparison among AIN, AIN w/ C&W, Adv-

GAN, i-FGSM, and C&W in test attack success rate versus different L∞ distances. The

results verify that 1) AIN can achieve comparable performance with C&W, 2) AIN achieves

56

higher attack success rate than AdvGAN and i-FGSM with the same L∞ distance, and 3)

training AIN with imitation of more “powerful” adversarial examples can improve the at-

tack success rate of AIN.

Figure 5.12: The untargeted attack success rate vs. L∞ distance among different attacks

Figure 5.13: The untargeted attack success rate vs. L∞ distance among AINs with different losses

å

Figure 5.14: The untargeted attack success rate vs. L∞ distance among AINs with different archi-
tectures

Fig. 5.13 shows a comparison of AINs with different losses including: AIN w/o im-

itation, AIN with only imitation, AIN w/o distance loss, AIN w/o misclassification loss,

and AIN with only misclassification loss. AIN with only distance loss has attack success

rate lower than 0.08 at any L∞ distances, which is not shown here. Comparing AIN with

these ablation cases, AIN has higher attack success rate at any different L∞ distance, which

again proves the effectiveness of different parts of the loss function and the effectiveness of

the combined loss.

57

Fig. 5.14 shows a comparison of AINs with different architectures including: AIN w/o

self-attention, AIN w/o residual technique, and AIN w/o label conditioning. Comparing

AIN with these ablation cases, AIN has higher attack success rate at any different L∞ dis-

tance, which proves the effectiveness of these different technique applied to the architecture

and the effectiveness of the combination.

Tiny-imagenet experiments. We conduct similar experiments on tiny-imagenet to com-

pare the performance of AIN, AdvGAN, i-FGSM, and C&W. The generated adversarial

examples are shown in Fig. 5.15. Table 5.5 shows the details of these adversarial examples.

Compared with AdvGAN, AIN achieves slightly higher attack success rate with same L∞.

Compared with i-FGSM and C&W, AIN has larger L∞ distances with comparable attack

success rate, but much faster generation time.

Figure 5.15: Untargeted adversarial examples of different attacks on tiny-imagenet

Table 5.5: Comparison of L∞ distances and untargeted attack success rate on tiny-imagenet among
different attacks

Attacks L∞ Attack success rate Avg time
AIN 0.10 99.92% 0.02s

AdvGAN 0.10 99.60% 0.006s
i-FGSM 0.01 100.00% 0.064s
C&W 0.004 100.00% 486.2s

5.3.3 Training Framework

In this section, we conduct experiments to evaluate the effectiveness of the progressive

training framework using MNIST dataset. We show that 1) the bound decay can signifi-

cantly increase the attack success rate of the adversarial examples given the same bound,

58

and 2) the adaptive bound decay further improves the performance.

Bound decay. To evaluate the effectiveness of the bound decay, we train several AINs

starting from different initial loose perturbation bounds separately and decay the bounds to

final tight bound 0.26. We also directly train an AIN with an initial and fixed bound 0.26

as the non-progressive benchmark. Fig. 5.16 shows the test attack success rate with respect

to varying initial bounds for progressive and non-progressive training respectively.

Figure 5.16: The attack success rate for non-progressive training and progressive training with
different initial bounds

We observe that 1) AIN under progressive training achieves significantly higher at-

tack success rate, 2) AIN with initial bound larger or equal to 0.5 can outperform non-

progressive training by almost 80% higher attack success rate, and 3) an initial bound

larger than 0.5 helps the test attack success rate marginally but would increase the training

time.

Figure 5.17: The attack success rate as L∞ distance constraint decreases during the model training
for different frameworks

Adaptive bound decay. We compare the the different training processes of bound decay

with and without adaptive technique in Fig. 5.17. The x-axis represents the L∞ distance be-

tween adversarial examples and clean examples. It is reversed to show the decrease of L∞

distance as we move along training epochs. The y-axis represents the attack success rate

on the validation set during the training. This figure shows that 1) for progressive training,

different bound decay approaches can affect the attack success rate and exponential decay

59

has the best performance overall, 2) the adaptive technique changes the perturbation bound

back and forth when the distance becomes smaller, and 3) the exponential decay approach

with adaptive technique outperforms non-adaptive approaches.

5.3.4 Adversarial Training

In this section, we conduct experiments to further evaluate the utility of adversarial exam-

ples for adversarial training. We train AIN by a target model, then use AIN to generate

adversarial examples to be used for adversarial training. We show that 1) compared with

adversarial training with i-FGSM, adversarial training with AIN can achieve comparable

or better model accuracy on tiny-imagenet and better accuracy on MNIST, and 2) random

noise injection in AIN’s central hidden layer can benefit adversarial training.

Table 5.6: Comparison of test classification accuracy on MNIST among models from different
adversarial training

Models Clean acc AIN acc i-FGSM acc
AIN 98.63% 98.68% 96.48%

AINnr 98.20% 98.42% 96.06%
i-FGSM 98.62% 94.84% 96.47%

Table 5.7: Comparison of test classification accuracy on tiny-imagenet among models from different
adversarial training

Models Clean acc AIN acc i-FGSM acc
AIN 77.64% 75.56% 75.86%

AINnr 76.02% 75.13% 73.46%
i-FGSM 78.24% 71.48% 76.24%

Table 5.6 and Table 5.7 show the results on MNIST and tiny-imagenet respectively. In

both tables, AIN denotes adversarial training with adversarial examples form AIN, AINnr

denotes adversarial training with adversarial exampels from AIN without noise injection in

central hidden layer, and i-FGSM denotes adversarial training with adversarial examples

form i-FGSM. Clean acc, AIN acc, i-FGSM acc denote the classification accuracy on clean

examples, AIN adversarial examples, i-FGSM adversarial examples respectively.

60

As can be seen from these tables, compared with adversarial training with i-FGSM,

training with AIN achieves 1) comparable or better test classification accuracy on clean

examples, 2) higher classification accuracy on adversarial examples generated by AIN,

and 3) similar accuracy on adversarial examples generated by i-FGSM. Compared with

AINnr, training with AIN achieves better performance, verifying the benefit of random

noise injection in AIN.

5.3.5 AIN Training Time

We reported in Section 4.1 and 4.2 the average time for generating one adversarial example

by AIN once AIN is trained, which is very fast. One potential concern about AIN is its

training cost. We evaluate the itemized time cost for training AIN and using AIN for

generating adversarial examples in the following three steps: step 1) generating adversarial

examples by i-FGSM or C&W, step 2) using the i-FGSM or C&W adversarial examples to

train AIN, and step 3) using AIN to generate adversarial examples.

Table 5.8: Comparison of time costs on MNIST among models with different adversarial examples

Models step 1 step 2 step 3 Total time
AIN w/ C&W 447,269s 7,166s 162s 454,597s

C&W 6,054,913s 0s 0s 6,054,913s

Table 5.8 shows the itemized and total time cost of AIN w/ C&W in comparison with

C&W on MNIST dataset. Note that traditional attack methods such as C&W and i-FGSM

generate adversarial examples directly and do not require training, so we show the time

under step 1 and total time. AIN w/ C&W uses a small volume (4, 000) of adversarial ex-

amples from C&W and a large volume (50, 000) of adversarial examples from i-FGSM for

model training. AIN w/ only i-FGSM examples will cost almost negligible time on step 1.

As can be seen, although AIN w/ C&W costs 7,166s on step 2 and 162s on step 3, the total

time of AIN (454,597s) is significantly lower than what’s required to generate sufficient

number of adversarial examples using optimization methods directly (6,054,913s).

61

Note that AIN is trained by the targeted model. If the targeted model changes com-

pletely, for instance, structures of all layers are modified, we need to re-train AIN from

scratch. The time cost for retraining AIN and generating new adversarial examples is still

significantly lower than regenerating adversarial examples using optimization based attack

algorithms like C&W as shown in Table 5.8. If the targeted network changes slightly, for

instance, only one or a few layers are modified, we can take the previous AIN as a pre-

trained model, use its parameters as the initialization of current AIN, and train an AIN for

the new targeted network like “fine-tuning”. Since the two targeted networks are similar,

this “fine-tuning” will cost much less time than training from scratch.

62

Chapter 6

Achieving both Differential Privacy and

Certified Robustness for Pre-trained

Classifiers via Input Perturbation

6.1 Overview

Recent studies have shown that pre-trained classifiers are increasingly powerful to improve

the performance on different tasks, e.g, neural language processing, image classification.

However, adversarial examples from attackers can trick pre-trained classifier to misclas-

sify. To solve this challenge, a reconstruction network is built before the public pre-trained

classifiers to offer certified robustness and defend against adversarial examples through in-

put perturbation. On the other hand, the reconstruction network requires training on the

dataset, which incurs privacy leakage of training data through inference attacks. To prevent

this leakage, differential privacy (DP) is applied to offer a provable privacy guarantee on

training data through gradient perturbation. Most existing works employ certified robust-

ness and DP independently and fail to exploit the fact that input perturbation designed to

achieve certified robustness can achieve (partial) DP. In this paper, we propose perturba-

63

tion transformation to show how the input perturbation designed for certified robustness

can be transformed into gradient perturbation during training. We propose Multivariate

Gaussian mechanism to analyze the privacy guarantee of this transformed gradient pertur-

bation and precisely quantify the level of DP achieved by input perturbation. To satisfy

the overall DP requirement, we add additional gradient perturbation during training and

propose Mixed Multivariate Gaussian Analysis to analyze the privacy guarantee provided

by the transformed gradient perturbation and additional gradient perturbation. Moreover,

we prove that Mixed Multivariate Gaussian Analysis can work with moments accountant to

provide a tight DP estimation. Extensive experiments on benchmark datasets show that our

framework significantly outperforms state-of-the-art methods and achieves better accuracy

and robustness under the same privacy guarantee.

Figure 6.1: Framework of TransDenoiser: given a clean image x, input perturbation is added to
generate perturbed image z. z is then reconstructed by denoiser g to generate g(z), which is fed into
the pre-trained classifier h for classification. The input perturbation on x is utilized to achieve certi-
fied robustness during testing. The denoiser is trained under DP by leveraging the input perturbation
added on x and additional gradient perturbation during training.

6.2 TransDenoiser

In this section, we will present our proposed framework TransDenoiser, which can be ap-

plied before any pre-trained classifier to guarantee certified robustness and DP without

retraining the pre-trained model. A denoiser is trained to guarantee certified robustness of

the final model via randomized smoothing or input perturbation on the input, where the

training process introduces the input perturbation for better accuracy of the randomized

smoothed model. We transform the input perturbation into equivalent gradient perturbation

64

so that it can be quantified and composed with the explicit gradient perturbation for the DP

guarantee.

6.2.1 Denoiser and Certified Robustness

As can be seen in Figure6.1, TransDenoiser is a denoising AE trained on input data with

Gaussian perturbation. Similar to [74], this input Gaussian perturbation is used as ran-

domized smoothing for certified robustness. Naively applying randomized smoothing on

a pre-trained classifier without the denoiser gives very loose certification bounds because

the pre-trained classifier is not trained to be robust to Gaussian perturbations of their input.

The denoiser serves to “remove” this Gaussian perturbation and effectively reconstruct the

input data like a pre-processing step before feeding input data into the pre-trained classifier

while maintaining the benefit of certified robustness. The detailed proof of randomized

smoothing can be found in [21], and we provide a brief proof in Appendix .3.

Different from [74], given input data x(i) and perturbed data z(i) = x(i) + b(i) with

b(i) ∼ N (0, σ2I), the objective function we use to optimize the denoiser contains the

standard reconstruction MSE:

l(z(i), θ) = ‖g(z(i))− x(i)‖2
2, (6.1)

where l is the loss function, g denotes the denoiser, and θ is the parameter of the denoiser.

The stability objective of [74] is not included in our objective function, because it requires

both x(i) and g(z(i)) to pass the pre-trained classifier h, which both incurs additional privacy

cost and additional computation overhead when we calculate the transformation matrix. In

this work, we assume l(z(i), θ) is C-Lipschitz continuous, which is a mild and common

assumption in existing works [11, 30].

