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Abstract 

Multiscale Statics and Dynamics of Cerebral Functional Connectivity 

By Jacob C. W. Billings 

 

 

The advent of whole-brain functional imaging through Blood-Oxygen Level 
Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) invites novel analytical 
frameworks to understand the brain’s intrinsic functional organization.  As brains are complex 
self-assembled systems, a mechanistic view of brain activity is expected to observe emergent 
structures interacting across multiple spectral, spatial, and temporal scales. Analytical 
frameworks that incorporate information at multiple scales may therefore provide additional 
insights into brain physiology. Chapter 1 introduces this line of reasoning in greater detail. 
Because BOLD fMRI is an indirect measure of neuronal activity, Chapter 2 pursues an optimal 
preprocessing strategy for increasing the information content of the BOLD signal. A stratigy 
that normalizes voxel-wise BOLD signals via z-scoring and removes motion noise via motion 
parameter regression was found to effectively isolated BOLD signal energetics to the brain’s 
gray matter. Enhancing the signal-to-noise ratio of gray matter BOLD signals is expected to 
most effectively enhance the proportion of spontaneous hemodynamic (BOLD) fluctuations 
attributable to neuronal signaling. This is because synaptic activity accounts for the majority 
of energy usage in the brain, and the dendritic arbor of the central nervous system is 
unmylenated gray matter. In Chapter 3, preprocessed, voxel-level BOLD signals are filtered 
into multiple spectral domains in order to identify the spectral components that best reveal 
the brain’s intrinsic organization. Graphs of the brain’s functional connectivity—its spatial 
network architecture—most closely resemble known brain networks in several pass-bands 
within the low-frequency fluctuation range (~0.1 to ~0.01 Hz). To discover just why low-
frequency spectra of the BOLD signal are most effective at revealing the brain’s architecture, 
Chapter 4 links hemodynamic connectivity to neuroelectric connectivity through multimodal 
studies in the rodent brain. Long-term (static) BOLD connectivity is demonstrated to 
correspond to static local field potential (LFP) connectivity when neuroelectric activity is 
filtered into either delta (1-4 Hz), alpha (8-12 Hz), or gamma (40-60 Hz) pass-bands. These 
findings support the theoretical interpretation of neurovascular coupling as a diffusion-
mediated process involving small signaling molecules that communicate information about 
changing neuronal metabolic load to the cardiovascular system. Essentially, low-frequency 
fluctuations in the BOLD signal are low-pass filtered versions of neuroelectric activity. 
Whereas Chapters 2 through 4 pursue long-term trends in coordinated brain activity, Chapter 
5 pursues the question of how to identify the kinds of time-varying BOLD dynamics expected 
to relate to ongoing mental activity. To this end, the instintaneous state space of multi-scale 
BOLD dynamics is embedded onto a two-dimensional sheet, thereby providing a visually 
tractable map of the brain dynamics. Discrete epochs of experimentally defined tasks are 
shown to agglomerate into densely populated peaks in the map space. The brain activitions 
associated with each map region are further investigated in order to better understand how 
the brain produces a range of experimentally defined states. Taken as a whole, the enclosed 
dissertation research demonstrates the pervasiveness of the brain’s multi-scalar architecture, 
and the utility that this perspective affords towards the interpretation of various and complex 
brain functions. 
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1. Introduction 

information (n.) late 14c., informacion, "act of informing, communication of news," from 
Old French informacion, enformacion "advice, instruction," from Latin informationem 
(nominative informatio) "outline, concept, idea," noun of action from past participle stem 
of informare "to train, instruct, educate; shape, give form to" (see inform). 
 
inform (v.): early 14c., "to train or instruct in some specific subject," from Old French 
informer, enformer "instruct, teach" (13c.) and directly from Latin informare "to shape, 
give form to, delineate," figuratively "train, instruct, educate," from in- "into" (see in- 
(2)) + formare "to form, shape," from forma "form" (see form (n.)). In early use also 
enform until c. 1600. Sense of "report facts or news, communicate information to" first 
recorded late 14c. 

 - etymonline.com 
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Brains are thought of as complex. For those who would like to understand the brain, 

this observation may seem daunting. But no real system is infinitely complex everywhere. 

Complexity is just another way of describing how many unique operations it takes for a system 

to come into being (Weisstein 2017). What at first may appear insurmountably complex often 

possesses guiding principles that may be incorporated to understand the properties of a 

complex system more simply (Papo, Buldú et al. 2014). The presence of guiding principles is 

especially true for natural living systems who self-assemble under the application of natural 

laws. The brain’s complexity is embedded into an ordered scaling of constituent and 

constitutive parts: brain cells are a gestalt of chemicals, brain tissues are cellular aggregates, 

and individual brains find membership in a broader ecology inclusive of other uniquely 

patterned brains.  

A founding figure in the world of information theory, Claude Shannon, may well have 

said of brains that of all the chaotic arrangements that chemicals can take, their form as brains 

requires fewer bits of information to describe than a more random arrangement of the same 

materials in the same volume (Shannon 2001). This is because anatomy is ordered. And the 

state of an ordered system, no matter how complex, is easier to detail than the state of the 

same material in a random distribution. Shannon proposed that the number of bits needed to 

fully characterize a system may be calculated as  

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖) 𝑙𝑜𝑔2 𝑃(𝑥𝑖)

𝑘

𝑖=1

 (1.1)   

where 𝑃(𝑥𝑖) is the overall probability of observing features like 𝑥𝑖 . 𝐻(𝑋) increases 

when there are more states, each with the same probability of occurring. Black holes, where 

matter and energy randomly cram together, contain the largest entropy (Bardeen, Carter et al. 
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1973, Greene 2004). The void, having only one state, approaches zero entropy, however 

briefly. 

When faced with multiple ways to describe a system, it is often more useful to choose 

the lower entropy representations as doing so recategorizes states that appear dissimilar into a 

set of features that reflect something about the system’s underlying form. Consider a familiar, 

though simplified and artificial example of the lowest entropy representation of a chord played 

on a piano. A high entropy representation of the chord might be the recording that digitizes 

continuous pressure readings from a microphone pickup into 𝐶𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒, double-precision 

registers. A low entropy space might make use of the piano’s intrinsic structure to describe its 

chord using 𝐶𝑝𝑖𝑎𝑛𝑜 notes. Even though the large range of values 64 bits can adopt allows 

double-precision recordings to represent many instantaneous pressures, each value’s relative 

improbability of being reached makes the chord very costly to represent in bits. Because the 

number of combinations of notes,  𝐶𝑝𝑖𝑎𝑛𝑜
′ < ( 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑦𝑠
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑛𝑔𝑒𝑟𝑠

) ≈ (
100
10

) ≅ 1013, is 

much less than the recording’s precision, 𝐶𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒 = 264 ≅ 1019, distributing the chord 

across a basis set of notes uses fewer, more probable features than using a basis set of recorded 

amplitudes.  

Similar arguments may be made for natural systems like brains, albeit with greater 

assurance. Whereas pianos possess structure at the scale of keys, hammers, and strings; they 

are the artifice of a secondary agent, a piano maker, who is often moved by some economic 

demand to turn raw materials into pianos. Natural systems, on the other-hand, self-assemble 

by way of fundamental physical processes. In the presence of a steady-state energy differential, 

microscopic entities may spontaneously arrive at a configuration that decreases the entropy 

generated during the exchange of energy (Nicolis and Prigogine 1977, Hidalgo 2015). The 
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entropy minimizing configuration may entrain adjacent entities to adopt similar 

configurations. Over time, this process tessellates outwards to build features at macroscopic 

scales from processes at microscopic scales. For example, pressure waves passing through a 

glass of water may cause otherwise Brownian fluid dynamics to develop standing waves at the 

water’s surface. 

The idea of complexity may be most familiar in artificial systems where it refers to the 

amount of unique actions an agent must perform to make the system. For self-assembled 

systems, complexity refers to the amount of unique arrangements substructures must adopt 

to realize the system’s largest-scale feature(s). Complexity naturally emerges when many, well-

ordered substructures emerge as a suite of functions in a superstructure. By constraining the 

arrangement of subparts into only those configurations that support multiple scales of 

emergent properties, complexity reduces a system’s entropy. 

Despite the growth of computational efficiencies according to Moore’s exponential 

rate, fundamental statistical physics models are generally available only for systems on the 

order of a few thousand amino acids (Henry, Best et al. 2013). And although dedicated 

supercomputing systems have been built to replicate brains as complex as the mouse brain, 

these systems only mimic the functional input-output relations of individual neurons rather 

than the physical interactions among increasingly well characterized chemical constituents 

(Hsu 2014). There remains, therefore, a strong incentive to use measures of brain activity at 

some intermediate scale to understand the human brain’s larger-scale emergent structure(s). 

Functional Magnetic Resonance Imaging (fMRI) imaging offers such an intermediate 

perspective (Papo, Buldú et al. 2014). Because oxygenated hemoglobin is diamagnetic while 

deoxygenated hemoglobin is paramagnetic, and because blood-oxygen supply is tightly 

coupled to fluctuations in the brain’s local metabolic load, it is possible to use magnetic 
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resonance images of the Blood Oxygen Level-Dependant (BOLD) contrast to infer changes 

in brain activity (Ogawa, Lee et al. 1990, Bandettini 2012). BOLD-fMRI measures are easily 

as precise as ~1 mm3, and faster than 1 Hz. The measure’s non-invasiveness allows images to 

be acquired from the whole brain over an hour or longer. BOLD-fMRI thus provides a way 

to understand the intrinsic functional architecture of brain system from the perspective of 

whole brain cardiovascular support. 

Model systems to utilize BOLD-fMRI are a topic of current development. One of the 

measure’s earliest use cases regressed BOLD data against a general linear model to reveal 

which, if any, brain areas experience statistically significant deviations from baseline when 

volunteers engage in temporally delineated blocks of experimentally defined tasks (Belliveau, 

Kennedy et al. 1991). Because task related BOLD fluctuations account for only a small 

fraction, approximately 5%, of the brain’s total metabolic demands while the remaining 95% 

of energy usage goes towards intrinsic brain signaling, a thorough characterization of 

spontaneous BOLD-fMRI was soon warranted (Raichle and Mintun 2006). Biswal et al.. (1995) 

was first to demonstrate that temporal correlations in spontaneous, low-frequency BOLD 

signal fluctuations—termed the Functional Connectivity (FC) between regions—were 

strongest in the same motor regions as were preferentially activated during a motor task 

(Biswal, Yetkin et al. 1995). The experiment was a watershed moment, demonstrating that 

BOLD-FC may be as useful as task-based BOLD at determining the intrinsic functional 

organization of the brain (Fox, Snyder et al. 2005, Vincent, Kahn et al. 2008, Smith, Fox et al. 

2009, Thomas Yeo, Krienen et al. 2011). BOLD-FC studies have since found wide application 

as a potential pathoconnectomic biomarker for neuro-psychological diseases such as addiction 

(Salomon, Karageorgiou et al. 2012, Lam, Wang et al. 2013), depression (Salomon, Cowan et 

al. 2011, Meng, Brandl et al. 2013), Parkinson’s (Skidmore, Korenkevych et al. 2011), 
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Alzheimer’s (Supekar, Menon et al. 2008, Wang, Zuo et al. 2013), schizophrenia (Alexander-

Bloch, Gogtay et al. 2010, Bassett, Nelson et al. 2012), and others (Rubinov and Bullmore 

2013).  

Under the supposition that more parsimonious representations of the BOLD signal 

better reveal how the brain works, researchers have explored various lower entropy 

representational spaces for the BOLD signal. Each representation imposes certain 

assumptions about how the data should be ordered. For example: If the analyst believes that 

any globally present signal confounds discovery of preferential information sharing between 

brain sub-regions, then it is worthwhile to regress a global BOLD signal from the dataset as 

noise (Fox, Zhang et al. 2009, Murphy, Birn et al. 2013). If the belief is that simultaneous 

fluctuations in the BOLD signal may evidence shared information between regions, then an 

analyst might quantify that information sharing by defining a correlation distance metric 

between pairs of regions (Salvador, Suckling et al. 2005, Allen, Damaraju et al. 2012). Likewise, 

if it is believed that the BOLD signal is a mixture of linearly independent systems, one may 

multiply the dataset by an algorithmically defined un-mixing matrix to separate out the 

system’s independent components (McKeown, Makeig et al. 1997, Majeed and Avison 2014).  

The present dissertation research performs several operations on BOLD-fMRI data 

to transform this mesoscopic window of the brain into a form that more efficiently conveys 

the underlying structure and operation of whole brains. My central hypothesis is that the 

fundamental scaling behavior of self-assembled systems is preserved in the neuronal code and 

embedded in cranial hemodynamics.  If this is the case, then scaled domains may offer more 

parsimonious and informative representational spaces to explore the brain’s intrinsic 

organization.  
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Strong support for this hypothesis is conveyed by the observed scaling behavior of the 

BOLD signal itself. The BOLD signal bears a log linear relationship between power spectrum 

and frequency: log 𝑆(𝑓) = 𝑐 + 𝛾 log 𝑓; alternatively, 𝑆(𝑓)~1/𝑓−𝛾. For the average BOLD 

signal in brains, the power law exponent, 𝛾 ≅ 1 (Bullmore, Fadili et al. 2004, He 2011). Such 

‘1/f-type’ systems denote that the system’s high-frequency processes establish and maintain 

its low-frequency structure (Wornell 1993). The simplest 1/f-type systems are termed, ‘scale-

free,’ that is, one observes rescaled versions of some elementary process, or fractal, at all 

observable scales. On the other hand, complex 1/f-type systems exhibit emergent properties 

at multiple scales (Ciuciu, Varoquaux et al. 2012, He 2014, Liu, Ward et al. 2014).  

