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Abstract

Brauer-Manin Computations for Surfaces

By Mckenzie Rachel West

The nature of rational solutions to polynomial equations is one which is fundamental to
Number Theory and more generally, to Mathematics. Given the straightforward nature of
this problem, one may be surprised by the difficulty when it comes to producing solutions.

The Hasse principle states that if an equation has local solutions everywhere then there
is a global solution. Polynomials rarely satisfy this property. However Colliot-Thélène con-
jectures that another test on local solutions, the Brauer–Manin obstruction, exists for every
rationally connected, smooth, projective, geometrically integral variety failing to satisfy the
Hasse Principle.

We wish to explore the existence of a Brauer–Manin obstruction to the Hasse principle
for certain families of surfaces. The first of which is a cubic surface written down by Birch
and Swinnerton-Dyer in 1975,

NormL/K(ax + by + φz + ψw) = (cx + dy) NormK/k(x + θy).

The left-hand side of this equality is a cubic norm and the right-hand side contains a
quadratic norm. They make a correspondence between this failure and the Brauer–Manin
obstruction, recently discovered by Manin, in a few specific instances. Using techniques
developed in the ensuing 40 years, we show that a much wider class of norm form cu-
bic surfaces have a Brauer–Manin obstruction to the Hasse principle, thus verifying the
Colliot-Thélène conjecture for infinitely many cubic surfaces.

The second family is a general set of diagonal K3 surfaces,

w2 = ax6 + by6 + cz6 + dx2y2z2,

defined as varieties in weighted projective space. This section focuses on the particular
geometry of these surfaces, verifying that their Picard rank is generically 19. We con-
clude by computing the Galois cohomology group, H1(Gal(k/k),Pic X) ' (Z/2Z)3. The
computation of this group is fundamental to determining the existence of a Brauer–Manin
obstruction.
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Chapter 1

Introduction

A central theme in arithmetic geometry is the study of existence of rational points on an

algebraic variety. In particular, we are interested in studying the conditions forcing the

Hasse principle to fail, i.e., when an algebraic variety has no rational points while having

points over every local field. For a general smooth projective variety, a key invariant that

measures the failure of the Hasse principle is the Brauer group of the algebraic variety,

denoted Br X. In particular, given a subset B ⊂ Br X of the Brauer group, we can associate

a set X(�k)B satisfying

X(k) ⊆ X(�k)B ⊆ X(�k),

where for a given number field k, �k denotes the adélec ring of k.

If X(�k) , ∅ and X(�k)Br X = ∅, we say that there is a Brauer–Manin obstruction to the

Hasse principle on X. This was first noted as a generalization of quadratic reciprocity by

Manin [Man71]. In general, an effective computation of the Brauer group is not practical. A

more realistic approach is to gather information about the Brauer group through the Picard

lattice and its Galois structure.

We will begin in Chapter 2 by introducing the definitions and methods fundamental

to this research. In particular, we will define the Brauer–Manin obstruction to the Hasse

principle, discuss the methods of computing the set X(�k)Br, and provide relevant results
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on a family of surfaces known as del Pezzo surfaces.

Chapter 3 will refine the statements of the previous chapter to ones specifically about

cubic surfaces. This chapter will culminate in Theorem 3.5.3, of which the following is a

direct corollary:

Theorem 1.0.1. Take k = Q, L/K unramified, and the φi and ψi to be integral units with

the minimal polynomial of ψi/φi being separable modulo 3. Suppose p is a prime for which

pOL = P1P2 such that p‖θθ. Then the variety defined by

2∏
i=0

(x + φiz + ψiw) = py(x + θy)(x + θy)

has a Brauer-Manin obstruction to the Hasse Principle.

Lastly, Chapter 4, aims to compute the existence of a Brauer–Manin obstruction for the

class of K3 surfaces,

Xa,b,c,d : w2 = ax6 + by6 + cz6 + dx2y2z2.

In particular, we produce a generating set for Pic Xa,b,c,d and moreover prove the following

results:

Theorem 1.0.2. For generic a, b, c, d ∈ k×, Pic Xa,b,c,d is a lattice of rank 19 with discrimi-

nant 25 · 33.

Moreover, generically H1(Gk,Pic X1,1,1,d ' (Z/2Z)3. where Gk denotes the absolute Galois

group of k.
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Chapter 2

Background

The nature of solutions to polynomial equations is a cornerstone of mathematical study.

Of particular interest are the solutions with rational coordinates. In this chapter, we will

introduce the methods in which we study these points.

2.1 The Hasse principle

Suppose k is a number field and Ωk is the set of places of k. We can extend the natural

inclusion k ↪→ �k :=
∏′

v∈Ωk
(kv,Ov) to one for schemes X(k) → X(�k). In particular, if

X(�k) = ∅ then X(k) = ∅. Moreover, X(�k) is computable.

Proposition 2.1.1. For X a proper k-variety, the following inclusion is an isomorphism,

X(�k) ↪→
∏
v∈Ωk

X(kv).

Proof. See [Sko01, pp. 98–99]. �

We can see the use of this isomorphism in the following proposition that is a direct

result of the Weil conjectures and Hensel’s Lemma (c.f. [Har77, Appendix C]).
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Proposition 2.1.2. For X, a geometrically integral k-variety, X(kv) is non-empty for all but

finitely many v ∈ Ωv.

Definition 2.1.3. A class of k-varieties, S is said to satisfy the Hasse principle if for every

X ∈ S, X(�k) non-empty implies X(k) non-empty.

Thus for such varieties, determining X(k) nonempty is a finite computation. Unfor-

tunately, few varieties fail to satisfy the Hasse principle, so we must produce additional

tests.

2.2 The Brauer–Manin obstruction

It is well-known that the Brauer group of a field k is isomorphic to the Galois cohomology

group H2(Gk, k
×

), where k is the separable closure of k. As a generalization of Br k, we

define the Brauer group of a scheme as follows:

Definition 2.2.1. The cohomological Brauer group of a scheme X is

Br X := H2
ét(X,Gm).

For a field L, any x ∈ X(L) corresponds to a map Spec L → X which induces a map by

functoriality Br X → Br L. Thus for each A ∈ Br X, we can define evA(x) to be the image

ofA under this map.

Lemma 2.2.2. Fix anA ∈ Br X, and let (xv) ∈ X(�k). Then for all but finitely many v ∈ Ωk,

evA(xv) is trivial in Br kv. In particular the evaluation at all places v ∈ Ωk, (evA(xv)), lies

in the direct sum
⊕

v∈Ωk
Br(kv).

Proof. Take S to be a finite set of places of k. Spread out X to to a schemeX on Ok,S andA

to an algebra B ∈ BrX. Increasing S if necessary, we can assume xv ∈ X(Ov) for all v < S .

For each such xv, evA(xv) comes from evB(xv) which lies in BrOv. Since BrOv � {0},A(xv)

must be trivial in Br kv. �



5

Subsequently, for a fixedA ∈ Br X, the following diagram commutes:

X(k) X(�k)

0 Br k
⊕
v∈Ωk

Br kv Q/Z 0

evA evA
φA

inv

(2.1)

The bottom row of this diagram has with inv =
∑

v invv. Its exactness is a deep result

of class field theory (c.f. [Mil13, Section VIII.4]). First noted by Manin, [Man71], as

a cohomological generalization of quadratic reciprocity, the Brauer–Manin obstruction is

constructed using this diagram.

Definition 2.2.3. ForA ∈ Br X, define X(�k)A := φ−1
A

({0}) a set-theoretic preimage, and

X(�k)Br :=
⋂
A∈Br X

X(�k)A.

Resulting from the commutativity of (2.1), φA(x) = 0 for every x ∈ X(k). Hence there

is a string of inclusions

X(k) ⊆ X(�k)Br ⊆ X(�k).

Definition 2.2.4. We say X has a Brauer–Manin obstruction to the Hasse principle if

X(�k) , ∅ while X(�k)Br = ∅.

The Brauer–Manin obstruction is thought to explain many instances in which the Hasse

principle fails. It is a classical result of Hasse and Minkowski that quadrics satisfy the

Hasse principle. However little is known for other classes of varieties, such as cubic and

K3 surfaces. Motivated by the study of conic bundles, Colliot-Thélène and Sansuc, [CS80,

Questions j1, k1, page 233], conjectured that smooth projective geometrically rational sur-

faces either satisfy the Hasse principle or have a Brauer–Manin obstruction. More recently,

Colliot-Thélène has extended this conjecture to a larger family of varieties.
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Conjecture 2.2.5 (Colliot-Thélène, [Col03]). A Brauer–Manin obstruction exists in every

failure of the Hasse principle for rationally connected, smooth, projective, geometrically

integral varieties.

Though it remains unproven, evidence of this generalization has been seen recently in

the work of Harpaz and Wittenberg, [HW16].

2.3 Computing the Brauer group

Using the exactness of the bottom row in (2.1), inv(A) = 0 for every A ∈ Br k. Thus,

rather than determining Br X, we may consider elements of the quotient Br X/Br0 X where

Br0 X := im(Br k → Br X), which, in abuse of notation, we will often denote as Br k. For

any L Galois over k, we use the Hochschild–Serre spectral sequence,

Hp(G,Hq
ét(XL,Gm))⇒ Hp+q

ét (X,Gm),

where G = Gal(L/k) to obtain the following exact sequence

0→ Pic X → H0(G,Pic XL)→ H2(G, L×)→ ker(Br X → Br XL),

→ H1(G,Pic XL)→ H3(G, L×).
(2.2)

Consider the case L = k. Denote by Br0 X the image of Br k in Br X and by Br1 X the

kernel ker(Br X → Br X), often referred to as the algebraic part of the Brauer group. Since

H3(Gk, k
×

) = 0, c.f. [Tat10], the exact sequence 2.2 implies the following result:

Proposition 2.3.1. If X is a smooth projective geometrically integral k-variety, then the

map
Br1 X
Br0 X

→ H1(Gk,Pic X),

is an isomorphism.
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As H1(Gk,Pic X) is often finite, it is convenient to consider the inclusion

X(�k)Br ⊆
⋂

[A]∈Br1 X/Br0 X

X(�k)A.

In the case of geometrically rational varieties, we will see later that Br1 X = Br X, making

the inclusion an equality.

For X a regular, integral, quasi-compact scheme, there is an injection of Br X into

Br k(X), [Mil80, p. III.2.22], so elements of Br X can be realized as Azumaya algebras

over the field k(X).

Definition 2.3.2. Assume F1/F2 are fields, Gal(F1/F2) = 〈σ〉 is cyclic of order n and a ∈

F∗2, then the cyclic algebra (F1/F2, a) ∈ Br F2 is defined to be the quotient F1[T ]σ/(T n−a).

Here F1[T ]σ is the twisted polynomial ring, i.e. Tb = σ(b)T for all b ∈ F1.

In fact, cyclic k(X)-algebras are Azumaya algebras and thus lie in Br k(X). Moreover

we can describe elements of Br X as cyclic algebras in Br k(X) using the following result

(see e.g. [Cor05, Proposition 2.2.3]).

Proposition 2.3.3. Let X be a k-variety, L/k a cyclic extension, and f an element of k(X).

The class of the cyclic algebra (L/k, f ) ∈ Br k(X) is in the image of Br X ↪→ Br k(X) if

and only if ( f ) = NormL/k(D) for a D ∈ Div(XL). Moreover, if Pic XL = (Pic X)Gal(L/k) then

(L/k, f ) ∈ Br k if and only if we can take D to be principal.

2.4 Del Pezzo surfaces

One particular family of surfaces which we will focus on are cubic surfaces. However these

surfaces are just one type of the objects called del Pezzo surfaces, defined here.

Definition 2.4.1. A del Pezzo surface is a surface X of degree d in Pd with canonical sheaf

ωX � OX(−1).



8

We summarize several results about del Pezzo surfaces of [Man74] in the following

theorem.

Theorem 2.4.2. Let X be a del Pezzo surface over a number field, k, and X = X ×k k be the

base change to the algebraic closure of k.

1. Del Pezzo surfaces are exactly the Fano varieties of dimension 2. A Fano variety is

a smooth, projective, geometrically integral variety whose anticanonical divisor is

ample.

2. If X has degree d, then X can be viewed as the blow up of 9 − d generic points in P2,

or in the case of d = 8, a 2-uple embedding of a quadric surface in P3. In the latter

case X ' P1 × P1.

3. Let x1, . . . , x9−d be the points as in part 2 and C be an exceptional curve on X, specif-

ically C is a curve having self intersection (C,C) = −1 and C � P1
k
. Then the image

of C under the blowing-down map to P2 is one of the following:

(a) one of the xi,

(b) a line passing through two of the xi,

(c) a conic passing through five of the xi,

(d) a cubic passing through seven of the xi such that one of the xi is a double point,

(e) a quartic passing through eight of the xi such that three xi are double points,

(f) a quintic passing though eight of the xi such that six xi are double points,

(g) or a sextic passing through eight of the xi such that seven xi are double points

and one is a triple point.

4. The Picard group Pic X is a free abelian group of rank 10−d generated by `, the strict

transform of a line passing through none of the points x1, . . . , x9−d, and the excep-

tional curves, e1, . . . , e9−d, which are the strict transforms of the points x1, . . . , x9−d.
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Remark 2.4.3. Every del Pezzo surface is rational, that is X is birational to P2
k

via the

blowing-down map. In that case, a result of Manin [Man74, Theorem 42.8] implies that

Br X � Br k = {[k]}. In particular Br1 X = ker(Br X → Br X) = Br X.

For del Pezzo surfaces X of degree d ≥ 5, Manin [Man74] showed that Br X/Br k is triv-

ial. Swinnerton-Dyer then in [Swi93] used the cohomological properties of H1(Gk,Pic X)

to compute Br X/Br k for d = 3 and 4. Completing this construction, Corn [Cor05, Theo-

rem 1.4.1] used MAGMA to determine the possible cohomology groups for d = 1 and 2.

Their results are summarized here.

Theorem 2.4.4. Let X/k be a del Pezzo surface of degree d. Then H1(Gk,Pic X) is isomor-

phic to one of the following:

5 ≤ d ≤ 9: {1},

d = 4: any of the above along with Z/2Z and (Z/2Z)2,

d = 3: any of the above along with Z/3Z and (Z/3Z)2,

d = 2: any of the above along with (Z/2Z)s (3 ≤ s ≤ 6),

Z/4Z ⊕ (Z/2Z)t (0 ≤ t ≤ 2), and (Z/4Z)2,

d = 1: any of the above along with (Z/2Z)7, (Z/2Z)8, (Z/3Z)2 (3 ≤ s ≤ 4),

Z/4Z ⊕ (Z/2Z)s (3 ≤ s ≤ 4), (Z/4Z)2 ⊕ (Z/2Z)t (1 ≤ t ≤ 2),

Z/5Z, (Z/5Z)2, Z/6Z, Z/6Z ⊕ Z/2Z, Z/6Z ⊕ Z/3Z, and (Z/6Z)2.