65

6.2.2 Perturbation Transformation and Multivariate Gaussian Mech-

anism

In this section, we will introduce perturbation transformation and Multivariate Gaussian

Mechanism (MGM) to analyze the DP guarantees of the input perturbation.

Perturbation transformation. As we introduced in 6.2.1, input Gaussian perturbation

is utilized to achieve certified robustness for TransDenoiser. Although theoretically this

perturbation is only required at the testing phase, almost all existing approaches in practice

demand the randomization during training to improve the performance. Our strategy is

to transform input perturbation into gradient perturbation during training and analyze the

DP guarantee that input perturbation can offer. The crucial step of this transformation is

the Taylor expansion of MSE loss l(z(i), θ) at the data point x(i), which is formulated as

follows,

l(z(i), θ) = l(x(i), θ) + (z(i) − x(i))
ᵀ∇x(i)

l(x(i), θ) + o(z(i) − x(i)) (6.2)

Since the only mild constraint on l(z(i), θ) is C-Lipschitz continuous, it is possible for the

higher order terms o(z(i)−x(i)) to be negative. We denote the examples with non-negative

higher order terms as “non-negative cases”, and the others as “negative cases”. In the rest

of this section, we use the superscript “non” and “neg” to denote samples of “non-negative

cases” and “negative cases”, respectively. For “non-negative cases”, we have the following

lemma:

Lemma 1. Given perturbed example znon(i) = xnon(i) + b(i) with b
(k)
(i) ∼ N (0, σ2), and MSE

loss l(znon(i) , θ) is C-Lipschitz continuous. The gradient∇θl(z
non
(i) , θ) can be reformulated as

the gradient with respect to the original sample with a gradient perturbation:

∇θl(z
non
(i) , θ) ≥ ∇θl(x

non
(i) , θ) + p(i), (6.3)

66

where p(i) is the transformed perturbation with p(i) ∼ N (0,Σ(i)), Σ(i) = M(i)σ
2, M(i) =

A(i)A
ᵀ
(i) and A(i) = Jθ∇xnon

(i)
l(xnon(i) , θ).

The detailed proof of Lemma 1 can be found in Appendix .6. With Lemma 1, we find

that the right-hand side is the lower bound of left-hand side, which means DP guarantee

provided by transformed gradient perturbation p(i) is the lower bound of that provided by

input perturbation b(i).

Multivariate Gaussian Mechanism. Since the transformed gradient perturbation p(i) in

equation (3) follows a multivariate Gaussian distribution with correlated elements, which

is in contrast to the independent and isotropic Gaussian noise used in standard Gaussian

mechanism for DP, we introduce Multivariate Gaussian Mechanism (MGM) to analyze

DP of this multivariate Gaussian perturbation.

Theorem 3. Multivariate Gaussian Mechanism. Let G : Rv → Rw be an arbitrary w-

dimensional function, and ∆G = maxD,D′ ‖G(D) − G(D′)‖2. A Multivariate Gaussian

MechanismM with the covariance Σ ∈ Rw×w adds noise to each of the w elements of the

output. The mechanismM is (ε, δ)-DP, with

ε ∈ (0, 1], Smin(M)
1
2σ ≥

√
2 ln(1.25/δ)∆G/ε.

where Smin(M) is the minimum singular value of M and Σ , Mσ2.

The proof of this theorem is in Appendix .5. With Theorem 3, multivariate Gaussian

perturbation can be leveraged to preserve (ε, δ)-DP, and we have the following Corollary:

Corollary 1. Given a multivariate Gaussian perturbation p ∼ N (0,Σ), Σ = Mσ2, the

DP guarantee of the MGM is equivalent to that of a GM with its perturbation following a

Gaussian distribution N (0, Smin(M)σ2), where Smin(M) is the minimum singular value

of M.

Because the DP guarantee of MGM is equivalent to the GM by applying a transformed

perturbation, the traditional DP analysis technique, e.g., moments accountant [2], can be

67

leveraged to analyze the privacy cost in the training process of denoiser. We also note a

special case of MGM, in which the covariance matrix of the multivariate Gaussian per-

turbation only contains the diagonal values, and the perturbation on each elements is in-

dependent from each other but they can have different scales. This mechanism is called

Heterogeneous Gaussian Mechanism (HGM) [72]. We re-define HGM in Appendix .7

and prove that MGM is a generalization of HGM.

6.2.3 TransDenoiser Training Algorithm

As introduced in Section 6.2.2, the DP guarantee provided by transformed gradient pertur-

bation depends on the transformation matrix and the scale of input noise. In some scenarios,

this transformed gradient perturbation itself does not fully satisfy the DP requirement, be-

cause the scale of input noise to achieve randomized smoothing of certified robustness is

relatively small. To address this, we add additional gradient perturbation directly to the

gradient in each iteration of the training process.

Algorithm 3 shows the details of our proposed TransDenoiser training algorithm to

achieve both certified robustness and DP. Each record is perturbed with input perturbation

to achieve certified robustness (line 7). We utilize both input perturbation and gradient

perturbation to achieve DP for “non-negative cases” (Line 12 - 18), and for the “negative

cases”, we directly employ gradient perturbation (Line 19 - 23). For non-negative cases,

we transform input perturbation at each iteration into gradient perturbation. We then add

additional gradient perturbation with scale σ̄ to ∇θtl(zt, θt) at each iteration given hyper-

parameters ξlow and ξup. In Algorithm 3, we use the commonly used approach, mini-batch

SGD, to train the denoiser, which is slightly different from our previous setting (Lemma 1)

where only a single sample is fed into the model per iteration. We will show that our DP

analysis works in both of these two settings.

Privacy Analysis. In order to compose the transformed gradient perturbation and the di-

rect isotropic gradient perturbation in each iteration for DP analysis, we introduce Mixed

68

Algorithm 3: TransDenoiser Training Algorithm
Input: pre-trained classifier h, total training epoch T , perturbation scale thresholds ξlow

and ξup, input perturbation scale σ, learning rate η, training dataset Dtrain

1 t = 0;
2 load parameters of the pre-trained classifier h;
3 initialize parameters of the denoiser g;
4 while t < T do
5 get mini-batch data xt from Dtrain;
6 for each data x(i) in xt do
7 z(i) := x(i) +N (0, σ2);
8 o(z(i) − x(i)) := l(z(i), θ)− (l(x(i), θ) + (z(i) − x(i))

ᵀ∇x(i)
l(x(i), θ));

9 end
10 “Non-negative cases” znont := {z(i)} with o(z(i) − x(i)) ≥ 0;
11 “Negative cases” znegt := {z(i)} with o(z(i) − x(i)) < 0;
12 if “Non-negative cases” then
13 compute the gradient∇θt l(θt, znont);
14 calculate the input perturbation transformation matrix Mt;
15 calculate Smin(Mt);

16 σ̄ :=

ξup, if

√
TSmin(Mt)σ < ξlow,√

ξ2
up − TSmin(Mt)σ2, else if

√
TSmin(Mt)σ < ξup,

0, else,

;

17 add additional perturbation to the gradient
∇θl(θt, znont) := ∇θl(θt, znont) +N (0, σ̄2);

18 end
19 else
20 compute the gradient∇θt l(θt, z

neg
t);

21 σ̄ := ξup;
22 add perturbation to the gradient∇θl(θt, znegt) := ∇θl(θt, znegt) +N (0, σ̄2);
23 end
24 ∇θt l(θt, zt) := ∇θl(θt, znont) +∇θl(θt, znegt) ;
25 update parameter for next iteration

θt+1 := θt − η 1
B

∑B
i=1(∇θl(θt, znont) +∇θl(θt, znegt));

26 end
27 output θT and compute overall privacy cost through moments accountant.

69

Multivariate Gaussian Analysis below.

Theorem 4. Mixed Multivariate Gaussian Analysis. Let G : Rv → Rw be an arbitrary w-

dimensional function, and ∆G = maxD,D′ ‖G(D)−G(D′)‖2. Mixed Multivariate Gaussian

Analysis is the mix of a Multivariate Gaussian MechanismM1 with the covariance Σ(i) ∈

Rw×w and a Gaussian MechanismM2 with σ̄ adding noise to each of the w elements of the

output. This mixed mechanism is (ε, δ)-DP, with

ε ∈ (0, 1],
√
σ̄2 + TSmin(M(i))σ2 ≥ ξup ≥

√
2 ln(1.25/δ)∆G/ε.

where σ̄ is the isotropic gradient perturbation, T is the number of training steps, Smin(M(i))

is the minimum singular value of M(i) and Σ(i) , M(i)σ
2.

Mixed Multivariate Gaussian Analysis (MMGA) can be leveraged to analyze privacy

guarantee provided by transformed gradient perturbation and additional gradient perturba-

tion. In the following of this section, we will prove Theorem 4 and show that MMGA can

work with moments accountant to provide a tighter DP estimation and preserve (ε, δ)-DP

for deep learning models with pre-trained classifiers.

Privacy Analysis for Vanilla SGD. In vanilla SGD, the algorithm randomly picks one

sample at each iteration and feeds it into the model for optimization. Given the initial

parameters θ0, iteration t, the parameters are updated as: θt+1 = θt − η ∇θtl(θt, z
non
t),

where η denotes the learning rate and znont denotes one perturbed sample randomly picked

at iteration t. In optimization process, the transformed perturbation pt is slightly different

from the that in Equation (6.3).

Lemma 2. Given perturbed example znont = xnont + bt with b
(k)
t ∼ N (0, σ2), the number

of training steps T , and C-Lipschitz continuous loss l. The gradient ∇θtl(z
non
t , θt) at each

step of vanilla SGD can be reformulated as:

∇θtl(z
non
t , θt) = ∇θtl(x

non
t , θt) + pt, (6.4)

70

where the transformed perturbation pt ∼ N (0, TSmin(Mt)σ
2I), Mt = A(i)A

ᵀ
(i), A(i) =

Jθt∇xnon
(i)
l(xnon(i) , θt).

The detailed proof of Lemma 2 can be found in Appendix .8. Theorem 4 can be proved

by Lemma 2, the definition of σ̄ and Theorem 3. Thus, we have the following corollary for

“non-negative cases”:

Corollary 2. Given an input perturbation bt ∈ Rv with b
(k)
t ∼ N (0, σ2), the transfor-

mation matrix At and additional gradient perturbation with scale σ̄, the DP guarantee

of the MMGA is equivalent to that of a GM with its perturbation following a Gaussian

distribution N (0, ξ2
up).

The above analysis for “non-negative cases” leverages perturbation transformation and

MMGA to analyze DP. For “negative cases”, because the perturbation transformation

is no longer required and the gradient perturbation with σ̄ = ξup is directly added to

∇θl(θt, z
neg
t), the MMGA is equivalent to traditional GM with perturbation following

N (0, ξ2
up). Therefore, we can conclude that Corollary 2 is applicable to both “non-negative

cases” and “negative cases”.

Privacy Analysis for Mini-batch SGD. The above claims for Vanilla SGD can be adapted

to Mini-batch SGD by setting Mt = 1
B2

∑B
i=1 A(i)A

ᵀ
(i) instead of Mt = A(i)A

ᵀ
(i) in Vanilla

SGD. The detailed proof can be found in Appendix .9.

Tighter Composition via Moments accountant. While Corollary 2 is derived with simple

compositions, moments accountant can be applied with MMGA to provide a tighter DP

composition for Algorithm 3.

Theorem 5. There exist constants c1 and c2 so that given sampling probability q = B
N

and

the number of training steps T , for any ε < c1q
2, Algorithm 3 is (ε, δ)-differential private

for any δ > 0 if

ξup ≥ c2

q
√
T log(1/δ)

ε
(6.5)

71

The proof of Theorem 9 can be found in Appendix .10.

