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Abstract 

 

Gene Expression Analysis of Endothelial Cells Derived 

from Human Induced Pluripotent Stem Cells 

 

By Woo Jeong 

 

Blood vessels play an essential role in transporting oxygen and nutrients to tissues, 

leading to tissue homeostasis. Cardiovascular ischemic diseases, such as peripheral 

artery disease, are highly linked with damaged and dysfunctional blood vessels. The 

damaged blood vessels restrict efficient blood supply to tissues, leading to shortages of 

oxygen and nutrients and ultimately to dysfunctional tissues. Human induced pluripotent 

stem cells (hiPSCs), which have an unlimited proliferation capacity to differentiate into 

any type of somatic cells without ethical issues, were cultured under a fully defined and 

clinically compatible system to differentiate hiPSCs into endothelial cells (ECs). The 

resultant hiPSC-derived ECs (hiPSC-ECs) showed highly enriched and genuine EC 

characteristics and proangiogenic properties. However, the gene expression profile that 

facilitates endothelial and proangiogenic characteristics has been only partially explored. 

To expand understanding, we used RNA sequencing to identify differentially expressed 

(DE) genes and enriched pathways that significantly contribute to genuine EC features 

and proangiogenic attributes. Total RNA of hiPSC-ECs were marked at 6 EC 

development timepoints: Day0, Day2, Day4, Day8, Day14 before sorting, and Day14 after 

sorting, and we compared all later timepoints to Day0. We discovered that gene ontology 

(GO) terms for biological processes were enriched in hiPSC-ECs in EC differentiation, 

EC proliferation, EC migration, and positive regulation of angiogenesis. Furthermore, we 

identified 28 DE genes among 1252 DE genes that significantly contribute to the 

endothelial and proangiogenic characteristics by comparing hiPSC-ECs (Day14 after 

sorting) to hiPSC (Day0). The results provide new insight into a transcriptomic 

understanding of hiPSC-ECs, and the identified DE genes may serve as therapeutic 

markers of hiPSC-ECs.  
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Introduction 

Dysfunctional blood vessels increase morbidity and mortality. The cardiovascular ischemic 

diseases, myocardial infarction (MI) and peripheral arterial disease (PAD), are leading causes of 

mortality worldwide.1 PAD has reached about 12% and affects more than 25 million people in 

North America and Europe. PAD clinically results in claudication, soreness with walking, and 

critical limb ischemia (CLI), soreness at rest in the limb.2 Hence, innovative regenerative medicine, 

particularly pluripotent stem cells, that is capable of curing ischemic diseases is receiving 

remarkable attention.  

 

Pluripotent stem cells, which possess the capability to grow infinitely and differentiate into 

all types of somatic cells, are classified into two types: embryonic stem cells (ESCs) and human 

induced pluripotent stem cells (hiPSCs). However, due to the destruction of blastocytes of human 

embryos, use of ESCs raises ethical and moral concerns. hiPSCs are simply generated by 

combining Yamanaka transcription factors in isolated adult somatic cells and resemble ESCs in 

gene expression, growth properties, and morphology.3 Therefore, hiPSCs are widely acclaimed 

as a way to generate vascular cells and are used largely for applications in regenerative 

medicine.3,4 To treat cardiovascular diseases, cell therapy using cellular components of blood 

vessels derived from hiPSCs has emerged as a promising candidate for vascular regeneration 

therapy as the loss of vascular supply is a main pathophysiologic feature of ischemic diseases.  

 

 Blood vessels have two types of main cellular components: endothelial cells (ECs) and 

vascular smooth muscle cells (VSMCs). Both ECs and VSMCs have vital roles in blood pressure 

control, interactions with immune cells, and the uptake of nutrients.2 Between the two, ECs refer 

to a thin layer of cells in the endothelium that lines the interior surface of blood vessels generating 

interface between circulating blood and the vessel walls.5 ECs construct a single cell layer that 
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covers all blood vessels and facilitates exchanges between circulating blood and the surrounding 

tissues. Furthermore, ECs modulate the growth and reactivity of the underlying smooth muscle, 

control the interaction of the vessel wall with circulating blood elements, and regulate vascular 

responses to hemodynamic forces.6 ECs can be differentiated from hiPSCs in chemically defined 

conditions.7 Lee et al. developed a clinically compatible protocol to generate ECs derived from 

hiPSCs (hiPSC-ECs).8 In clinical settings, they have demonstrated high potential to treat ischemic 

conditions by cell therapy through the angiogenic therapeutic potential, which is the capability to 

generate new blood vessels.2,8 

 

 The functionality of cells depends on the expression of different genes and proteins 

induced. High-throughput RNA sequencing (RNA-seq) is a technology that enables sequencing 

a large amount of transcriptome from mRNA to cDNA to measure the expression of isoforms and 

unknown transcripts with a better sequencing quality, cheaper cost, and shorter time.9 Moreover, 

RNA-seq maintains accuracy and high correlation with PCR and has high coverage of the 

transcriptome in the discovery of differentially expressed (DE) genes.10 Hence, gene expression 

levels generated by RNA-seq data can be analyzed for differential expression (DE) to produce 

gene expression profiles that are distinct for different conditions. DE analysis is particularly useful 

in investigating gene expression patterns over time and in identifying enriched pathways during 

EC differentiation.11,12  

 

 In the EC differentiation protocol from hiPSCs, there are three distinct stages of 

differentiation from hiPSCs to ECs: mesoderm induction, EC differentiation, and EC enrichment. 

On Day0, initial hiPSCs started to be cultured. On Day2, mesoderm was induced from hiPSCs. 

On Day4 and Day8, hiPSCs differentiated into ECs. On Day14, ECs derived from hiPSCs (hiPSC-

ECs) were enriched. To further enrich endothelial lineage cells, hiPSC-ECs were sorted for CDH5 

by the magnetic-labeled cell separation system on Day14. Furthermore, Lee et al. demonstrated 
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that hiPSC-ECs generated by this highly efficient EC differentiation system showed proangiogenic 

potential and direct vessel-forming effects in a hindlimb ischemic mouse model.8 The therapeutic 

angiogenetic potential expressed from hiPSC-ECs triggers curiosity to identify genes that 

significantly contribute to those functions. In this study, we investigate differentially expressed 

(DE) genes during EC differentiation, identify gene ontology (GO) terms that DE genes during EC 

differentiation and enrichment belong to, and identify promising DE genes that are highly 

associated with endothelial and proangiogenic therapeutic properties. 

