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Abstract

Quasi-Isometric Properties of Graph Braid Groups
By Praphat Xavier Fernandes

In my thesis I initiate the study of the quasi-isometric properties of the
2 dimensional graph braid groups. I do this by studying the behaviour of
flats in the geometric model spaces of the graph braid groups, which happen
to be CAT(0) cube complexes. I define a quasi-isometric invariant of these
graph braid groups called the intersection complex. In certain cases it is
possible to calculate the dimension of this intersection complex from the
underlying graph of the graph braid group. And I use the dimension of the
intersection complex to prove that the family of graph braid groups B2(Kn)
are quasi-isometrically distinct for all n. I also show that the dimension
of the intersection complex for a graph braid group takes on every possible
non-negative integer value.
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Chapter 1

Introduction

Our goal in this paper is to initiate a study of the quasi-isometric properties

of graph braid groups. In a series of papers, Farley and Sabalka [10, 11, 9]

study the cohomology of graph braid groups and derive presentations for the

groups. Farber and others [2, 8] have studied the homology of these groups.

Embeddings of graph braid groups into RAAG’s and classical braid groups

are studied by Crisp and Wiest in [7], and Scrimshaw shows in [18] that for

more than 4 strands the classical braid groups cannot embed into graph braid

groups. Thus far, little is known about the quasi-isometric properties of the

graph braid groups.

Similar to the case of a right angled Artin group, a graph braid group Bn(Γ)

is quasi-isometric to a finite dimensional CAT(0) cube complex Dn(Γ). For

the case n = 2 this suggests that the tools developed by Bestvina, Kleiner and

Sageev in [3] and [4] for studying the quasi-isometric properties of certain 2-

dimensional right angled Artin groups via their cubical CAT(0) model spaces

may be adapted to the study of graph braid groups. Inspired by ideas from

[3], we associate to each graph Γ a finite dimensional simplicial complex

called the intersection complex I(Γ), that encodes the intersection pattern

of maximal product subcomplexes in D2(Γ). The dimension of I(Γ) is finite

and a quasi-isometry invariant of B2(Γ).

Letting Kn denote the complete graph with n vertices, we show that the

dimension of I(Kn) is 2
n−6−1 for n ≥ 6. This implies that the spacesD2(Kn)
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are quasi-isometrically distinct for all n. We also show that the dimension of

I(Γ) can take on any non-negative integer value.
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Chapter 2

Quasi-Isometries

Given two metric spaces (X, dX) and (Y, dY ), a quasi-isometric embedding

φ : X → Y is a map which is not necessarily continuous, but for which a pair

of constants K,L > 0 exist, which satisfy the following equation for every

pair of points x1, x2 in X:

1

K
dX(x1, x2)− L ≤ dY (φ(x1), φ(x2)) ≤ KdX(x1, x2) + L

If in addition there exists a constant C > 0 such that for each y ∈ Y

there exists a point xy ∈ X such that y ∈ NC(φ(xy)), or in other words that

Y ⊂ NC(φ(X)), then we say that X and Y are quasi-isometric and that the

map φ : X → Y is a quasi-isometry. Given such a quasi-isometry φ : X → Y ,

there exists a quasi-isometry ψ : Y → X and a constant D > 0 such that for

every x ∈ X and for every y ∈ Y the following two equations hold:

dX(x, ψ ◦ φ(x)) < D

dY (y, φ ◦ ψ(y)) < D

We call such a map ψ : Y → X a quasi-isometric inverse to φ : X → Y ,

because while the compositions ψ ◦ φ : X → X and φ ◦ ψ : Y → Y are

not equal to the identity maps on X and Y respectively, they are a bounded

distance from those identity maps.
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Example 2.1. Consider the metric space R with the standard Euclidean

distance. And consider the metric space Z made up of the integers, with the

standard Euclidean distance inherited from R. The inclusion map ι : Z →֒ R

is a quasi-isometry. And the map given by the greatest integer function,

⌊·⌋ : R → Z is its quasi-isometric inverse. Thus the metric spaces R and Z

are quasi-isometric.

Given a finitely generated group G with generating set A = 〈a1, ..., am〉,

then one may define a metric dA on the groupG with respect to the generating

set A as follows:

dA(g, h) := { Shortest word length in A which represent the element gh−1}

However the metric dA depends upon the choice of generating set A. Choos-

ing a different generating set B = 〈b1, ..., bn〉 gives us a different metric dB.

However it is easy to see that the two metric spaces that one gets by endow-

ing G with the two different metrics, (G, dA) and (G, dB) are quasi-isometric

as metric spaces [13].

Example 2.2. Consider the group Z with respect to two generating sets

A =< 1 > and B =< 2, 3 >. And consider the two elements 0, 1 ∈ Z. We

have that dA(0, 1) = 1 while dB(0, 1) = 2. However for all m,n ∈ Z we have

that 1
3
dA(m,n) ≤ dB(m,n) ≤ 3dA(m,n).

Thus we may study finitely generated groups as geometric objects by study-

ing them as metric spaces up to quasi-isometry. The study of groups as met-

ric spaces up to quasi-isometry was initiated by Gromov [13] and is a major

thrust of geometric group theory.

We often find ourselves in the case where we have a nice action of the group

G we are trying to study, on a metric space (X, d). If we restrict the kinds

of metric spaces that our group G is allowed to act upon then this action (if
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it satisfies certain conditions) gives us a quasi-isometry between our group

and the metric space.

We want to consider metric spaces in which all closed balls are compact,

these are called proper metric spaces.

Definition 2.3. (Proper Metric Space) A metric space (X, d) is proper

if closed balls in the metric space are compact.

A path γ : [a, b] → X in a metric space (X, d) is called rectifiable if the

quantity l(γ) is finite:

l(γ) := sup {
∑

d(γ(xi), γ(xi+1))}

Where the supremum ranges over all possible partitions P = {x0, ..., xk} of

the interval [a, b].

A geodesic between two points x, y in the metric space X is a path γ such

that γ(a) = x, γ(b) = y and l(γ) = d(x, y). We want to restrict our attention

further, to metric spaces in which there is a geodesic path between every pair

of points, such spaces are called geodesic spaces.

Definition 2.4. (Geodesic Space) A metric space X is said to be a geodesic

space if there exists a geodesic γ between every pair of points in X.

And we restrict the group actions that we consider to co-compact and

properly discontinuous actions.

Definition 2.5. (Co-compact Action) The action of a group G on a

metric space (X, d) is said to be co-compact, if the quotient space X/G is

compact in the quotient topology.

Definition 2.6. (Properly Discontinuous Action) A group G is said to

act properly discontinuously on a metric space (X, d) if given any compact

set K ⊂ X, for all but finitely many g ∈ G we have that g ·K ∩K = φ.
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Definition 2.7. (Geometric Action) A group G acting properly discon-

tinuously and co-compactly by isometries on a metric space (X, d) is said to

act geometrically on the metric space X.

Common examples of geometric ations are the fundamental groups of finite

cell complexes acting on their universal covers. We may then apply the

Švarc-Milnor Lemma:

Lemma 2.8. [14] (Švarc-Milnor Lemma) Let (X, d) be a proper geodesic

metric space, and let G be a group which acts geometrically on X. Then the

group G is finitely generated and for any fixed x0 ∈ X, the map G → X

given by g 7→ g · x0 is a quasi-isometry if we consider G to be a metric space

with respect to the word metric induced by some finite generating set.

Thus the quasi-isometric properties of a group G acting geometrically on

a proper geodesic metric space X may be studied via the quasi-isometric

properties of the metric space X. A nice class of such metric spaces are

CAT(0) spaces, and among these CAT(0) cube complexes are particularly

nice.
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Chapter 3

CAT(0) Cube Complexes

A geodesic metric space is said to be CAT(0) if every geodesic triangle in

X is at least as thin as its comparison triangle with the same side lengths in

the Euclidean plane. This fact is illustrated in Figure 3.1, where a geodesic

triangle in a CAT(0) space is shown together with its corresponding compar-

ison triangle in Euclidean space. A locally CAT(0) metric space is a metric

space where every point has a neighbourhood which is CAT(0). A simply

connected locally CAT(0) space is CAT(0) [5]. Thus the universal covers of

locally CAT(0) cube complexes are globally CAT(0).

One can construct a metric on a cubical cell complex K by assigning each

cube the metric of an Euclidean cube with side of length 1. This leads to a

piecewise Euclidean metric on the complexK which we refer to as the cubical

metric on K. One of the benefits of dealing with a metric cube complex is

that there is a nice combinatorial condition which is equivalent to the metric

having non-positive curvature.

In [12], Gromov proves the following theorem:

Theorem 3.1. [12] The cubical metric on K has non-positive curvature if

and only if the link of every vertex is a flag complex.

A flag complex, i.e. every complete sub-graph in the link spans a simplex.
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Figure 3.1: Comparison triangles

3.1 Right Angled Artin Groups

Following [5], given a graph Γ, called the defining graph, we define a right

angled Artin group (RAAG) AΓ to be the group with the following presen-

tation, generated by the vertices of Γ, AΓ = 〈V (Γ)|[v, w]∀ edge e ∈ Γ with

∂(e) = {v, w}〉.

As outlined in [5], for every RAAG AΓ with defining graph Γ, one may

construct a finite cell complex SΓ. Start with a wedge of circles attached to

a point x0, one for each vertex vi of Γ. And label each circle by the corre-

sponding vertex vi. For each edge [vi, vj] in Γ, attach a 2-torus by mapping its

standard generators to vivjvi
−1vj

−1. For each triangle in Γ, attach a 3-torus

by mapping its standard generators to the circles corresponding to the three

vertices of the triangle. Continue in this way, attaching a k-torus for each

set of k vertices which span a complete sub-graph of Γ. The resulting com-

plex SΓ is called the Salvetti complex for the RAAG AΓ and by construction

the fundamental group of SΓ is the RAAG AΓ. One then has the following

theorem from [6]:

Theorem 3.2. [6] The universal cover of the Salvetti complex, SΓ, is a

CAT(0) cube complex. Hence SΓ is a K(π, 1) space.
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Due to the geometric action of the fundamental group AΓ on the universal

cover SΓ, Lemma 2.8 gives us a quasi-isometry between AΓ with the word

metric and the universal cover SΓ which is a CAT(0) cube complex with the

piecewise Euclidean metric.

3.2 Graph Braid Groups

A graph braid group Bn(Γ)
1 is defined by analogy with the usual braid

group, to be the fundamental group of the configuration space Cn(Γ) of n

points restricted to a graph Γ. However due to Abrams Stability [1, 17] the

configuration space Cn(Γ) is homotopy equivalent to a finite cell complex

Dn(Γ) if the graph Γ is sufficiently subdivided relative to n. In the case of

D2(Γ) it is enough for Γ to have no loops or multiple edges between any pair

of vertices. Henceforth we shall restrict ourselves to the case of n = 2 where

we deal with B2(Γ), D2(Γ) and its universal cover D2(Γ) and assume that

our graph Γ has no loops or multiple edges between pairs of vertices.

In [1] Abrams showed that the universal cover D2(Γ) of the discretized

configuration space D2(Γ) is a CAT(0) cube complex. Thus implying that

D2(Γ) is a finite dimensional K(π, 1). Additionally, due to the geometric

action of B2(Γ) on D2(Γ), we have that B2(Γ) with the word metric is quasi-

isometric to the CAT(0) cube complex D2(Γ) with the piecewise Euclidean

metric.

1Usually Bn(Γ) refers to the full braid group. However here it refers to the pure braid

group which is quasi-isometrically the same as the full braid group. Hence we make no

distinction.
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3.3 Quasi-Flats in CAT(0) Square Complexes

We now restrict our attention to 2-dimensional CAT(0) cube complexes, or

CAT(0) square complexes. Given such a complex K, a quasi-flat Q in K

is the image of a quasi-isometric embedding φ : R2 → K of the Euclidean

plane into K. In [4], the properties of quasi-flats are studied in a class of well

behaved CAT(0) cube complexes under which the spaces SΓ and D2(Γ) fall.

They show that for every quasi-flat Q there exists a locally finite homology

class [F ] ∈ H lf
2 (K) whose support set S[F ] lies a bounded Hausdorff distance

from the quasi-flat Q. They go on to analyze the structure of S[F ] and find

that it consists of a unique cycle of quarter-planes and an additional finite

complex that may be ignored.

In [3] a 1-complex is defined that is associated to SΓ of a RAAG AΓ.

It is called the quarter-plane complex and has the property that its 1-

dimensional cycles correspond to quasi-flats in the CAT(0) cube complex

SΓ. We show that one may define a quarter-plane complex for D2(Γ) which

also has the property that its 1-dimensional cycles correspond to quasi-flats.

Set K = D2(Γ) and for a different graph Γ′ we set K ′ = D2(Γ′). A quasi-

isometry φ : K → K ′ induces a bijection between the 1-dimensional cycles

of Q(K) and Q(K ′). This parallels the results in [19] where it is shown that

for a well behaved CAT(0) 2-complex X, circles in the Tits boundary of X

correspond to quasi-flats in X, and a quasi-isometry between two such com-

plexes ψ : X → X ′ induces a homeomorphism between the cores of their

Tits boundaries (where the core of a Tits boundary ∂TX is the union of all

circles in ∂TX).

The quarter-plane complex Q is analogous to the core of the Tits boundary

as discussed in [19], though it contains additional information in the form

of a cellular structure that encodes data about the underlying space D2(Γ).

This additional cellular information is used to measure the length of a cycle
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Σ in Q by counting the number of 1-cells in the quarter-plane complex which

make up the cycle Σ. As it turns out, 1-dimensional cycles in Q of length 4

correspond to flats in D2(Γ). Further, it is shown that the bijection induced

on the cycles of the quarter-plane complex by the quasi-isometry φ must map

1-dimensional cycles of length 4 to 1-dimensional cycles of length 4. One may

view this as an enhancement to the result in [19] in the case of the spaces

D2(Γ) (for graph braid groups) and SΓ (for RAAG’s). The interpretation of

this statement is that the quasi-isometry φmaps flats inK to within bounded

Hausdorff distance of flats in K ′.

This fact regarding the behaviour of flats under the quasi-isometry φ is then

used in [3] to define an object called the flat-space associated to a RAAG.

For a special class of RAAG’s that they call atomic, they show that a quasi-

isometry between two atomic RAAG’s induces an isometry between their

associated flat-spaces. The defining graphs of the atomic RAAG’s are then

recovered from the local structure of the flat-spaces associated to them and

this together with the induced isometry between the flat-spaces is used to

show that the RAAG’s must be isomorphic.