It is known that del Pezzo surfaces of degree d ≥ 5 satisfy the Hasse principle. More-

over, del Pezzo surfaces over k of degree d = 1, 5 and 7 automatically have a k-point. These

results are summarized in [Col99] and in [Sko01, Corollary 3.1.5] for the case d = 5. In

each of the remaining cases, d = 2, 3 or 4, there are counterexamples to the Hasse princi-

ple, each of which is explained by a Brauer-Manin obstruction. We will explore the case of

degree 3 del Pezzo surfaces in more depth in Chapter 3.
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Chapter 3

Cubic Surfaces

The purpose of this chapter is to reexamine the cubic surfaces defined by Birch and

Swinnteron-Dyer [BS75], updating the language and extending the results along the way.

This is an important family of surfaces, as it is given by an equality of norms.

We will begin in section 3.1 by providing a history of the study of rational points on

cubic surfaces and stating several relevant results on their Brauer group. Then the Birch

and Swinnteron-Dyer cubics will be constructed in section 3.2.

The notation for the chapter will be fixed in section 3.3. We will explicitly describe the

Brauer group for the BSD cubic surfaces in section 3.4. This computation will exploit the

exceptional geometry of cubic surfaces and the previous results of Corn and Swinnerton-

Dyer.

In section 3.5, there is a lemma arguing the existence of an adélic point for a family

of surfaces followed by general computations of the Brauer set. Theorems 3.5.2 and 3.5.3

show that we only need to consider a specified set of primes.

Lastly, in section 3.6, we first look back at an example given in [BS75] and verify that its

obstruction is given by the results of section 3.5. A second example with a Brauer–Manin

obstruction given by two non-zero invariant summands is then presented.
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3.1 A brief synopsis of cubic surfaces

Mordell [Mor49] conjectured that the Hasse principle holds for all projective cubic sur-

faces aside from cones. This conjecture was verified by Skolem [Sko55] for singular cubic

surfaces and by Selmer [Sel53] for diagonal cubic surfaces

ax3 + by3 + cz3 + dw3 = 0,

for which ab = cd.

Later, Swinnerton-Dyer [Swi62] disproved Mordell’s conjecture, providing an explicit

cubic surface for which that Hasse principle failed. Cassels and Guy, [CG66], then dis-

played the first diagonal cubic counterexample to the Hasse Principle

5x3 + 12y3 + 9z3 + 10w3 = 0. (3.1)

Around this time Manin noted the obstruction to the Hasse principle holding his name,

Birch and Swinnerton-Dyer, in [BS75], considered counterexamples to the Hasse Princi-

ple for rational surfaces via very direct arguments. They comment that Manin’s method

should apply and provide a brief sketch to this effect. In 1987, Colliot-Thélène, Kanevsky

and Sansuc [CKS87] systematically studied diagonal cubic surfaces over Q having integral

coefficients up to 100, verifying Conjecture 2.2.5 for each one of these surfaces. They were

the first to prove that the Cassels and Guy cubic (3.1) had a Brauer–Manin obstruction. Us-

ing a somewhat different method of constructing the Azumaya algebras, Corn extended the

result of Colliot-Thélène, Kanevsky and Sansuc for integral coefficients up to 200 [Cor05,

Theorem 3.1.1].

Now we will state some results about the geometry of cubic surfaces. With the state-

ments about del Pezzo surfaces of degree d listed in Theorem 2, we have the following

results, whose proof can be found, for example, in [Har77, p. V.4].
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Corollary 3.1.1. Cubic surfaces X in P3
k are degree 3 del Pezzo surfaces, Pic X � Z7,

generated by 〈`, e1, e2, e3, e4, e5, e6〉. Moreover, there are exactly 27 lines on X, each having

self-intersection -1, they are

1. the exceptional curves Ei, whose equivalence classes in Pic X are the ei,

2. the strict transform Fi j of the line in P2 containing xi and x j, whose equivalence

classes in Pic X are ` − ei − e j,

3. and the strict transform G j of the conic in P2 containing the five xi for i , j, whose

equivalence classes in Pic X are 2` −
∑

i, j ei.

Proposition 3.1.2. If X is a cubic surface and L1, . . . , L6 is any subset of six mutually

skew lines chosen among the 27 lines as in corollary 3.1.1. Then there is a morphism

π′ : X → P2, making X isomorphic to the blow-up of P2 along six points x′1, . . . , x
′
6 such

that L1, . . . , L6 are the exceptional curves for π′.

As in Theorem 2.4.4, we know that Br X/Br k
∼
−→ H1(Gk,Pic X) is one of

{0}, Z/2Z, (Z/2Z)2, Z/3Z or (Z/3Z)2.

A more explicit description of the elements of H1(Gk,Pic X) for X a cubic surface is given

by Swinnerton-Dyer [Swi93] and describes specific subsets or partitions of Pic X which

correspond to the possible non-trivial elements.

Definition. A nine on X is a set consisting the three skew curves together with six curves

intersecting exactly two of those three. A triple-nine is a partitioning of the 27 exceptional

curves on X into three nines.

A double-six on X is a set of twelve exceptional curves {L1, . . . , L6} ∪ {M1, . . . ,M6} on

X such that

1. the Li are pairwise skew,

2. the Mi are pairwise skew,
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3. and the intersection number (Li,M j) is 0 if i = j and 1 otherwise.

Lemma 3.1.3 (Swinnerton-Dyer [Swi93, Lemma 1], Corn [Cor05, Lemma 1.3.19]). Non-

trivial A ∈ H1(Gk,Pic X)[2] correspond to Gk stable double-sixes on X with the following

three properties:

1. neither subset of six skew exceptional curves is itself Gk stable,

2. no opposite pair is Gk stable,

3. and no set of three opposite pairs is Gk stable.

Lemma 3.1.4 (Swinnerton-Dyer [Swi93, Lemma 6], Corn [Cor05, Lemma 1.3.22]). Non-

trivial A ∈ H1(Gk,Pic X)[3] correspond to triple-nines on X such that every nine is Gk

stable but no skew triple is itself Gk stable.

Subsequently several generic results about rational points on cubic surfaces and the

Hasse principle can be shown.

Lemma 3.1.5. Let X/k be a cubic surface, and L and quadratic extension of k. If X(L) , ∅,

then X(k) , ∅.

For the proof of this lemma see e.g. [Cor05, Lemma 1.3.25].

Corollary 3.1.6. If X is a cubic surface and # H1(Gk,Pic X) is even, then X satisfies the

Hasse principle.

Proof. By Lemma 3.1.3, there is a quadratic extension L of k and a set of six skew lines

which are GL-stable. Blowing down along these six skew lines over L to obtain a del Pezzo

surface of degree 9, say Y . Such surfaces are known to satisfy the Hasse principle. If X(�k)

is non-empty then so is XL(�L). Hence Y(�L) is non-empty and Y(L) , ∅. By the Lang-

Nishimura lemma (see [Nic55]), XL(L) , ∅. The result then follows from the previous

lemma. �



14

Remark 3.1.7. This proof is also available in [Cor05]. However it was worth repeating as

this method of proof will be used later.

Using these geometric results, there is an explicit description of the A ∈ Br X which

give rise to Brauer–Manin obstructions to the Hasse principle for cubic surface. This result,

proved by Swinnerton-Dyer [Swi99], follows a similar tone to that of Proposition 2.3.3.

Proposition 3.1.8. If X is a del Pezzo surface of degree 3 over k, andA ∈ Br X has order 3

in Br X/Br k, then there exists and extension K/k of degree 1 or 2, a cyclic cubic extension

L/K, and an element f ∈ k(XK)× such that:

1. div( f ) = NormL/K(D) in Div XL,

2. andA⊗k K = (L/K, f ) as elements of (Br XK)/Br K.

3.2 The Birch and Swinnerton-Dyer cubics

We will examine the cubic surfaces constructed by Birch and Swinnerton-Dyer:

Let K0/k be a non-abelian cubic extension, and L/k its algebraic closure. Sup-

pose K/k is the unique quadratic extension which lies in L. We will assume that

(1, φ, ψ) are any linearly independent generators for K0/k, and K/k is generated

by θ. Then consider the diophantine equation given by

m
2∏

i=0

(ax + by + φiz + ψiw) = (cx + dy)(x + θy)(x + θ̄y), (3.2)

where the φi, ψi are the Galois conjugates of φ0, ψ0 and θ̄ is that of θ over k, and

m, a, b, c, d are suitably chosen k-rational integers.

Birch and Swinnerton-Dyer show that as long as a, b, c, d have “certain” divisibility

properties, these surfaces do not satisfy the Hasse Principle. This is done by considering a

rational solution [x, y, z,w] and examining the possible factorizations of the ideal (x + θy)
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in OK . They find two possible reasons the Hasse Principle may fail and give an example

computation of the Brauer–Manin obstruction for each. This paper re-examines the BSD

surfaces with the machinery and language of present-day Geometry and Class Field Theory.

3.3 Setup and notation

Let k be a number field with absolute Galois group Gk. Take L/k any Galois extension with

Gal(L/k) ' S 3. Fix K/k as the unique quadratic extension of k in L. Let OF be the ring of

integers for the field F.

Lemma 3.3.1. Every BSD cubic (3.2) is isomorphic to one of the form

2∏
i=0

(x + φiz + ψiw) = dy(x + θy)(x + θy), (3.3)

where d ∈ Ok, and {φ0, φ1, φ2}, {ψ0, ψ1, ψ2} ⊆ OL and {θ, θ} ⊆ OK are respective Galois

conjugates over k with (1, φi, ψi) being a k-basis for a degree 3 extension of k.

Proof. There is an isomorphism of varieties given by

[x : y : z : w] 7→
[
ax + by :

cx + dy

(d − cθ)(d − cθ)
: z : w

]
,

from the surface (3.2), to the surface

m(ad − bc)2
2∏

i=0

(x + φiz + ψiw) = ((d − cθ)(d − cθ))2y(x + θ′y)(x + θ
′
y),

where θ′ = (−b + aθ)(d− cθ). A subsequent isomorphism given by scaling variables results

in (3.3). �
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3.4 Computing the Brauer group

Since X is rational, ker(Br X → Br X) = Br X, [Man74, Thm. 42.8], and there is an

isomorphism,

Br X/Br k
∼
−→ H1(Gk,Pic X). (3.4)

Moreover, ΦA factors through this quotient. Therefore it will be sufficient to calculate this

finite group rather than determining the entire group Br X.

Theorem 3.4.1. Either H1(Gk,Pic X) ' Z/3Z or H1(Gk,Pic X) is trivial.

Proof. To prove this result, we will make use of the correspondence described in Lemma

3.1.4.

There are 9 lines, Li, j, defined by 0 = x + φiz + ψiw and

0 =


y if j = 0,

x + θy if j = 1,

x + θy if j = 2,

and 18 lines, L(i, j,k),n given by z = Ax + By and w = Cx + Dy such that A, B, C, and D

satisfy the system of equations



1 + Aφi + Cψi = 0,

θ(1 + Aφ j + Cψ j) = (Bφ j + Dψ j),

θ(1 + Aφk + Cψk) = (Bφk + Dψk),

(Bφ0 + Dψ0)(Bφ1 + Dψ1)(Bφ2 + Dψ2) = dθθ.

(3.5)

Let L′/k be the field of definition for the 27 lines. A triple-nine for which the individual
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nines are fixed by Gk is


L0,0 L1,1 L2,2

L1,2 L2,0 L0,1

L2,1 L0,2 L1,0

 ,

L(0,1,2),0 L(0,1,2),1 L(0,1,2),2

L(1,2,0),0 L(1,2,0),1 L(1,2,0),2

L(2,0,1),0 L(2,0,1),1 L(2,0,1),2

 ,

L(0,2,1),0 L(0,2,1),1 L(0,2,1),2

L(1,0,2),0 L(1,0,2),1 L(1,0,2),2

L(2,1,0),0 L(2,1,0),1 L(2,1,0),2

 .
(3.6)

The Galois group Gk permutes the first nine, fixing no skew triple. The rows of the second

two nines will be permuted via the permutation action on the roots (φ0, φ1, φ2). The action

of Gk on the columns of the second nines will determine whether or not any skew triple is

fixed. If [L′ : L] = 1 or 2, then H1(Gk,Pic X) is trivial as some skew triples of the later 2

nines will be fixed by Gk. Otherwise there is a non-trivial A ∈ H1(Gk,Pic X)[3]. The first

nine in the list above must appear in every triple nine with the specified Gk action, so all

possible triple nines have been found. �

Remark 3.4.2. The MAGMA code used to find the equations of (3.5) which describe the

coefficients of the 18 lines can be found in Appendix B.

The map in (3.4) is generically difficult to invert. We achieve this via the following

result which follows from Proposition 3.1.8 and Lemma 3.1.4.

Corollary 3.4.3. If H1(Gk,Pic X) ' Z/3Z then it is generated by an algebra A such that

A⊗k K '
(
L(X)/K(X),

x + θy
y

)
.
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Proof. Take D = L0,0 + L1,1 + L1,0 − div(y). Then

NormL/K(D) = (L0,0 + L1,1 + L1,0)(L1,0 + L2,1 + L2,0)

+ (L2,0 + L0,1 + L0,0) − 3 div(y),

= L1,1 + L2,1 + L0,1 − div(y),

= div(x + θy) − div(y),

= div
(

x + θy
y

)
. �

3.5 Invariant map computations

Since theA ∈ Br X/Br k are explicit, one may compute the map φA more easily. However,

before doing so, we would like to verify the existence of an adélic point.

Lemma 3.5.1. In addition to the setup of section 3.3, assume the following are true:

1. L/K is unramified,

2. φ0φ1φ2 = ψ0ψ1ψ2 = ±1,

3. the minimal polynomial for ψi/φi over k is separable modulo p | 3Ok, and

4. if p | dOL with pOL = P1P2 then v1(d) ≤ v1(θ) with v1(θ) = 0, equivalently v2(d) ≤

v2(θ) with v2(θ) = 0, where vi is the valuation corresponding to Pi.

Then X(�k) , ∅.

Proof. In most cases, the scheme given by X ∩ V(x) will be a genus 1 curve and will

subsequently have a kp point by the Hasse bound. This will be the case whenever p - 3dOk.

Suppose p | 3Ok and p - dOk. Then X ∩ V(x) → P1 defined by [0 : y : z : w] 7→ [z : w]

is one-to-one and surjective on kp points. Assumption 3 provides that at least one of these

points is smooth.
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For the primes p of k dividing d, to show X(kp) , ∅, it will suffice to find a KP point for

each primeP of K dividing p. This is a result of the fact that on cubic surfaces the existence

of kp-rational points is equivalent to that for quadratic extensions of kp (cf. [Cor05, Lem.