Scaling basis sets provide theoretically optimal domains for observing 1/f-type 

processes (Bullmore, Fadili et al. 2004, Ciuciu, Varoquaux et al. 2012). Such a basis provides a 

view of the system from its coarse features to its fine-scale features. However, scaling basis 

have been difficult to describe. One well-known scaling basis are the Fourier oscillators which 

represents systems as constricted of many standing waves, sines and cosines. In the artificial 

case of the piano chord, we may choose a range of Fourier oscillators, 𝐶𝐹𝑜𝑢𝑟𝑖𝑒𝑟, directly 

matching the standing-wave frequencies of each note in 𝐶𝑃𝑖𝑎𝑛𝑜. Clearly then the entropy of a 

chord projected across a range of sines and cosines 𝐻(𝐶𝐹𝑜𝑢𝑟𝑖𝑒𝑟) = 𝐻(𝐶𝑃𝑖𝑎𝑛𝑜).  

Unfortunately, the Fourier transform’s kernels—the sinusoidal basis vectors—are 

defined over infinite lengths of time. While this assumption of infinite energy is fine as a first 

approximation for static systems—e.g., single chords sampled for time periods much longer 

than the period of the lowest note—the assumption breaks down for time-varying, dynamic 

system like the brain (Van Bellegem and von Sachs 2008, Buzsaki 2009). For non-stationary 

systems, a representational space bearing some amount of time-domain localization is critical. 

A class of functions known as wavelets develop especially useful multiscale bases (Daubechies 
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1992). Each kernel function reduces to zero over a finite range, thereby providing a temporal 

localization of the input signal’s time-varying spectral content (Mallat 1999, Misiti, Misiti et al. 

2013).  

The present dissertation research advances the use of several data driven techniques, 

including the wavelet transform, to better represent and characterize intrinsic properties of the 

brain’s organization and function. Techniques that may be applied in the raw BOLD signal’s 

domain to improve the representation of spontaneous neuronal activity are addressed in 

Chapter 2. Chapter 3 identifies the degree to which multiscale wavelet representations produce 

unique information about the BOLD signal’s long-term connectivity. Chapter 4 explores the 

degree to which the scaling behavior of spontaneous BOLD-FC is related to scaling properties 

of neuronal activity. Having sufficient evidence to support multiscale BOLD as a 

parsimonious domain to represent underlying neuronal energetics, Chapter 5 embeds our 

multiscale BOLD dynamics state space onto a 2-dimensional surface to identify how the brain 

generates each of a series of experimentally defined conditions.  
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2. Raw Brains: Preprocessing Strategies for Functional 

Connectivity 
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For studies utilizing the resting-state as a control condition, characterizing the intrinsic 

properties of the resting-state is necessary to understand experimental shifts from control 

conditions. Progress in the overall use of task-based fMRI depends on having a good 

understanding of the statistical organization of the resting state (Eklund, Nichols et al. 2016, 

Power, Plitt et al. 2017). Further, we know that when healthy mammals are at rest, their brains 

are still at work, processing self-relevant information (Hasenkamp, Wilson-Mendenhall et al. 

2012, Lu, Zou et al. 2012, Spreng, Sepulcre et al. 2012, Barks, Parr et al. 2013). Characterizing 

the resting brain is thus a method to understand normative organizational and operational 

mechanisms. 

Preprocessing strategies to explore the properties of spontaneous BOLD signals are 

presently a subject of research. This is especially true for the use a Global BOLD Signal (GS) 

in noise regression. The GS is calculated as the average of the signal from all voxels across the 

term of a resting state fMRI (rs-fMRI) scan. It was originally proposed for minimizing noise 

in studies of inter-regional BOLD correlation, or Functional Connectivity (FC). Because the 

GS accounts for linear changes common to signal variations in all voxels, its Regression (GSR) 

from voxel time series should enhance the FC contrast among gray matter regions. Motivated 

by this rationale, a series of studies demonstrated the use of GSR to increase inter-network 

contrast (Fox et al., 2009; Murphy et al., 2009). However, GSR also forces some of the 

correlations within the brain to become negative (Murphy et al., 2009), creating problems in 

interpreting FC data.  

Clearly there are many arguments to be made for and against GSR (see Murphy et al., 

2013 for an excellent review).  The use of GSR promotes spatial specificity in functional 

networks (Fox et al., 2009).  Shirer et al. found that GSR reduced noise but at the expense of 

test-retest reliability (Shirer et al., 2015). In animal models, it has been used to control for 
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different levels of baseline blood flow and metabolism in the brain due to varying levels of 

isoflurane anesthesia (Liu et al., 2013).  A  positron emission tomography and rs-fMRI study 

in humans showed a similar effect, with the GS amplitude linked to changes in FDG 

metabolism and regional variance remaining relatively unchanged by baseline metabolism 

(Thompson et al., 2016).  In one study that compared simultaneously recorded bandlimited 

power and BOLD correlation from two sites in the brain, GSR improved the fidelity of the 

BOLD signal to the changes in coordinated neural activity (Thompson et al., 2013b).  These 

studies suggest that if the GS has a neural origin, it is unlikely to lie in the coordinated, time-

varying modulations of neural activity that would ideally be detected with resting state MRI 

and that its removal may improve sensitivity to the signal of interest.   

On the other hand, the BOLD GS amplitude is negatively correlated to EEG measures 

of vigilance in subjects with their eyes closed (Wong et al., 2013), suggesting that it might 

contain information about important neurophysiological processes that should not be 

discarded.  Neural activity from a single electrode is correlated with the CBV-weighted signal 

from much of the brain, albeit at variable time delays (Scholvinck et al., 2010).  Changes in 

broadband EEG power are associated with changes in GS at delays approximating  the 

hemodynamic delay (Wen and Liu, 2016). Others have even shown that global activation can 

be detected in functional MRI provided enough averages are acquired (Gonzalez-Castillo et 

al., 2012). These findings all suggest that the GS is more than a nuisance.  Furthermore, GSR 

can distort differences between groups (Saad et al., 2012).  The GS itself can distinguish patient 

groups from healthy controls (Hahamy et al., 2014; Yang et al., 2014), though some of these 

differences may arise from changes in head motion or in vascular tone. 

A brief perusal of these findings raises the question of exactly what constitutes the 

global BOLD signal.  Because it is calculated as the sum of signals from all brain voxels, 
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patterns of widespread activation might provide substantial contributions to the GS.  For 

example, the quasiperiodic spatiotemporal patterns (QPPs) of BOLD fluctuations that have 

been reported previously (Majeed et al., 2011; Thompson et al., 2014) exhibit large-scale spatial 

structure involving periodic activation and deactivation of cortical nodes in the default mode 

network (DMN) and task positive network (TPN), with propagation of activity along the 

cortex between nodes (Majeed et al., 2011, 2009).  QPPs are linked to infraslow activity (Pan 

et al., 2013; Garth John Thompson et al., 2014) and appear to be separable from the aperiodic 

changes that are expected to be more cognitively relevant (Garth J Thompson et al., 2014; 

Thompson et al., 2015). Both infraslow electrical activity and TPN/DMN activity have been 

linked to performance, particularly on tasks with a strong attentional component (Fox et al., 

2007; Kelly et al., 2008; Monto et al., 2008; Thompson et al., 2013a). Moreover, recent work 

shows that the phase of the QPP predicts reaction time on a simple vigilance task (Abbas et 

al., 2016).  When considered in the context of the growing body of work linking GS and 

vigilance (Wong et al., 2016, 2013), this suggests that part of the GS may arise from these 

widespread quasiperiodic patterns of activation and deactivation.  The potential link between 

QPPs and the GS motivated a more thorough examination of the characteristics of the global 

BOLD signal. Are the two features the same or do they constitute two unique contributions 

to BOLD FC?  

The present study addresses questions about the origins of the BOLD GS by 

examining the spatial distribution of the global BOLD signal, the time of peak correlation 

between the GS and the BOLD signal from each voxel, and the relative contribution to the 

GS from different tissue types.  The findings suggest that QPPs are not a major contributor 

to the global BOLD signal, and confirm that the global BOLD signal is not so global after all. 
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2.1. Methods 

Data Acquisition. Neuroimaging data were downloaded through the 1000 Functional 

Connectomes Project (https://www.nitrc.org/projects/fcon_1000/) (Milham 2013). The data 

were acquired as part of the Enhanced Rockland Sample Multiband Imaging Test-Retest Pilot Dataset, 

uploaded by the Nathan Kline Institute for Psychiatric Research (Nooner, Colcombe et al. 

2012, Nathan Kline Institute for Psychiatric Research 2013). A total of 31 volunteer datasets 

were used for the present study. Volunteers were 44±18 years old, with 21 females and 10 

males. Thirty volunteers were right-handed; one had no preference. 

Whole brain images were acquired on a 3T Siemens Magnetome TriTom (multiband 

EPI; TR 645 ms; TE 30 ms; 40 slices; FOV 22.2 cm x 22.2 cm; 3 mm isotropic voxels; 900 

images). A 32 channel anterior/posterior head coil facilitated multiband EPI imaging at high 

temporal resolution. A MPRAGE scan was acquired to facilitate alignment (TR 1900 ms; TE 

2.52 ms; 176 slices; FOV 25 cm x 25 cm; 1 mm isotropic voxels).   

Standard preprocessing. A series of preprocessing steps were carried out over the entire 

data set to bring data points into temporal and spatial alignment. These steps were conducted 

using revision 6470 of the Statistical Parametric Mapping MATLAB toolbox (Friston, 

Ashburner et al. 2011). Slice timing mismatches were corrected per each slice’s multiband 

acquisition time. Within-scan images were realigned to correct for movement between 

repetitions. Each scan’s mean realigned image was co-registered to the volunteer’s structural 

image. Structural images were segmented into 5 tissue classes: gray matter, white matter, 

cerebrospinal fluid (CSF), bone, and soft tissue. A warping matrix was evaluated and used to 

normalize each scan from subject space to MNI space. Finally, functional images from all 

volunteers are realigned to the group mean, further increasing the spatial overlap between 

volunteers. 
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Variable preprocessing: It is common practice to implement several additional 

preprocessing steps on voxel time series prior to subsequent analysis. Such voxel-wise 

normalization procedures have a large effect on the resultant GS. Therefore, the present study 

examines GS after applying different combinations of these preprocessing strategies. Table 1 

provides a list and a short description of the variable preprocessing steps. Because the order 

of preprocessing operations influences the final data product, the present study adopted the 

following formalisms when applying multiple preprocessing strategies: time series 

normalization was conducted before noise regression, multiple noise signals were 

simultaneously regressed from scans. 

Data analysis.  After preprocessing, a GS was calculated for each scan as the mean signal 

from all image voxels. This signal was cross-correlated against all other voxel time-series to 

assess any periodic relationships between the GS and individual voxel time-series. GS 

Correlation (GSC) coefficients at lag time, m, were calculated as 𝑅𝑔𝑣𝑖
(𝑚) = 𝐸{𝑣𝑖(𝑡 +

𝑚)𝑔(𝑡)}, where the functional E, is the expected value, 𝑣𝑖(𝑡 + 𝑚), is the ith voxel signal at 

time t+m, and g(t) is the GS at time t. Notice that the correlation is only a vector product and 

lacks normalization constants. This non-normalized correlation coefficient preserves 

information about the relative magnitudes of the underlying signals after each preprocessing 

strategy. Graph representations of study results are scaled to the minimum and the maximum 

of this range. This strategy provides additional information to compare correlation coefficients 

through a series of rescaling procedures.  
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Table 2.1: Preprocessing Strategy Definitions 

STEP DESCRIPTION 

TIME-SERIES NORMALIZATION 

NONE No additional preprocessing steps 

DEMEANING The mean voxel signal is subtracted from each time point 

DETRENDING A linearly increasing vector and a vector of ones are regressed from 
each voxel time series. 

Z-SCORING Demeaned voxel time series are divided by their variance 

NOISE REGRESSION 

MOVEMENT 
REGRESSION 

3 translational, and 3 rotational movement parameters, and their 
squares, are regressed from voxel time-series 

CSF/WM 
REGRESSION 

The first four principal components from cerebro-spinal fluid and 
white matter voxel time-series are regressed from all voxel time-series 
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2.2. Results 

The global BOLD signal exhibited substantial correlation with voxels throughout the 

brain, particularly in the cortical grey matter. Figure 2.1 shows group average correlation 

strength of each voxel with the GS across a range of voxel-wise preprocessing strategies. When 

voxel time series were not normalized, the GS exhibited strong correlations in peripheral 

tissues, particularly over an anterior and a posterior zone. After removing signal means, 

maximal correlation with the GS was found at the head’s periphery. Normalizing voxel signals 

to unit variance generated increased GSC deep into the brain’s gray matter. 
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Figure 2.1: The correlation between voxel signals and the global signal (GS) is shown after various preprocessing strategies: minimal 
processing, demeaning, detrending, z-scoring, motion regression, and CSF/WM regression.  Z scoring reduces the contribution from 
the anterior and posterior hot spots.  After z-scoring, the contributions come primarily from the grey matter, with a particularly strong 
correlation between occipital grey matter and the GS. 
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Figure 2.2: Voxel wise correlation with the global signal is shown after combining at least two preprocessing strategies: either of two 
types of time series normalization strategy—detrending or z-scoring—with combinations of at least one type of noise regression 
strategy—motion regression and/or CSF/ WM regression.     

Figure 2.2 displays a series of correlation maps for datasets with various combinations 

of time series normalization and noise regression. Motion regression had the largest impact 

on correlation with fronto-dorsal and posterior tissues. On the other hand, CSF/WM 

regression largely inverted GS correlations. After simultaneous regression of CSF/WM and 
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motion noise signals from normalized data, the GSC produced is very similar to the correlation 

map after motion correction alone.  