Unfortunately a similar construction does not obviously suggest itself in

the case of the spaces D2(Γ). Instead we resort to identifying distinguished

subcomplexes (called maximal product subcomplexes) which we show are put

into bijection with each other by a quasi-isometry. Intrinsically, a maximal

product subcomplex has the structure of a product of trees. Moreover we

show that this induced bijection respects large intersecions between these

distinguished subcomplexes. Based on this result, we then define a finite

dimensional cell complex called the intersection complex I(Γ) and show that

the quasi-isometry φ induces an isometry between the associated intersection

complexes.

The intersection complex I(Γ) is typically not locally finite, but it is always

finite dimensional as long as Γ is finite. Thus the dimension of the intersection
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complex is a quasi-isometry invariant of the spaces D2(Γ). We compute

several examples of this invariant. In the case of the complete graph Kn (for

n ≥ 6) we show that the dimension I(Γ) is 2n−6− 1, showing that the spaces

D2(Kn) are quasi-isometrically distinct for each n ≥ 6. We then construct

a family of graphs Ok such that the dimension of I(Ok) is k, so that the

invariant is shown to take on every non-negative integer value.
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Chapter 4

Graph Braid Groups

We now cover some of the necessary background in graph braid groups.

These groups are defined by analogy to the classical braid groups as the

fundamental groups of a certain non-compact configuration spaces Cn(Γ).

We describe a construction of a finite cube complex Dn(Γ) that simplifies

their study. The complex Dn(Γ) is locally CAT(0) and therefore a K(π, 1)

space, and it is (usually) homotopy equivalent to the original configuration

space. After this we develop some of the covering space theory needed to

keep track of flats and their intersections in D2(Γ).

Following [1] we define the configuration space of n points on a graph Γ as

follows.

Definition 4.1. (Configuration Space)[1] The configuration space of n

points on a graph Γ, denoted Cn(Γ) is defined to be the space Γ×· · ·×Γ−∆.

Here Γ × · · · × Γ is the cartesian product of n copies of the graph Γ, and

∆ = {(x1, · · · , xn) ∈ Γ× · · · × Γ|xi = xj for some i 6= j}.

Just as the classical braid groups may be defined as the fundamental group

of the configuration space of n points in the disc, the graph braid group is

defined to be the fundamental group of the configuration space of n points

in the graph Γ.
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Definition 4.2. (Graph Braid Group) [1] The n-strand graph braid group

Bn(Γ) of a graph Γ is defined to be the fundamental group of the configuration

space Cn(Γ) of n points on the graph Γ.

As we mentioned earlier, π1(Cn(Γ), ∗) is usually called the pure graph braid

group. However it is a finite index subgroup of the full graph braid group

and is thus quasi-isometric to it. Hence we make no distinction and refer to

it as the graph braid group.

One of the drawbacks of the space Cn(Γ) is that it is non-compact and

does not admit an easy combinatorial description. So following [1] again, we

define the discretized configuration space of n points on a graph Γ.

Definition 4.3. (Discretized Configuration Space) The discretized con-

figuration space of n points on a graph Γ is the subcomplex of Γ× · · · × Γ (n

times) defined by Dn(Γ) := {σ ∈ Γ× · · · × Γ|σ = σ1 × · · · × σn where σi are

cells in Γ and ∀i 6= j, σi ∩ σj = ∅}.

The following theorem from [17] which is a refinement of a result in [1], tells

us when the discretized configuration space Dn(Γ) is a good approximation

of the configuration space Cn(Γ).

Theorem 4.4. [17] (Abrams Stability) For any n > 1 and any graph Γ

with at least n vertices, Cn(Γ) deformation retracts to Dn(Γ) if and only if:

1. Each path between two vertices of valence not equal to 2 passes through

at least n− 1 edges.

2. Each homotopically non-trivial path from a vertex to itself passes through

at least n+ 1 edges.

In this paper we discuss only the case n = 2, for which the above theorem

tells us that as long as the graph has no loops or multiple edges between pairs

of vertices, the spaces D2(Γ) and C2(Γ) are homotopy equivalent and thus
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B2(Γ) is the fundamental group of D2(Γ). We will return to the following

four examples of discretized configuration spaces throughout the rest of this

paper.

First we define an induced sub-graph of a graph Γ as this will help us to

simplify notation.

Definition 4.5. (Induced Subgraph) An induced subgraph of a graph Γ

is a subgraph Γ′ ⊂ Γ such that given vertices v, w in Γ′, (v, w) is an edge in

Γ′ if and only if (v, w) is an edge in Γ. The induced subgraph Γ′ is said to

be induced by its vertex set S = V (Γ′) ⊂ V (Γ). We also write Γ[S] for the

subgraph of Γ induced by S.

Definition 4.6. (Induced Cycle) A cyclic subgraph of Γ which is induced

by its vertices is called an induced cycle.

Example 4.7. (K5) For each edge E in the graph K5, there is a unique

largest subgraph CE which is disjoint from E. The graph CE is a 3-cycle in

K5. Thus we have that E ×CE is a subcomplex of D2(K5), for each edge E.

These complexes look like triangular tubes as shown in Figure 4.1.

For each vertex v in K5, there exists a unique largest subgraph Kv which is

disjoint from v. The graph Kv is isomrphic to K4, and v×Kv is a subcomplex

of D2(K5) for each vertex v.

In order to see how these subcomplexes fit together, we use the graph K5 as

a blueprint. Each vertex of K5 corresponds to a 1-dimensional subcomplex Kv

of D2(K5) shaped like a tetrahedron. The tetrahedral 1-complex associated to

each vertex is shown in Figure 4.2. Each of the 4 edges Ei which terminate

at v corresponds to a subcomplex Ei × CEi
which is a triangular shaped tube

that intersects the subcomplex v×Kv in v×CEi
. Each tetrahedral 1-complex

is the meeting point of 4 different triangular tubes, as shown in Figure 4.3.

The resulting cell complex D2(K5) is thus a manifold. In fact it is a genus 6

orientable surface.
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Figure 4.1: Triangular pipe in D2(K5)
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Figure 4.2: Construction of D2(K5)
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Figure 4.3: Four triangular pipes attached to each face of a tetrahedron.

Example 4.8. (K6) There are 20 3-cycles in K6, and for each of these Ci’s

there is a unique 3-cycle C ′i such that Ci and C ′i are disjoint. Thus the

subcomplexes Ci × C ′i are subcomplexes of D2(K6). Also note that Ci × C ′i

are the largest subcomplexes of the form Γ1 × Γ2 where Γ1,Γ2 are disjoint

subgraphs of K6 with all vertices of valence ≥ 2.

Example 4.9. (K7) There are 35 3-cycles in K6. Given a pair of disjoint

3-cycles C,C ′ we have that the subcomplex C×C ′ is a subcomplex of D2(K7).

The subcomplexes C × C ′ are each contained in two subcomplexes KC × C ′

and C ×KC′, where KC is the unique maximal subgraph having all vertices

of valence ≥ 2 and disjoint from C ′, and KC′ is the unique maximal subgraph

having all vertices of valence ≥ 2 and disjoint from C. Also note that both the

subcomplexes KC × C ′ and C ×KC′ are maximal (with respect to inclusion)

subcomplexes of the form Γ1×Γ2 where Γ1,Γ2 are disjoint subgraphs with all

vertices of valence ≥ 2.

Example 4.10. (K8) There are 56 3-cycles in K8. Each cycle is a subgraph
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of K8 induced by the three vertices in the cycle, thus each 3-cycle is of the form

Γ[v1, v2, v3]. Given a pair of disjoint 3-cycles in K8, of the form Γ[v1, v2, v3]

and Γ[w1, w2, w3]. The sub-complex T = Γ[v1, v2, v3]× Γ[w1, w2, w3] is a sub-

complex of D2(K8). Let u1, u2 be the remaining vertices of K8 which are not

part of either of this pair of 3 − cycles. Then there are four sub-complexes

of the form:

K1 = Γ[v1, v2, v3, u1]× Γ[w1, w2, w3, u2]

K2 = Γ[v1, v2, v3, u2]× Γ[w1, w2, w3, u1]

K3 = Γ[v1, v2, v3, u1, u2]× Γ[w1, w2, w3]

K4 = Γ[v1, v2, v3]× Γ[w1, w2, w3, u1, u2]

Lifts of these subcomplexes to the universal cover are later shown to be

maximal.

The sub-complex T is contained in each of K1, K2, K3 and K4. And thus

T ⊂ K1 ∩K2 ∩K3 ∩K4.

Later we shall see that lifts of these are the only maximal product subcom-

plexes which contain lifts of T .

Re-visiting the examples above, let us examine what their corresponding

universal covers look like.

Example 4.11. (K5) The universal cover of a smooth constant curvature

surface of genus 6 is isometric to the hyperbolic plane H2. However D2(K5)

is not smooth, but has a piecewise Euclidean metric, with each 2-cell isometric

to I2.

In the universal cover D2(K5) each 0-cell is the meeting point of 6 square

cells as shown in Figure 4.4. These 6 square cells cover the subcomplex

highlighted in blue in Figure 4.5. The space D2(K5) is quasi-isometric to H2.
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Figure 4.4: Neighbourhood of a 0-cell in D2(K5)

Figure 4.5: The neighbourhood of a 0-cell in D2(K5)
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Example 4.12. (K6) Each subcomplex of D2(K6) which is a product C ×

C ′ of 3-cycles in D2(K6) is a torus. In the universal cover, each of these

subcomplexes lifts to infinitely many disjoint subcomplexes isometric to R2,

i.e. each of the subcomplexes C × C ′ lifts to infinitely many disjoint flats in

D2(K6).

Example 4.13. (K7) Each subcomplex of D2(K7) which is a product C×C ′

of 3-cycles is a torus. Each of these lifts to infinitely many flat subcomplexes

in D2(K7).

For each such subcomplex C ×C ′, the subcomplexes KC ×C
′ and C ×KC′

both contain C×C ′. Each of these lifts to infinitely many copies of a complex

of the form T1 ×R or R× T2. Here T1 covers KC while R covers C ′, and T2

covers KC′ while R covers C. For each flat subcomplex F which is a lift of

the subcomplex C×C ′, there are exactly two subcomplexes of the form T1×R

and R× T2 which are lifts of KC × C ′ and C ×KC′ and which contain F .

Example 4.14. (K8) Each subcomplex T of D2(K8) which is a product of

disjoint 3-cycles is a torus. Each of these tori lifts to infinitely many flat

subcomplexes in D2(K8). And each of the complexes K1, K2, K3 and K4 lift

to sub-complexes of D2(K8) which are products of trees. And each of the lifts

of T is contained in exactly four sub-complexes which are lifts of K1, K2, K3

and K4.

We now need to talk about D2(Γ), an intermediate covering space of D2(Γ)

that sits somewhere below the universal cover D2(Γ). This covering space is

useful because it allows us to put Euclidean co-ordinates onto flats in D2(Γ).

However in order to do this we need to take a brief digression into configu-

rations of coloured graphs, which we call coloured configuration spaces. The

definition of the discretized configuration space D2(Γ), can be generalized to

take into account the graph colouring, so that for a coloured graph Γχ we

can define a coloured discretized configuration space D2(Γχ).



22

A coloured graph is one in which each vertex has been assigned a colour.

Adjacent vertices are allowed to have the same colour. When no colouring

is specified on a graph, we may assume that it has the standard colouring in

which each vertex is assigned a distinct colour.

Definition 4.15. (Graph Colouring) A k-colouring of a graph Γ is a

surjective map χ : V (Γ)→ {1, 2, . . . , k} from the set of vertices to a set of k

distinct colours. The colour of a vertex v is χ(v). A graph Γ with a colouring

χ is denoted as Γχ. Two k-colourings χ and κ are equivalent if there exists

a k-permutation θ such that χ = θ ◦ κ. When we refer to a k-colouring of a

graph Γ, we shall henceforth be referring to an equivalence class of colourings.

A graph with no specified colouring is said to have the standard colouring, in

which each of its vertices is assigned a distinct colour.

The discretized coloured configuration space is defined to be a subset of

the product Γ × ... × Γ, where a cell σ ∈ Dn(Γχ) which is of the form

σ = σ1 × ...× σn, is such that no two distinct cells σi, σj have vertices which

are the same colour.

Definition 4.16. (Discretized Coloured Configuration Space) The

discretized coloured configuration space of n points on the coloured graph Γχ

is the subcomplex of Γ×· · ·×Γ(n times) defined by Dn(Γχ) := {σ ∈ Γ× ...×

Γ|σ = σ1×· · ·×σn where σi are cells in Γ, and ∀i 6= j, χ(V (σi))∩χ(V (σj)) =

φ}. Note that if κ is the standard colouring on Γ, then Dn(Γκ) = Dn(Γ).

If we consider the universal covering tree Γ of the graph Γ, we may lift the

standard graph colouring to a colouring of Γ in which every vertex of Γ in the

fibre of v ∈ Γ is assigned the same colour as v. We call Γ with this colouring

the universal coloured covering tree.

Definition 4.17. (The Universal Coloured Covering Tree) The univer-

sal coloured covering tree Γχ of a coloured graph Γχ, is the universal covering
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tree Γ with covering map p : Γ → Γ, and induced colouring χ ◦ p : V (Γ) →

{1, 2, ..., k}. If Γ has the standard colouring, then the universal coloured cov-

ering tree with its induced colouring is simply denoted as Γ.

There is a natural map pc : D2(Γ) → D2(Γ) which is a covering map.

However it is important to note that D2(Γ) need not be the universal cover

of D2(Γ) as it is not simply connected in most cases.

Proposition 4.18. [1] Given a graph Γ with the standard colouring, and

its corresponding universal coloured covering tree Γ, the following diagram of

covering spaces commutes:

D2(Γ) Γ× Γ

D2(Γ) Γ× Γ

pc p× p

i

i

Where the map pc : D2(Γ)→ D2(Γ) is a restriction of p× p to the subspace

D2(Γ).

The universal cover D2(Γ) also covers the space D2(Γ) and thus we also

have the following commutative diagram of covering spaces:

D2(Γ)

D2(Γ)

D2(Γ)

r

s

pc
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Definition 4.19. (Flat) A flat F in a metric space X is a subspace which

is isometric to R2.

Definition 4.20. (Isolated Flat) [16] A flat F in a metric space X is said

to be isolated if for every other flat F ′ in X and for every D > 0 we have

that ND(F ) ∩ND(F
′) is bounded.

Lemma 4.21. (Flat Subcomplex Lemma) Let F ⊂ D2(Γ) be a flat. Then

F is a subcomplex of D2(Γ).

Proof. There is an isometry f : R2 → D2(Γ) such that the flat F = Im(f).

Given a square cell S we would like to show that if Int(S)∩F 6= ∅ then we

must have S ⊂ F . So let S be one such square cell and pick p ∈ Int(S) ∩

F . Let q ∈ R2 be the pre-image of p under f . There exists Nǫ(q) an ǫ-

neighbourhood of q in R2 which is mapped isometrically by f to Nǫ(p) an

ǫ-neighbourhood of p in D2(Γ). Since D2(Γ) is a cell-cpmplex and since

p ∈ Int(S), ǫ > 0 can be chosen so that Nǫ(p) ⊂ Int(S). And since Nǫ(p)

is the image under the isometry f of the neighbourhood Nǫ(q) we have that

Nǫ(p) ⊂ S ∩ F .