1.3.25]).

If P | dOK and P splits over L then XP is the union of 3 lines all defined over KP/P and

has many KP points.

Lastly, suppose P | dOK and P remains prime in L. Then we are in the case of vP(d) ≤

vP(θ). Then consider X′ given by

d
2∏

i=0

(x + φiz + ψiw) − y
(
x +

θ

d
y
)

(dx + θy),

which is isomorphic to X. Note that this equation has OP1 coefficients since v1(θ) ≥ v1(d).

Modulo P1, the defining equation for X′ becomes

X′1 : θ1y2
(
x +

(
θ

d

)
1

y
)
,

where θ1 and
(
θ
d

)
1

are the restriction of the respective constants to the quotient OP1/P1. The

surface X′1 has a smooth point [θ1/d : −1 : 1 : 1] which will lift to a KP1 point, [x0 : y0 :

z0 : w0] ∈ X′(KP1). Via the isomorphism, we have [dx0 : y0 : dz0 : dw0] ∈ X(KP1). �

Remark. In the case of v1(d) > v1(θ), a similar argument can be made with the additional

assumption of the surjectivity of the cube map in OP1/P1.

Of course Lemma 3.5.1 is not comprehensive; there are surfaces in the class which have

adélic points but do not satisfy the conditions listed above. The intention of this lemma is

to provide proof that there are indeed infinitely many surfaces of this form which have an

adélic point.

Remark. If Br X/Br k is trivial, then the triple nine as in (3.6) will have enough fixed skew

triples to build a set of six skew lines which is Gk-stable. We blow down X along these six



20

skew lines to obtain a degree 9 del Pezzo surface X′ defined over k. It is well-known that

degree 9 del Pezzo surfaces satisfy the Hasse Principle. So by the Lang-Nishimura lemma

X must also satisfy the Hasse Principle. Therefore, we will only consider surfaces X for

which Br X/Br k ' Z/3Z.

There is a classical formula for invv provided Lv/Kv is unramified given by the local

Artin map. That is, for all places v unramified in L/K,

invv
(
(Lv/Kv, f (Pv))σ

)
=

i j
k

mod 1,

where i = vv( f (P)), σ j = FrobLv/Kv , and k = [Lv : Kv] (cf. [Ser79, p. XIV.2]).

Theorem 3.5.2. Assume the notation of section 3.3. Suppose v is a finite place of K which

is unramified in L/K such that vv(d) = 0 (mod 3), and that θ or θ has valuation 0. Then

invv(AK(Pv)) = 0 for all P ∈ X(�K). Moreover, inv∞(AK(P∞)) = 0.

Proof. (The structure of this proof follows that of [Jah14, p. III.5.18].) In the infinite case,

we must have inv∞(AK(P)) = 0, as [L : K] = 3 and inv∞(AK(P∞)) = 0 or 1/2.

Suppose that v splits completely in L. Then Lv = Kv and (Lv/Kv, f (Pv)) is trivial, so

invv(AK(Pv)) = 0.

If v remains prime in L then [Lv : Kv] = 3. Take Pv = [x0 : y0 : z0 : w0] ∈ X(Kv). Via

scaling, assume that x0, y0, z0 and w0 are integral and at least one has valuation 0. Since∏2
i=0(x0 + φiz0 + ψiw0) is a norm from L to K, y0 = 0 would imply x0 = z0 = w0 = 0, which

is not possible. Thus y0 , 0. In particular, f =
x+θy

y is defined for all Pv ∈ X(Kv).

For simplicity, set v = vv and N =
∏2

i=0(x + φiz + ψiw). If v(N) = 0, then v(y) =

v(x + θy) = 0. Hence inv(AK(Pv)) = 0. On the other hand, suppose v(N) > 0. Since N is a

norm on the residue class fields, v(x0), v(z0), v(w0) > 0. Hence v(y0) = 0. In fact, 3 | v(N).

Thus, v(d) + v(x + θy) + v(x + θy) ≡ 0 mod 3. However, v(x + θy) = 0 or v(x + θy) = 0,
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since v does not divide both θ and θ. In particular, v(x + θy) ≡ 0 (mod 3) and

invv(AK(Pv)) = 0. �

Remark. This result should be expected, because unramified primes of good reduction

produce a trivial invariant computation.

Given the result of Theorem 3.5.2, in all cases where L/K is unramified, we simply

need to consider the places of k over which d has valuation that is non-zero modulo 3. The

following theorem provides a sample of the types of Brauer–Manin obstructions we may

now construct for the surfaces X.

Theorem 3.5.3. With the notation of section 3.3. Suppose L/K is unramified. Fix θ so that

no primes of OK divide both θ and θ. Let p be a prime of Ok such that pn | (d) for some

n . 0 (mod 3) which also divides θθ. Suppose all other primes dividing (d) split in L/K.

If X(�K) , ∅ and p = P1P2 in OK and in OL, then
∑

v invv(AK(P)) , 0.

Proof. From the statement and proof of Theorem 3.5.2, we need only consider the primes

P1 and P2 of OK that lie above p. Via our assumption that no primes divide both θ and θ,

we can assume that P1 | θ and P2 - θ. Take vi = vPi to be the respective valuation maps.

As vi(dy(x + θy)(x + θy)) > 0, we must be in the case that vi(x0), vi(y0), vi(z0) > 0 and

vi(y0) = 0. Then v2(x + θy) = 0, so invP2(A(P)) = 0. On the other hand v1(x + θy) =

v1(dy(x + θy)(x + θy)) − v1(d) ≡ − v1(d) mod 3. In particular invP1(A(P)) = 1/3 or 2/3.

Thus ∑
invv(A(P)) = invP1(A(P)) , 0. �

This theorem provides a jumping off point for similar results. One may consider the

case where more places divide d, and examples of most forms can be computed immedi-

ately.
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3.6 Examples

Examples that fit the situation of this Theorem 3.5.3 are easy to come by. Given any L/K

unramified we can find many such θ. Then it is a quick check via Hensel’s Lemma and the

Weil Conjectures to show that there is an adélic point. In fact the original example of BSD

fits this case.

Example. Suppose θ′ = 1
2 (1 +

√
−23) and φi so that φ3

i = φi + 1 and ψi = φ2
i . Define XBS D

by

2
2∏

i=0

(x + φiz + φ2
i w) = (x − y)(x + θ′y)(x + θ

′
y).

Via the isomorphisms above, we have the isomorphic X given by

2∏
i=0

(x + φiz + ψ2
i w) = 32y(x + θy)(x + θy),

where θ = −θ′ − 6.

We find that X has adélic points but no rational points. Moreover, X has a Brauer–Manin

obstruction to rational points as described in Theorem 3.5.3.

There are few published examples where the invariant map has two or more non-zero

summands. Given the theorems above, examples of this can be found quickly.

Example. Suppose the φi satisfy φ3
i + φi + 1 = 0 and θ, θ are the roots of T 2 − 4T + 35.

Then

X :
2∏

i=0

(x + φiz + ψiw) = 52 · 7y(x + θy)(x + θy),

has a Brauer–Manin obstruction to the Hasse Principle with the invariant map being

1/3 + 1/3 or 2/3 + 2/3,

depending on the choice of algebraA.
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Chapter 4

Diagonal K3 Surfaces

The purpose of this chapter is to provide a preliminary report on joint work with Florian

Bouyer, Edgar Costa, Dino Festi and Christopher Nicholls, originating at the Arizona Win-

ter School 2015: Arithmetic and Higher-Dimensional Varieties.

4.1 Introduction on K3 surfaces

Another interesting class of surfaces is that of K3 surfaces. Unlike del Pezzo surfaces, K3

surfaces are not rational. In particular, we no longer have the equality Br1 X = Br X. Before

continuing, we define these objects and give some examples.

Definition 4.1.1. An algebraic K3 surface is a smooth, projective 2-dimensional variety

over a field k with trivial canonical sheaf and H1(X,OX) = 0.

We continue to fix k to be an algebraic number field, which has char k = 0.

1. Double covers π : X → P2
k branched along a smooth sextic curve, C ⊆ P2

k are degree

2 K3 surfaces.

2. Smooth quartic surfaces in P3
k are K3 surfaces of degree 4.
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3. Smooth complete intersections of a quadric and a cubic in P4
k are K3 surfaces of

degree 6.

4. Smooth complete intersections of three quadrics in P5
k are degree 8 K3 surfaces.

Our work focuses on a family of diagonal degree 2 K3 surfaces. Thus we will prove

that these objects as described above do satisfy ωX = OX and H1(X,OX).

Let π : X → P2
k be a double cover branched along a smooth sextic curve C ⊆ P2

k .

Certainly X is smooth if an only if C is smooth. The Hurwitz formula, c.f. [BHPV04,

p. I.17.1], implies that ωX ' π
∗(ωP2

k
⊗ O(3)) ' OX. Moreover, as in [CD89, Section 0.1],

since X is a double cover ramified along a sextic, we have π∗OX ' OP2
k
⊕OP2

k
(−3) implying

H1(X,OX) = 0.

Recall the isomorphism (2.3.1),

Br1 X
Br0 X

∼
−→ H1(Gk,Pic X).

Our study of the Brauer–Manin obstruction will take advantage of this isomorphism, and

thus require the computation of Pic X and its Galois action. The geometry, or more specif-

ically, the Hodge structure on X implies the following results about the lattice:

Proposition 4.1.2.

1. [Huy14, Proposition 2.4] For X a K3 surface, there exist isomorphisms

Pic X
∼
−→ NS X

∼
−→ Num X,

where NS X denotes the Néron–Severi group of X and Num X the numerical equiv-

alence classes of divisors on X. Moreover, the intersection pairing (·, ·) is even,

non-degenerate, and of signature (1, rk(NS X) − 1).

2. [Huy14, Sections 3.2-3] For X a complex K3 surface, NS X is torsion free and 0 ≤

rk(NS X) ≤ 20.
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Remark 4.1.3. Given this result, the lattice (NS X, (·, ·)) is even and non-degenerate.

Remark 4.1.4. A complex K3 surface is a compact complex manifold X of dimension two

such that Ω2
X ' OX and H1(X,OX) = 0. For any K3 surface over C, the associated complex

space Xan constructed via Serre’s GAGA principle (c.f. [Ser56]) is a complex K3 surface.

Part 2 of Proposition 4.1.2 is a result of the inclusion Pic X → H2(X,Z). For X a

complex K3 surface, we have an explicit description of this cohomology group [Huy14,

Proposition 3.5]:

H2(X,Z) ' E8(−1)2 ⊕ U3,

where U is the hyperbolic plane and E8(−1) is a twist of the E8 lattice.

Early computations of Brauer–Manin obstructions for K3 surfaces can be found in

[Bri06], [HVV11], [Ier10], [SS05], and [Wit04]. In general, computing the Picard group of

an algebraic surface is a hard problem. An effective version of the Kuga–Satake construc-

tion for degree-two K3 surfaces as in [HKT13] yields a theoretical algorithm, with a priori

bounded running time, however they provide no explicit examples of these computations.

In [PTL12, Section 8.6.] the authors provide an alternative algorithm. If one wishes to

simply compute the rank of the Picard lattice, another approach, conditional on the Hodge

conjecture for X × X, is presented in [Cha11].

4.2 The particular family of surfaces

With the aim of studying the rational points on the following family of degree-two K3

surfaces

Xa,b,c,d : w2 = ax6 + by6 + cz6 + dx2y2z2,

over a number field k, where a, b, c, d ∈ k×, we effectively compute the geometric Picard

lattice for a generic element of this family and its Galois structure. Since over k the K3

surface Xa,b,c,d is isomorphic to X1,1,1,d′ for some d′ ∈ k, their geometric Picard lattices are
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also isomorphic. Thus, it will suffice to compute the geometric Picard lattice for a generic

Xd : = X1,1,1,d for d ∈ k.

Theorem 4.2.1. For a generic d, the geometric Picard lattice of Pic Xd is a rank 19 lattice

of discriminant 25 · 33.

A possible integral basis for this lattice can be found in Appendix A. This explicit pre-

sentation of Pic Xd leads us to the following theorem whose proof is a simple computation

in MAGMA, see Appendix B.2.

Theorem 4.2.2. Let d ∈ k be generic and Xd the corresponding K3 surface. Write K = k(d).

Then we have

H0
(
GK ,Pic Xd

)
' Z;

H1
(
GK ,Pic Xd

)
' (Z/2Z)3 .

Theorem 4.2.3. The surface Xd is isogenous over Q(d) to the Kummer surface associated

to the abelian surface E × E, where E is a elliptic curve with j-invariant −(4d)3.

Corollary 4.2.4. The geometric Picard number of Xd is 19 unless −(4d)3 is the j-invariant

of an elliptic curve with complex multiplication.

Remark 4.2.5. Theorem 4.2.3 and Corollary 4.2.4 are direct results of Elkies’ explicit for-

mula for an isogeny between the surface Y2 = X3+dt2X2+t5(t+1)2 and the Kummer surface

associated to E × E. Elkies’ construction is analogous to the Shioda–Inose construction,

defined by Morrison [Mor84], but works over k(d).

We prove Theorem 4.2.1 in two parts. First, we establish the rank of Pic Xd, which

is done using bounding arguments. To find the lower bound, we construct a sublattice,

Λ, in Section 4.3. This is done by constructing a set of divisors on Xd and acting on

these divisors by a subset of O
(
Pic Xη

)
. This subset, or more specifically the Galois group
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Gal(L/K) where L is the field of definition for our divisors is computed in Section 4.4.

In Section 4.5 we prove that the lattice Λ has rank 19. In the case of an upper bound for

the rank of Pic Xd, we combine the Tate conjecture and the Artin–Tate conjecture which is

done in Section 4.5.

Second, we verify that the sublattice Λ is in fact the entire Pic Xd. Given the previous

results, we know that Λ is a finite index sublattice of Pic Xd. Given this fact we show, in

Section 4.6, that the finite quotient Pic Xd/Λ is trivial.

4.3 Geometry

The K3 surface

Xd : w2 = x6 + y6 + z6 + dx2y2z2, (4.1)

over K : = k(d), is a double cover of P2
K , branched along the sextic curve

Cd : x6 + y6 + z6 + dx2y2z2 = 0,

via projection map π : X → P2 defined by π([w : x : y : z]) = [x : y : z].

We will pull back divisors on P2
K via this map, thus producing divisors on X. Given an

irreducible divisor D on P2
K , we can compute the pullback as follows. Firstly, write

π−1(D) =

n⋃
i=1

Di ∪

m⋃
j=1

E j,

as a union of prime divisors on X, where the π(Di) are dense in D and the π(E j) are not.