 

Figure 2.3: The effect, on voxel-wise global signal correlation (GSC), of normalizing volunteer motion parameters before regression 
is shown for the relevant preprocessing strategies from figure 2.2. Localization of GSC to the gray matter after normalization by both 
detrending and z-scoring is a strong outcome measure in support of discarding information about motion’s absolute values.  

The lack of a clear effect on the GSC distribution after simultaneous regression 

prompted an additional set of comparisons that normalized the motion time-series before 

motion regression (figure 2.3). Without CSF/WM regression, both normalization steps 

localize GSC to the gray matter. Maximal correlation is widely distributed across gray matter 

after z-scoring, but is localized to a few hot spots after detrending. CSF/WM regression blurs 

the distribution of GSC. The preference shown for gray matter is for the z-scored data set.  

To better show the contributions to the GS from various tissue classes, figure 2.4 

segments the group average time series normalized and noise regressed datasets across three 
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tissue masks: grey matter, white matter, and CSF. These and subsequent results focus on just 

two of the best performing preprocessing strategies detrending and detrended motion 

regression (conservative normalization) and z-scoring with z-scored motion regression (strong 

gray matter localization, strong denial that signal magnitudes are meaningful). CSF/WM 

regression was not further investigated as it’s quantitative overlap with the GS makes the two 

techniques direct alternatives to one another rather than complimentary regression strategies.  

Figure 2.5 provides an indication of the variation in the GS between individuals. After 

detrending and motion regression, prominent variations in the GS overlap rostral and caudal 

hot spot observed from the un-normalized correlation distributions in figure 2.1. This likely 

reflects the effects of large magnitude fluctuations from the head coil’s sensitivity profile as 

the region extends from peripheral CSF into the gray matter. After z-scoring, large variations 

in GSC are observed in peripheral white matter as well. For both normalization strategies, the 

largest GSC variation occurs in the regions having the largest GSC magnitude after detrending 

and detrended motion correction. 
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Figure 2.4:  Correlation between the detrended, motion-regressed global BOLD signal and voxel-wise signals have, here, been 
separated by tissue type. After detrending and motion correction, the strongest correlation was in the CSF, and, grey matter. When 
data are normalized to unit variance (z-scored) the global signal was correlated with deeper white matter tissues as well. 



22 

 

Figure 2.5: To gain an idea of the variation of global signal correlation (GSC) across volunteers, the GSC is displayed for volunteers 
1 and 2. The standard deviation of GSC values is also displayed. 
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Figure 2.6: The time lag for maximum correlation between the global BOLD signal and each voxel was centered around 0 lag for 
all brain tissue classes. Some periodicity exists in cross-correlation 

Figure 2.6 plots the non-normalized cross-correlation between the GS and each voxel 

as a function of time lag and of tissue class. By far, the strongest correlation is observed at 

zero time lag for all tissue classes, and both preprocessing strategies. Some periodicity in GSC 

is observed, especially in the gray matter after z-scoring.  
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Figure 2.7: Time lag for maximum correlation between the global BOLD signal and each voxel. No pattern of delay was observed. 
Each lag unit is equivalent to 0.72 seconds. Lag range is limited to ±5 lag units (±3.6 s) to highlight deviations from zero lag. 

Maximum GSC may not lie precisely at zero lag time in all places. Figure 2.7 details 

the spatial distribution of lag time generating maximal GSC. Slight positive and negative 
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deviations were observed in ventral gray matter. No spatial or temporal structure that 

corresponded to cortical QPPs was observed.  

The GS power spectrum, in both the detrended and the z-scored case, is smoothly 

distributed, with maximal amplitude at low frequencies (figure 2.8). 

 

Figure 2.8: Frequency spectrum of the global signal from each volunteer. Plots differ based upon the labeled preprocessing strategy.  
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2.3. Discussion 

Spatial distribution of global signal.  The global BOLD signal contains strongest 

contributions from frontal and occipital areas. These regions likely correspond to the head 

coil’s sensitivity profile. This distribution was maintained after noise regression, a fact that 

highlights the impact of the raw BOLD signal magnitude on latter processing strategies.  The 

simple removal of the mean signal from each voxel reduces this bias. Even so, GSC remains 

strongest at the periphery, in agreement with previous research (Fox et al., 2009). The 

localization of GSC to hot spots at the boundary between CSF and gray matter denote the 

presence of large signal variance at the CSF/gray matter tissue boundary. This is in contrast 

to the dispersion of correlation deep into grey matter after z-scoring. The imposition of unit 

signal variance across the brain via z-scoring reduces the contribution from the high variance 

voxels and results in a fairly uniform GS contribution from the grey matter.  

Noise regression also impacts the spatial distribution of the global BOLD signal. 

CSF/WM regression and GSR are overlapping procedures; with CSF/WM regression being 

equal to the GS minus an aggregate signal from non-CSF/WM image regions. The noted 

inversion of the spatial distribution of correlation intensities after CSF/WM regression is 

therefore not surprising. The CSF/WM correlation map represents a focal map of 

contributions from gray matter, bone, and soft tissue to the GS.  Whereas the CSF/WM signal 

is a subset of the GS, the motion regressor is calculated from a series of rigid body 

manipulations. Thus, motion regression introduces outside information that is picked up 

during subsequent calculations of the GS. The mean magnitude of the motion regressor is 

appreciable while the mean magnitude of the CSF/WM signal fluctuates around 0, dual 

regression of motion and CSF/WM is strongly weighted on the motion regressor’s side. This 

effect is minimized by normalizing motion regressors in the same way as the data are 
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normalized. Many studies have argued that additional parameters from motion, respiration, 

heart beating, and other yet-identified processes must be better characterized in order to more 

optimally clean global BOLD fluctuations from complex neuronal profiles (Power et al., 

2012)(Power, Plitt et al. 2016). 

From these data it is clear that even after intensity normalization and motion parameter 

regression, the GS, while widespread in all subjects, is not exactly global.  The localization to 

the superior regions of the brain could arise from a combination of greater coil sensitivity in 

those locations, as well as from partial volume effects at the CSF/gray matter tissue boundary.  

Even after Z-scoring, the GS is primarily present in grey matter, with less contribution from 

white matter and subcortical areas. 

Role of QPPs in the global signal.  We did not observe evidence of large scale patterns or 

QPPs in the GS (Amemiya et al., 2016; Majeed et al., 2011).  We expected that strong 

contributions from these patterns would result in 1) dominance of the DMN or TPN as 

contributors to the GS and/or 2) a spatially-structured distribution of lag times that mapped 

to the known propagation of the patterns.  Because neither of these were observed, we 

conclude that QPPs are not major contributors to the GS and that GSR should not reduce 

sensitivity to the patterns.  This is in line with our previous finding that infraslow electrical 

activity was correlated to the BOLD signal regardless of whether GSR was applied (Pan et al., 

2013). The lack of a spatially-structured time lag is also in accordance with a NIRS/MRI study 

that found that hemodynamic lags varied by a second or less across the brain (Erdoğan et al., 

2016).  

Vascular contributions.  So what is left in the GS after motion parameter regression?  One 

possibility is a vascular component.  Tong and de Frederick have published multiple papers 

showing that a peripheral measurement of hemodynamics is correlated with the BOLD signal 
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over large swaths of the brain at different time lags (Tong and Frederick, 2010, 2014).  These 

fluctuations could conceivably contribute to the global BOLD signal.  Other vascular 

processes could also contribute.  Vasomotion involves vascular oscillations at frequencies of 

~ 0.1 Hz and remains poorly understood (Mayhew et al., 1996; Osol  W., 1988).  Mayer waves, 

related to sympathetic nervous system oscillations, are another potential source of GS 

oscillations (Julien, 2006).  Future studies with other hemodynamic contrasts (CBV, CBF) may 

help to shed light on the relative contribution of the vasculature to the BOLD GS. 

Neurophysiological origins.   Recent work supports a neurophysiological origin for at least 

some portion of the GS.  A  PET and rs-fMRI study in humans showed that the GS amplitude 

was linked to changes in baseline FDG metabolism, while regional variance remaining 

relatively unchanged by baseline metabolism (Thompson et al., 2016).  In animal models, GSR 

has been used to control for different levels of baseline blood flow and metabolism in the 

brain due to varying levels of isoflurane anesthesia (Liu et al., 2013).  Changes in broadband 

EEG power are associated with changes in GS at delays approximating  the hemodynamic 

delay (Wen and Liu, 2016).  A number of EEG-MRI studies, particularly by Dr. Thomas Liu’s 

group, have shown that the GS amplitude is related to EEG measures of vigilance (Wong et 

al., 2016, 2013).  Thus the GS may reflect large-scale modulation of brain activity related to 

fluctuations in arousal or vigilance levels.  In a  study that compared simultaneously recorded 

bandlimited power and BOLD correlation from two sites in the brain, GSR improved the 

fidelity of the BOLD signal to the changes in coordinated neural activity (Thompson et al., 

2013b).  This suggests that its removal may improve sensitivity to the coordinated, time-

varying modulations of neural activity that would ideally be detected with resting state MRI. 

While various hotspots appear in the contribution of individual voxels to the global 

BOLD signal, in general the entire cortical grey matter contributes more strongly than the 
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white matter or subcortical regions, something that is particularly apparent after motion and 

physiological noise are minimized.  Z-scoring makes this particularly prominent. This supports 

a potential global but neural source as one contributor to the global BOLD signal, and suggests 

that studies of the GS as a surrogate for widespread neural activity might wish to perform 

these processing steps to increase sensitivity to the hypothetical neural component. 
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3. Connected Brains: Multiscaler and Multispatial Functional 

Connectivity 
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Information about the brain’s spatial scaling may be obtained by parcellating the 

anatomy into FC networks at finer scales. For instance, Buckner et al. used ROI-based FC-

fMRI to identify homotopic maps of the body and the cerebrum (excluding the visual cortex) 

in a pair of regions in the cerebellum (Buckner 2011). Early successes with independent 

component analysis (ICA) for whole-brain FC-fMRI at low model orders inspired Kivineimi 

et al. (2009) to parcellate the brain into as many as 42 independent networks at higher ICA 

model orders (Calhoun, Adali et al. 2001, Kiviniemi, Starck et al. 2009). Other studies have 

observed the choice of model order to have a direct bearing on the capacity to identify 

pathology related differences in FC-fMRI networks (Abou Elseoud, Littow et al. 2011). 

Scaling may play an analogous role in brain physiology via trends in brain activity 

measures acquired through a span of time. In terms of fundamental brain signaling events, the 

minimum time between successive potentials is limited to ~1 ms by an absolute refractory 

period in voltage gated sodium channels  (Mitra and Bokil 2008). For mesoscopic measures, 

such as BOLD FC, individual neuronal activations combine to produce correlated signal 

properties at multiple frequencies. For instance, Kalcher et al. (2014) demonstrated large FC 

network variations among tissue types and grey-matter seed-regions when tissues and ROIs 

are filtered into different passbands (<0.1 Hz; 0.1–0.25 Hz; 0.25–0.75 Hz; 0.75–1.4 Hz) 

(Kalcher, Boubela et al. 2014). Wu et al. (2008) showed that cortical networks tend to organize 

in the frequency range between 0.01-0.06 Hz while limbic networks organize between 0.01 – 

0.14 Hz (Wu, Gu et al. 2008). Chang and Glover (2010) showed that the frequency band 

harboring maximal correlation strength within the default mode network changed over time 

(Chang and Glover 2010).  

Given the multi-scale organization of brain networks and the spectral variability of 

their signals, it is valuable to pursue FC methods that autonomously segment brain data into 
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discrete frequency domains and nested spatial scales (Deco, Jirsa et al. 2011, Hutchison, 

Womelsdorf et al. 2013, Keilholz, Magnuson et al. 2013). To this end, the present study 

incorporates the wavelet packet transform (WPT) for ordered spectral segmentation of FC-

fMRI, and hierarchical clustering for the autonomous aggregation of individual voxels into 

progressively more extended networks. We refine functionally relevant networks from this 

multi-scale representation through the use of two information theory-based classifiers: wavelet 

packet entropy for the identification of high-entropy domains, and variation in information to 

group similar spectral domains at a particular spatial scale. These data-driven methods result 

in the generation of well-formed, whole-brain FC-fMRI networks among groups and 

individuals. 
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3.1. Methods 

3.1.1. Data acquisition 

Neuroimaging data was downloaded from the 1000 Functional Connectomes Project 

website (Milham 2013), specifically, the Enhanced Rockland Sample Multiband Imaging Test-Retest 

Pilot Dataset uploaded by the Nathan Kline Institute for Psychiatric Research (Nooner, 

Colcombe et al. 2012, Nathan Kline Institute for Psychiatric Research 2013). This dataset was 

chosen as it was one of the first to make use of multiband imaging (Feinberg, Moeller et al. 

2010) to produce BOLD scans with short repetition times, 𝑇𝑅 =  0.645 s. Shorter TR’s 

enhance spectral resolution (Feinberg, Moeller et al. 2010, Moeller, Yacoub et al. 2010, Lee, 

Zahneisen et al. 2013).  

Study data were derived from 112 individuals randomly chosen from the NKI 

Enhanced Rockland sample (n. female = 74, n. right handed = 95, mean age = 46.16 y, std. 

age = 19.89 y). These data include two 10 minute long resting-state fMRI scans and their 

associated 1 mm3 structural images. With a TR of 0.645 s and 900 images per run, the sampled 

data span frequencies in the range between 0.003 Hz and 0.775 Hz. 

