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 Abstract 

Estimating associations between high temperature and emergency department visits in six US 
cities with the use of 1-kilometer temperature products 

By Nikita Thomas 
 

Background: High temperatures have significant impacts on society – an effect that is 
increasing due to climate change and increasingly frequent heat wave events. Exposure to high 
temperatures has been shown to result in higher rates of emergency department visits. Previous 
studies typically utilize temperature data collected at airports to define exposures. However, this 
may not be representative of the true temperature felt by the population, due to the location of 
airports being situated far from urban areas.  
 
Methods: We use the gridded climate dataset, Daymet, to create three temperature metrics, 
including two that account for county and ZIP code level populations, for both minimum and 
maximum temperatures during the warm season (May-September) in six US cities. We use a 
Poisson log-linear model to estimate the association of temperatures and emergency department 
visits during the warm season for six health outcomes. We then plot to compare estimated 
relative risk as determined by the Daymet metrics and the airport monitor metric. 
 
Results: We observed that the Daymet metrics were highly correlated (≥0.90) with the airport 
monitor metrics for all cities except San Francisco and Los Angeles. We also observed that acute 
renal failure, fluid and electrolyte imbalance, and heat related illnesses most consistently had 
higher relative risk predictions associated with the finer scale temperature metrics. 
 
Conclusions: We found evidence that using finer scale temperature metrics is useful in 
estimating relative risks of various health outcomes, particularly for cities that have high 
exposure variability. 
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I. Introduction 

High temperatures are known to have significant impacts on several societal factors, 

including the economy and public health.1 Exposure to high temperature is increasing due to 

climate change.2 Extreme temperature events (i.e., heat waves) are also increasing in frequency, 

duration, and magnitude and future events are projected to be more intense and longer lasting.2,3 

There is evidence in the literature indicating that exposures to high temperature are associated 

with an increase in mortality 4,5 and morbidity. Large urban areas are expected to be most 

significantly impacted by future warming events due to the urban heat island effect.6 

 Previous epidemiologic studies have established the impact of high temperature on 

mortality.7,8 A study of the effects of heat waves in 43 US communities indicated higher 

mortality risks from heat waves of higher intensity or duration.5 Extreme temperature events 

specifically have been found to exacerbate respiratory, cardiovascular, renal diseases, and 

diabetes mellitus.2,7–9 Specific populations have been found to be more susceptible to health 

effects associated with high temperature, including elderly, infants and children, pregnant 

women, outdoor workers, populations of low socioeconomic status, populations with existing 

adverse health conditions and disability, and populations without access to air conditioning.2,6–10 

 There have been a large number of studies examining the relationship between exposure 

to high temperature and mortality and fewer studies on heat wave impact on population 

morbidity through emergency department (ED) visits.5,7,8,10–12 Previous studies examining warm 

season associations between temperature and daily ED visits in Atlanta have used daily 

temperature data collected at the Hartsfield-Jackson airport.10–12 The use of airport weather 

station data is a common practice because of its long historical monitoring period with complete 

daily measurements. However, temperature data collected at airports may not be necessarily an 
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accurate representation of the true temperature experienced by populations in large urban areas 

due to the nature of airports generally being located in areas away from large populations.  

Several meteorological data products have been developed recently by combining 

monitoring measurements, elevation, numerical model simulations and satellite-derived 

parameters.  PRISM13 and DayMet14 are two products with data available starting in 1980 at 4km 

and 1km resolution, respectively. PRISM and Daymet have been found to accurately estimate 

ambient temperature and mean heat index at weather stations.15 Because gridded products have 

complete spatial coverage, they offer potential in reducing exposure measurement error 

compared to use of airport-based weather stations for estimating population exposures to 

meteorological variables.15 To more accurately assess exposure of extreme temperature on 

populations in urban areas, one approach is to account for population distribution. Specifically, 

spatially-resolved (i.e., gridded) temperature estimates can be weighted by the county and ZIP 

code-level population counts. 