 

Methods 

Dataset. We acquired a dataset of hiPSC-ECs for six sample groups, Day0, Day2, Day4, Day8, 

Day14 before sorting, and Day14 after sorting, in FASTQ format from Dr. Shin-Jeong Lee at 

Emory University School of Medicine. Each group has a total of 4 samples. Each group contains 

two biological replicates, each of which has two technical replicates. Therefore, we have a total 

of 24 samples for the six sample groups. 

 

Raw Data Generation. We uploaded the 24 files in FASTQ format on Galaxy, which is open 

web-based software for genomic analysis. We executed quality control on the RNA-seq data 

using FastQC software to assess the sequencing quality of the data. To compare the replicates 

within each condition group, we used MultiQC software to merge the results of the quality control 

by FastQC software.13 Next, we aligned data that had passed the quality control to the reference 

genome, GRCh38.p12 (GCA_000001405.27), which is the most recently updated Homo 

sapiens genome in the UCSC Genome Browser. In this alignment step, we determined the 

location of the genome where the reads originated from the reference genome by using HISAT2 

software.14,15 The outputs of alignment generated Sequence Alignment Map (SAM) format files 

were converted to BAM format files, which are much smaller than SAM format files in size. The 
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BAM format files included the genome mapping information and alignment quality.16 Following 

alignment, we counted the reads aligning to exons of each gene using ht-seq software with the 

general feature format (GFF) file gen3code_v29_annotation_gff3.gz, which depicts genes and 

other features of DNA, RNA and protein of the reference genome, human GRCh38.12. We 

incorporated union mode if any form of interaction with the genes to the reference genome was 

present. Each read quantified by ht-seq software yielded a count matrix in tabular format with an 

appropriate quality and subject.15,17,18  

 

Sample Level Quality Control. We conducted computational analysis in R version 3.6.1, 

which is a programming language for statistical computing. We first converted the 12 tabular 

format files into text format files. Following the conversion, we imported the 12 text files into R 

and merged them as a single data frame with appropriate column names: “D.0_1”, “D.0_2”, 

“D.2_1”, “D.2_2”, “D.4_1”, “D.4_2”, “D.8_1”, “D.8_2”, “D14.not.sorted_1”, “D14.not.sorted_2”, 

“D14.sorted_1”, and “D14.sorted_2”. Then, we generated metadata that represented the 

corresponding conditions: “Day.0”, “Day.2”, “Day.4”, “Day.8”, “Day14 before sorting”, and “Day14 

after sorting”. We confirmed that the column names of the raw data matched with the raw names 

of the metadata to proceed to the next procedure.  

 

Normalization. As differential expression (DE) analysis for the RNA-seq samples was to 

compare the relative gene expression levels between the different condition groups, technical 

artifacts that affected the gene expression counts were normalized for a proper apple-to-apple 

comparison.19 Among many normalization methods, we used the “median of ratio method of 

normalization” adopted by the DESeq2 package because this method normalizes RNA-seq data 

with high efficiency.20,21 To account for the sequencing depth and RNA composition and eliminate 

technical artifacts other than RNA expression, the normalization method divided by sample-
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specific normalization factors by median ratio gene counts relative to geometric mean per gene. 

First, DESeq2 generated a reference sample, which is the geometric mean of all the condition 

groups, across all genes. Second, DESeq2 measures the ratio of each sample to the reference 

by dividing the sample expression for each sample group of each gene by the reference sample 

created in the previous step. Third, DESeq2 determines the median of the ratio of the sample to 

the reference sample as the normalized factors for each sample. Lastly, DESeq2 generates 

normalized count values by dividing the original count values by the normalized factors across all 

genes.11 This normalization method is highly appropriate for differential expression (DE) analysis 

as it accounts for library size by geometric mean and established resistance to a large number of 

DE genes by median values.11,22  

 

Hierarchical Clustering Analysis. After normalization, we executed hierarchical clustering 

analysis to detect potential outliers and contamination within the data by exploring similarities 

among the conditions.23 First, we conducted variance stabilized transformation to incorporate 

approximately stabilized variance and correction for normalized factors to mediate the 

heteroscedasticity of the data.24 After the variance stabilized transformation, we calculated the 

Pearson correlation values for all pairwise combinations of the samples in the data. Then, we 

created a hierarchical clustering heatmap in which each box represented Pearson correlation 

values in colors from blue to red.23 

 

Principal Component Analysis (PCA). We plotted the normalized count values in 12-

dimensions as we had a total of 12 samples. After plotting, the most extensive spread in the data 

was signified as PC1, and the second-largest spread perpendicular to the PC1 in the data was 

present as PC2. After plotting the line for spread and establishing the amount of influence per 

gene, PCA computed a per sample score. The per sample PC value referred to the product of the 
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influence and the normalized read count and summation across all genes. This mechanism 

continued until the number of total samples were indicated.23,24 However, using the dimension 

reduction mechanism, we projected the high-dimensional data into only two dimensions 

representing the two greatest spreads. 

 

Gene-level Quality Control. By gene-level quality control, we elevated the chance to detect 

DE genes more accurately and efficiently. The DESeq2 package eliminated the following three 

gene groups: genes with zero counts in all samples, outlier genes with extreme count, and genes 

with low mean normalized counts.23 

 

DESeq2 Generalized Linear Model. RNA-seq data typically consist of a small number of 

replicates due to the relatively expensive cost.25 Therefore, the RNA-seq data demonstrate a 

robust mean-variance relationship that is not statistically inferred by normal-based parametric 

hypothesis testing, such as Student t-test, to assess the statistical significance. Instead, we 

applied the generalized linear model of the DESeq2 package to fit the data to the negative 

binomial distribution and used Wald Test to draw statistical inference.25  

	
 

 
 

(1)	

RNA-seq gene count data are modeled by the binomial distribution, the probability of 

getting success based on the number of trials.26 However, not all the count data are modeled by 

the binomial distribution, which is only for discrete events. When the probability of an event is 

minuscule with the large number of trials, the Poisson distribution is appropriate to fit the gene 

expression levels as the Poisson distribution is for continuous events (1).26  

	
	

(2)	

 

λi = npi
Yi |λi ~ Poisson(λi )