3.1.2. Preprocessing 

Spatial data preprocessing was conducted in MATLAB (Mathworks, Natick, 

Massachusetts), and the Statistical Parametric Mapping (SPM8) MATLAB software package 

(Friston, Ashburner et al. 2011). FC-fMRI data were first thresholded at an empirically derived 

value to exclude non-brain areas. The within-scan images were then realigned to correct for 

movement. The mean realigned images were then co-registered with the volunteer’s structural 

image. Structural images were segmented and co-registered with the MNI template. The 

resulting warping matrix was used to normalize functional images into MNI space. Lastly, 
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functional images from all volunteers are realigned to their group mean, further increasing the 

spatial overlap between volunteers. 

3.1.3. WPT Theory 

The WPT is an expansion on multiresolution analysis where square integrable 

functions, 𝑓, are described as the limit of successive approximations of smoothed version of 

𝑓. The definition of a multiresolution analysis proceeds as follows: Construct the vector space 

of real valued square integrable functions, 𝐿2ℝ. Observe that this space may be assigned as 

equivalent to the union of a set of subspaces, ⋃ 𝑉𝑑𝑑∈ℤ . If the various vector spaces, 𝑉𝑑, are a 

family of embedded closed subspaces 

… ⊂ 𝑉2 ⊂ 𝑉1 ⊂ 𝑉0 ⊂ 𝑉−1 ⊂ 𝑉−2 …, (3.1)   

then the subspace affects a multiresolution decomposition of 𝐿2ℝ. the 𝑉𝑑. Note that 

the complete intersection of 𝑉𝑑 is vanishingly small, ⋂ 𝑉𝑑𝑑∈ℤ = {0}.  

Information lost when going from a 𝑉𝑑−1 to 𝑉𝑑 can be accessed in the orthogonal 

space, 𝑊𝑑. The unsmoothed space 𝑉𝑑−1 is thus equivalent to the direct sum, 𝑉𝑑 ⊕ 𝑊𝑑. We 

can capture the information in each orthogonal subspace with a pair of functions, {𝜓𝑑𝑘; 𝑛 ∈

ℤ} and {𝜑𝑑𝑘; 𝑛 ∈ ℤ}. The 𝜓 functions, termed the wavelet functions, span 𝑊𝑑. Likewise, the 

𝜑, termed the scaling functions, span 𝑉𝑑. They are related to each other through the recursive 

relations: 

𝜙𝑑(𝑥) =  ∑ ℎ𝑘𝜙𝑑−1(−𝑘)
𝑘

 (3.2)   

and 

𝜓𝑑(𝑥) =  ∑ (−1)𝑘ℎ𝑘+1𝜙𝑑−1(𝑘)
𝑘

 (3.3)   
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If appropriate choices for ℎ are made, then 𝜙 is compactly supported by the vector, 

ℎ. Thus: 

ℎ(𝑘) =  √2 ∫ 𝑑𝑥 𝜙𝑑𝜙𝑑−1. (3.4)  

Likewise, 𝜓 is defined by 𝜙 and the quadrature mirror of ℎ: 𝑔(𝑘) =

(−1)𝑘ℎ(−𝑘 + 1), and:   

𝑔(𝑘) = √2 ∫ 𝑑𝑥 𝜓𝑑𝜙𝑑−1. (3.5)   

The WPT filtering schema is a realization of successive applications of a filter, ℎ, and 

its quadrature mirror, 𝑔. In practice, ℎ is a low pass filter and 𝑔 is its high pass quadrature 

mirror. The WPT iteratively applies the ℎ(𝑘) and 𝑔(𝑘) to downsampled versions of 𝑓, 

𝑓(2−𝑑 ∙). Note that the functions, 𝑓, are elements of 𝑉𝑑 if and only if upsampled versions of 

𝑓, 𝑓(2 ∙), are elements of 𝑉𝑑−1. The process of downsampling between each filtering step 

accomplishes two things: 1) downsampling inflates the Fourier domain representation of the 

signal such that the filters, ℎ, and 𝑔, may be used in accomplishing successive half-band 

filtering operations on previously filtered signals; and 2) according to the Nyquist rule, 

downsampling reduces two filtered signals to the minimum number of data points needed to 

reconstruct 𝑓. A pictorial depiction of the WPT process is provided in figure 3.1. A variety of 

ℎ(𝑘) exist, each with unique properties. Increasing the dimensionality of a particular ℎ(𝑘) 

(i.e., its number of vanishing moments, or “taps”) extends it over the domain of 𝑥 while 

sharpening the filter attenuation and flattening the passband (Tian and Wells Jr 1996). 



36 

3.1.4. Wavelet packet transform (WPT) 

The WPT is essentially a filter bank covering 𝑑 ∈ [0,1,2, … , ∞] sets of 2d evenly 

segmented passbands. The application of the WPT filtering schema 𝑑 times is called the 

‘depth’ of WPT filtering. An ordered set, 𝑝 ∈ [0, … , 2d], number the frequency order of 

packets from passbands including the signal’s DC components (𝑝 = 0) to a passband 

including the signal’s fastest components (𝑝 = 2d). The range of each filter’s passband is 

roughly equivalent to [
𝑝 (𝑓𝑠 2⁄ )

2𝑑 ,
(𝑝+1) (𝑓𝑠 2⁄ )

2𝑑 ] (𝐻𝑧), where 𝑓𝑠 is the sampling frequency. The 

filtered data existing at depth 𝑑𝑖 and position 𝑝𝑗 is given the shorthand notation ‘DdiPpj’. Thus, 

the D0P0 signal is the broadband signal. The D2P0 signal is quarter-band signal covering the 

lowest frequencies, and the D2P3 signal is the quarter-band signal covering the highest 

frequencies. For more details on WPT theory and usage, the reader is referred igure S1, the 

works of Daubechies (Daubechies 1988, Daubechies 1992), Mallat (Mallat 1989, Mallat 1999), 

and Meyer (Coifman, Meyer et al. 1992, Meyer 1993), as well as the technical notes of M. 

Misiti,  Y. Misiti, Oppenheim, and Poggi (Misiti, Misiti et al. 2013).  
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Figure 3.1: An outline of the methods employed in this study is shown in four parts. The dyadic construction of wavelet packet bases 
are shown in part A. Each row increments the application of pair of low pass ‘h’ and high pass ‘g’ filters. After each filtering step, 

the data are downsampled by 2, ‘↓2.’Rows are labeled by depth, d. Each row has 2d passbands, or positions, p. The effective 𝑑 = 3 
wavelet packet filters for the Daubeches 7-tap wavelet are shown in part B. Part C provides an example BOLD signal, and part D 

plots the wavelet packet coefficients at positions 0-7 (counting upwards on the y-axis) for the 𝑑 = 3  wavelet packets. Note the larger 
magnitude fluctuations occurring at the lowest frequencies in the BOLD signal. 

For this study, we chose Daubechies’ 7 tap wavelet (db7) for our WPT filters. At this 

dimensionality, 𝜑 and 𝜓 define short duration filters with good separation between low and 

high frequencies. Each voxel signal was filtered to all positions of WPT depths 0 through 6, 

generating a total of 127 passbands. FC analysis was conducted for all voxels from each 

wavelet packet to produce a multispectral analysis of resting-state FC-fMRI networks. 

3.1.5. Wavelet packet entropy 

At each depth of filtration, the WPT schema acts to separate the total information in 

the signal between twice as many wavelet packets. The amount of information contained in 

each wavelet packet may be measured using one of several entropy criteria. For this 

manuscript, we chose to implement a variant of the well-known entropy metric, the Shannon 
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entropy, to measure the entropy of each wavelet packet. Because wavelet filters have roughly 

equal power over their respective ranges, they serve to normalize the relative entropy between 

wavelet packets. Thus, an appropriate measure for wavelet packet entropy is the non-

normalized Shannon entropy:  

𝐻′(𝑥) = − ∑ 𝑥𝑖
2 log(𝑥𝑖

2)

𝑖

, (3.6) 

with 𝑥𝑖 being wavelet coefficient i of a particular wavelet packet x (Coifman and 

Wickerhauser 1992). Relatively lower entropies indicate that more of the signal’s information 

is contained in the packet, while higher entropies indicate that the packet contains little of the 

original signal information. For signals such as the BOLD signal having a 1/f-type distribution, 

the low frequency packets have the lowest entropies. And, at some high frequency position, 

the wavelet packet entropy is very high (greater than zero). Because fMRI data is expected to 

contain some amount of white noise (Greve, Brown et al. 2013), low magnitude wavelet packet 

data are expected to have a low signal to noise ratio. 

3.1.6. Multi-subject data 

Reorganization of individual datasets for multi-subject hierarchical clustering was 

performed by concatenating the coefficients of a single wavelet packet, voxel-by-voxel, from 

all brain voxels, and from all volunteers, into group level datasets. As described in section 

3.1.6, HC metrics are calculated point by point across time, and, therefore, are not affected by 

the sharp discontinuities introduced upon concatenation. Voxels that did not contain signal 

for any single volunteer’s dataset were removed from group-level analyses in order to 

circumvent issues with pairwise distance metrics. In addition to the largest dataset consisting 

of 112 individuals, individual datasets as well as multiple selections of groups of 5, and groups 
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of 30 individuals were taken from the Rockland Sample in order to judge the consistency of the 

study’s results. 

3.1.7. Hierarchical clustering (HC) 

HC organizes a collection of data into distinctive groups via a rigidly structured 

approach. First, a distance metric, 𝑆1(𝑖, 𝑗), is calculated between all 𝑖  and 𝑗 indices of voxel 

signals. Voxels and/or clusters of voxels are then clustered together until only a single cluster 

exists. After each clustering step, an updated distance metric, 𝑆2(𝑎, 𝑏), is calculated between 

clusters 𝑎 and 𝑏 via any of several linkage metrics.  

For any HC analysis, the internal consistency of the set of distance metric coefficients 

relative to linkage metric coefficients may be calculated via a Cophenetic correlation 

coefficient, 

𝐶𝑜𝑝ℎ =
∑ (𝑆1𝑖𝑗 − 𝑆1̅̅ ̅)(𝑆2𝑖𝑗

∗ − 𝑆2̅̅ ̅)𝑖<𝑗

√∑ (𝑆1𝑖𝑗 − 𝑆1̅̅ ̅)
2

∑ (𝑆2𝑖𝑗
∗ − 𝑆2̅̅ ̅)

2
𝑖<𝑗𝑖<𝑗

. 
(3.7) 

Variables, 𝑖 and 𝑗 are voxel indices, 𝑆1 are a dataset’s pairwise distances, and 𝑆2 are 

the linkage distances. The overbar indicates the average, and the star beside 𝑆2 indicates the 

first linkage distance at which voxels 𝑖 and 𝑗 are organized into the same cluster. Values of 

𝐶𝑜𝑝ℎ close to 1 indicate consistent voxel-wise organization between distance method and 

linkage metric. Values approaching -1 indicate an inverted relationship, and values close to 0 

indicate no relationship. 

The decision for which pairwise distance-linkage combinations to use in this study was 

based upon the maximum 𝐶𝑜𝑝ℎ between multiple distance/linkage pairings (see supplemental 

table S1 for a complete list of distance/linkage 𝐶𝑜𝑝ℎ values). While the average 𝐶𝑜𝑝ℎ across 

pairings was 0.46 with a standard deviation equal to 0.13, the Euclidean-average pairing 
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exhibited the highest mean 𝐶𝑜𝑝ℎ at 0.77. The present study focuses exclusively on this 

pairing’s results.  

Table 3.1: Cophenetic Coefficients from Multiple Hierarchical Clusterings of Filtered BOLD Data 

Names Mean Std Broadband Min Max 

Euclidean-Average 0.773 0.107 0.543 0.513 0.885 
Euclidean-Centroid 0.763 0.132 0.349 0.349 0.880 
Euclidean-Single 0.733 0.203 0.256 0.104 0.892 
Euclidean-Weighted 0.647 0.153 0.327 0.296 0.832 
Euclidean-Median 0.577 0.168 0.252 0.214 0.805 
Correlation-Average 0.495 0.113 0.482 0.270 0.714 
Euclidean-Complete 0.442 0.124 0.374 0.157 0.671 
Correlation-Centroid 0.379 0.167 0.500 0.130 0.806 
Correlation-Weighted 0.341 0.073 0.388 0.210 0.567 
Correlation-Single 0.296 0.152 0.280 0.079 0.728 
Correlation-Median 0.277 0.125 0.308 0.102 0.680 
Correlation-Complete 0.275 0.112 0.339 0.100 0.630 
Euclidean-Ward 0.254 0.111 0.352 0.013 0.503 
Correlation-Ward 0.204 0.113 0.369 0.008 0.526 

Overall Mean: 0.461 0.132 0.366 0.182 0.723 
Overall Standard Dev: 0.203 0.033 0.089 0.139 0.133 

 

The Euclidean distance metric is defined as: 

𝑆1(𝑖, 𝑗) = √(𝑉𝑖≠𝑗 − 𝑉𝑗)(𝑉𝑖≠𝑗 − 𝑉𝑗)
𝑇

, (3.8) 

where 𝑉 refers to the time series of a voxel 𝑖 or 𝑗. The superscript 𝑇 indicates the transpose 

operation. The ‘average’ linkage distance is defined as: 

𝑆2(𝑎, 𝑏) =
1

(𝑛𝑎𝑛𝑏)
∑ ∑ 𝑆1(𝑖 ∈ 𝑎, 𝑗 ∈ 𝑏)

𝑛𝑏

𝑗=1

𝑛𝑎

𝑖=1

. (3.9) 

Variables 𝑛𝑎 and 𝑛𝑏 are the number of voxels contained within clusters 𝑎 and 𝑏.  
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3.1.8. FC networks constructed via dendrogram pruning 

An HC map’s hierarchy may be visualized by plotting successive links as a dendrogram 

(see figure 3.2 and figure 3.5). For the dendrograms of the present study, voxels are ordered 

along the abscissa, and the linkage distance scales the ordinate axis. Horizontal lines are plotted 

between clusters joined at a given linkage distance. Vertical lines measure the linkage distance 

between successive clusters. Voxels are ordered along the abscissa in such a way as to minimize 

the length of each horizontal link. This arrangement results in the most related clusters being 

arranged adjacent to one another along the abscissa, i.e., the order of voxels along the abscissa 

is a linear projection of cluster relatedness. A pictorial description of this process may be found 

in figure 3.2.  