Then

π∗(D) =

n∑
i=1

eiDi,
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where the ei are the ramification indices at Di, having the property that,

n∑
i=1

ei deg
(
π|Di

)
= deg (π) .

As deg (π) = 2, the only possible pullbacks are:

1. π∗(D) = D1 + D2, with deg
(
π|Di

)
= 1;

2. π∗(D) = 2D1, with deg
(
π|D1

)
= 1;

3. or π∗(D) = D1, with deg
(
π|D1

)
= 2.

In the first case, we say that π∗ (D) is split.

Let H be a hyperplane divisor in P2. If D is a degree ` curve in P2, then D ∼ `H, hence

π∗(D) ∼ π∗(dH) = `π∗(H).

Thus, in the third case above,

π∗(D) = D1 ∼ `π
∗(H),

so the bullback lies in the sublattice of Pic Xd generated by π∗(H). In the second case, we

have

π∗(D) = 2D1 ∼ dπ∗(H),

indicating that the pullback is a multiple of π∗(H) when ` is even.

Motivated by these results, we search for divisors D on P2
K such that the pullback, π∗(D),

splits as the sum of two divisors on Xd. This condition is satisfied by curves D on P2
K that

are everywhere tangent to the branch locus Cd in P2
K . We verify this statement here, though

it is also available in [EJ08a].

Let D be a curve in P2
K given by h(x, y, z) = 0 and fd(x, y, z) = x6 + y6 + z6 + dx2y2z2

be the polynomial defining Cd over K. If D meets Cd with even multiplicity at each point
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of intersection, then the divisor Cd|D∈ OD(6) is divisible by 2, thus we can write Cd|D= 2D′

for some D′ ∈ OD(3). In particular, f is the square of some section g3 ∈ OD(3). Lifting g3

to a section g̃3 of O(3), we have an inclusion of affine varieties

V(p) ⊂ V
(

f − g̃2
3

)
.

Further,

π−1(D) ⊂ V(h) ∪ Cd,

making

π−1(D) ⊂ V
(
w2 − g̃2

3

)
.

Therefore, the pullback is π∗(D) = D1 + D2, where

Di = V
(
w + (−1)ig̃3

)
.

Using this result, we produce a family of divisors, Ωd, which were found by pulling
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back conics everywhere tangent to Cd. Specifically, Ωd = {Ai, j}i, j∈{0,1,2} ∪ {B1, B2, B3} where

Ai, j :


0 = x2 + ζ i

3y2 + ζ
j
3z2,

w = βi+ jxyz,

B1 :


0 = 2xy − c0z2,

w = x3 − y3;

B2 :


0 =

√
3

9 (β0β1 + β1β2 + β2β0 + d) x2 −
√

3
3 (y2 + z2) − yz,

w =
√

3
27

(
(β0 + β1 + β2)3

−
(
β3

0 + β3
1 + β3

2

))
x3 − (β0 + β1 + β2) xyz;

B3 :


0 = c0x2 +

(3c0−d)(3c0+2d)ζ4
2β0β1β2

xy + 2y2 − z2 = 0,

w = 2c0+c2
c0c2

(
c0x3 + 3 (3c0+2d)ζ4

β0β1β2
c0x2y + 4xy2 + 3 (3c0+2d)ζ4

β0β1β2
y3

)
;

where ζ3 and ζ4 are choices of primitive 3rd and 4th roots of unity, respectively, the βi

satisfy β2
i = d + 3ζ i

3 and the ci are the three roots of x3 + dx2 + 4. These divisors intersect

C tangentially at six points.

Remark 4.3.1. In the case of lines tritangent to Cd, a Gröbner bases shows that such lines

only exist for some special values of d. In fact, a tritangent exists if and only if

d(5 + d)(33 + 2d)(25 − 5d + d2)(1089 − 66d + 4d2) = 0.

Remark 4.3.2. There are many other natural ways to write down divisors on Xd. For

example, Xd is a double cover of the degree-one del Pezzo surface Yd : w = x3 + y3 +

z3 + dxyz. It is well-known that Pic Yd is a rank 9 lattice, generated by the 240 exceptional

curves on Yd.

The set Ω generates a proper sublattice of Pic Xd. Since Pic Xd is stable under the action

of O
(
Pic Xd

)
, we can act by O

(
Pic Xd

)
on the sublattice generated by Ω. We have chosen

Ω in such a way that we need not consider the full isometry group of Pic Xd. In particular,
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we restrict our attention to natural action of the automorphism group Aut Xd and the Galois

group Gal(L/K) on Pic Xd. We compute Gal(L/K) in Section 4.4. For now consider the

explicit subgroup of Aut Xd, constructed as follows:

Let σ ∈ S 3 be a permutation of the set {x, y, z} and consider the automorphism that σ

induces on P(1, 1, 1, 3):

ϕσ : P(1, 1, 1, 3)→ P(1, 1, 1, 3)

[x : y : z : w] 7→ [σ(x) : σ(y) : σ(z) : w].

Moreover, for i, j, k ∈ Z/6Z we have the following automorphism of P(1, 1, 1, 3):

ψi, j,k : P(1, 1, 1, 3)→ P(1, 1, 1, 3)

[x : y : z : w] 7→
[
ζ i

6x : ζ j
6y : ζk

6z : w
]
.

Let G denote the subgroup of Aut Xd generated by {ϕσ}σ ∪ {ψi, j,k}I where I = {i, j, k |

2k + 2i + 2 j ≡ 0 mod 6}.

Lemma 4.3.3. The group G is isomorphic to (Z/2Z)2
×Z/6Z×S 3 and embeds into Aut Xd.

Proof. The second statement follows from two observations. First, ϕσ and ψi, j,k map Xd to

itself, as each of these automorphisms fix the defining equation of Xd. Second, the fixed

point of any given non-trivial map g ∈ G, are contained in a hyperplane. In particular, such

g cannot act trivially on Xd.

Let Gψ be the subgroup of G corresponding to the {ψi, j,k}I , and Gσ � S 3 be the subgroup

generated by φσ. For the second claim, it suffices to show Gψ ' (Z/2Z)2
× Z/6Z, as

Gψ ∩Gσ = {id}, and the ψi, j,k commutes with the ϕσ. We give an explicit isomorphism:

Z/6Z × Z/2Z × Z/2Z→ Gψ

(i, j, k) 7→ ψi,3 j,3k−i−3 j,
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Injectivity is immediate and surjectivity follows from the fact that ψi, j,k = ψi+`, j+`,k+` as

automorphisms of P(1, 1, 1, 3), for all 3` = 0 mod 6. �

With this construction, define

H : = 〈G ∪ Gal(L/K)〉 ⊂ O
(
Pic Xd

)
(4.2)

and

Λ : = H ·Ω ⊂ Pic Xη. (4.3)

In other words, H is a subgroup of the group of isometries of Pic Xd and Λ is the sublattice

of Pic Xd generated by the orbits of the divisors in Ω under the group H.

Remark 4.3.4. Note that in general for a K3 surface Y , the action of Aut Y on Pic Y is not

faithful. However, if rk Y = 19 and the discriminant of Pic Y is not a power of 2, then the

action of Aut Xd on Pic Xd is faithful, by the global Torelli theorem.

4.4 The Galois group in the generic case

Let K = k(d), then Xd is defined over K. Let L be the minimal field extension of K over

which the divisors Ai, j, B1, B2 and B3 are defined. In this section we will verify that for a

generic d,

Gal(L/K) � C2 × D4 × S 3. (4.4)

Consider the following polynomials

f1 = x2 − (d + 3) , (4.5)

f2 = x4 − (2d − 3) x2 +
(
d2 − 3d + 9

)
, (4.6)

f3 = x3 + dx2 + 4, (4.7)

f4 = x2 + 1. (4.8)
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Lemma 4.4.1. The combined splitting field of f1, f2, f3 and f4 coincides with L.

Proof. Let L′ denote the combined splitting field of f1, f2, f3 and f4. As noted in Sec-

tion 4.3, we have

f1 = (x − β0) (x + β0) ;

f2 = (x − β1) (x + β1) (x − β2) (x + β2) ;

f3 = (x − c0) (x − c1) (x − c2) ;

f4 = (x − ζ4) (x + ζ4) ;

where ζ3 and ζ4 are choices of primitive 3rd and 4th roots of unity respectively, βi satisfy

β2
i = d + 3ζ i

3 and ci are the three roots of x3 + dx2 + 4. Hence, f1, f2, f3 and f4 split in L

and L′ ⊆ L.

On the other hand, to show L ⊆ L′ it suffices to show that
√

3 ∈ L′. As β2
1 = d + 3ζ3,

we have ζ3 ∈ L′ and
√
−3 ∈ L′. Note that

√
−3 = (−1)ζ4

√
3 and since ζ4 ∈ L′,

√
3 ∈ L′ as

well. �

In order to verify that (4.4) is an isomorphism we will begin by recalling the following

well-known results about splitting fields and the corresponding Galois groups of specific

polynomials.

Theorem 4.4.2 ([KW89, Theorem 3]). Assume F is a field of characteristic not 2. Let F̃

be the splitting field of x4 + ax2 + b, an irreducible polynomial over F. Then,

Gal
(
F̃/F

)
�



C2
2 if and only if b is a square in F,

C4 if and only if b(a2 − 4b) is a square in F,

D4 if and only if b and b(a2 − 4b) are not squares in F.

Corollary 4.4.3. Let F, x4 + bx2 + d, and F̃ be as above. Further, assume that we are in

the last case, i.e., [F̃ : F] = 8 and Gal
(
F̃/F

)
� D4. Denote the four roots of f by ±α1 and
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±α2. Then F has exactly three quadratics extensions which intermediate fields of F̃/F:

F
(
α2

1

)
, F (α1α2) , and F

(
α1α2

(
α2

1 − α
2
2

))
.

Proof. By assumption

Gal
(
F̃/F

)
� D4 =

〈
r, s|r2 = s4 = 1, rs = s3r

〉
.

This has three subgroups of index 2, namely
〈
sr, s2

〉
,
〈
r, s2

〉
and 〈s〉. Each of which corre-

spond to the fields listed above. �

We now recall a well known theorem of Galois theory that classifies the splitting field

of an irreducible cubic polynomial, see for example [Ste04, Section 22.2].

Theorem 4.4.4. Let F̃ be the splitting field of f (x) = x3 + ax2 + bx + c, an irreducible

polynomial over F. Then either

1. ∆( f ) is a square in F and Gal
(
F̃/F

)
� C3,

2. or ∆( f ) is not a square and Gal
(
F̃/F

)
� S 3.

In the latter case, F̃ � F
(
α,

√
∆( f )

)
where α is a root of f .

Proposition 4.4.5. Let f1, f2 be as in equations (4.5) and (4.6), defined over K = Q(d). Let

L1,2 be their splitting field. Then, for a generic d,

[
L1,2 : K

]
= 24 and Gal

(
L1,2/K

)
� D4 ×C2.

Proof. First consider f1(x) = x2 − (d + 3) = (x − β0) (x + β0) over K. For a general d, we

have d + 3 is not a square in K, so its splitting field is K (β0), and
[
K (β0) : K

]
= 2.
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Next we have

f2(x) = x4 − (2d − 3)x2 +
(
d2 − 3d + 9

)
= (x − β1) (x + β1) (x − β2) (x + β2)

over K (β0). If d2 − 3d + 9 is a square in K (β0), then for some a, b ∈ K, we have

d2 − 3d + 9 = (a + bβ0)2,

= a2 + b2(d + 3) + abβ0.

This implies ab = 0. As we are considering a general d, we have d2−3d+9 is not a square in

K so b , 0. Further the quotient
(
d2 − 3d + 9

)
/ (d + 3) is generically not a square. Hence,

d2 − 3d + 9 is generically not a square in K(β0).

Now notice that

(
d2 − 3d + 9

) (
(2d − 3)2

− 4
(
d2 − 3d + 9

))
= −27

(
d2 − 3d + 9

)
,

which is also not a square in K(β0). Hence, by Theorem 4.4.2, we have that the splitting

field of f2 over K(β0) is K (β0, β1, β2),

[
K (β0, β1, β2) : K (β0)

]
= 23, and Gal (K (β0, β1, β2) /K (β0)) � D4.

Subsequently, we have Gal (K (β1, β2) : K) � D4 and there is a diagram of fields as

follows:

K (β0, β1, β2)
D4

K (β1, β2)

C2

D4

K (β0)

K.
C2
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Therefore, Gal (K (β0, β1, β2) : K) � D4 ×C2. �

Proposition 4.4.6. Let f3 be as in equation (4.7) defined over L1,2 = K(β0, β1, β2). Let L1,2,3

be its splitting field over L1,2, then

[
L1,2,3 : L1,2

]
= 2 · 3 and Gal

(
L1,2,3/L1,2

)
� S 3.

Proof. We have that

f3(x) = x3 + dx2 + 4

= (x − c1) (x − c2) (x − c3) , and

∆ ( f3) = −24(d + 3)
(
d2 − 3d + 9

)
= −24β2

0β
2
1β

2
2.

Thus, ∆( f3) is a square in L1,2 if and only if −1 is a square in L1,2 or equivalently ζ4 ∈ L1,2.

Since
[
K (ζ4) : K

]
= 2, if ζ4 ∈ L1,2, then there is an index 2 subgroup of Gal(L1,2,K) �

D4 × C2 fixing K(ζ4). There are 7 index 2 subgroups of D4 × C2. Corollary 4.4.3 provides

us with their corresponding fixed fields, which are:

• K
(
β2

1

)
of discriminant (up to squares) −3,

• K (β1β2) of discriminant (d2 − 3d + 9),

• K
(
β1β2

(
β2

1 − β
2
2

))
of discriminant −3

(
d2 − 3d + 9

)
,

• K (β0) of discriminant d + 3,

• K
(
β0β

2
1

)
of discriminant −3(d + 3),

• K (β0β1β2) of discriminant (d + 3)
(
d2 − 3d + 9

)
,

• and K
(
β0β1β2

(
β2

1 − β
2
2

))
of discriminant −3(d + 3)

(
d2 − 3d + 9

)
.
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In the case of a general d, up to squares, none of these discriminants are −1. In particular

none of these fields are isomorphic to K(ζ4). Hence −1 is not a square in L1,2, so by

Theorem 4.4.4, we have Gal(L1,2,3/L1,2) � S 3. �

Theorem 4.4.7. Let f1, f2, f3 and f4 be as in equations (4.5) through (4.8) over K := Q(d).

Let Li be the splitting field of fi over K, and L the compositum of these four fields. Then,

[L : K] = 25 · 3 and

Gal (L/K) � Gal (L1/K) × Gal (L2/K) × Gal (L3/K) � C2 × D4 × S 3.