Yi j |λi ~ Poisson(λi )

λi ~Gamma(α ,β )
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As the chance of selecting a specific transcript from the vast number of RNA is minimal, 

the Poisson distribution is an appropriate model to fit RNA-seq gene count data.26 However, the 

Poisson distribution has a particular property that the mean and variance are identical. In reality, 

biological variation across the samples is always present in RNA-seq data. Genes with larger 

mean expression levels are more likely to have substantial variances across replicates. Under 

the assumption that data are appropriately normalized, the counts for a specific gene i and a 

specific replicate j is modeled by the following hierarchical model (2).26  

	 	 (3)	

Marginally, the Gamma-Poisson compound distribution is the over-dispersed Poisson 

distribution, which is the Negative Binomial distribution.26,27 Therefore, the gene counts for 

multiple replicates were fit to the Negative Binomial distribution with the variance more significant 

than the mean (3).26,27 To confirm whether the gene count data fit the DESeq2, we generated two 

diagnostic plots: mean-variance plot and dispersion-mean plot. We counted the mean and 

variance value for each gene across all conditions and generated a new data frame with the mean 

and variance values. We plotted the mean and variance and incorporated a logarithmic scaling 

on both the x and y-axis. We then drew a linear regression line by the ordinary least-square 

method for all the genes plotted.23 

	 Var = µ +αµ2 	 (4)	

To investigate more in-depth about the difference in spread among different the mean 

estimates, we plotted the dispersion-mean plot. Dispersion is a measure of spread used explicitly 

in the DESeq2 package by variance for a specific mean estimate (4). Due to the small number of 

samples of RNA-seq data, the DESeq2 package incorporated a shrinkage method to generate 

more accurate estimates of variability.28,29  

 

Yi j ~ NegBin(α ,β )
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Differential Expression (DE) Analysis. To execute differential expression (DE) analysis, we 

used the DESeq2 package from Bioconductor. First, normalized counts for each sample and one 

dispersion estimate for each gene were used as inputs to calculate a gene count in each sample 

group. Second, we determined the gene-wise dispersions and shrank the dispersion estimates to 

the fitted estimates of dispersion for more accurate maximum likelihood estimates of dispersion. 

Third, we used the generalized linear model to gene counts with the negative binomial 

distribution.23 Fourth, we performed Wald test for all possible pairwise comparisons with Day0 as 

the base-level treatment to examine the null hypothesis that there was no differential expression 

across the two sample groups (LFC=0) with an alpha of 0.05. The analysis induced a collection 

of DE genes with the following outputs: “baseMean” for average normalized counts for all 

samples, “log2FoldChange” for the gene expression difference between the two selected 

conditions, “lfcSE” for fold change standard error, “stat” for the Wald Test statistics, “pvalue” for 

p-values for the Wald Test, and “padj” for Benjamin-Hochberg (BH) multiple testing adjusted p-

values.23 We mainly used padj instead of regular p-value due to an issue of false discovery that 

would inhibit us from accurately identifying the true positive genes by generating a 5% chance 

that the gene was DE when it was actually not.30 To remedy this issue, we implemented multiple 

test correction by BH to control the rate of false positives relative to the true, inducing padj. In 

addition to the padj threshold of 0.05, we incorporated log2 fold change thresholds of 1 for the up-

regulated genes and -1 for the down-regulated genes. Therefore, if genes have padj smaller than 

0.05 and log2 fold change either greater than 1 or smaller than -1, we rejected the null hypothesis 

and identified the genes as DE. We performed the Wald test for all pairwise comparisons with 

Day0 as the base-line sample.  

 

Data Visualization. We visualized the results of DE analysis by Wald Test in several graphics. 

First, we created MA plots for a global view of the distribution of DE genes in fold change relative 
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to the normalized mean counts. Since low mean counts are vulnerable to imprecisely captured 

log fold changes (LFC), we additionally incorporated LFC shrinkage that more accurately captured 

DE genes.29 We compared the number of DE genes for both up- and down-regulated across all 

the condition samples. Second, we created expression heatmaps to detect gene expression 

similarities and differences among the samples. To generate expression heatmaps, we subset 

the significant DE genes of Day14 after sorting based on padj. The expression heatmaps scaled 

by row and induced Z-scores, where the normalized count values for each sample and each gene 

is subtracted by the mean and is divided by the standard deviation. Third, we generated volcano 

plots to visualize statistical significance relative to the biological significance of all the genes 

analyzed. To create volcano plots, we generated a binary variable on the column of the data to 

capture the significance of genes in two different colors. All the genes tested by DE analysis were 

plotted with the corresponding padj scaled by negative logarithm and the log2 fold change. 

 

Functional Analysis. To investigate enriched functionalities during EC differentiation and 

enrichment, we used the three results of DE analysis: “Day0 vs. Day8”, “Day0 vs. Day14 before 

sorting”, and “Day0 vs. Day14 after sorting”. To illustrate the distribution of up- and down-

regulated genes among the timepoints, we generated two triple Venn Diagrams. Next, we used 

the clusterprofiler package from Bioconductor to implement GO enrichment analysis to 

understand the functions of the collections of up- and down-regulated genes.31 We first converted 

the DE gene symbols into Ensembl IDs while eliminating duplicate IDs. Then, we generated a 

background gene list for all the genes tested for each DE analysis. For analysis, the number of 

genes associated with a category that overlap with the set of DE genes follow hypergeometric 

distribution.32 Under the Hypergeometric Test, we estimated the probability of genes with the 

specific category in the gene list according to the chance of genes in the background set.33 For 

GO enrichment analysis, we focused on the biological process out of the three categories, 

biological process, molecular function, and cellular component.34 After we acquired the results, 
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we extracted the significantly enriched GO terms of our interest and compared statistical 

significance among Day8, Day14 before sorting, and Day14 after sorting.  

 

Gene Ontology (GO) Analysis. We acquired GO terms we were interested in from Broad 

Institute (http://software.broadinstitute.org/gsea/index.jsp): GO EC development, GO EC 

differentiation positive, GO EC proliferation positive, GO EC migration positive, GO angiogenesis, 

and GO blood vessel remodeling. For genes in these GO terms, we identified the trends of gene 

expressions over time. Concentrating on those upregulated on Day14 after sorting but 

downregulated on Day0, we confirmed via the result of DE analysis whether those genes were 

differentially expressed under the statistical test. Then, we researched the biological functionality 

of genes through Uniprot (https://www.uniprot.org/). 