Given an arbitrary point x′ ∈ S there exists a point x ∈ Nǫ(p) such that the

geodesic segment [p, x′] is an extension of the geodesic segment [p, x]. Note

that [p, x] ⊂ Nǫ(p) ⊂ S and that [p, x′] ⊂ S and is the unique extension of

[p, x] in D2(Γ), as this is contained in a single square cell S of Γ.

We also have that [p, x] ⊂ Nǫ(p) ⊂ F so there exists a point y ∈ Nǫ(q) ⊂ R2

such that the geodesic segment [q, y] is mapped isometrically by f to the

geodesic segment [p, x] in Nǫ(p). The geodesic segment [q, y] extends uniquely

to a geodesic segment α : [0,∞) → R2. And since f : R2 → D2(Γ) is an

isometry, the map f ◦ α : [0,∞) → D2(Γ) is also a geodesic ray in D2(Γ)

which is an extension of [p, x].

Since the geodesic segment [p, x′] is a unique extension of [p, x] in D2(Γ)(as

it lies within a single square cell S), we must have that [p, x′] coincides with
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a sub-segment of f ◦ α. In other words, there must exist t, t′ ∈ [0,∞) such

that f ◦ α([0, t]) = [p, x] and f ◦ α([0, t′]) = [p, x′]. Thus we must have that

[p, x′] ⊂ Im(f), i.e. that [p, x] ⊂ F . And thus x′ ∈ F .

Since x′ was an arbitrary point in the square cell S we may conclude that

S ⊂ F . And thus F must be a sub-complex of D2(Γ).

Definition 4.22. (Standard Cell Structure) Consider R(resp. R+ =

{x ∈ R | x ≥ 0}) with a cell structure with a 0-cell σi and a 1-cell τi

(isometric to I) for every integer i, such that the boundary ∂τi = {σi, σi+1}.

We shall call this the standard cell structure on R and R+.

Definition 4.23. (Product Cell Structure) [15] Given two cell complexes

K1 and K2 with countably many open cells, the topological space K = K1×K2

may be given a unique cell structure in which each cell σ of K is a product of

cells σ1 and σ2 from K1 and K2, with characteristic map ψ1 × ψ2 : σ → K,

where ψ1 : σ1 → K1 and ψ2 : σ2 → K2 are the characteristic maps of σ1

and σ2 respectively. We call this unique cell structure on K the product cell

structure.

Definition 4.24. (Quarter-Plane) [3] Consider R+ with the standard cell

structure, and give the product R+ × R+ the product cell structure. A sub-

complex of D2(Γ) or D2(Γ) which is isometric to the complex R+ × R+ is

called a quarter-plane.

In order to prove that quarter-planes in D2(Γ) are lifts of subcomplexes of

D2(Γ) which are products of chromatically disjoint geodesic rays in Γ, we

need to analyze how subcomplexes isometric to Euclidean cubical strips and

half strips behave under the covering map r : D2(Γ)→ D2(Γ)

Definition 4.25. (Infinite Square Strip) An Infinite Strip(or half-strip)

is a cell complex of the form R × I (or R+ × I) where R and R+ are given

the usual cell structure.
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Lemma 4.26. If ∆ ⊂ D2(Γ) is a subcomplex isometric to an infinite squre

strip or half-strip, then r(∆) is isometric to an infinite strip or half-strip and

r restricted to ∆ is an isometry.

Proof. Let ∆ be an infinite square strip in D2(Γ). Consider any two adjacent

square cells S and S ′ in ∆. And look at their images under the covering map

s : D2(Γ) → D2(Γ). Both s(S) and s(S
′) must be adjacent square cells in

D2(Γ) with s(S) = e× f and s(S ′) = e× g where e, f and g are all edges in

Γ with e being disjoint from f, g and f, g being adjacent. Thus π2(s(∆)) = γ

where γ is an edge-path in Γ which is disjoint from the edge e. If we now

consider the image of S and S ′ under the covering map r : D2(Γ) → D2(Γ)

then r(S) and r(S ′) must be adjacent squares in D2(Γ) which cover the

squares s(S) and s(S ′), with r(S) = e × f and r(S ′) = e × g where e, f , g

cover e, f, g and thus e must be chromatically disjoint from f, g. Also f and

g must be adjacent. Because γ is a tree, we have that π2(r(∆)) = γ, where

γ is a geodesic in Γ which covers γ and which is chromatically disjoint from

e. And since all the squares in r(∆) are products of the edge e with an

edge from the path γ we may conclude that r(∆) = e × γ. Thus ∆ covers

a strip in D2(Γ) and since strips are simply connected r must restrict to a

homeomorphism and hence an isometry on ∆. The proof for when ∆ is a

half-strip is identical.

Proposition 4.27. If E is a quarter-plane in D2(Γ), then there exist chro-

matically disjoint geodesic rays α, β ∈ Γ such that p(E) = α× β.

Proof. Since E is a subcomplex its boundary is the union of two geodesics

in the 1-skeleton of D2(Γ). The quarter-plane E is the union of infinitely

many square half-strips {∆0,∆1, ...,∆i,∆i+1, ...} with ∆i = ei × R+ such

that ∆i,∆i+1 are adjacent to each other along ei(1) × R+ and ei+1(0) × R+

respectively. By Lemma 4.26 we have that r(∆i) = ei × βi in D2(Γ). Now

∆i,∆i+1 being adjacent along ei(1)× R+ and ei+1(0)× R+ implies that the
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half-strips r(∆i), r(∆i+1) are adjacent along ei(1)× βi and ei+1(0)× βi+1, so

we must have that βi = βi+1 = β for all i. Thus r(∆i) = ei× β where ei and

β are chromatically disjoint, and r(∆i), r(∆i+1) adjacent imply that ei, ei+1

are adjacent, so that the cell complex formed by the union of all the ei’s

is a geodesic ray α which is chromatically disjoint from β. The half-strips

{r(∆i)} all fit together to form a quarter-plane, so that r(E) = α× β.

Lemma 4.28. Let E be a quarter-plane in D2(Γ). Then there exists a

quarter-plane E ′ ⊂ E and a flat F in D2(Γ) such that E
′ ⊂ F , and π1(s(F )) =

π1(s(E
′)) and π2(s(F )) = π2(s(E

′)).

Proof. E is the isometric image of f : [0,∞)× [0,∞)→ D2(Γ).

Consider the geodesic rays α = f |[0,∞)×{0} and β = f |{0}×[0,∞). Let Γ1 =

Im(π1 ◦ s ◦ α) and Γ2 = Im(π2 ◦ s ◦ β). Then Γ1,Γ2 are two disjoint sub-

graphs of Γ and s(E) = Γ1 × Γ2. Pick vertices v ∈ Γ1 and w ∈ Γ2 such that

v, w have valence ≥ 2 in Γ1 and Γ2 respectively. And (v, w) is a 0-cell in

s(E) = Γ1 × Γ2.

Let u be a 0-cell in E which is a lift of the 0-cell (v, w). Then there exist

integers (s, t) in [0,∞)× [0,∞) so that f(s, t) = u, i.e. s(f(s, t)) = (v, w) ∈

Γ1 × Γ2 ⊂ D2(Γ). Consider the map g = f |[s,∞)×[t,∞), this is an isometry

g : [s,∞) × [t,∞) → D2(Γ) and Im(g) ⊂ Im(f). Moreover Im(g) is a sub-

complex. Thus E ′ = Im(g) is a quarter-plane complex in D2(Γ), and by

construction Γ′1 = π1(s(E
′)) and Γ′2 = π2(s(E

′)) are disjoint sub-graphs of Γ,

both of whose vertices all have valence ≥ 2.

Now s◦g : [s,∞)×[t,∞)→ Γ′1×Γ
′
2 is a local isometry and can be extended

to a cellular map h : R × R → Γ′1 × Γ′2 which is also a local isometry. And

there is a unique lift of h, call it h : R × R → D2(Γ) which contains the

image of g, i.e. E ′. Thus there is a flat F = Im(h) such that E ′ ⊂ F . And

by construction π1(s(F )) = π1(s(E
′)) = Γ′1 and π2(s(F )) = π2(s(E

′)) = Γ′2.
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Chapter 5

Quarter-Plane Complex

Two given quarter-plane subcomplexes of D2(Γ) fit together in one of three

ways. They are either equivalent, incident to each other along a pure singular

geodesic, or divergent from each other.

Lemma 5.1. [3] Let E = α×β and E ′ = α′×β′ be quarter-planes in D2(Γ).

Then one of the following holds.

1. (Equivalent) There is a quarter-plane E ′′ ⊂ E ∩ E ′ so that we have

Hd(E ′′, E) <∞ and Hd(E ′′, E ′) <∞.

2. (Incident) There are constants A,B ∈ (0,∞) such that after re-labelling

the factors of E and E ′ if necessary, we have α is asymptotic to α′

and ∀p ∈ E and p′ ∈ E ′, d(p, E ′) ≥ A(d(p, α) − B) and d(p′, E) ≥

A(d(p′, α′)− B).

3. (Divergent) The distance function dE grows linearly on E ′ and vice-

versa, i.e. ∃A,B ∈ (0,∞) and p ∈ E, p′ ∈ E ′ such that ∀x ∈ E, x′ ∈ E ′

we have d(x,E ′) ≥ A(d(x, p)− B) and d(x′, E) ≥ A(d(x′, p′)− B).

Given a quarter-plane E, we let [E] denote its equivalence class. The follow-

ing lemma establishes the fact that the notions of incidence and divergence

are well defined when referring to equivalence classes of quarter-planes, so

that it makes sense to talk about a pair of quarter-plane equivalence classes

[E], [F ] being incident or divergent.



29

α

β
p

α′

β′
p′

ǫ

σ
q

Figure 5.1: Equivalent Quarter-Planes
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Figure 5.2: Incident Quarter-Planes
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α

βp

α′

β′
p′

Figure 5.3: Divergent Quarter-Planes

Lemma 5.2. Consider quarter-planes E and F . Let E = α × β and F =

τ ×δ. Let E ′ and F ′ be quarter-planes which are equivalent to E and F , with

E ′ = α′ × β′ and F ′ = τ ′ × δ′. Then the following must be true:

1. If E is equivalent to F then α ∼ τ and β ∼ δ.

2. If E and F are incident with α ∼ τ then E ′ and F ′ are incident with

α′ ∼ τ ′.

3. If E and F are divergent then E ′ and F ′ are divergent.

Proof. We break the proof up according to the three cases.

Case 1 If E and F are equivalent, then there must exist a quarter-plane E ′′ ⊂

E ∩ F , with E ′′ = α′′ × β′′. Thus E ′′ ⊂ E and E ′′ ⊂ F , so that

α ∼ α′′, τ ∼ α′′ and β ∼ β′′, δ ∼ β′′. And thus by transitivity we must

have that α ∼ τ and β ∼ δ.
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Case 2 Suppose E and F are incident. Consider E ′ = α′ × β′ and F ′ = τ ′ × δ′

equivalent to E and F respectively. By Case 1 we have that α ∼ α′

and τ ∼ τ ′. Now E and F are incident along α, τ with α ∼ τ . Thus

α ∼ τ implies α′ ∼ τ ′ and so E ′ and F ′ are incident along α′, τ ′ with

α′ ∼ τ ′.

Case 3 Suppose E and F are divergent. Consider E ′ = α′ × β′ and F ′ =

τ ′ × δ′ equivalent to E and F respectively. By Case 1 we have that

α ∼ α′, β ∼ β′ and τ ∼ τ ′, δ ∼ δ′. If E ′ and F ′ were not divergent,

then they must be equivalent or incident, which would force E and F

to be equivalent or incident by Case 1 and 2. Thus we must have that

E ′ and F ′ are divergent.

We now define the Quarter-Plane Complex Q.

Definition 5.3. (Quarter-Plane Complex) [3] Consider the collection of

vertices {v[α]}, corresponding to the asymptotic classes of singular geodesic

rays in D2(Γ). If there exists a quarter-plane E in D2(Γ) such that α and

β are the two singular geodesics making up its boundary, then connect the

two vertices corresponding to their asymptotic classes v[α], v[β] by an edge

(v[α], v[β]). Note that the edges are well-defined, by the previous lemma. The

resulting 1-complex is called the quarter-plane complex Q(D2(Γ)).

Definition 5.4. (Hausdorff Equivalence Class) Given a metric space

(X, d) and subsets A,A′ ⊂ X. We say that A and A′ are Hausdorff Equiva-

lent if there exists r > 0 such that A′ ⊂ Nr(A) and A ⊂ Nr(A
′). This defines

an equivalence relation on the collection of subsets of X.

In [3] they prove that every quasiflat is bounded Hausdorff distance from a

unique cycle of quarter-planes, and that every cycle of quarter-planes is the
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image of a quasi-isometric embedding. Thus it is enough to deal with cycles

of quarter-planes in order to understand quasi-flats.

The following two lemmas from [3] formally establish the bijection between

quasi-flats and cycles of quarter-planes.

Lemma 5.5. [3] Let Q ⊂ D2(Γ) be a quasi-flat. There is a unique cycle of

quarter-plane equivalence classes in the quarter-plane complex [E1], ..., [Ek] ⊂

Q such that ∪k
i=1Ei is a finite Hausdorff distance from Q. We call this cycle

ΣQ.

Lemma 5.6. [3] Every cycle Σ ⊂ Q arises from a quasi-flat Q ⊂ D2(Γ).

A brief analysis of the quarter-plane complex Q(D2(Γ)) reveals that it only

contains even length cycles. This helps us to constrain the behaviour of the

cycles of quarter-planes under the quasi-isometry.

Definition 5.7. (i-pure singular geodesic ray) This is a singular geodesic

ray γ in D2(Γ) such that s((γ)) = Γ1 ×w or v× Γ2 in D2(Γ). If s((γ)) is of

the form Γ1 × w then it is called 1-pure, if it is of the form v × Γ2 then it is

called 2-pure.

Lemma 5.8. Given an i-pure singular geodesic ray γ in D2(Γ), if τ is a

singular geodesic ray which is asymptotic to γ, then there exists t0 such that

τ : [t0,∞)→ D2(Γ) is also an i-pure singular geodesic ray.

Proof. The images of γ and τ are convex sets in D2(Γ) and so by Lemma 6.1

they eventually bound a strip, i.e. there exists a t0 such that for t ≥ t0 the

rays γ : [t0,∞)→ D2(Γ) and τ : [t0,∞)→ D2(Γ) bound an Euclidean strip.