Proof. As f3 has a non-square discriminant in K (β0, β1, β2) � L1,2, it has a non-square

discriminant in K ⊂ L1,2. Hence we have the following diagram

L1,2,3
S 3

L3

S 3

L1,2

K,
C2×D4

giving us that

Gal(L1,2,3/K) � Gal(L1/K) × Gal(L2/K) × Gal(L3/K) � C2 × D4 × S 3.

It is clear when considering the proof of Proposition 4.4.6 that f4 = x2 +1 splits completely

over over L1,2,3 and hence L � L1,2,3. �

4.5 Computations and numerical data

In this section we cover some of the key computations that we use in Section 4.6. We begin

by recalling the following notation of Section 4.3. There is an explicit set of divisors Ω,
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with field of definition denoted by L/K. We also have a group H ⊂ O
(
Pic Xd

)
that acts on

Pic Xd, and Λ denotes the lattice generated by the H-orbits of Ω.

The proof of the following proposition will make use of the lattices An and E8, whose

Dynkin diagrams are shown here.

x x x xAn :
e1 e2 en−1 en

x x x x x
x

x xE8 :
e1 e2 e3 e4

e8

e5 e6 e7

Define the twists An(−1) and E8(−1) to be the lattices with basis {ei} corresponding to the

diagrams above along with the bilinear form

〈
ei, e j

〉
: =



−2 i = j,

1 ei x xe j,

0 otherwise.

The hyperbolic plane lattice, U, is the unique (up to isomorphism) rank 2 even indefinite

unimodular lattice. Changing base if necessary, we may assume that U has Gram matrix( 0 1
1 0

)
.

Proposition 4.5.1. For generic d, the lattice Λ is a sublattice of Pic Xd, of discriminant

25 · 33, signature (1, 18) and discriminant group isomorphic Z/6Z × (Z/12Z)2. Further, Λ

is isometric to the lattice

E8(−1) ⊕ U ⊕ A5(−1) ⊕ A2(−1) ⊕
(
−8 −4
−4 −8

)
. (4.9)

Proof. Using our explicit description of Λ it is easy to compute all the invariants mentioned
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above. In fact, this computation can made even simpler by deducing it over F79, a finite

field whose order gives good reduction.

For the the isometry between Λ and the lattice as in (4.9), it is sufficient, by [Nik80,

Corollary 1.13.3], to check that both lattices are even and indefinite, and have the same

rank, discriminant, signature, number of generators for the discriminant group, and discrim-

inant form. Each of these properties is confirmed using the sofware MAGMA [BCP97]. �

Since Λ is a rank 19 sublattice of Pic Xd, we immediately obtain the following result.

Corollary 4.5.2. The geometric Picard number of Xd is at least 19.

The remainder of this section will be focused on determining an upper bound for the ge-

ometric Picard number of Xd for a generic d. As in [Huy14], any one-dimensional family of

K3 surfaces having a single member, X with geometric Picard number 19 is parametrized

by a modular curve X. Furthermore, the points of X with complex multiplication corre-

spond to exactly those surfaces having geometric Picard number 20. All other K3 surfaces

in the family have geometric Picard number 19.

In particular, to determine a generic upper bound, it suffices to show that there is a

d such that Xd has geometric Picard number 19. To complete this task, we consider the

specialization to finite fields.

Let X be a smooth projective surface over Fq, and write

P2(X, t) : = det
(
1 − t Frob|H2

ét(X,Q`)
)
∈ Z[t],

where Frob is the Frobenius automorphism. The Weil conjectures imply that P2(X, t) has

reciprocal roots of absolute value q. On the other hand, the Tate Conjecture allows that the

geometric Picard number of X equals the multiplicity of q as a reciprocal root of P2(X, t).

The Artin–Tate conjecture relates NS X, the Néron–Severi group of X, with P2(X, t):

The Tate conjecture implies the Artin–Tate conjecture when the characteristic is odd

(see [Mil75a, Theorem 6.1] and [Mil75b]).
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Suppose now that X is a K3 surface. In this case the Tate conjecture has been shown to

hold in odd characteristic (see [Cha13; Mad15; Mau14]). Furthermore # Br X is a perfect

square (see, e.g. [LLR05]). As in Proposition 4.1.2 Pic X ' NS X, hence Pic0 X = 0. Lastly,

via Riemann-Roch, the Euler characteristic of X is χ(X,OX) = 2. Putting this together, if X

is a K3 surface, then

disc Pic XFq = lim
s→1

(−1)ρ(X)−1P2(X, q−s)
q(1 − q1−s)ρ(X) mod Q×2. (4.10)

Usually, one computes P2 by counting points in sufficiently many extensions of the

base field. For K3 surfaces, this requires computations in fields of size at least p10. Such

computations have been performed in [Lui07; EJ08a; EJ08b; EJ11a; EJ11b] for primes less

than 10. This direct approach however is not computationally feasible for larger primes.

For a quartic K3 surface one can compute P2 by explicitly approximating the Frobenius

action on a p-adic cohomology, namely Monsky–Washnitzer cohomology, see [AKR10;

CT14]. Our approach is the one described in [EJ16], a method inspired by [Har15]. We are

very thankful to Elsenhans, who computed for us P2 for Xd over Fp, with 4 < p < 100. In

practice, given Proposition 4.5.1, it would suffice to count points over Fp and Fp2 . However,

this project began by acquiring this upper bound, which was then followed by attempts at

determining divisors in Xd.

Given these results, we now show that there is a desired specialization. For example,

we consider the surface X1.

P2(X1 mod 5, t) = (1 − 5t)8(1 + 5t)8
(
1 + 52t2

)2 (
1 − 6t + 52t2

)
P2(X1 mod 11, t) = (1 − 11t)11(11t + 1)5

(
1 + 112t2

)2 (
1 − 6t + 112t2

)
.
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Therefore,

rk Pic (X1 mod 5)F5
= 20 and disc Pic (X1 mod 5)F5

= 1 mod Q×2;

rk Pic (X1 mod 11)F11
= 20 and disc Pic (X1 mod 11)F11

= 7 mod Q×2.

From these computations, we conclude that, rk Pic X1 ≤ 19.

Remark 4.5.3. One may note that in the second set of equations here, we have that the

rank of the Picard group over Fp is 20. In fact, over finite fields, the Picard rank is always

even. It is the addition of the discriminant computation that implies that the rank of Pic Xd

is 19.

We now conclude with the desired result.

Proposition 4.5.4. For generic d the Picard number of Xd is 19. Further, the lattice Λ is a

finite index sublattice of Pic Xd.

4.6 The Picard group lattice

In this section we complete the proof of Theorem 4.2.1. That is, we wish to show not

only is Λ a finite index sublattice of Pic Xd, but it is in fact equal to the entire lattice,

i.e. Λ = Pic Xd.

From Propositions 4.5.1 and 4.5.4 we know that Λ are both rank 19 lattices. It follows

that Pic(Xd)/Λ is a finite abelian group of order [Pic(Xd) : Λ].

For any inclusion of lattices L′ ⊆ L, the corresponding discriminants are related by the

equation disc(L′) = [L : L′]2 · disc(L). Since disc(Λ) = 25 · 33, we know that [Pic(X) : Λ]2 |

25 · 33. In particular, [Pic(X) : Λ] | 22 · 3.

Therefore, we can verify that Pic(X)/Λ is trivial by showing that there are no possible

elements of order dividing 2 or 3 in Pic(X)/Λ.
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To begin, consider the bijection,

{D ∈ Pic(Xd) : pD ∈ Λ} ↔ Λ ∩ p Pic(Xd),

D 7→ pD

Note that the left hand side consists of elements of Pic(Xd) whose order in Pic(Xd)/Λ

divides p. Denote the image in Λ/pΛ of Λ ∩ p Pic(Xd) by Λp.

Lemma 4.6.1. This image, Λp, is the kernel of the natural map

Λ/pΛ→ Pic Xd/p Pic Xd,

D + pΛ 7→ D + p Pic Xd.

Moreover, Λp is a H-invariant subspace of Λ/pΛ, where H is as in (4.2).

Proof. By definition, elements of Λp are those D + pΛ ∈ Λ/pΛ such that D ∈ p Pic Xd.

Hence Λp is the kernel of the map described. Moreover, kernels of homomorphisms of

vector spaces must are automatically invariant under vector space automorphisms. �

Thus we can rewrite the problem Pic Xd/Λ = 0 as Λp = 0 for all primes p. Since

Pic Xd/Λ has order dividing 12, Λp = 0 for all primes p , 2 or 3.

To show that Λ2 and Λ3 are zero, we construct a computable subspace of Λ/pΛ which

contains Λp. Consider the natural map

Λ/pΛ→ Hom(Λ,Z/pZ),

D + pΛ 7→ (D′ 7→ (D,D′) (mod p)),

where (·, ·) is the intersection pairing. Define Mp to be the kernel of this map.

Lemma 4.6.2. The kernel, Mp, is a H-invariant subspace of Λ/pΛ containing Λp.

The proof of this result is straightforward and similar to that of Lemma 4.6.1 and is thus

omitted.
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Remark 4.6.3. In general, the intersection pairing (D,D′) for D,D′ ∈ Λ/pΛ is defined

modulo p, since if C = D + pλ and C′ = D′ + pµ, then (C,C′) = (D,D′) + p(D, µ) +

p(λ,D′) + p2(λ, µ) ≡ (D,D′) (mod p).

However, for D, D′ ∈ Mp, (D,D′) ≡ 0 (mod p) and (D′,D′) ≡ 0 (mod 2), so self-

intersection is defined modulo 2p2 on Mp.

By the bijection in (4.6), elements of Λp are in one-to-one correspondence with ele-

ments of Pic(Xd)/Λ of order dividing p. Since [Pic(Xd) : Λ] divides 12, Λ2 has dimension

at most 2 and Λ3 has dimension at most 1 as subspaces of Λ/pΛ.

Remark 4.6.4. Note that we call a divisor E on X effective if E is linearly equivalent to an

effective divisor. For a divisor E, this is equivalent to the existence of a global section of

OX(E). This is a result of the fact each such global section is a function f ∈ Γ(X,OX) such

that div( f ) + E ≥ 0, giving the equivalence of E to an effective divisor.

Lemma 4.6.5. If D is a divisor on a K3 surface X such that D2 = −2, then one of D or −D

is effective.

Proof. We use Riemann–Roch, which states

χ(X,OX(D)) =
1
2

D · (D − KX) + χ(X,OX),

where χ(X,OX) denotes the Euler characteristic. Recall that X a K3 surface, we have

χ(X,OX) = 2, and the canonical bundle KX is trivial. Thus 1
2 D · (D − KX) = 1

2 D2 = −1.

Expanding the left hand side, we see that

h0(X,OX(D)) − h1(X,OX(D)) + h2(X,OX(D)) = 1.

By Serre duality, h2(X,OX(D)) = h0(X,KX ⊗ OX(D)∨) = h0(X,OX(−D)), and so we arrive
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at the formula,

h0(X,OX(D)) + h0(X,OX(−D)) = 1 + h1(X,OX(D)) ≥ 1.

Thus one of h0(X,OX(D)) and h0(X,OX(−D)) is positive, which is equivalent to D or −D

being effective. �

Proof (Pic Xd = Λ). The general strategy is to compute Mp for p = 2, 3 and consider the

possible H-invariant subspaces of Mp. If a divisor is contained in Λp, then its entire H-

orbit is as well. Thus for each v ∈ Mp we compute the H-invariant subspace it generates.

The MAGMA code verifying these computations is available in Appendix B.2.1, or more

specifically in verifyfulllattice.m.

We first consider the case p = 3. As before, the dimension of Λ3 as a subspace of

Λ/3Λ is at most 1. The kernel, M3 has dimension 3, and there are 2 possible nonzero

vectors in Λ/3Λ which generate H-invariant subspaces of dimension 1. For each of these

we want to show they are not 3-divisible in Pic Xd. The self intersections are −84 and −66,

respectively. If C ∈ Λ with C = 3C′ in Pic Xd, then C2 = 9C′2, and since 9 does not divide

their self intersections, these are not 3-divisible in Pic(XD). Hence Λ3 = 0.

Next consider the case p = 2. In the same way, we arrive at 4 possible nonzero vectors

generating H-invariant subspaces of Λ/2Λ having dimension at most 2. One of these can

be eliminated since the self intersection is not divisible by 4. Each of the remaining 3 sub-

spaces generates the same 2-dimensional H-invariant subspace, so it suffices to eliminate

any one of them as being 2-divisible in Pic Xd.

Let L denote the element of Λ/2Λ with L2 = −8, and let C be a lift of L to Λ with

C2 = −8. Suppose that C = 2C′ with C′ ∈ Pic Xd. Then C′2 = −2, so one of C′ or −C′ is

effective by Lemma 4.6.5. By replacing C with −C if necessary, we may assume that C′ is

effective. Thus, for an ample divisor E, we have (C′, E) > 0. In particular, let H denote the

hyperplane class in Pic Xd, which is ample, then (C′,H) > 0 and (C,H) = 2(C′,H) > 0.
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However, by a computation we find two curves D1,D2 such that D1−D2 is numerically

equivalent to C. Moreover, D2
1 = D2

2 = −2 and (D1,D2) = 2. Thus

(H,C) = (H,D1) − (H,D2) = 2 − 2 = 0,

which contradicts the fact that (C,H) > 0. Hence C is not 2-divisible in Pic(X), so Λ2 = 0.

Therefore Λ is in fact the full lattice, Pic Xd. �
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Appendix A

A Generating Set

The following list of 19 divisors form a generating set for the lattice Pic Xd, as in Chapter 4.