 

Results 

Understanding of general workflow of RNA-seq data analysis 

There are two main stages of RNA-seq pipelines: first to generate gene count data and second 

to perform DE analysis on the raw count data (Figure 1). The first part to induce gene count data 

is comprised of six stages. First, we conducted biological sample library preparation. Second, we 

generated sequence reads. Third, we executed quality control to assess the quality of RNA-seq. 

Fourth, we aligned the RNA-seq data to the reference genome. Fifth, we quantified reads 

associated with genes from the alignment. Now, we acquired gene count data. 
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 The second part to perform DE analysis is composed of five stages. First, we normalized 

the count data to remove technical variations that affect the count reads. Second, we performed 

unsupervised clustering analysis to explore similarities among the samples and distinguish the 

source of variation present in the data. Third, we model read counts for each gene to fit the reads 

into the DESeq2 generalized linear model. Fourth, we shrank log2 fold changes to improve gene 

estimates with low mean counts that are vulnerable to dispersions. Lastly, we executed DE 

analysis to identify DE genes during the course of EC differentiation.  
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Quality control of RNA-seq data 

 

To ensure that the RNA-seq procedure has been appropriately conducted with no contamination,  

we conducted the quality control test, using the FastQC and MultiQC software (Figure 2).13 The  

quality was examined by the accumulation of a Phred score based on the corresponding 
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nucleotide position and resulted in either “pass” or “fail.”35 We anticipated that most of the data 

would pass the quality control test under the assumption that RNA-seq was appropriately 

performed. We observed that Day0 had three passing and one failing  samples, Day2 had four 

passing samples, Day4 had three passing and one failing samples, Day8 had three passing and 

one failing samples, Day14 before sorting had two passing and two failing samples, and Day14 

after sorting had four passing samples. Most of the samples in the conditions passed the quality 

score except for Day14 before sorting. Two technical replicates of only one biological replicate 

from Day14 before sorting passed the quality control test. However, since those failing had similar 

patterns with those passing and it was integral to have replicates from two different biological 

samples in this particularly small sample nature of RNA-seq data, we proceeded to the next 

procedure with one each sample for all the conditions including Day14 before sorting for proper 

differential expression (DE) analysis. 

 

Detection of potential sample outliers and the sources of variation 

To detect potential sample outlier, we performed hierarchical clustering analysis (Figure 3).36,37 

We calculated Pearson correlation values for all pairwise combinations. The biological replicates 

were highly similar to each other, whereas the replicates that belonged to different groups 

clustered separately (Figure 3). Furthermore, regardless of the colors, the degree of correlation 

was larger than at least 0.9 due to no contamination nor outliers in the data. This phenomenon 

was evident as the proportion of DE genes was only a small fragment of all the genes of the 

human genome. Overall, the result of the hierarchical clustering analysis demonstrated that the 

data were clean from contamination or outliers. 
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To explore the source of variation in the data, we conducted principal component analysis 

(PCA) (Figure 4).24 Through PCA, we investigated whether “timepoint” signified the primary 

source of variation in the data. As expected, there was a moderate variation in gene expression 

caused by the condition, “timepoint” (Figure 4). Specifically, “timepoint” corresponding to PC1, 

represented 65% of variation, and PC2 showed 16% variation. This result indicates that the 

differences in timepoint could explain a considerable amount of variation in gene expression. By 

identifying “timepoint” as the major source variation, we could capture DE genes more accurately 

and efficiently across the timepoints.  
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Application of DESeq2 generalized linear model to fit the RNA-seq data 

To determine if data fit the generalized linear model of the DESeq2 package, we designed two 

diagnostic plots: mean-variance and dispersion-mean plots (Figure 5).11 We anticipated a robust 

relationship between mean and variance due to the small sample size. We detected a positive 

linear relationship between the mean and variance on the logarithmic scale across all genes 

(Figure 5A).11 However, variance increased more rapidly than the mean did. This observation 

rejected the assumption of the Poisson distribution (blue line) that the mean was equal to the 

variance. Disregarding biological variability leads to more robust false-discovery rates due to the 

underestimation of sampling error.11 Instead, the RNA-seq data were well represented by the 

negative binomial model due to the greater variance than the mean. Furthermore, we observed 

the low mean estimates with a higher degree of spread.  
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 To investigate the low mean estimates with more substantial variability, we examined the 

relationship between the dispersion and the mean (Figure 5B).12,29 This plot showed the overall 

distribution of the dispersion estimates associated with the corresponding mean. This plot 

examined whether the dispersion estimates were feasible with the biological spread of each gene. 

According to the mathematical equation, we hypothesized that the distribution of the dispersion 

estimates would increase as the mean counts decreased, and the maximum likelihood estimates 

(MLEs) of dispersion would shrink toward the fitted dispersion estimates. We observed that a 

dispersion estimate of each gene, shown in a black dot, had an overall distribution to increase as 

the mean counts decreased. Moreover, those estimates were shrunken (blue dots) toward to the 

fitted dispersion estimate line (red line). This shrinkage method did not deliberately account for 

outlier genes because they hardly followed the DESeq2 generalized linear model due to spread 
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from other than biological and technical aspects.29 The two diagnostic plots conveyed that our 

data fit the DESeq2 generalized linear model since variance estimates increased more 

significantly than the mean, dispersion estimates scattered and shrank toward the fitted maximum 

likelihood dispersion estimates curve.  

