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Abstract

Inferring force laws from many-body systems in dusty plasma by machine learning
By Wentao Yu

In the era of big data, machine learning (ML) is a necessity. Numerous ML stud-
ies have been conducted to analyze data within physical systems. Most of these
studies utilize data simulated by known, well-defined equations. Others attempt to
predict the future states of real experiments, rather than unraveling the governing
mechanisms (the physics) behind them. Predicting the governing mechanisms in real
experiments poses significant challenges. During my Ph.D., I have applied ML meth-
ods to a complex many-body system, dusty plasma (DP), which is prevalent both in
the cosmos and in industrial applications, and I validated these models’ predictions
using only experimental data. DP exhibits many intriguing collective behaviors, al-
though the underlying mechanisms, including charging theories, are often modeled
using theories with assumptions that are difficult to test, resulting in large errors.
Throughout my six years of Ph.D. research, I initially constructed a tomography sys-
tem to track the 3D trajectories of individual particles, achieving sub-pixel accuracy
for tens of particles over several minutes. Subsequently, I analyzed the tracked ‘Brow-
nian’ motion of one and two particles around their equilibrium positions and proposed
a linearized model for these small-amplitude motions. Applying ML, I predicted the
linear coefficients with 50% better accuracy than conventional methods, including
Fourier analysis. This prediction was corroborated by physically perturbing the par-
ticles from their equilibrium positions. Finally, using the tracked 3D trajectories of
multiple particles, I employed ML to infer their position-dependent interaction forces,
environmental forces, and damping coefficients. Non-reciprocal interactions were ob-
servable in these inferred forces. The charges and masses of different particles could
also be inferred. This inference was substantiated by the consistency between mass
determined from interactions and from damping coefficients. My work demonstrates
the feasibility of using ML to predict governing mechanisms, not just future dynam-
ics, in real experiments, confirming predictions with real experimental data alone.
My latest model holds great promise for inferring mechanisms in other many-body
systems, such as cells, colloids, and flocking behaviors in macroscopic organisms.
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Chapter 1

Introduction

1.1 Predicting future vs. predicting physics: chal-

lenges in real experiments

2000 years ago, people looked into the shining stars in the night sky, wondering

what was guiding the motion of these stars. Scientists at that time invented the

epicycle, first proposed by Apollonius of Perga at the end of the 3rd century BC

(Wikipedia)1. The epicycle can fit and predict the future motion of the planets

with astonishing accuracy. The epicycle is so beautiful, except that it assumes that

the Earth is the center of the universe: a model might be able to perfectly predict a

system’s future, without knowing any physics behind it. This perfect prediction might

lead people to falsely believe that they know the physics. It took people another

1600 years, until about 400 years ago, to discover the correct physics (Newton’s

Law of Universal Gravitation). The physics in modern scientific frontier systems are

much more complicated than the simple inverse-distance-squared formula in Newton’s

gravity law, especially in glassy systems and biological systems which are typically

hydrodynamic many-body systems with fluid-mediated interactions [1–6].

1https://en.wikipedia.org/wiki/Deferent_and_epicycle, date May 24 2024

https://en.wikipedia.org/wiki/Deferent_and_epicycle
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Numerous attempts have been made to apply machine learning (ML) to predict

the future dynamics of physical systems, or equivalently, to predict ‘velocity’ or ‘ac-

celeration’, which can be integrated to forecast future states [1, 2, 7–14]. Apart from

predicting the future, some of these works do try to predict specific physical param-

eters. For example, Smith et al. [12] describes an ML model that encodes snapshots

from a video of a campfire into a low-dimensional representation to fit an equation

for the evolution of these low-dimensional variables. This model is validated by its

success in predicting future frames of the campfire, closely matching the actual sub-

sequent frames in the video. Similarly, [9] uses an autoencoder to compress movies

of an active nematic system into a low-dimensional representation, with a recurrent

neural network modeling the evolution of this embedded data. The effectiveness of

their model is demonstrated through accurate predictions of future defect dynamics,

aligning with observed data. While this model identified certain qualitative parameter

dependencies on the environment in real experiments, such as cells’ activity increasing

with ATP density, a quantitative measurement of these models’ performance remains

elusive. This is primarily because it is not possible to plot predicted activity against

the exact activity (which is unknown) in experiments. Therefore, the quantitative val-

idation of these ML models inevitably relies on their ability to predict future states

accurately, given the lack of precise physics, or formulas, for the complex systems

under study. This situation is reminiscent of the period 2000 years ago when the laws

of gravity were unknown to scientists.

Other attempts have introduced a functional form to describe the system within a

constrained, yet often extensive, library of possibilities [13, 15, 16]. A notable example

is the Sparse Identification of Nonlinear Dynamical systems (SINDy) algorithm [16],

which has attracted extensive research regarding its convergence theory [17, 18], and

has been supported by numerous tutorials [19, 20] and a wide range of applications

[21–24]. In SINDy, the goal is to discover the governing equations of a system. Here,
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Ẋ = Θ(X)Ξ describes the model, where X represents the observed n-dimensional

variable. Θ(X) is an m-dimensional library of candidate nonlinear functions of X

(typically a polynomial expansion), and Ξ is an m × n matrix of coefficients. These

coefficients are determined using LASSO, a method that seeks to minimize the number

of non-zero coefficients (promoting sparsity) while balancing the accuracy of the model

fit.

The core idea is to construct the polynomial expansion library as a high-dimensional

linear space where the functions, such as x2 and x3, serve as bases. A linear fit (like

LASSO) is conducted within this space. These pre-proposed bases can be correlated,

and to remove this correlation, further studies [8, 25] analyze training data to obtain

a distribution of all these function values. From this distribution, an inner product

between two bases can be defined as the correlation between their distributions. With

the definition of the inner product in the linear space, a set of orthogonal bases is

constructed before proceeding with the model fitting. This approach ensures that the

bases used in the SINDy algorithm are mutually independent, enhancing the stability

of the model.

This feature-expansion idea has been notably successful in fitting the chaotic

Lorentz attractor, where the true governing equations are:

ẋ = σ(y − x) (1.1)

ẏ = x(ρ− z)− y (1.2)

ż = xy − βz (1.3)

with parameters σ = 10, β = 8/3, and ρ = 28. The Lorentz attractor serves as a

comprehensive simulation testbed for numerous ML models [26–28], primarily due to

its chaotic behavior and the simplicity of its governing formulas. SINDy’s exceptional
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ability to predict these equations is anticipated because these equations all fall within

the polynomial expansion library that SINDy employs. That’s why such algorithms’

performance is so fantastic in simulated data. In contrast, the governing equations in

real experiments may be arbitrary and not well-defined. This discrepancy between

the experimental data and the simulations used for model training is known as data

mismatch, potentially leading to inaccuracies in the model [29, 30]. Furthermore,

quantitatively assessing this inaccuracy in real experiments is challenging, as validat-

ing the model’s performance against an unknown ground truth of the physics, rather

than the known ground truth of the future state, is not feasible.

In summary, the challenges of predicting physics in real experiments are twofold:

firstly, the absence of known ground truths, except for future states, in complex

modern systems for model validation, and secondly, the often arbitrary and ill-defined

nature of the governing equations.

1.2 Our real experiments: dusty plasma (DP)

In my Ph.D. research, I tackle these challenges by deploying physics-constrained ma-

chine learning (ML) approaches that utilize neural networks as universal approxi-

mators. Unlike traditional methods, my approaches can be validated solely through

experimental data, without relying on comparisons to the ‘future’ states of the sys-

tem. I have applied these methods to a many-body experimental system known as

dusty plasma.

1.2.1 DP Basic theories and their limitations

Dusty plasma is prevalent throughout the universe, from Saturn’s rings to interstel-

lar space [31–34], and plays a crucial role in planet formation [35–37], technological

processes [38–41], and potentially in the emergence of life [42].
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Inside a plasma, neutral atoms are partially ionized into positively-charged ions

and negatively-charged electrons. Given a set of physical surfaces (boundaries) that

confine a plasma, a conventional model for calculating the ion density field, ni(r), and

the electron density field, ne(r), is the Debye sheath model [43]. This model assumes

that electrons follow a Boltzmann distribution due to their dynamics being dominated

by Coulomb scattering, while maintaining the continuity of ion flux, disregarding ion

drift in the sheath region. According to this model, there is an electron-depleted

sheath at the plasma’s boundary (sheaths form near physical surfaces) where the

electric field decreases sharply, and a quasi-neutral pre-sheath layer where ions ac-

celerate towards the boundary. With given boundary conditions, the distributions

ni(r) and ne(r) within the sheath and pre-sheath layer can be numerically solved.

In the presence of dust particles (Fig. 1.1), the particles become negatively charged

as electrons collide with them more frequently, until the repulsion from electrons and

attraction from ions due to the negative potential on the particles equilibrate the

electron and ion flow towards the particle [44]. A prevalent theory for determining

a particle’s equilibrium charge, Q, is the orbital-motion-limited (OML) theory [45].

The OML theory first assumes a spherical capacitor approximation, where the parti-

cle’s floating potential ϕf (r), or the potential at the particle’s surface relative to the

potential ϕ at that location if the particle were absent, is directly proportional to its

inversed diameter d−1 and to Q:

ϕf =
Q

2πϵod
(1.4)

Note that the spherical capacitor theory applies to vacuum, while this approxi-

mation is a pre-assumption for this charging theory inside a plasma. Furthermore,

OML theory posits that around a particle whose diameter is significantly smaller

than the gas environment’s mean free path, both electrons and ions may collide onto

the particle within a calculated cross-section. The effect that a collision may remove
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ba
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Figure 1.1: (a) Initially when the particle is neutral, more electrons (green) than ions
(red) will collide onto the particle, thus |Ie| > |Ii|, where Ie is the electron current
(negative) and Ii is the ion current (positive), giving the particle negative charge. (b)
After some time, the particle accumulates enough negative charge Q. This charge
affects local plasma with a characteristic length of λ, and thus fewer electrons and
more ions collide onto the particle, and eventually |Ie| = |Ii|

the ions’ kinetic energy, causing it to fall onto the particle, is neglected. Under this

framework, OML theory proposes the following equations:

Φ =
eϕf

kBTe

Ie = −e
√
8πr2dvTenee

Φ

Ii = −e
√
8πr2dvT ini(1−

Te

Ti

Φ)

0 = Ie + Ii

(1.5)

Here, Φ represents the reduced potential indicating the potential energy of an

elemental charge relative to thermal energy. kB denotes the Boltzmann constant, Tk

the temperature of species k, vTk the thermal velocity of species k, and Ik the electrical

current of species k, which must balance at equilibrium. Given known values for Ti,

Te, ni(r), and ne(r), OML theory can compute Q(r). With the equilibrium charge

Q modeled, the interaction force F int between particles at a scalar separation r is
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commonly understood to be a screened-Coulomb repulsion [31]:

F int = −Q
∂Up

∂r
(1.6)

Up =
Q

4πϵ0r
e−r/λ (1.7)

Here, Up represents the potential difference induced by the presence of one particle

at a distance r, and λ denotes the Debye length, a characteristic plasma property

that should not depend on the particles according to this theory. In deriving this

formula, it is assumed that the plasma is quasi-neutral, meaning that in the absence

of this particle, the background electron and ion densities, ne,0 and ni,0, as well as the

plasma potential ϕ, would be constants, independent of the position r:

ne,0 = ni,0 = n0 (1.8)

Under this approximation, according to the Maxwell equation:

∇2Up = −σ/ϵ0 (1.9)

The net charge density, σ = e(ni−ne), and the electron and ion density should adhere

to a Boltzmann distribution with k being the Boltzmann constant:

ne = n0 exp (eU
p/kTe) (1.10)

ni = n0 exp (−eUp/kTi) (1.11)

An additional approximation is made, which assumes |eUp|/kTe ≪ 1 and |eUp|/kTi ≪

1 [46]. Note that this approximation typically does not hold: as a very rough estima-

tion, in a typical experiment [47], particle charge is estimated Q = −15000e, λ = 1

mm, and particle separation r = 0.5mm, Up(r) = Q
4πϵ0r

exp (−r/λ) = −0.026 V, and
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Ti is approximated to be room temperature 300 K, thus kTi = 0.026 eV. Nevertheless,

asserting this approximation holds, the expressions for ne and ni simplify to:

ne = n0

(
1 +

eUp

kTe

)
(1.12)

ni = n0

(
1− eUp

kTi

)
(1.13)

Hence,

σ = e

[
n0

(
1− eUp

kTi

)
− n0

(
1 +

eUp

kTe

)]
(1.14)

= −en0

(
eUp

kTi

+
eUp

kTe

)
(1.15)

= − ϵ0
λ2

Up (1.16)

where ϵ0
λ2 = e2n0(

1
kTi

+ 1
kTe

). In this formula, λ only depends on plasma properties

(Ti, Te, n0), rather than particle properties (particle charge, radius, etc.) Incorporat-

ing this into the Maxwell equation yields:

∇2Up =
1

λ2
Up (1.17)

with the boundary conditions being:

σ(r → 0) = Qδ3(r) (1.18)

Up(r → ∞) = 0 (1.19)

This leads to the solution being the screened Coulomb potential Eq. 1.7, with δ being

the Dirac delta function. Eq. 1.18 treats the particle as a point charge in the limit

that particle diameter d is smaller than any other length scale in the system. More
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precisely, this equation can be written by Gauss’s law:

−∇UP (r = d/2) =
Q

πϵ0d2
r̂ (1.20)

Note that the linearity in Eq. 1.17 is also the ground of other linear relations in the

plasma theory, including the sphere capacitor assumption where q ∝ ϕf . Under this

linearity, suppose Up is the solution with boundary Q in Eq. 1.18, then CUp would

be the solution with particle’s charge CQ where C is an arbitrary constant. In other

words, the solution of the field Up, and the floating potential which is Up at the

surface of the particle, ϕf = Up(d/2), would be proportional to Q.

Besides non-linearity, other factors also cause the particle’s interaction to deviate

from Eq. 1.7. For example, a drift of ion flow (see next chapter) caused by electric field.

This drift may shift the distribution of electrons and ions from a Boltzman distribution

(eq. 1.11). The breaking of neutrality (ne < ni) near the physical boundary, and the

presence of a magnet field also affects the particle’s interaction [31, 48].

Apart from the complicated interactions, which would be the major focus of our

study, particles also experience other forces, for example, gravity, confining forces

from the environment, neutral drag, and iron drag [44].

Despite the broad acceptance of these charging theories, it’s crucial to acknowl-

edge that the approximations I’ve emphasized in their derivation are typically ac-

curate only to an order of magnitude, especially within the plasma sheath region

adjacent to the plasma’s boundary. A frequently examined plasma boundary is a

semi-infinite plasma space above a horizontal electrode (Fig. 1.21). The direction of

the electrode below would be noted as the −z direction throughout this thesis, and

due to this symmetry-breaking in z, all parameters including ne, ni and Q should be

a function of z. With such experimental setups, recent studies have observed sig-

nificant deviations from these theoretical models [49–53]. Contrary to expectations
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that |Q| would monotonically decrease with an increase in z, it is discovered that |Q|

peaks at z ≈ 70 mm. Additionally, [52] utilized particle acceleration measurements

in plasma to infer the electrostatic force FE = EQ. The force measured corroborates

their revised model, which modifies the electron-depletion assumption in the Debye

sheath model based on the OML theory.

Although numerical simulations are frequently used in modeling DP [31, 46, 54],

accurately measuring properties like Q and λ experimentally remains challenging due

to the intrusive nature of direct probe measurements, which can alter the ambient

plasma properties due to the probe’s finite size [52, 55–57]. Consequently, up-to-

date direct measurements of particle charges are no more accurate than an order of

magnitude. For instance, the experiment described in [58] measured dust particle

charge to be the order of 104e. Meanwhile, in a different experiment [59], different

particle’s charge is estimated to be (273− 2519)e.

1.2.2 Particles as a tool to refine plasma basics

Fortunately, in contrast to finite-sized probes, tiny particles exert minimal influence

on plasma. While particles cannot serve as probes in a conventional sense, they in-

herently have the potential to illuminate plasma properties by their motion, offering

insights into their charges and interaction forces. Several fascinating collective behav-

iors of these particles have been extensively studied, including entropy fluctuations

[33, 60], internal resonance [61, 62], and phonons in the vibration of the 2D dust

particle ‘lattice’ [63–68]. In this context, I will delve into two specific phenomena in

more detail:

1. Non-reciprocal interaction, modeled in [69]. Non-reciprocal interaction repre-

sents a distinctive hydrodynamic effect in dusty plasma (DP). In scenarios where

a negatively-charged electrode is positioned below, positively-charged ions drift

downwards. This drift is altered by the presence of negatively-charged parti-
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ion wind

virtual charge

electrode

a
b

plasma

Figure 1.2: (a) A scheme of the origin of plasma wake caused by a semi-finite plasma
boundary (an electrode below). (b) Figure 3 in reference [69]. The total force exerted
on the upper-layer (U) particle from the lower-layer (L) particle is the sum of the
repulsive force FLU

p of direct inter-particle interaction and the attractive force FLU
w

from the wake of the lower particle (and similar for the total force on the lower
particle). While the direct forces are reciprocal, FLU

p = −FUL
p , the wake forces are

not, FLU
w ̸= −FUL

w .

cles, thereby forming a virtual positive charge beneath each particle, known as

a plasma wake (Fig. 1.2a). When two particles are located at different vertical

positions (z), despite their direct interaction theoretically being reciprocal, the

attraction to each other’s plasma wake is not (Fig. 1.2b). This phenomenon of

non-reciprocity has been experimentally observed and modeled in recent sim-

ulations [70–75]. However, a quantitative and accurate inference of this non-

reciprocal force from an experimental setup has yet to be achieved.

2. Self-driven motion with 10,000 times thermal energy. A primary theory for

energy input, delayed charging, is studied in [76]. To grasp this concept, consider

a harmonic oscillator described by z̈(t) = −ω2z(t), with a solution z = z0 cosωt,

ż = z0 sinωt. No net energy is introduced to the particle by the restoring force

within an oscillation cycle, as the net work W = −
∫
ω2zżdt, while z and

ż are π/2 phase separated. However, introducing a delay mechanism in the

harmonic oscillator, z̈(t) = −ω2z(t− τ), alters the phase separation between z

and ż to exceed π/2, allowing the restoring force to impart net energy to the

particle. In the context of a semi-infinite plasma boundary above a horizontal
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electrode, both the vertical electric field Ez(z) and Q(z) vary with z. The

vertical electrostatic force counteracts gravity, and as the particle oscillates

vertically, its charge requires some time, τch, to equilibrate [76], akin to the

delayed harmonic oscillator scenario. This concept, along with other theories

of energy input into the system such as the vorticity of the ion drag force field

[77] and charge fluctuations [78], will be further elaborated on.