FC maps are produced by pruning each HC map at one or several linkage points within 

the dendrogram. Pruning an HC map thus involves separating linked clusters at any of several 

points in the hierarchy. For this study, the choice of how to prune the HC map was informed 

by calculating the inconsistency of each link in the HC map.  The inconsistency of a given link 

is an indication of the similarity of the elements connected below the link. The higher the value 

of this coefficient, the more dissimilar are the elements connected at that particular link relative 

to the elements connected beneath that link (Zahn 1971). For a given HC map, the kth link’s 

inconsistency is calculated as 𝑌(𝑘, 4) = (𝑧(𝑘) − 𝑌(𝑘, 1))/𝑌(𝑘, 2). Here, 𝑌 is an (m-1)-by-4 

matrix whose first column, Y(k,1), is the mean of the linkage distances for the kth link and the 

first G-1 links beneath it. The quantity Y(k,2) is the standard deviation of those linkage 

distances. The quantity z(k) is the linkage distance of the kth link. Small values for the variable 

G bring the inconsistency algorithm to focus on locally inconsistent links in the HC map. 

Alternatively, larger values of G will search the area below each link to provide a more globally 

representative assessments of cluster inconsistency. Averaging effects quickly negate the 
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impact of extremely large values of G. Part C of figure 3.2 provides a plot correlating the 

inconsistency values for G ranging from 2 to 101 from a prototypical HC map encountered 

in this study (specifically, the D5P1 HC map from a group of 5 volunteers). As can be seen, 

Figure 3.1: Here, we consider how a set of 8 points dispersed across two dimensions is arranged by hierarchical clustering. The 
pairwise distance here is the shortest line distance within the plain between each pair of points (part A). Points 1 and 8 are very close 
together. The linkage metric identified these points as having the shortest linkage distance (~ 1 unit), and clusters them together first. 
The average distance between each point in the new cluster and all other points is then calculated and the next lowest linkage distance 
is assessed. This process is iterated until the last two clusters are finally unified.  

The hierarchy of clusters this process forms is conveniently displayed in its dendrogram (part B), where clusters are arranged along the 
abscissa with neighboring clusters joined together sooner than distant clusters. The ordinate contains linkage distances. Lines are 
drawn vertically from each cluster until they reach a linkage distance at which a cluster connects with a neighbor. A horizontal line 
then connects the two clusters. The process continues for increasing linkage distances until the final two clusters are linked. 

To inform the choice of the clustering value G and the inconsistency threshold (IT), a plot of the correlation between the array of IT’s 
for a range of G’s is provided in part C. As can be seen, differences among IT’s quickly disappear at G >~ 20. 
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large differences in the inconsistency values assigned to each link may be found in the lowest 

values for G.  Changes in inconsistency values quickly even out such that around 𝐺 = 20, few 

changes occur when increasing the sample size from which inconsistency values are derived. 

Given a particular G, we select an inconsistency threshold (IT) from which all links 

whose inconsistency lies above this threshold, and all clusters emerging from those identified 

links, are removed from the HC clustering tree. In this way, we can prune our HC tree so as 

to resolve internal features of the HC map’s organization. If we choose the lowest value for 

𝐺 = 2 and the largest IT, we resolve the data’s organization to show an FC-fMRI network 

where the largest isolated jump in inter-cluster association, and all clusterings dependent on 

those associations, are removed. By removing the single most locally dissimilar link, this 

technique provides a reproducible technique for a coarse scale representation of some 

components of the whole FC-fMRI network. We can also observe the other extreme of cluster 

pruning, where a large 𝐺 > 20 and the lowest IT are chosen. This alternative provides a fine 

scale decimation of the FC-fMRI network that accounts for the global relationship between 

clusters. Following these contrasting approaches simultaneously allows us to detail 

complementary spatial scales of FC-fMRI network organization.  

For any combination of the values 𝐺 and IT, the dendrogram is pruned to a set of 

clusters, C. Because voxel order along the dendrogram’s abscissa generally corresponds to 

voxel relatedness within the clustering hierarchy, the coloration of each element of C was 

pegged to cluster location on the dendrogram using a linear colormap spanning the range of 

the dendrogram’s abscissa. The colormap is fixed to range across hues, red orange yellow 

green blue and violet, from left to right across the dendrogram. If the required number of hues 

exceeds 256 (a discrete limit in hue variation for many graphics processing systems), the 

saturation and color values (brightness) are varied to provide visual contrast between clusters. 
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3.1.9. Comparing WPT-HC networks 

To compare the similarity between networks, we implement a mutual information-

based criterion. Specifically, we use Marina Meila’s normalization of inter-clustering mutual 

information called the variation of information (Meilă 2007): 

Here, 𝐻 is the entropy of each clustering, 𝐻(𝐶) = − ∑ 𝑃(𝑖) 𝑙𝑜𝑔2 𝑃(𝑖)𝑘
𝑖=1 , with 𝑃(𝑖) 

the probability, 
|𝐶𝑖|

𝑛
, of choosing one of the voxels in the cluster 𝐶𝑖 from all n voxels. The term 

𝐼 is the mutual information between clusterings,𝐼(𝐶′, 𝐶′′) = ∑ ∑ 𝑃(𝑖, 𝑗) 𝑙𝑜𝑔2
𝑃(𝑖,𝑗)

𝑃(𝑖)𝑃(𝑗)

𝑙
𝑗=1

𝑘
𝑖=1 , 

where 𝑃(𝑖, 𝑗) =  
|𝐶′𝑖∩𝐶′′𝑗|

𝑛
. The first term in equation (3.10) may be thought of as how much 

information is lost when going from FC network C’ to C’’. The second term is then how much 

information is left to be gained when going from C’ to C’’ (Wagner and Wagner 2007). 𝑉𝑎𝑟𝐼𝑛𝑓 

is an excellent choice for comparing whole-brain FC networks because it is a distance metric 

on multiple clusterings from the same dataset, a fact that enables several realizations of FC 

networks within the same individual or group-level brain to be compared. 

𝑉𝑎𝑟𝐼𝑛𝑓(𝐶, 𝐶′) = [𝐻(𝐶) − 𝐼(𝐶, 𝐶′)] + [𝐻(𝐶′) − 𝐼(𝐶, 𝐶′)] (3.10) 
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3.2. Results 

3.2.1. Wavelet packet entropy 

If we look at the wavelet entropy of each packet signal, we can refine the search across 

spectra to only those packets characterized by low relative entropy, and hence, more signal. A 

plot of the non-normalized Shannon wavelet entropy from the group of 112 subjects’ WPT 

filtered fMRI signals is provided in part A of figure 3.3. Two colorbars are used to better 

represent that entropies form two distinct zones: the negative entropy, powerful signal zone 

(cool colorbar), and the positive entropy, weak signal zone (hot colorbar). The designation of 

positive non-normalized Shannon entropies is important as at is an indication that the signal 

in these zones becomes very low in magnitude, fluctuating inside the range (-1 , 1). The 

distribution of positive entropy varies somewhat across data sets that include more or fewer 

volunteers, particularly for data sets including only one volunteer.  The plot in part B of figure 

3.3 shows, for each dot, wavelet packets, across all datasets, having positive entropy. Positive 

entropy, low signal magnitude packets are shifted to the right in the spectrum. Because fMRI 

data contains some white noise, high entropy wavelet packets have a low signal to noise ratio. 

The spread of positive entropy packets into lower frequencies increases among datasets having 

fewer individuals.  
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Figure 3.3: An assessment of the non-normalized Shannon wavelet entropy is given across all wavelet packets. Part A shows the 
non-normalized Shannon entropy of individual wavelet packets from the group dataset of 112 volunteers. Negative and positive 
entropy measures are visualized in hot and cool colors, respectively. Wavelet packet depths are arranged vertically, and positions 
horizontally. Each depth’s wavelet packet positions spans a range of the horizontal axis proportional to that packet’s spectral range. 
Part B identifies those wavelet packets having positive entropy across all datasets. 

3.2.2. Variation in information (VarInf) across spectra 

The inter-spectral VarInf was calculated between WPT delimited FC networks having 

2000 clusters (± 1%, G = 50) from the group of 112 individuals. Inter-spectral VarInf values 

served as distance metrics for HC using the ‘average’ linkage metric, the best choice as 

determined by inter-spectral FC network HC map 𝐶𝑜𝑝ℎ = 0.810. The HC dendrogram is 

provided in part A of figure 3.4. Notice that the plot assembles wavelet packets into several 

groups having strong separation from one another. Efficient visualization of packet 

relatedness is provided by inconsistency-based network pruning. Part B visualizes wavelet 

packet groupings when the most locally inconsistent link is removed from the dataset. An oval 
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labeled ‘1’ is provided in part A showing where this link is located on the dendrogram. The 

link removes the association between the D3P1 packet and a frequency component internal 

to that packet—namely, the D5P4 packet spanning the approximate range [0.089 to 0.113 Hz].  

When this link is pruned, we observe that the frequency domain of FC-fMRI networks 

separate very well into at least four systems: a system that includes a set of low frequency 

oscillations (LFOs) spanning ~0.01 to 0.1 Hz, a ‘high’ frequency system above ~0.2 Hz, a 

‘transitional’ system lying between these two ranges, and a ‘DC’ frequency system that includes 

all packets having the lowest sampled frequencies (0.003 Hz). Because we are interested in the 

FC-fMRI network variations at finer spectral scales, we chose also to prune the dendrogram 

at the maximum IT for which a single packet in the LFO range (specifically, a single packet 

among the D6P1, D5P1, D4P1 packets and their finer scale subbands) appears in a different 

cluster from the others. For this, we used a global value of 𝐺 = 50. This operation prunes the 

dendrogram in part C at the oval marked ‘2,’ separating the D5P1 and D6P1 packets (and their 

subdomains) from the D4P1 packet (and its subdomains). The IT at which separation occurs 

among LFOs is plotted across individual and group datasets in part D of the figure. The inset 

to the figure plots these same IT’s as a percentage between the maximum and minimum IT 

for each dataset. These results indicate that for group datasets, the IT at which the 0.01 to 0.1 

Hz system breaks into smaller components falls at the 50% point of the dataset’s IT range. 

That is, the increase in global internal dissimilarity (very high G value) linking the LFO packets 

into a single cluster is at about the median of all possible increases in global internal 

dissimilarity. The difference between networks in the LFO range is of ‘moderate’ strength.  
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Figure 3.4: Variation in information (VarInf) groups similar functional connectivity (FC) networks across wavelet packets. The 
calculated VarInf is the distance metric in a hierarchical clustering (HC). Part A shows the dendrogram from HC. The dendrogram 
is pruned in two places: the most locally inconsistent link is removed (green links removed), and the top half of globally inconsistent 
links are removed (red links and dependent green links removed). Wavelet packet association maps are provided in parts B and C 
for the two levels of dendrogram pruning. Different colors represent the separation between packets. Part D plots the inconsistency 
thresholds (ITs) for each dataset for a G = 50. Filled circles indicate the IT at which a packet within the low frequency oscillation 
band (~0.01 to 0.1 Hz, specifically, the D6P1, D5P1, D4P1 packets and their subbands) is found in a different network. The 
inset shows, for each dataset, the percentage of ITs remaining after this link is removed. 
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3.2.3. Functional connectivity maps across spectra 

To understand the overall variation of FC-fMRI networks across spectra, an example 

dendrogram from the D6P1 signal from the group of 112 volunteers is provided in figure 3.5. 

Figure 3.6 thru figure 3.8 then display cross-sectional views of FC-fMRI networks spanning 

the range of permissible wavelet packets. Datasets having differing numbers of volunteers 

were chosen to facilitate visual estimation of the network commonalities shared among groups 

and their variations. To inform network organization across spatial scales, contrasting and 

complimentary choices for the quantities G and IT are chosen.  

 

 

Figure 3.5: Dendrograms and colorbars for the whole-brain networks presented in figure 3.6 thru figure 3.11 are displayed. Green 
lines correspond to the coarse scale networks, while red lines correspond to the fine scale networks. Notice how the coarse scale network 
is formed by picking a single link and all dependent links to prune from the dendrogram, while the fine grained network make very 
many such removals of links set deep into the dendrogram. . Notice also the decrease in subnetwork grouping among high frequency 
dendrograms (like the D2P1 dendrogram). The loss of internal organization is prototypical of noisy datasets. The colorbars below 
(top – green/coarse, bottom – red/fine) each dendrogram map coloration between network clusters and dendrogram locations. Such 
correspondence is pointed out and labeled for rostral (dark purple) and caudal (purple) portions of the default mode network appearing 
in the D6P1 map from 112 volunteers (figure 3.6). 
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Figure 3.6: Similarities and differences between wavelet depth and position connectivity mappings from a group of 112 volunteers 
are illustrated. On each page whole-brain networks are arranged into columns and rows, with each row holding a different spectral 
range, and each column holding coarse (left) or a fine (right) spatial clustering. The anatomical image is the MNI average T1 brain 
from 305 volunteers. Coloration corresponds to the cluster each voxel is arranged into within the hierarchical clustering dendrogram. 
Part A is derived from the low frequency oscillation range, and shows the expected separation into functional networks including a 
somatomotor, frontal, visual, cerebellar, default mode network, etc. Part B is from the transitional and high frequency range, and 
shows varying degrees of corruption by high frequency noise, particularly in the brainstem. Part C is from the DC frequency range, 
particularly, the broadband network was chosen for display. 
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Figure 3.7: The same calculations as performed for figure 3.6 are applied here, albeit from a group dataset having 30 volunteers (part 
A), and from a group dataset having 5 volunteers (part B). Only packets from the low frequency oscillation range are displayed for 
each dataset. Each mapping produces the set of expected functional networks, somatomotor, default mode, etc. Inter-spectral network 
variability increases with decreasing numbers of volunteers.  
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.  