 

Summarization of DE analysis 

To examine differential expression profiles of hiPSC-ECs, we compared all timepoints to Day0 by 

generating MA plots showing the relationship between fold-change and mean counts (Figure 6).29 

Through MA plots, we first confirmed that the data were normalized appropriately because the 

fold-changes of genes were clustered around zero. We second validated that the data were 

shrunk properly since genes with low mean counts were clustered together. To identify any 

patterns of DE genes across the timepoints, we summarized the DE analysis of all pairwise 

comparisons for both up- and down-regulated DE genes (Figure 6C). We anticipated that the 

number of DE genes would increase over time because ECs are enriched from hiPSCs over time; 

it is what we observed for both up- and down-regulated DE genes over time (Figure 6C). For the 

up-regulated genes, there were 137, 290, 550, 1117, and 1252 DE genes on Day2, Day4, Day8, 

Day14 before sorting, and Day14 after sorting, respectively. For the down-regulated genes, there 

were 340, 536, 478, 748, and 1398 DE genes on Day2, Day4, Day8, Day14 before sorting, and 

Day14 after sorting, respectively. This positive trend in both up- and down-regulated DE genes 

indicates that hiPSCs were properly turned into ECs and enriched under the EC differentiation 

protocol.  
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Detection of differential gene expression levels during EC differentiation 

To compare relative gene expression levels across the timepoints, we measured normalized gene 

expression for all the timepoints (Figure 7).38 We subset DE genes for the pairwise comparison: 

Day0 vs. Day14 after sorting. We extended the heatmap to include other timepoints—Day2, Day4, 

Day8, and Day14 before sorting—to facilitate a better gene expression level comparison across 

all the timepoints and scaled by row. Z-scores represented the gene expression levels in colors, 

where green and red signified lower and higher Z-scores, respectively. As hiPSCs and ECs are 

distinctively different cell types, we hypothesized that the gene expression levels for the significant 

DE genes clustered by only the same sample group and clustered apart by different sample 

groups. As the hypothesis, those up-regulated on Day0 were lowly expressed at other timepoints, 
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particularly on Day14 after sorting, and those highly expressed on Day14 after sorting were down-

regulated at other timepoints. This observation demonstrates that different genes were turned on 

at each timepoint during the course of EC differentiation and suggests that hiPSCs and hiPSC-

ECs are distinctively different cell types. 

 

 



	 20 

Distribution of DE genes during EC differentiation and enrichment 

To enhance the understanding of the distribution of DE genes during EC differentiation and 

enrichment, we generated two Venn Diagrams for Day8, Day14 before sorting, and Day14 after 

sorting (Figure 8).39 For the up-regulated genes, 337 genes were in the intersection of the three 

sets, 94 genes were in the intersection of  Day8 and Day14 before sorting, 70 genes were in the 

intersection of Day8 and Day14 after sorting, and 216 genes were common between Day14 

before sorting and Day14 after sorting. 49, 470, and 629 genes were solely up-regulated only on 

Day8, Day14 before sorting, and Day14 after sorting, respectively. For the down-regulated genes, 

296 genes were in the intersection of the three sets. 57 genes were common between Day8 and 

Day14 before sorting, 85 genes were in the intersection of Day8 and Day14 after sorting, and 159 

genes were common between Day14 before sorting and Day14 after sorting. 40, 236, and 858 

genes were exclusive on Day8, Day14 before sorting, and Day14 after sorting, respectively.  
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Identification of enriched gene ontology (GO) terms based on the DE genes 

Within the GO terms associated with EC functionality, we compared the statistical significance 

among Day8, Day14 before sorting, and Day14 after sorting (Figure 9). This analysis highlighted 

that most of the GO terms (EC migration, EC differentiation, EC apoptotic process, and 

angiogenesis positive) were more statistically significant at the EC enrichment phase (Day0 vs. 

Day14) than at the EC differentiation phase (Day0 vs. Day8). This observation validates that 

enriched ECs on Day14 are more likely to display the genuine EC characteristics than ECs on 

Day8.  

 

To determine the functions of the up-regulated DE genes for enriched ECs, we performed 

GO enrichment over-expression analysis on the DE genes of Day0 vs. Day14 after sorting (Figure 

10A).31 We hypothesized that CDH5+ cells would have a significant number of GO terms that are 

highly involved with EC biological processes because CDH5+ cells should show proangiogenic 

potentials according to the previous study.8 We observed that GO terms for biological processes 
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were significantly enriched in CDH5+ cells in EC migration, positive regulation of angiogenesis, 

EC proliferation, blood vessel EC migration, EC differentiation, positive regulation of EC 

proliferation, EC apoptotic process, branching involved in blood vessel morphogenesis, and EC 

morphogenesis. This result supports the previous finding that CDH5+ cells significantly contribute 

to endothelial and proangiogenic properties of hiPSC-ECs. 

 

To identify the roles of the down-regulated DE genes for enriched ECs, we performed GO 

enrichment under-expression analysis on the list of DE genes of Day0 vs. Day14 after sorting 

(Figure 10B).31 As hiPSCs and ECs are distinctively different cell types, we hypothesized that 

CDH5+ cells would lose the pluripotent characteristic of hiPSCs. We observed that GO terms for 

biological processes in CDH5+ cells were significantly down-regulated in nuclear division, 

conformation change, regulation of DNA metabolic process, DNA replication, positive regulation 

of cell cycle, nucleosome organization, DNA recombination, stem cell population maintenance, 

and somatic stem cell population maintenance. The result conveys that CDH5+ cells underwent 

the degradation of pluripotency because rapid DNA replication is an intrinsic characteristic of stem 
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cells that contributes to pluripotency maintenance.40 This loss of pluripotency supports the 

genuine differentiation from hiPSCs to ECs and leads ECs to maintain the EC lineage. 

 

Identification of biological and statistical significance of DE genes 

To determine the biological and statistical significance of gene expression profiles, we compared 

statistical significance (padj) to biological significance (log2FoldChange) by generating volcano 

plots (Figure 11).41 Fold-change, which refers to the changes in gene expression levels between 

the treatment and base-line treatment, represents biological significance; padj signifies statistical 

significance. As the population of ECs was enriched over time, we hypothesized that a greater 

number of DE genes would have larger differences in gene expression levels over time. We 

observed that CDH5+ cells displayed a substantial fold-change for both up- and down-regulated 

genes with large padj scaled by negative logarithm (more volcano-shaped plot), compared to 

Day8. This observation indicates a greater number of genes altered more dramatically from 

hiPSCs to hiPSC-ECs. 