1.3 Previous work in our lab: an intermittent col-

lective phenomenon observed in DP

Prior to my arrival at the lab, my colleague Guram Gogia and supervisor Justin

C. Burton discovered a bistable switching phenomenon [79]. In our lab, inside an

RF-powered Argon plasma, we levitate melamine formaldehyde (MF) particles above

an electrode. The particles usually form a quasi-horizontal monolayer. A 532 nm

laser beam is focused by a converging lens and then expanded horizontally by a

cylindrical lens, to form a horizontal laser sheet, with a vertical thickness of around

130 µm. Particles within this vertical height will be illuminated by the laser sheet, and

recorded by a camera above (see Fig. 1.3a). Under a certain plasma pressure P and

bias voltage Vbias of the electrode, the particles constantly switch between a crystalline

state (Fig. 1.3b) and a gas-like state (Fig. 1.3c). The horizontal kinetic energy, whose

definition I will elaborate on next, fluctuates with a much longer timescale than

any other timescale in the system (Fig. 1.3d). To study this phenomenon, the first

question is the source of the energy. We proposed that the self-driven motion of a

single particle in the z direction gains energy. Shown in (Fig. 1.3e), we discovered

that under certain plasma conditions P and Vbias, a single particle experiences a

finite-amplitude vertical oscillation, at more than 10,000 times thermal energy. This

self-driving behavior is widely studied, as explained in Sec. 1.2.2. Our lab further set a
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vertical laser sheet and tracked the vertical motion of a single particle combined with

Langmuir probes [47]. Upon numerical simulation, we discovered that, apart from a

suitable plasma condition, a certain difference between particles is also critical for this

intermittent switching behavior. We further invented a coarse-grained predator-prey

model to capture this intermittent-switching behavior [80]. Let A denote horizontal

mechanical energy (predator) and B denote vertical mechanical energy (prey), the

model reads

dA

dt
= −γA+ cAB(1−

√
A/B), (1.21)

dB

dt
= −γB − cAB(1−

√
A/B) + w(t)

√
Bϕ∆t. (1.22)

The first terms on the right-hand side in (1.21) and (1.22) correspond to the power

dissipated through hydrodynamic damping. The second term characterizes preda-

tion and obeys energy conservation. The functional form cAB is the lowest-order

nonlinear term that captures mutual interactions in common predator-prey models.

However, in our minimal model, this coupling term arises from energy transfer rates

between vertical and horizontal energies and I derived it from classical scattering the-

ory. Note that the asymmetry
√
A/B comes from the fact that the particles form a

quasi-horizontal monolayer, so their scattering frequency should depend on horizontal

velocity. w(t) is a Wiener process. The constant c controls the coupling strength,

and parametrizes the polydispersity in the many-body system.

While the experimental tracking and the model can capture a qualitative in-

termittent switching behavior, the quantitative information can be biased, majorly

because the horizontal laser sheet can only capture the 2D motion of particles within

this plane. As mentioned before, Horizontal kinetic energy KExy is defined as <

mv2ρ,i/2 >i, where each particle’s mass, albeit with manufactured poly-dispersity

which is necessary for the model, is approximated to be the same m = 0.66 ng,
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(d)

Figure 1.3: Adopted from ref. [79]. (a) Diagram of the experimental setup. The
particles were introduced into the vacuum chamber by mechanically shaking the par-
ticle reservoir. The particles were illuminated using a horizontal laser sheet. Central
regions of crystalline (b) and gaslike (c) samples. (d) Average horizontal kinetic en-
ergy per particle at plasma pressure P = 0.71 Pa, and bias voltage on the electrode
Vbias = −6 V. (e) Amplitude of a vertical oscillation for a single particle as a function
of P for different Vbias. Inset: Evolution of the z position of a single particle.

and vρ,i is the horizontal velocity of particle i, and the average < · · · >i is conducted

on all tracked particles. Particles with higher velocity, thus higher kinetic energy, are

more difficult to track. The KExy, calculated from tracked particles will thus have

a sample bias to be lower than the true horizontal kinetic energy. Furthermore, no

information regarding vertical kinetic energy is obtained in this experimental track-

ing, although it is important in modeling this intermittent behavior. At that time,

models regarding vertical kinetic energy purely rely on simulations, with parameters

like Q, F int calculated as explained in Sec. 1.2.1, which may not be more accurate

than an order of magnitude.
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1.4 Overview of thesis topics

As a summary for previous sections, predicting physics in complex, real-world ex-

perimental systems presents significant challenges. An illustrative example of such a

system is dusty plasma (DP), which has been the subject of extensive study. Theories

addressing charging and particle interactions within DP often make approximations

accurate only to an order of magnitude, despite the discovery of many intriguing

phenomena. Our group has previously investigated the phenomenon of intermittent

switching, but our ability to model this behavior heavily relies on simulations that re-

quire refinement for increased accuracy. Additionally, at that time, capturing the 3D

motion of particles was beyond our experimental capabilities due to the limitations

imposed by a 2D tracking setup.

In my Ph.D. research, I have tackled several key challenges in the study of dusty

plasma (DP), as detailed across different chapters of my dissertation.

Firstly, as elaborated in Chapter 2, I developed a novel 3D tracking algorithm

based on tomography. This innovative approach enables the tracking of individual tra-

jectories of tens of particles simultaneously over several minutes. This breakthrough

significantly enhances our ability to observe and analyze the complex dynamics within

DP systems [81].

Secondly, Chapter 3 focuses on the study of vibrations of 1-2 particles around their

equilibrium positions. I constructed a linear model to describe these small amplitude

vibrations and employed machine learning (ML) techniques to determine the linear

coefficients. Remarkably, this approach yielded predictions over 50% more accurate

than those derived from conventional methods, such as the Fourier spectrum analysis.

The validity of this prediction was confirmed through an independent perturbation

experiment, offering a robust alternative to relying on the ground truth of future

states [82].

Thirdly, in Chapter 4, I utilized the 3D trajectories of tens of particles to infer
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pairwise interaction forces, environmental forces, and damping coefficients for differ-

ent particles through ML. Unlike the linear model that focuses on small oscillations

around particles’ equilibrium positions, this model is capable of inferring forces at

arbitrary particle positions, providing a comprehensive understanding of the forces at

play within the DP system. The accuracy and reliability of this model were affirmed

by independently inferring the masses of different particles in two distinct ways, with

the results showing remarkable consistency. Notably, the exceptional precision of our

model enables the observation of plasma and particle parameters that substantially

diverge from the conventional theories of plasma previously discussed.

Overall, my research introduces new methods and insights into predicting physics

in real experiments, specifically within the context of dusty plasma. These innovations

achieve an accuracy far beyond traditional theories and pave the way for new avenues

of ML-aided exploration in understanding complex systems.
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Chapter 2

3D tracking of particles in a dusty

plasma by laser sheet tomography

2.1 Introduction

This work has been published [81].

2.1.1 Existing DP video-processing approaches

A well-developed technology, particle image velocimetry (PIV), can be used to ob-

tain a velocity field from multi-camera movies [83–85]. Calculating the velocity field

can reveal spatial and temporal variations in the dynamics, but ultimately averages

the individual particle dynamics over some multi-particle length scale. Yet many

problems of scientific interest, for example, the mechanism of particle charging and

interaction forces, are challenging to investigate without tracking individual particles

over long times. Advanced particle tracking velocimetry (PTV) techniques that track

individual particles have been mostly applied to the 2D motion of particles using a

single camera [86–88]. Some phenomena, for example, stochastic oscillations [89] and

spontaneous oscillations [47] can be observed by analyzing individual particle motions
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from 2D PTV, but dynamical information perpendicular to the viewing plane is lost.

3D PTV by stereoscopic imaging is plagued by the challenge of delicate calibration of

multiple cameras, identifying the same particle appearing in different cameras, and

linking those particles over frames. Recent studies have approached this task by us-

ing statistical tools [90–92] or machine learning [93–95]. Using statistical inference,

the likelihood of a particle at a certain voxel is calculated from the brightness of

its calibrated 2D projection in all the cameras, and also the likelihood of a particle

existing at this pixel in the previous frame. With machine learning, light spots of

particles are simulated by a pre-determined distribution and the model is trained on

mapping the videos of multiple cameras to the simulated particle positions. Using

these techniques, individual particles in dense dusty plasmas can be tracked for up

to 30-50 frames in a volume of 10-100 cubic millimeters [90–92, 94, 96]. In contrast

to stereoscopic imaging, 3D tomography relies on a laser sheet that moves relative to

the particles. If the position of the laser sheet is known in time, then a sequential

series of images can be used to track the particles in three dimensions. In dusty

plasmas, 3D tomography has mostly been used to examine static properties at a scan

rate of ≈ 1 Hz or less [97–101]. Tomography methods have been extended to faster

scanning rates, up to 15 Hz [102, 103], yet some experimental problems arise at these

speeds. Most noticeably, the inertia of the oscillating mirrors used to deflect the laser

limits the size and scanning speed of the imaging volume. Consequently, examin-

ing rapidly-moving dust particles for long periods of time remains a challenge. This

is important for applications involving dynamical inference of the underlying forces

driving the particles, or other dusty plasma phenomena outside of the well-studied

Coulomb crystal state.
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2.1.2 A summary of this work

Here we report a 3D tomographic imaging and tracking method that is conceptually

simple and easy to implement. The method is suitable for tracking multiple parti-

cles in large volumes over long times. We use a scanning laser sheet with a single

camera to obtain 3D trajectories of particles, saving the difficulties of calibration and

identification with multiple mirrors or cameras. Since the particles in a dusty plasma

are moving rapidly in time, we oscillate the height (z) of the illuminating 2D laser

sheet with a shorter period than the characteristic time of the particle motion, up to

a scanning rate of 500 Hz. As a result, particles at a certain z only appear in specific

frames of the camera. The images are then processed and particles are identified and

tracked by Trackpy [104] using a customized class. Subsequently, the trajectories are

calibrated and adjusted for their sub-pixel accuracy. With this technique, we are able

to track the 3D trajectories of 1-30 particles for 10,000 or more sequential frames in

1-10 cubic centimeters. We demonstrate this method on two distinct dusty plasma

systems driven by vertical oscillations or magnetic field-induced ion flow. The mean

particle positions, oscillation amplitudes, and characteristic frequencies of oscillation

are reported for each individual particle.

2.2 Experimental design

Our experiments used melamine-formaldehyde (MF) particles with diameters rang-

ing from 8.0 to 12.8 µm (microParticles GmbH). The particles were electrostatically

levitated in a low-pressure, 13.56 MHz RF argon plasma above an aluminum elec-

trode with a diameter = 150 mm (Fig. 2.1a, similar to previous experiments [79]).

An aluminum ring is placed on the edge of the electrode with a height of 3.7 mm to

provide horizontal confinement. The rf plasma was driven with 0.3-5 W of power, and

the gas pressure varied from 0.1-1 Pa. In this regime, the typical charge on a single
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particle ranged from 10,000-50,000 electrons. The particles were suspended at the

edge of the plasma sheath approximately 1-2 cm above the aluminum electrode. The

electrostatic confinement provided by the plasma sheath led to a near harmonic 3D

trap. Upon displacement from its equilibrium position, a single particle experienced

both vertical and horizontal oscillations, with a much higher frequency in z, as will

be discussed in Sec. 2.3. Multiple particles in the same system experienced complex

interactions often characterized by nonreciprocal forces [69].

To image and accurately track the particles’ motion in 3D, a 2.5 W diode laser

(Laserglow Technologies) was reflected by a mirror placed y0 = 500 mm away from the

center of the particles’ motion and then expanded into a 2D sheet using a cylindrical

lens (Fig. 2.1a). The sheet was also focused in the z-direction by a plano-convex lens.

The intensity profile of the laser sheet at the position of the particles was measured

and well-fit by a Gaussian distribution with a standard deviation of 0.13 mm. The

scattered light from the particles was captured by a high-speed v711 Phantom camera

(Vision Research) located at z0 = 525 mm above the center of the particles. A

galvo motor (Thor Labs), driven by a function generator (Agilent 33120A), was used

to oscillate the mirror in a sawtooth wave pattern with a tunable amplitude and

frequency. The input sawtooth wave frequency (100-500 Hz) determined the scanning

frequency of the laser, and ultimately the 3D sampling rate of the particle motion.

We note that despite the high-intensity of the diode laser (2.5 W), when the laser is

expanded into a sheet and oscillated vertically, the net force provided by the laser on

individual particles was negligible.

To calibrate the height of the laser sheet at the center of the electrode during a

single cycle of the input sawtooth wave, we built an isosceles right triangle out of

stiff paper and placed it directly at the center of the imaging plane (y = 0). We

then placed a paper rectangle 4 mm behind the triangle (Fig. 2.1b). Impinging light

from the laser sheet was partially blocked by the triangle, leaving a bright line on the
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triangle whose length varied with height (Fig. 2.1c, the upper line). The remaining

unblocked laser sheet projected another line on the rectangle. The apparent length of

the bright line on the rectangle varied by a small amount since it moved closer to and

farther from the camera lens during a cycle (the lower line of Fig. 2.1c). However, the

actual length does not change with laser height, thus the bright line on the rectangle

functioned as a fixed length scale at different z-positions so that we may calculate the

length of the bright line on the triangle in millimeters. The corresponding height of

the bright line on the triangle is then found using the geometry of the triangle since

the angles are known.

During the calibration, the camera frame rate was set to 19.95 times the input

sawtooth wave frequency on the galvo motor, so 399 frames were captured over 20

cycles. The non-integer ratio of the frequencies led to a small drift so that different z-

positions were sampled over many cycles, and those frames could be effectively shifted

into one cycle. The calibrated z position of the laser sheet in a cycle, as shown in Fig.

2.1d-e, were near-sawtooth waves with a large area in the center of the cycle where z

increased linearly with time. The slope for the linear fit, s, did not sensitively depend

on the frequency of the input sawtooth wave. However, the slope scaled linearly with

the amplitude of the voltage driving the galvo, as shown in the inset of Fig. 2.1e.

With y0 = 500 mm, s = 3.2 mm·cycle−1· per 100 mV.

In our experiments, we typically set the camera’s recording frame rate to 20×

the laser scanning frequency. This provides 20 vertical image slices per cycle. The

exposure time was always set at the maximum possible value with the given recording

rate in order to capture as much of the scattered light as possible from the particles.

We focused the camera sharply on the particles so that corresponding width of the

scattered light spots on the image sensor is ≈ 2 pixels. We note that the depth of field

of our camera lens was larger than the typical z displacement of particles, so particles

appeared in sharp focus despite their vertical motion. Each recorded movie was
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Figure 2.1: (a) Experimental setup for the 3D tomographic imaging and particle
tracking. The particles’ scattered light from the oscillating laser sheet is imaged from
above. (b) Sketch of a triangular screen placed in front of a rectangular screen used
for calibrating the dynamics of the laser sheet height. (c) Example image showing the
scattered light from the triangular screen (top white line). The two bottom lines are
scattered from the rectangular screen. The calibrated height of the laser sheet with
input sawtooth wave voltage = 300 mV and frequency = 500 Hz (d) and 200 Hz (e).
Linear fits to the central region are shown with red lines. The slope s of the linear fit
versus input voltage with fixed frequency = 200 Hz is plotted in the inset of (e).
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processed by Trackpy [104]. A customized 3D-frame class, included in the supporting

information, was used to group every 20 frames into a bundle, automatically detect

from which frame a bundle began, and discard the first and last 2 frames in each

bundle (they exist outside of the linear region in Fig. 2.1d). The code, as provided in

the supplemental information, produces a rudimentary database which contains the

positions x′, y′, and z′ for each particle in each frame. After the initial tracking, the

code also applies a SPIFF correction to alleviate small statistical errors in tracking

due to pixel-locking [105]; a known and significant tracking issue that arises when the

width of a particle light spot is comparable to the pixel size.

2.3 Laser divergence and parallax correction after

tracking

In our experiments, gravity and electrostatic forces within the plasma sheath near

the aluminum electrode are the largest forces exerted on the particles (both in the

z-direction). These forces are approximately 10-100× larger than the horizontal con-

finement forces since the diameter of the electrode (15 cm) is much larger than the

levitation height (1 cm). Additionally, the vertical confinement forces are much larger

than typical particle interaction and drag forces, which is common for dust particles

levitated in RF plasma sheaths [79]. As a result, particles experienced natural oscil-

lations with frequencies fz = 4−25 Hz in z and fxy = 0.5−3 Hz in the xy plane. The

wide range of frequencies comes from two distinct experiments with different envi-

ronmental conditions, as discussed in Sec. 2.4. Since particles move above and below

the focal plane (Fig. 2.2a), there is a small amount of imaging parallax, or coupling

between the vertical and horizontal positions. The tracked, rudimentary trajectories

with coordinates x′, y′, and z′ are different from the desired Cartesian coordinates x,

y, and z. In one experiment, the natural frequency of oscillation in the xy plane was
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Figure 2.2: (a) Diagram showing the intersection of the solid angle of view from the
camera and the laser sheet (red shaded area). Two particles at different x and y may
have the same x′ and y′ when viewed from the camera (the blue dotted line). Inset:
the y − z plane of view for the geometry of the imaging system. The mirror is at
A. A particle located at C will appear at the same height z′ as B. (b) The Fourier
spectrum of x′ (gray), y′ (blue), and z′ (orange). The amplitude of z′ is magnified
by 10x for clarity. (c) The high-frequency band, y′high, of the y′ component from the
rudimentary trajectory of a tracked particle shows a correlation with its z position.
(d) The Fourier spectrum of y′ has peaks at ≈ 3.3 Hz and 4.5 Hz, indicated by the
red arrows, which is related to the vertical oscillation frequency, 3.9 Hz, indicated by
the red line. (e) After the micro-correction procedure, the high-frequency band, yhigh,
of the y component from the same particle shows no correlation with z. (f) After the
micro-correction, the Fourier spectrum of y no longer displays a peak.
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≈ 0.6 Hz, and the frequency in the z direction was ≈ 3.9 Hz (Fig. 2.2b). As a result

of the imaging parallax, the high-frequency band (> 2.5 Hz) in the Fourier transform

of either x′ or y′ from single particles is highly correlated with oscillations in the z

position, as shown in Fig. 2.2c. Two sideband peaks near 3.3 Hz and 4.5 Hz appear

in the Fourier spectrum of y′high, which stems from an amplitude modulation of the y

position due to z oscillations, essentially mixing the signals (Fig. 2.2d).

To understand the origin of these sideband peaks, we first introduce a geometric,

first-order linear correction used to handle the conversion between imaged, primed

coordinates and the real Cartesian coordinates, denoted as a “micro-correction” in

the tracking code. The micro-correction is applied with the following transformation:

z = z′
y0 + y′

y0
, (2.1)

y = y′
z0 − z

z0
, (2.2)

x = x′ z0 − z

z0
. (2.3)

The first line corrects for the divergence of the laser sheet; particles imaged in the

same frame may have slightly different actual z positions (Fig. 2.2a). As y′/y0 → 0,

this correction becomes negligible. Note that Eqs. 2.1-2.3 are derived purely from

geometry. As shown in the inset of Fig. 2.2a, point A is the mirror, O is the center of

the particle system, and line OB is the axis where the calibration of z is conducted.

A particle at position C will appear in the same frame as a particle at point B. The

measured z′ is BO, while its actual z is CD. By trigonometry:

z

z′
=

y + y0
y0

, (2.4)

which is equivalent to Eq. 2.1. Note that y′ is used instead of y in the numerator

of Eq. 2.1. However, this is a second-order effect O((y/y0)
2), where y/y0 ≈ 0.02.
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Equations 2.2 and 2.3 represent a first order correction for imaging parallax, which is

negligible as z/z0 → 0. The derivation is identical to Eq. 2.1, except that the y axis

is replaced by −z and z is replaced by y.