Figure 3.8: The same analysis as presented in figure 3.6 and figure 3.7 are conducted for individual 27 (part A) and individual 39 
(part B). While many functional networks are difficult to fully discern, notice the prominence of the default mode network at both 
coarse and fine spatial scales, and its spectral variation. 
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3.2.4. Functional connectivity maps across scan type 

Data from 32 volunteers were randomly selected for a second analysis conducted 

across variations in scan parameters. In addition to a data set with a TR = 0.645 s, data were 

acquired at TR = 1.400 s with 2 mm isotropic voxels (10 minutes), and at TR = 2.500 s with 

3 mm isotropic voxels (5 minutes). To address the hypothesis that noise in either a global 

signal or from volunteer motion plays a role in FC network organization, movement 

information and the mean CSF/WM signal were regressed from these data. To better facilitate 

analysis via wavelet packets These data were resampled to a common frequency of 0.6 Hz. 

Spectral information outside the data’s native range should be considered spurious. FC maps 

in three low-frequency fluctuation ranges are shown in figure 3.9 through figure 3.11. 
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Figure 3.9: Functional connectivity networks from three qualities of scanning precision are displayed for the D6P1 packet. 
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Figure 3.10: Functional connectivity networks from three qualities of scanning precision are displayed for the D5P1 packet. 
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Figure 3.11: Functional connectivity networks from three qualities of scanning precision are displayed for the D4P1 packet. 
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Figure 3.12: Spectrally delimited functional connectivity networks group according to pass-based range. The technique is identical to 
that from figure 3.4. Here, the analysis compares data at three different scan qualities. Coloration indicates group association. All 
data were upsampled to Δt = 0.600 s. Note that, extrapolating high-frequency information from slowly sampled data causes the 
patterns of low frequency clustering to be reflected into higher frequency domains.  

3.2.5. Packets in low frequency oscillation range 

The entropy criterion confirms that FC-fMRI networks from packets at higher 

frequencies are more noise-ridden. The VarInf diagnostic indicates that packets in the LFO 

range tend to organize together at coarse scales (high IT), but may divide into individual 

components at finer scales (low IT). Part A of figure 3.6 presents the three uppermost depth 

packets lying in the LFO range —the D6P1 (0.016 – 0.028 Hz) D5P1 (0.028-0.052 Hz) and 

D4P1 (0.052 – 0.100) packets. Many commonalities are expected to appear across these 

networks. In all instances, the primary divisions observed in the coarsely-clustered data are 
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preserved during finer clustering, but additional gradations within the original coarse clusters 

appear.  Both coarse and fine clusters are approximately bilaterally symmetric.  

The somatomotor cortex (SMN) forms clear networks in the maps from all spectral 

and spatial scales. The network is efficiently visualized in each map’s coronal slice. Amid fine 

scale maps, the SMN also subdivides into bilaterally symmetric subnetworks. The same holds 

for frontal, visual, and cerebellar cortices. Elements of the default mode network (DMN) 

appear in each of the LFO range packets, especially the precuneus and (bilateral) lateral parietal 

cortex. These two regions are functionally connected to one another in the very low frequency 

D6P1 map. Observing the location of this region on the dendrogram of figure 3.5, the caudal 

elements of the D6P1 network are directly connected to the rostral elements of the DMN in 

the medial frontal cortices. 

Visual observation of the FC-fMRI networks produced by smaller groupings of 30 

and 5 individuals produce similar results (figure 3.7) as in the larger group dataset. The SMN, 

visual, frontal, and cerebellar cortices, as well as the caudal DMN are apparent in each of the 

low frequency maps of each smaller group (see especially sagittal slices at fine scales). As with 

the larger group dataset of 112 individuals, there are variations in the boundaries of these brain 

networks across frequency bands. By visual observation, cross-spectral network variability 

increases with decreasing numbers of individuals. For instance, the DMN in the group of 112 

individuals is always a piecewise construct, consisting of a posterior region and a medial frontal 

region. Conversely, whole DMN’s are found in some of the wavelet packets among 

individuals, such as, the cyan region in the D6P1 packet from the five-volunteer group.  

Among individual network maps (figure 3.8), DMN connectivity is a particularly strong feature 

displayed across the selected slices. Large voxel-wise variations in the shape of this network 
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occur across sampled spectra. This is especially true of the medial caudal portion of the DMN 

that includes the precuneus.  

3.2.6. High frequency packets  

The entropy criteria predicts that FC-fMRI networks from high frequencies should 

contain a large amount of noise. High frequency information is present to varying degrees in 

the maps displayed in part B of figure 3.6. The D3P1 map spans the lower frequencies than 

the D2P1 map: 0.100 – 0.196 Hz, and 0.196-0.389 Hz respectively. While the D0P0 map spans 

the broadband spectra: 0.003 – 0.775 Hz. Noise appears in the D3P1 and D2P1 packets as a 

brainstem and other proximal regions that are grouped into a single mass (purple, blue). 

Domains in the distal occipital and parietal lobes exhibit less functional localization, probably 

due to noisy contributions (red). Whereas, functional domains are apparent in other regions 

of the lower frequency D3P1 packet, noise patterns extend into the higher frequency D2P1 

map to preclude differentiation of other brain regions (green). The corruption in the D2P1 

map is mirrored in the organization of its dendrogram (figure 3.5) in which single voxels of 

very small clusters are strung together, one-by-one, into a single cluster encompassing the 

whole brain. In all other maps having lower frequency components, subnetwork organization 

is a prominent feature of the dendrogram.  

3.2.7. The broadband network 

If an FC-fMRI network is built using broadband data (D0P0), the resulting network 

includes many of the features appearing in networks from the LFO spectra. This is especially 

true for the group having 112 volunteers (figure 3.6, part C). But, whereas in networks 

containing only low frequencies the precuneus is disconnected from deeper, non-neuronal 

regions—the lateral ventricles, and corpus callosum—the D0P0 map connects these regions. 
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This observation is most apparent when comparing the coarse FC-fMRI maps from the D4P1 

and D0P0 packets (figure 3.6 parts A and C, sagittal as well as horizontal slices). The same 

blurring of regions including the precuneus is observed in datasets from smaller groups. 

Among individual maps, much of the coarse scale map is blurred into a single cluster. 

Conversely; individual fine scale broadband maps have amorphous and variegated network 

shapes. Frontal networks, none-the-less, form a distinct zone in the D0P0 maps from all 

datasets. Brainstem regions in D0P0 appear less pixilated than the same regions mapped with 

high-frequency data.  

3.2.8. Network stability after additional noise regression 

FC network independence between spectral passbands remained conserved after 

additional preprocessing procedures, as well as after perturbations to the data’s acquisition 

parameters. Good definition in known functional networks is observed across all low-

frequency fluctuation (passbands figure 3.9 thru figure 3.11). The highest frequency data 

(D4P1 packet, figure 3.11) lost definition in the brain stem at low frequencies. Despite 

attempts to place the spectral information from each scan in a common time-scale, spectral 

bands did not cluster together across different scan types. None-the-less, data from each scan 

type agglomerates into clusters based upon the input signal’s spectral pass-band (see figure 

3.12). 



64 

3.3. Discussion 

Multiple avenues of inquiry converge to indicate that functional networks are best 

formed within a low frequency passband of the BOLD signal centered amid the decade 0.01 

to 0.1 Hz. The entropy-based cost function indicates that high frequency data contain a large 

proportion of low amplitude fluctuations (figure 3.3). Hierarchically clustering the VarInf 

distance between multi-spectral FC networks again isolates the high frequency data from the 

low frequency data. At finer scales, this metric indicates that low frequency data are separable 

into at least three additional components: an LFO range (0.01 to 0.1 Hz), a transitional zone 

between the LFO and high-frequency ranges (0.1 to 0.2 Hz), as well as a range including all 

wavelet packets that include the data’s DC frequency (0.003 Hz).  

When visualizing these systems, the highest frequency networks do not appear to 

contain functional parcellation. Rather, the high frequency data segments the brain into ventral 

and posterior-dorsal regions. This segmentation may relate to differential fluctuations in the 

blood supply from the large arteries and veins that pool together at those locations. The cardiac 

and respiratory rhythms occur at relatively high frequencies of ~2 Hz and ~0.2 Hz, 

respectively. Recall that physiological noise artifacts were not regressed from the present 

dataset before analysis. FC-fMRI networks contain progressively clearer functional 

parcellation among packets containing information from the transitional band and from the 

LFO band. Because of the large structural differences between the high and low frequency 

networks, it is likely that there is not a true broadband network, but rather that networks built 

from broadband data mix signals that are many times functional data as well as correlated 

noise.  

A common heuristic in fMRI studies is to filter signals to the LFO range before 

analysis (Biswal, Deyoe et al. 1996, Murphy, Birn et al. 2013). The present study confirms the 
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utility of this practice while providing insights into its limitations. Whereas the application of 

optical methods to measure blood and blood-oxygenation identify the LFO range as 

containing the maximum correlation between tissue oxygenation and calcium signals recorded 

from the same sites (Du, Volkow et al. 2014); and whereas electrochemical methods identify 

the LFO range as containing the maximum correlation when comparing blood oxygenation 

signals from grey matter sites in two different networks (Li, Bentley et al. 2015); the 

identification of correlation maxima within a frequency band is strong evidence for spectral 

variation, but it is weak evidence for the isolation of FC networks to only that frequency range. 

Indeed, many researchers offer accounts of the brain’s activity as a concerted and coordinated 

signaling process carried out across multiple frequencies simultaneously (Berger 1929, Bullock 

1948, Buzsáki and Draguhn 2004, Wu, Gu et al. 2008, Buzsaki 2009, Gu, Pasqualetti et al. 

2015). The data driven spectral segmentation offered by the present study is a confirmation 

that differential FC networks develop within the LFO range. And whereas network structures 

lying above this range tend to appear less and less related to neuronal activity, the appearance 

of network structures in the DC frequency range indicates that some FC networks develop 

over longer time scales than measured during these scans (10 minutes) (Birn, Molloy et al. 

2013). 

The multi-spectral nature of brain signals in FC-fMRI was first motivated by similar 

findings in electroencephalographic measurements (Lu, Zuo et al. 2007, Mantini, Perrucci et 

al. 2007). Wu et al. (2008) found that the overall size of individual networks diminished as the 

analyzed pass-band shifted into higher frequencies (Wu, Gu et al. 2008). The study further 

noted that cortical networks were only present in lower frequencies (0.01-0.06 Hz), while 

limbic system networks were maintained over a broader frequency range (0.01-0.14 Hz). Zuo 

et al. (2010) found differential activation patterns manifested by slow-4 (0.027-0.073 Hz ~ 
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D6P1) vs slow-5 (0.01-0.027 Hz ~ D5P1+D5P2) FC-fMRI activity (Zuo, Di Martino et al. 

2010, Xue, Li et al. 2014). Like Wu et al. (2008) these authors also found an overall trend of 

weakened FC strength in the higher frequency, slow-4 spectrum. Likewise, in the present 

study, for packets that include higher frequency information, such as the broadband and D2P1 

packets, the distinct organization of functionally relevant structures is obscured or lost. 

Because wavelets are time-limited filters, the wavelet schema may be used as both a 

spectral and a temporal filter. Chang and Glover (2010) implemented wavelet coherence and 

sliding window analysis to demarcate times of frequency delimited network dynamics amid 

ROIs of the DMN (Cheng, Yan et al. 2013). The present work establishes preliminary results 

regarding the capacity to utilize data-driven, whole brain FC metrics alongside multi-spectral 

decomposition. Future studies aim to incorporate an enunciation of the present metrics to 

include whole-brain network variation over time. 

Multispectral analyses supports the notion that the spectra of information included in 

FC analysis is a variable that mediates the architecture of FC within and across many brain 

regions (Buzsaki 2009). Because the capacity to detail this network architecture is directly 

related to the detail of the acquired data, the present study benefits from the availability of a 

large dataset containing highly temporally and spatially resolved BOLD scans. The present 

capacity to distinguish spectrally specific network architectures in multiple cortical regions may 

be the result of the use of fast multiband fMRI sequences (Xue, Li et al. 2014). The 300% 

increase in speed reduces aliasing of high frequency noise into lower frequencies, to improve 

the range of frequencies sampled. A similar benefit is theoretically gleaned from longer resting 

state scans.  

In terms of spatial scaling of FC-fMRI networks, the present study presents two 

extremes of network organization, coarse and fine. The two scales depict similar overall 
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organization, with the fine scale map including added gradations that show degrees of 

similarity within the larger coarse clusters.  For example, the robust segmentation of the SMN 

at the coarse scale informs the observation of bilaterally-symmetric SMN subnetworks. Such 

subnetworks may relate to internally distinctive processing systems. In the case of the SMN, 

these systems may correspond to the brain’s somatotopic map of the body’s sensory and 

motor units. 