Few studies have considered using gridded data products for conducting epidemiological 

analyses of health effects due to high temperature. In particular, the use of gridded temperature 

products in epidemiologic studies for assessing exposure of urban populations has not yet been 

compared to the use of temperature data collected at airport monitors. In this paper, we examine 

associations between daily emergency department visits in six US cities and exposure to daily 

maximum and minimum temperature derived using the 1-km Daymet data product in six US 

cities. 

II. Methods 

Data Sources and Processing 
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Daymet surface weather data were simulated throughout the North American continent, 

providing gridded estimates with 1km x 1 km spatial resolution.16 Data were accessed from the 

Oak Ridge National Laboratory website and include daily maximum and minimum temperatures 

for each of the 1 km grid points in six cities of interest (Atlanta, San Francisco, Los Angeles, Salt 

Lake City, Phoenix, and Newark).14 

Airport monitor meteorological data were collected from the National Oceanic and 

Atmospheric Administration 17 for each of the six metropolitan areas. For this analysis, daily 

maximum, daily minimum temperatures, and dewpoint temperature were utilized. 

We considered different ways to utilize the 1 km gridded surface weather data to compare 

with daily measurements at the airport monitor. Daymet temperature data were used to develop 

three different exposure temperature metrics: a simple daily average of all 1km grid cells over 

each metropolitan area, a daily weighted average based on county population, and a daily 

weighted average based on ZIP code population. The exposure metrics were created for daily 

maximum and minimum temperatures, ultimately creating four different metrics for maximum 

and minimum temperatures. The population weighted averages were calculated using the 

equation: 

𝑇𝑒𝑚𝑝!,#$%&'!$( =
∑𝑃𝑜𝑝% ∗ 𝑇𝑒𝑚𝑝%!

∑𝑃𝑜𝑝%
	 

where 𝑇𝑒𝑚𝑝%! is the maximum or daily temperature on day t in county/ZIP code i. Calculating 

exposures that incorporate spatial distributions of the at-risk population may provide a more 

accurate measure of the temperature experienced by the populations of each of the cities.  

Data on population size were collected using publicly available census data. Data were 

collected at the county level from the 1990, 2000, and 2010 censuses and at the ZIP code level 

from the 2000 and 2010 censuses. County and ZIP code shapefiles were downloaded as TIGER 
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files from the US Census for each of the five states.18 County- and ZIP code-level population  

data were interpolated linearly between Census time points in order to estimate population 

numbers during non-census years. 

The R packages, rgdal, rgeos, raster, maptools, and spdep were used to align the 1 km x 1 

km Daymet data to each county and ZIP code. Nearest neighbor methods were utilized to 

determine which grid points were associated with each county and ZIP code. To account for 

variability in ZIP code boundaries between census time points, ZIP code boundaries for 2000 

were used for data from 1993-2005, and boundaries for 2010 were used for data from 2006-

2016. Any ZIP codes that did not appear in both 2000 and 2010 censuses were excluded from the 

analysis to allow for continuity in the data set. 

Each metropolitan area was defined at the county-level by using the metropolitan 

statistical area (MSA) definition and at the ZIP code-level by determining which ZIP code 

tabulation areas (ZCTA) overlapped with the MSA definition. In each of the metropolitan areas, 

patient-level emergency department visit records were collected from individual hospitals, state 

departments of public health, or hospital associations. Daily ED visits were selected where 

patient residential ZIP codes and hospital locations were in the MSA. We used the primary and 

secondary diagnosis codes (ICD-9 and ICD-10) to identify ED visits for specific health 

outcomes. The health outcomes of interest for this study were circulatory disease (ICD-9: 390-

459, ICD-10: I00-I99), acute renal failure (ICD-9: 584, ICD-10: N17), fluid and electrolyte 

imbalance (ICD-9: 276, ICD-10: E86-E87), gastrointestinal infections (ICD-9: 001-009, ICD-10: 

A00-A09), heat-related illnesses (ICD-9: 992, ICD-10: T67), and respiratory disease (ICD-9: 

460-519, ICD-10: J00-J99). For each of these outcomes, ED visits were aggregated over the city 

based on admission date.  
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All analysis was conducted in R, version 3.6.1 in RStudio. Other packages used included 

the R package, splines, in order to model the exposure and outcome relationships. 