A1,1,+ :


x2 + ζ3y2 + ζ3z2 = 0

w + β2xyz = 0
A0,0,+ :


x2 + y2 + z2 = 0

w + β0xyz = 0

A2,1,− :


x2 + ζ2

3y2 + ζ3z2 = 0

w − β0xyz = 0
A1,2,− :


x2 + ζ3y2 + ζ2

3z2 = 0

w − β0xyz = 0

A2,2,− :


x2 + ζ2

3y2 + ζ2
3z2 = 0

w − β1xyz = 0
A1,0,+ :


x2 + ζ3y2 + z2 = 0

w + β1xyz = 0

A2,0,− :


x2 + ζ2

3y2 + z2 = 0

w − β2xyz = 0
B8 :


2xy + c1z2 = 0

x3 + y3 − w = 0

B9 :


2yz − c0x2 = 0

y3 − z3 + w = 0
B10 :


2yz + c0x2 = 0

y3 + z3 − w = 0
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B11 :


2x2 − 2 (3c0+2d)(3c0−d)

(c0−c1)(c1−c2)(c2−c0) xy + c0y2 − z2 = 0

(2c0 + c1)
(
c0y3 −

(9c0+6d)ζ4
β0β1β2

c0y2x + 4yx2 −
(9c0+6d)ζ4
β0β1β2

x3
)
− c0c1w = 0

B12 :


c0z2 − 2 (3c0+2d)(3c0−d)

(c0−c1)(c1−c2)(c2−c0)zy + 2y2 − x2 = 0

(2c0 + c1)
(
c0z3 −

(9c0+6d)ζ4
β0β1β2

c0z2y + 4zy2 −
(9c0+6d)ζ4
β0β1β2

y3
)
− c0c1w = 0

B13 :


c2x2 − 2 (3c2+2d)(3c2−d)

(c0−c1)(c1−c2)(c2−c0) xz + 2z2 − y2 = 0

(2c2 + c0)
(
c2x3 −

(9c0+6d)ζ4
β0β1β2

c2x2z + 4xz2 −
(9c0+6d)ζ4
β0β1β2

z3
)
− c0c2w = 0

B14 :


√

3
9 (β0β1 + β1β2 + β2β0 + d)ζ2

3 x2 −
√

3
3 (y2 + ζ3z2) + ζ2

3yz = 0
√

3
27

(
(β0 + β1 + β2)3 − (β3

0 + β3
1 + β3

2)
)

x3 + (β0 + β1 + β2)xyz − w = 0

B15 :


√

3
9 (−β0β1 − β1β2 + β2β0 + d)y2 −

√
3

3 (ζ32x2 + ζ3z2) − xz = 0
√

3
27

(
(β0 − β1 + β2)3 − (β3

0 − β
3
1 + β3

2)
)

y3 − (β0 − β1 + β2)xyz + w = 0

B16 :


√

3
9 (−β0β1 + β1β2 − β2β0 + d)y2 −

√
3

3 (x2 + z2) + xz = 0

−
√

3
27

(
(−β0 + β1 + β2)3 − (−β3

0 + β3
1 + β3

2)
)

y3 + (β0 − β1 − β2)xyz − w = 0

B17 :


√

3
9 (−β0β1 + β1β2 − β2β0 + d)ζ3y2 −

√
3

3 (ζ2
3 x2 + z2) − ζ3xz = 0

√
3

27

(
(−β0 + β1 + β2)3 − (−β3

0 + β3
1 + β3

2)
)

y3 + (β0 − β1 − β2)xyz − w = 0

B18 :


√

3
9 (−β0β1 + β1β2 − β2β0 + d)ζ2

3 x2 −
√

3
3 (ζ3y2 + z2) + ζ2

3yz = 0
√

3
27

(
(−β0 + β1 + β2)3 − (−β3

0 + β3
1 + β3

2)
)

x3 − (β0 − β1 − β2)xyz − w = 0

B19 :


√

3
9 (β0β1 + β1β2 + β2β0 + d)ζ3y2 −

√
3

3 (x2 + ζ2
3z2) − ζ3xz = 0

√
3

27

(
(β0 + β1 + β2)3 − (β3

0 + β3
1 + β3

2)
)

x3 − (β0 + β1 + β2)xyz − w = 0
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Appendix B

MAGMA Code

B.1 Birch and Swinnerton-Dyer cubic surfaces

The following MAGMA code is used to find the 18 lines on the simplified Birch and

Swinnerton-Dyer cubic surfaces, (3.3), of the form z = Ax + By and w = Cx + Dy as

described in (3.5).

B.1.1 MAGMA code

//Label the constants as coefficients

L<phi0,phi1,phi2,psi0,psi1,psi2,theta,thetabar,d> :=\

PolynomialRing(Rationals(),9);

//We search for lines of the form z=Ax+By, w=Cx+Dy

R<A,B,C,D> := PolynomialRing(L,4);

AmbSpace<x,y,z,w> := PolynomialRing(R,4);

//The surface X is given by cubic here

cubic := d*y*(x+theta*y)*(x+thetabar*y)\

-(x+phi0*z+psi0*w)*(x+phi1*z+psi1*w)*(x+phi2*z+psi2*w);

//Parametrize the lines over P1 as [s:t] -> [s,t,A*s+B*t,C*s+D*t]
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ParamSpace<s,t> := PolynomialRing(R,2);

withLines := Evaluate(cubic,[s,t,A*s+B*t,C*s+D*t]);

//Then the first three equations for the lines are given by direct

// factorizaiton of the resulting equation evaluated at [1,0],

// [theta,-1], and [thetabar,-1]. The final equation which is

// cubic, can be determined by subtracting d*theta*thetabar

// from the point given by [s,t]=[0,1].

Factorization(Evaluate(withLines,[1,0]));

Factorization(Evaluate(withLines,[theta,-1]));

Factorization(Evaluate(withLines,[thetabar,-1]));

Factorization(Evaluate(withLines,[0,1])-d*theta*thetabar);

B.1.2 Output

[

<phi2*A + psi2*C + 1, 1>,

<phi1*A + psi1*C + 1, 1>,

<phi0*A + psi0*C + 1, 1>

]

[

<phi2*theta*A - phi2*B + psi2*theta*C - psi2*D + theta, 1>,

<phi1*theta*A - phi1*B + psi1*theta*C - psi1*D + theta, 1>,

<phi0*theta*A - phi0*B + psi0*theta*C - psi0*D + theta, 1>

]

[

<phi2*thetabar*A-phi2*B+psi2*thetabar*C-psi2*D+thetabar, 1>,

<phi1*thetabar*A-phi1*B+psi1*thetabar*C-psi1*D+thetabar, 1>,
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<phi0*thetabar*A-phi0*B+psi0*thetabar*C-psi0*D+thetabar, 1>

]

[

<phi2*B + psi2*D, 1>,

<phi1*B + psi1*D, 1>,

<phi0*B + psi0*D, 1>

]

B.2 K3 surface computations

The following MAGMA code is used to verify the results discussed in Chapter 4.

B.2.1 MAGMA code

main.m

load "basicdefinitions.m";

// These divisors will be used to generate the entire Picard group,

// by considering their orbits under a subgroup G of the

// automorphism group, as well as under the Galois group of K2.

// They are, in order, Aij, B1, B2, B3.

InitialDivisors := [

[xˆ2 + yˆ2 + zˆ2,w-b0*x*y*z],

[xˆ2 + yˆ2 + zeta3*zˆ2, w-b1*x*y*z],

[xˆ2 + zeta3*yˆ2 + zeta3ˆ2*zˆ2, w-b0*x*y*z],

[xˆ2-d/3*yˆ2+zˆ2,3*r3*w+b0*b1*b2*yˆ3],

[2*x*y-c0*zˆ2,xˆ3-yˆ3-w],

[r3/9*(b0*b1+b1*b2+b2*b0+d)*xˆ2-r3/3*(yˆ2+zˆ2)-y*z,

r3/27*((b0+b1+b2)ˆ3-(b0ˆ3+b1ˆ3+b2ˆ3))*xˆ3\
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-(b0+b1+b2)*x*y*z-w], [c0*xˆ2\

+2*((3*c0+2*d)*(3*c0-d))/((c0-c1)*(c1-c2)*(c2-c0))*x*y\

+2*yˆ2-zˆ2, (2*c0+c2)*(c0*xˆ3\

+(9*c0+6*d)*4*c0/((c0-c1)*(c1-c2)*(c2-c0))*xˆ2*y+\

4*x*yˆ2+(9*c0+6*d)*4/((c0-c1)*(c1-c2)*(c2-c0))*yˆ3)-c0*c2*w]

];

// This file contains functions to compute orbits under groups.

load "computeggalorbits.m";

print "Computing G orbits of initial divisors";

GOrbitDivs := computeOrbitsOfDivisors(G, InitialDivisors);

print "There are", #GOrbitDivs, "G orbits of the initial divisors";

print "Computing GGalTOrbitDivs";

GGalTOrbitDivs := computeOrbitsOfDivisors(GalT, GOrbitDivs);

#GGalTOrbitDivs;

load "computegrammatrices.m";

ListDivsp := computeSchemesModP(GGalTOrbitDivs);

print "Computing Gram matrix for the", #ListDivsp, "divisors";

A0:=GramMatrixD(ListDivsp,dp,F);

Gram0 := computeGramOfBasis(A0);

print "The Gram matrix has determinant",\

Factorisation(Determinant(Gram0));

load "comparelatticestructure.m";

print "We compare the lattice we have with the lattice we expect";

compareLattices(Gram0);
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load "computegaloismatrices.m";

MgenGGal := computeGaloisRepresentations(SetDivsGGal,\

genG cat genGalT);

M19genGGal := reduceto19(MgenGGal, A0);

// Now we check that the lattice L we have is equal

// to the Picard lattice.

load "verifyfulllattice.m";

// Finally, compute the galois action.

load "computegaloisactionH1.m";

basicdefinitions.m

// In this file we compute the Picard lattice

// of the surface X_d : wˆ2=xˆ6+yˆ6+zˆ6+dxˆ2yˆ2zˆ2

// defined over Q(d).

// We define the field of definition of Pic(X_d), denoted by K2,

// together with the weighted projective space and

// the surface itself

preK<zeta12>:=CyclotomicField(12);

zeta3:=zeta12ˆ4;

zeta4:=zeta12ˆ3;

zeta6:=zeta12ˆ2;

K<d>:=FunctionField(preK);

R:=PolynomialRing(K,3);

K1<b0,b1,b2>:=quo<R|Ideal([R.1ˆ2 - d-3, R.2ˆ2 - d\
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- 3*zeta3, R.3ˆ2-(d+3*zeta3ˆ2)])>;

S:=PolynomialRing(K1);

K2<c0>:=quo<S|S.1ˆ3+d*S.1ˆ2+4>;

delta:=4*zeta4*b0*b1*b2;

eps:=delta/(c0*(3*c0+2*d));

c1:=(-d-c0+eps)/2;

c2:=-d-c0-c1;

assert c2 eq (-d-c0-eps)/2;

r3 := -zeta4*(2*zeta3+1);

assert r3ˆ2 eq 3;

PT<x,y,z,w>:=ProjectiveSpace(K2,[1,1,1,3]);

T:=CoordinateRing(PT);

fS:=xˆ6+yˆ6+zˆ6+d*xˆ2*yˆ2*zˆ2-wˆ2;

S:=Scheme(PT,fS);

// In order to compute the Gram matrix, we will need

// to perform some computations over a finite field FF_pˆn

// that is of good reduction for X_d.

// We take p = 79.

// The residue field of K2 above p is FF_79ˆ2.

// We also define the constants we need to define the vectors

// and the weighted projective space.

p:=79;

F<alpha>:=GF(pˆ2);
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// Considering the case d=7 mod 79

dp:=F!7;

Pol<t>:=PolynomialRing(F);

zeta12p:=Roots(tˆ12-1)[12][1];

zeta6p:=zeta12pˆ2;

zeta4p:=zeta12pˆ3;

zeta3p:=zeta12pˆ4;

hE:=tˆ3+dp*tˆ2+4;

cp:=Roots(hE);

c0p:=cp[1][1];

c1p:=cp[2][1];

c2p:=cp[3][1];

_,b0p:=IsSquare(3+dp);

_,b1p:=IsSquare(3*zeta3p+dp);

_,b2p:=IsSquare(3*zeta3pˆ2+dp);

PP<X,Y,Z,W>:=ProjectiveSpace(F,[1,1,1,3]);

PPW:=CoordinateRing(PP);

// We define the reduction maps mod p,

// namely the reduction map of fields and polynomial rings.

// We define the reduction of X mod p.

prePsi:=hom<preK->F | zeta12p>;

Psi:=hom<K->F| prePsi, dp>;
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Psi1:=hom<K1->F | Psi, [b0p,b1p,b2p]>;

Psi2:=hom<K2->F | Psi1, c0p>;

PsiP:=hom<T->PPW | Psi2, [X,Y,Z,W]>;

assert Psi2(c1) eq c1p;

assert Psi2(c2) eq c2p;

fSp:=PsiP(fS);

Sp:=Scheme(PP,fSp);

// Now that we defined the environments we will need later

// we can define the divisors over K2 that

// we need to generate the Picard lattice.

s3m1:=1/((2*zeta3+1)*zeta4);

// we check that these divisors are subschemes of the surfaces S

// and we also check that the reductions of these polynomials mod p

// define subschemes of Sp

checkDivisorsAreSubschemes := function(divisors)

SetDivs1sc:=[Scheme(PT,eqn) : eqn in divisors];

for i in [1..#SetDivs1sc] do

i;

C:=SetDivs1sc[i];

assert IsCurve(C);



56

assert IsSubscheme(C,S);

I:=C meet S;

assert Dimension(I) eq 1;

end for;

SetDivs1p:=[[PsiP(eqn[1]),PsiP(eqn[2])]:eqn in divisors];

SetDivs1psc:=[Scheme(PP,eqn) : eqn in SetDivs1p ];

for i in [1..#SetDivs1psc] do

i;

C:=SetDivs1psc[i];

assert IsCurve(C);

assert IsSubscheme(C,Sp);

I:=C meet Sp;

assert Dimension(I) eq 1;

end for;

return true;

end function;

// In order to generate the Picard lattice

// we need to take the orbits of these divisors

// under the action of the automorphism subgroup

// We define the subgroup of the automorphism group we know

computeAutomorphismGroup := function()

Var:={x,y,z};
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Perm:=Permutations(Var);

idT:=hom<T->T | x,y,z,w>;

t1:=hom<T->T | y,x,z,w>;

t2:=hom<T->T | y,z,x,w>;

p105:=hom<T->T | zeta6*x,y,zeta6ˆ(-1)*z,w >;

p015:=hom<T->T | x,zeta6*y,zeta6ˆ(-1)*z,w >;

p003:=hom<T->T | x,y,-z,w >;

genG:=[t1,t2,p105,p015,p003];

S3:=[hom<T -> T | perm[1],perm[2],perm[3],w> : perm in Perm];

C2a:=[idT,p003];

C6a:=[hom<T->T | zeta6ˆi*x, y, zeta6ˆ(-i)*z,w >: i in [0..5]];

C2b:=[p015,idT];

GG:=car<S3,C6a,C2b,C2a>;

G:=[s[1]*s[2]*s[3]*s[4] : s in GG];

return G, genG;

end function;

G, genG := computeAutomorphismGroup();

// We check the number of elements in G

checkAutomorphismGroup := function(G)

assert #{[s(x)/LeadingCoefficient(s([x,y,z,w])[1]),\

s(y)/LeadingCoefficient(s([x,y,z,w])[1]),\

s(z)/LeadingCoefficient(s([x,y,z,w])[1]),\
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s(w)/LeadingCoefficient(s([x,y,z,w])[1])ˆ3] : s in G} eq #G;

return true;

end function;

// We check that G keeps S fixed

checkGFixesS := function()

for s in G do

assert s(fS) eq fS;

end for;

return true;

end function;

// We compute now a list of divisors that is invariant

// under the action of <G,Gal>.