To demonstrate why the sideband peaks are observed at 3.3 HZ and 4.5 HZ,

respectively, we will assume a simplified model where a single particle’s true trajectory

is sinusoidal, given by:

y = A cos(ωyt+ ϕ), (2.5)

z = B cos(ωzt). (2.6)

Due to parallax, as shown in the inset of Fig. 2.2a, the measured y-position, y′ is

y′ = y +
yz

z0
, (2.7)

= y +
AB

z0
cos(ωyt+ ϕ) cos(ωzt),

= y +
AB

2z0
(cos(ωzt− ωyt− ϕ) + cos(ωzt+ ωyt+ ϕ)) .

Therefore, imaging parallax causes peaks in the Fourier spectrum of y′ at ωz−ωy and

ωz + ωy, which correspond to 3.3 Hz and 4.5 Hz.

This linear correction is sufficient to remove the coupling between positions in the

xy plane and z, as shown in Fig. 2.2e. The correlation between z and yhigh (the high-

frequency band of the corrected y coordinate) has been removed. Also, the peaks at

3.3 Hz and 4.5 Hz no longer exist in the Fourier spectrum of y after the correction

(Fig. 2.2f). Finally, we note that since particles at different z positions are recorded

at slightly different times, the final time series of positions for a given particle may

have non-uniform intervals. To obtain uniform time intervals between bundles, we

use interpolation to the central time of each z bundle.
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Figure 2.3: (a) Snapshot of particle positions from a tracked, 11-particle system at
0.1 Pa. The z position is indicated by the colorbar. The colored tails represent the
positions in the previous 5 bundles. (b) Snapshot of particle positions from a tracked,
15-particle system at 1.0 Pa. Here, the presence of the magnetic field leads to a much
stronger confinement.

2.4 Results: tracking individual 3D trajectories

for tens of particles over minutes

To demonstrate our imaging and tracking method, we used two collections of MF

particles in distinct environmental conditions. At very low plasma pressure (0.1 Pa),

we tracked an 11-particle system that was highly underdamped due to the low gas
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Figure 2.4: (a) Projection in the xy plane of the motion of 2 particles within a
system of 15 particles. The system was driven by ion flow from a permanent magnet,
as described in the text. The length of each trajectory is 5 s, and the sampling period
is 0.005 s. (b) The motion of the same 2 particles plotted in 3D. One particle (red)
sits considerably lower in z due to its larger mass. Both particles oscillate rapidly in
the z-direction. In both panels, trajectories are connected by quadratic interpolation.
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pressure. The particles experienced spontaneous vertical oscillations with amplitudes

≈ 1 mm, which acted as a source of constant energy input into the system [47, 106].

In the xy plane, the particles moved with much larger amplitudes (≈ 10 mm). To

track the system, the laser scanning frequency was set to 50 Hz and the camera

frame rate was set to 1,000 Hz. The tracked particle positions at a single point in

time are illustrated in Fig. 2.3a. In a second experiment, we placed a large, 7.5 cm

diameter rare-earth magnet within a cavity machined into the electrode. The vertical

component of the magnetic field was measured to be ≈ 0.05 T at the levitation

height of the particles. The gas pressure was set to 1.0 Pa. Under these conditions,

the particles experienced rapid vortical motion in the xy plane with a rotation period

of ≈ 0.5 s. This voticity stems from an ion drag force since ions streaming towards

the aluminum electrode have a finite velocity component in x and y, and thus are

deflected by the magnetic field [107, 108]. The amplitudes of particle oscillations

were ≈ 3 mm in the xy plane and ≈ 0.2 mm in z. To track the system, the laser

scanning frequency was set to 200 Hz and the camera frame rate was set to 4,000 Hz.

The tracked particle positions at a single point in time are illustrated in Fig. 2.3b.

For both systems, we successfully and continuously tracked more than 10,000 frames

without confusing particle positions or losing particles. Sample movies from these

systems can be found in the supplementary information (Movie S1 and Movie S2).

With the advantage of high-speed, 3D tracking, we can follow the motion of in-

dividual particles in a many body system over long times. In Fig. 2.4 we show the

trajectories for 2 particles over 5 s (1000 frames) from the second system, where

particles experience vortical motion due to the external magnetic field. Figure 2.4a

depicts just the motion within the xy plane, which could be captured with tradi-

tional 2D particle tracking methods. One particle experiences a much larger range

of motion (blue), whereas the other particle is more tightly confined to the center

(red). In 3D, we see that this is because of their difference in mass, and thus their
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corresponding vertical positions (Fig. 2.4b). The particles are separated by ≈ 0.5 mm

in z. Both particles experience rapid vertical oscillations that are not observable in

the 2D projection.

Despite attempts to use identical particles when conducting experiments, the man-

ufacturing process always leads to a degree of heterogeneity. By tracking particles

in 3D, we can harness the particles’ heterogeneity to investigate their local plasma

environment. Figure 2.5a shows that particles that resided higher in the sheath (blue)

always moved horizontally with a larger amplitude than average (magenta), and the

particles that resided lower in the sheath (red) always moved with smaller amplitude.

Here the amplitude is defined as the standard deviation (std) of the particle position

over some time window. However, the amplitude of vertical oscillations was more in-

termittent with longer timescales, but generally showed the the same behavior (Fig.

2.5b). For example, although the bottom (red) particle moved less in z than average,

during the last 5 s of the experiment, it experienced a larger amplitude of oscillation

in z (trajectories for these particles are shown in Fig. 2.4b).

When averaged over the entire time series, the standard deviation of motion in z

increased with the mean z position, meaning that lighter particles residing higher in

the sheath experienced larger oscillations (Fig. 2.5c). However, the vertical oscillation

frequency (fz) of each particle was most strongly correlated with the mean z position,

as shown in Fig. 2.5d. Smaller particles sat higher in the sheath, and had a higher

oscillation frequency. In principle, one can obtain the variation in the vertical electric

field from the variation in fz. Yet in practice, both the electric field and particle

charge vary with z, which complicates this inference [47]. By considering particle

interactions, one may use the 3D trajectories to infer pairwise forces between particles

(including estimates of the charge and mass) or predict their future motion, which may

be further used to infer forces from the plasma environment. Finding low-dimensional

representations of dynamics or new physical laws from many-body trajectories using



31

machine learning is a rapidly expanding field of research [15, 16, 24, 109, 110]. Our

tracking method, combined with a machine learning-based algorithm, provides an

opportunity to better understand the complex dynamics of dusty plasmas. For the

next sections, I will describe how to analyze the 3D trajectories made possible by this

tracking algorithm.

2.5 Conclusions: benefits of simultaneous kinetic

information

3D tomographic imaging and tracking of dusty plasmas provides new ways of studying

dust dynamics over large, ergodic time scales. In particular, detailed information

about the position and acceleration of each particle can reveal information about the

spatial dependence of environmental and interaction forces between particles. The

method is complementary to more well-developed, stereoscopic imaging methods,

where smaller imaging volumes are examined over very short periods of times (≈

100 frames). Stereoscopic methods are appropriate for much denser dust systems,

and do not require a very high-speed camera capable of thousands of frames per

second. Although we have only focused on systems with 10-20 particles here, our

tomography method can be scaled up to many more particles, however, not without

some challenges. The main restrictions to tracking larger numbers of particles involve

temporal and spatial resolution. The camera and corresponding laser sheet frequency

must be fast enough to capture oscillations in z and close encounters between particles,

where forces and accelerations can be large. Additionally, during a close encounter,

where two or more particles come within 2 voxels, Trackpy may confuse the identity

of those particles. Trackpy first identifies particles in each frame separately before

linking all the located records. Thus during particle identification, information from

the previous and next frame is not used. This problem could be improved with
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Figure 2.5: The oscillation amplitude in y (a) and z (b) for two particles (red circles,
blue squares); the same as shown in Fig. 4. The amplitude is computed using the
standard deviation of positions in binned time windows of width 1.65 s (330 frames),
which is 3x the horizontal period. The magenta triangles are the average amplitude
for all 15 particles. The oscillation amplitude (c) and peak frequency (d) in z are
calculated for each of the 15 particles over the whole time series. The two particles
shown in Fig. 4 are colored blue and red, respectively.
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more advanced tracking algorithms, for example, the shake-the-box algorithm [92].

Furthermore, statistical information such as the average brightness, average kinetic

energy, and average z position can potentially be used to better identify individual

particles and link them before and after a close encounter.
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Chapter 3

Extracting forces from noisy 1-2

particle dynamics in DP

3.1 Introduction

This work has been published [82].

ML has already been applied to a few distinct areas of dusty plasma research.

Examples include the interpretation of Langumir probe and electron density mea-

surements [111–113], and the prediction of particle generation and annihilation in

fusion devices [114]. Additionally, ML has been used to identify phase boundaries

in dense dust systems [115], and to assist with stereoscopic tracking of many parti-

cles in three dimensions [116]. Bayesian analysis and ML have also been applied to

investigate the nonlinear dynamics of single dust particles [117]. Importantly, these

dynamics provide information about the dust charge, interaction potential, and ex-

ternal fields, essentially acting as a non-contact probe of the system. Both the dust

charge (Q) and Debye screening length (λ) between interacting dust particles can by

estimated by an analysis of the noisy dynamics [118], two parameters which are often

difficult to accurately measure. Here we show how the undisturbed, random motion
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of one and two particles in a dusty plasma can be interpreted using ML to provide ac-

curate information about their inter-particle and environmental forces. Crucially, our

ML methods are trained with simulations that consider real experimental artifacts

such as anisotropic confinement, nonconservative forces, stochastic Lévy noise, non-

Gaussian tracking error (pixel-locking), and experimental drift. These artifacts can

be observed in a statistical analysis of the data, yet they rarely included in dynam-

ical inference procedures, leading to data mismatch. In our procedure, features are

extracted from the simulated trajectories to train supervised ML models. The mod-

els simultaneously predict system-wide parameters with 50% better accuracy than

traditional methods such as Fourier spectrum and maximum likelihood estimation in

simulated trajectories.

In the experiments, one key feature is that many of the parameters are indepen-

dently inferred by analyzing the particles’ recovery to equilibrium after a perturbation,

thus labeling the data and verifying the model’s performance on experimental time

series. Based on labeling with this alternative method, our prediction on experimen-

tal data is evaluated to have the same accuracy as simulated data, alleviating data

mismatch. Furthermore, in experiments with two particles, we provide an accurate

estimation of Q and λ solely from the particles’ pixel-scale Brownian motion without

knowledge of other system-wide parameters, such as Epstein damping. These results

will help guide other studies that use ML to quantitatively infer system parameters

in real-world, noisy experimental data.

In this chapter, some approximations mentioned in chap. 1 are assumed, including

Eq. 1.7. The rest of this chapter will be organized as follows: in Sec. 3.2, we adopted

the experimental setup as introduced in the previous chapter, and more details re-

garding the tracking errors are discussed. In Sec. 3.3.1, we introduce the linearized

single particle model used for our simulations. Section 3.3.2 explains the dominant

source of errors in our experiments. Their mismatch from non-correlated Gaussian
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noise that is commonly used in simulations is observed by statistical analysis. We

then explain how we handle these errors in our simulations. In Sec. 3.3.3, we de-

scribe the features extracted from simulated and experimental data. These features

are used by our ML models. Section 3.3.4 explains the different ML models and their

corresponding performance on simulated test data compared with conventional meth-

ods. Section 3.3.5 describes the alternative way that we label our experimental data.

Finally, Sec. 3.3.6 demonstrates the performance of our ML models on experimental,

single particle data. Section 3.4 expands our methods to systems of 2 particles. In

Sec. 3.4.1, we introduce the changes to the linearized model for 2 particles. Section

3.4.2 and 3.4.3 explain the simulation details and the features used for the ML mod-

els. Lastly, 3.4.4 shows our predictions on experimental two-particle data, including

an inference of the particle charge and Debye length. Finally, Sec. 3.5 discusses the

limitations of this approach, and the directions for further study as detailed in Chap.

4.

3.2 Experimental methods and particle tracking

Our experiments used melamine-formaldehyde (MF) particles with diameters 9.46 ±

0.10 µm and 12.8 ± 0.3 µm (microParticles GmbH). The particles were electrostati-

cally levitated in a low-pressure argon plasma above an Aluminium electrode with a

diameter of 150 mm (Fig. 3.1a), similar to previous experiments [47, 79]. The argon

plasma was generated by a 13.56 MHz radio-frequency voltage applied to the elec-

trode, resulting in 2.9 ± 0.1 W of input power and a fixed dc bias voltage of -36.3 ±

1.2 V. An Aluminium ring was placed on the edge of the electrode to provide hori-

zontal confinement. The plasma pressure, P , was varied between 0.6 Pa and 1.3 Pa.

Under these conditions, the typical electron temperature in the plasma was 1.3-1.5

eV [47].
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As explained in Chap. 2, to visualize the particles levitated in the plasma envi-

ronment, a horizontal laser sheet was generated by focusing with a cylindrical lens,

similar to previous experiments [47, 79, 80]. The scattered light from the particles is

captured from above by a Phantom V7.11 high-speed camera equipped with a macro

lens. This allowed tracking the particle positions in the horizontal, xy-plane. Ad-

ditionally, we used a mirror attached to a galvo motor to oscillate the laser sheet

with a 50 Hz sawtooth wave at an amplitude of a few millimeters. The timebase of

the camera was synchronized to the function generator driving the galvo, and the

camera recorded at 1000 Hz (Fig. 3.1a), resulting in 20 images at different vertical

positions per oscillation of the laser sheet. With this tomographic 3D tracking, we

simultaneously obtained information about the vertical and horizontal motion of the

particles.

The spatial resolution of our imaging system was 51 µm per pixel in the xy-

plane, and 200 µm between image slices in the z-direction. However, by tracking

the 3D particle motion using an open source software (TrackPy [104]), the position

of the particles can be located with much better accuracy. The image representing

the scattered light from a single particle is shown in Fig. 3.1b. The centroid of the

particle “blob” is found by calculating the center-of-mass of the pixels, where the pixel

brightness represents the mass contribution of a single pixel [104]. The same centroid

procedure is done with image slices in the z-direction. A probability density function

of the decimal part of the tracked positions (xd) is shown in Fig. 3.1c, showing a

strong bias towards integer values. This bias is known as pixel-locking [119]. Using

the single-pixel interior filling function (SPIFF) algorithm [105, 120], these errors can

be statistically corrected from the tracked data. Ultimately, our estimated sub-voxel

resolution in tracking the particles was ≈ 4 µm in the xy-plane, and ≈ 16 µm in z.

This sub-pixel error was confirmed using an independent procedure. We created

digital movies of bright “particles” moving unidirectionally across a projection screen.
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Figure 3.1: (a) Experimental setup for the 3D tomographic imaging and particle
tracking. The oscillating mirror varies the angle of the incoming laser (wavelength
532 nm). The converging lens focuses the beam in z, and the cylindrical lens expands
the beam in the xy plane. Particles are imaged and tracked from above as described
in the text. (b) Image of the scattered light from a single particle with diameter
12.8 µm. (c) Probability distribution of the decimal part of tracked positions, prior
to SPIFF correction. (d) A 45 s trajectory for a single 12.8 µm particle undergoing
stochastic motion. (e-f) Time series of the x and y position corresponding to the same
trajectory. (g) z-position as a function of pressure for 12.8 µm (blue circles) and 9.46
µm (red triangles) particles. (h) Dominant frequency of motion in the z-direction for
both sizes of particles, obtained by Fourier transform.
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The screen was imaged with our camera so that the particles appeared similar in size

on the camera sensor when compared to the experiments (i.e. Fig. 3.1b). Since the

trajectory of the particles was pre-determined in the movie, we compared the tracked

positions to the known values. Despite these procedures, the horizontal resolution was

still a significant fraction of the amplitude of the Brownian motion in the experiments.

This was evidenced by systematic statistical effects in the analysis of the dynamics,

and will be discussed in Sec. 3.3.2.

3.3 single particle motion

3.3.1 The linearized model

A typical xy trajectory for a single, isolated particle is shown in Fig. 3.1d. The x and

y time series corresponding to this trajectory is shown in Fig. 3.1e-f. Without any

external perturbations, the particle experienced thermally-excited motion in three

dimensions. The amplitude of the motion was ≈ 50 µm in the xy plane. A dominant

angular frequency of motion (ω ≈ 1-2 Hz) is clearly visible in the time series. The

amplitude of motion in z was much smaller; less than our spatial resolution. Never-

theless, we measured the z-position of the particle as a function of gas pressure (Fig.

3.1g), which increased at lower pressure as the electrode’s sheath expanded. Also,

by Fourier transforming the time series of the z-position, we estimated the vertical

frequency of oscillation (ωz, Fig. 3.1h), which was much larger than the horizontal

frequency, indicating strong confinement in the z-direction.

Due to the small amplitude of motion, to the lowest order, the particles behaved

as stochastic harmonic oscillators. Since the amplitude of motion in z was much

smaller due to the strong confinement, we will ignore motion in the z-direction for

our linearized model. Let r⃗(t) = x(t)⃗ex + y(t)⃗ey denote the two-dimensional (2D)

position of a particle at time t, and dotted variables refer to time derivatives. The
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linearized dynamics of one particle reads:

¨⃗r = −∇⃗ϕ+ ∇⃗ × A⃗− γ ˙⃗r+ N⃗(α) (3.1)

ϕ =
ω2

2
[(1− δ)(x cos θ + y sin θ)2+

(1 + δ)(−x sin θ + y cos θ)2]

(3.2)

A⃗ =
kc
2
(x2 + y2)⃗ez (3.3)

This model contains 6 parameters, γ, ω, δ, θ, kc, and α. The deterministic confine-

ment force has two components. The conservative potential ϕ resembles a 2D spring

characterized by 3 parameters: the average frequency ω, the asymmetry δ between

two principal axes, and the angle θ from the x-axis to the weaker principle axis. Two

eigenfrequencies, ω− = ω
√

(1− δ) and ω+ = ω
√

(1 + δ), and θ are displayed in Fig.

3.2a. The nonconservative vector potential A⃗, characterized by a parameter kc, rep-

resents a rotational force possibly due to drag from the background ion flow [121],

particle asymmetries [122], or magnetic fields [123].

Additionally, the particle experiences drag from the background neutral gas. Ac-

cording to Epstein’s law assuming diffuse reflection from neutral gas collisions on the

particle surface, the damping coefficient can be expressed as [44, 124]:

γ = 1.44
P

apρp

√
2mAr

πkBT
. (3.4)

Here, P is the gas pressure, ap is the particle radius, ρp = 1510 kg/m3 is the mass

density of the particle, mAr is the mass of an argon atom, kB is Boltzmann constant,

and T = 300 K is room temperature. An important assumption here is that the

particle size is smaller than the mean free path (≈ 5 mm at P = 1 Pa). For the

particles with diameter 2ap = 12.8 µm, γ/P = 0.95 Pa−1 s−1. For the particles with

diameter 2ap = 9.46 µm, γ/P = 1.29 Pa−1 s−1.
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Figure 3.2: (a) Linearized external forces on the particle, as described in the text.
The black circle represents an equipotential surface of the harmonic confinement.
The eccentricity is exaggerated. (b) Probability distribution of the decimal part of
positions after simulated pixel-locking. (c) A simulated trajectory of length 45 s for a
single particle undergoing stochastic motion. (d-e) Time series of the x and y position
corresponding to the trajectory shown in (b).
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3.3.2 Handling random noise, parameter drift, and measure-

ment error in simulation

The last term in Eq. 3.1 is a stochastic acceleration, N(α), which follows a stable Lévy

distribution. The parameter α will be determined by inference. We do not assume a

priori that the stochastic motion is purely Brownian (α = 2), and α < 2 indicates a

more heavy-tailed distribution. The Brownian motion of particles in experiments is

driven primarily by random impulses from the environment. Thus, in the simulations,

temporally-independent random noise is added to the acceleration of the particles

at each time step. The Lévy-stable noise was generated by the python function

scipy.stats.levy stable with parameter skewness β = 0 and center µ = 0. The noise

scale c and the parameter for heavy-tailness α ∈ (1.6, 2.0) was independently chosen

for each simulation.