Statistical Analysis 

To assess the difference between temperature metrics derived from Daymet and the 

airport monitor, we calculated the means and standard deviations of each metric during the warm 

season (May to September) in each city, as well as the Pearson correlations between the daily 

values from each Daymet metric and the airport monitor. 

To estimate the association of temperature and emergency department visits during warm 

seasons in each city, we used a Poisson log-linear model. The counts of each of the six health 

outcomes were modeled using a modified version of a previously developed model11 and is 

specified as: 

𝑙𝑜𝑔(𝜇!)) = 𝛽* + 𝑛𝑠(𝑇𝑒𝑚!) + 𝑛𝑠	(𝐷𝑃𝑇!) +6𝛾+𝐷𝑂𝑊!+

+,-

+,.

+6𝛿+𝐻𝑂𝐿𝐼𝐷𝐴𝑌!+ + 6 𝜉+𝐻𝑂𝑆𝑃𝐼𝑇𝐴𝐿!+

+,/0

+,.

+,0

+,.

+ 𝑛𝑠(𝐷𝐴𝑇𝐸!) 

 
where 𝜇!) is the expected number of ED visits for health outcome a on day t; Temt is the 

temperature (in Celsius) on day t, modeled as a smooth function using natural cubic splines with 

4 degrees of freedom to account for potential non-linear relationships with ED visits; DPTt is the 

maximum dewpoint temperature (in Celsius) on day t to capture the strongest level of human 

discomfort during the day, also modeled as a smooth function using natural cubic splines with 4 

degrees of freedom;  DOWtk is defined as the categorical variable for day k of the week on day t; 

HOLIDAYtk includes binary variables that indicate days on which federal holidays are observed; 

HOSPITALtk denotes hospital indicators to account for hospitals’ contributions to the total ED 

visits in the city of interest, coded 1 when hospital k contributes ED visits on day t; and DATEt 
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includes a smooth function of day of the warm season with monthly knots across years and a 

year-specific linear function for day of the warm season to capture differences between the 

years12.  

The model was run for each city, health outcome, and eight temperature metrics (four for 

maximum and four for minimum, represented as the Tem term in the model). The model 

coefficients of the temperature spline terms were used to calculate the non-linear relative risk of 

cause-specific ED visits associated with a degree Celsius increase in temperature. The exposure-

response functions were then plotted across the observed temperature values for each of the four 

temperature metrics in each city. Relative risks were centered so that a relative risk of 1 was 

associated with the 25th percentile of the maximum/minimum airport temperatures. We set the 

25th percentile as a reference temperature to better visualize the risks associated with higher 

temperature.  

III. Results 

The total and mean daily ED visits for each of the six health outcomes of interest in each 

of the six US cities are shown in Table 1. In Table 2, the means and correlations of the four 

temperature metrics for each city are shown. The three Daymet metrics were highly correlated 

(≥0.90) with the airport metric for all cities except Los Angeles and San Francisco. There was 

variation between each of the cities regarding their temperatures. San Francisco and Los Angeles 

had lower temperatures across the four metrics, but the airport monitor temperatures for these 

two cities was also considerably lower than the other three metrics for maximum temperature 

while it was consistent for minimum temperature. Phoenix tended to have much higher 

temperatures across all four metrics than any of the other cities – this is attributable to its 

geographic location in the southwestern United States. 
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Figures 1 and 2 show relative risks of daily ED visits associated with 

maximum/minimum temperature in Atlanta. Overall, we found positive associations between 

temperature and ED visits for all outcomes. For acute renal failure, fluid/electrolyte imbalance, 

heat related illnesses, and gastrointestinal infections, use of finer scale maximum temperature 

metrics resulted in stronger associations than use of airport temperature data alone (Figure 1). 