Discussion. We note that although the transformation matrix A(i) requires the clean ex-

ample x(i), the calculation of A(i) does not incur privacy cost for the denoiser. This is

because the transformation process and the calculation of A(i) is only for analyzing the DP

of the input perturbation, i.e., the clean example x(i) does not actually contribute to the gra-

dient ∇θl(z
non
(i) , θ). Another potential privacy concern is about the observations that “non-

negative cases” and “negative cases” use different scales of additional gradient perturbation.

Even for “non-negative cases”, different data will be applied with different σ̄. We claim

that the different additional perturbation scales among “non-negative cases” and “negative

cases” will not incur privacy violation, because we have proven that input perturbation also

provides certain level of privacy guarantee, which is analyzed in a way that we transform

it into gradient perturbation. We first use perturbation transform matrix and MGM to cal-

culate how much gradient perturbation scale can be transformed from input perturbation

for different data. Then we add additional gradient perturbation onto transformed gradient

perturbation to ensure that the overall gradient perturbation scale σ̄2 +TSmin(Mt)σ
2 ≥ ξ2

up

for each data. On the one hand, the calculation of σ̄ is not visible to users or attackers. On

the other hand, different σ̄ can ensure the overall scale σ̄2 + TSmin(Mt)σ
2 is a consistent

lower bound for all training data.

6.3 Experiments

In this section, we will show our experiments on two benchmark datasets, MNIST and

CIFAR-10. These experiments are conducted to prove that 1) TransDenoiser can provide

high level of certified robustness through randomized smoothing, 2) the input perturbation

transformation can save a considerable amount of DP budget and thus improve the model

performance.

72

6.3.1 Configurations

Baseline and ablation studies. We employ SecureSGD [72] and StoBatch [71] two archi-

tectures in baseline approaches, and compare the certified robustness and DP performance

on MNIST and CIFAR-10 datasets. We acquire two versions of SecureSGD through dif-

ferent training strategies: SecureSGD sct is acquired by training an entire classifier from

scratch, and SecureSGD prt is acquired by training the denoiser and fixing the pre-trained

classifier. For StoBatch, we only acquire the one training from scratch, because the denoiser

with pre-trainied classifier can not fit to its architecture. We also conduct two ablation stud-

ies with two variants of TransDenoiser: 1) TransDenoiser nodp which only contains input

perturbation for certified robustness, without the perturbation transformation and additional

gradient perturbation for DP; 2) TransDenoiser sepdp which contains input perturbation

for certified robustness and separate gradient perturbation for DP, without utilizing input

perturbation via perturbation transformation.

Models. Pre-trained classifiers are trained on public datasets, and we use convolutional and

transposed convolutional layers to build the autoencoder based denoiser for both MNIST

and CIFAR10 datasets. The details of pre-trained classifiers and denoiser can be found in

Appendix .14.

Adversarial examples. We use four different attack algorithms, i.e., FGSM, I-FGSM [52],

Momentum Iterative Method (MIM) [24], and MadryEtAl [64], to craft adversarial exam-

ples. These algorithms apply l2-norm attack on the pre-trained classifier under a white-box

setting. Given a threshold Latk of perturbation norm, adversarial example x′ can be repre-

sented as x′ = x + ψ s.t. ∀ψ ∈ Rv, ‖ψ‖2 ≤ Latk.

Certification. We employ the randomized smoothing of Cohen et al. [21] in our work.

A function robustRadius(x(i), σ) is designed to return a certified radius κ given the input

and its perturbation scale. This indicates that the randomized smoothed model is certified

robust around x(i) within the radius κ.

73

Evaluation metrics. We evaluate the performance in terms of certified accuracy (CertAcc)

on clean examples and conventional accuracy (ConvAcc) on both clean and adversarial

examples. CertAcc = 1
N
isCorrect(x(i))(robustRadius(x(i), σ) ≥ R), ConvAcc =

isCorrect(x′
(i)

)

N
for adversarial example;

isCorrect(x(i))

N
for clean example, where N denotes

the test data size, x′(i) denotes the adversarial example, isCorrect(x(i)) denotes the func-

tion returning 1 when the prediction on x(i) is correct and 0 otherwise, isCorrect(x′(i))

works the same on x′(i), robustRadius(x(i), σ) ≥ R returns 1 when the certified radius κ

is equal or larger than the threshold R and 0 otherwise.

Implementation details. The detailed implementation and code can be found in Appendix

.14.

6.3.2 Experimental Results

We conduct our experiments on MNIST and CIFAR-10 to show that TransDenoiser can

simultaneously achieve both differential privacy and certified robustness via input and gra-

dient perturbation.

For the following experiments, we will compare with 1) SecureSGD sct, SecureSGD prt

and StoBatch to show that TransDenoiser achieves better performance than baselines on

certified robustness and DP, 2) compare with TransDenoiser nodp to show that TransDe-

noiser still achieves high level of certified robustness after adding gradient perturbation

for DP, and 3) compare with TransDenoiser sepdp to show that input perturbation trans-

formation effectively saves a considerable amount of DP budget and improves the utility

performance.

Certified robustness. We demonstrate that TransDenoiser can achieve high level of cer-

tified robustness on both MNIST and CIFAR10. We conduct experiments to measure the

CertAcc on clean examples with different l2 radii of different methods on the two datasets,

shown in Figure 6.2a and Figure 6.2c. TransDenoiser significantly outperforms the state-of-

the-art SecureSGD prt, SecureSGD sct and StoBatch algorithms on both datasets, thanks

74

0.2 0.4 0.6 0.8 1.0
l_2 radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
er
tA

cc

TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

(a) TransDenoiser and
baselines on CIFAR10

0.2 0.4 0.6 0.8 1.0
l_2 radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
er
tA

cc

TransDenoiser_nodp
TransDenoiser
TransDenoiser_inp_0.1
TransDenoiser_sepdp

(b) TransDenoiser and ab-
lation cases on CIFAR10

0.2 0.4 0.6 0.8 1.0
l_2 radius

0.0

0.2

0.4

0.6

0.8

1.0

C
er
tA

cc

TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

(c) TransDenoiser and
baselines on MNIST

0.2 0.4 0.6 0.8 1.0
l_2 radius

0.0

0.2

0.4

0.6

0.8

1.0

C
er
tA

cc

TransDenoiser_nodp
TransDenoiser
TransDenoiser_inp_0.1
TransDenoiser_sepdp

(d) TransDenoiser and ab-
lation cases on MNIST

Figure 6.2: Comparison among TransDenoiser, baselines and ablation cases for certified accuracy
vs. l2 radii on two datasets. The input perturbation scale = 0.25, the overall gradient perturbation
scale = 2.0 (≥ 2.0 for TransDenoiser), and guarantee (1.0, 1e−5)-DP for private models.

to the benefit of perturbation transformation and randomized smoothing.

Figure 6.2b and Figure 6.2d show the comparison with ablation cases. Besides Trans-

Denoiser nodp and TransDenoiser sepdp that we already introduced in Sec 6.3.1, we add

one more ablation case TransDenoiser inp 0.1 denoting that the input perturbation scale

for this TransDenoiser is 0.1 rather than 0.25. Comparing these ablation cases, TransDe-

noiser achieves similar CertAcc as TransDenoiser nodp, which means that TransDenoiser

needs to add very little additional perturbation for ensuring DP thanks to the benefit of

input perturbation that is being exploited. Compared with TransDenoiser sepdp that uses

separate gradient perturbation for DP, TransDenoiser saves significant DP budget and thus

requires less perturbation for DP, leading to significantly higher accuracy. Comparing with

TransDenoiser inp 0.1, we find that TransDenoiser inp 0.1 can achieve highest CertAcc

when l2 radius is small, but it drops quickly as radius increases. This is because 1) smaller

input perturbation scale will bring less randomization to the model, and thus improves

performance; 2) smaller input perturbation scale can only defend against less “powerful”

adversarial attacks, and thus CertAcc drops when attack radius increases. Comparing the

two datasets, they show similar trend besides the fact that MNIST has higher accuracy for

all methods in general due to its simplicity.

Empirical defense. Certified robustness shows the theoretical defense against adversarial

examples, we also conduct experiments to show that TransDenoiser can empirically de-

fend against adversarial examples from different attacks. We only show the results against

75

FGSM, I-FGSM attacks here, the more detailed experiments can be found in Appendix .14.

Figure 9a and Figure 9c show the convAcc of TransDenoiser and baselines with respect to

varying attack norm bound for different attack methods on two datasets, respectively. Com-

pared with these baselines, TransDenoiser achieves better empirical performance with any

attack norm bound of all attacks. Figure 9b and Figure 9d show the comparison of Trans-

Denoiser and ablation cases. Compared with TransDenoiser nodp, TransDenoiser achieves

similar ConvAcc, which proves that perturbation for DP in TransDenoiser does not affect

the ConvAcc too much. Compared with TransDenoiser sepdp, TransDenoiser effectively

saves DP budget and achieves better empirical performance against adversarial examples.

In all these figures, we add a curve named “Clean examples” to represent ConvAcc that

clean examples pass through TransDenoiser. As can be seen, ConvAcc for clean examples

keep consistent as attack norm bound increasing, and TransDenoisercan achieve similar

ConAcc as “Clean examples” when attack norm bound is small.

Observing the similar results between CertAcc and ConvAcc, we see that the certified

accuracy on clean examples provides a good estimation for the empirical robustness of the

model. If a model achieves relatively high CertAcc on clean examples, it can have a high

probability to achieve high ConvAcc on adversarial examples.

Differential privacy. We also evaluate the tradeoff between accuracy and privacy for dif-

ferent methods. As can be seen from Figure 6.4a and Figure 6.4b, given the same ε, Trans-

Denoiser can always achieve higher ConvAcc on different attacks similar to what we have

observed so far. In addition, with increasing epsilon, all methods achive a higher accu-

racy as expected. On MNIST dataset, TransDenoiser sepdp achieves similar result with

TransDenoiser.

76

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
FGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on
vA
cc

Clean examples
TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
IFGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on
vA
cc

Clean examples
TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

(a) TransDenoiser and baselines on CIFAR10

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
FGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on
vA

cc

TransDenoiser_nodp
Clean examples
TransDenoiser
TransDenoiser_sepdp

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
IFGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on
vA

cc

TransDenoiser_nodp
Clean examples
TransDenoiser
TransDenoiser_sepdp

(b) TransDenoiser and ablation cases on CI-
FAR10

0 1 2 3 4 5
FGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on
vA
cc

Clean examples
TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

0 1 2 3 4 5
IFGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on
vA
cc

Clean examples
TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

(c) TransDenoiser and baselines on MNIST

0 1 2 3 4 5
FGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on
vA

cc

TransDenoiser_nodp
Clean examples
TransDenoiser
TransDenoiser_sepdp

0 1 2 3 4 5
IFGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on
vA

cc

TransDenoiser_nodp
Clean examples
TransDenoiser
TransDenoiser_sepdp

(d) TransDenoiser and ablation cases on MNIST

Figure 6.3: More comparison among TransDenoiser, baselines and ablation cases for conventional
accuracy vs. l2 radii on two datasets. The input perturbation scale on CIFAR10 = 0.1, on MNIST
= 0.25, the overall gradient perturbation scale = 2.0 (≥ 2.0 for TransDenoiser), and guarantee
(1.0, 1e−5)-DP for private models.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
FGSM - privacy budget epsilon

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on

vA
cc

TransDenoiser
TransDenoiser_sepdp
SecureSGD_sct
SecureSGD_prt
StoBatch

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
IFGSM - privacy budget epsilon

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on

vA
cc

TransDenoiser
TransDenoiser_sepdp
SecureSGD_sct
SecureSGD_prt
StoBatch

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Mim - privacy budget epsilon

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on

vA
cc

TransDenoiser
TransDenoiser_sepdp
SecureSGD_sct
SecureSGD_prt
StoBatch

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Madry - privacy budget epsilon

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on

vA
cc

TransDenoiser
TransDenoiser_sepdp
SecureSGD_sct
SecureSGD_prt
StoBatch

(a) TransDenoiser, baselines and ablation cases on CIFAR10

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
FGSM - privacy budget epsilon

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on

vA
cc

TransDenoiser
TransDenoiser_sepdp
SecureSGD_sct
SecureSGD_prt
StoBatch

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
IFGSM - privacy budget epsilon

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on

vA
cc

TransDenoiser
TransDenoiser_sepdp
SecureSGD_sct
SecureSGD_prt
StoBatch

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Mim - privacy budget epsilon

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on

vA
cc

TransDenoiser
TransDenoiser_sepdp
SecureSGD_sct
SecureSGD_prt
StoBatch

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Madry - privacy budget epsilon

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on

vA
cc

TransDenoiser
TransDenoiser_sepdp
SecureSGD_sct
SecureSGD_prt
StoBatch

(b) TransDenoiser, baselines and ablation cases on MNIST

Figure 6.4: Comparison among TransDenoiser, baselines and ablation cases for conventional Ac-
curacy vs. ε on two datasets. The input perturbation scale on CIFAR10 = 0.1, on MNIST = 0.25,
attack norm bound = 2.0, the overall gradient perturbation scale = 2.0 (≥ 2.0 for TransDenoiser),
and δ = 1e−5 for DP.