 

In large samples, p-values rapidly converge to zero, and therefore depending exclusively 

on p-values causes results with no practical significance.42 Within genes identified as statistically 

DE, we instead referred to log2 fold change to draw biological interpretation. Hence, we labeled 

10 up- and down-regulated DE genes in the order of the largest and smallest log2 fold change, 

respectively. In the pairwise comparison Day0 vs. Day8, the representative up-regulated genes 

are ANXA1, ANKRD1, ACTC1, WNT2B, COL3A1, CDKN2B, PAX6, ACTA2, MEIS2, and ALPK2, 

and the representative down-regulated genes are MT1G, TDGF1, HTR7, and MT1H. In the 

pairwise comparison Day0 vs. Day14 after sorting, the representative up-regulated genes are 

CRYAB, LUM, CEMIP, COL3A1, ANGPTL7, TGFB2, FILIP1L, GDF10, ANXA1, and PDGFRA, 

and the representative down-regulated genes are TDGF1, GRID2, CDH1, ESRG, and PTPRZ1. 
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For instance, ANXA1, a regulator of the innate immune response, regulates the 

inflammatory process. PDGFRA, a cell-surface receptor for PDGFA, PDGFB, and PDGFC, 

significantly regulates embryonic development, cell proliferation, and survival. Among the 1252 

up-regulated DE genes, the 10 genes with the largest fold-change were associated with cellular 

functions but were hardly directly involved in endothelial and proangiogenic properties. Therefore, 
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to identify significantly meaningful genes in the list of DE genes, we further implemented gene 

ontology (GO) analysis.   

 

Process to identify notable genes 

To identify genuinely significant genes that contribute to endothelial and proangiogenic effects, 

we performed relative gene expression level analysis based on the selected GO terms. As the 

objective of the EC differentiation is to generate ECs for cell therapy to improve ischemic 

conditions, we selected GO terms involved in endothelial biological processes: GO EC 

development, GO EC differentiation positive, GO EC proliferation positive, GO EC migration 

positive, GO angiogenesis, and GO blood vessel remodeling.47 For each selected GO term, we 

compared relative gene expression levels across the timepoints by creating expression heatmaps 

(Figure 12). To determine those highly involved with endothelial biological processes, we mainly 

focused on the up-regulation in the CDH5+ cell population (Day14 after sorting) compared to the 

initial hiPSCs (Day0). After we confirmed notably up-regulated genes, we revisited the DE 

analysis result on Day0 vs. Day14 after sorting to examine whether those genes were statistically 

significant as well. 

 

GO EC development refers to the progression of ECs over time.47 We anticipated that 

genes contributing to the endothelial formation would start to be expressed at the early phase of 

EC differentiation (Day8), and endothelial maturation would be highly expressed, particularly at 

the EC enrichment phase (Day14 after sorting). In GO EC development (Figure 12A; 42 genes), 

we observed 7 up-regulated genes—RAPB1, RDX, HEG1, GSTM3, MET, ID1, and RAP2B—on 

Day14 after sorting from the heatmap. However, from the DE result, only 6 genes were identified 

as DE:  RDX, HEG1, GSTM3, RAP2B, MET, and PDE4D; among them, HEG1 and ID1 are 

notable. HEG1, a receptor of the CCM signaling pathway, regulates heart and vessel formation 

by stabilizing EC junctions. ID1, a transcriptional regulator inhibiting DNA binding, regulates 
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cellular processes, including cellular growth, differentiation, and angiogenesis. The result 

indicates that the synthesis of the genes highly expressed facilitates to develop ECs over time.  

 

GO EC differentiation positive refers to the process that elevates the rate of EC 

differentiation.47 We hypothesized that genes would increase the rate of EC differentiation at the 

EC differentiation phase (Day8). In GO EC differentiation positive (Figure 12B; 14 genes), we 

observed 10 up-regulated genes—CTNNB1, TMEM100, BMP4, ETV2, CDH5, S1PR2, PROC, 

ACVRL1, ATOH8, and BTG1—on Day8 and Day14 after sorting. However, from the DE result of 

Day8, only BMP4 was identified as DE. BMP4 plays a role in mesoderm induction and limb 

formation. BMP4 underwent a sudden upregulation on Day8 and Day14 before sorting. The result 

displays that most genes that belong to GO EC differentiation positive were highly expressed 

during EC differentiation and enrichment. Although only one gene was actually DE from the list, 

the up-regulated genes in this GO term promotes EC differentiation.  
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GO EC proliferation positive refers to the process that elevates the rate of EC 

proliferation.47 We expected that the proliferation of ECs would significantly increase at the EC 

enrichment phase 
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 (Day14 after sorting). In GO EC proliferation positive (Figure 12B; 59 genes), we observed 17 

up-regulated genes—ACVRL1, CXCL12, ITGB3, HTR2B, SEMA5A, JUN, PROX1, CCL2, 

CDH13, SCG2, ECM1, HIF1A, CAV1, CAV2, BMPR2, NRP1, and EGR3— on Day14 after sorting 

from the heatmap. However, among them, only 13 genes were identified as DE: CXCL12, 

SEMA5A, JUN, PROX1, CCl2, CDH13, SCG2, ECM1, HIF1A, CAV1, CAV2, BMPR2, and NRP1. 

CXCL12 proliferates bone marrow-derived B-cell progenitors during embryonic development. 

Along with GO SEMA5A facilitates EC proliferation, migration, and angiogenesis. PROX1, a 

transcription factor, plays a vital role in embryonic development and functions. ECM1 promotes 

angiogenesis by triggering EC proliferation. HIF1A contributes to embryonic vascularization, 

tumor angiogenesis, and pathophysiology of ischemic disease. NRP2, which binds to the 

VEGF165 isoform of VEGFA and VEGFB, regulates VEGF-induced angiogenesis. CAV1 

negatively regulates TGFB1-mediated activation of SMAD2/3 by mediating the internalization of 

TGFBR1. CAV2 drives caveolae formation and modulates mitosis in ECs. The result indicates 

that the synthesis of the up-regulated genes proliferates ECs. 