For minimum temperature (Figure 2), similar observations can be made for respiratory illnesses, 

heat related illnesses, and acute renal failure. We note that for Atlanta, we found that the range of 

minimum temperature from Daymet was considerably different from that observed at airport 

monitor, an observation that is also evident in Table 2.  

Figures 3 and 4 show relative risks of daily ED visits associated with 

maximum/minimum temperature in San Francisco during the warm season from 2005 to 2016. In 

Figure 3, it can be observed that for heat related illnesses, acute renal failure, circulatory 

diseases, and fluid and electrolyte balance, positive associations with maximum temperature 

were observed for each temperature metric. It should be noted strong associations were seen with 

the use of finer spatial population weighting, i.e., the ZIP code population weighted model for 

acute renal failure. In Figure 4 for minimum temperature, the Daymet metrics again gave higher 

relative risks for all outcomes with the ZIP code population metric having the strongest 

association. 

Relative risks for daily maximum and minimum temperatures in Los Angeles are 

depicted in Figures 5 and 6. In Figure 5, heat related illness and gastrointestinal infections are 

seen to have a higher relative risk associated with all the finer scale temperature metrics. 

However, the confidence intervals are wide for all of the outcomes, indicating significant 
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variability in the relative risk estimates.  In Figure 6 for minimum temperature, none of the 

Daymet metrics gave higher relative risks compared to the airport temperature. 

Figures 7-12 depict the relative risk vs temperature plots for Salt Lake City, Newark, and 

Phoenix, with similar observations.  

IV. Discussion 

In this study, we used the fine scale temperature dataset, Daymet, to develop three 

different temperature metrics for each city: an unweighted daily average, a county population 

weighted daily average, and a ZIP code population weighted daily average. Along with the 

airport temperature metric, each of these metrics was used in our Poisson log-linear model to 

determine the association between the temperature metrics and emergency department visits for 

six health outcomes, for both maximum and minimum temperatures. We found that there was 

variation among the all of the cities between the Daymet metrics and the airport monitor metrics. 

Among all cities, we found that heat related illnesses, acute renal failure, and fluid and 

electrolyte balance consistently had positive associations for maximum temperatures across all 

four metrics. For minimum temperatures, circulatory and respiratory diseases had positive 

associations in Atlanta, San Francisco, Newark, and Phoenix. 

From the results, we demonstrate the advantage of using finer scale temperature products 

to estimate exposures. This potentially reduces exposure measurement error and results in more 

accurate representation of the relative risk of ED visits associated with high temperatures. This 

observation is apparent for some cities more so than others. Analysis for San Francisco, Salt 

Lake City, Phoenix, and Los Angeles would benefit from using a temperature metric that is 

weighted at the ZIP code level rather than any of the other metrics. For Atlanta and Newark, the 

three weighting schemes of Daymet data gave similar results, but all estimated higher relative 
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risks when compared to the airport temperature metric. This may be explained by the greater 

variation in the terrains of the cities in the western half of the United States while Atlanta and 

Newark do not have as much geographic variability. 

It is also clear that using a finer temperature metric is more essential for heat sensitive 

diseases. Acute renal failure, fluid and electrolyte imbalance, and heat related illnesses 

consistently had higher relative risk predictions associated with the finer scale temperature 

metrics, while circulatory, respiratory, and gastrointestinal illnesses varied depending on the city 

and the specific daily temperature type (maximum or minimum). This may be due to the former 

three illnesses acutely presenting within a short amount of time after high temperature exposure 

while the latter three illnesses may only present themselves after longer term exposure. 

While analyzing maximum temperature is important when determining the association 

between high temperatures and emergency department visits, analysis of minimum temperature 

provides insight into the health relevance of temperatures that individuals are exposed to 

overnight. The ZIP code population weighted metric consistently gave the strongest relative risks 

associated with the minimum daily temperature. For Atlanta, San Francisco, Newark, and 

Phoenix, using the Daymet-derived minimum temperature in the analysis yielded stronger 

associations for circulatory and/or respiratory diseases, while for maximum temperature analysis 

we did not observe differences in estimated relative risk across different temperature metrics. 