77

Chapter 7

Conclusions and Future Work

In Chapter 4, we have proposed a new framework IGAMT to generate differentially private

EHRs with heterogeneous features, missing values and irregular measures. IGAMT lever-

ages missing value masks and sequence-to-sequence transformers with well-designed em-

beddings to learn the underlying characteristics of EHRs, and generate synthetic data of

high quality. By leveraging the elaborate architecture and objective function, imitator

of IGAMT is capable to imitate the behaviors of the decoder and learn from different

sources of EHRs while reducing randomization brought by DP. After training with gra-

dient perturbation, IGAMT will release G, Deci and the last layer of Dec as a differen-

tially private generative model. We conduct a large volume of experiments to prove that

IGAMT achieves the state-of-the-art performance on DP EHRs synthesization. In Chap-

ter 5, we proposed a Distance Constrained Adversarial Imitation Network AIN to generate

both targeted and untargeted adversarial examples. By incorporating imitation based learn-

ing from existing adversarial examples by optimization based methods, AIN combines the

benefit of both model based methods and the traditional optimization based methods. Our

experiments on two benchmark datasets verified the performance advantage of the proposed

approach. AIN can achieve higher attack success rate with smaller perturbation distances

than the state-of-the-art model based methods ATN and AdvGAN, and similar performance

78

to the state-of-the-art optimization based methods such as i-FGSM and C&W. In Chapter 6,

we have proposed TransDenoiser to achieve both DP and certified robustness via input per-

turbation. TransDenoiser stands as the first attempt to achieve both for the vastly existing,

yet under-studied, pre-trained model setting. We leverage input perturbation transformation

to efficiently transform input perturbation into gradient perturbation. We propose MGM

and MMGA to analyze DP of the transformed gradient perturbation and combine MMGA

with moments accountant to provide a tight bound on DP guarantee. Therefore, Trans-

Denoiser effectively saves a considerable DP budget and improves the utility performance

compared to using gradient perturbation independently to achieve DP. Our experiments on

two benchmark datasets verify the performance advantage of TransDenoiser w.r.t. both DP

and certified robustness compared to state-of-the-art methods.

In deep learning area, the utility of DP models are typically limited by the random-

ization. Generative model with our proposed architecture, imitator, could be one of the

potential direction to achieve better trade-off between utility and privacy. In the future

work, we will explore advanced architectures that can facilitate the utility/privacy perfor-

mance. For AIN, it would be interesting to train AIN in the black-box manner by model

stealing [84] and analyze its performance. Applying the idea of imitation to a GAN-based

method [87] can also be a potential direction of study. For achieving both differential

privacy and certified robustness, we have build a bridge between input perturbation and

gradient perturbation in deep learning models, and transform from the input perturbation

side to the gradient perturbation side. It would be meaningful to explore whether we could

transform in the opposite direction and, moreover, to explore whether a DP model can be

quantitatively analyzed to defend against adversarial examples.

79

Bibliography

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal

Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris

Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay

Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with

differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages

308–318, 2016.

[3] Martı́n Abadi, Ulfar Erlingsson, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Nicolas Papernot, Kunal Talwar, and

Li Zhang. On the protection of private information in machine learning systems: Two recent approches. In 2017 IEEE 30th

Computer Security Foundations Symposium (CSF), pages 1–6. IEEE, 2017.

[4] Emily Alsentzer, John R Murphy, Willie Boag, Wei-Hung Weng, Di Jin, Tristan Naumann, and Matthew McDermott. Publicly

available clinical bert embeddings. arXiv preprint arXiv:1904.03323, 2019.

[5] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In International conference

on machine learning, pages 214–223. PMLR, 2017.

[6] Sean Augenstein, H Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy, Peter Kairouz, Mingqing Chen, Rajiv Mathews,

et al. Generative models for effective ml on private, decentralized datasets. arXiv preprint arXiv:1911.06679, 2019.

[7] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

[8] Shumeet Baluja and Ian Fischer. Learning to attack: Adversarial transformation networks. In Thirty-second aaai conference on

artificial intelligence, 2018.

[9] Seo-Jin Bang, Yuchuan Wang, and Yang Yang. Phased-lstm based predictive model for longitudinal ehr data with missing values,

2020.

[10] Mrinal Kanti Baowaly, Chia-Ching Lin, Chao-Lin Liu, and Kuan-Ta Chen. Synthesizing electronic health records using improved

generative adversarial networks. Journal of the American Medical Informatics Association, 26(3):228–241, 2019.

80

[11] Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Thakurta. Private stochastic convex optimization with optimal rates.

arXiv preprint arXiv:1908.09970, 2019.

[12] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient algorithms and tight error

bounds. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 464–473. IEEE, 2014.

[13] Brett K Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran Lee, Sanjeev P Bhavnani, James Brian Byrd, and Casey S

Greene. Privacy-preserving generative deep neural networks support clinical data sharing. Circulation: Cardiovascular Quality

and Outcomes, 12(7):e005122, 2019.

[14] Amos Beimel, Shiva Prasad Kasiviswanathan, and Kobbi Nissim. Bounds on the sample complexity for private learning and

private data release. In Theory of Cryptography Conference, pages 437–454. Springer, 2010.

[15] Joan Bruna, Christian Szegedy, Ilya Sutskever, Ian Goodfellow, Wojciech Zaremba, Rob Fergus, and Dumitru Erhan. Intriguing

properties of neural networks. 2013.

[16] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE Symposium on Security

and Privacy (SP), pages 39–57. IEEE, 2017.

[17] Thee Chanyaswad, Alex Dytso, H Vincent Poor, and Prateek Mittal. Mvg mechanism: Differential privacy under matrix-valued

query. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages 230–246, 2018.

[18] Kieran Chin-Cheong, Thomas Sutter, and Julia E Vogt. Generation of differentially private heterogeneous electronic health

records. arXiv preprint arXiv:2006.03423, 2020.

[19] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua

Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

[20] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Jimeng Sun. Generating multi-label discrete

patient records using generative adversarial networks. In Machine learning for healthcare conference, pages 286–305. PMLR,

2017.

[21] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial robustness via randomized smoothing. arXiv preprint

arXiv:1902.02918, 2019.

[22] Stanford CS231N. Tiny imagenet visual recognition challenge. https://tiny-imagenet.herokuapp.com/, 2017.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint arXiv:1810.04805, 2018.

[24] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Discovering adversarial examples with momentum.

arXiv preprint arXiv:1710.06081, 2017.

[25] Cynthia Dwork. A firm foundation for private data analysis. Communications of the ACM, 54(1):86–95, 2011.

https://tiny-imagenet.herokuapp.com/

81

[26] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In

Theory of cryptography conference, pages 265–284. Springer, 2006.

[27] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci.,

9(3-4):211–407, 2014.

[28] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In 2010 IEEE 51st Annual Symposium

on Foundations of Computer Science, pages 51–60. IEEE, 2010.

[29] Liyue Fan. A survey of differentially private generative adversarial networks. In The AAAI Workshop on Privacy-Preserving

Artificial Intelligence, 2020.

[30] Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization: optimal rates in linear time. In

Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 439–449, 2020.

[31] James Franklin. The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer,

27(2):83–85, 2005.

[32] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence information and basic

countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages

1322–1333, 2015.

[33] Lorenzo Frigerio, Anderson Santana de Oliveira, Laurent Gomez, and Patrick Duverger. Differentially private generative adver-

sarial networks for time series, continuous, and discrete open data. In IFIP International Conference on ICT Systems Security

and Privacy Protection, pages 151–164. Springer, 2019.

[34] Kazuto Fukuchi, Quang Khai Tran, and Jun Sakuma. Differentially private empirical risk minimization with input perturbation.

In International Conference on Discovery Science, pages 82–90. Springer, 2017.

[35] Manuel Gil. On Rényi divergence measures for continuous alphabet sources. PhD thesis, Citeseer, 2011.

[36] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G Mark, Joseph E Mietus,

George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank, physiotoolkit, and physionet: components of a new

research resource for complex physiologic signals. circulation, 101(23):e215–e220, 2000.

[37] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua

Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.

[38] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572, 2014.

[39] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved training of wasserstein

gans. arXiv preprint arXiv:1704.00028, 2017.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

82

[41] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. science,

313(5786):504–507, 2006.

[42] Geoffrey E Hinton and Richard S Zemel. Autoencoders, minimum description length, and helmholtz free energy. Advances in

neural information processing systems, 6:3–10, 1994.

[43] R Devon Hjelm, Athul Paul Jacob, Tong Che, Adam Trischler, Kyunghyun Cho, and Yoshua Bengio. Boundary-seeking genera-

tive adversarial networks. arXiv preprint arXiv:1702.08431, 2017.

[44] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

[45] Stephanie Hyland, Cristóbal Esteban, and Gunnar Rätsch. Real-valued (medical) time series generation with recurrent conditional

gans. 2018.

[46] Alistair Johnson et al. Alistair johnson, lucas bulgarelli, tom pollard, leo anthony celi, roger mark, steven horng.

[47] Yilin Kang, Yong Liu, Lizhong Ding, Xinwang Liu, Xinyi Tong, and Weiping Wang. Differentially private erm based on data

perturbation. arXiv preprint arXiv:2002.08578, 2020.

[48] Yilin Kang, Yong Liu, Ben Niu, Xinyi Tong, Likun Zhang, and Weiping Wang. Input perturbation: A new paradigm between

central and local differential privacy. arXiv preprint arXiv:2002.08570, 2020.

[49] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[50] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages 1097–1105, 2012.

[52] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv preprint arXiv:1611.01236,

2016.

[53] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoencoding beyond pixels using a

learned similarity metric. In International conference on machine learning, pages 1558–1566. PMLR, 2016.

[54] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

[55] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2324, 1998.

[56] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified robustness to adversarial

examples with differential privacy. In 2019 IEEE Symposium on Security and Privacy (SP), pages 656–672. IEEE, 2019.

[57] Dongha Lee, Hwanjo Yu, Xiaoqian Jiang, Deevakar Rogith, Meghana Gudala, Mubeen Tejani, Qiuchen Zhang, and Li Xiong.

Generating sequential electronic health records using dual adversarial autoencoder. Journal of the American Medical Informatics

Association, 27(9):1411–1419, 2020.

83

[58] Guang-He Lee, Yang Yuan, Shiyu Chang, and Tommi Jaakkola. Tight certificates of adversarial robustness for randomly

smoothed classifiers. In Advances in Neural Information Processing Systems, pages 4910–4921, 2019.

[59] Jaewoo Lee and Daniel Kifer. Concentrated differentially private gradient descent with adaptive per-iteration privacy budget. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1656–1665,

2018.

[60] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Second-order adversarial attack and certifiable robustness. arXiv

preprint arXiv:1809.03113, 2018.