For all simulations, we used a time step ∆t = 0.02 s to closely follow the ex-

periments. The parameters ω, γ, δ, θ, kc, and α are randomly chosen from a uni-

form distribution prior to each simulation. The range of values possible for each

parameter are listed in Table 3.1. For the maximum values of kc, we chose kc,max =

min(1 s−2, 0.9×
√
ω4δ2 + ω2γ2), which guaranteed that the confinement force was able

to provide the necessary centripetal acceleration to keep the particle in a bounded

stable orbit. Since none of the parameters have a length scale in their units, the

simulated Lévy noise scale was arbitrarily set to c =
√

γω2/∆t.

Drift was inevitably present in nearly all experiments. This was most noticeable

in the drift of the equilibrium position of the particle. The drift was small, less

than 1 pixel, but is still comparable to the amplitude of the Brownian motion. We

modeled this in simulations as a temporally-correlated Gaussian noise added to the

equilibrium positions. To simulate a time series of temporally-correlated noise, ai,

with standard deviation (STD) σ and characteristic correlation time τ much larger



43

a b

Figure 3.3: Probability density function (PDF) of the x-component of the velocity,
|vx|, normalized by

√
⟨v2x⟩, where the average is over time. (a) The velocity distribu-

tion of simulated data. Red circles represent α = 2 (Gaussian noise). Green squares
represent α = 1.8 (Non-Gaussian noise). Yellow triangles represent α = 2, but with
simulated pixel-locking and SPIFF correction. The solid lines are fits to the form
y = Avp with more weight attached to the left side of the curve (see Sec. 3.3.3, part
4). The fitted value of the exponent p is shown in the inset. (b) 3 different velocity
distributions for experimental trajectories and the associated fits with exponent p.
All 6 trajectories in the curve undergoes a same low-pass filter with a 4 Hz cutoff.
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than simulation time step, τ >> ∆t = 0.02 s, we used the recursive relation:

a0 = N0

ai =

(
1− ∆t

τ

)
ai−1 +

∆t

τ
Ni.

(3.5)

Here Ni is an array of independent and identically-distributed Gaussian random num-

bers with zero mean and unit variance. The final sequence is adjusted by subtracting

the mean from each element in the series, and then normalizing the STD to be σ.

During simulation, the equilibrium positions (x0 and y0) both drift with the same

timescale τ ∈ (12, 800) s and potentially different amplitudes σ ∈ (0, 0.5), randomly

chosen for each simulation (Eq. 3.5).

As discussed in Sec. 3.2, pixel-locking was an important source of noise in exper-

imental data. Thus, measurement errors were added to the simulated position time

series after all the time steps were completed. This was intended to simulate errors

associated with tracking the particles in the images. To simulate pixel-locking in the

position time series, we converted the simulated position to pixels using a length scale

lpixel and a random offset xpixel ∈ (−0.5, 0.5). Then we applied a transformation to

the decimal portion, xd ∈ (−0.5, 0.5), of the pixel:

xd =
x+ xpixel

lpixel
− round

(
x+ xpixel

lpixel

)
, (3.6)

x∗
d = sgn(xd)×

|2xd|pd
2

+Nt(σd). (3.7)

Here x∗
d is the transformed pixel value, pd is an exponent randomly chosen between

(1, 4) for each time series, and Nt is a Gaussian noise with zero mean and STD

σd ∈ (0, 0.1). The distribution of the decimal part of simulated ‘pixels’ xd is plotted

in Fig. 3.2b. Finally, as in the experiments, we used the single-pixel interior filling

function (SPIFF) algorithm [105] on x∗
d to correct simulated data before training the



45

Table 3.1: The parameters for 1-particle simulation.

Name Description Range Drift amp. Drift time

ω confinement freq. (1.3,2.5) s−1 None None
γ damping coef. (0.4,1.7) s−1 None None
δ asymmetry (0,0.35) None None
θ weak axis (−π/2, π/2) None None
kc vortex force coef. (−kc,max, kc,max) s

−2 None None
α noise distribution (1.6,2.0) None None
x0 equi. position 0 (0,0.5) (12,800) s
y0 equi. position 0 (0,0.5) (12,800) s

lpixel simulated pixel width (0.3,1) None None

model. An example of a simulated trajectory and its x and y components are shown

in Fig. 3.2c and 3.2d-e, respectively.

Though pixel-locking was a small source of error, it led to large systematic errors in

dynamical quantities such as the 1D velocity distribution. Without further modeling

the effects of pixel-locking, these errors can be easily mistaken for stochastic noise

with α < 2. In a stochastic under-damped harmonic oscillator simulated with α = 2

and Gaussian measurement error, the 1D velocity distribution was well-fit by the form

logP (vx) = Avpx with p = 2 (Fig. 3.3a, red circles). However, a simulation with either

a smaller value of α (green squares), or pixel-locking (yellow triangles) both led to a

significantly smaller value of the fitted parameter p. Experimentally, the fitted p was

usually smaller than 2 (Fig. 3.3b). It is possible to minimize pixel-locking errors in

the velocity distribution function by defocusing the camera [118, 119], however, our

3D imaging and tracking methodology required particles with significant brightness

due to the low exposure time. Subsequently, it was not possible to determine whether

α < 2 or pixel-locking leads to non-Gaussian distributions with our current analysis.
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3.3.3 Features for ML

The data used to train the ML model consisted of simulated time series of both the x

and y motion of the particle. Typically, each time series contained 15,000 to 100,000

elements, depending on the total length of time of the motion. Although in principle

it is possible to use the raw data as input to the ML model, this would drastically

increase the computation time. Thus, we choose to extract hundreds of relevant

dynamical features of the motion in order to train the model. These ranged from

Fourier transforms and autocorrelations, to more sophisticated inference algorithms

such as underdamped Langevin inference (ULI) [125].

The confining potential for the particles consists of an asymmetric harmonic trap

in x and y, as shown in Fig. 3.2a. We first extracted a rough estimation of the

principle axes, defined by θ, for a 2D time series [xt, yt], t = 0, 1, 2, . . . , T . T is the

length of a single time series, and is the first feature. The total time duration of the

series is T ×∆t, where ∆t = 0.02s. In polar coordinates, ϕt = arctan yt
xt
. We used 20

bins to form a histogram of ϕt between (−π/2, π/2) and fit the probability density

with

p(ϕ) =
1 + δhist cos 2(ϕ− θhist)

π
. (3.8)

Here δhist and θhist are two features.

Let ⟨pi, qi⟩ = ΣT
i piqi/T . The correlation matrix C was computed:

C =

⟨x, x⟩ ⟨x, y⟩

⟨x, y⟩ ⟨y, y⟩

 . (3.9)

The eigenvalues of the matrix are λ(1 − δeig) and λ(1 + δeig) and their eigenvectors

are (cos θeig, sin θeig) and (− sin θeig, cos θeig). Here λ, δeig, and θeig are three features.

After calculating the eigenvectors, (xt, yt) are projected onto the (estimated) weaker
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and stronger principle axes for further analysis:

wt = xt cos θeig − yt sin θeig

st = xt sin θeig + yt cos θeig

(3.10)

wt and st are then normalized into unit STD, and the following feature extraction

algorithms are applied to (wt, st):

1. Fourier spectrum. This is the most commonly used tool to analyze the motion

of a 1D harmonic oscillator, ξt. We compute the Fourier spectrum and only an-

alyzed data between 0.5 s−1 < ω < 4 s−1. This is fitted to analytical prediction

for a 1D stochastic harmonic oscillator:

ωI(ω) = AFT

[
ω2

(
1− ω2

FT

ω2

)2

+ γ2
FT

]−1/2

(3.11)

where A, ωFT and γFT are fitting parameters. Although θeig is a good estimate

of the principal axes, we performed Fourier analysis on a combination of wt and

st: ξt = wt cosϕ+ st sinϕ. The following pseudocode describes the procedure:

for ϕ = [−π/4, 0, π/4, π/2]:

ξt = wt cosϕ+ st sinϕ,

Conduct 1D Fourier spectrum on ξt,

Fit the spectrum using Eq. 3.11,

AFT,ϕ, ωFT,ϕ and γFT,ϕ are features.

Altogether 12 features are extracted using the Fourier spectrum.

2. Autocorrelation is another analysis technique used on 1D time series, ξt, and is
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defined as:

A(τ) =
T−τ∑
t=0

ξtξt+τ/(T − τ). (3.12)

A(τ) was computed for ξt and fitted to the analytic form for a 1D stochastic

harmonic oscillator:

A(τ) =

(
1 +

γ2
A

ω2
A

)
e−γAτ cos

(
ωAτ − arctan

γA
ωA

)
(3.13)

Similar as Fourier spectrum, the following loop is performed to extract features.

for ϕ in [−π/4, 0, π/4, π/2]:

ξ = w cosϕ+ s sinϕ,

Normalize ξ into zero mean and unit variance

Calculate the autocorrelation by Eq. 3.12,

Fit the autocorrelation using Eq. 3.13,

ωA,ϕ and and γA,ϕ are features.

Altogether 8 features are extracted using autocorrelation.

3. Percentiles and equipartition law. Let P (ξ, p) indicate the p percentile of a 1D

time series ξt, the quantity ζ = P (ξ,1)−P (ξ,99)
P (ξ,30)−P (ξ,70)

contains qualitative information

about the heavy-tailness of the distribution of the stochastic noise that drives

ξ. Furthermore, according to equipartition, the time-averaged kinetic and po-

tential energies should be equal. As a result,

ω2
ep =

∑T−1
t=1 ξ′2t∑T−1
t=1 ξ2t

(3.14)

is a rough estimation of the eigenfrequency if e⃗ξ is a principle axis for the

confinement, where ξ′t = ξt+1−ξt−1

2∆t
and ∆t = 0.02s. To extract features, the
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following loop is performed.

for ϕ in [−2π/3, −π/3, 0, π/3, 2π/3, π/2]:

ξ = w cosϕ+ s sinϕ,

Calculate ζϕ and ωep,ϕ as features.

Altogether 12 features are extracted.

4. Velocity distribution. For a 1D time series ξt, the central difference velocity

is calculated, ξ′t. Then we compute the probability distribution P (ξ′n) of ξ
′
n =

|ξ′t|/
√
⟨ξ′2t ⟩, as done in Fig. 3.3. Were the noise purely Gaussian (α = 2) with no

measurement error, then log(P (ξ′n)) ∝ −ξ′2n . A more heavy-tailed distribution

(see Fig. 3.3) may indicate α < 2 or pixel-locking measurement error. Since the

distribution is rather complicated, three different fits are performed to extract

features. The first is a fit of logP versus ξ′n:

logP (ξ′n) = A0(ξ
′
n)

p0 , (3.15)

where a fitting weight, e
logP

2 , is applied to attach more importance to the be-

ginning of the curve. A0 and p0 are fitting parameters. The second fit linearly

fits the logP vs. ξ′n curve with ξ′n > 2.5. The linear coefficient p1 is recorded.

The third fit linearly fits P VS ξ′n with ξ′n > 2.5. The linear coefficient p2 is

recorded. Note that the second and third fits lack physical meaning, but they

provide some qualitative information that helps the ML model give quantitative

predictions. The following loop was used:

for ϕ in [−π/12, π/4, 7π/12]:

ξ = w cosϕ+ s sinϕ,
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Plot the histogram of P (ξ′n)

Fit histograms to get features p0,ϕ, p1,ϕ, p2,ϕ.

Altogether 9 features are extracted.

5. Intermittency analysis. For a 2D time series (wt, st), a scalar velocity is defined

as

ξ′t =

√
(wt+1 − wt−1)2 + (st+1 − st−1)2

2∆t
(3.16)

and its average over time τ is defined as

ξ̄′i(τ) =

(i+1)τ∑
t=iτ+1

ξ′t
τ

(3.17)

where i = 0, 1, 2, . . . , ⌊T−1
τ

−1⌋. We introduced this particular measure because

at relatively high values of the vortical force amplitude, kc, the particle displays

intermittent behavior characterized by large orbital excursions from equilibrium,

yet below the critical value of kc,max. As a result, the ξ′ fluctuates at lower

frequencies than other time scales in this system. This is characterized by the

standard deviation (STD) of ξ̄′i(τ) over i. Two features are extracted from the

2D trajectory with τ = 500 and 1300, respectively. The numbers 500 and 1300

are chosen to be much larger than the oscillation timescale ( 100 ∆t) and much

smaller than the time length of the trajectories (>10000 ∆t)

6. Vorticity estimation. Given a 2D time series (wt, st), the 2D velocity vector v⃗t

is first calculated. Let vmean =
√
⟨v2t ⟩ where ⟨· · · ⟩ represents averaging over t.

A qualitative estimation of angular velocity is used:

Ω(τ) =
1

∆t

〈
v⃗t × v⃗t+τ

vmean

(
vt+vt+τ

2

)
τ

〉
. (3.18)
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This form puts a larger weight on larger velocities, which is necessary since Ω

is completely dominated by noise for small velocities. Ω(1) and Ω(5) are two

features used in the model.

7. Linear correlation and mutual information. Built-in python packages [126] are

used to compute the linear correlation and mutual information between all pairs

of time series (w, s), (w, vw), (w, vs), (s, vw), (s, vs), where vw (vs) is the central

difference velocity associated with w (s). These measurements are most relevant

for large values of kc, where circular motion can be detected. Altogether this

provides 10 features.

8. Underdamped Langevin Inference (ULI) [125]. ULI is a maximum-likelihood

algorithm based on modified linear-regression. The time series w, s, vw, and vs

are used as inputs, along with a linear model of the forces, and the parameters

of interest (i.e. ω, γ, etc.) are estimated. There are 8 coefficients in the linear

regression, which are 8 features.

9. The previous 8 analyses gives 63 features. Then, a band-pass filter is applied

to wt and st with an upper threshold = 2 Hz and a lower threshold = 0.01 Hz.

The previous 8 analyses are repeated for 63 more features. This was done to

reduce noise in the original data, yet by including analysis on both filtered and

unfiltered data, we avoid losing information with little cost of adding features.

Counting the 6 features in preprocessing, altogether there are 132 features for

the motion of single particles.

3.3.4 ML methods and performance

Two python-based ML algorithms ([a], gradient boosting, which is an ensemble of de-

cision trees, and [b] neural network [126]) were trained on 132 extracted features from

400,000 simulated time series (training data set) to predict the 6 randomly-chosen
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Figure 3.4: The prediction error of various models for multiple parameters on one
particle simulated test data. Red stars represent ULI, green triangles represent Fourier
spectrum, blue squares represent neural network, and orange circles represent gradient
boosting. Note that the Fourier spectrum cannot predict kc and must be based on
a known θ. Since ML is trained on a certain range of all parameters (Table 3.1),
unreasonable predictions of Fourier spectrum and ULI are also cropped to that range.
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Figure 3.5: (a-b) Two different experiments of the same particle relaxing to equi-
librium after a perturbation. The pressure was P = 0.80 Pa. The magenta lines
are fits using Eqs. 3.21-3.22. The red and blue lines indicate ω+ and ω− and their
orientations, respectively. (c-f) The prediction from ML (the mean of the predictions
from neural network model and gradient boosting model, red circles), ULI (yellow
triangles), and reference estimation from the perturbation experiments (Pert., cyan
squares) for γ, ω, δ, and θ for particles with diameter 12.8µm. The purple line in (c)
represents the theoretical value of Epstein’s Law (Eq. 4.2). (g) α and (h) kc as pre-
dicted by ML. These parameters cannot be verified by the perturbation experiments.
The inset in (g) shows the prediction of α correlates with the potential temperature
of the particle. Red squares represents 12.8 µm particles and blue triangles represent
9.46 µm particles. Error bars were obtained from predictions on the simulated test
data set, and errors based on fitting perturbed trajectories are smaller and not shown
for clarity.
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parameters. Within the algorithms, the gradient boosting model has parameters

n estimators = 250, max depth = 5, and the dense neural network has 5 hidden lay-

ers, with size (128,64,64,32,16) and all hyperbolic tangent activations. Before train-

ing, both the features and the targets are normalized by the whole training batch to

zero mean and unit variance. The performance of each method was benchmarked on

80,000 simulated time series (test data set). Figure 3.4f shows that ML methods are

≈ 1.5× more accurate at predicting ω and γ than simply fitting analytical expressions

to the Fourier spectrum of the data along the principal axes of confinement, and 2-3×

more accurate than ULI [125].

With regard to Underdamped Langevin Inference (ULI), we note that the perfor-

mance was excellent and comparable to the prediction error for ML when using only

Gaussian noise, no pixel-locking, and no drift. These sources of noise seemed to dra-

matically reduce the performance of ULI, yet these sources of noise are unavoidable

in real experimental data. However, despite its lack of parameter estimation power

on single, noisy data sets, ULI consistently ranked as one of the most important

predictive features in the ML algorithms. Employing ULI in the simulated features

increased the total simulation and feature extraction time by 150%.

3.3.5 Labeling experimental data

It is challenging to verify the accuracy of results when applying ML models to unla-

beled experimental data. However, in our experiments, we measured the parameters

using an independent, alternative method. By perturbing the particle with a magnet

outside the chamber and observing the particle’s relaxation to equilibrium, we fit the

2D trajectory and obtained estimates of ω, γ, δ, and θ. Initially, we used a “mechan-

ical” method to peturb the particle position by moving a grounded metal rod in close

proximity to the single, levitated particle. However, this method would sometimes

lead to unwanted particles being deposited in the experiment. By using a small,
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rare-Earth magnet outside of the vacuum chamber, we found nearly identical results

without introducing unwanted particles. The magnet was removed in a fraction of a

second, while the particle relaxation process took more than 4 s.

Two examples of particle trajectories during relaxation to equilibrium after a

perturbation, and the corresponding best fit, are shown in Fig. 3.5a-b. Assuming

kc = 0 and ignoring the stochastic noise term, Eqs. 3.1-3.3 can be solved analytically:

w(t) = Awe
−γt/2 cos

(
t

√
ω2
− − γ2

4
+ ϕw

)
(3.19)

s(t) = Ase
−γt/2 cos

(
t

√
ω2
+ − γ2

4
+ ϕs

)
(3.20)

x(t) = w(t) cos θ − s(t) sin θ (3.21)

y(t) = s(t) cos θ + w(t) sin θ (3.22)

Here the fitting parameters Aw, As, ϕw, and ϕs depend on the initial conditions, and

γ, ω−, ω+, and θ are an estimation of the model parameters as described in Sec. 3.3.1,

assuming kc = 0.

3.3.6 Predicting experimental data - Results

We directly compared these measurements with the results from the ML model (the

mean of the predictions from neural network and gradient boosting), which measures

the parameters in situ without perturbations. The difference between the model’s

predictions and the labels inferred from the aforementioned perturbation method lay

within the error bars estimated from the simulated test data in parameters γ, ω, δ and

θ. In other words, the model predicts experimental data as accurately as simulated

data, so the mismatch between experimental and simulated data was alleviated. In

general, ULI was able to predict ω, δ, and θ, yet with an accuracy that was poor

compared to ML, which may be expected since ULI does not require training from
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multiple datasets.