Studies using techniques such as ICA have evoked an ongoing debate as to how many 

components to divide brain networks into (Kiviniemi, Starck et al. 2009, Abou Elseoud, 

Littow et al. 2011). HC is well suited to multi-scale functional brain network analysis because 

it imposes an order to the relationship between brain signals. Previous studies implementing 

HC naturally lead up to this multi-scalar approach. Cordes (2002) reported that multi-spectral 

HC analysis presents bilaterally symmetric networks in the low frequency range (Cordes, 

Haughton et al. 2002). The study surveyed HC-based FC networks at one scale of IV, realizing 

10 bilaterally symmetric clusters across four slices. A dendrogram sharpening method applied 

to the same dataset improved to make it possible to observe a representative portion of the 

DMN in the data (Stanberry, Nandy et al. 2003). Consummate with recent advances in 

computing power, several studies have demonstrated that the networks produced by voxel-

wise, whole-brain HC compared favorably with alternative measures of network organization 

(especially, independent component analysis) (Billings, Medda et al. 2013, Wang and Li 2013). 

In a similar study, visual methods for splitting the cluster tree enabled the 3D rendering of 

several large-scale networks including the SMN, frontal network, visual network, and others 

(Medda, Billings et al. 2014). The present study furthers these results to represent whole brain 

networks at multiple spatial scales. The use of contrasting and complimentary methods for 
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HC pruning provides a depiction of the brain as a gestalt of both local and large-scale 

networks.  

  



69 

3.4. Limitations and Future Directions 

A primary limitation of this study is the difficulty of drawing systematic relationships 

or differences between networks based upon visual inspection. Because there is no gold 

standard for brain parcellation to which all parcellation methods can be compared—indeed, 

the search for such a standard is one of the goals of FC research (Rubinov and Bullmore 

2013)—it may be worthwhile to refocus future analyses from the comparison of whole 

networks between groups to the direct comparison of the stability of subnetworks within and 

across groups. This variety of analysis is also fruitful for the analysis of time-varying 

connectivity which relies on the capacity to detect internal changes in network architecture 

over time (Keilholz, Magnuson et al. 2013).  

A second limitation concerns the problems drawing robust conclusions after group 

level smoothing given individual anatomical and physiological variation. At the group level: 

some anatomical variations exist between individuals. These variations produce a number of 

spatial distortions between datasets. Normalization and realignment produce roughly similar, 

if slightly warped brain overlays between volunteers. And the hard cutoff of non-overlapping 

voxels biased networks to those central to deleted segments at the periphery. Even so, both 

cortical and sub-cortical functional networks are rendered. Future studies may implement 

additional strategies to improve parameter selection when registering parity between 

individuals as well as strategies for assessing individual variability. At the individual level: A 

large proportion of the network structure of individual datasets remains to be clearly 

interpreted. However, some regions, such as the DMN and SMN, are robustly identified at 

the individual level. Additional information about individual network architecture, for 

example, from diffusion tensor imaging structural data, might assist in applying some 
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constraints regarding possible inter regional communications, and thus enhance the 

interpretation of individual FC.   
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4. Mammalian Brains: Comparative Functional Connectivity  
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Despite fMRI’s wide spatial range and good spatial resolution, intrinsic limitations in 

fMRI minimize what FC-fMRI can detail about brain connectomics. These limitations include 

fMRI’s low temporal resolution. Additionally, fMRI is an indirect measure of neuronal activity; 

measuring the positive/negative hemodynamic response to increased/decreased neuronal 

activity, respectively. While the evoked Blood Oxygen Level-Dependent (BOLD) response 

corresponds, most strongly, to neuronal activity in the Gamma band, the direct 

correspondence between spontaneous fMRI and spontaneous neuronal activity remains 

uncertain (Logothetis, Pauls et al. 2001, Logothetis 2008).  

The BOLD response requires metabolic signals to be conveyed to the cardiovascular 

system. This transduction is believed to occur via multiple signaling molecules, utilizing both 

bulk diffusion and direct translocation via the glia. Predicting whether and how coordinated 

metabolic support corresponds to coordinated neuronal signaling benefits from direct 

measurements of neuronal activity. Previous studies have thus sought the use of rodent models 

(Pan, Thompson et al. 2013, Magnuson, Thompson et al. 2014). Simultaneous fMRI and LFP 

recordings in the rat identified strong correlation between the BOLD signal and LFP’s in the 

somatomotor network (SMN) (Pan, Thompson et al. 2011). A follow-up study found bilateral 

SMN LFP sliding-window correlation to be strongly correlated with bilateral SMN BOLD 

sliding-window correlation. interhemispheric low frequency (0.01 to 0.1 Hz) BOLD and 

simultaneous LFP recording in the gamma (40-100 Hz), beta (14-40 Hz), and theta (4-8 Hz) 

frequencies. To discern the interaction between LFP and BOLD networks, the present study 

observed multi-scale network coordination among eight cortical sites from contiguous LFP 

and BOLD recordings in the rat. Because this gap in knowledge complicates the interpretation 

of BOLD-FC, knowing the neuronal origins of BOLD-FC confirms the theoretical utility of 

BOLD-FC to address the brain’s neuronal communication.  
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FC-fMRI is used to identify the boundaries of familiar brain networks, like the 

somatomotor network (SMN), while identifying possible new ones, like the default mode 

network (DMN) (Raichle, MacLeod et al. 2001). The SMN serves to coordinate bodily 

sensation and motion through the primary and secondary somatic and motor cortices. The 

DMN is observed as a coordination among regions of the brain involved in self-relevant 

decision making (the medial prefrontal and posterior cingulate cortices), recollection (the 

hippocampus and lateral parietal cortex), and social awareness (auditory and temporal 

association cortices) (van Oort, van Cappellen van Walsum et al. 2014). It is habitually active 

when subjects are in a resting state, and remains connected, albeit in a reduced form, when 

mammals are under light sedation (Greicius, Kiviniemi et al. 2008, Upadhyay, Baker et al. 

2011). The DMN becomes disconnected when subjects engage in an externally directed task. 

Short-term variations in DMN connectivity may indicate qualitatively different mentation 

(Keilholz, Magnuson et al. 2013). Alterations in DMN connectivity observed among 

psychopathological patients may serve as disease biomarkers (Whitfield-Gabrieli and Ford 

2012). The presence of a DMN-like network among rodents means that we can test 

hypotheses about fundamental properties of neuro-vascular network coupling in rodent 

models (see figure 4.1) (Lu, Zou et al. 2012, Barks, Parr et al. 2013).  
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Figure 4.1: The rodent default mode network is revealed after an independent components analysis (N=4, 32 total components). 
Connected regions include the rodent hippocampus, cingulate cortex, and orbitofrontal cortex. 
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4.1. Evolutionary Foundations of Comparative Neuroscience 

Human beings are not the only encephalized organism. Indeed, the human nervous 

system required at least 3.5 Gya to be built from the first monocellular life. Throughout this 

time, a multitude of lifeforms developed from shared genetic instructions. Modern brains 

began as a diffuse neural nets communicating sensation and motor commands within cnidaria, 

a radially symmetric, jellyfish-like eumetazoa who formed before the Cambrian period 540 

Mya (Garcia-Fernandez 2005). Evolved activation of conserved homeobox genes (HOX) 

guided the patterning of neurons into an anterior-posterior arrangement among bilateralia 

(Wada, Saiga et al. 1998, Butler 2000). Bilatera nervous systems take many forms including the 

derivation of a dorsal nerve cord and strengthening notochord among chordates. The 

Cambrian itself saw the emergence of the first craniates whose dorsal nerve cord segments 

into forebrain, midbrain, hindbrain, and spinal cord and became encased in a hardened skull 

(Pani, Mullarkey et al. 2012). Cladistic analysis demonstrates that the craniate forebrain 

segments into telencephalon and diencephalon, which further segments into functionally 

specific regions such as an olfactory bulb, hippocampus, striatum, thalamus, hypothalamus, 

and other conserved regions (Wicht and Northcutt 1992). Amniotes, who adapted to terrestrial 

life approximately 312 Mya conserve this general body plan (Benton and Donoghue 2007).  

Further encephalization took divergent trajectories among aves, and mammals. This is 

especially evident in the dorsal telencephalon where, approximately 150 Mya, mammals 

developed a six-layered neocortex and aves developed a nucleated neocortex (Jarvis, 

Gunturkun et al. 2005, Nomura, Gotoh et al. 2013). The mammalian neocortex always 

contains at least the following sensory and motor modules: primary and secondary visual, 

auditory, and somatosensory cortices (SII is sometimes replaced with a parietal ventral area), 

as well as a rostral deep field and a primary motor cortex. Euarchontoglieres, the clad of 



76 

mammals including primates, rodents, tree shrews, and hares, diverged just after the 

Cretaceous-Paleogene extinction event 65 Mya (O'Leary, Bloch et al. 2013). These and future 

divergences are associated with the alteration in dedicated brain modules that conduct 

multisensory integration, and that manipulate differentiated somatic adaptations (e.g. whisking 

among rats, manual dexterity among humans, etc.) (Krubitzer 1995). The conserved 

organization of the mammalian brain allows researchers to effectively utilize rodent models in 

comparative neuroscientific studies. 



77 

4.2. Methods 

Any measured brain signal is the product of many underlying processes. For instance: 

A single timepoint of a single LFP measurement is a parallel sum of all charge carriers. Each 

charge’s contributions to the LFP measurement is weighted according to the product of 

distance from the electrodes and the tissue’s impedance (Einevoll, Kayser et al. 2013). These 

potentials change with time as populations of neurons convey different bits of information. 

The amount of information shared between brain regions is reflected in their temporal 

correlations (Deco, Jirsa et al. 2011). Correlations between brain sites are also a function of 

the rate, or frequency, at which that information is shared. For example, it is thought that 

spectrally-dependent correlation between brain regions allows low-frequency signaling from 

one region to modulate high-frequency signaling from another brain region by locking each 

region’s membrane potentials to the phasic variations of the low frequency fluctuation 

(Buzsáki, Anastassiou et al. 2012, Lisman and Jensen 2013, Thompson GJ 2014). Thus, a 

thorough examination of brain function should take into account elements of time, space, and 

spectra.  

4.2.1. Animal selection 

The study’s invasive nature makes an animal model the only moderately ethical option. 

Rodents were selected because their extensive use in fundamental and pre-clinical science 

facilitates the direct application of this study’s findings to the plethora of existing models. A 

rats relatively large size among rodents makes the rat model better suited for fMRI. Sprague-

Dawley rats are breed to tolerate being handled during research used in this experiment 

(Johnson 2012). Data are examined from 8 adult male rats. 
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4.2.2. MRI acquisition 

MRI images were acquired to identify the rat’s FC networks. To do so, animals are 

first anesthetized with isoflurane (ISO). Anatomical data from each rat is acquired using a 

FLASH sequence (TR 70 ms; TE 4 ms; resolution 200 μm isotropic). Because of the close 

relationship between DMN connectivity and animal wakefulness, it is necessary to bring the 

animal to a near waking state, rather than an anesthetized state, before it is possible to view 

the DMN in a functional brain scan (Upadhyay, Baker et al. 2011). To accomplish this, a 

solidifying fluid is used to temporarily ensure that the animal’s head always finds the same 

resting orientation, even if periods of wakefulness at low anesthetic levels bring the animal to 

move. Whole brain functional images were then acquired (GE-EPI; 64 x 64 matrix, 3.5 cm 

FOV; 20, 1 mm slices; TR 1000 ms; TE 14.3 ms; 1000 images). Cardiac and pulmonary 

rhythms were continuously monitored during the scans to ensure physiological stability and 

for use in later noise regressions. An example, preprocessed, GE-EPI image is shown in figure 

4.2. 

 

Figure 4.2: An example gradient-echo echo-planar image is shown after preprocessing. 
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4.2.3. Regions of Interest 

Six primary nodes of the DMN were chosen for network analysis. These include 

bilateral orbitofrontal cortex (OFC; from Bregma, ±0.5 mm LR, 4 mm RC, -4 mm DV), 

bilateral retrosplenial cortex (RS; ±0.5, -5, -1.5), and bilateral hippocampus (HF; ±4.5, -5, -3). 

Sites were selected to represent distinct functional nodes of the DMN (Schwarz, Gass et al. 

2013). An additional pair of electrodes were positioned in the somatomotor cortex (SMN; ±3, 

-2, -1). 

4.2.4. LFP Acquisition 

The contribution that infra-slow LFP signals make to FC-fMRI networks was assessed 

by acquiring LFP data from Ag/AgCl electrodes in pulled glass pipets. LFP data was amplified 

to 1000x via a 10x headstage and 100x DC rated amplifier (A-M Systems). A common reference 

electrode was placed in the exposed subcutaneous tissue. Measurement of the LFP activity 

from each source proceeded for twenty minutes at 1000 Hz. An example LFP dataset is shown 

in figure 4.3. Because animals and their implanted electrodes remain in a stereotaxic apparatus 

during LFP recording, any movement would be catastrophic. Thus, rather than using 

additional restraints for recordings during light sedation, animals were given the sedative 

dexmedatomadine (DEX). 
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Figure 4.3: Examples of the local field potential signals (LFP) are shown after preprocessing. Inset data span 5 seconds. The lower 
left plot depicts correlation values between broadband LFP traces. 

4.2.5. Data Analysis  

BOLD fMRI data were preprocessed via slice-time correction, movement correction, 

and physiological noise regression. They are spatially smoothed to 1 mm isotropic voxels. 

Locations corresponding to the LFP recording sites were visually identified in an aligned 

anatomical scan. An average from each site was taken for further analysis. LFP preprocessing 

involved visually identifying and removing sharp discontinuities from DC offset corrections 

made during data acquisition.  
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To compare FC networks between modalities, signals were decomposed by 

continuous wavelet filter banks. Wavelet-based frequency decomposition offers the advantage 

over traditional Fourier-based filtration methods in that wavelets are better suited for 

describing non-stationary signals like fMRI and LFP (Daubechies 1988). Spectrally delimited 

signals from each modality were concatenated across time and compared, pairwise, between 

each site, using the correlation distance. Figure 4.4 displays the spectrally delimited correlation 

between sites modal sites. Each spectrally delimited vector of distance metrics was compared, 

for each spectral band, between modalities, using the correlation distance. 