Since both these geodesic rays are singular, this implies that the strip is the

image of a cellular embedding and that τ : [t0,∞) → D2(Γ) is also i-pure

singular.
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Thus given a vertex v in Q(D2(Γ)), representing an asymptotic class of sin-

gular geodesic rays, either all of the singular geodesic rays in this equivalence

class are eventually 1-pure singular or 2-pure singular or none of them are

1 or 2 pure singular. Thus among the asymptotic equivalence classes of sin-

gular geodesic rays, those containing 1-pure singular geodesic rays and those

containing 2-pure singular geodesic rays form a pair of disjoint distinguished

sets of vertices in Q(D2(Γ)).

Lemma 5.9. The quarter-plane complex Q(D2(Γ)) has a bi-partite structure.

Thus all cycles Σ in Q(D2(Γ)) must have even length.

Proof. Given a quarter-plane equivalence class [E] in Q(D2(Γ)), there exists

a quarter-plane E ∈ [E] by Lemma 4.28 which is the image of an isometry

f : [0,∞) × [0,∞) → D2(Γ), such that s(E) = Γ1 × Γ2 ⊂ D2(Γ) and such

that γ = s ◦ f : [0,∞)× {0} → D2(Γ) and τ = s ◦ f : {0} × [0,∞)→ D2(Γ)

are i and j pure singular respectively with i 6= j. Thus [E] is an edge

in Q(D2(Γ)) between the two distinguished sets of vertices corresponding

to the asymptotic classes of eventually 1-pure singular and 2-pure singular

geodesic rays. Thus Q(D2(Γ)) has a bipartitie structure and thus all cycles

Σ must have even length.

Consider the graph K7. If we consider a quarter-plane E ⊂ D2(K7) then

r(E) in D2(K7) must be a product of two chromatically disjoint geodesic

rays α, β in Γ. Since α, β are chromatically disjoint, they must cover disjoint

subgraphs of K7 with vertices of valence ≥ 2. There are two possibilities for

such a pair: (K3, K4) or (K3, K3). Moreover, each disjoint pair of the form

(K3, K3) is contained in exactly two disjoint pairs of the form (K4, K3) and

(K3, K4) respectively. Consider a lift K of a particular product of the form

K3 × K4. Each quarter-plane in K is of the form α × β where α covers a

path in K3 and β covers a path in K4. There are two asymptoticially distinct



34

geodesic rays α, α′ which cover paths in K3, and there are uncountably many

asymptotically distinct geodesic rays in K which cover paths in K4. Thus K

contributes a suspended Cantor set to the quarter-plane complexQ(D2(K7)).

5.1 Coherence

Since cycles of quarter-plane equivalence classes correspond to quasi-flats,

any quasi-isometry φ : D2(Γ) → D2(Γ′) carries cycles in Q(D2(Γ)) to cycles

in Q(D2(Γ′)). Thus in order to better understand the behaviour of such

a quasi-isometry we need to understand how the quasi-isometry behaves on

intersections of cycles of quarter-plane equivalence classes. Hausdorff equiva-

lence classes behave well with respect to union. Namely, the Hausdorff equiv-

alence class of the union A∪B of two sets A and B consists of representatives

which are each the set union of Hausdorff equivalence class representatives

of the sets A and B. The notion of Hausdorff intersection is a more delicate

matter. Unless the collection of Hausdorff equivalence classes satisfy a spe-

cial notion called “coherence” as noted in [3], there may not be a well defined

Hausdorff intersection.

Definition 5.10. (Coherent Hausdorff Equivalence Classes) [3] Given

a collection of Hausdorff Equivalence classes {[AΛ]}, where the representa-

tives {AΛ} are subsets of a metric space (X, d). We call the collection of

Hausdorff classes coherent if for any finite intersection A1 ∩ · · · ∩ Ak, there

exists r0 > 0 such that for all r > r0 we have that [Nr(A1) ∩ · · · ∩Nr(Ak)] =

[Nr0(A1)∩· · ·∩Nr0(Ak)]. In this case we define [A1]∩· · ·∩ [Ak] := [Nr0(A1)∩

· · · ∩Nr0(Ak)].

Next, we prove given a collection of coherent Hausdorff equivalence classes,

that the notion of Hausdorff intersection is well defined.

The idea of using the poset of quarter-plane cycle intersections to study
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the behaviour of a quasi-isometry appears in [3]. And again we choose to

include the statement and proofs of facts that were essentially known in [3].

We will show that the collection of quarter-plane equivalence classes is a

coherent collection, and so we may consider intersections of cycles of quarter-

plane equivalence classes. These Hausdorff equivalence classes may be given

a partial ordering that is induced by coarse set inclusion. Our goal in this

section is to characterize the kinds of minimal elements which may occur in

the poset of cycle intersections of the quarter-plane complex Q(D2(Γ)).

Set inclusion induces a partial order on the subsets of a space. One may

extend this to Hausdorff equivalence classes by stating that [A] ⊂ [B] if a

representative from [A] is contained in a D-neighbourhood of a representative

from [B]. This is a well defined notion, independent of the representatives

chosen from the Hausdorff equivalence classes.

Definition 5.11. (Hausdorff Inclusion Relation) Given Hausdorff Equiv-

alence classes [A] and [B] with representatives A,B in a metric space (X, d),

we say that [A] ⊂ [B] if there exists D > 0 such that A ⊂ ND(B).

Proposition 5.12. (Well Definedness of Hausdorff Inclusion) Given

subsets A,B in a metric space (X, d) and representatives A′ ∈ [A] and B′ ∈

[B], if there exists D′ > 0 such that A′ ⊂ ND′(B′) then there exists D > 0

such that A ⊂ ND(B), i.e. [A
′] ⊂ [B′].

Proof. There exists S, T > 0 such that A ⊂ NS(A
′) and B′ ⊂ NT (B). Thus

A ⊂ NS(A
′) ⊂ ND′+S(B

′) ⊂ ND′+S+T (B).

Let D = D′ + S + T . Thus A ⊂ ND(B).

If the Hausdorff equivalence classes in question are from a coherent collec-

tion, then the Hausdorff inclusion relation behaves well with respect to the

intersection of Hausdorff equivalence classes from the coherent collection.

This is essentially the content of the next lemma.
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Lemma 5.13. Given coherent Hausdorff equivalence classes [A], [B] in a

metric space (X, d), we have that [A] ∩ [B] ⊂ [A] and [A] ∩ [B] ⊂ [B].

Proof. Set S = Nr0(A) ∩ Nr0(B) ∈ [A] ∩ [B], where [A] ∩ [B] = [Nr0(A) ∩

Nr0(B)]. We have that S ⊂ Nr0(A) and S ⊂ Nr0(B). Thus [S] ⊂ [A] and

[S] ⊂ [B]. Thus [A] ∩ [B] ⊂ [A] and [A] ∩ [B] ⊂ [B].

Lemma 5.14. Given a quasi-isometry φ : X → X ′ between two metric

spaces:

1. Given Hausdorff equivalence classes [A], [B] with [A] ( [B] in X. Then

for arbitrary A ∈ [A] and B ∈ [B] we have that [φ(A)] ( [φ(B)].

2. Given Hausdorff equivalence classes [A], [B] with [A] 6⊂ [B]. Then for

arbitrary A ∈ [A] and B ∈ [B] we have that [φ(A)] 6⊂ [φ(B)].

3. Given Hausdorff equivalence classes [A], [B] with [A] = [B]. Then for

arbitrary A ∈ [A] and B ∈ [B] we have that [φ(A)] = [φ(B)].

Proof. The proof for each of the three cases is as follows.

Case 1 Since we have that [A] ( [B] we have that [A] ⊂ [B] and [A] 6= [B].

Thus there exists D > 0 such that A ⊂ ND(B) and for all C > 0 we

have that B 6⊂ NC(A). Thus we have that φ(A) ⊂ φ(ND(B)). Now

there exists D′ > 0 such that φ(ND(B)) ⊂ ND′(φ(B)), so we may

conclude that φ(A) ⊂ ND′(φ(B)). Now let if possible that there exists

C ′ > 0 such that φ(B) ⊂ NC′(φ(A)). Using the quasi-isometric inverse

to φ we can conclude that there exists a C > 0 such that B ⊂ NC(A)

which contradicts the fact that [A] 6= [B]. Thus we are forced to

conclude that for all C ′ > 0 we have that φ(B) 6⊂ φ(A). And thus we

may conclude that [φ(A)] ( [φ(B)].

Case 2 Since [A] 6⊂ [B], for arbitrary representatives A ∈ [A] and B ∈ [B] we

have that for all D > 0, A 6⊂ ND(B). Now consider φ(A) and φ(B).
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Let if possible that there exists D′ > 0 such that φ(A) ⊂ ND′(φ(B)).

Then using the quasi-isometric inverse of φ we can construct a D > 0

such that A ⊂ ND(B). Contradicting the fact that [A] 6⊂ [B]. Thus for

all D′ > 0 we have that φ(A) 6⊂ ND′(φ(B)). And thus we may conclude

that [φ(A)] 6⊂ [φ(B)].

Case 3 Since [A] = [B], for arbitrary representatives A ∈ [A] and B ∈ [B]

there exists D > 0 such that A ⊂ ND(B) and B ⊂ ND(A). Now

consider φ(A) and φ(B). We have that φ(A) ⊂ φ(ND(B)) and φ(B) ⊂

φ(ND(A)). And due to the fact that φ is a quasi-isometry we can

construct a D′ > 0 such that φ(ND(B)) ⊂ ND′(φ(B)) and φ(ND(A)) ⊂

ND′(φ(A)). And thus we have that φ(A) ⊂ ND′(φ(B)) and φ(B) ⊂

ND′(φ(A)). So that we have [φ(A)] = [φ(B)].

Proposition 5.15. Let [A1], · · · , [Ak] be a finite collection of Hausdorff equiv-

alence classes drawn from a possibly larger collection of Hausdorff equivalence

classes {[Aα]|α ∈ Λ}.

1. Define [A1]∪· · ·∪ [Ak] := [A1∪· · ·∪Ak]. This definition is independent

of the representatives A1, . . . , Ak of the Hausdorff equivalence classes.

2. If the collection {[Aα]|α ∈ Λ} is coherent then define [A1]∩· · ·∩ [Ak] :=

[Nr(A1)∩· · ·∩Nr(Ak)] where r > 0 is the radius of coherence. This defi-

nition is independent of the representatives A1, . . . , Ak of the Hausdorff

equivalence classes.

3. Given [A] from the collection {[Aα]|α ∈ Λ}, if the collection is coherent

we have that [A] ∩ ([A1] ∪ · · · ∪ [Ak]) = ([A] ∩ [A1]) ∪ · · · ∪ ([A] ∩ [Ak]).

4. Given [A], [B] and [C] from the collection {[Aα]|α ∈ Λ}, with [A] ⊂ [B],

if the collection is coherent then we have that with respect to Hausdorff

inclusion [A] ∩ [C] ⊂ [B] ∩ [C].
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Proof. Exercise.

Lemma 5.16. (Hausdorff Intersections of Quarter-Planes) Given quarter-

planes E1 = α× β and E2 = α′ × β′ in D2(Γ).

1. If E1 and E2 are equivalent, then there exists r0 > 0 and a quarter-plane

E ′ such that for all r > r0, [Nr(E1) ∩Nr(E2)] = [Nr0(E1) ∩Nr0(E2)] =

[E ′].

2. If E1 and E2 are incident along α and α′ then there exists r0 > 0 such

that for all r > r0, [Nr(E1) ∩Nr(E2)] = [Nr0(E1) ∩Nr0(E2)] = [α].

3. If E1 and E2 are divergent, then there exists r0 > 0 and p ∈ E1 such

that for all r > r0, [Nr(E1) ∩Nr(E2)] = [Nr0(E1) ∩Nr0(E2)] = [p].

Proof. Exercise.

Lemma 5.17. Given a geodesic ray α and a quarter-plane E, we have that

[α] ∩ [E] is defined and that [α] ∩ [E] = [p] or [α], where p = α(0).

Proof. Either α ⊂ Nr0(E) for some r0 > 0, or α is not contained in Nr(E)

for any r > 0.

If α ⊂ Nr0(E) for some r0 > 0, then [Nr0(α) ∩ Nr0(E)] = [α] and for all

r > r0 we have that [Nr(α) ∩ Nr(E)] = [α] = [Nr0(α) ∩ Nr0(E)]. And so in

this case [α] ∩ [E] is defined and equal to [α].

If α is not contained in Nr(E) for any r > 0. Then let p = α(0) and

s0 > d(p, E). We have that [Ns0(α) ∩ Ns0(E)] = [p], and for all s > s0 we

have that [Ns(α) ∩ Ns(E)] = [p] = [Ns0(α) ∩ Ns0(E)]. Thus in this case

[α] ∩ [E] is defined and equal to [p].

Lemma 5.18. Given a point p and a quarter-plane E. We have that [p]∩ [E]

is defined and equal to [p].

Proof. Exercise.
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Proposition 5.19. The collection of quarter-planes is coherent. That is,

given a finite collection of quarter-planes E1, . . . , En we have that [E1]∩· · ·∩

[En] = [E] or [α] or [p], where E is some quarter plane, α is a pure singular

geodesic and p is a single point.

Proof. If n = 2 the result holds by Lemma 5.16.

Assume that it is true for n = k.

If n = k+1 then consider [E1]∩· · ·∩ [Ek]∩ [Ek+1]. We have that [E1]∩· · ·∩

[Ek] is defined and equal to either [E], [α] or [p], where E is a quarter-plane,

α is a pure singular geodesic and p is a point.

Thus [E1]∩ · · · ∩ [Ek]∩ [Ek+1] = [E]∩ [Ek+1] or [α]∩ [Ek+1] or [p]∩ [Ek+1].

If [E1] ∩ · · · ∩ [Ek] ∩ [Ek+1] = [E] ∩ [Ek+1] then [E1] ∩ · · · ∩ [Ek] ∩ [Ek+1]

is defined and equal to [E ′] or [α] or [p], where E ′ is a quarter-plane, α is a

pure singular geodesic, and p is a point, all by Lemma 5.16.

If [E1] ∩ · · · ∩ [Ek] ∩ [Ek+1] = [p] ∩ [Ek+1] then [p] ∩ [Ek+1] is defined and

equal to [p]. And so [E1] ∩ · · · ∩ [Ek] ∩ [Ek+1] is defined and equal to [p].

If [E1]∩ · · · ∩ [Ek]∩ [Ek+1] = [α]∩ [Ek+1] then by Lemma 5.17 we have that

[α] ∩ [Ek+1] is defined and equal to either [p] or [α]. Thus [E1] ∩ · · · ∩ [Ek] ∩

[Ek+1] is defined and equal to [p] or [α]. Where p is a point and α is a pure

singular geodesic.

Thus the statement is true for all n.