Both the perturbation method and ML show excellent agreement with the pre-

diction of γ from Epstein’s Law (Eq. 4.2). The confinement asymmetry, δ, could

be as large as 0.2 although the experimental configuration was quite symmetric and

the illuminating laser only contributed to a 1% asymmetry since a gradient in laser

intensity is needed to change the confinement strength. Additionally, the gas flow

and pumping rate were low and did not affect δ. We speculate that the asymmetry

in the confinement may be due to background flows in the plasma environment. ULI

produced wildly varying predictions of γ, even sometimes negative values. Thus, we

did not include it in Fig. 3.5c.

In analyzing the stochastic noise, we found that the prediction of the Lévy pa-

rameter α reflected the particle’s effective temperature, 2kBT ≈ mω2(⟨x⟩2 + ⟨y⟩2),

where kB is Boltzmann’s constant (Fig. 3.5g, inset). We have assumed an equipar-

tition between kinetic and potential energy, and expressed the temperature here in

terms of the average potential energy to avoid calculating derivatives for the veloc-

ity. Importantly, no information about the temperature was passed to the ML model

since all time series were normalized. Reported values of T in dusty plasmas driven

by Brownian motion vary from 300-1000 K [127, 128]. For most experiments, we

found T = 300− 460 K, with 1.9 < α < 2, indicating nearly Gaussian noise from the

room-temperature neutral collisions (Fig. 3.5g, inset). Larger temperatures typically

corresponded to smaller values of α. We speculate that this could be caused by con-

tamination with undetectable, small dust particles since the effective temperature was

seen to increase over time in some experiments. Often these particles were “dropped”

by shutting off the plasma, and a new particle was deposited in its place. In any case,

the source of the higher effective temperatures was non-Gaussian, although we could

not definitively identify the origin of the noise.

The non-conservative force from Eq. 3.3 was smaller than the prediction error
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Figure 3.6: (a) Two charged particles experience mutual repulsion, characterized by
frequency ωp at equilibrium, and external harmonic confinement. kc and ω+ are
omitted for clarity. All susequent panels show parameter estimates as a function of
pressure, P . (b-c) The equilibrium particle separation and vertical height above the
electrode varied with the gas pressure.

bars for most experiments (Fig. 3.5h). Part of the motivation for including kc in our

linearized model were observations that particles can undergo small elliptical orbits

without any apparent input of energy [122]. In Nosenko et al. [122], the gravitational

leveling of the electrode played a role, presumably due to a feedback between the plate

geometry and the background ion flows. Another possibility would be a non-spherical

or broken particle, which could then interact with background ion flows.
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3.4 Two particle potion

3.4.1 The linearized model

When two particles are present, their mutual repulsion, mf⃗ij = mfp(r)⃗eij, displaces

them from the center of the confining potential, as shown in Fig. 3.6a. Here, fp is

the reduced force, e⃗ij is a unit vector from particle i to j, r is the particle separation,

and m is the mass of a particle. At equilibrium, the particle separation is r0, which

varies with pressure and the vertical position z (Fig. 3.6 b-c). In particular, below P

≈ 1 Pa, r0 sharply increased to a plateau and the height increased, presumably due

to an increase in the plasma Debye length. Here we aim to simultaneous infer:

ω2
−
r0
2

= fp(r0), (3.23)

ω2
p = −dfp

dr

∣∣∣∣
r=r0

, (3.24)

and all other model parameters from Eqs. 3.1-3.3 with high accuracy using noisy data.

We linearize the small-amplitude motion of each particle about their equilibrium

position. The equation of motion for particle i is:

¨⃗ri = −∇⃗ϕ+ ∇⃗ × A⃗− f⃗ij − γ ˙⃗ri + N⃗(α), (3.25)

f⃗ij = fpe⃗ij =
(
−ω2

p(r − r0) + ω2(1− δ)
r0
2

)
e⃗ij. (3.26)

The equilibrium force and its differential can be used to solve for 2 independent

parameters in a model for fp. The most commonly used model for fp assumes a

screened, Coulomb interaction (the same as Eq. 1.7):

FD = mfD =
Q2

4πϵ0r

(
1

r
+

1

λ

)
e−r/λ. (3.27)
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Table 3.2: The parameters for 2-particle simulation.

Name Description Range Drift amp. Drift time

ω confinement freq. (1.3,2.5) s−1 (0,2%) (12,800) s
ωp interaction freq. (1.7,3.3) s−1 (0,2%) (12,800) s
γ damping coef. (0.4,1.7) s−1 (0,2%) (12,800) s
δ asymmetry (0,0.35) (0,0.01) (12,800) s
θ weak dimension (−π/2, π/2) (0,0.1) (12,800) s
kc vortex force coef. (−kc,max, kc,max) s

−2 None None
α noise distribution (1.6,2.0) None None
c0 noise scale (0.005,0.03) None None
x0 equi. position 0 (0,0.02) (12,800) s
y0 equi. position 0 (0,0.02) (12,800) s
r0 equi. seperation 1 (0,0.02) (12,800) s
m1 mass ratio (0.9,1.1) None None
A 2nd order coef. (-3,10) s−1 None None

lpixel simulated pixel width (0.005,0.02) None None

Here ϵ0 is the permittivity of free space. With this assumption, similar linearized

models have been used to directly infer Q and λ from the one-dimensional motion of

two particles using Fourier analysis [118, 129–131]. Here we allow for entanglement

between motion in two dimensions, and provide estimates of all model parameters.

Analogous to the single particle model, parameters γ, ω, δ, θ, kc, α, and ωp were

randomly chosen to simulate time series using Eqs. 3.25-3.26. The same feature

extraction methods as described for a single particle were applied to the center-of-

mass and relative coordinates, (⃗r1+ r⃗2)/2 and r⃗1− r⃗2 with some alterations described

in Sec. 3.4C. The neural network and gradient boosting models were trained on 227

extracted features from 400,000 simulated time series to predict the 7 parameters,

and their performance on simulated test data is shown in Fig. 3.7.

3.4.2 Simulation details

For simulations involving two particles, the drift of the parameters can change the

equilibrium separation of the particles, which is comparable to the amplitude of the
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Figure 3.7: The prediction error of various models for multiple parameters on two
particle simulated test data. Red stars represent ULI, green triangles represent Fourier
spectrum, blue squares represent neural network, and orange circles represent gradient
boosting.
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Brownian motion. Thus, we allowed for a small drift of many parameters, as listed

in Table 3.2. Importantly, the introduction of a repulsive force between the particles

leads to a natural length scale, r0, which is the equilibrium separation between the

particles after balancing external confinement and mutual repulsion. In the simula-

tions, r0 is set to 1, but is allowed to drift. This fixed length scale means we must

choose the amplitude of the noise to match what is observed in the experiments. The

noise scale, c = c0
√

γω2/∆t, is similar to simulations of for one particle, but here

c0 ≪ r0. The value of c0 is randomly chosen in each simulation, and represents the

amplitude of Brownian motion in units of length measured by the particle separation,

r0. Note that c has units of acceleration since mass is normalized and c0 has units of

length.

Furthermore, to make the model more general, a second order term with random

coefficient A was added to the reduced particle interaction force,

fp =

(
A

r0
(r − r0)

2 − ω2
p(r − r0) + ω2(1− δ)

r0
2

)
. (3.28)

This is identical to Eq. 3.26, albeit with the addition of the second order term. Note

that typically r−r0 ≈ c0 ≪ 1, so the second order term is negligible, but was included

for generality. Experimentally, the two particles may be slightly different in size, so

a mass difference was considered in simulations. We randomly chose the mass of one

particle, m1, to vary by 10% (Table 3.2). As a reminder, none of the parameters

have a mass unit, so we can arbitrarily fix the sum of the masses, m1 +m2 = 2. The

acceleration of each particle ¨⃗ri was calculated as

¨⃗ri = f⃗i/mi (3.29)

where f⃗i is the sum of all the reduced forces exerted on particle i. After each simu-

lation, pixel-locking noise was added to the trajectory of each particle with lpixel, as
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Figure 3.8: ML predictions for the two particle systems. Data is shown for 12.8 µm
particles (denoted by 1) and for 9.46 µm particles (denoted by 2). The ML prediction
is the average of results from the neural network and gradient boosting methods. (a-c)
The predictions of δ, kc, and γ by ML are represented by blue circles with error bars
estimated from Fig. 3.4. The magenta line in (c) is the theoretical γ from Epstein’s
law. (d) The confinement frequency ω (blue circles) and interaction frequency

√
2ωp

(cyan squares) predicted by ML. (e-f) The Debye length λ and particle charge Q
calculated from the frequencies using Eqs. 3.27 (green triangles) and 3.30 (magenta
squares) from the main text. The magenta line is a linear fit to the magenta squares
to guide the eye.

listed in Table 3.2. For all simulations, we used a second order, Velocity Verlet time

stepping method to integrate the equations of motion.

3.4.3 Features of two particle motion

For two particle systems, the rough estimation of θ is simply the direction in which the

particles align (the weak axis), so we don’t perform the preprocessing step. The 4D

time series representing the motion of the two particles is projected into the center-of-
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mass motion and the relative motion. The same steps 1-9 as Sec. 3.3C applies to the

center-of-mass motion (126 features), and similar methods are applied to the relative

motion with the following revisions:

1. The fit of the Fourier spectrum only needs 2 projections, parallel and perpen-

dicular to the alignment of the two particles, instead of 4. Furthermore, an

additional fit is conducted to the Fourier spectrum of the mode perpendicular

to the alignment, where motion predominantly occurs in the azimuthal direc-

tion. If the asymmetry δ = 0, this mode would have zero frequency. Thus we

used a window 0.1 s−1 < ω < 1 s−1, and γFT , ωFT , but not AFT , are recorded

as features. Altogether there are 8 features instead of 12.

2. The same logic applies for autocorrelation, so there are 6 features instead of 8.

3. Percentiles and equipartition analysis are performed to 2 (parallel and perpen-

dicular) projections rather than 6. Altogether 4 features instead of 12.

4. Velocity distribution analysis is performed to 2 projections rather than 3. Al-

together 6 features instead of 9

The revised 8 analyses gives 46 features. After the aforementioned smoothing, the

analyses are performed again for another 46 features. Moreover, since the trajectory

is normalized by the particle separation so that r0 = 1, the STD of each of the 4

modes before and after smoothing are 8 new features. Plus the time series length,

altogether we have 63 × 2 + 46 × 2 + 8 + 1 = 227 features for the motion of two

particles.

3.4.4 Predicting experimental data - results

Fig. 3.8 shows the ML model prediction on experimental data, for particles with

diameters 12.8 µm (label 1) and 9.46 µm (label 2). The prediction of δ is significantly
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different between the two sizes of particles, as shown in Fig. 3.8a. This is likely due

to their difference in vertical equilibrium position in z (Fig 3.1g). Though kc seems

systemically positive for both particles, its amplitude was usually smaller than the

error bar (Fig. 3.8b). We did not specifically train the model on the parameter θ since

it is essentially determined by the alignment of the vector r⃗2 − r⃗1. Although a finite

value of kc would lead to an angular displacement away from the weak confinement

axis, we found that a numerical value of kc = 0.1 s−2 would lead to an small angular

displacement of ≈ 0.1 radians.

The damping γ varied linearly with P and was well-described by Epstein’s law

(Eq. 4.2) for both particles, as illustrated in Fig. 3.8c. The error bars also decreased

considerably when compared to the analysis of a single particle (Fig. 3.4 vs. Fig. 3.7).

Both ω and ωp displayed a slight, non-monotonic variation with pressure, outside the

range of the error bars in the prediction (Fig. 3.8d). We note that the eigenfrequency

for the relative coordinate motion is
√
ω2
p/µ+ ω2

−, where µ = m1m2/(m1 + m2)

is the reduced mass. If the masses of the particles are identical, then µ = 1/2.

However, assuming that the particles’ mass differ by less than 10%, µ = 0.495±0.005.

Therefore, the coefficient
√
1/µ ≈

√
2 is included in Fig. 3.8d for clarity.

For 12.8 µm diameter particles, the “kink” for ω and ωp lay at the steepest decrease

of r0 in Fig. 3.6. Although these features may be related, we cannot say for sure since

the particle height, charge, and Debye length all vary with pressure, and all contribute

to ω and ωp. Additionally, we found that the parameter α could not be well-predicted

from the center-of-mass and relative coordinates in the two particle system. Although

we are uncertain why the prediction failed for α, we speculate that the distribution in

errors from pixel locking are non-additive (unlike the Lévy stable distribution). The

motion of the center-of-mass, for example, is the sum of the particle positions. Thus

the total noise distribution for the center-of-mass and relative coordinates could be

quite different from one-particle system.
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Finally, to estimate Q and λ, we used two models for fp. The first is Eq. 3.27, and

the second model is derived from a potential (mfw = −dϕw/dr) that incorporates the

virtual charge (q̃) from the ion wake beneath each particle [132, 133]:

ϕw =
Q2

4πϵ0λ

[
e−r/λ

r/λ
− q̃

λe−rw/λ

rw + bλe−rw/λ

]
. (3.30)

Here rw =
√

r20 + 0.12λ2, q̃ = 0.3, and b = 1. The parameter b controls the size of

the virtual charge cloud. After inferring ωp and ω−, the interaction force and it’s

derivative at r = r0 were numerically solved for Q and λ, following Eqs. 3.23 and

3.24. For both models of the interaction force, the predictions of Q and λ differed by

only 10%, as shown in Fig. 3.8e-f, for both sizes of particles. We expect this difference

to be much larger if the particles have significant vertical separation, where ion wake

interactions lead to non-reciprocal forces [69].

For both particles, Q decreased with pressure. The Debye screening length λ also

decreased with pressure for 12.8 µm particles, but there seemed to be a kink in λ

for the 9.46 µm particle data at P ≈ 0.75 Pa. This is likely due to the variation in

height with pressure, and a similar feature is also visible in δ (Fig. 3.8a2). It is also

important to note that the error in estimating Q and λ can be up to 10× larger than

ω (Fig. 3.8e-f). This can be illustrated by examining Eqs. 3.23, 3.24, and 3.27. These

equations can be solved analytically, resulting in the following expression for λ:

λ =
r0
2

 ω2
p + ω2

−√
ω4
p − ω4

−

− 1

 . (3.31)

When ωp is close to ω−, perhaps with overlapping error bars, then the uncertainty in

λ diverges. This emphasizes the importance of accurate estimation of all parameters,

independent of the model chosen for fp. Although we allowed for a 10% variation

in mass between the particles, this variation was not considered when calculating



66

Q. The reported values of Q should be taken as an average of the charge on both

particles since the mass of each particle may be slightly different.

Finally, we can compare the results shown in Fig. 3.8f to theoretical predictions in

our plasma conditions. First, we can estimate the total Debye length in the plasma,

λD =

√
kBϵ0TeTi

e2np(Te + Ti)
, (3.32)

where np is the quasi-neutral plasma density, Ti is the ion temperature, and e is the

elementary charge. As stated previously, Te ≈ 1.3-1.5 eV, and Ti ≈ 0.026 eV, so

that λD is dominated by the ion temperature. For our experimental conditions, the

plasma density has been measured previously using a Langmuir probe, and np ≈

2 − 5 × 1013 m−3 [47]. Thus, we expect λD ≈ 160-260 µm. However, the screening

length between particles (λ) is known to be 5-15 times larger than λD [134]. Thus,

our measurement of 1-2 mm shown in Fig. 3.8e is reasonable and approximately

10× larger than λD. Although λD is expected to increase at low pressures since np

decreases, the exact dependence of the screening length λ on the ion Debye length

λD is not well understood, especially within a plasma sheath. Subsequently, we do

not currently have an explanation for the non-monotonic behavior seen in Fig. 3.8e2.

Second, the particle charge Q can be estimated, to lowest order, by orbital-motion-

limited (OML) theory [31, 135, 136]. In its simplest form, we assume that the electron

and ion concentrations are equal (quasi-neutrality). The electron velocity distribution

is Maxwellian, but the ion drift velocity ui towards the electrode must be considered

in the ion velocity distribution. In this regime, the dust charge is determined by

solving the following equation numerically (see section 2.4.3 in [31]):

0 =

√
Temi

Time

eeQ/4πϵ0akBTe− (3.33)

erf(ξ) (2πϵakBTi (2ξ
2 + 1)− qQ)

8
√
πϵakBTiξ

− 1

2
e−ξ2 ,
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where erf(ξ) is the error function. The parameter ξ is the ratio of the drift velocity

to the ion thermal velocity, ξ = ui/vi,th, where vi,th =
√

2kBTi/mi, mi is the mass of

an argon ion, and me is the electron mass. For a simple estimate, we use the Bohm

velocity for the ions because the particles levitate near the edge of the plasma sheath,

so that ui =
√

kBTe/mi.

Using the parameters from our experiment, ξ ≈ 5, and OML theory predicts that

the 9.46 µm particles are negatively charged with 16,600-19,200 electrons, and the

12.8 µm particles are negatively charged with 22,500-26,000 electrons (results shown

in Fig. 3.8f). Additionally, the dust charge should decrease as pressure increases since

ion-neutral collisions become more important as the mean free path decreases ([137],

[138], section 2.4.4 in [31]). This expectation is also consistent with Fig. 3.8f. A more

quantitative analysis of the pressure dependence of the particle charge is hampered by

small but simultaneous variations of electron temperature, drift velocity, and plasma

density as the pressure is changed in the experiment. Additionally, alterations to

OML theory to include collisions typically ignore ion drift, and both are present in

our experiments. Overall, these results highlight the importance of measuring particle

charge in-situ, as demonstrated here.

3.5 Limitations of this approach

In this chapter, we have overcome two major restrictions when inferring parameters

from experimental data with ML: data labeling and mismatch. In our dusty plasma

experiments, we label our data by observing particles’ relaxation after perturbation.

The mismatch between commonly-simulated data (with Gaussian stochastic forces

or Gaussian measurement error), and experimental data (with drift, pixel-locking,

non-Gaussian stochastic force, etc.) is handled by including these artifacts in our

simulation. The agreement between the label for experimental data and our models’
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prediction demonstrates the alleviation of this mismatch. Additionally, this work

provides simultaneous and accurate estimates of multiple parameters from noisy data,

for example, the model provides an accurate in-situ determination of Epstein drag,

the particle charge, and the Debye length in dusty plasmas.

Our ML model employed supervised machine learning since stochastic forces and

trajectories are an inevitable part of the dynamics. Ideally, the forces in dusty plasmas

could be inferred from the experimental data itself, without the need for simulations

in the training data set. In dynamical systems with many particles, the interaction

force cannot be linearized, yet particle motion is dominated by deterministic forces,

and noise is secondary. Therefore, the limitations of this chapter that will be studied

in the next chapter would be:

1. This chapter studies the motion of particles around their equilibrium position,

whose advantage is the validity of linearizing the forces given the small ampli-

tude of the motion. However, the disadvantage is that only information about

the force around their equilibrium position is inferred. To calculate global pa-

rameters, for example, Q and λ, a formula (Eq.1.7) must be used, which can

be inaccurate. A further study would better infer the force, as a function of

arbitrary positions.

2. As mentioned in Sec. 1.2.2, parameters like Q(z) (rather than a fixed Q) should

depend on z. However, this method can only study the force at one certain

height of the particle, rather than a function of z. A highly dynamic system is

required to study this function.