 

GO EC migration positive refers to a process that increases the rate of the orderly 

movement of ECs into the extracellular matrix to form an endothelium.47 Cell migration is a 

fundamental functionality of physiological and pathological processes. In particular, EC migration 

restores vessel integrity in a damaged vessel and promotes angiogenesis.43 We hypothesized 

that EC migration would be highly activated at the EC enrichment phase (Day14 after sorting) 

because ECs should demonstrate the most genuine EC characteristics at this timepoint. In GO 

EC migration positive (Figure 12F; 26 genes), we observed 14 up-regulated genes—MET, 

PROX1, ITGB1BP1, AGT, ATOH8, FOXP1, SPARC, VEGFC, SRPX2, SEMA5A, BMPR2, NRP1, 

ETS, and ITGB3—on Day14 after sorting from the heatmap. However, among them, 10 genes 

were identified as DE: MET, PROX1, ITGB1BP1, FOXP1, SPARC, SRPX2, SEMA5A, BMPR2, 

and NRP1. 
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MET promotes angiogenesis and would healing. ITGB1BP1 plays a role in cell proliferation, 

differentiation, spreading, adhesion, and migration in the context of angiogenesis. SRPX2 

promotes angiogenesis by inducing EC migration. SEMA5A stimulates angiogenesis by 
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increasing EC proliferation and migration and inhibiting apoptosis. NRP1, a regulator of VEGF-

induced angiogenesis, is highly involved in the development of the cardiovascular system in 

angiogenesis. As a consequence, the reconciliation of the up-regulation of the genes promote the 

movement of ECs to form an endothelium and therefore contribute to angiogenesis.  

 

GO angiogenesis refers to blood vessel formation when new vessels emerge from the 

proliferation of pre-existing blood vessels.47 As hiPSC-ECs demonstrated direct vessel-forming 

effects in the previous study, we anticipated that genes involved with proangiogenic potentials to 

be highly expressed, particularly on Day14 after sorting. Due to the large size of GO angiogenesis 

(270 genes), we only displayed DE genes. In GO angiogenesis (Figure 12E, 270 genes), we 

observed genes—ANGPT1, TGFBR2, ECM1, NRP1, VAV3, NOV, TGFBI, SCG2, CYP1B1, 

HIF1A, ANGPT2, PDGFRA, SEMA5A, TGFB2, ARHGAP24, FMNL3, RSPO3, HEY1, SRPX2, 

CAV1, MMP14, COL8A1, COL4A1, ITGAV, CCL2, CDH13, ANXA2, and PARVA—were up-

regulated DE on Day14 after sorting. ECM1 stimulates EC proliferation and angiogenesis. NRP1, 

with the expression of KDR, regulates VEGF-induced angiogenesis. VAV3 promotes EC 

migration and angiogenesis. NOV, a regulator of hematopoietic stem and progenitor cell function, 

plays an essential role in EC cell adhesion, cell migration, and cell survival. ANGPT2, with the 

expression of VEGF, stimulates EC migration and proliferation. SEMA5A facilitates EC 

proliferation, migration, and angiogenesis. SRPX2 promotes the formation of vascular networks 

and angiogenesis by stimulating EC migration. CAV1 negatively regulates TGFB1, which 

promotes mesenchymal and smooth muscle functions. COL8A1 is the main component of corneal 

ECs and endothelial blood vessels. As a result, the reconciliation of the up-regulation of the genes 

promotes the blood vessel formation by the previously stimulated EC proliferation and migration. 

The activation of angiogenesis positively influences blood vessel remodeling.  



	 32 

 



	 33 

 GO blood vessel remodeling refers to the reorganization of existing blood vessels.47 We 

hypothesized that genes promoting neovascularization in the context of blood vessel remodeling 

would be up-regulated, mainly at the EC enrichment phase (Day14 after sorting). In GO blood 

vessel remodeling (Figure 12F, 28 genes), we observed 9 up-regulated genes—MEF2C, RSPO3, 

TGFB2, ACVRL1, MDM2, BMPR2, SEMA3A, AGT, and ATP7A—on Day14 after sorting from the 

heatmap. However, among them, only 8 genes were identified as DE: ATP7A, SEMA3C, BMPR2, 

MDM2, TGFB2, RSPO3, MEF2C, and FOXC2. Among them, SEMA3C, BMPR2, and RSPO3 are 

are directly associated with endothelial and proangiogenic functionalities. SEMA3C promotes 

 

cardiovascular development during embryogenesis. BMPR2 contributes to blood vessel 

remodeling, EC apoptotic process, and EC proliferation. RSPO3 regulates angiogenesis by acting 

as a ligand for LGR4-6 receptors. Furthermore, we observed 7 up-regulated genes—BGN, 

EPAS1, DLL4, HOXA3, JAG1, FOXC1, and FOXC2—on Day14 before sorting. However, among 

them, only 4 genes were identified as DE: BGN, EPAS1, JAG1, and FOXC2. EPAS1, a 
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transcription factor, regulates the formation of the endothelium that gives rise to the blood brain 

barrier.  

 



	 35 

To explore genes that contribute to endothelial characteristics more in-depth, we referred 

to Lee et al. to acquire a list of EC-related genes.44 We expected those genes involved in EC 

functions would be highly expressed at the EC enrichment phase (Day14 after sorting). In this 

collection of EC-related genes (Figure 13; 77 genes), we observed 17 up-regulated genes—IL1B, 

ITGB3, CXCL6, TNFRSF10C, CXCL1, PLAT, TNFSF10, NRP1, CXCL10, EREG, MMP1, CCL2, 

FN1, ANGPT2, TGFB2, S1RP1, and ACVRL1—on Day14 after sorting. However, among them, 

8 genes were identified as DE: CXCL1, PLAT, TNFSF10, NRP1, CCl2, FN1, ANGPT2, and 

TGFB2. In addition, there were 6 up-regulated DE genes on Day14 before sorting: CTGF, 

PROX1, HEY1, DLL4, SPHK1, and SERPINE1. Furthermore, there was only one up-regulated 

DE gene on Day8: F3.  

 

Determination of meaningful genes 

According to the GO analysis, we confirmed whether the notable genes were truly DE in hPSCs 

in the course of EC differentiation. We identified 28 genes that are notably contribute to endothelial 

and proangiogenic characteristics of hPSC-ECs (Table 1): TGFB2, COL8A1, SEMA3C, ANGPT2, 

NRP1, NOV, CCL2, CXCL1, CAV2, RSPO3, TNFSF10, PROX1, FN1, SRPX2, SEMA5A, CAV1, 

HEG1, VAV3, HIF1A, ECM1, BMPR2, ID1, ENG, EPAS, CCM2, PLAT, CXCL12, and NRP2. 
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Confirmation of enriched EC characteristics of CDH5+ Cells 

To further identify enriched EC characteristics of CDH5+ cells, we subset the 11 genes 

directly involved with endothelial and proangiogenic properties, which belong to the intersection 

of the DE results of Day8 and Day14 after sorting. Then, we compared the log2 fold-change of 

the genes between Day8 and Day14 after sorting to examine how the gene expression levels 

altered during EC enrichment. As enriched ECs demonstrated distinct neovascularization 

capability in the previous study, we hypothesized that CDH5+ sorted cells would show much 

higher fold changes for the genes involved in proangiogenic functions than Day8. We observed 

that all the 14 genes exhibited larger fold changes on Day14 after sorting than Day8. This result 

indicates that EC characteristics start to be expressed at the early differentiation phase; however, 

the genuine EC characteristics are much enhanced during EC enrichment. 
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Discussion 

Human iPSC-ECs have shown angiogenic therapeutic potential to treat cardiovascular 

ischemic diseases in a hindlimb mouse model. However, a transcriptomic analysis to discover 

genes that significantly contribute to proangiogenic effects on hiPSC-ECs under the protocol 

developed by Lee et al. has not yet been performed; the gene expression and molecular pathways 

influencing endothelial and proangiogenic characteristics of hiPSCs have been partially explored. 