The ZIP code metric may have provided the strongest relative risks associated with minimum 

daily temperature since this reflects the temperature that individuals are exposed to when they 

are at home, often asleep. This metric most accurately suggests the temperatures the population 

is exposed to that may lead to the development of a specific disease. 
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We have shown that using finer scale temperature metric results in strong estimates of 

relative risks for five disease outcomes in the context of emergency department visits. In future 

analyses, it would be worthwhile to consider other disease outcomes as well as stratified analysis 

by specific demographics, particularly age and race groups. The availability of ZIP code-level 

temperature metrics would also provide the opportunity to conduct analyses into which ZIP code 

populations may be at higher risk for heat-related adverse health outcomes during the warm 

season. 
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Tables and Figures 
 

Table 1. Descriptive statistics for emergency department (ED) visits from May to September in 
each city. 

 
Metric Total ED Visits Mean Daily ED Visits 
Atlanta, 1993-2012   
Fluid and Electrolyte Imbalance 66369 22 
Acute Renal Failure 109106 36 
Circulatory Diseases 1905253 622 
Respiratory Diseases 900570 294 
Gastrointestinal Infections 30610 10 
Heat Related Illnesses 12133 4 

   
San Francisco, 2005-2016   
Fluid and Electrolyte Imbalance 459468 251 
Acute Renal Failure 115851 63 
Circulatory Diseases 1518306 827 
Respiratory Diseases 898662 490 
Gastrointestinal Infections 31561 18 
Heat Related Illnesses 2923 2 

   
Los Angeles, 2005-2016   
Fluid and Electrolyte Imbalance 1206667 658 
Acute Renal Failure 325517 178 
Circulatory Diseases 3689636 2010 
Respiratory Diseases 2115910 1153 
Gastrointestinal Infections 78230 43 
Heat Related Illnesses 8860 5 
   
Salt Lake City, 2005-2016   
Fluid and Electrolyte Imbalance 90930 50 
Acute Renal Failure 14127 8 
Circulatory Diseases 176262 96 
Respiratory Diseases 124580 67 
Gastrointestinal Infections 7032 4 
Heat Related Illnesses 176262 1 
   
Newark, 2005-2016   
Fluid and Electrolyte Imbalance 26979 15 
Acute Renal Failure 757 1 
Circulatory Diseases 275057 150 
Respiratory Diseases 267431 146 
Gastrointestinal Infections 3069 2 
Heat Related Illnesses 1010 1 
   
Phoenix, 2008-2016   
Fluid and Electrolyte Imbalance 269571 196 
Acute Renal Failure 58531 43 
Circulatory Diseases 689086 500 
Respiratory Diseases 491364 357 
Gastrointestinal Infections 14256 11 
Heat Related Illnesses 5887 4 
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Table 2. Descriptive statistics for four temperature metrics during May to September in each city 
Temperature Metric Airport Daymet Average County Population 

Weighted Average 
ZIP Population 

Weighted Average 
Atlanta, 1993-2012     
Daily Max Temperature °C 
[Mean (SD)] 

29.4 (3.7) 29.7 (3.4) 29.8 (3.4) 29.8 (3.4) 

Daily Min Temperature °C 
[Mean (SD)] 

19.9 (3.4) 17.8 (3.6) 17.9 (3.6) 17.9 (3.6) 

Airport TMX Correlation - 0.91 0.92 0.92 
Airport TMN Correlation - 0.93 0.93 0.93 
     
San Francisco, 2005-2016     
Daily Max Temperature °C 
[Mean (SD)] 

21.6 (3.7) 24.2 (3.9) 24.9 (4.0) 23.6 (3.7) 

Daily Min Temperature °C 
[Mean (SD)] 

12.8 (1.8) 12.2 (2.1) 12.7 (2.2) 12.4 (1.9) 