3. The particles are assumed nearly identical in the 2-particle experiment. Thus,

at a given z, how the charge and pairwise interaction would depend on particle

size (for example, the in-question linearity relationship between Q and Up that

I discussed in Sec. 1.2.1) requires further study.
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4. The ML models in this section are trained on simulated data. Is it possible to

solely use experimental data?
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Chapter 4

Learning generalized force laws in

many-particle DP

4.1 Introduction

This work is available on ArXiv [139], and is under review by PNAS.

In Chap. 1, we have discussed the historical and theoretical frameworks that have

guided centuries of scientific inquiry into the mechanics of the universe, from the

epicycles of the ancient world to the Newtonian physics that underpin much of modern

science. The advent of machine learning (ML) has opened new vistas in the study

of complex systems, especially many-body systems, that defy easy categorization or

prediction using conventional physical laws alone. These systems are not only complex

but also dynamic, exhibiting behaviors that traditional physical equations are ill-

equipped to predict. Yet, predicting physics from real experiments is challenging.

Endowing ML methods with an inductive bias based on physical intuition can

facilitate progress in realistic situations. This is especially important for many-body

data, where such intuition is needed to tame the combinatorial complexity of inter-

actions among the measured components [140]. Because of this, physics-constrained
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machine learning for many-body systems is still emerging [7, 13, 14, 141–144]. Here,

in the context of DP, we simultaneously address many of these challenges by intro-

ducing a physics-constrained ML approach based on neural networks as universal

approximators, which is able to learn new, unanticipated interaction laws from real

many-body physical experiments, and be validated on real experimental data.

In a dusty plasma, particle interactions have known approximations based on

tractable physics, yet they are poorly understood in environments that deviate from

the simplest equilibrium conditions, for example, in systems with background plasma

flows [145] or with external magnetic fields [48, 146]. Particles interact through com-

plicated forces mediated by the plasma environment [44], and violate some of our

basic expectations: they are non-reciprocal and break the conservation of energy

[69, 147–150]. Limited information about these interactions can be obtained by care-

fully investigating quiescent systems of particles, for example, the Brownian motion

of two particles [61, 82, 117] or the vibrational modes in a strongly-coupled crystal

[65–68]. Yet particles must be highly dynamic and explore phase space to learn a

separation-dependent interaction law [79, 151]. Thus, compact and precise math-

ematical expressions that summarize interactions among dust particles as physical

laws do not exist, yet some constraints on the interactions are clear. For exam-

ple, the forces between particles are expected to be pairwise to leading order and

to depend only on their mass, charge, and the spatial configuration [152–155]. Our

proposed broadly-applicable approach to infer new, previously unknown interactions

from many-body data incorporates these constraints in its underlying neural network

architecture to learn the external forces and the unknown particle interactions directly

from experimental dusty plasma data.

To infer interaction laws in dusty plasma, we captured three dimensional (3D) tra-

jectories of individual dust particles using scanning laser sheet tomography (See Sec.

2). Our physics-constrained neural network model used this to infer non-reciprocal
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interactions between individual pairs of non-identical particles, environmental forces

that trap particles and drive their motion, and velocity-dependent drag forces from

the background gas. Remarkably, the model was extraordinarily accurate in captur-

ing the dynamics of dusty plasma, achieving R2 > 0.99 over multiple experiments.

We validated the model using only unlabeled experimental data by extracting the

mass, m, of each particle in two independent ways, which agreed with each other.

Moreover, we fitted the interaction force of each particle pair to the approximation

Eq. 1.7, allowing us to estimate the charge, q, of each particle, and the Debye screen-

ing length, λ. We find that λ is not solely a property of the plasma environment, and

depends on the size of interacting particles, contrary to Sec. 1.2.1. Furthermore, we

find that q ∼ mp, where p ranges between 0.30 and 0.80 across different experiments

and plasma conditions, in contrast to the most widely-used theory of particle charging

where q ∝ m1/3 [31, 156] (Sec. 1.2.1 Spherical capacitor model).

4.2 Experiments and model

Our dusty plasma experiments confined 10-20 spherical melamine-formaldehyde (MF)

particles in an RF argon plasma. We purposefully used a combination of manu-

factured particles (microParticles GmbH) with labeled diameters of 12.8±0.32 µm,

9.46±0.10 µm, and 8.00±0.09 µm since our model is able to handle different particle

sizes. The particles were levitated at the edge of the plasma sheath formed above a

cylindrical aluminum electrode (diameter = 150 mm, Fig. 4.1A), a setup similar to

previous experiments [47, 79, 81, 82]. A unique feature of our experiments was that a

cylindrical neodymium magnet with diameter 7.5 cm was placed inside the electrode.

The particles levitated ≈ 5 mm above the electrode surface, where the magnetic field

strength was ≈ 0.04 T. The gradient in the field produced a vortical ion flow and cor-

responding ion drag force on each particle. This produced a highly-dynamic system of
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Figure 4.1: Overview of data workflow. (A) Particles levitated above the electrode
move mostly in the xy-plane, with small deviations above and below the plane. The
focused ion wake (red) is directly below each particle, and contributes a small attrac-
tive part of the total force (Fij) on particle i. The objective is to infer the horizontal
reduced forces on particles using the equation of motion to the right. (B) Snapshot
of particle positions from a single experiment of 15 particles. The grayscale color in-
dicates the z-position, and the tails of each particle represent the previous 5 frames.
(C) The x, y, and z position of two particles during two seconds. The particles are
marked i (blue) and j (red) in panel (B). The quantity si = ⟨zi⟩ is used as a size
identifier for each particle. (D) The schematic of the model, which consists of three
neural networks trained concurrently (particle interaction gint, environmental g⃗env,
and damping gγ). The color of the inputs designates the source (particle i or j).
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particles with circulation (movie S1 in [139]), where particles were strongly confined

to a horizontal plane, and explored a space roughly 10 mm × 10 mm × 1 mm in

size (Fig. 4.1A). The particles obtained a negative charge (≈ 104 e) in the plasma,

resulting in a repulsive Coulomb force that was generally non-reciprocal [69, 147–150].

The ions wakes beneath each particle gave rise to non-reciprocal interactions when

particles were vertically separated in the z direction, plus a breaking of translational

symmetry in z, while maintaining translational symmetry of particle interactions in

the xy-plane. Specific details of our dusty plasma experimental setup and the method

used for 3D particle tracking are described in prior work [47, 81, 82].

The tracked 3D trajectories, xi(t), yi(t), and zi(t) (Fig. 4.1B), of all the particles

were used as input to train our ML model. An example of trajectories for two particles

is shown in Fig. 4.1C. The model assumes that the horizontal (xy-plane) acceleration

of each particle is determined by Netwon’s 2nd law:

¨⃗ρi = f⃗i =
∑
j ̸=i

fij ρ̂ij + f⃗ env
i − γi ˙⃗ρi, (4.1)

where f⃗i is the horizontal reduced force on particle i, or equivalently the net force,

F⃗i = (Fi,x, Fi,y), divided by its mass, mi. Dotted variables represent differentiation

with respect to time. The vectors ρ⃗i = (xi, yi) and ρ⃗ij = (xi−xj, yi− yj) = ρij ρ̂ij (ρ̂ij

is the direction of the reduced horizontal interaction force from particle j to i), and

fij = Fij/mi, where Fij is the magnitude of the force. Since the ion wake is directly

below each particle, as shown in Fig. 4.1A, the ion wake will change the direction of

the z-component of the force, but interaction forces in the xy-plane will still point

along ρ̂ij [69]. The reduced environmental force is f⃗ env
i = F⃗ env

i /mi, where F⃗ env
i is the

horizontal environmental force on particle i, and the damping coefficient of particle

i is γi. Particles are confined by gravity and electrostatic forces in the z-direction,

which are about 100 fold larger than other forces in the system, as evidenced by
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the different frequencies and amplitudes of motion shown in Fig. 4.1C. This makes

determination of vertical forces difficult without higher time resolution, thus we only

aim to infer forces in the xy-plane. In general, these forces will depend on the z-

position of each particle. Importantly, the particles in our experiments were not

identical, thus the model requires particle-level identifiers. Ideally, this would be the

mass of each particle, which is unknown. But heavier particles sit lower in the plasma

sheath, and we found that a good identifier (si) for the size of each particle was simply

its mean z-position, averaged over an entire time series: si = ⟨zi⟩t.

In the model, three neural networks (NN) act as universal approximators to the

forces on each particle (Fig. 4.1D). They have separate inputs and are trained in

parallel. The first NN, gint, requires ρij, zi, zj, si, and sj as inputs. It outputs the

magnitude of the effective reduced interaction force, fij. We note that this structure

conserves translational symmetry in x and y, but breaks this symmetry in z. The

second NN, g⃗env, requires xi, yi, zi, si as inputs. It outputs f⃗ env
i . The third NN, gγ,

uses si as its sole input, and outputs γi. Requiring a drag force linear in velocity

is supported by theory: according to Epstein’s law [124], for spherical MF particles

with a density of 1,510 kg·m−3 inside argon gas [44],

γi =
12.2P

di
µm · Pa−1 · s−1. (4.2)

Here P is the plasma pressure and di is the diameter of particle i. Inferring an indi-

vidual particle’s damping coefficient provides direct information about its size (and

mass), thus gγ constructs a map from the size identifier si to the physical parameter γi

(or mi). During training, the model adjusts the weights in each neural network con-

currently to minimize a loss function that compares the predicted reduced force, f⃗i, to

the measured horizontal acceleration, ¨⃗ρi. To prevent excessive noise when calculating

time derivatives of experimental data, we use the weak form in our loss function [157].
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Since we are calculating the forces between all pairs of particles, the total training

time scales as N2
p . The complete details of the model structure, minimization of the

loss function, and the application of the weak form are described in chap. 4.6.1

4.3 Model prediction results

c

modelexperiment

A

B

Figure 4.2: The predicted reduced force (f⃗ , dashed lines) and measured experimental
acceleration (¨⃗ρ, solid lines) for 2 particles (red and blue) in the 15 particle system.
Data is shown for 2 s out of the 4.94 s of test data. The entire experiment was 49.4
s long. (A) fx and ρ̈x, and (B) fy and ρ̈y. The two particles are the same particles
shown in Fig. 4.1C.

We used the model to infer forces on particles from 5 experiments (movies S1-S5

in [139]) carried out under different conditions: number of particles, gas pressure,

and plasma conditions. At least ∼ 9 particles were necessary to produce a highly

dynamic system; smaller systems with less particles tended to form rotating crystalline

structures (see Movies S6-S7 in [139]). For each experiment, ten-fold cross-validation

was used to compute a validation R2 score, which was always larger than 0.99 (Table

4.1). For visual reference of the model performance, we show data for the x and
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Np P (Pa) zstd (mm) ρstd (mm) Test R2 color

9 1.00 0.060 0.96 0.9949 blue
10 1.00 0.10 1.23 0.9921 green
13 1.00 0.082 1.14 0.9912 red
15 0.75 0.12 2.24 0.9919 orange
18 1.20 0.033 1.38 0.9963 purple

Table 4.1: Parameters and model performance from 5 experiments. Np is the number
of particles, P is the neutral gas pressure, zstd and ρstd are the standard deviation
of the particle motion in the vertical and horizontal directions, respectively, and are
averaged over all particles. Test R2 is the R2 score of the model performance on
the test data set. Each experiment is assigned a color, indicated by the last column,
which is plotted in Fig. 4.4.

y acceleration on two different particles and the corresponding model prediction in

Fig. 4.2A-B. This remarkable agreement is representative of all 49.4 s of data captured

in the experiment. We note that a high R2 only indicates that the model fits the sum

of the three reduced force components in Eq. 4.1, and does not necessarily indicate

that each component is fit correctly. Thus, we ensured that the set of input parameters

for each component was parsimonious and contained minimal overlap, i.e., xi and yi

appear directly as inputs to g⃗env, but only appear in the particle separation ρij for

gint. Furthermore, as we will show, the accuracy of each component is validated by

inferring particle-level properties in two independent ways.

Recent examples using graphical neural networks show that effective local inter-

action forces can be learned from experimental data by assuming all particles are

identical, and computing the average force [13]. Underdamped Langevin inference

(ULI) can also extract complex interactions between identical particles [125]. In con-

trast to these examples, our model predicts the effective reduced interaction force,

fij, which can be non-reciprocal, between any particle pair i and j at any position

represented in the experimental data. We are not aware of any other force infer-

ence technique that is capable of treating particles as individuals. For simplicity,

since ρij = ρji, we use ρ to denote the horizontal separation of two particles. Fig-

ure 4.3A demonstrates the model’s ability to capture non-reciprocal interactions for
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two nearly identical particles with identifiers s1 ≈ s2 at different vertical positions,

z1 < z2. Non-reciprocity is clearly observed for ρ < 0.6 mm, and f21/f12 ≈ 2 at the

shortest separation. For the same particles with a larger vertical separation, f12 is

attractive (Fig. 4.3A inset). The dramatic non-reciprocity is due to the presence of an

ion wake structure beneath each particle (the deviation of an ion’s linear drift towards

the electrode due to a particle’s charge) [158]. However, interactions are expected to

be reciprocal when zi = zj [69]. This reciprocity is illustrated in Fig. 4.3B for the

same two particles (the main panel) and two different particles (inset).

In this reciprocal regime, we used the well-known screened Coulomb interaction

to fit the prediction of the model:

mifij = mjfji =
A

ρ

(
1

ρ
+

1

λ

)
e−ρ/λ. (4.3)

Here the coefficient A is a fitting parameter, but theory suggests that A = qiqj/4πϵ0,

where qk and mk are the charge and mass of particle k, respectively, ϵ0 is the permit-

tivity of free space, and λ is the effective screening length [31, 44, 151]. Importantly,

systematic error can be clearly observed in the fit (solid lines in Fig. 4.3B), indicating

that there are deviations from Eq. 4.3 as a universal law for all particle separations.

This deviation is expected since the real interaction involves both negatively-charged

particles and their associated ion wake structures. These structures are often mod-

eled as a virtual, positive charge below each particle [133]. Nevertheless, Eq. 4.3 is a

good analytical approximation for each pair of particles when they are at the same

z, although as we will show, care must be taken when interpreting both q and λ from

the fits to Eq. 4.3. When zi = zj, but si ̸= sj, as shown in the inset of Fig. 4.3B for

different particles with indices 1 and 3, the reduced force can be shifted to coincide

using a multiplicative factor of 2.6. This factor is the particles’ mass ratio, m3/m1,

when the forces are reciprocal (F13 = F31).
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In addition to the dependence on ρ, the model can predict the dependence of the

interaction force on z, revealing the spatial structure of the plasma sheath. Figure 3C

shows the reciprocal reduced force versus z for particles 1 and 2 when z1 = z2 = z.

At larger z, the force is nearly uniform, but then rises precipitously as z decreases,

more than a factor of two over a span of 200 µm. This sharp rise is mostly due to

the variation of accumulated charge on each particle. In the bulk plasma, properties

such as the ion and electron temperature and density are expected to be constant

[43, 49]. Thus, the particle charge should also be constant. However, inside the

plasma sheath, these properties change, and the charge on the particles can increase

dramatically [47, 52]. This is also evidenced by an increase of the screening length (λ)

at the boundary of the plasma sheath (Fig. 4.6). Additionally, we show the model’s

prediction of the reduced environmental force (f⃗ env
i ) in Fig. 3D. This force acts on

each particle separately, and is due to local electric fields and ion drag forces that

trap the particle and drive its vortical motion. Taken together, Fig. 4.3 shows how

our ML model can turn the particles into non-intrusive, local probes of the plasma

environment.

4.4 Inference of plasma and particle properties

In many-body systems, measured properties of individual particles are often inacces-

sible or assumed from simple theories, yet our ML approach can infer both the mass

and charge of each particle from experimental data alone. Using nonlinear regression,

we simultaneously fitted the model’s predicted interaction (e.g., Fig. 4.3B) to Eq. 4.3

for every pair of particles in each experiment at z = 0.03 mm, with fitting parameters

mi, qi, qj, and λij. Note that here qi is used rather than Q in previous chapters, to

highlight that charge in this chapter would vary since we use various particles. To

obtain good fits, it was necessary to allow the screening length (λij) to vary between
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Figure 4.3: Model prediction of interaction and environmental reduced forces for the
15-particle experiment. (A) The magnitude of the reduced interaction force (f12,
cyan triangles; f21, purple squares) between two similar particles (s1 = 0.234 mm,
s2 = 0.232 mm), at z1 = 0.15 mm and z2 = 0.30 mm. The force is plotted versus
the horizontal separation ρ. The inset shows the interaction at z1 = 0.05 mm and
z2 = 0.35 mm. (B) The model predicts the same two particles’ interaction is reciprocal
at z1 = z2 = 0.15 mm. The black solid line is a fit of the average of the two predictions
to Eq. 4.3 with λ = 0.42 mm. The inset shows the interaction of two different particles
(f13, brown circles; f31, green stars) at z1 = z3 = 0.15 mm. Here s3 = −0.053 mm,
and f31 is shifted by a factor of 2.6 (the mass ratio) to collapse the curves. The black
solid line is a fit to Eq. 4.3 with λ = 0.48 mm. (C) f12 and f21 evaluated at ρ = 0.5,
plotted versus z = z1 = z2. The sharp rise in the model prediction indicates the
boundary between the plasma sheath and bulk plasma (purple). (D) Environmental

reduced force field of particle 1, f⃗ env
1 , at z1 = 0.15 mm. The error bars represent the

standard deviation of the prediction from 10 models trained on different sections of
the experimental data, as detailed in chap. 4.6.2 (SM).
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particle pairs, rather than be represented by a single constant that only depends on

the plasma environment as theory suggests [31] (See Sec. 1.2.1). This is evidenced in

Fig. 4.4A, where fij is plotted for a pair of small particles, and a pair of large particles.

The Debye length varies by almost a factor of 3. This surprising result suggests that

in plasma sheaths, and potentially in weak magnetic fields, particle size can affect

ion and electron screening in new, unexpected ways. In addition to the mass inferred

from the interaction, mi,int, we obtained an independent estimate of the mass, mi,γ,

from the inferred damping coefficient, γi, by computing the particle’s diameter us-

ing Eq. 4.2, and the mass was calculated assuming the particles were spheres. The

two independent masses inferred from parallel-trained NNs show excellent agreement

(Fig. 4.4B), demonstrating that the model correctly infers each term in Eq. 4.1 using

experimental data.

The inference of the particle charge reveals discrepancies from widely-used theo-

retical assumptions. Orbital-motion-limited (OML) theory predicts the charge on a

spherical particle in a dusty plasma if the electron and ion temperatures (and densi-

ties) are known (Sec. 1.2.1). These properties vary most strongly with z in the plasma

sheath, so at the same z-position, theory suggests that two particles of different sizes

should act as spherical capacitors and have the same floating potential, Vi = 2πϵ0diqi.

Thus, we expect qi ∝ m
1/3
i since mi ∝ d3i . We tested this relationship by fitting

the inferred charge versus mass in all 5 experiments using qi ∝ mp
i . As shown in

Fig. 4.4C, the power p ranged from 0.30-0.80. This result is unexpected since our

experiments lie in the regime where OML theory should be the most accurate, i.e.,

for small particles (d ≪ λ) and low collisionality (low pressure and density) [159].