The cycles of quarter-plane Hausdorff equivalence classes in the quarter-

plane complex form a coherent collection by a previous Lemma. Thus, armed

with the above definitions and results we may define the poset of cycle inter-

sections, which is formed by taking intersections of cycles of quarter-plane

equivalence classes in the quarter-plane complex, and giving it the poset

structure induced on it by the Hausdorff inclusion relation.
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5.2 Product subcomplexes and posets

Definition 5.20. (Poset of Cycle Intersections) Consider the 1-dimensional

sub-complexes of Q(D2(Γ)) which can be expressed as the intersection of

finitely many cycles C1, ..., Ck in Q(D2(Γ)). Partially order these 1-dimensional

complexes by the Hausdorff inclusion relation, to turn them into a poset P.

Our next goal is to classify the types of minimal elements that can occur in

the poset P of cycle intersections of Q(D2(Γ)). We approach this by picking

an arbitrary quarter-plane equivalence class [E] and looking at a quarter-

plane representative, and then examining the types of cycles in Q which

contain [E]. In order to do this we examine subcomplexes of D2(Γ) which

contain quarter-planes, and these are called product subcomplexes.

Definition 5.21. (Product Subcomplex) A product subcomplex of D2(Γ)

is a subcomplex K with a product cell structure induced from T1 × T2 as in

Definition 4.23, where T1 and T2 are infinite trees, each of whose 1-cells has

length 1 and each of whose vertices have valence ≥ 2. In particular, product

subcomplexes are connected.

Depending on the type of tree which forms each factor of the product, we

may classify product subcomplexes into three types:

1. T1 × T2 when both trees contain vertices with valence ≥ 3.

2. T×R or R×T when only one of the factors is a tree containing vertices

of valence ≥ 3.

3. R× R when neither factor contains any vertices of valence ≥ 3.

Definition 5.22. (Standard Product Subcomplex) A standard product

subcomplex is a product subcomplex which is a lift to D2(Γ) of a subcomplex

K in D2(Γ) of the form K = Γ1×Γ2 where Γ1 and Γ2 are disjoint subgraphs

in Γ.
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Figure 5.4: Product complex of the form T × R
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Definition 5.23. (Maximal Product Subcomplex) A maximal product

subcomplex K in D2(Γ) is a product subcomplex which is maximal in the

collection of product subcomplexes with respect to the partial ordering induced

on this collection by set inclusion.

Lemma 5.24. Let K = T1 × T2 be a product subcomplex in D2(Γ). Then

r(K) in D2(Γ) is of the form T1 × T2 where T1 and T2 are chromatically

disjoint subtrees of Γ.

Proof. K may be expressed as a union of square strips ∆e,γ where e is an

edge in T1 and γ is a geodesic in T2. Given two strips ∆e,γ1 and ∆e,γ2 , they

intersect in a sub-strip or half-strip if and only if γ1 and γ2 intersect in a

geodesic segment or ray in T2. The subcomplex r(∆e,γ) is an embedded

subcomplex of D2(Γ) of the form e × γ, where e is an edge in Γ and γ is a

geodesic in Γ with e, γ chromatically disjoint. Moreover r(∆e,γ1 ∩ ∆e,γ2) =

r(∆e,γ1)∩ r(∆e,γ2). Thus we may conclude that for each e in T1, the complex

e×T2 is mapped isometrically to the subcomplex r(e×T2) inD2(Γ). Moreover

r(e× T2) = e× T2 where e is an edge in Γ and T2 is a subtree of Γ which is

chromatically disjoint from e. Now consider two subcomplexes of the form

e × T2 and f × T2. These subcomplexes are adjacent along e(0) × T2 and

f(1) × T2 if and only if the edges e and f are adjacent at e(0) and f(1).

Thus r(e × T2) and r(f × T2) are adjacent along e(0) × T2 and f(1) × T2

if and only of e and f are adjacent edges in T1. Thus, gluing together the

subcomplexes r(e × T2) as e ranges over all the edges of T1 accoding to the

edge adjacency in T1, we get that r(T1 × T2) is mapped isometrically to a

subcomplex of D2(Γ) and that r(T1 × T2) = T1 × T2 where T1 and T2 are

chromatically disjoint subtrees of Γ.

Lemma 5.25. Given a product subcomplex K in D2(Γ), there exists a stan-

dard product subcomplex K ′ in D2(Γ) such that K ⊂ K ′.
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Proof. Consider the image of K under the covering map s, so that s(K) =

Γ1×Γ2 in D2(Γ). Let K
′ be the component of s−1(Γ1×Γ2) which intersects

K. Then K ⊂ K ′, and K ′ is a standard product sub-complex.

Corollary 5.26. Maximal product subcomplexes are standard product sub-

complexes.

Proof. Let if possible that a maximal product subcomplex M is not a stan-

dard product subcomplex. Then by the previous lemma, there exists a stan-

dard product subcomplex M ′ strictly larger than M and such that M ⊂M ′.

This contradicts the fact that M is maximal. Thus we must have that M is

a standard product subcomplex.

Upon examining the three types of product subcomplexes, one may deter-

mine what type of minimal element in the poset of cycle intersection classes

that a particular quarter-plane equivalence class belongs to by examining

the maximal product subcomplex to which a representative quarter-plane

belongs. And as it turns out, we may have minimal elements of length 1, 2

or 4.

Lemma 5.27. Given a quarter-plane E lying in the intersection of two max-

imal product subcomplexesM andM ′, there exists a flat F containing E such

that F lies in the intersection of M and M ′.

Proof. Consider E1 = π1(s(E)) and E2 = π2(s(E)). We must have that

E1, E2 are disjoint subgraphs of Γ. Moreover s(M) = M1 × M2, s(M
′) =

M ′
1 ×M ′

2 and E1 ⊂ M1 ∩M
′
1, E2 ⊂ M2 ∩M

′
2. Thus all the vertices in E1

and E2 have valence ≥ 2. Moreover E1 and E2 must both contain non-

trivial cycles in Γ, so that E1 × E2 lifts to a standard product subcomplex

K contained in M ∩ M ′ in D2(Γ) with E ⊂ K. We can thus extend the

quarter-plane E to a flat F ⊂ K. And thus E ⊂ F ⊂M ∩M ′.
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Lemma 5.28. Let E be a quarter-plane contained in a maximal product M

of the form T1 × T2, where T1, T2 are trees with all vertices having valence

≥ 2 and at least one vertex of valence 3. Then there exist Σ1,Σ2 two cycles

of quarter-plane equivalence classes such that [E] = Σ1 ∩ Σ2. Thus [E] is a

minimal element of length 1 in P.

Proof. Consider the complex r(M), this must be of the form S1 × S2, where

S1, S2 are chromatically disjoint sub-trees of Γ both of whose vertices have

valence ≥ 2, and both having at least one vertex with valence ≥ 3. The

complex s(E) is contained in s(M) and s(E) must be of the form α × β,

where α, β are chromatically disjoint geodesic rays contained in S1 and S2

respectively. Due to the presence in both S1 and S2 of vertices with valence

≥ 3, there must exist geodesic rays α1, α2 in S1 and β1, β2 in S2, such that

α∪α1, α∪α2 are geodesics in S1 and β ∪β1, β ∪β2 are geodesics in S2. Thus

we have two flats inD2(Γ), F1 = (α∪α1)×(β∪β1) and F2 = (α∪α2)×(β∪β2)

such that s(E) = α×β = F1∩F2. The flats F1 and F2 lift to two flats F1, F2

in M with E = F1 ∩F2. Each flat corresponds to a pair of cycles of quarter-

plane equivalence classes Σ1,Σ2 respectively, with [E] = Σ1 ∩ Σ2. Thus [E]

is a minimal element of length 1 in the post of cycle intersections.

Lemma 5.29. Let E be a quarter-plane contained in a maximal product

subcomplex M = R × T2. If there exists a maximal product subcomplex M ′

distinct from M , such that E also lies in a maximal product subcomplex M ′

with M ′ = T ′1 × R or R× T ′2, then M
′ must have the form T ′1 × R and E is

representative of a length 1 minimal element in P.

Proof. The complex s(M) covered by M must be of the form C×G, disjoint

subgraphs of Γ with C a cycle. Also s(E) is a subcomplex of s(M) covered

by E, and s(E) has the form C × G′ where G′ is a subgraph of G. Now

consider M ′. If M ′ is of the form R × T ′2 and E ⊂ M ′ then the complex

s(M ′) covered by M ′ must be of the form C × H with C and H disjoint
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subgraphs of Γ (where C is the same cycle that appears as a factor of s(M)).

Since M ′ is distinct from M we must have that H 6= G. However since

E ⊂ M ∩M ′ we must have that s(E) ⊂ s(M) ∩ s(M ′) so that G and H

have non-empty intersection, in fact G′ ⊂ G ∩ H. Thus F = G ∪ H must

be a subgraph of Γ which is disjoint from C, so that the complex C × F

in D2(Γ) lifts to a product subcomplex M
′′ in D2(Γ) which contains both

M and M ′ contradicting the fact that they were both maximal. Thus M ′

cannot be of the form R× T ′2. Thus M
′ must be of the form T ′1×R, and the

complex s(M ′) covered by M ′ must be of the form F × C ′ where F and C ′

are disjoint subgraphs of Γ, and C ′ is a cycle. One can now construct cycles

of quarter-planes Σ in M , and Σ′ in M ′ such that E = Σ ∩ Σ′. Thus the

equivalence class [E] is a minimal element of length 1 in the poset P .

Lemma 5.30. Let E be a quarter-plane contained in exactly one maximal

product subcomplex M of the form T1 × R or R × T2. Then there exists a

quarter-plane F incident to E such that any cycle of quarter-planes Σ which

contains [E] must also contain [F ]. Moreover, m = [E] ∪ [F ] is a minimal

element of length 2 in P.

Proof. Without loss of generality let M be of the form T1 × R. And let E

be a quarter-plane in M , such that E is contained only in M and no other

maximal product sub-complex.

Thus there exists an isometric embedding m : T1 × R → D2(Γ) such that

M is the image of m. And the quarter-plane E is the image of the restriction

of m to m : α× [0,∞)→ D2(Γ), where α is a geodesic ray in T1.

Let F be the image of the restriction of m to m : α × (−∞, 0] → D2(Γ).

Thus F is a quarter-plane in D2(Γ) which is also contained in M and such

that F is adjacent to E along m : α× {0} → D2(Γ).

There exist bi-infinite geodesics σ and τ in T1, which are asymptotically

distinct, and such that σ ∩ τ = α. Let S1 be the image of the restriction of
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m to m : σ × R→ D2(Γ), and let S2 be the image of the restriction of m to

m : τ × R → D2(Γ). So that S1 ∩ S2 = E ∪ F . Let Σ1,Σ2 be the cycles of

quarter-plane equivalence classes in Q(D2(Γ)) which correspond to S1 and

S2 respectively. Then Σ1 ∩ Σ2 = [E] ∪ [F ].

Consider s(M) and s(E). The complex s(M) must be of the form Γ1 ×C2

where C2 is a sub-graph of Γ which is a induced cycle, and Γ1 is a sub-graph

of Γ. The complex s(E) must be of the form Γ′1×C2 where Γ
′
1 is a subgraph

of Γ1.

Now let if possible that there exists a cycle of quarter-plane equivalence

classes Σ, such that [E] ∈ Σ but [F ] 6∈ Σ. Let [F ′] be the quarter-plane

equivalence class in Σ which is incident to [E] along the asymptotic class

of the singular geodesic m : α × {0} → D2(Γ). Let F
′ be a quarter-plane

sub-complex belonging to the class [F ′]. Then F ′ is the image of f : [0,∞)×

[0,∞) → D2(Γ), such that f : [0,∞) × {0} → D2(Γ) is asymptotic to

m : α × {0} → D2(Γ) in D2(Γ). Thus s(E) = Γ′1 × C2, and s(F
′) = Γ′1 × Γ2

with Γ2 6= C2. Thus there exists a lift K of the complex Γ′1 × Γ2 which

contains E and which is not contained in M .

Thus there exists a maximal product sub-complex M ′ with E ⊂ K ⊂ M ′.

This contradicts the fact that M is the only maximal product subcomplex

which contains E. Thus such a cycle of quarter-plane equivalence classes

Σ, cannot exist. Thus for every cycle of quarter-plane equivalence classes Σ

which contains [E] must also contain [F ].

Thus [E] ∪ [F ] is a length 2 minimal element in P .

Proposition 5.31. For any quarter-plane equivalence class [E], there exists

a quarter-plane representative E ∈ [E] such that exactly one of the following

holds:

1. E is contained in a maximal product subcomplex M of the form T1×T2.
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In this case [E] is a minimal element of P of length 1.

2. E is contained in the intersection of two maximal product subcomplexes

M,M ′,respectively of the form R × T2, T
′
1 × R. In this case [E] is a

minimal element of P of length 1.

3. E is contained in exactly one maximal product subcomplex M , and M

has the form T ×R or R× T . In this case there exists a quarter-plane

equivalence class [F ] such that m = [E] ∪ [F ] is a minimal element of

P of length 2.

4. E is contined in exactly one maximal product subcomplex M , and M

has the form R× R. In this case there exist quarter-plane equivalence

classes [E1], [E2], [E3] such that m = [E]∪ [E1]∪ [E2]∪ [E3] is a minimal

element of P of length 4.

Proof. Given a quarter-plane equivalence class [E] there exists a quarter-

plane representative E ∈ [E] and a flat F such that E ⊂ F , by Lemma

4.28. Now F is a product sub-complex and hence there exists a maximal

product sub-complexM such that F ⊂M . Thus there is a maximal product

sub-complex M such that E ⊂M .

Case 1. If E is contained in a maximal product subcomplex of the form T1×T2

then by Lemma 5.28 [E] is a minimal element of length 1.

Case 2. If E is contained in exactly one maximal product sub-complexM of the

form T1×R or R×T2 then by Lemma 5.30, there exists a quarter-plane

F which also lies in M such that every cycle of quarter-planes which

contains E must also contain F , so that [E]∪ [F ] is a length 2 minimal

element.

Case 3. If E is contained in two maximal product subcomplexes M and M ′.

Without loss of generality, if M is of the form R× T2 then by Lemma
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5.29 then M ′ must be of the form T1 ×R and there exist two cycles of

quarter-planes Σ1,Σ2 such that E = Σ1 ∩ Σ2 so that [E] is a length 1

minimal element.

Case 4. If E is contained in exactly one maximal product subcomplexM of the

form R× R then E is contained in an isolated flat, which is a cycle of

4 quarter-planes. Let the quarter-plane equivalence classes which are

distinct from [E] be [E1], [E2], [E3] so that m = [E] ∪ [E1] ∪ [E2] ∪ [E3]

is an isolated cycle in the quarter-plane complex and hence a minimal

element of length 4.