Airport TMX Correlation - 0.82 0.80 0.86 
Airport TMN Correlation - 0.79 0.73 0.83 
     
Los Angeles, 2005-2016     
Daily Max Temperature °C 
[Mean (SD)] 

23.0 (3.1) 28.4 (4.1) 29.0 (4.3) 27.8 (3.9) 

Daily Min Temperature °C 
[Mean (SD)] 

16.8 (2.2) 15.9 (3.0) 15.6 (3.2) 16.3 (2.6) 

Airport TMX Correlation - 0.75 0.70 0.84 
Airport TMN Correlation - 0.87 0.84 0.93 
     
Salt Lake City, 2005-2016     
Daily Max Temperature °C 
[Mean (SD)] 

29.2 (6.5) 24.7 (5.7) 25.8 (5.8) 27.2 (5.9) 

Daily Min Temperature °C 
[Mean (SD)] 

15.0 (5.5) 9.8 (4.6) 12.1 (4.9) 13.2 (5.0) 

Airport TMX Correlation - 0.98 0.98 0.98 
Airport TMN Correlation - 0.97 0.97 0.97 
     
Newark, 2005-2016     
Daily Max Temperature °C 
[Mean (SD)] 

27.5 (5.1) 26.6 (4.4) 26.8 (4.5) 26.9 (4.5) 

Daily Min Temperature °C 
[Mean (SD)] 

17.7 (4.5) 15.2 (4.4) 15.5 (4.4) 15.7 (4.4) 

Airport TMX Correlation - 0.90 0.91 0.92 
Airport TMN Correlation - 0.96 0.97 0.97 
     
Phoenix, 2008-2016     
Daily Max Temperature °C 
[Mean (SD)] 

39.1 (4.2) 37.1 (3.8) 37.6 (4.0) 38.4 (4.0) 

Daily Min Temperature °C 
[Mean (SD)] 

26.2 (4.3) 21.5 (4.2) 22.2 (4.3) 23.3 (4.3) 

Airport TMX Correlation - 0.96 0.97 0.98 
Airport TMN Correlation - 0.95 0.95 0.96 
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Figure Legend 
Vertical axes are drawn at 25th, 50th, 75th, 95th, and 99th percentiles of the airport temperature measurements. Models 
for the four temperature metrics, airport temperature (TMX/TMN), Daymet average (DaymetAvg), county 
population weighted Daymet average (CountyWAvg), and ZIP code population weighted Daymet average 
(ZipWAvg) are indicted by different colors, with dashed lines showing 95% confidence bounds. 
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Figure 1. Relative risk of selected health outcomes vs maximum temperature during May to 
September in Atlanta, 1993-2012. 
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Figure 2. Relative risk of selected health outcomes vs minimum temperature during May to 
September in Atlanta, 1993-2012 
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Figure 3. Relative risk of selected health outcomes vs maximum temperatures during May to 
September in San Francisco, 2005-2016 
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Figure 4. Relative risk of selected health outcomes vs minimum temperature during May to 
September in San Francisco, 2005-2016 
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Figure 5. Relative risk of selected health outcomes vs maximum temperature during May to 
September in Los Angeles, 2005-2016 
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Figure 6. Relative risk of selected health outcomes vs minimum temperature during May to 
September in Los Angeles, 2005-2016 
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Figure 7. Relative risk of selected health outcomes vs maximum temperature during May to 
September in Salt Lake City, 2005-2016 
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Figure 8. Relative risk of selected health outcomes vs minimum temperature during May to 
September in Salt Lake City, 2005-2016 
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Figure 9. Relative risk of selected health outcomes vs maximum temperature during May to 
September in Newark, 2005-2016 
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Figure 10. Relative risk of selected health outcomes vs minimum temperature during May to 

September in Newark, 2005-2016 
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Figure 11. Relative risk of selected health outcomes vs maximum temperature during May to 
September in Phoenix, 2008-2016 
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Figure 12. Relative risk of selected health outcomes vs minimum temperature during May to 
September in Phoenix, 2008-2016 
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