Thus, even when the particle charge is inferred at the same z-position, where plasma

properties should be the same for all particles, the power p can vary substantially

from the expected value of 1/3. Moreover, the power p increased monotonically with

pressure P (Fig. 4.4 inset), indicating that the plasma sheath environment and par-
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Figure 4.4: The inferred measurements of mass, charge, and Debye length using
Eq. 4.3, at z = 0.03 mm. (A) In the 15-particle experiment, the interaction between
small particles 1 and 2 (s1 = 0.234 mm, s2 = 0.232 mm, cyan) and between large
particles 4 and 5 (s4 = −0.150 mm, s5 = −0.161 mm, gray) have a distinctly different
decay with length scale λ. The solid lines are fits using Eq. 4.3. Note that a larger λ
means slower decay. (B) The mass of all particles inferred from the drag coefficient
(mγ) versus the mass inferred from the particle interaction (mint). Different colors
represent the 5 different experiments (Table 1). The dashed line is the theoretical
value of mγ = mint. The gray box represents particles with an average diameter of
12.8 ± 0.32 µm, corresponding to a mass of m0 =1.65 ± 0.12 ng, which is necessary
for quantifying the mass. (C) Particles charge, q, versus mint, both inferred from the
fitting procedure using Eq. 4.3. The dashed lines are power law fits with the fitting
power p displayed alongside the lines. In both panels, the two clusters of purple
and orange data (indicated by the arrows) each consist of 5 similar particles whose
manufacturer-labeled diameters are 9.46 ± 0.10 µm (0.66 ± 0.02 ng) and 8.00 ±
0.09 µm (0.40 ± 0.01 ng), respectively. Inset: the fitting power p versus the plasma
pressure P . Note that the blue and green data coincide.
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ticle charging mechanism change substantially with pressure, although more data is

needed to determine this relationship. Furthermore, to ensure that our results are not

an artifact of the inference process and accurately represent the physics, we simulated

systems of many particles with similar non-reciprocal forces and environmental forces

as in the experiment, and required that qi ∝ m
1/3
i (see appendix 4.6.4). The model

achieved a validation R2 = 0.9989 and demonstrated remarkable performance when

extracting the mass and charge of each particle (Fig. 4.7A-B), suggesting that the

inferred deviations from the accepted theory in experimental data are real.

While our model only fits the horizontal acceleration due to the limit of the laser

scanning frequency, the particle’s vertical motion also contains useful information,

which can be analyzed with the aid of our model. First, the (radial) eigenfrequency

of vertical motion for particle i, ωz,i, can be easily obtained by fitting the Fourier

spectrum with Eq. 3.11 (Fig. 4.5A). We can repeat the same step as above at different

z to obtain each particle’s charge qi as a function of z. Rather than fitting all particles’

interactions, at a given z, particle i is used in the fit if and only if it explores this

z in the experiment, or more rigidly, z is within the 5% to 95% percentile of zi(t).

The selection of particles may cause a < 5% systematic error in the fitted charge,

as shown in Fig. 4.5B at around z = 0.00 mm. Each particle’s equilibrium change

qi(z) decreases as a function of z, as plotted in Fig. 4.5a. A flattening of the decrease

is observed at z = 0.26 mm, which indicates a flattening of particles’ charge. As

theory suggests [31], the particles’ charge sharply increases in the plasma sheath and

is uniform in the bulk plasma. z = 0.26 mm can be viewed as the boundary of the

plasma sheath in our experimental setup.

The vertical electric field Ez can further be calculated at the equilibrium z of

each particle i, si. All the differential with respect to z are noted prime (′) in this

paragraph. In the z-direction, the dominating forces are gravity and electrostatic
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force Ez(z)qi(z) which is a function of z, which balances each other at z = si:

mig = Ez(si)qi(si) (4.4)

We linearized this restoring force as a harmonic oscillator. So, ωz,i should depend

on the ’steepness’ of the restoring forces at their equilibrium position, z = si:

miω
2
z,i = (Ezqi)

′(si) = E ′
z(si)qi(si) + Ez(si)q

′
i(si) (4.5)

With known mi, qi(z) thus known q′i(z), we can calculate Ez(si) and E ′
z(si) by solving

Eq. 4.4-4.5 for each i, which is shown in Fig. 4.5C. The electric field decays sharply

near the boundary of plasma sheath.

The gradient E ′
z intrinsically links the points, which implies that the model cap-

tures the underlying physical relationship between the electric field and its spatial

variation without explicitly being fed this information. This would generally be con-

sidered strong evidence that the model has learned a genuine physical law or pattern

that reflects the real-world behavior of the system its modeling, rather than merely

being able to predict a future state. The ability of the model to accurately predict

the linkage between Ez and E ′
z at various z positions demonstrates its robustness and

hints at the possibility of leveraging such models to infer other plasma characteristics.

An accurate measurement of plasma properties may have profound implications for

controlled fusion research, space physics, and industrial applications where plasma

behavior plays a critical role.

4.5 Conclusion

We have developed a machine learning model that accurately infers the forces acting

on individual particles in a many-body system. What makes this model different
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Figure 4.5: (A) The Fourier spectrum amplitude (A) of the blue and red particles in
Fig. 4.1. The fit is conducted with Equation. 3.11. (B) Variation of the predicted
charge q (in units of 104e) as a function of the vertical position z (in mm) for indi-
vidual particles within the plasma. Each curve corresponds to a different particle,
and the flattening of the curve at z = 0.26 mm indicates the boundary between the
plasma sheath and bulk plasma (purple). (C) Simultaneous prediction of the electric
field Ez and its gradient E ′

z at the equilibrium positions of the particles, with circles
denoting Ez values and connected lines indicating E ′

z. The model’s accuracy in link-
ing these values without prior knowledge emphasizes its proficiency in encapsulating
the physical dynamics governing the system. The arrows point to the blue and red
particles in panel A.
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from past approaches is its ability to approximate complex, nonlinear interaction

laws using NNs, to effortlessly scale with the number of particles and build in phys-

ical symmetries into the model structure, and to learn purely from experimental

data. Furthermore, the model’s ability to know the physics is validated exclusively

on experimental data, by 1) self-consistently predicting the mass of the particles in

two separate ways, and 2) self-consistently predicting the vertical electric field and

its differential at the equilibrium positions of each particle. By applying this new

approach to dusty plasmas, we learned both environmental forces and pairwise inter-

action forces between particles, extracted the mass and charge of each particle, and

the electric field in situ. In doing so, we discovered unexpected scaling laws between

the charge and mass of each particle and a variation in the Debye screening length

between particle pairs, suggesting that charging mechanisms in the plasma sheath

are more complex than widely-used theories often assume. We expect these results

to serve as seeds for new directions of research in dusty plasma physics. Outside of

dusty plasma research, our ML approach is widely applicable to physical and biologi-

cal systems composed of many interacting agents. They can be active or passive, with

arbitrarily complex interactions. Although intuition guides the underlying symme-

tries and expected structure of the model, the ability to surpass intuition and avoid

biased assumptions is an essential first step in discovering new scientific laws from

experiments.
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4.6 Appendix for Chap. 4

4.6.1 Model details

Our model is implemented in TensorFlow [160]. In this section, all the bold text are

functions in TensorFlow, with input parameters in the bracket after the function, if

necessary. If parameter values are not mentioned, they are assumed to be the default.

As described before, the model consists of 3 neural networks (NNs) trained in parallel:

gint, g⃗env, and gγ. Both gint and g⃗env have 3 dense-connected hidden layers, with

he normal initialization and L2 regularization. The network gint has 32 neurons for

each hidden layer with leakyrelu (alpha = 0.1), tanh, and leakyrelu (alpha = 0.1)

as activation functions, respectively. These parameters are not strictly investigated,

because varying them only leads to a small change in the R2 (≈0.001). As for the

choice of these parameters, 3 hidden layers is a typical choice for standard NNs, which

I did not tune. I tried 64 neurons per layer first, and then 32 neurons for a speed

boost, and discovered that 32 neurons perform as well as 64, so the decision is settled

on 32. As for the choice of activation function, leakyrelu, due to its simplicity, is

about 20% faster than tanh. However, after some training, I found having one tanh

among the 3 layers results in a slight improvement, probably because the better non-

linearity that tanh provides. Finally, the last layer must be leakyrelu to ensure that

the output would not saturate to 1, the maxima of tanh. The last hidden layer is

fully connected to a single output, the magnitude of the reduced interaction force in

the xy plane, multiplied by horizontal separation, fijρij. The multiplication of the

force by ρij serves two purposes. The first is to lessen the divergence of the output

as ρij → 0. The second is to save considerable computing time by not calculating

a square root for every interaction force vector, which is calculated for each particle

interaction pair:

f⃗ij = fij ρ̂ij =
fijρij ρ⃗ij

ρ2ij
. (4.6)
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The network g⃗env has 16 neurons for each hidden layer with elu, tanh, and elu as

activation functions, respectively. The last hidden layer is fully connected to two

outputs, f env
i,x and f env

i,y . Finally, the network gγ has 2 hidden layers with 16 neurons

each, and elu and tanh as activation functions, respectively. The last hidden layer

is fully connected to a single output: the damping coefficient, γi. Note that the

activations were intended to be relu, and initially elu was a typo. However, The typo

was discovered after several models were trained and saved, and I then investigated

that elu performs as well as relu. For consistency, I used elu for the remaining

models. As described before, our model fits the reduced net force,
∑

j f⃗ij+ f⃗ env
i −γi ˙⃗ρi,

to each particle’s experimental acceleration, ¨⃗ρi.

To reduce the amplification of measurement error by temporal differentiation, we

apply the weak form [157] in our loss function:

L =
1

2NpTtrain

(Np−1)∑
i=0

∑
t∈Ttrain

{x,y}∑
α

Li,t,α, (4.7)

Li,t,α = H

(
w ⊛t (f⃗

env
i +

∑
j

f⃗ij − γi ˙⃗ρi − ¨⃗ρi)α; δ

)
(4.8)

Here Ttrain is the total number of frames for the particle trajectories in the train-

ing dataset, Ttrain, and w is a customized weight function, defined in the range

[−τ∆/2, τ∆/2]:

wt′ = w(t′∆) =
30

(τ∆)5
(
(t′∆)2 − (τ∆/2)2

)2
, (4.9)

where the recording time step ∆ = 0.005 s, and τ = 16 is the size of the convolution

window. The function H is a Huber loss function that reduces the relative weight of

outliers in the loss function. The parameter δ controls the threshold of this reduction.
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The convolution function ⊛t is defined as:

a⊛t b =

∫ τ/2

−τ/2

a(t′∆)b(t′∆+ t∆) dt′ = ∆

τ/2∑
t′=−τ/2

St′at′bt+t′ . (4.10)

In the last step of the equation above, Simpson discretization is used to compute the

integral over each window, with the coefficient:

St′ =



1/3, if |t′| = τ

4/3, if |t′| < τ and (t′ + τ) is odd

2/3, if |t′| < τ and (t′ + τ) is even

0, else.

(4.11)

By definition, at t′ = ±τ/2, w(t′) = 0 and ẇ(t′) = 0. Therefore, it is easily proven

through integration by parts that:

w ⊛t
˙⃗ρi = −ẇ ⊛t ρ⃗i (4.12)

w ⊛t
¨⃗ρi = ẅ ⊛t ρ⃗i (4.13)

As a result, our loss function becomes:

Li,t,α = H

(
(w ⊛t f⃗

env
i +

∑
j

w ⊛t f⃗ij + γiẇ ⊛t ρ⃗i − ẅ ⊛t ρ⃗i)α; δ

)
(4.14)

Thus, by using the weak form, temporal derivatives of experimental particle positions

are replaced by derivatives of the weight function, which is analytic.

As mentioned previously, the parameter δ controls the crossover from quadratic

to linear loss in the Huber loss function. When x < δ, H(x; δ) ∝ x2 and when x > δ,

H(x; δ) ∝ x. Considering that a very large fitting error on a single data point might
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arise from other sources of noise (for example, tracking error), this large error should

be deemphasized (only matter linearly) in our loss function. The parameter δ is

chosen to be:

δ = 0.25
√

TSSD = 0.25

√√√√ 1

2NpTD

(Np−1)∑
i=0

∑
t∈TD

{x,y}∑
α

(ẅ ⊛t ρ⃗i)2α, (4.15)

where TSS is total sum of squares of the experimental acceleration in the loss function.

D refers to either train or test data set. To quantify the quality of the model’s fit, we

define R2 as:

R2 = 1− RSStest

TSStest

, (4.16)

where RSS is residual sum of squares:

RSSD =
1

2NpTD

(Np−1)∑
i=0

∑
t∈TD

{x,y}∑
α

(w⊛t f⃗
env
i +

∑
j

w⊛t f⃗ij+γiẇ⊛t ρ⃗i− ẅ⊛t ρ⃗i)
2
α. (4.17)

We note that for R2 > 0.99, the average percentage error should be
√
1−R2 < 10%.

Therefore, we set an arbitrary threshold, δ = 0.25, which indicates that data with an

error that is 2.5 times the average error should be considered an outlier in the Huber

loss. Finally, the data is split into 10 temporal sections, and 10 models are trained

by 10-fold cross-validation. Such splitting ensures that models inferred in one section

work in the others, so that there are no significant drifts in the experiments. Note

that because of the convolution (Eq. 4.10), for a data with time length T , t can only

be defined on τ/2 ≤ t < T − τ/2. For the l-th model,

Ttest =

{
t|τ/2 + l − 1

10
(T − τ) ≤ t < τ/2 +

l

10
(T − τ)

}
(4.18)
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and

Ttrain = {t|τ/2 ≤ t < T − τ/2 and t /∈ Ttest} . (4.19)

The average (test) R2 of the 10 models for the 10-fold validation is reported in Tbl. 4.1.

The error bars shown in Figs 4.3,4.4 are calculated from the standard deviation of the

10 models’ prediction. We note that this estimation of the error bars only includes the

variance of the model, plus the variation caused by the temporal plasma environment

fluctuation in the experiments, while the bias of the model is not included.

4.6.2 Data processing

To train the model, the data xi,t, yi,t, zi,t, and si,t needs to be organized into a form

that can be efficiently iterated over to save computational time. Note that si is a time-

averaged identifier of particle i and is independent of t. However, for consistency in

the input, we constructed the array of si,t ≡ si at all times. We need three tensors that

can be used to calculated the convolution of the data with w, ẇ, and ẅ. Thus, each

term in the loss function was associated with a separate tensor of data to compute

the convolution. The data is first processed into three tensors X0, X1, and Y . Y is

the target, which is a 3D tensor with shape of Np× (T − τ)×2. Yi,t,α = ẅ⊛tαi where

α is either x or y. Similarly, X1
i,t,α = ẇ ⊛t αi. X0 is a 5D tensor, with a shape of

Np × (T − τ)× (τ − 1)×Np × 4 . To explain the meaning of X0
i,t,t′,k,α, we first define

an index function on 0 ≤ i < Np, 0 ≤ k < Np:

n(i, k) =


i, if k = 0,

k − 1, if 0 < k ≤ i,

k, if i < k < Np.

(4.20)

Then X0
i,t,t′,k,α = αj,t+t′+1, where α can be x, y, z, or s, and j = n(i, k). Here, note

that when calculating w ⊛t fij, only the input from time t − τ/2 + 1 to t + τ/2 − 1
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is needed, with a total length of τ − 1, because w±τ/2 = 0. Finally, the first two

dimensions of all three tensors are flattened, and the last two dimensions of X0 are

flattened, making X0, X1 and Y 3D, 2D, and 2D tensors, respectively.

4.6.3 Fitting of charge and mass for each particle from the

model

As described in Sec. 4.3, when two particles have the same z coordinates, their in-

teraction is expected to be reciprocal, since oscillations over z are quickly averaged

out. In fact, when si = sj, the model requires their interaction to be reciprocal. In

this regime, even if si ̸= sj, fij coincides with fji by shifting by the ratio of particle

masses. For extracting mi and qi, we used a screened Coulomb interaction fC :

fC(ρ; qi, qj,mi, λi, λj) =
qiqj

4πϵ0miρ

(
1

ρ
+

1√
λiλj

)
exp (−ρ/

√
λiλj). (4.21)

In order to find the mass and charge of all particles at a specific z position, we

performed a global least-squares fit of every pair of particle interactions. For example,

for a given z position, let f̄ij(ρ) represents the model’s prediction of particle j’s

reduced force on i at vertical position zi = zj = z and horizontal separation ρ:

f̄ij(ρ) =
gint(ρ, z, z, si, sj)

ρ
. (4.22)

In the fitting procedure, we aim at finding the optimal values of {qi, qj,mi, λi, λj}

that minimize the following loss function:

LC =

Np∑
i=0

Np∑
j=0,j ̸=i

[a,b,c]∑
ρ

(
f̄ij(ρ)− fC(ρ; qi, qj,mi, λi, λj)

)2
. (4.23)
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Here [a, b, c] defines which particle interactions to include in the sum. The minimum

separation is ρ = a, the maximum separation is ρ = b, and particles within a small

range c are included at each separation. For Fig. 4.3, we chose a = 0.3 mm, b = 1.2

mm, and c = 0.01 mm. We note that, although theory suggests the decay length λ

does not depend on particle size, our model predicts otherwise. An example showing

how the reduced interaction force depends on the size of particles is shown in Fig. 4.4C.

Although the fitting function (Eq. 4.21) assigns an individual λi to each particle, this

is not based on a physical theory, and is solely done to reduce the number of fitting

parameters while still allowing flexibility in fitting λ for each particle interaction.

Finally, we note that the charge and the mass are coupled in the fitting procedure

since they appear as a ratio. For example, if we decrease all particles’ mass by a

factor of 4, and decrease all particles’ charges by a factor of 2, the fitting quality

wouldn’t change. Thus, we added a constraint in the fitting that the average mass

of the particles in the shaded area in Fig. 4.4 should be 1.65 ng, the average mass

reported by the manufacturer. The above procedure was implemented for each of the

10 trained models, and the average qi and mi over all 10 models plus their standard

deviation is reported in Fig. 4.4.

4.6.4 Dusty plasma simulations

In order to test the accuracy of the ML methods, and the inference of the mass and

charge of particles, we simulated our dusty plasma system using a custom molecular

dynamics code. The simulations are similar to those used in previous studies [79, 80,

82]. The simulations consisted of 15 spherical particles whose diameters were chosen

from a Gaussian distribution with a mean of d0 = 10 µm and a standard deviation of

1 µm. In the horizontal, xy-plane, the particles were confined by a harmonic potential

with a small degree of asymmetry to match the experiments. They also experienced a

vortical force to induce rotation of the system, leading to the following environmental
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reduced force:

f env
i,x = (1 + β)χhqixi/mi + Ω2yi − γẋi, (4.24)

f env
i,y = (1− β)χhqiyi/mi − Ω2xi − γẏi. (4.25)

The degree of asymmetry of the potential was determined by the dimensionless num-

ber β, χh is the electric field gradient, qi and mi are the charge and mass of particle

i, Ω is the strength of the background vorticity from ion drag, and xi and yi are

the horizontal coordinates of particle i. Dotted variables indicate differentiation with

respect to time and the Epstein drag force is determined by γ. The mass of each

particle was computed as mi = ρpπd
3
i /6, where ρp = 1,510 kg·m−3, and di is the

diameter of particle i.