[61] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Certified adversarial robustness with additive noise. In Advances in

Neural Information Processing Systems, pages 9464–9474, 2019.

[62] Yikuan Li, Shishir Rao, Jose Roberto Ayala Solares, Abdelaali Hassaine, Rema Ramakrishnan, Dexter Canoy, Yajie Zhu, Kazem

Rahimi, and Gholamreza Salimi-Khorshidi. Behrt: transformer for electronic health records. Scientific reports, 10(1):1–12, 2020.

[63] Xinhai Liu, Zhizhong Han, Xin Wen, Yu-Shen Liu, and Matthias Zwicker. L2g auto-encoder: Understanding point clouds by

local-to-global reconstruction with hierarchical self-attention. In Proceedings of the 27th ACM International Conference on

Multimedia, pages 989–997. ACM, 2019.

[64] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models

resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[65] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial autoencoders. arXiv preprint

arXiv:1511.05644, 2015.

[66] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[67] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate method to fool deep

neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2574–2582, 2016.

[68] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating recurrent network training for long or event-based

sequences. arXiv preprint arXiv:1610.09513, 2016.

[69] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary classifier gans. In Interna-

tional conference on machine learning, pages 2642–2651. PMLR, 2017.

[70] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami. The limitations of

deep learning in adversarial settings. In 2016 IEEE European symposium on security and privacy (EuroS&P), pages 372–387.

IEEE, 2016.

[71] Hai Phan, My T Thai, Han Hu, Ruoming Jin, Tong Sun, and Dejing Dou. Scalable differential privacy with certified robustness

in adversarial learning. In International Conference on Machine Learning, pages 7683–7694. PMLR, 2020.

[72] NhatHai Phan, Minh Vu, Yang Liu, Ruoming Jin, Dejing Dou, Xintao Wu, and My T Thai. Heterogeneous gaussian mechanism:

Preserving differential privacy in deep learning with provable robustness. arXiv preprint arXiv:1906.01444, 2019.

84

[73] Jérôme Rony, Luiz G Hafemann, Luiz S Oliveira, Ismail Ben Ayed, Robert Sabourin, and Eric Granger. Decoupling direction and

norm for efficient gradient-based l2 adversarial attacks and defenses. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 4322–4330, 2019.

[74] Hadi Salman, Mingjie Sun, Greg Yang, Ashish Kapoor, and J Zico Kolter. Denoised smoothing: A provable defense for pretrained

classifiers. arXiv preprint arXiv:2003.01908, 2020.

[75] Hadi Salman, Greg Yang, Jerry Li, Pengchuan Zhang, Huan Zhang, Ilya Razenshteyn, and Sebastien Bubeck. Provably robust

deep learning via adversarially trained smoothed classifiers. arXiv preprint arXiv:1906.04584, 2019.

[76] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC conference on

computer and communications security, pages 1310–1321, 2015.

[77] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine learning

models. In 2017 IEEE Symposium on Security and Privacy (SP), pages 3–18. IEEE, 2017.

[78] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[79] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with differentially private updates. In

2013 IEEE Global Conference on Signal and Information Processing, pages 245–248. IEEE, 2013.

[80] Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. Constructing unrestricted adversarial examples with generative models.

In Advances in Neural Information Processing Systems, pages 8312–8323, 2018.

[81] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing

properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[82] Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. Dp-cgan: Differentially private synthetic data and label genera-

tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 0–0, 2019.

[83] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. Ensemble adversarial

training: Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017.

[84] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine learning models via prediction

apis. In 25th {USENIX} Security Symposium ({USENIX} Security 16), pages 601–618, 2016.

[85] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-

sukhin. Attention is all you need. In Advances in neural information processing systems, pages 5998–6008, 2017.

[86] Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimization revisited: Faster and more general. In

Advances in Neural Information Processing Systems, pages 2722–2731, 2017.

[87] Xiaosen Wang, Kun He, Chuan Guo, Kilian Q Weinberger, and John E Hopcroft. At-gan: A generative attack model for

adversarial transferring on generative adversarial nets. arXiv preprint arXiv:1904.07793, 2019.

85

[88] Yue Wang, Cheng Si, and Xintao Wu. Regression model fitting under differential privacy and model inversion attack. In IJCAI,

pages 1003–1009, 2015.

[89] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating adversarial examples with adversarial

networks. arXiv preprint arXiv:1801.02610, 2018.

[90] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on

Optimization, 24(4):2057–2075, 2014.

[91] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. Differentially private generative adversarial network. arXiv

preprint arXiv:1802.06739, 2018.

[92] Chugui Xu, Ju Ren, Deyu Zhang, Yaoxue Zhang, Zhan Qin, and Kui Ren. Ganobfuscator: Mitigating information leakage under

gan via differential privacy. IEEE Transactions on Information Forensics and Security, 14(9):2358–2371, 2019.

[93] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular data using conditional gan.

arXiv preprint arXiv:1907.00503, 2019.

[94] Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. Attribute2image: Conditional image generation from visual attributes.

In European Conference on Computer Vision, pages 776–791. Springer, 2016.

[95] Jungang Yang, Liyao Xiang, Jiahao Yu, Xinbing Wang, Bin Guo, Zhetao Li, and Baochun Li. Matrix gaussian mechanisms for

differentially-private learning. IEEE Transactions on Mobile Computing, 2021.

[96] Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. Differentially private model publishing for deep learning.

In 2019 IEEE Symposium on Security and Privacy (SP), pages 332–349. IEEE, 2019.

[97] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative adversarial networks. arXiv

preprint arXiv:1805.08318, 2018.

[98] Hanwei Zhang, Yannis Avrithis, Teddy Furon, and Laurent Amsaleg. Walking on the edge: Fast, low-distortion adversarial

examples. IEEE Transactions on Information Forensics and Security, 16:701–713, 2020.

[99] Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Marianne Winslett. Functional mechanism: regression analysis under

differential privacy. arXiv preprint arXiv:1208.0219, 2012.

[100] Xinyang Zhang, Shouling Ji, and Ting Wang. Differentially private releasing via deep generative model (technical report). arXiv

preprint arXiv:1801.01594, 2018.

[101] Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adversarial autoencoder. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5810–5818, 2017.

86

Appendices

87

Figure 1: An illustration of sequence-to-sequence autoencoder.

Figure 2: The framework of EDGAMT.

.1 Details of Architecture

Seq2seq AE. Figure 1 shows the details of sequence-to-sequence autoencoder.

EDGAMT. IGAMT w/o imi var is also named as EDGAMT, which is a variant of

IGAMT w/o imi. It adds an auxiliary discriminator Dm to facilitate the discrimination

of masks. In experiments, we find real mask is quite trivial to be differentiated from syn-

thetic masks byDx, which degrades the quality of synthetic EHRs. To solve this challenge,

an extra discriminator Dm is added to discriminate m from m̂, m̃ and m̄. Gradient pertur-

bations to achieve DP will be added on gradients of Dx, Dm, Dz and the last layer of Dec.

EDGAMT adds an auxiliary discriminator Dm to facilitate the discrimination of masks.

Since Dm provides extra loss, the discriminate loss on Imi and Dec differs from that of

IGAMT w/o imi. The discriminate loss for Dec is as follows:

lde = −(Dx(x̂× m̂) +Dx(x̃× m̃))− (Dm(m̂) +Dm(m̃)),

88

and the loss for imitator Imi is as follows:

ldi = −Dx(x̄× m̄)−Dm(m̄).

The extra discriminate loss for Dm is as follows,

ldm = (Dm(m̂) +Dm(m̃) +Dm(m̄))− 3Dm(m).

The other parts of objective function are the same as IGAMT w/o imi. We claim that

for IGAMT, EDGAMT is an alternative module to IGAMT w/o imi and IGAMT can be

crafted either on EDGAMT or IGAMT w/o imi. In our experiments, we build IGAMT

on EDGAMT.

.2 More Experiments of Work 1

We will show experiment results of Emory Synergy EHRs in this section.

PCA Results. Figure 3 shows the results baselines, and Figure 4 shows the results from

ablation cases and IGAMT.

−1 0 1 2 3 4 5
−2

−1

0

1

2

Real
VAE

−1 0 1 2 3 4 5
−2

−1

0

1

2

Real
GAN

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
VAE_GAN

−1 0 1 2 3 4 5
−2

−1

0

1

2

Real
AAE

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
DAAE

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
VAE_DP

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
GAN_DP

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
VAE_GAN_DP

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
AAE_DP

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
DAAE_DP

Figure 3: PCA results for real EHRs and synthetic EHRs of baselines.

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
IGAMT_w/o_emb

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
IGAMT_only_t_emb

−2 −1 0 1 2 3 4 5
−2

−1

0

1

2
Real
IGAMT_w/o_imi

−2 0 2 4
−2

−1

0

1

2
Real
IGAMT_w/o_imi_var

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
IGAMT

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
IGAMT_DP_w/o_emb

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
IGAMT_DP_only_t_emb

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
IGAMT_DP_w/o_imi

−1 0 1 2 3 4 5
−2

−1

0

1

2
Real
IGAMT_DP_w/o_imi_var

−1 0 1 2 3 4 5
−2

−1

0

1

2

3
Real
IGAMT_DP

Figure 4: PCA results for real EHRs and synthetic EHRs of ablation cases and IGAMT.

89

Table 1: Overall similarity with σ = 1.0.

Model Minkowski Distance Cosine Similarity

V AEDP 7.330084 −0.021758
GANDP 7.009576 −0.057234

V AE GANDP 7.205729 0.210885
AAEDP 6.995771 0.183082
DAAEDP 6.439933 0.390111

IGAMT w/o embDP 6.470049 0.396667
IGAMT only t embDP 6.447262 0.389958
IGAMT w/o imiDP 6.174218 0.409063

IGAMT w/o imi varDP 6.151663 0.420291
IGAMTDP 5.580912 0.560559

Similarity Comparison. Table 1 shows the overall Minkowski distance and cosine simi-

larity comparison among different models with DP.

Differential Privacy. Figure 5 and Figure 6 show the overall similarity of different models

with different privacy budget ε and perturbation standard deviation σ respectively.

0.059 0.235 0.945 5.87 138.5 853.4
Epsilon

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
os
in
e
Si
m
ila
rit
y

Real
VAE_DP
GAN_DP
VAE_GAN_DP
AAE_DP
DAAE_DP
IGAMT_DP_w/o_emb
IGAMT_DP_only_t_emb
IGAMT_DP_w/o_imi
IGAMT_DP_w/o_imi_var
IGAMT_DP

0.059 0.235 0.945 5.87 138.5 853.4
Epsilon

0

2

4

6

8

10

12

14

M
in
 o

w
s
i D

is
ta
nc
e

Real
VAE_DP
GAN_DP
VAE_GAN_DP
AAE_DP
DAAE_DP
IGAMT_DP_w/o_emb
IGAMT_DP_only_t_emb
IGAMT_DP_w/o_imi
IGAMT_DP_w/o_imi_var
IGAMT_DP

Figure 5: Overall Minkowski distance and cosine similarity on different models with different ε.

5.0 2.0 1.0 0.5 0.2 0.1
Sigma

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
os
in
e
Si
m
ila
rit
y

Real
VAE_DP
GAN_DP
VAE_GAN_DP
AAE_DP
DAAE_DP
IGAMT_DP_w/o_emb
IGAMT_DP_only_t_emb
IGAMT_DP_w/o_imi
IGAMT_DP_w/o_imi_var
IGAMT_DP

5.0 2.0 1.0 0.5 0.2 0.1
Sigma

0

2

4

6

8

10

12

14

M
in
ko
w
sk
i D
is
ta
nc
e

Real
VAE_DP
GAN_DP
VAE_GAN_DP
AAE_DP
DAAE_DP
IGAMT_DP_w/o_emb
IGAMT_DP_only_t_emb
IGAMT_DP_w/o_imi
IGAMT_DP_w/o_imi_var
IGAMT_DP

Figure 6: Overall Minkowski distance and cosine similarity on different models with different σ.