// We will use this list to compute a representation of the action

// of <G,Gal>.

// First we define the Galois group

// and the maps induced on the polynomial ring

// Notice that we know that [K2:Q(d)]=96

computeGaloisGroup := function()

Gal:=[];

EPhi12:=[1,5,7,11];

Ipm:=[1,-1];

GalK1K:=CartesianPower(Ipm,3);

cc:=[K2!c0,K2!c1,K2!c2];
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GalLE:=CartesianPower(Ipm,2); // Chris: unused

for i in EPhi12 do

presigma := hom<preK->K2| zeta12ˆi>;

sigma := hom<K->K2 | presigma, d>;

for s in GalK1K do

if sigma(zeta3) eq K2!zeta3 then

sigma1:=hom<K1->K2 | sigma, [s[1]*b0,s[2]*b1,s[3]*b2]>;

else

sigma1:=hom<K1->K2 | sigma, [s[1]*b0,s[2]*b2,s[3]*b1]>;

end if;

for j in [1..#cc] do

c:=cc[j];

sigma2:=hom<K2->K2 | sigma1, c>;

Append(˜Gal,sigma2);

end for;

end for;

end for;

return Gal;

end function;

Gal := computeGaloisGroup();

ImgenGal:={[zeta12,-b0,-b1,b2,c0],[zeta12ˆ5,b0,b2,b1,c0],\

[zeta12,-b0,b1,b2,c1],[zeta12,-b0,b1,b2,c2],[-zeta12,-b0,b1,b2,c0]};

gen:=[zeta12,b0,b1,b2,c0];

genGal:=[];
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for s in Gal do

imgen:=[s(gg) : gg in gen];

if imgen in ImgenGal then

Append(˜genGal,s);

end if;

end for;

GalT:=[hom<T->T | s,[x,y,z,w]> : s in Gal];

genGalT:=[hom<T->T | s,[x,y,z,w]> : s in genGal];

computeggalorbits.m

computeOrbitsOfDivisors := function(group, divisors)

Orbit:={};

for eqn in divisors do

for t in group do

eqn11:=t(eqn[1]);

eqn12:=t(eqn[2]);

if Psi2(LeadingCoefficient(eqn11)) ne F!0 and

Psi2(LeadingCoefficient(eqn12)) ne F!0 then

Include(˜Orbit, [eqn11/LeadingCoefficient(eqn11),

eqn12/LeadingCoefficient(eqn12)]);

else

Include(˜Orbit, [eqn11, eqn12]);

end if;

end for;

end for;
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// Return the orbits as a list

return [orbit : orbit in Orbit];

end function;

// we check that all these divisors are subschemes of S

checkGOrbitDivisorsAreSubschemes := function(divisors)

// First check over PT

schemes := [Scheme(PT,eqn) : eqn in divisors];

for i in [1..#schemes] do

C:=schemes[i];

assert IsCurve(C);

assert IsSubscheme(C,S);

I:=C meet S;

assert Dimension(I) eq 1;

end for;

// Now check mod p

divisorsModp :=[[PsiP(eqn[1]),PsiP(eqn[2])] : eqn in divisors];

schemesModp :=[Scheme(PP,eqn) : eqn in divisorsModp];

for i in [1..#schemesModp] do

C:=schemesModp[i];

assert IsCurve(C);

assert IsSubscheme(C,Sp);

I:=C meet Sp;

assert Dimension(I) eq 1;

end for;
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return true;

end function;

//// We now compute the reductions of these divisors modulo p

//DivsGp:=[[PsiP(eqn[1]),PsiP(eqn[2])]:eqn in GOrbitDivs];

//

//checkNumberOfDivisorsOverReduction := function()

// DivsGpp:={[eqn[1]/LeadingCoefficient(eqn[1]),eqn[2]\

/LeadingCoefficient(eqn[2])] : eqn in DivsGp};

// assert #DivsGp eq #DivsGpp;

// return true;

//end function;

// We skim the list GGalTOrbitDivs deleting the repetitions,

// getting two different lists of equations of divisors:

// SetDivsGGal and SetDivsp.

// The elements of the list at the same position are the same

// up to a scalar

// SetDivsp will be used to reduce the equation mod p

// SetDivsGGal will be used to compute the matrices

// corresponding to the action of <G,Gal> on Pic(S)

// This function takes in a list of divisors defined over K2

// and removes the

// repetitions. It returns the equations of the divisors both

//over K2 and modulo

// p, as well as the corresponding schemes.



63

removeRepeatedDivisors := function(divisors)

SetDivsNP:=[eqn : eqn in divisors | \

{LeadingCoefficient(eqn[1]), LeadingCoefficient(eqn[2])} \

eq {1}];

SetDivsP:=[eqn : eqn in divisors | \

{LeadingCoefficient(eqn[1]), LeadingCoefficient(eqn[2])}\

ne {1}];

#SetDivsP;

#SetDivsNP;

assert #SetDivsP+#SetDivsNP eq #divisors;

SetDivsP1:=[[eqn[1]/LeadingCoefficient(eqn[1]),eqn[2]/\

LeadingCoefficient(eqn[2])]: eqn in SetDivsP];

SetDivsP2:=Set(SetDivsP1);

IndProb:=[Index(SetDivsP1,eqn) : eqn in SetDivsP2 ];

SetDivsP3:=[SetDivsP[i] : i in IndProb];

SetDivsP4:=[[eqn[1]/LeadingCoefficient(eqn[1]),eqn[2]/\

LeadingCoefficient(eqn[2])]: eqn in SetDivsP3];

SetDivsGGal:= SetDivsNP cat SetDivsP4;

SetDivsp:=SetDivsNP cat SetDivsP3;

assert #SetDivsp eq #SetDivsGGal;

#SetDivsp;

Divsp:=[[PsiP(eqn[1]),PsiP(eqn[2])]:eqn in SetDivsp];

ListDivsp:=[Scheme(PP,eqn) : eqn in Divsp];
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return SetDivsGGal, SetDivsp, ListDivsp;

end function;

computegrammatrices.m

// We compute the lattice these divisors generate.

// GramMatrixD computes the intersection pairing between

// pairs of divisors in the list.

function GramMatrixD(List,D,F)

m:=#List;

M:=ScalarMatrix(Integers(),m,-2);

for i in [1..m] do

for j in [1..i] do

Int:=List[i] meet List[j];

if Dimension(Int) eq 1 then

M[i,j]:=2*ArithmeticGenus(Int)-2;

else

M[i,j]:=Degree(Int);

end if;

M[j,i]:=M[i,j];

end for;

end for;

return M;

end function;

function computeGramOfBasis(gram)

L0:=Lattice(gram);

B0:=Basis(L0);
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Sol0:=Solution(gram,[Vector(b) : b in B0]);

M0:=Matrix(Sol0);

return M0*gram*Transpose(M0);

end function;

// This function takes in a list of divisors defined over K2 and

// removes the repetitions. It returns the equations of the divisors

// both over K2 and modulo p, as well as the corresponding schemes.

computeSchemesModP := function(divisors)

SetDivsNP:=[eqn : eqn in divisors |\

{LeadingCoefficient(eqn[1]),LeadingCoefficient(eqn[2])} eq {1}];

SetDivsP:=[eqn : eqn in divisors |\

{LeadingCoefficient(eqn[1]),LeadingCoefficient(eqn[2])} ne {1}];

assert #SetDivsP+#SetDivsNP eq #divisors;

SetDivsP1:=[[eqn[1]/LeadingCoefficient(eqn[1]),eqn[2]/\

LeadingCoefficient(eqn[2])]: eqn in SetDivsP];

SetDivsP2:=Set(SetDivsP1);

IndProb:=[Index(SetDivsP1,eqn) : eqn in SetDivsP2 ];

SetDivsP3:=[SetDivsP[i] : i in IndProb];

SetDivsp:=SetDivsNP cat SetDivsP3;

Divsp:=[[PsiP(eqn[1]),PsiP(eqn[2])]:eqn in SetDivsp];

ListDivsp:=[Scheme(PP,eqn) : eqn in Divsp];

return ListDivsp;
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end function;

comparelatticestructure.m

// We check that the lattice obtained

// is isometric to

// E_8(-1) + U + A_5(-1) + A_2(-1) + [[-8 -4] [-4 -8]]

// by checking they have the same rank, ,discriminant, signature,

// discriminant group and discriminant form.

/* auxiliary function */

function Rep2(x)

return x-2*Round(x/2);

end function;

/* end auxiliary function */

compareLattices := function(gram)

L:=LatticeWithGram(gram: CheckPositive:= false);

AL,DL,phi:=DualQuotient(L);

mE8:=-Matrix(GramMatrix(Lattice("E",8)));

mE8:=ChangeRing(mE8,Integers());

U:=Matrix([[0,1],[1,0]]);

mA5:=-Matrix(GramMatrix(Lattice("A",5)));

mA2:=-Matrix([[2,-1],[-1,2]]);

m4F:=Matrix([[-8, -4], [-4, -8]]);

Dec1:=< <mE8,1>, <U,1>, <mA2,1>, <mA5,1> , <m4F,1>>;

L1:=Dec1[1,1];
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for i in [1..#Dec1] do

if i eq 1 and Dec1[i,2] ne 1 then

for j in [2..Dec1[1,2]] do

L1:=DiagonalJoin(L1,Dec1[i,1]);

end for;

end if;

if i gt 1 then

for j in [1..Dec1[i,2]] do

L1:=DiagonalJoin(L1,Dec1[i,1]);

end for;

end if;

end for;

L1:=LatticeWithGram(L1: CheckPositive:= false);

AL1,DL1,phi1:=DualQuotient(L1);

q:={* Rep2(Norm((phiˆ-1)(g))) : g in AL *};

q1:={* Rep2(Norm((phi1ˆ-1)(g1))) : g1 in AL1 *};

assert pSignature(L1,-1) eq pSignature(L,-1);

assert Rank(L1) eq Rank(L);

assert Factorisation(Determinant(L1)) eq\

Factorisation(Determinant(L));

assert #Generators(AL1) eq #Generators(AL);

assert q eq q1;

assert IsIsomorphic(AL,AL1);

return true;
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end function;

computegaloismatrices.m

// A priori, we have listed 432 divisors. We want to compute

// the 432x432 matrices that correspond to the elements of G and

// Galois.

// Notice that they will all be 432x432 permutation marices.

// Since these divisors generate a rank 19 lattice we can

// write these matrices as 19x19 matrices.

// We now find find 19x19 matrices for the action of elements of

// G and GalT on the basis B0.

print "Computing the matrices corresponding to the\

generators of the Galois group";

// We skim the list GGalTOrbitDivs deleting the repetitions,

// getting two different lists of equations of divisors:

// SetDivsGGal and SetDivsp.

// The elements of the list at the same position are the

// same up to a scalar.

// SetDivsp will be used to reduce the equation mod p

// SetDivsGGal will be used to compute the matrices

// corresponding to the action of <G,Gal> on Pic(S)

// This function takes in a list of divisors defined over

// K2 and removes the repetitions. It returns the

// equations of the divisors both over K2 and modulo
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// p, as well as the corresponding schemes.

removeRepeatedDivisors := function(divisors)

SetDivsNP:=[eqn : eqn in divisors |\

{LeadingCoefficient(eqn[1]),LeadingCoefficient(eqn[2])} \

eq {1}];

SetDivsP:=[eqn : eqn in divisors |\

{LeadingCoefficient(eqn[1]),LeadingCoefficient(eqn[2])} \

ne {1}];

#SetDivsP;

#SetDivsNP;

assert #SetDivsP+#SetDivsNP eq #divisors;

SetDivsP1:=[[eqn[1]/LeadingCoefficient(eqn[1]),eqn[2]/\

LeadingCoefficient(eqn[2])]: eqn in SetDivsP];

SetDivsP2:=Set(SetDivsP1);

IndProb:=[Index(SetDivsP1,eqn) : eqn in SetDivsP2 ];

SetDivsP3:=[SetDivsP[i] : i in IndProb];

SetDivsP4:=[[eqn[1]/LeadingCoefficient(eqn[1]),eqn[2]/\

LeadingCoefficient(eqn[2])]: eqn in SetDivsP3];

SetDivsGGal:= SetDivsNP cat SetDivsP4;

SetDivsp:=SetDivsNP cat SetDivsP3;

assert #SetDivsp eq #SetDivsGGal;

#SetDivsp;
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Divsp:=[[PsiP(eqn[1]),PsiP(eqn[2])]:eqn in SetDivsp];

ListDivsp:=[Scheme(PP,eqn) : eqn in Divsp];

return SetDivsGGal, SetDivsp, ListDivsp;

end function;

SetDivsGGal, SetDivsp, ListDivsp :=\

removeRepeatedDivisors(GGalTOrbitDivs);

// This function computes the Galois representations

// of the given group elementsby computing their action on

// the given divisors.

computeGaloisRepresentations := function(divisors, groupGenerators)

nD:=#divisors;

groupGraphs:=[];

for s in groupGenerators do

Graph:=[];

for i in [1..nD] do

eqn:=divisors[i];

eqn1:=[s(eqn[1]),s(eqn[2])];

j:=Index(divisors,[eqn1[1]/LeadingCoefficient(eqn1[1]),

eqn1[2]/LeadingCoefficient(eqn1[2])]);

Append(˜Graph,j);

end for;

Append(˜groupGraphs,Graph);

end for;

// Here we compute 432x432 matrices corresponding
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// to the generators of the Galois group.

MgroupGenerators:=[];

for Gr in groupGraphs do

Ms:=[[0: i in [1..nD]] : j in [1..nD]];

for i in [1..nD] do

Ms[i][Gr[i]]:=1;

end for;

Append(˜MgroupGenerators,Matrix(Ms));

end for;

return MgroupGenerators;

end function;

// We want to write our 432x432 matrices as 19x19 matrices

// acting on our basis B0. The matrix M0 gives us a map

// The matrix M0 defines a map from ZZˆ19 to ZZˆ720

// We need a section of this map, N0

// With this we compute the 19x19 matrices

reduceto19 := function(MgroupGens, gram)

B0 := Basis(Lattice(gram));

BB0:=Matrix(B0);

Id19:=ScalarMatrix(19,1);

N0:=Matrix(Solution(BB0,[gram[i] : i in [1..Nrows(gram)]]));

M0 := Matrix(Solution(gram,[Vector(B0[i]) : i in [1..#B0]]));

assert M0*N0 eq Id19;
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assert N0*Gram0*Transpose(N0) eq gram;

M19groupGenerators := [M0*M*N0 : M in MgroupGens];

return M19groupGenerators;

end function;

verifyfulllattice.m

// Load in the data we calculated in ’computegrammatrices.m’

// This consists of A0, B0, Gram0. We also load in the matrices in

// computegaloismatrices.m, since we need M19genGGal.