This comparative analysis highlights promising genes for proangiogenic properties and suggests 

the functionality of the potential genes during the course of EC differentiation and enrichment on 

a genome-wide scale.  
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In this study, we have exhibited 1252 DE genes that show an increase in transcript 

abundance in hPSC-ECs (Table 1). This extensive change depicts the substantial transition of 

cell type from hiPSCs to ECs under this EC differentiation protocol. Based on the results of GO 

analysis, we subset the 28 DE genes that significantly contribute to endothelial and proangiogenic 

characteristics of hiPSC-ECs. COL8A1 (7-log2FoldChange) is a major component of basement 

membrane of corneal ECs and the endothelial of blood vessels. ANGPT2 (5.6-log2FoldChange), 

with VEGF, facilitates EC migration and proliferation and hence serves as a permissive 

angiogenic signal. NRP1 (5.4-log2FoldChange), a regulator of VEGF-induced angiogenesis, is 

highly involved in the development of the cardiovascular system in angiogenesis. NOV (5.3-

log2FoldChange), also known as CCN3, regulates cell adhesion, migration, and survival in ECs. 

SEMA5A (3.8-log2FoldChange) promotes angiogenesis by increasing EC proliferation and 

migration and inhibiting apoptosis. RSPO3 (4.7-log2FoldChange), an activator of Wnt signaling 

pathway in ECs, regulates angiogenesis. ID1 (2.7-log2FoldChange), a transcription factor, 

regulates a variety of cellular processes: cellular growth, senescence, differentiation, apoptosis, 

angiogenesis, and neoplastic transformation. The expressions of these genes translate into 

proteins necessary for endothelial and proangiogenic functionalities.  

 

In order to understand the biological functions of the DE genes of hiPSC-ECs, we 

conducted GO enrichment analysis. We discovered that GO terms for biological processes were 

significantly enriched in EC differentiation, EC proliferation, EC migration, and positive regulation 

of angiogenesis (Figure 10A). In contrast, GO terms for biological processes were significantly 

down-regulated in nuclear division, DNA replication, positive regulation of cell cycle, and stem cell 

population maintenance (Figure 10B). This result indicates that endothelial and proangiogenic 

functions are enhanced during the course of EC differentiation and enrichment as hiPSC-ECs 

lose the genuine pluripotent characteristics of hiPSCs.  



	 39 

However, the gene expression levels are not merely cumulative, suggesting that gene 

expression levels high at the initial phase tend to decrease over time. This indicates that EC 

specific genes are not highly expressed in the CDH5+ samples all the time. Initially, we 

hypothesized that the gene expression level of VEGFA and KDR, an essential endothelial growth 

factor and receptor, would significantly increase over time. Contrary to the hypothesis, their gene 

expression levels reached a peak during the phase of mesoderm induction and decreased 

throughout the EC enrichment. This finding indicates that the gene turned on in the early phase 

of EC differentiation is likely to translate into proteins with specific functions in the early phase of 

EC differentiation. Therefore, the gene is no longer necessary to be highly expressed during the 

later phase of EC differentiation. The flow cytometry data from Lee et al. supports this idea by 

showing a high protein expression level of KDR in CDH5+ cells after sorting.8 

 

Although the analysis has presented a number of DE genes involved with endothelial and 

proangiogenic characteristics of hiPSC-ECs, mesenchymal genes—PDGFRA, IGFBP7, ALPK2, 

SFRP4, MEIS2, SIX, and others—were also up-regulated in CDH5+ cells. ECs have an innate 

characteristic to lose the endothelial properties and express mesenchymal cell markers, called 

endothelial-to-mesenchymal transition (EndMT).45 The up-regulation of those mesenchymal 

genes leads hiPSC-ECs to EndMT, where the morphology and property of ECs change into 

mesenchymal and smooth muscle cells.46 Therefore, further investigation about potential EndMT 

markers may grant scientists a better protocol to generate ECs with prolonged EC characteristics 

with the minimized EndMT properties. 

 

Through the identification of genes promoting endothelial and proangiogenic effects, this 

transcriptome study supports the findings from Lee et al. that hiPSC-ECs exhibit genuine EC 

characteristics and angiogenetic therapeutic potentials. This study further accentuates that Lee 

et al. developed a fully defined, clinically compatible cell culture system that generates purified, 
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functional, and therapeutically effective ECs. We have now expanded our understanding of genes 

that activate or inhibit angiogenic therapeutic potentials during EC differentiation from hiPSCs. In 

the future, we may strengthen the transcriptomic comprehension of hiPSC-ECs by comparing 

CDH5+ population to EC positive control, such as human lung microvascular endothelial cells 

(HMVECs) and human umbilical vein endothelial cells (HUVECs), and a EC negative control, 

such as human dermal fibroblasts (HDF). This gene expression profiling may help to more 

accurately characterize ECs derived from hiPSCs in the contexts of angiogenic potentials and 

prolong the genuine EC attributes.  

 

Conclusion 

Through this transcriptome study, we have identified notable genes of hiPSC-ECs that 

significantly contribute to the endothelial functionality and vessel formation. This study may serve 

as a useful analysis to support the findings from Lee et al. to treat cardiovascular ischemic 

conditions that hiPSC-ECs highly promote neovascularization.8 The results may provide new 

insights into EC generation from hiPSCs. Furthermore, this study could facilitate a development 

in regenerative medicine with ECs in the context of cardiovascular regeneration.  
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