5.3 Preservation of Flats

Lemma 5.32. Let f : X → X ′ be a quasi-isometry between metric spaces,

and let g : X ′ → X be the quasi-isometric inverse of f . Let A,B ⊂ X and

A′, B′ ⊂ X ′ and D > 0 be such that:

1. Hd(f(A), A′) < D and Hd(f(B), B′) < D

2. There exist r0, r
′
0 > 0 such that for all r > r0 and for all r′ > r′0 we

have [Nr(A) ∩ Nr(B)] = [Nr0(A) ∩ Nr0(B)] and [Nr′(A
′) ∩ Nr′(B

′)] =

[Nr′
0
(A′) ∩Nr′

0
(B′)].

Then there exists K > 0 such that Hd(f(Nr0(A) ∩ Nr0(B)), (Nr′
0
(A′) ∩

Nr′
0
(B′))) < K.

Proof. We have that Hd(f(A), A′) < D and Hd(f(B), B′) < D and thus for

r0, r
′
0 > 0 we have that Hd(f(Nr0(A)), Nr′

0
(A′)) < D0 and Hd(f(Nr0(B)), Nr′

0
(B′)) <

D0. In particular f(Nr0(A)) ⊂ ND0
(Nr′

0
(A′)) and f(Nr0(B)) ⊂ ND0

(Nr′
0
(B′)).

Thus we have:
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f(Nr0(A)∩Nr0(B)) ⊂ f(Nr0(A))∩f(Nr0(B)) ⊂ ND0
(Nr′

0
(A′))∩ND0

(Nr′
0
(B′))

Setting r′ = D0 + r′0 we get:

f(Nr0(A) ∩Nr0(B)) ⊂ Nr′(A
′) ∩Nr′(B

′)

And thus since r′ > r′0 there exists a D
′
0 > 0 such that:

f(Nr0(A) ∩Nr0(B)) ⊂ ND′

0
(Nr′

0
(A′) ∩Nr′

0
(B′))

Setting X0 = Nr0(A) ∩Nr0(B) and X
′
0 = Nr′

0
(A′) ∩Nr′

0
(B′) we get:

f(X0) ⊂ ND′

0
(X ′

0) (5.1)

Since f : X → X ′ is a quasi-isometry it has a quasi-isometric inverse

g : X ′ → X, and by a similar line of reasoning to that above, there exists a

constant D′′0 > 0 such that:

g(X ′
0) ⊂ ND′′

0
(X0)

Applying f to both sides we get:

f ◦ g(X ′
0) ⊂ f(ND′′

0
(X0))

And since f ◦ g is a bounded distance from the identity function on X ′,

there is a constant C > 0 such that:

X ′
0 ⊂ NC(f(ND′′

0
(X0)))

Now f(ND′′

0
(X0)) is contained in NC′′(f(X0)) for some C

′′ > 0 so that we

get:
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X ′
0 ⊂ NC′′(f(X0)) (5.2)

Putting together equations (5.1) and (5.2) and setting K = max{D′0, C
′′}

we get that

Hd(f(X0), X
′
0) < K

In other words:

Hd(f(Nr0(A) ∩Nr0(B)), (Nr′
0
(A′) ∩Nr′

0
(B′))) < K

Together with the previous Lemma 5.32, we show that a quasi-isometry

φ : D2(Γ) → D2(Γ′) induces a bijection between the 1-dimensional minimal

elements of the posets of cycle intersections of D2(Γ) and D2(Γ′) respectively.

The proof is similar to the proof from [3] for RAAGs.

Theorem 5.33. [3] Given φ : D2(Γ) → D2(Γ′) a quasi-isometry. Let P be

the poset of cycle intersections in Q(D2(Γ)), and let P ′ be the poset of cycle

intersections in Q(D2(Γ)). Then there exists a K > 0 such that for every

minimal element [m] ∈ P, there exists a minimal element [m⋆] ∈ P
′ so that

if m ∈ [m] is a representative of [m], then there is a representative m⋆ ∈ [m⋆]

which is a union of quarter-planes, such that Hd(φ(m),m⋆) < K.

Proof. φmaps quasi-flats to quasi-flats. Thus φmaps each cycle Σ of quarter-

plane equivalence classes in Q(D2(Γ)) to a cycle Σ
′ of quarter-plane equiva-

lence classes in Q(D2(Γ)). And by Lemmas 5.5 and 5.6 we have that there

exists D > 0 such that if S ∈ Σ, S ′ ∈ Σ′ are cycles of quarter-plane represen-

tatives then Hd(φ(S), S ′) < D.

Let [m] ∈ P be minimal. Them [m] is a union of quarter-plane equivalence

classes and there exist cycles Σ1, ...,Σk in Q(D2(Γ)) such that [m] = Σ1∩ ...∩
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Σk. If Si ∈ Σi are cycles of quarter-plane representatives for each cycle Σi

then there exists r0 > 0 such that [m] = [Nr0(S1)∩ ...∩Nr0(Sk)] and one cna

say that m = Nr0(S1) ∩ ... ∩Nr0(Sk) is a representative of [m]. This follows

from the definition of coherence and from Lemma 5.19.

Let S ′i be the cycles of quarter-planes in D2(Γ) such that Hd(φ(Si), S
′
i) <

D. For each i let Σ′i be the cycle of quarter-plane equivalence classes cor-

responding to S ′i. Then there exists r′0 > 0 such that Σ′1 ∩ ... ∩ Σ′k =

[Nr′
0
(S ′1) ∩ ... ∩ Nr′

0
(S ′k)]. And by Lemma 5.32 there exists K > 0 such

that Hd(φ(Nr0(S1) ∩ ... ∩ Nr0(Sk)), Nr′
0
(S ′1) ∩ ... ∩ Nr′

0
(S ′k)) < K. Let m⋆ =

Nr′
0
(S ′1) ∩ ... ∩ Nr′

0
(S ′k). Now [m⋆] = Σ′1 ∩ ... ∩ Σ

′
k and must have a repre-

sentative which is the union of at least one quarter-plane, because [m] had a

representative which was a union of quarter-planes as [m] ∈ P . Thus [m⋆] is

1-dimensional and [m⋆] = Σ′1 ∩ ... ∩ Σ
′
k and so [m⋆] ∈ P

′.

Since φ : D2(Γ) → D2(Γ′) is a quasi-isometry, it must preserve the partial

ordering induced by Hausdorff inclusion, by Lemma 5.14. Thus [m] ∈ P

minimal implies that the corresponding [m⋆] ∈ P
′ is minimal.

We now focus on proving that this bijection between the 1-dimensional

minimal elements of the quarter-plane complexes of D2(Γ) and D2(Γ′) pre-

serves length. As a precursor to proving that, we prove that every length 2

minimal element m is part of a cycle Σ which is made up of one other min-

imal element, also of length 2, i.e. Σ = m ∪m′ with m′ also having length

2.

Proposition 5.34. Given a graph Γ, consider the quarter-plane complex

Q(D2(Γ)). Let m be a minimal element consisting of 2 incident quarter-

planes in the poset P(D2(Γ)).

Then there exists a cycle of quarter-planes C in Q(D2(Γ)) such that C =

m ∪m′ where m′ is a minimal element in P(D2(Γ)) consisting of 2 incident



52

quarter-planes.

Proof. A length 2 minimal element consists of two incident quarter-planes

[E] = [α × β] and [F ] = [τ × β′] where β and β′ are asymptotic. Note E,F

are contained in a maximal product subcomplex of the form R× T .

Pick a geodesic ray γ in T such that β and γ are asymptotically distinct.

Then let [E ′] = [α × γ] and [F ′] = [τ × γ]. By Proposition 5.31, [E ′] ∪ [F ′]

form a minimal element of length 2. Thus [E]∪ [F ]∪ [F ′]∪ [E ′] forms a cycle

of quarter-planes which is the union of two length 2 minimal elements.

It now follows quite easily that the bijection induced on P by a quasi-

isometry preserves the lengths of the minimal elements.

Proposition 5.35. Let graphs Γ,Γ′ and a quasi-isometry φ : D2(Γ) →

D2(Γ′) be given. Supposem is a 1-dimensional minimal element in P(D2(Γ)).

There exists a minimal element m′ in P(D2(Γ′)) and a constant D′ > 0 such

that Hd(φ(m),m′) < D′, and the length of m is the same as the length of m′.

Proof. Isolated flats must be mapped to within bounded Hausdorff distance

of isolated flats. Thus length 4 minimal elements in P are mapped bijectively

to length 4 minimal elements of P ′.

By Proposition 5.34, a length 2 minimal element m1 is part of a cycle

Σ = m1∪m2 wherem2 is another length 2 minimal element. Let Σ
′ = m′

1∪m
′
2

be the cycle to which Σ is mapped by the quasi-isometry. If m′
1 and m

′
2 are

both length 1 minimal elements, this would force them both to be quarter-

planes which would be incident to each other along both their boundary

geodesics. By Lemma 5.1 this would would force m′
1 to be equivalent to m

′
2

contradicting the fact that Σ′ is a cycle. If on the other hand either m′
1 or

m′
2 was a length 1 minimal element while the other was a length 2 minimal

element, it would imply that the cycle Σ′ was of odd length contradicting

Lemma 5.9.
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Thus both m′
1 and m

′
2 in Σ

′ must be length 2 minimal elements.

This forces length 1 minimal elements to be mapped to length 1 minimal

elements, and we conclude that φ preserves the length of minimal elements.

The fact that the bijection of minimal elements preserves length allows

us to conclude that 4-cycles of quarter-planes in D2(Γ) are mapped by the

quasi-isometry φ to within bounded Hausdorff distance of 4-cycles in D2(Γ′).

Now 4-cycles of quarter-planes have area growth exactly equal to πr2. This,

together with the fact from [4] that support sets with area growth exactly

equal to πr2 must be flats, implies that the image of a flat F in D2(Γ) under

the quasi-isometry φ is bounded Hausdorff distance from a unique flat F ′ in

D2(Γ′).

Theorem 5.36. Given Γ,Γ′, and a quasi-isometry φ : D2(Γ)→ D2(Γ′).

Then there exists a constant D > 0 such that if F is a flat in D2(Γ), then

there exists a flat F ′ in D2(Γ′) such that Hd(φ(F ), F ′) < D.

Proof. Consider the flat F in D2(Γ). We have that F is a flat subcomplex of

D2(Γ). Since F is a union of 4 quarter-planes, it is represented by a 4 cycle

in the quarter-plane complex of D2(Γ).

There exists a cycle of quarter-planes Σ′ such that if F ′ is a union of rep-

resentative quarter-planes from this cycle, then Hd(φ(F ), F ′) < D.

Both F and F ′ are the union of the same number of minimal elements,

which by Proposition 5.35 must have their lengths preserved.

Thus the cycle of quarter-planes corresponding to F ′ is a 4 cycle.

Consider p ∈ F ′. Since F ′ is a union of 4 quarter-planes we have that

Area(Nr(p) ∩ Σ
′)/(πr2)→ 1 as r →∞.

Thus by Theorem 4.1 in [4], F ′ must be a flat.
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Chapter 6

Maximal Product

Sub-Complexes

In this section we focus on the behaviour of product subcomplexes under

quasi-isometries. Our goal is to show that a maximal product subcomplex

K ⊂ D2(Γ) is mapped to within bounded Hausdorff distance of a maximal

product subcomplex K ′ ⊂ D2(Γ′). To do this, we first show that under a

quasi-isometry φ : D2(Γ) → D2(Γ′), any product subcomplex K ⊂ D2(Γ) is

mapped to within a D-neighbourhood of a product subcomplex K ′ ⊂ D2(Γ′).

Lemma 6.1. [3] Suppose C,C ′ are convex subsets of a CAT(0) space X, and

let ∆ = d(C,C ′). Then:

1. The sets Y := {x ∈ C|d(x, C ′) = ∆} and Y ′ := {x′ ∈ C ′|d(x′, C) = ∆}

are convex.

2. The nearest point map r : X → C maps Y ′ isometrically onto Y .

3. Y and Y ′ cobound a convex subset Z ≃ Y × [0,∆].

4. If in addition X is a locally finite CAT(0) complex with cocompact

isometry group, and C,C ′ are subcomplexes, then the sets Y and Y ′ are

nonempty, and there is a constant A > 0 which depends only on ∆ and

X, such that if p ∈ C and p′ ∈ C ′ with d(p, Y ) ≥ 1 and d(p′, Y ′) ≥ 1

then d(p, C ′) ≥ ∆+ Ad(p, Y ) and d(p′, C) ≥ ∆+ Ad(p′, Y ′).
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Following [3] we would like to show that if φ : D2(Γ) → D2(Γ′) is a quasi-

isometry, then there exists a constant D > 0 (depending on φ) such that any

product subcomplex K in D2(Γ) is mapped to within a D-neighbourhood of

a product subcomplex K ′ in D2(Γ′).

We start with the Tripod Lemma from [3], which allows us to conclude

that a pure singular geodesic γ at the intersection of three flats F1, F2 and F3

gets mapped by a quasi-isometry to within Hausdorff distance D of a pure

singular geodesic γ′, and that the flats F1, F2 and F3 get mapped to within

a D-neighbourhood of the parallel set of γ′.

Lemma 6.2. [3] Let φ : D2(Γ) → D2(Γ′) be a quasi-isometry. Let Y ⊂

D2(Γ) be a subcomplex isometric to T ×R, where T is an infinite tripod with

vertex v. Let γ = v × R. There exists a constant D and a singular geodesic

γ′ ⊂ D2(Γ′) such that Hd(φ(γ), γ′) < D, and such that φ(Y ) ⊂ ND(P(γ
′)).

Proof. The product subcomplex Y is the union of three flats F1 ∪ F2 ∪ F3,

the intersection of all three being the pure singular geodesic γ. Each of

these flats is a cycle of quarter-planes. As we proved in Proposition 5.19, the

collection of quarter-plane Hausdorff equivalence classes is coherent. In the

case of F1, F2, F3 there exists r0 > 0 such that Nr0(F1) ∩ Nr0(F2) ∩ Nr0(F3)

is quasi-isometric to R and for all r ≥ r0, [Nr(F1) ∩ Nr(F2) ∩ Nr(F3)] =

[Nr0(F1) ∩ Nr0(F2) ∩ Nr0(F3)]. By Theorem 5.36, there exists a constant

D > 0 and flats F ′1, F
′
2, F

′
3 in D2(Γ′) such that Hd(φ(Fi), F

′
i ) < D for i =

1, 2, 3. Thus by Lemma 5.32 there exists an r′0 > 0 and K > 0 such that

for all r′ ≥ r′0, [Nr′(F
′
1) ∩Nr′(F

′
2) ∩Nr′(F

′
3)] = [Nr′

0
(F ′1) ∩Nr′

0
(F ′2) ∩Nr′

0
(F ′3)]

and Hd(φ(Nr0(F1) ∩Nr0(F2) ∩Nr0(F3)), Nr′
0
(F ′1) ∩Nr′

0
(F ′2) ∩Nr′

0
(F ′3)) < K.