In the vertical direction, the particles experienced a force due to a linearly-varying

electric field, and gravity. The reduced force was determined by the following equa-

tion:

f env
i,z = min(E0 + χzzi, 0)qi/mi − g − γżi + ηw(t). (4.26)

Here E0 is a constant vertical electric field, χz is the electric field gradient, zi is the

vertical position of the particle, and g = 9.81 m·s−2 is the acceleration due to gravity.

The min function guarantees that the electric force will never change sign, and thus

the edge of the plasma sheath occurs at zedge = −E0/χz, a small distance above

z = 0. The last term provides a small amount of stochastic noise in the z direction.

This noise drives oscillations in z since the particles behave as stochastic harmonic

oscillators with a well-defined resonance frequency. The function w(t) represents a

Wiener process with zero mean and unit standard deviation, and η is the strength

of the noise. Since we are not inferring forces in z, this does not affect the inference

procedure, and is based on previous experiments in our lab illustrating z oscillations
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originating from Brownian motion [82] and spontaneous oscillations due to delayed

charging at low pressures [47]. We also allow the charge on the particle to vary linearly

within the sheath, increasing in magnitude as zi decreases. This was done by treating

each particle as a spherical capacitor, and parameterizing the charge in the following

way:

qi = min(2πϵ0diV (1− zi/lq),−8× 10−16), (4.27)

where the units of charge are in Coulombs. This guarantees that the magnitude of the

(negative) charge on the particle will never be smaller than 5,000e, and the magnitude

of the charge increases deeper into the sheath (smaller zi). Here lq is a length scale

that determines the strength of charge variation in the sheath. The voltage V is a

constant that determines the charge on a particle at z = 0.

Figure 4.6: The fitted Debye length λ versus z for the 20 interactions of particles 1
and 2. The gray-shaded region indicates uncertainty. Note that our model’s accuracy
can only infer interaction when ρ < 1.2 mm, and the parameter λ is introduced in
the term of exp (−λ/ρ) in Eq. 4.3. Thus when λ > 1.2 mm, the fitting cannot give
accurate predictions of λ. The purple shaded region indicates bulk plasma, in which
λ is predicted to be larger than 1.2 mm.

The parameters described here, such as electric field, are difficult to relate to

experimental measurements. Thus, we fixed these parameters by relating them to
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BA C

Figure 4.7: Results from the inference of mass and charge in dusty plasma simulations.
The parameter values used for this simulation were N = 15, d0 = 10.0 µm, λ = 0.8
mm, Ω = 4.25 Hz, V = -5 V, ωh = 21.2 Hz, ωv = 157 Hz, β = 0.1, lq = 1 mm, η = 5
m/s2, q̃ = 0.5, and b = 0.2. (A) The interaction between two small particles indexed
1 and 2 (blue squares, the actual masses used in the simulation m1 = 0.44 ng and
m2 = 0.46 ng), and two big particles indexed 4 and 5 (gray triangles, actual masses
m4 = 1.43 ng and m5 = 1.45 ng). The solid lines with corresponding colors are fits to
Eq. 4.3 with parameters A = 97 mm3·s−2, λ = 0.48 mm (f12), and A = 64 mm3·s−2,
λ = 0.52 mm (f45). The dashed lines are the actual interaction reduced force used
in the simulation. (B) The mass of all particles inferred from the drag coefficient
(mγ, green circles) and the mass inferred from the particle interactions (mint, brown
squares), versus their actual mass used in the simulation. The dashed line represents
mint = mγ = mactual. (C) Particle charges inferred from their interactions (qint, brown
circles), and their actual charges used in the simulation (qactual, black squares), versus
mint. The dashed line is the optimal power-law fit to the inferred data with power
p = 0.31.
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the typical frequencies of small oscillations of the particles around their equilibrium

positions. Experimentally, these can be measured from the 3D tracking data [81], and

are given by ωh in the horizontal direction, and ωz in the vertical direction. Linearizing

the force around z = 0, so that f env
z = 0, ω2

h = −df env
x /dx, and ω2

z = −df env
z /dz, we

arrive at the following relationships:

χh = −ρpd
2
0ω

2
h

12V ϵ0
, (4.28)

E0 =
ρpd

2
0g

12V ϵ0
, (4.29)

χz =
ρpd

2
0(g − lqω

2
v)

12lqV ϵ0
. (4.30)

This way a particle with diameter d0 would have its equilibrium position at z = 0, and

frequencies of small oscillations exactly equal to ωh and ωz. However, since particle

sizes are drawn from a Gaussian distribution centered at d0, the frequencies vary as

well.

In addition to the environmental forces, the particles experienced a pairwise, non-

reciprocal repulsive force. This force stems from basic Coulomb repulsion, but also

from the wake of ions streaming past each particle. As done in Ref. [133], we param-

eterized this ion wake by an effective positive cloud of charge with magnitude q̃qi at

a distance h beneath each particle. The force between particles was derived from the

following potential:

ϕ(r⃗) =
qiqj

4πϵ0λD

[
e−r/λD

r/λD

− q̃
e−rw/λD

rw/λD

(
1 + b

e−rw/λD

rw/λD

)−1
]
. (4.31)

Here, ϕ(r⃗) is the potential of the ith particle in the field of the jth particle and its

wake, and fij = −∇⃗iϕ. The position vector between the particles is r⃗, rw = |r⃗ − hẑ|

is the distance from particle i to the wake of particle j, ẑ is the unit vector in the

z direction, and λD is the Debye screening length in the plasma. Note that we
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specifically denote λD, to differ from the general screening length λ used in the fitting

(Eq. 4.3). Finally, b is dimensionless cutoff used to truncate the divergence of the

wake interaction since the wake is not a point charge, but more of a cloud. With these

environmental and interaction forces, the Newton’s 2nd law was integrated forward in

time using the 2nd-order velocity Verlet method.

Without energy input, Epstein drag would drain the energy from the system and

the particles would assume equilibrium positions. However, there are three mecha-

nisms that drive kinetic and potential energy into the particles’ motion. The first is

the vortical force from ion drag, which is non-conservative. The second is the small

amount of stochastic noise in the z-direction. The third is the non-reciprocal inter-

action force (also non-conservative) [69]. The resulting motion of the particles looks

strikingly similar to the experiments , and can be easily analyzed by our ML model.

Prior to training the model, Gaussian-distributed measurement error with stan-

dard deviation 0.005 mm was added to each particle position to simulate experimental

particle tracking error. In our simulation, we used λD = 0.8 mm (Eq. 4.31) for all

particles. Figure 4.7A shows that at the same z-position, there is only a weak depen-

dence of the fitted effective screening length (λ in Eq. 4.21) on different particle sizes

since λ only varies from 0.48 - 0.52 mm for different particle pairs. This indicates that

the particle-dependent effective screening length λ in experiments is real (Fig. 4.4A),

rather than an artifact of the ML model. Moreover, the predicted interaction agrees

with the exact interaction with less than 10% error (Fig. 4.7A). Even though the fit

is very good, the presence of a virtual ion wake can systematically reduce the fitted

values of the screening length (λ = 0.52 mm from the fit, and λD = 0.80 mm in

Eq. 4.31). Figure 4.7B shows the inferred masses from the damping term, assuming

Epstein drag (Eq. 4.2), and the mass inferred from the fitting procedure (Eq. 4.21

and following equations), versus the actual masses of particles used in the simula-

tion. The agreement is remarkable and demonstrates that our model can accurately
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infer each term in the equation of motion. Figure 4.7C shows the inferred charge on

each particle versus the inferred mass. The fitted slope of p = 0.31 is close to the

expected value from the simulation, p = 1/3, and reflects the fact that particles at

the same vertical position will have the same floating potential, independent of their

mass (Eq. 4.27). However, fitting to Eq. 4.3 results in a deviation of the prefactor A

= 89 mm3·s−2 from the actual q1q2/4πϵ0m1 = 103 mm3·s−2. This deviation of A can

cause the inferred q to be systematically lower than the actual q by 5-10%.

Taken together, Fig. 4.7 suggests that the inference of interaction forces in sim-

ulated data is excellent, ion wake-mediated interactions can significantly reduce the

effective screening length, and the inference of particle charge is very good (5-10%

error).
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Chapter 5

Conclusion and future directions

Before my research, the study of many-body behaviors in dusty plasma urgently

needed information on the 3D motion of particles. In my research, I first constructed

a tomography setup to track multiple particles’ individual 3D trajectories. In the

setup, the illuminating horizontal laser sheet oscillates up and down at a frequency

of up to 200 Hz, which is about 100 times faster than the leading tomographic track-

ing of particles in dusty plasma. This tracking provides high-resolution information

about the individual 3D trajectories of particles, enabling further inference of the

physics governing their motion. Then, I developed machine learning (ML) algorithms

to analyze these 3D trajectories. The first model analyzes the noise-driven motion

of one and two particles around their equilibrium positions. The small amplitude

of the motion offers the advantage of linearizing the forces on the particles, but it

also presents the disadvantage that other small-amplitude artifacts (potentially non-

Gaussian noise, environmental drift, etc.) may be significant. ML models, trained on

simulations considering these artifacts, predicted the forces and their spatial differ-

entials around particles’ equilibrium positions. A mathematical formula is required

to interpret particles’ charge and Debye length from the models’ predictions, which

have increased accuracy by 50% over conventional methods like the Fourier spectrum.
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The second model analyzes the large-amplitude motion of 10-20 particles. In this sce-

nario, the linearization of the force is not valid anymore, and neural networks (NNs)

are used as universal approximators for the interaction and environmental forces.

Consequently, this model predicts the interaction and environmental forces for any

particles at arbitrary positions, without a pre-assumed mathematical formula. Phys-

ical parameters such as particle charge and Debye length can be extracted by fitting

the prediction to widely accepted formulas, and these predicted properties differ from

conventional theories.

My research demonstrates the process of the ML-enabled discovery of new physics

which deviates from conventional theories. The pursuit of new physics with machine

learning inherently lacks a ground truth against which discoveries can be validated,

as the phenomena under study are, by definition, new. This absence of a benchmark

poses a unique challenge, particularly when the discovery process is mediated by

the ostensibly opaque mechanisms of NNs. In such scenarios, creativity and critical

thinking become paramount not only to drive innovation but also to validate these

innovations in a meaningful way. One robust method to substantiate new findings

involves making predictions about the same phenomenon in multiple, independent

ways and observing consistency between these predictions. This approach underlines

the importance of diverse validation strategies, as exemplified by the methodologies

I have implemented in my research.

In overcoming the challenges of predicting physics in real experiments, especially

when the phenomena are previously unexplored, I have employed a strategy that

emphasizes validation through diverse methodologies. This approach is crucial when

using neural networks, where the discovery process might not be transparent. For

the one-particle model, the predicted ‘spring constant’ is validated through an inde-

pendent perturbation experiment, demonstrating the model’s capability to replicate

physical behaviors through different experimental setups. In the many-particle model,
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I have applied two distinct methods to consistently infer each particle’s mass, thereby

providing a robust check against the potential errors of a single method. Furthermore,

the model consistently infers Ez(si) at the particles’ equilibrium positions and E ′
z(si),

which connects the predicted Ez(si). These consistent predictions across different

methodologies help confirm the validity of the models.

With the inherent shortcomings of neural networks—their ‘black box’ nature and

the reliance on empirical rather than strictly derived physical equations—effectively

addressed by our robust validation methods, we harness their strengths as accurate

universal approximators. Unlike methods that rely on a predefined library of func-

tions, such as SINDy, neural networks can approximate arbitrary functions, leading

to exceptionally high validation scores, with R2 values reaching as high as 0.99. Our

accurate model discovered new physics: a particle-dependent Debye length, and a de-

viation from the spherical capacitor theory. While not negating established theories,

the superior accuracy of our neural network model over traditional theory’s approxi-

mations (as discussed in Chap. 1.2.1) enables the discovery of these new physics.

Within the context of dusty plasma, many open questions await answers through

my algorithm. For one example, in Sec. 1.2.2, the self-driven motion is explained,

which relates to the delayed charge of the particle. In reference [76], the effective

damping γeff of motion in the z direction is modeled as:

γeff = γ − q′i(si)Ez(si)

miτch
(5.1)

Here, γ is the Epstein damping coefficient, and q′i, Ez, and mi can all be inferred

from the model, and τch is the charging time of a particle. A negative γeff indicates

spontaneous oscillation.

In my Ph.D. work, we quantified qi and Ez for any arbitrary particle i and any

height z that this particle explores, as well as measured mi and γi in-situ. However,
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the characteristic charging time, τch, remains unavailable from our current experi-

ments, though numerical calculations estimate it to be the in the order of 1 ms [76].

The dynamics of charging and discharging particles after turning the plasma on

and off is extensively studied [161–163]. Specifically, the discharging of a cloud of

particles triggers lightning [164], where the air is ignited into a plasma. The measure-

ment of the charging and discharging of particles in a plasma is usually conducted by

applying an external electric field, which may alter the environment [165]. Measuring

the charging and discharging in situ thus becomes very important. One direction of

future experiment is to pulse the plasma or periodically turn the plasma on and off.

The phase of this period, ϕ(t), would be an additional input to our neural networks

gint, g⃗env, and gγ. Repeating the same procedure as explained in Sec. 4.3, we have the

potential to obtain the charge of particles as a function of ϕ, which tells us about the

charging and discharging of the particle. With every parameters in eq. 5.1 measurable

from a single experiment, our research would be the first to experimentally verify the

mechanism of the dust particles’ spontaneous oscillation.

Another open question is the field in a plasma sheath. As mentioned before, the

interaction between dust particles inside a plasma is environment-mediated. A more

detailed explanation is that the plasma environment can be described by a field, which

involves ne, nr, Te, Tr, etc. [31]. A particle’s presence changes the local environment

field, which then effectively exerts a force on another particle.

With a new high-speed camera installed, the camera recording frame rate can be

up to 20000 Hz, allowing for a 500 Hz laser scanning rate and 40 frames per scan for

better z resolution. Therefore, inferring force at z direction would be possible. The

environmental force, if modeled as:

mif⃗
env
i (r⃗) = E⃗env(r⃗)qi(z) (5.2)
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tells the charge density field σ = e(ni−ne) in the environment after qi(z) is extracted

from particles’ interactions:

σ = ∇ · E⃗env/ϵ0 (5.3)

Since no change in magnet field is present in the experiment at the timescale of ms

to s:

∂B⃗

∂t
= 0 (5.4)

The curl of the estimated electric field, ∇ × E⃗env, represents the residue caused by

the presumption (eq. 5.2), which may be caused by the ion drag and second-order

deviations from the pairwise model assumption.

Similarly, the local change of environmental σ caused by the presence of a particle

i, is denoted σi(r⃗; r⃗i, qi). σi is asymmetric in the z direction (σi(x, y, zi + δz; r⃗i, qi) ̸=

σi(x, y, zi − δz; r⃗i, qi)) due to ion flowing towards the electrode below, and is known

as a particle’s plasma wake that causes particles’ interaction to be nonreciprocal (see

fig.1.2). Researchers have experimentally discovered the non-reciprocal interaction

and numerically simulated this effect [70–75], while our model has the potential to

infer the plasma wake purely from experiment:

mj f⃗ji = E⃗i(r⃗j; r⃗i, qi)qj(zj) (5.5)

where

σi(r⃗; r⃗i, qi) = ∇j · E⃗i(r⃗j; r⃗i, qi) (5.6)

Similar to E⃗env, since no change in the B⃗ field exists, ∇j × E⃗i(r⃗j; r⃗i, qi) quantifies the

uncertainty of this extraction of σi.

The aforementioned proposals of acquiring higher-resolution data and further in-

vestigating the model’s predictions advance the idea of particles as probes in a plasma.

This broadens the model’s impact from a relatively small area of research (dusty
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plasma) to a larger area of research, fundamental plasma physics, which is known

as the 4th state of matter apart from solid, liquid, and gas. Particles as probes can

accurately measure the properties of different plasma conditions, offering insights into

more precise plasma research.

Finally, in the systems of thousands of particles, the charge density carried by

particles is no longer negligible compared to the charge density carried by electrons

and ions [48]. In this region, the linear combination of interactions (
∑

j f⃗ij, pairwise

assumptions) is no longer valid. In other words, the presence of a third particle

k would affect two particles’ charges (qi, qj), making fij dependent on positions of

other particles than i, j. Graphical Neural Network (GNN) [166, 167] is one option

to model this non-linear effect. GNN is a very newly-developed and popular tool to

analyze high-dimensional data with dynamical connections, for example, stock market

[168, 169] and pandemic propagation [170]. After I graduate, these new research ideas

will be carried forward by new students in the lab, Zhicheng Shu and Wei-chih Li.

Outside dusty plasma, my approaches pave the way for applying ML to under-

stand the physics in broader many-body systems, especially in biological systems, an

emergent field of scientific study. Some 3D tracking algorithms for movies of cells

have been developed [171, 172], while most experiments are conducted in 2D sys-

tems [173–175], demonstrating self-organized motion that breaks chiral symmetry. A

pre-given formula of pairwise interaction in simulations can reproduce this chiral sym-

metry breaking [174, 176]. Akin to the 2D DP collective behaviors discovered before

my arrival at the lab, these systems eagerly await the advent of advanced tracking

algorithms capable of capturing three-dimensional nuances, coupled with machine

learning architectures poised to unravel the mechanisms at play—mechanisms poten-

tially unbound by preconceived formula.



106

Bibliography

[1] Indrajit Tah, Sean A Ridout, and Andrea J Liu. Fragility in glassy liquids:

A structural approach based on machine learning. The Journal of Chemical

Physics, 157(12):124501, 2022.

[2] Samuel S Schoenholz, Ekin D Cubuk, Daniel M Sussman, Efthimios Kaxiras,

and Andrea J Liu. A structural approach to relaxation in glassy liquids. Nature

Physics, 12(5):469–471, 2016.

[3] Jacob Page, Michael P Brenner, and Rich R Kerswell. Revealing the state space

of turbulence using machine learning. Physical Review Fluids, 6(3):034402,

2021.

[4] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid me-

chanics: Learning velocity and pressure fields from flow visualizations. Science,

367(6481):1026–1030, 2020.
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plasmas. Reviews of Modern Plasma Physics, 5(1):11, 2021.



112

[49] Angela Douglass, Victor Land, Lorin Matthews, and Truell Hyde. Dust particle

charge in plasma with ion flow and electron depletion near plasma boundaries.

Physics of Plasmas, 18(8):083706, 2011.

[50] Jan Carstensen, Franko Greiner, and Alexander Piel. Determination of dust

grain charge and screening lengths in the plasma sheath by means of a controlled

cluster rotation. Physics of Plasmas, 17(8):083703, 2010.

[51] J Beckers, T Ockenga, M Wolter, WW Stoffels, J Van Dijk, H Kersten, and

GMW Kroesen. Microparticles in a collisional rf plasma sheath under hy-

pergravity conditions as probes for the electric field strength and the particle

charge. Physical review letters, 106(11):115002, 2011.

[52] Angela Douglass, Victor Land, Ke Qiao, Lorin Matthews, and Truell Hyde.

Determination of the levitation limits of dust particles within the sheath in

complex plasma experiments. Physics of Plasmas, 19(1):013707, 2012.

[53] Noah Hershkowitz. Sheaths: More complicated than you think. Physics of

plasmas, 12(5):055502, 2005.

[54] Federico Galli and Uwe R Kortshagen. Charging, coagulation, and heating

model of nanoparticles in a low-pressure plasma accounting for ion–neutral col-

lisions. IEEE Transactions on Plasma Science, 38(4):803–809, 2009.
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