90

.3 Brief Proof of Randomized Smoothing

Given denoiser g and pre-trained classifier h, let f = g◦h, a randomized smoothed classifier

f̃ works as follows,

f̃(x) = argmax
j=1,...,c

Pr[f(x + b) = j], (1)

where input perturbation b ∼ N (0, σ2I).

Suppose the probability that f̃ return the class y of x is py = P(f̃(x) = y) and the

probability for “runner-up” class b is pb = P(f̃(x) = b). The smoothed classifier f̃ is

certified robust around x within the radius

κ =
σ

2
(Φ−1(py)− Φ−1(pb)),

where Φ−1 is the inverse of the standard Gaussian CDF. However, computing py and pb

is not practical for deep learning models. To solve this challenge, Cohen et al. [21] used

Monte Carlo sampling to get the estimation py and pb s.t. py ≤ py and pb ≥ pb with

arbitrarily high probability. py and pb is then used to substitute py and pb in Equation (1)

and the certified radius κ is obtained.

.4 Theorem 6 (wEGM) and Proof

w-Element Gaussian Mechanism (wEGM) is actually a rewrite of the traditional Gaus-

sian mechanism and can guarantee thatM is still DP after applying perturbation to each

component of the output.

Theorem 6. w-Element Gaussian Mechanism. Let G : Rv → Rw be an arbitrary w-

dimensional function, and ∆G = maxD,D′ ‖G(D)−G(D′)‖2. A w-Element Gaussian Mech-

anismM with σ adds noise to each of the w elements of the output. The mechanismM is

91

(ε, δ)-DP, with

ε ∈ (0, 1], σ ≥
√

2 ln(1.25/δ)∆G/ε.

As can be seen in the definition of the theorem, the perturbation in wEGM is i.i.d. with

the same scale σ. The proof of Theorem 6 is as follows:

Proof. The privacy loss of an output o is defined as:

L(o;M,D,D′) = ln
Pr[M(D,G, σ)] = o

Pr[M(D′,G, σ)] = o
(2)

Given v = G(D)− G(D′), we have

|L(o;M,D,D′)|

= |ln Pr[M(D,G, σ)] = o

Pr[M(D′,G, σ)] = o
|

= |ln Pr[G(D) +N (0, σ2)] = o

Pr[G(D′) +N (0, σ2)] = o
|

= |ln
∏w

k=1 exp(−
1

2σ2 (ok − G(D)k)
2∏w

k=1 exp(−
1

2σ2 (ok − G(D)k + vk)2
|

=
1

2σ2
|
w∑
k=1

(ok − G(D)k)
2 − (ok − G(D)k + vk)

2|.

Let p denotes o− G(D), then pk = ok − G(D)k, and pk ∼ N (0, σ2), Then we have

|L(o;M,D,D′)|

=
1

2σ2
|
w∑
k=1

(p2
k − (pk + vk)

2)|

=
1

2σ2
|‖p‖2 − ‖p+ v‖2|.

According to the fact that a spherically symmetric normal distribution is independent of the

orthogonal basis, we can always find a basis b1, b2, ..., bw that is aligned with p. Then we

92

can depict p =
∑w

k=1 p
′
k with p′k being the component on basis bk and p′k ∼ N (0, σ2).

Without loss of generality, we assume b1 is parallel to v, which means that

‖p‖2 =
w∑
k=1

‖p′k‖2,

‖p+ v‖2 = ‖p′1 + v‖2 +
w∑
k=2

‖p′k‖2.

Therefore, we have

|L(o;M,D,D′)|

=
1

2σ2
|‖p‖2 − ‖p+ v‖2|

=
1

2σ2
|‖p′1 + v‖2 − ‖p′1‖2|

≤ 1

2σ2
|∆2
G + 2|p′1|∆G|

Following the proof of Theorem A.1 in [27], we can show that the mechanismM is (ε, δ)-

DP, with

ε ∈ (0, 1], σ ≥
√

2ln(1.25/δ)∆G/ε.

.5 Proof of Theorem 3 (MGM)

Proof. The privacy loss of an output o is defined as:

L(o;M,D,D′) = ln
Pr[M(D,G,Σ)] = o

Pr[M(D′,G,Σ)] = o

93

Given Σ, we have

|L(o;M,D,D′)|

= |ln Pr[M(D,G,Σ)] = o

Pr[M(D′,G,Σ)] = o
|

= |ln Pr[G(D) +N (0,Σ)] = o

Pr[G(D′) +N (0,Σ)] = o
|

= |ln
exp(−1

2
(o− G(D))ᵀΣ−1(o− G(D))

exp(−1
2
(o− G(D′))ᵀΣ−1(o− G(D′))

|

Given the transformation matrix A(i), we denote M as a2A(i)A
ᵀ
(i), which is a symmetric

matrix. Therefore, M can be decomposed by Singular Value Decomposition as:

M = UΛUᵀ,

where U,Λ ∈ Rw×w, and Λ is a diagonal matrix with each element on its diagonal being

the singular values of M. We construct a matrix K ∈ Rw×w, s.t., K = UΛ
1
2 Uᵀ, then

M = KKᵀ,

Let p denotes o − G(D), then p ∼ N (0,Σ). Construct a Gaussian random variable

p̃ ∼ N (0, σ2). We can have p = Kp̃. Given v = G(D)− G(D′), we have

|L(o;M,D,D′)|

=
1

2
|(p + v)ᵀΣ−1(p + v)− pᵀΣ−1p|

94

Construct v̂ = K−1v, then the above formula becomes

|L(o;M,D,D′)|

=
1

2
|(Kp̃ + Kv̂)ᵀΣ−1(Kp̃ + Kv̂)− pᵀΣ−1p|

=
1

2σ2
|(Kp̃ + Kv̂)ᵀ(KKᵀ)−1(Kp̃ + Kv̂)−

(Kp̃)ᵀ(KKᵀ)−1(Kp̃)|

=
1

2σ2
|(p̃ + v̂)ᵀKᵀ(KKᵀ)−1K(p̃ + v̂)−

p̃ᵀKᵀ(KKᵀ)−1Kp̃|

=
1

2σ2
|(p̃ + v̂)ᵀ(p̃ + v̂)− p̃ᵀp̃|

=
1

2σ2
|‖p̃‖2 − ‖p̃ + v̂‖2|,

where p̃k ∼ N (0, σ2) and v̂ = K−1v. This is very similar to the proof in 6, except for the

v̂. We can get the similar result as,

|L(o;M,D,D′)|

=
1

2σ2
|‖p̃‖2 − ‖p̃ + v̂‖2|

=
1

2σ2
|‖p̃′1 + v̂‖2 − ‖p̃′1‖2|

=
1

2σ2
|‖p̃′1 + K−1v‖2 − ‖p̃′1‖2|

=
1

2σ2
|‖K−1v‖2 + 2|p̃′1K−1v||

≤ 1

2σ2
|‖K−1‖2

2∆2
G + 2|p̃′1|‖K−1‖2∆G|

=
1

2σ2
|∆̂2
G + 2|p′1|∆̂G|,

where ∆̂G = ‖K−1‖2∆G = Smax(K
−1)∆G = ∆G

Smin(M)
1
2

, and Smin(M) is the minimum

singular value of M

Following the proof of Theorem A.1 in [27], we can show that the mechanism M is

95

(ε, δ)-DP, with

ε ∈ (0, 1], σ ≥
√

2ln(1.25/δ)∆̂G
aε

.

Consequently, the theorem holds.

.6 Proof of Lemma 1 (Perturbation Transformation)

Proof. We leverage the Taylor expansion to rewrite l(znon(i) , θ) at the data point xnon(i) as

follows,

l(znon(i) , θ) = l(xnon(i) , θ)+

(znon(i) − xnon(i))ᵀ∇x(i)non
l(xnon(i) , θ) + o(znon(i) − xnon(i))

(3)

Since the only mild constraint on l(znon(i) , θ) is C-Lipschitz continuous, the higher order

terms o(z(i)− x(i)) is non-negative for “non-negative cases”. Therefore, Equation 3 can be

further approximated as,

l(znon(i) , θ) ≥ l(xnon(i) , θ) + (znon(i) − xnon(i))ᵀ∇xnon
(i)
l(xnon(i) , θ), (4)

which essentially tightens the privacy budget. Calculating the gradient of the above loss

function, we can have:

∇θl(z
non
(i) , θ)

≥∇θl(x
non
(i) , θ) +∇θ((z

non
(i) − xnon(i))ᵀ∇xnon

(i)
l(xnon(i) , θ))

=∇θl(x
non
(i) , θ) + (znon(i) − xnon(i))ᵀJθ∇xnon

(i)
l(xnon(i) , θ),

x (5)

where Jθ∇xnon
(i)
l(xnon(i) , θ) denotes the Jacobian matrix. We assume the gradient perturba-

96

tion p(i) is defined as p(i) = Jθ∇xnon
(i)
l(xnon(i) , θ)b(i), which is transformed from the input

perturbation b(i). The gradient can thus be rewritten as Equation 6.3:

∇θl(z
non
(i) , θ) = ∇θl(x

non
(i) , θ) + p(i).

To analyze the statistics of Jθ∇xnon
(i)
l(xnon(i) , θ), we vectorize b(i), znon(i) and θ, and let

A(i) = Jθ∇xnon
(i)
l(xnon(i) , θ). Therefore, the problem becomes that given p(i) = A(i)b(i),

where znon(i) ,b(i) ∈ Rv×1, b
(k)
(i) ∼ N (0, σ2), θ ∈ Rw×1,A(i) ∈ Rv×1×w, what is the scale of

p(i).

Denoting M(i) as A(i)A
ᵀ
(i), then according to the linear transformation of Gaussian

random variable, we can conclude that p(i) ∼ N (0,Σ(i)), where Σ(i) is the covariance

matrix of p(i) and Σ(i) = M(i)σ
2.

.7 Theorem 7 (HGM) and Proof

Theorem 7. Heterogeneous Gaussian Mechanism. Let G : Rv → Rw be an arbitrary w-

dimensional function, and ∆G = maxD,D′ ‖G(D) − G(D′)‖2. A Heterogeneous Gaussian

MechanismM with the diagonal matrix Σ ∈ Rw×w adds noise to each of the w elements

of the output. The mechanismM is (ε, δ)-DP, with

ε ∈ (0, 1], σmin ≥
√

2ln(1.25/δ)∆G/ε.

where Σ is a diagonal matrix with each element being σ2
1, σ

2
2, ..., σ

2
w and σmin = mini∈{1,2,...,w} σi.

The proof is as follows:

Proof. The privacy loss of an output o is defined as:

L(o;M,D,D′) = ln
Pr[M(D,G,Σ)] = o

Pr[M(D′,G,Σ)] = o

97

Given Σ, we have

|L(o;M,D,D′)|

= |ln Pr[M(D,G,Σ)] = o

Pr[M(D′,G,Σ)] = o
|

= |ln Pr[G(D) +N (0,Σ)] = o

Pr[G(D′) +N (0,Σ)] = o
|

= |ln
exp(−1

2
(o− G(D))ᵀΣ−1(o− G(D))

exp(−1
2
(o− G(D′))ᵀΣ−1(o− G(D′))

|

According to the theorem, Σ is a diagonal matrix with each element being σ2
1, σ

2
2, ..., σ

2
w.

We can construct a diagonal matrix K ∈ Rw×w, s.t., the diagonal elements of K are

σ1, σ2, ..., σw, then

M = KKᵀ,

K = Kᵀ.

Following the proof of Theorem 3, we can show that the mechanism M is (ε, δ)-DP,

with

ε ∈ (0, 1], 1 ≥
√

2ln(1.25/δ)∆̂G/ε.

where ∆̂G = ∆G
σmin

, and σmin = mini∈{1,2,...,w} σi. Consequently, the theorem holds.

Next, we will prove that this mechanism indeed describe the same fact as HGM in [72]

but from different views.