Since φ(Nr0(F1)∩Nr0(F2)∩Nr0(F3)) is quasi-isometric to R this implies that

S ′ = Nr′
0
(F ′1) ∩ Nr′

0
(F ′2) ∩ Nr′

0
(F ′3) is quasi-isometric to R and so must have

2 ends. Moreover S ′ is a convex subset of a CAT(0) space and hence itself

CAT(0). Since S ′ is 2 ended its Tits boundary is disconnected and hence
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S ′ contains a geodesic γ′′. Now d(γ′′, F ′i ) ≤ r′0 for i = 1, 2, 3. Thus there

exists a pure singular geodesic γ′ such that γ′ ⊂ N ′
r(F

′
1) ∩ N

′
r(F

′
2) ∩ N

′
r(F

′
3)

for some r′ > r′0. Thus there exists a D
′′ > 0 such that Hd(γ′′, γ′) < D′′ and

so we may conclude that there exists a D′ > 0 with Hd(φ(γ), γ′) < D′. Also

F ′1, F
′
2, F

′
3 ⊂ P(γ′) so that φ(Y ) ⊂ P(γ′).

Proposition 6.3. Let graphs Γ,Γ′ and a quasi-isometry φ : D2(Γ)→ D2(Γ′)

be given. If K ⊂ D2(Γ) is a product sub-complex, then there exists a standard

product sub-complex K ′ ⊂ D2(Γ′) and a constant D ≥ 0 such that φ(K) ⊂

ND(K
′) in D2(Γ′).

Proof. Since K is a product complex in D2(Γ), it is a sub-complex of the

form T1 × T2 in D2(Γ), where every vertex in T1 and T2 has valence ≥ 2.

We will find a standard product subcomplex K ′ ⊂ D2(Γ′), and a constant

D ≥ 0 such that φ(K) ⊂ ND(K
′) in D2(Γ′).

We shall break our proof up into cases, depending on the structure of the

trees T1 and T2.

Case 1: T1 = R and T2 = R, i.e. all vertices in T1, T2 have valence exactly 2.

Then K is a flat, and by Theorem 5.36 there exists a constant D ≥ 0

and a flat F ′ ⊂ D2(Γ′) such that Hd(φ(K), F
′) < D. By Lemma 4.21

F ′ is a product sub-complex and by Lemma 5.25 it is contained in a

standard product sub-complex K ′. And so we have φ(K) ⊂ ND(F
′) ⊂

ND(K
′).

Case 2: T1 6= R and T2 = R, i.e. all vertices in T2 have valence exactly 2 but

there exists at least one vertex in T1 with valence ≥ 3.

Pick v ∈ T1 such that degree(v) ≥ 3. Consider the geodesic v × R. By

Lemma 6.2 there must be a singular geodesic τ ′ in D2(Γ) of the form

v′× γ′ or γ′× v′ and a constant D ≥ 0 such that Hd(φ(v×R), τ ′) < D

and such that for any geodesic α ⊂ T1, φ(α× R) ⊂ ND(P(τ
′)).
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Now P(τ ′) = T ′ × τ ′ or τ ′ × T ′, and by Lemma 5.25 there exists a

standard product sub-complex K ′ with P(τ ′) ⊂ K ′ .

For any point x ∈ K, let α1 be a bi-infinite geodesic containing x and

v. Then let α2, α3 be bi-infinite geodesics such that α1 ∩ α2 ∩ α3 = v,

so that the flats F1 = α1×R, F2 = α2×R, F3 = α3×R all intersect in

the singular geodesic v × R. Since we have that φ(F1), φ(F2), φ(F3) ⊂

ND(K
′), we must have that φ(x) ∈ ND(K

′). Since x was arbitrary, we

conclude that φ(K) ⊂ ND(K
′).

Case 3: T1 and T2 both have vertices of valence ≥ 3.

Let H be the set of all horizontal geodesics in K, i.e. geodesics of the

form α × w, where α is a geodesic in T1 and w is a vertex of valence

≥ 3 in T2. Similarly let V be the set of vertical geodesics in K, i.e.

geodesics of the form v × β with v a vertex of valence ≥ 3 in T1 and β

a geodesic in T2. By Lemma 6.2 there exists a constant D > 0 and sets

of singular geodesics H ′ and V ′ in D2(Γ′) such that for γ ∈ H or V

there exists a singular geodesic γ′ in H ′ or V ′ respectively such that

Hd(φ(γ), γ′) < D.

Let F be the collection of all the flats in K. An arbitrary flat F in F is

of the form F = α×β. By Theorem 5.36 there exists a constant D > 0

such that for each flat F in F, there exists a flat F ′ in D2(Γ′) such that

Hd(φ(F ), F ′) < D. Let F′ be the collection of all those flats in D2(Γ′)

which are within Hausdorff distance D from φ(F ) for some F ∈ F. We

shall show that there is a standard product subcomplex which contains

F′.

For an arbitrary pair of horizontal and vertical geodesics γ1 = α×w1 ∈

H and τ1 = v1 × β ∈ V , there exists a flat F = α × β in F. Pick

vertices v2 ∈ α and w2 ∈ β with valence ≥ 3 and consider the paths

[v1, v2] in T1 and [w1, w2] in T2. Note that the geodesics γ2 = α × w2
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and τ2 = v2 × β belong to H and V respectively. Also note that γ1, γ2

bound the strip α × [w1, w2], while τ1, τ2 bound the strip [v1, v2] × β.

So γ1 is asymptotic to a horizontal geodesic γ2 in the flat F , while τ1

is asymptotic to a vertical geodesic τ2 in the flat F . By Lemma 6.2

there exist pure singular geodesics γ′1, γ
′
2 in H ′ and τ ′1, τ

′
2 in V ′ such

that Hd(φ(γ2), γ
′
2) < D, Hd(φ(τ2), τ

′
2) < D, Hd(φ(γ1), γ

′
1) < D and

Hd(φ(τ1), τ
′
1) < D, and there exists a flat F ′ in D2(Γ′) with F

′ ⊂ P(γ′2)

and F ′ ⊂ P(τ ′2) such that Hd(φ(F ), F
′) < D. Moreover as φ is a quasi-

isometry, the singular geodesics γ′1, γ
′
2 must be asymptotic, and likewise

τ ′1, τ
′
2 must be asymptotic. Since γ2 and τ2 are not asymptotic and both

lie in the flat F , the corresponding singular geodesics γ′2 and τ
′
2 cannot

be asymptotic. Thus if γ′1 ∈ H ′, this forces γ′2 ∈ H ′ and τ ′1, τ
′
2 ∈ V ′,

whereas if γ′1 ∈ V ′, this forces γ′2 ∈ V ′ and τ ′1, τ
′
2 ∈ H ′. Since the

geodesics γ1 ∈ H and τ1 ∈ V were arbitrary, we may conclude that the

sets H ′ and V ′ are disjoint and that for any pair of singular geodesics

γ′ ∈ H ′, τ ′ ∈ V ′ there is a flat F ′ ∈ F′ containing geodesics asymptotic

to γ′ and τ ′.

Let Γ′1 =
⋃

F ′∈F′ π1(F
′) and Γ′2 =

⋃
F ′∈F′ π2(F

′). We next claim that Γ′1

and Γ′2 are connected.

To prove the claim, consider two arbitrary horizontal geodesics γ1 =

α1 × v1 and γ2 = α2 × v2. If α1 and α2 contain subrays that are

asymptotic, then since they are in the tree T1, these subrays are equal

and in particular π1(s(γ1)) and π1(s(γ2)) have non-empty intersection.

So, suppose that α1 and α2 do not contain asymptotic subrays.

Let βi ⊂ αi be subrays (for i = 1, 2). Let β be a bi-infinite geodesic

containing subrays asymptotic to each of β1, β2. Thus β×v1 and β×v2

must be asymptotic horizontal geodesics. Since they are asymptotic,

β×v1 and β×v2 must bound an Euclidean strip and thus π1(s(β×v1)) =
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π1(s(β × v2)). Now π1(s(βi × vi)) and π1(s(αi × vi)) (for i = 1, 2) have

non-empty intersection in Γ′1. And π1(s(β×v1)) contains both π1(s(β1×

v1)) and π1(s(β2 × v2)) in Γ
′
1. Thus π(s(β × v1)) and π(s(αi × vi)) (for

i = 1, 2) have non-empty intersection in Γ′1. Thus given an arbitrary

pair of horizontal geodesic rays, α1 × v1 and α2 × v2, we were able

to find a subgraph π1(s(β × v1)) of Γ
′
1, such that π1(s(α1 × v1)) and

π1(s(α2×v2)) both have non-empty intersection with π1(s(β×v1)). So

we may conclude that Γ′1 is connected.

Thus we may conclude that Γ′1 is connected, and similar reasoning we

shows that Γ′2 is also connected. By construction Γ′1 ∩ Γ′2 = ∅, so

Γ′1×Γ
′
2 is a sub-complex of D2(Γ

′) and s−1(Γ′1×Γ
′
2) is a disjoint union

of product sub-complexes D2(Γ′).

All that remains to be shown is that F′ lies within a single component

of s−1(Γ′1 × Γ′2) ⊂ D2(Γ′).

Given any pair of flats F ′, G′ in F′, let F,G ∈ F be such that φ(F )

is in a D-neighborhood of F ′ and φ(G) is in a D-neighborhood of G′.

There exists a flat EF,G ∈ F such that EF,G intersects both F and

G in a quarter-plane. Let E ′F,G ∈ F′ be such that φ(EF,G) is in a

D-neighborhood of E ′F,G. By Lemma 5.32 we have that E ′F,G must

intersect each of F ′ and G′ in a set that is quasi-isometric to a quarter-

plane. Thus F ′ ∪G′ ∪ E ′F,G is connected, and so F ′, G′ and E ′F,G must

all lie within the same component of s−1(Γ′1× Γ′2). Since this holds for

arbitrary flats F ′, G′ in F′, we can conclude that F′ is contained within

a single component K ′ ⊂ s−1(Γ′1 × Γ′2).

Now since K is just a union of all the flats in F we have φ(K) ⊂

ND(F
′) ⊂ K ′, and K ′ is a standard product subcomplex.
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Theorem 6.4. Let Γ and Γ′ be two graphs and let φ : D2(Γ)→ D2(Γ′) be a

quasi-isometry.

If K ⊂ D2(Γ) is a maximal product subcomplex, then there exists a maximal

product subcomplex K ′ ⊂ D2(Γ′) and a constant D = D(L,A) such that

Hd(φ(K), K ′) < D. Moreover, K and K ′ are quasi-isometric.

Proof. Let K ⊂ D2(Γ) be a maximal product complex. By Proposition 6.3

there must exist a standard product subcomplex K ′ ⊂ D2(Γ′) such that

φ(K) ⊂ ND′(K ′), where D′ depends only on φ.

Without loss of generality, we may assume that K ′ is maximal.

Let ψ : D2(Γ′) → D2(Γ) be a quasi-isometric inverse of φ. Again Propo-

sition 6.3 tells us that there must exist a standard product complex K ′′ ⊂

D2(Γ) and a constant D
′′ such that ψ(K ′) ⊂ ND′′(K ′′).

Now due to the fact that φ(K) ⊂ ND′(K ′) inD2(Γ′), and ψ(K
′) ⊂ ND′′(K ′′)

in D2(Γ) where φ and ψ are (L,A)-quasi-isometric inverses of each other, we

must have that K ⊂ ND′′′(K ′′) in D2(Γ), for some D
′′′ ≥ 0.

Consider the function dK : D2(Γ) → R, defined as dK(x) = d(x,K). By

Corollary 2.5 in [14] the function dK is convex. Now dK restricted to K ′′ is

bounded as K ⊂ ND′′′(K ′′). Thus since dK : K ′′ → R is a bounded convex

function, it must also be constant, and equal to ∆, for some constant ∆.

Thus the complex K ′′ is a fixed distnce ∆ from the complex K.

Both K and K ′′ are product complexes in D2(Γ) and so are convex. Thus

the nearest point map r : K → K ′ maps K isometrically onto its image

r(K) ⊂ K ′′. Since ∆ is the distance between K and K ′′, then r(K) and K

bound a subcomplex of D2(Γ) which is isometric toK×[0,∆], by Lemma 6.1.

However D2(Γ) is a 2-complex, and the subcomplex isometric to K × [0,∆]

would contain a 3-cell, as K contains 2-cells. This forces ∆ = 0 and so we

must have that K ⊂ K ′′. Since K is a maximal product sub-complex, this

implies that K = K ′′.

Thus ψ(K ′) ⊂ ND′′(K) in D2(Γ). Putting this together with the fact



61

that φ(K) ⊂ ND′(K ′) in D2(Γ) where both D′ = D′(L,A) and D′′ =

D′′(L,A), we can conclude that there exists a constant D = D(L,A) such

that Hd(φ(K), K ′) < D.

As the Hausdorff Distance between K and K ′ is finite we may conclude

that they are quasi-isometric.
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Chapter 7

The Intersection Complex

Using the fact that maximal product sub-complexes are preserved by quasi-

isometries and that large intersections of maximal product sub-complexes are

preserved, we define the intersection complex of D2(Γ) to be a complex which

keeps track of the maximal product sub-complexes and their pattern of large

intersections in the space D2(Γ).

The next lemma talks about how maximal product subcomplexes with large

intersections must intersect in a standard product subcomplex. In effect, this

gives us a way to keep track of the large intersections of maximal product

subcomplexes by examining the underlying graph Γ.

Lemma 7.1. Let K1 and K2 be two standard product sub-complexes with

K1∩K2 6= ∅. Let H be a product sub-complex with H ⊂ K1∩K2. Then there

exists a standard product sub-complex H ′ such that H ⊂ H ′ ⊂ K1 ∩K2.

Proof. K1 and K2 are standard product sub-complexes. So there exist dis-

joint sub-graphs Γ1,Γ2 and Θ1,Θ2 in Γ such that K1 is a component of

s−1(Γ1×Γ2) andK2 is a componenet of s
−1(Θ1×Θ2). Since H ⊂ K1∩K2 6= ∅

we must have that s(H) ⊂ s(K1) ∩ s(K2) 6= ∅. Also since H is a product

sub-complex, we have that s(H) = Λ1×Λ2 for two disjoint sub-graphs Λ1,Λ2

in Γ. Also s(H) ⊂ s(K1) = Γ1 × Γ2 and s(H) ⊂ s(K2) = Θ1 × Θ2. Each

component of s−1(Λ1×Λ2) is contained in a component of s
−1(Γ1× Γ2) and

s−1(Θ1 × Θ2). And there exists a unique component of s
−1(Λ1 × Λ2) which
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contains H, say H ′. By definition H ′ is a standard product sub-complex,

being a lift of Λ1 × Λ2 ⊂ D2(Γ). Moreover we must have that H ⊂ H ′ ⊂ K1

and H ⊂ H ′ ⊂ K2, because H ⊂ K1 ∩K2.