// This function computes the self intersection of the element

// v of a lattice L, where L has intersection form given by M.

function QuadInt(v,w,M)

v1:=ChangeRing(Matrix(v),Integers());

w1:=ChangeRing(Matrix(w),Integers());

return (v1*M*Transpose(w1))[1,1];

end function;

// Notes: There are two bases to work with. To compute

// the intersection of divisors in the basis consisting of the

// list of 432 divisors, simply take two

// 1x720 vectors D, E and compute D * A0 * Transpose(E).

// Working in the basis described by M0, one can do the

// same but with 1x19

// vectors and then compute D * Gram0 * Transpose(E).

// The 19 basis elements are the rows of M0.

// Thus given a 1x19 vector, C, one
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// can get an equivalent 1x720 vector by computing C * M0.

B0 := Basis(Lattice(A0));

M0 := Matrix(Solution(A0, Matrix(B0)));

// We wish to show that L0 (equivalently, LG) is the

// full Picard lattice. We will do this by showing that the

// map i_p : L0/pL0 --> Pic(X)/pPic(X) is

// injective for each prime p dividing [Pic(X) : L0].

// We know that [Pic(X) : L0]

// divides 12, so we only have to consider p = 2, 3.

// Define i_p : Lambda / p Lambda --> Pic(X) / p Pic(X),

// and let Lambda_p denote

// the kernel of i_p. Then we wish to show that Lambda_2

// and Lambda_3 are both zero. We can embed Lambda_p

// inside a group that we can calculate. Let kp

// denote the kernel of the natural map Lambda /

// p Lambda -> Hom(Lambda, Z/pZ),

// sending x to [y -> (x, y) mod p]. We can compute kp

// and the crucial fact is that Lambda_p <= kp.

// Moreover, Lambda_p is in bijection with elements of

// order dividing p in Pic(X) / Lambda, which we know to

// have size dividing 12. Hence Lambda_2 is of dimension

// at most 2 and Lambda_3 is of dimension at most

// 1. We want to show they are both dimension 0.

// Another fact we will use is

// that Lambda_p is left fixed (as a subspace) by the
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// action of <G, Gal>. So the

// idea is to compute kp and then compute the possible

// subspaces of kp after we have taken <G, Gal>-orbits.

// For p = 3, we compute the space k3, which contains

// Lambda_3, and aim to show

// that Lambda_3 is the zero space. A nonzero element

// of Lambda_3 is precisely a

// nonzero element x of Lambda / 3 Lambda such that x

// is in 3 Pic(X). We find the elements of k3 which generate

// a <G, Gal>-invariant subspace of k3 of

// dimension 1, and then show that each of these is not

// 3-divisible in Pic(X) by considering the self

// intersection number.

F3:=GF(3);

V3:=VectorSpace(F3,19);

Gram3:=ChangeRing(Gram0,F3);

k3:=sub<V3 | Kernel(Gram3)>;

print "k3 is the vector space", k3;

// These are generators for <G, Gal> in characteristic 3.

GenGG3:=[ChangeRing(M,F3) : M in M19genGGal];

GG3:=MatrixGroup<19,F3|GenGG3>;

print "The subspace Lambda_3 is at most one-dimensional,\

and is invariant under <G,Gal>, so we compute the\
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possible <G,Gal>-invariant subspaces inside k3, which

are:";

k3Subspaces:=[v : v in k3 | Dimension(sub<V3 | Orbit(GG3,v)>) le 1];

print k3Subspaces;

print "A vector will only give an element of Lambda_3 if it is\

3-divisible in Pic(X). In particular, we require that C in\

Lambda can be written C = 3C’ for some C’ in Pic(X).\

But then (C,C) = 9(C’,C’), so that 9 divides (C,C). This

holds for";

possibleLambda3 := [v : v in k3Subspaces |\

QuadInt(v,v,Gram0) mod 9 eq 0];

print possibleLambda3;

assert possibleLambda3 eq [V3![0 : i in [1..19]]];

// We conclude that only the zero vector is a possible

// element of Lambda_3, so Lambda_3 = 0.

// For p = 2, we get 4 possible nonzero divisors, with the

// <G, Gal>-orbit of each spanning at most a 2-dimensional

// subspace of k2. We have to decide

// whether each of these v is 2-divisible in Pic(X),

// since this is equivalent to

// v lying in Lambda_2. One v has self-intersection not

// divisible by 4, so cannot be 2-divisible.
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// The <G, Gal>-orbits of any of the remaining 3 are

// equal, containing all three vectors.

// Hence we have to decide whether any one

// of them is 2-divisible in Pic(X).

F2:=GF(2);

V2:=VectorSpace(F2,19);

Gram2:=ChangeRing(Gram0,F2);

k2:=sub<V2 | Kernel(Gram2)>;

print "The vector space k2 is", k2;

// These are generators for <G, Gal> in characteristic 2.

GenGG2:=[ChangeRing(M,F2) : M in M19genGGal];

GG2:=MatrixGroup<19,F2|GenGG2>;

k2Subspaces := [v : v in k2 |\

Dimension(sub<V2 | Orbit(GG2, v)>) le 2];

print "The possible elements of Lambda_2 are";

print k2Subspaces;

print "We eliminate the ones with self intersection\

not divisible by 4, since\

they can’t be 2-divisible in Pic(X). This leaves";

possibleLambda2 := [v : v in k2Subspaces |\

QuadInt(v,v,Gram0) mod 4 eq 0];

print possibleLambda2;
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print "We note that any of the nonzero vectors\

generates the whole subspace

possibleLambda2, under the <G, Gal> action.";

[Orbit(GG2, v) : v in possibleLambda2];

print "So it remains to eliminate a single one\

of these nonzero vectors as being

2-divisible.";

// The following vector has self intersection -8.

w := possibleLambda2[2];

// Lift w to a divisor in our lattice.

C := ChangeRing(Matrix(w), Integers());

print "Can check that C (the lift of w) has Cˆ2 = -8";

C * Gram0 * Transpose(C);

print "We want to find divisors having intersection\

with the basis equal to that

of C, which is";

desiredintersection := C * Gram0;

desiredintersection;

print "We want to find D1, D2 in <G, Gal>D such that\

D1 - D2 = C in Pic(X). We\

can check equivalence by seeing how C*Gram0\

compares with (D1-D2)*Gram0";
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// This function finds D1, D2 in <G, Gal>D

// (where D is our original list of curves) such that

// D1 - D2 is linearly equivalent to C.

findLinearlyEquivalent := function()

numCurves := Nrows(A0);

Id := ScalarMatrix(numCurves, 1);

for i in [1..numCurves] do

for j in [1..numCurves] do

D := Matrix(Id[i]) - Matrix(Id[j]);

if D * A0 * Transpose(M0) eq desiredintersection then

return Matrix(Id[i]), Matrix(Id[j]);

end if;

end for;

end for;

return false;

end function;

D1, D2 := findLinearlyEquivalent();

print "D1, D2 are", D1, D2;

indexD1 := [i : i in [1..Ncols(D1)] | D1[1,i] ne 0][1];

indexD2 := [i : i in [1..Ncols(D2)] | D2[1,i] ne 0][1];

print "They are numbers", indexD1, "and",\

indexD2, "in our list of divisors.";

print "We see that D1, D2 have self-intersection -2,\

and (D1, D2) = 2";

D1 * A0 * Transpose(D1);
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D2 * A0 * Transpose(D2);

D1 * A0 * Transpose(D2);

print "Thus we have found explicitly the D1, D2\

such that C ˜ D1 - D2 and D1ˆ2 = D2ˆ2 = -2,\

(D1,D2) = 2. This provides the contradiction as in the proof.";

print "The equations of the divisors are:";

schemeD1 := ListDivsp[indexD1];

schemeD2 := ListDivsp[indexD2];

print schemeD1, schemeD2;

print "We can check that they intersect as\

D1ˆ2 = -2, D2ˆ2 = -2, and (D1, D2) = 2";

print "D1ˆ2 = ", 2*ArithmeticGenus(schemeD1) - 2;

print "D2ˆ2 = ", 2*ArithmeticGenus(schemeD2) - 2;

print "(D1, D2) = ", Degree(schemeD1 meet schemeD2);

computegaloisactionH1.m

// Now we just want to use the matrices for the Galois generators.

print "Computing Galois representations for the\

generators of the Galois group";

MgenGal := computeGaloisRepresentations(SetDivsGGal, genGalT);

M19genGal := reduceto19(MgenGal, A0);

Gal19:=MatrixGroup<19,Integers()|M19genGal>;

// Using the matrix representation of the action of GG on L0
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// we can compute the Hˆ1(Gal,Pic), and Hˆ1(H,Pic) for

// any H<Gal subgroup, not necessarily normal, subgroup of G.

gmpic:=GModule(Gal19);

cmpic:=CohomologyModule(Gal19,gmpic);

cgpic:=CohomologyGroup(cmpic,1);

print "We compute Hˆ1(Gal, Pic) to be", cgpic;

print "Now we consider subgroups H < Gal.";

subs:=[H‘subgroup : H in Subgroups(Gal19) | #H‘subgroup ne 1];

nzsubs:=[];

indxs:={};

for H in subs do

gmpicH:=GModule(H);

cmpicH:=CohomologyModule(H,gmpicH);

cgpicH:=CohomologyGroup(cmpicH,1);

//cgpicH;

//Order(H);

//Degree(cgpicH);

if Degree(cgpicH) ne 0 then

Append(˜nzsubs,H);

Include(˜indxs,Degree(cgpicH));

end if;

end for;

// We try to see whether an automorphism of X_D coming from a Galois
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// automorphism can be viewed as a proper geometric automorphism.

// To have this, one should act as +1 or -1 on

// the discriminant group

L:=LatticeWithGram(Gram0: CheckPositive:= false);

AL,DL,phi:=DualQuotient(L);

BD:=Basis(DL);

/*

for b in BD do

phi(b);

end for;

*/

BAL:=[BD[19]-BD[4]+9*BD[1],BD[1],BD[3]];

for b in BAL do

phi(b);

end for;

for gg in Gal19 do

gg1:=ChangeRing(gg,Rationals());

if [phi(Vector(bb)*gg1) : bb in BAL] in \

{[AL.1,AL.2,AL.3], [-AL.1,-AL.2,-AL.3]} then

gg;

end if;

end for;

// None of the Galois automorphisms is a geometric automorphism.
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B.2.2 Output

Loading "main.m"

Loading "basicdefinitions.m"

Loading "computeggalorbits.m"

Computing G orbits of initial divisors

There are 150 G orbits of the initial divisors

Computing GGalTOrbitDivs

432

Loading "computegrammatrices.m"

Computing Gram matrix for the 432 divisors

The Gram matrix has determinant [ <2, 5>, <3, 3> ]

Loading "comparelatticestructure.m"

We compare the lattice we have with the lattice we expect

true

Loading "computegaloismatrices.m"

Computing the matrices corresponding to the generators of the Galois

group

0

432

432

Loading "verifyfulllattice.m"

k3 is the vector space

Vector space of degree 19, dimension 3 over GF(3)

Generators:

(1 0 0 0 0 0 0 2 0 1 0 0 2 2 2 1 2 1 0)

(0 0 1 1 0 2 2 2 2 1 0 2 2 2 0 0 2 1 0)

(0 0 0 0 1 2 1 1 1 1 0 2 0 2 1 2 2 0 0)
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Echelonized basis:

(1 0 0 0 0 0 0 2 0 1 0 0 2 2 2 1 2 1 0)

(0 0 1 1 0 2 2 2 2 1 0 2 2 2 0 0 2 1 0)

(0 0 0 0 1 2 1 1 1 1 0 2 0 2 1 2 2 0 0)

The subspace Lambda_3 is at most one-dimensional,

and is invariant under <G,Gal>, so we compute the possible

<G,Gal>-invariant subspaces inside k3, which are:

[

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0),

(1 0 1 1 1 1 0 2 0 0 0 1 1 0 0 0 0 2 0),

(2 0 2 2 2 2 0 1 0 0 0 2 2 0 0 0 0 1 0)

]

A vector will only give an element of Lambda_3

if it is 3-divisible in

Pic(X). In particular, we require that C in Lambda can be written

C = 3C’ for some C’ in Pic(X). But then (C,C) = 9(C’,C’), so that

9 divides (C,C). This holds for

[

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

]

The vector space k2 is

Vector space of degree 19, dimension 3 over GF(2)

Generators:

(0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0)

(0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0)

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

Echelonized basis:
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(0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0)

(0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0)

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

The possible elements of Lambda_2 are

[

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0),

(0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0),

(0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0),

(0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0),

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

]

We eliminate the ones with self intersection not divisible

by 4, since they can’t be 2-divisible in Pic(X). This leaves

[

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0),

(0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0),

(0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0),

(0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0)

]

We note that any of the nonzero vectors generates the whole subspace

possibleLambda2, under the <G, Gal> action.

[

{

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

},

{

(0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0),
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(0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0),

(0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0)

},

{

(0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0),

(0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0),

(0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0)

},

{

(0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0),

(0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0),

(0 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0)

}

]

So it remains to eliminate a single one of these nonzero

vectors as being 2-divisible.

Can check that C (the lift of w) has Cˆ2 = -8

[-8]

We want to find divisors having intersection with the basis

equal to that of C, which is

[ 2 2 -2 -4 0 0 -2 0 -2 4 -4 0 0 0 2 -2 -2 2 0]

We want to find D1, D2 in <G, Gal>D such that D1 - D2 = C

in Pic(X). We can check equivalence by seeing how C*Gram0

compares with (D1-D2)*Gram0. D1, D2 are

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



86

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0]

We see that D1, D2 have self-intersection -2, and (D1, D2) = 2
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[-2]

[-2]

[2]

Thus we have found explicitly the D1, D2 such that C ˜ D1 - D2

and D1ˆ2 = D2ˆ2 = -2, (D1,D2) = 2. This provides the contradiction

as in the proof.

Loading "computegaloisactionH1.m"

Computing Galois representations for the generators of the

Galois group

We compute Hˆ1(Gal, Pic) to be

Full Quotient RSpace of degree 3 over Integer Ring

Column moduli:

[ 2, 2, 2 ]

Now we consider subgroups H < Gal.

3*AL.1 + 11*AL.3

8*AL.2 + 4*AL.3

4*AL.1 + 2*AL.2 + 2*AL.3
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