We define σ2 = 1
w

∑w
i=1 σ

2
i , and construct a vector r ∈ Rw with each element being

ri =
σ2
i∑w

i=1 σ
2
i
. Then we have σ2

i = σ2 × wri, and each element of the diagonal matrix K

becomes
√
wr1σ,

√
wr2σ, ...,

√
wrwσ.

Given v = G(D) − G(D′) and vi denotes i-th element of v, we construct a vector

98

v̂ =
√∑w

i=1
1
wri
v2
i . Then we can show that,

|L(o;M,D,D′)|

=
1

2
|‖K−1v‖2 + 2|p̃′1K−1v||

=
1

2σ2
|‖v̂‖2 + 2|p̃′1v̂||

≤ 1

2σ2
|∆̂2
G + 2|p′1|∆̂G|,

where ∆̂G = maxD,D′
√
‖v̂‖2 represents the new sensitivity.

Following the proof of Theorem 3, we can show the similar conclusion as in [72] that

this mechanism is (ε, δ)-DP, with

ε ∈ (0, 1], σ ≥
√

2ln(1.25/δ)∆̂G/ε.

Compared with [72], Theorem 7 gives different definitions on the sensitivity ∆G and

perturbation scale σ. However, we have shown in the proof that these two mechanisms

indeed describe the same fact from different views.

.8 Proof of Lemma 2

In vanilla SGD, the algorithm picks one example at each iteration. Thus, the subscript t is

eqivalent to (i). Lemma 2 can be easily derived from the following lemma:

Lemma 3. Given perturbed example znont = xnont + bt with b
(k)
t ∼ N (0, σ2), the number

of training steps T , and C-Lipschitz continuous loss l. The gradient ∇θtl(z
non
t , θt) at each

step of vanilla SGD can be reformulated as the gradient with respect to the original sample

99

with a gradient perturbation:

∇θtl(z
non
t , θt) ≥ ∇θtl(x

non
t , θt) + pt, (6)

where pt is the transformed perturbation with pt ∼ N (0,Σt), Σt = TMtσ
2, Mt =

A(i)A
ᵀ
(i), A(i) = Jθt∇xnon

(i)
l(xnon(i) , θt)

The T in Lemma 3 comes from the fact that compared to traditional gradient perturba-

tion added at each iteration, the input perturbation is only added at the start of training for

one single time. The variance is amplified by a coefficient T when input perturbation is

transformed into the gradient perturbation.

Given two neighbouring datasetsD andD′, training data sizeN , the transformation ma-

trix Mt and minimum singular value Smin(Mt) are calculated to analyze DP contribution

from input perturbation. However, because the sample at each iteration is randomly picked

and Smin(Mt) is data-dependent, it is challenging to bound the difference of the trans-

formed gradient perturbation p between the optimization processes on these two datasets.

To solve this, we first claim that the minimum singular value of the transformation

matrix, Smin(Mt) determines how much DP guarantee MGM can provide. According to

Corollary 1, this DP guarantee is equivalent to the guarantee provided by a traditional Gaus-

sian Mechanism with its perturbation following a Gaussian distributionN (0, TSmin(Mt)σ
2).

Therefore, Lemma 2 is derived.

.9 Perturbation Transformation in Mini-batch SGD

In mini-batch SGD, the algorithm randomly picks a batch of samples at each iteration and

feeds them into the model for optimization. Given the initial parameters θ0, iteration t, the

100

parameters are updated as:

θt+1 = θt − η
1

B

B∑
i=1

(∇θl(θt, z
non
t) +∇θl(θt, z

neg
t)), (7)

where η denotes the learning rate,B denotes the batch size, znont denotes the perturbed sam-

ples of “non-negative cases” and znegt denotes the perturbed samples of “negative cases”.

Both znont and znegt are randomly picked at iteration t.

According to the definition of∇θtl(θt, z
non
t) in Equation (6), we have that

1

B

B∑
i=1

∇θtl(θt, z
non
t) ≥ 1

B

B∑
i=1

∇θl(x
non
t , θ) + pt, (8)

where pt is the transformed perturbation with pt ∼ N (0,Σt), Σt = TMtσ
2, Mt =

1
B2

∑B
i=1 A(i)A

ᵀ
(i), A(i) = Jxnon

(i)
∇θl(x

non
(i) , θ).

This gradient is similar to that of vanilla SGD in Lemma 3, except that Mt is 1
B2

∑B
i=1 A(i)A

ᵀ
(i)

instead of A(i)A
ᵀ
(i). We can directly follow the processes in vanilla SGD and derive Theo-

rem 4 and Corollary 2 with Mt = 1
B2

∑B
i=1 A(i)A

ᵀ
(i).

According to Corollary 2, the DP guarantee that MMGA provides at iteration t for

“non-negative cases” is equivalent to that provides by a GM with N (0, ξ2
up).

On the other hand, we have the following for “negative cases”:

1

B

B∑
i=1

∇θtl(θt, z
neg
t) =

1

B

B∑
i=1

∇θl(x
neg
t , θ) +N (0, ξ2

up). (9)

Therefore, we can also claim that Corollary 2 is applicable to both “non-negative cases”

and “negative cases” in mini-batch SGD.

101

.10 Proof of Theorem 9 (MMGA with MA)

Given a multivariate Gaussian mechanism M, two neighboring datasets D and D′, the

output o, we first define the log moments of the privacy loss random variable as follows,

m(o;M,D,D′) , log
Pr(M(D) ∈ o)

Pr(M(D′) ∈ o)
. (10)

Then the log of the moment generating function at the value α is defined as follows,

λM(α;D,D′) , log Eo∼M(D)(e
αm(o;M,D,D′)). (11)

We take the maximum over all possible neighboring pairs of D and D′ to obtain the

moments accountant:

λM(α) , max
D,D′

λM(α;D,D′). (12)

With the moments accountant λM(α), we have the following lemma and theorem,

Theorem 8. For any ε > 0, the mechanismM is (ε, δ)-differentially private for

δ = min
α
exp(λM(α)− αε).

The proof of Theorem 8 is the same as the proof of Theorem 2.2 in [2].

Lemma 4. Given a function f : Rv → Rw with ‖f(.)‖2 ≥ 1. Let ξup ≤ 1, Ca be

the gradient clipping coefficient and L be the sample from origin data with the sampling

probability q = B
N
< 1

16ξup
. Then for any positive integer α ≤ ξ2

upln
1

qξup
, the mechanism

M(d) =
∑

di∈L f(di) +N (0,Σ(i)σ
2) satisfies

λM(α) ≤ q2α(α + 1)

(1− q)ξ2
up

+O(
q3α3

ξ3
up

)

The detailed proof of the lemma 4 is in Appendix .11.

102

Theorem 9. There exist constants c1 and c2 so that given the sampling probability q = B
N

and the number of training steps T , for any ε < c1q
2, Algorithm 3 is (ε, δ)-differential

private for any δ > 0 if

ξup ≥ c2

q
√
T log(1/δ)

ε
(13)

With Lemma 4, the proof is similar as the proof of Theorem 1 in [2].

.11 Proof of Lemma 4 (MA)

Proof. Given a function f : Rv → Rw, we fix D and let D = D′ ∪ d(n). Without loss

of generality, let ‖f(d(n))‖ = 1 and
∑

i∈B\[n] f(d(i)) = 0, and let ζ0 denotes the pdf of

N (0,Σ), ζ1 denotes the pdf of N (d(n),Σ), then we can have:

M(D′) ∼ ζ0,

M(D) ∼ ζ , (1− q)ζ0 + qζ1.

We want to show that

Es∼ζ [(
ζ(s)

ζ0(s)
)α] ≤ λ, (14)

Es∼ζ0 [(
ζ0(s)

ζ(s)
)α] ≤ λ, (15)

for certain λ.

103

For the Equation (14), we have

Es∼ζ [(
ζ(s)

ζ0(s)
)α]

=Es∼ζ0 [(
ζ(s)

ζ0(s)
)α+1]

=Es∼ζ0 [1 + (
ζ(s)− ζ0(s)

ζ0(s)
)α+1]

=
α+1∑
i=0

(
α + 1

i

)
Es∼ζ0 [(

ζ(s)− ζ0(s)

ζ0(s)
)i]. (16)

We find that the first term of (16) is 1, and the second term is 0 since

Es∼ζ0 [
ζ(s)− ζ0(s)

ζ0(s)
] =

∫ −∞
∞

ζ0(s)
ζ(s)− ζ0(s)

ζ0(s)
ds

=

∫ −∞
∞

ζ(s)− ζ0(s) ds

=

∫ −∞
∞

ζ(s) ds−
∫ −∞
∞

ζ0(s) ds

= 0

The third term of (16) is:

(
α + 1

2

)
Es∼ζ0 [(

ζ(s)− ζ0(s)

ζ0(s)
)2]

=

(
α + 1

2

)
q2Es∼ζ0 [(

ζ1(s)− ζ0(s)

ζ0(s)
)2]

Leveraging the fact that for any a ∈ Rv, Es∼ζ0 [exp(a
ᵀΣ−1s)] = exp(aᵀΣ−1a/2), then:

Es∼ζ0 [(
ζ1(s)− ζ0(s)

ζ0(s)
)2]

=Es∼ζ0 [(
ζ1(s)

ζ0(s)
− 1)2]

=1− 2Es∼ζ0 [(
ζ1(s)

ζ0(s)
)] + Es∼ζ0 [(

ζ1(s)

ζ0(s)
)2] (17)

104

Given that ζ0 , N (0,Σ), ζ1 , N (d(n),Σ), we have

ζ1(s)

ζ0(s)
=exp(−1

2
((s− d(n))

ᵀΣ−1(s− d(n))− sᵀΣ−1s))

=exp(−1

2
(sᵀΣ−1s− 2sᵀΣ−1d(n)+

dᵀ(n)Σ
−1d(n) − sᵀΣ−1s))

=exp(−1

2
(dᵀ(n)Σ

−1d(n) − 2sᵀΣ−1d(n)))

=exp(−1

2
dᵀ(n)Σ

−1d(n))× exp(sᵀΣ−1d(n))

Then (17) becomes:

Es∼ζ0 [(
ζ1(s)− ζ0(s)

ζ0(s)
)2]

=1− 2Es∼ζ0 [(
ζ1(s)

ζ0(s)
)] + Es∼ζ0 [(

ζ1(s)

ζ0(s)
)2]

=1− 2Es∼ζ0 [exp(−
1

2
dᵀ(n)Σ

−1d(n))× exp(sᵀΣ−1d(n))]+

Es∼ζ0 [exp(−d
ᵀ
(n)Σ

−1d(n))× exp(sᵀΣ−1(2d(n)))]

=1− 2exp(−1

2
dᵀ(n)Σ

−1d(n))× exp(
1

2
dᵀ(n)Σ

−1d(n))+

exp(−dᵀ(n)Σ
−1d(n))× exp(2dᵀ(n)Σ

−1d(n)) (18)

=1− 2 + exp(dᵀ(n)Σ
−1d(n))

=exp(dᵀ(n)Σ
−1d(n))− 1 (19)

Therefore, the third term of (16) is:

(
α + 1

2

)
Es∼ζ0 [(

ζ(s)− ζ0(s)

ζ0(s)
)2]

=

(
α + 1

2

)
q2Es∼ζ0 [(

ζ1(s)− ζ0(s)

ζ0(s)
)2]

=

(
α + 1

2

)
q2(exp(dᵀ(n)Σ

−1d(n))− 1) (20)

105

To bound (20), we need to determine that

max
d(n)∈Rv

dᵀ(n)Σ
−1d(n)

= max
d(n)∈Rv

dᵀ(n)Σ
− 1

2 Σ−
1
2d(n)

= max
d(n)∈Rv

(
‖dᵀ(n)Σ

− 1
2‖2

‖d(n)‖2

)2

=Smax(Σ
− 1

2)2

=
1

Smin(Σ)
, (21)

Therefore, the third term of (16)