Theorem 7.2. Let φ : D2(Γ)→ D2(Γ′) be a quasi-isometry. Let K1, . . . , Km

be a collection of maximal product sub-complexes in D2(Γ), such that K1 ∩

· · ·∩Km contains a standard flat F . Then there exists a constant D > 0 and

maximal product sub-complexes K ′
1, . . . , K

′
m in D2(Γ′) such that Hd(φ(Ki), K

′
i) <

D for i = 1, . . . ,m, and there exists a standard product sub-complex H ′ ⊂

D2(Γ′) such that H ′ ⊂ K ′
1 ∩ · · · ∩K

′
m.

Proof. Theorem 6.4 tells us that there exists a constant D > 0 and maximal

product sub-complexes K ′
1, . . . , K

′
m in D2(Γ′) such that Hd(φ(Ki), K

′
i) < D

for i = 1, . . . ,m. Also by Theorem 5.36 there exists a constant D′ > 0 and

a flat F ′ in D2(Γ′) such that Hd(φ(F ), F ′) < D′. Since F ⊂ Ki we have

that φ(F ) ⊂ NC(K
′
i) and this implies that F

′ ⊂ NC′(K ′
i), for some constants

C,C ′ > 0. Since F ′ and K ′
i are both convex sets, we may combine this with

the fact that we are in a 2-complex and apply Lemma 6.1 to conclude that

F ′ ⊂ K ′
i for each i = 1, . . . ,m. Thus we have that F ′ ⊂ K ′

1 ∩ · · · ∩ K
′
m.

Applying Lemma 7.1, we may conclude that there exists a standard product

sub-complex H ′ such that F ′ ⊂ H ′ ⊂ K ′
1 ∩ · · · ∩K

′
m.

Definition 7.3. (Intersection Complex) Let Γ be a graph. The intersec-

tion complex I(Γ) is a simplicial complex defined as follows:

1. Begin with a 0-simplex for each maximal product complex of D2(Γ).

2. Let k + 1 0-simplices span a k-simplex if the intersection of the corre-

sponding k + 1 maximal product subcomplexes contains a flat.

Lemma 7.4. For any finite graph Γ, the intersection complex I(Γ) is finite

dimensional.
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Proof. Consider a flat F in D2(Γ) and let K be a product subcomplex of

D2(Γ) such that F ⊂ K.

Consider π1(s(K)) and π2(s(K)) which must be disjoint subgraphs of Γ,

both of whose vertices all have valence ≥ 2.

The graph Γ contains finitely many disjoint pairs of subgraphs Γ1,Γ2, and

for any such pair F can be contained in at most one maximal product sub-

complex M with s(M) = Γ1 × Γ2. Thus there is a bound b depending only

on Γ on the number of maximal product subcomplexes that can contain F .

It follows that the dimension of I(Γ) is at most b− 1.

In light of Lemma 7.4 we may define the maximal intersection number to

be the dimension of the intersection complex I(Γ).

Definition 7.5. (Maximal Intersection Number) Define the maximal

intersection number m(Γ) to be the dimension of the intersection complex

I(Γ).

Corollary 7.6. Let Γ and Γ′ be graphs. A quasi-isometry φ : D2(Γ) →

D2(Γ′) induces an isometry φ∗ : I(Γ)→ I(Γ′).

Proof. There exists a constant D > 0 such that given a maximal product

subcomplex M in D2(Γ) there exists a unique maximal product subcomplex

M ′ in D2(Γ′) such that Hd(φ(M),M ′) < D.

If σ, σ′ are the 0-simplices corresponding to M and M ′, then we may define

φ∗(σ) = σ′.

Now consider σ0, . . . , σk and the corresponding maximal product sub-complexes

M0, . . . ,Mk. If there exists a flat F ⊂M1∩· · ·∩Mk then σ0, . . . , σk span a k-

simplex σ. Theorem 6.4 tells us that there exists a constant D > 0 and max-

imal product sub-complexes M ′
0, . . . ,M

′
k such that Hd(φ(Mi),M

′
i) < D. Let

σ′0, . . . , σ
′
k be the corresponding 0-simplices in I(Γ

′). Then Theorem 7.2 tells

us that there exists a standard product sub-complexK ′ ⊂M ′
0∩· · ·∩M

′
k. This
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standard product sub-complex H ′ in D2(Γ′) such that H
′ ⊂ M ′

0 ∩ · · · ∩M
′
k.

And thus σ′0, . . . , σ
′
k span a k-simplex in I(Γ

′). This allows us to extend φ∗

inductively to each k-skeleton of I(Γ) so that φ∗ is an isometry between I(Γ)

and I(Γ′).

The fact that m(Γ) is a quasi-isometry invariant is now an immediate corol-

lary.

Corollary 7.7. The maximal intersection number m(Γ) is a quasi-isometry

invariant of D2(Γ)

The next lemma encapsulates the fact that maximal product sub-complexes

cover complexes in D2(Γ) which are products of disjoint induced sub-graphs

of Γ. The reader may refer back to Definition 4.5 for the definition of an

induced subgraph.

Lemma 7.8. Let M be a maximal product subcomplex of D2(Γ). Consider

the subgraphs A = π1(s(M)) and B = π2(s(M)). Then A and B are induced

subgraphs of Γ all of whose vertices have valence ≥ 2.

Proof. Both A and B must be subgraphs with all vertices of valence ≥ 2 as

M is a product sub-complex.

If A were not an induced subgraph, then the subgraphs A′ induced by the

vertex set of A would be strictly larger than A, and there would be a com-

ponent M ′ of s−1(A′×B) that is a product subcomplex properly containing

M . This would contradict the fact that M is maximal. Likewise B must be

induced.

The next lemma characterizes the types of subcomplexes ofD2(Γ) which lift

to maximal product subcomplexes in the universal cover D2(Γ). Moreover

this characterization is based purely on the underlying graph Γ, and this is

what allows us to calculate the invariant m(Γ) for concrete examples.
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Lemma 7.9. Let A,B ⊂ Γ be a pair of disjoint connected induced subgraphs

of Γ, such that all the vertices of A and B have valence ≥ 2. Let C =

V (Γ) \ {V (A) ∪ V (B)} and let A′ = Γ[V (A) ∪ C] and B′ = Γ[V (B) ∪ C].

Then the following are equivalent:

1. Each component of s−1(A×B) in D2(Γ) is a maximal product subcom-

plex.

2. Every cycle Σ contained in A′ or B′ is contained in A or B.

Proof. First let us assume that A × B ⊂ D2(Γ) lifts to a maximal product

sub-complex.

Thus A and B are a pair of disjoint induced sub-graphs by Lemma 7.8.

Let Σ be a cycle in A′. If Σ is not contained in A then Σ must contain a

vertex of C as A is an induced sub-graph. Let A′′ = A ∪ Σ. Then A ⊂ A′′,

all vertices of A′ have valence ≥ 2, and A× B ⊂ A′′ × B, which contradicts

the hypothesis that components of s−1(A × B) are maximal. Similarly any

cycle in B′ must be contained in B.

Conversley let the sub-graphs A and B have the property that any cycles

ΣA ⊂ A′,ΣB ⊂ B′ must satisfy ΣA ⊂ A and ΣB ⊂ B.

Let if possible that a component of a lift of A × B is not maximal. Then

there must exist disjoint subgraphs A′′, B′′ with all vertices of valence ≥ 2

such that A′′ ⊂ A′ and B′′ ⊂ B′, with at least one of A′′, B′′ strictly larger

than A or B respectively. Without loss of generality suppose A′′ is strictly

larger than A. Then there must exist a cycle Σ in A′′ which is not contained

in A. But A′′ is disjoint from B, so this contradicts the hypothesis.

We conclude that no component of s−1(A × B) is contained in any larger

product sub-complex. Thus these are maximal product sub-complexes.
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7.1 Applications

We now apply some of the tools that we have developed for the quasi-

isometric classification of the 2-dimensional graph braid groups to some con-

crete families of examples. First we calculate m(Γ) for the family of graphs

Kn and show that the invariant takes on distinct values for each n, thus

showing that the spaces D2(Kn) and hence the graph braid groups B2(Kn)

are all quasi-isometrically distinct.

Lemma 7.10. Let Γ = Kn for n ≥ 7 and let M be a maximal product sub-

complex of D2(Γ). Then there exists a partition of the vertices of Kn into

disjoint sets S1, S2 such that s(M) = Γ[S1]× Γ[S2], i.e. s(M) is the product

of the disjoint complete subgraphs Γ[S1],Γ[S2] in Γ.

Proof. Let Γ1 = π1(s(M)) and Γ2 = π2(s(M)). Since M is a maximal

product sub-complex, it is a standard product sub-complex and is a lift of

Γ1 × Γ2. Let S1 = V (Γ1) and S2(V (Γ2)). The sets S1, S2 must partition the

vertices of Γ, for if there exists a vertex v of Γ− (S1∪S2), then there is also a

cycle using v and some vertices of S1, which would contradict the maximality

of M by Lemma 7.9.

Additionally Γ1 and Γ2 must be induced by S1 and S2 respectively, for

otherwise M would not be maximal.

Thus we may conclude that there exists a partition of the vertices of Γ into

S1 and S2 such that M is a lift of Γ[S1]× Γ[S2].

Proposition 7.11. Let n ≥ 6. The maximal intersection number of the

complete graph Kn is m(Kn) = 2n−6 − 1.

Proof. Let Γ = Kn for n ≥ 7, and let C1, C2 ⊂ Γ be two disjoint 3-cycles.

Let F be a lift of C1 × C2 to D2(Γ).

For each partition S1∪S2 of the remaining n−6 vertices, the product of the

two subgraphs induced by C1 ∪ S1 and C2 ∪ S2 is a subcomplex of D2(Kn).
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Components of the lift of this subcomplex to D2(Kn) are maximal product

subcomplexes, and exactly one of them contains F . For different partitions

S1 ∪ S2, these maximal product complexes are distinct. The number of

partitions is 2n−6 so I(Kn) contains a simplex of dimension 2n−6 − 1. No

other maximal product subcomplex contains F , so this simplex is maximal

in I(Kn).

Flats inD2(Kn) which do not cover subcomplexes of the form C1×C2 where

C1, C2 are 3-cycles, are contained in fewer maximal product subcomplexes.

This is because for such a flat F ′ we would have s(F ′) = K1 × K2 with

K1 ∪ K2 using more than 6 vertices of Kn, thus limiting the number of

maximal product sub-complexes which contained F ′.

Thus m(Kn) = 2n−6 − 1.

Corollary 7.12. Let m,n ≥ 2. If D2(Km) and D2(Kn) are quasi-isometric,

then m = n.

Proof. It is easy to check that D2(K2), D2(K3), D2(K4) and D2(K5) are

quasi-isometrically distinct from each other as well as from D2(Kn) when

n ≥ 6.

This, together with Proposition 7.11 tells us that the spaces D2(Kn) are

quasi-isometrically distinct for all n.

Now that the invariant m(Γ) has been applied to find an infinite family of

quasi-isometrically distinct graph braid groups, it is only natural to wonder

what are the possible values that the invariant can take. We answer this ques-

tion by constructing an infinite family of quasi-isometrically distinct graph

braid groups B2(Ok) such that the invariant takes values m(Ok) = k.

Definition 7.13. A k-orchard is the graph obtained in the following manner:

1. Consider a simple path of k vertices with (k − 1) edges between them.

We call this graph the backbone, and the edges in this graph are called
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· · ·

(k − 1) Separating Edges

k Antennae

Figure 7.1: A k-orchard.

the separating edges. Note that the backbone has exactly two vertices of

valence 1, called the end vertices.

2. Consider k disjoint 3-cycles and connect each 3-cycle by a single edge

(called a connector) to a single vertex from each of the n vertices in the

backbone.

3. Consider two additional 3-cycles and connect each 3-cycle by a single

edge (also called a connector) to one of the end vertices of the backbone.

Proposition 7.14. Consider a k-orchard graph Γ, and let A,B be two dis-

joint 3-cycles in Γ. Let PAB be the shortest edge-path in Γ from A to B.

Consider A × B ⊂ D2(Γ) and let F be a standard product sub-complex in

D2(Γ) which is a lift of A× B.

If s is the total number of separating edges of Γ that lie on PAB then the

total number of maximal product subcomplexes in D2(Γ) containing F is s+2.

Proof. Let eS be a separating edge in Γ that lies on the path PAB. Note that

Γ\eS consists of two disjoint components, ΓA,ΓB the components containing
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A and B respectively. Also note that the two sets of vertices V (ΓA) and

V (ΓB), form a partition of the vertices of Γ, and ΓA and ΓB are the subgraphs

induced by these vertices. One can check that the subgraphs ΓA and ΓB

satisfy condition (2) of Lemma 7.9, so each component of s−1(ΓA × ΓB) is a

maximal product subcomplex. Let MF (eS) be the component of s
−1(ΓA ×

ΓB) which contains F . There is one such maximal product subcomplex

corresponding to each separating edge eS, and these are all distinct.

Let eA and eB be the two connector edges which connect the cycles A

and B to the backbone. Note that Γ \ eA has two components A and ΓB,

and Γ \ eB has two components ΓA and B. By a similar line of reasoning

as above, the subcomplexes A × ΓB and ΓA × B of D2(Γ) lift to maximal

product subcomplexes in D2(Γ). Let MF (eA),MF (eB) be the components

of these lifts which contain the product subcomplex F . Note that these are

distinct and distinct from the MF (eS) defined above.

One can check that the only way to partition the vertices of Γ into two sets

is by deleting either a separating edge or a connector edge, and considering

the vertices of each of the two resulting disjoint components.

If one delets fS, a separating edge which does not lie in PAB then one

obtains disjoint components Γ1,Γ2 whose product lifts to a maximal product

subcomplex, but which does not contain K, because Γ1×Γ2 does not contain

A× B.

Similarly if one deletes eC a connector edge which does not touch A or

B, then the disjoint components Γ1,Γ2, give rise to Γ1 × Γ2 which does not

contain A×B. And while Γ1×Γ2 does lift to a maximal product subcomplex,

none of these lifts contain K.

Thus we may conclude that the total number of maximal product subcom-

plexes that contain the standard product subcmplex K is s+ 2.

Corollary 7.15. Let Ok be the k-orchard. Then m(Ok) = k.

Proof. The longest path in Ok through the separating edges that connects
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two disjoint cycles A and B has length k − 1. Thus by Proposition 7.14,

the number of maximal product sub-complexes containing a lift of A× B is

k− 1+2 = k+1. Thus the highest dimension of a simplex in I(Ok) is k.
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