(
α + 1

2

)
Es∼ζ0 [(

ζ(s)− ζ0(s)

ζ0(s)
)2]

≤
(
α + 1

2

)
q2(exp(

1

Smin(Σ)
)− 1)

≤
(
α + 1

2

)
q2 2

Smin(Σ)

=
q2(α + 1)α

Smin(Σ)
(22)

For the Equation (15), we have

Es∼ζ0 [(
ζ0(s)

ζ(s)
)α]

=Es∼ζ [(
ζ0(s)

ζ(s)
)α+1]

=Es∼ζ [1 + (
ζ0(s)− ζ(s)

ζ(s)
)α+1]

=
α+1∑
i=0

(
α + 1

i

)
Es∼ζ [(

ζ0(s)− ζ(s)

ζ(s)
)i]. (23)

Similar to the analysis of (14), the first term of (23) is 1, and the second term is 0. The

106

third term is slightly different:

(
α + 1

2

)
Es∼ζ [(

ζ0(s)− ζ(s)

ζ(s)
)2]

=

(
α + 1

2

)
q2Es∼ζ [(

ζ0(s)− ζ1(s)

ζ(s)
)2]

Because ζ , (1−q)ζ0 +qζ1, we can get that ζ(s) ≥ (1−q)ζ0(s), and rewrite the above

equation as:

(
α + 1

2

)
Es∼ζ [(

ζ0(s)− ζ(s)

ζ(s)
)2]

≤
(
α + 1

2

)
q2

1− q
Es∼ζ0 [(

ζ0(s)− ζ1(s)

ζ0(s)
)2]

The following analysis is similar to that of (14), and we obtain the third term of (23)

(
α + 1

2

)
Es∼ζ [(

ζ0(s)− ζ(s)

ζ(s)
)2] (24)

≤
(
α + 1

2

)
q2

1− q
Es∼ζ0 [(

ζ0(s)− ζ1(s)

ζ0(s)
)2]

≤ q2(α + 1)α

(1− q)Smin(Σ)
(25)

Compared with the proof of Lemma 3 in [2], it’s obvious that the only difference be-

tween Gaussian mechanism and multivariate Gaussian mechanism is the noise scale. The

covariance Σ of MGM can be decomposed into singular vectors and singular values, and

the minimum singular value Smin(Σ) actually solely determines the upper bound of the mo-

ment accountant λM(α), which is the counterpart of Cσ2 of GM with C being the gradient

clipping norm.

Following the proof of Lemma 3 in [2], and given Σ , Smin(M)σ2

C2 , we can get Lemma

4:

Given a function f : Rv → Rw with ‖f(.)‖2 ≥ 1. Let Smin(M)σ2

C2 ≤ 1, C be the gradient

clipping norm and L be the sample from origin data with the sampling probability q <

107

1

16

√
Smin(M)σ2

C2

. Then for any positive integer α ≤ Smin(M)σ2

C2 ln 1

q

√
Smin(M)σ2

C2

, the mechanism

M(d) =
∑

di∈L f(di) +N (0,Σσ2) satisfies

λM(α) ≤ q2α(α + 1)

(1− q)Smin(M)σ2

C2

+O(
q3α3C3

Smin(M)
3
2σ3

)

.12 The implementation of C-Lipschitz

In practice, the gradient∇θl(z(i), θ) is always clipped by a norm threshold C:

Clipped(∇θl(z(i), θ)) ,
∇θl(z(i), θ)

max(1, ‖∇θl(z(i), θ)‖2/C)
(26)

Lemma 5. Given perturbed example z(i) = x(i) + b(i) with b
(k)
(i) ∼ N (0, σ2), and denoting

a clipping coefficient a = 1/max(1, ‖∇θl(z(i), θ)‖2/C). The gradient ∇θl(z(i), θ) clipped

by a norm threshold C can be reformulated as the gradient with respect to the original

sample with a gradient perturbation:

Clipped(∇θl(z(i), θ)) = a∇θl(x(i), θ) + p(i), (27)

where p(i) is the transformed perturbation with p(i) ∼ N (0,Σ(i)), Σ(i) = M(i)σ
2, M(i) =

a2A(i)A
ᵀ
(i) and A(i) = ∇x(i)

∇θl(x(i), θ).

.13 Parameters Slicing

The AE can have a complex structure in order to remove the perturbation and reconstruct

the input samples effectively. This complex structure results in a high-dimensional pa-

rameter space, and leads to an inefficient perturbation transformation. According to the

108

Figure 7: Denoiser with sliced parameters

definition of A(i) and M , when the dimension of θ is high, the calculation will incur a

significant computation cost.

A solution we employ is to slice the parameter θ ∈ Rw into several parts, e.g., θ1 ∈

Rw1 , θ2 ∈ Rw2 and θ3 ∈ Rw3 , corresponding to the first, intermediate, and last layers,

respectively, as shown in Figure 7. The input perturbation transformation is then applied

on θ1, θ2 and θ3 separately with each sub-parameter slice having smaller size.

In the training stage, different optimizers work on different parameter slices and update

them independently. Because the optimization is separated and each one can be regarded

as an independent process, the perturbation transformation and MGM in Section 6.2.2 and

MMGA in Section 6.2.3 can be applied to each process respectively. Without loss of gen-

erality, we use θ directly in the following subsections and sections.

.14 Detailed Experiments of Work 3

Pre-trained classifiers. Pre-trained classifiers are trained on public datasets. The pre-

trained classifier for MNIST is a customized 12 layers deep convolutional network with

residual blocks, which achieves 99.3% accuracy on test dataset. The pre-trained classifier

for CIFAR-10 is a deep convolutional network transfered from VGG16 [78]. We replace

the top layers of VGG16 with customized fully connected layers and initialize all bottom

109

layers with VGG16 parameters. This classifier achieves 86% accuracy on test dataset. Both

classifiers are treated as public in all experiments.

Denoiser. We use convolutional and transposed convolutional layers to build the autoen-

coder based denoiser for both MNIST and CIFAR10 datasets. Layer normalization [7],

residual [40] and skip structures are applied to avoid gradient vanishment. Drop out tech-

nique is applied to mitigate overfitting. The details of these two denoisers are shown in

Figure 8a and Figure 8b.

(a) Detailed architecture of de-
noiser for CIFAR10

(b) Detailed architecture of de-
noiser for MNIST

Figure 8: Denoiser for two datasets, where each box denotes the layer, the digits in each box de-
notes the shape of convolutional filter, “Conv” denotes and “Trans Conv” denotes the boxes are
convolutional and transposed convolutional layers respectively.

Implementation details. All models are implemented using Tensorflow 1.14 and trained

with a system equipped with Nvidia V-100 GPU. We use the open source code of Se-

cureSGD (https://github.com/haiphanNJIT/SecureSGD) and StoBatch

(https://github.com/haiphanNJIT/StoBatch) to conduct experiments, and

we fix an error in SecureSGD code where variance is used incorrectly as standard devia-

tion. Our code is available at https://anonymous.4open.science/r/14d3ec

7c-ab5b-4c76-be92-1f3b0454563a/.

Empirical defense. We show ConvAcc against four different adversarial attacks: FGSM,

I-FGSM, Momentum Iterative Method (MIM) and MadryEtAl. As can be seen in Figure 9,

the results for MIM and MadryEtAl are similar to those shown in Section 6.3 (Figure 6.3).

https://github.com/haiphanNJIT/SecureSGD
https://github.com/haiphanNJIT/StoBatch
https://anonymous.4open.science/r/14d3ec7c-ab5b-4c76-be92-1f3b0454563a/
https://anonymous.4open.science/r/14d3ec7c-ab5b-4c76-be92-1f3b0454563a/

110

dominates all baselines and ablation cases over four different attacks and different attack

norm bound.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
FGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on
vA
cc

Clean examples
TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
IFGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on
vA
cc

Clean examples
TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Mim attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on
vA
cc

Clean examples
TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Madry attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on
vA
cc

Clean examples
TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

(a) and baselines on CIFAR10

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
FGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on
vA

cc

TransDenoiser_nodp
Clean examples
TransDenoiser
TransDenoiser_sepdp

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
IFGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on
vA

cc

TransDenoiser_nodp
Clean examples
TransDenoiser
TransDenoiser_sepdp

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Mim attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on
vA

cc

TransDenoiser_nodp
Clean examples
TransDenoiser
TransDenoiser_sepdp

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Madry attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
on
vA

cc

TransDenoiser_nodp
Clean examples
TransDenoiser
TransDenoiser_sepdp

(b) and ablation cases on CIFAR10

0 1 2 3 4 5
FGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on
vA
cc

Clean examples
TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

0 1 2 3 4 5
IFGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on
vA
cc

Clean examples
TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

0 1 2 3 4 5
Mim attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on
vA
cc

Clean examples
TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

0 1 2 3 4 5
Madry attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on
vA
cc

Clean examples
TransDenoiser
SecureSGD_sct
SecureSGD_prt
StoBatch

(c) and baselines on MNIST

0 1 2 3 4 5
FGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on

vA
cc

TransDenoiser_nodp
Clean examples
TransDenoiser
TransDenoiser_sepdp

0 1 2 3 4 5
IFGSM attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on

vA
cc

TransDenoiser_nodp
Clean examples
TransDenoiser
TransDenoiser_sepdp

0 1 2 3 4 5
Mim attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on

vA
cc

TransDenoiser_nodp
Clean examples
TransDenoiser
TransDenoiser_sepdp

0 1 2 3 4 5
Madry attack norm bound

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
on

vA
cc

TransDenoiser_nodp
Clean examples
TransDenoiser
TransDenoiser_sepdp

(d) and ablation cases on MNIST

Figure 9: More comparison among , baselines and ablation cases for conventional accuracy vs. l2
radii on two datasets. The input perturbation scale on CIFAR10 = 0.1, on MNIST = 0.25, the overall
gradient perturbation scale = 2.0 (≥ 2.0 for), and guarantee (1.0, 1e−5)-DP for private models.

	Introduction
	Research Contributions
	Organization

	Related Works
	EHR Representation Learning
	EHR Synthesization
	Differential Privacy
	Privacy-preserving Generative Models

	Existing Adversarial Attacks
	Certified Robustness
	Differential Privacy with Certified Robustness

	Preliminaries
	Differential Privacy
	Certified Robustness
	Model Architectures

	IGAMT: Synthesizing Temporal Electronic Health Records with Differential Privacy
	Overview
	Imitative Generative Adversarial Mixed-embedding Transformer
	Overview
	Representation Learning
	Generation
	Imitation
	Training
	DP and Synthesization

	Experiments
	Configurations
	EHR and Preprocessing
	Data Visualization and Comparison
	Temporal Features Comparison
	Missing Values and Irregular Measures
	Differential Privacy

	Generating Adversarial Examples with Distance Constrained Adversarial Imitation Networks
	Overview
	Adversarial Imitation Networks
	Objective Function
	Architecture
	Training Framework

	Experiments
	Targeted Attacks
	Untargeted Attacks
	Training Framework
	Adversarial Training
	AIN Training Time

	Achieving both Differential Privacy and Certified Robustness for Pre-trained Classifiers via Input Perturbation
	Overview
	TransDenoiser
	Denoiser and Certified Robustness
	Perturbation Transformation and Multivariate Gaussian Mechanism
	TransDenoiser Training Algorithm

	Experiments
	Configurations
	Experimental Results

	Conclusions and Future Work
	Appendices
	Details of Architecture
	More Experiments of Work 1
	Brief Proof of Randomized Smoothing
	Theorem 6 (wEGM) and Proof
	Proof of Theorem 3 (MGM)
	Proof of Lemma 1 (Perturbation Transformation)
	Theorem 7 (HGM) and Proof
	Proof of Lemma 2
	Perturbation Transformation in Mini-batch SGD
	Proof of Theorem 9 (MMGA with MA)
	Proof of Lemma 4 (MA)
	The implementation of C-Lipschitz
	Parameters Slicing
	Detailed Experiments of Work 3