 

Figure 4.4: Spectrally delimited correlation distances between regions of interest (ROI). Top and bottom plots correspond, respectively, 
to ROIs from electrophysiology and magnetic resonance imaging. Columns to the left of each node label include that node in the 
pairwise distance operation. The second node in the pair is read out, in order, from the subsequently labeled nodes. 
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4.3. Results 

 

Figure 4.5: The correlation between multimodal functional connectivity graphs is plotted for multiple spectral combinations. The 
significance of each correlation value is included at bottom. 

Cross-modal, multispectral functional connectivity network comparisons are plotted 

in figure 4.5. Inter-modal correlation reached a maximum magnitude of ±0.6 (min/max ±1). 

Many of these strongly (anti-) correlated areas have a p-value less than 0.05. Strongly (anti-) 

correlated and statistically significant regions are distributed across multiple spectral scales. 

BOLD networks between 0.01 and 0.4 Hz are positively correlated with LFP networks in delta 

(1-4 Hz) and alpha (8-12 Hz) bands. BOLD activity at ~0.1 Hz is strongly correlated with 

gamma-band LFP (40-60 Hz). An additional band of strong correlation is found in very low 
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frequency BOLD and low frequency ephys (0.1 to 1 Hz). Significant infraslow (0.1 to 0.01 Hz) 

LFP network configuration is largely anticorrelated with BOLD inter-node distance.  
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4.4. Discussion 

The results demonstrate the existence of strong network correspondence between 

neuroelectric and hemodynamic signals. Results confirm findings from Pan and Thompson 

showing 1) broad coherence of LFP traces to simultaneous BOLD signals previous studies, 

and 2) strong correspondence between multi-modal sliding window correlation at delta and 

gamma bands (Pan, Thompson et al. 2011, Thompson, Merritt et al. 2013). Interestingly, 

infraslow BOLD network correlation decreases in the LFP gamma band relative to LFP 

activity in alpha and delta bands. Gamma band LFP is strongly correlated evoked BOLD 

potentials (Logothetis, Pauls et al. 2001). The reduction in gamma band correlation here may 

reflect the focus on ongoing network communication.  

The broad anti-correlation observed in infra-slow LFP networks vs BOLD networks 

at most frequencies denotes that the magnitude of the modal network distances are the same, 

while their signs are different. Given strong positive correlations at higher frequencies, and 

the long-standing evidence from other neuroelectric studies that these higher frequency 

rhythms are directly involved in perception and cognition, low frequency LFP fluctuations 

may be demonstrating a lateralized oscillation of long-term membrane potentials.  

FC rests upon a relationship between correlated blood supply and correlated signaling 

between brain sites. One foundational principle of this model is that the inter-regional 

communication picked up by the BOLD signal is conveyed via inter-regional white matter 

tracts. However, recent evidence that FC is maintained after complete resection of neuronal 

tissue between the temporal pole and the remainder of the caudal temporal lobe in 5 human 

epilepsy patients casts doubt on this prediction (Glomb, Ponce-Alvarez et al. 2017). Given 

that the evidence from Glomb et al. (2017) shows significantly reduced connectivity after 

resection, it may be that the remaining FC is sustained by an alternative mechanism than 
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neuroelectric signaling. One possibility is that neuromodulatory hormones diffuse throughout 

the cardiovascular system and tune spontaneous neuroelectric activity to share similar 

temporal properties. From the observations in the present study that neuroelectric activity is 

instantiated in BOLD networks at multiple frequencies, it may be that FC pre- and post-

resection is derived from different spectral rhythms. Whereas fast, gamma-band connectivity 

may be lost after severing white matter connections, slower frequency coordination amenable 

to neuromodulatory fluctuations may yet remain. If such is the case, then BOLD FC may yet 

be a good representation of neuronal signaling rather than simply being a reflection of 

confounding events. 



86 

4.5. Limitations and Future Directions 

The DMN is associated with internal mental activity. And, the strength of DMN 

connectivity is responsive to the level of anesthetic, with decreased connectivity as humans 

and animals are drawn deeper into unconsciousness (Nallasamy and Tsao 2011). Network FC 

is also related to the type of anesthetic used (Magnuson, Thompson et al. 2014). This may be 

explained by each anesthetic’s unique mechanism of action. While ISO is a GABA-agonist, 

DEX is an alpha-2 adrenergic receptor agonist (Peltier, Kerssens et al. 2005, Samuels and 

Szabadi 2008). In addition, DEX has vasoconstrictive properties, while ISO shows 

vasodilatory properties. This difference in state may account for the loss in the coordination 

of slow relationships between nodes. Future experiments should further investigate the effect 

of differing sedative conditions on network interaction.  
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5. Dynamic Brains: Visualizations through multiscale embedding 
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The advent of functional Magnetic Resonance Imaging (fMRI) has launched the brain 

sciences into an exciting frontier by allowing the direct observation of systems-wide activity 

from healthy human brains (Rosen and Savoy 2012). The richness of data this technology 

generates is the subject of cutting-edge research to interpret spontaneous signal fluctuations 

as indicators of preferential information exchange among the brain’s intrinsic networks—i.e., 

its functional connectivity (FC)  (Biswal, Yetkin et al. 1995, Hutchison, Womelsdorf et al. 

2013). Brain FC networks were first defined over relatively long periods of time. Such static 

FC studies reveal that brain FC naturally develops a small-world topology, where densely 

connected local modules communicate with one another via richly interconnected hubs 

(Achard, Salvador et al. 2006, Bullmore and Sporns 2009). But the brain is not a static system. 

Rather, differential information exchange among neurons, circuits, and networks enable brains 

to deal flexibly with ever-changing environmental stimuli. The availability of rapid (< 1s), 

whole-brain imaging prompted researchers to look for shorter term dynamics of brain FC 

(Deco, Jirsa et al. 2011).  

Early efforts to characterize brain dynamics observed that intra-network membership and 

inter-network communication possessed statistically significant differences when samples 

were drawn from short time windows during various epochs of an fMRI scan (Chang and 

Glover 2010, Smith, Miller et al. 2012, Keilholz, Magnuson et al. 2013, Zalesky, Fornito et al. 

2014). While these short time window studies confirmed the expectation that the Blood-

Oxygen Level Dependent (BOLD) fMRI signal may convey information about short-term 

brain-state dynamics, the large effect that a priori choices in window length had on study results 

lessened the method’s analytic utility (Shakil, Lee et al. 2016). The effort to identify rapidly 

changing dynamics is also hampered by the drop-off in bold SNR at short window lengths.  
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To avoid the problems inherent in windowed analysis techniques, we present a method 

that provides a 2D map of the relative similarity of the brain’s activity for all time points in the 

scan.  The signal from each voxel first undergoes wavelet decomposition, making use of the 

BOLD signal’s natural spectral scaling to characterize each time point as a summation of 

activations at multiple frequencies (Chang and Glover 2010, Billings, Medda et al. 2015, 

Yaesoubi, Allen et al. 2015). This multispectral interpretation has been suggested to provide a 

parsimonious representation of the dynamic properties of complex systems like brains 

(Mandelbrot 1983, Mallat 1989, Bullmore, Fadili et al. 2004, Ciuciu, Varoquaux et al. 2012). 

To reduce the redundancy of spatial information and improve the SNR, voxel-wise signals are 

aggregated into a lower-dimensional spatial parcellation using Independent Component 

Analysis (ICA). In the present study, we treat the collected vectors of multispectral activations 

from all of the ICA networks at each time point as samples of instantaneous brain states.  

The dimensionality of the resulting data set is high (equal to the product of the number 

of functional networks and the number of spectral filters) and difficult to interpret. In order 

to explore the dynamics of brain activity, we apply t-distributed stochastic neighbor 

embedding (t-SNE) to represent the data from each time point in a two dimensional space 

(van der Maaten and Hinton 2008), using correlation as a distance measure to ensure that 

similar states are grouped together. t-SNE is a state of the art data-driven dimensionality 

reduction algorithm that maintains local distance structure and has found wide application in 

the data-driven sciences to produce visualizations of drosophila behavior, machine learning 

hidden layers, static functional connectivity networks, and a host of other multidimensional 

structures (Berman, Choi et al. 2014, Plis, Hjelm et al. 2014, Mnih, Kavukcuoglu et al. 2015).  

In comparison to clustering based approaches that segment the time course into a number of 

predefined states, the map created by t-SNE produces a continuous distribution that can then 
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be segmented empirically (using the watershed algorithm in this study).  Information about 

the timing and the relative similarity of different states is preserved.   

Towards the goal of detailing a map of brain-state dynamics, the present study analyzes 

the wide-ranging states 446 normal volunteers adopt as part of the Human Connectome 

Project (HCP)(Van Essen, Ugurbil et al. 2012). BOLD fMRI scans from 7 distinct tasks 

(EMOTION, GAMBLING, LANGUAGE, MOTOR, RELATIONAL, SOCIAL, and 

WORKING MEMORY (WM)), and from repeated resting conditions (REST1, and REST2) 

provide a basis to segment a t-SNE embedding of brain-state dynamics across experimentally 

defined events. We demonstrate the utility of the t-SNE mapping to characterize the human 

brain’s coordination across time, space, and spectra during rest and in the negotiation of 

changing experimental stimuli. 
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5.1. Methods 

5.1.1.    Data Acquisition 

The data for this study was obtained by leveraging the library of resting-state and task 

fMRI images from the Human Connectome Project (HCP), a joint project between 

Washington University and the University of Minnesota (Van Essen, Ugurbil et al. 2012). 

These data were acquired using a customized Siemens 3T “Connectome Skyra” and the 32 

channel, anterior/posterior, head receive coil. T1 weighted anatomical scans were acquired via 

a 3D MPRAGE sequence with 𝑇𝑅 = 2400 ms, 𝑇𝐸 = 2.14 ms, 𝑇𝐼 = 1000 ms, flip angle of 

8°, 𝐹𝑂𝑉 = 224×224 mm, and voxel size 0.7 mm isotropic. BOLD-weighted fMRI images 

were acquired via a gradient-echo EPI sequence with 𝑇𝑅 = 720 ms, 𝑇𝐸 = 33.1 ms, flip angle 

of 52°, 𝐹𝑂𝑉 = 208×180 mm, 72 slices, 2.0 mm isotropic voxels, and multiband factor of 8. 

Functional scans imaged individuals while they adopted a comprehensive battery of states. 

These states may be subdivided into the 9 scans named as follows: REST1, REST2, 

EMOTION, GAMBLING, LANGUAGE, MOTOR, RELATIONAL, SOCIAL, and 

WORKING MEMORY (WM). Each scan was performed twice for each volunteer, each time 

with an opposite phase encoding gradient (left to right, vs right to left). In total, each individual 

contributed 8,680 temporal and 91,282 spatial data points. REST scans spanned 4,800 time 

points. All data were de-identified before download. 

5.1.2. Data Preprocessing 

Data preprocessing include spatial artifact and distortion removal, surface generation, 

anatomical registration, and alignment to grayordinate space (gray-matter vertices or voxels). 

Subsequent use of spatial filters from a separate Independent Component Analysis (ICA) 

assume that data follow an isotropic noise model; thus, all voxel time series are normalized to 
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zero mean and unit variance. To reduce the influence of edge effects during spectral filtering, 

contiguous, 300 image segments from a volunteer’s REST scans were placed in-between their 

task scans. The remaining 900 REST images capped the beginning and the end of the 

concatenated series with 450 time points each. The order of concatenated rest and task images 

were randomized across volunteers. 

5.1.3. Spectral and Spatial Filtering 

The BOLD signal bears a log linear relationship between power spectrum and 

frequency: log 𝑆(𝑓) = 𝑐 + 𝛾 log 𝑓; alternatively, 𝑆(𝑓)~1/𝑓𝛾. For the average BOLD signal 

in brains, the power law exponent, 𝛾 ≅ −1. The variable c is a constant. Such ‘1/f-type’ 

systems denote that the system’s high-frequency realizations establish and maintain its low-

frequency structure (Wornell 1993). The simplest 1/f-type systems are termed, ‘scale-free,’ 

that is, one observes rescaled versions of some elementary process, a “fractal”, at all observable 

scales. On the other hand, complex 1/f-type systems exhibit emergent properties at multiple 

scales (Ciuciu, Varoquaux et al. 2012, He 2014, Liu, Ward et al. 2014). A theoretically optimal 

method for observing 1/f-type processes is to transform them using a scale-free, or 

multiresolution, basis set (Bullmore, Fadili et al. 2004, Ciuciu, Varoquaux et al. 2012). 

Coefficient variance in the scale-free domain is thus a representation of the emergence of 

novel signal characteristics resolved to one or more scales (Daubechies 1992). Wavelet 

transforms are especially useful multiresolution transforms as their kernel functions reduce to 

zero over a finite time-span. By convolving a 1/f-type signal with a finite, scale-free kernel, 

wavelet transforms highlight the signal’s dynamical properties in both the temporal and the 

spectral domains.  
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Previous studies demonstrated that BOLD data segment into static FC subnetworks 

from the application of multiscale filter banks (Billings, Medda et al. 2015). In the present 

study, spectral filtering utilized the continuous wavelet transform with a Daubechies 4-tap 

wavelet. This continuous wavelet filterbank segmented BOLD signals into an octave of 8 

frequency bands log-spaced across the decade [0.01, 0.1] Hz. This frequency range 

corresponds to the low-frequency fluctuation range in which BOLD fluctuations bear maximal 

information about neuronal activity. The mother wavelet, Daubechies 4-tap, was chosen to 

achieve a relatively short temporal window over each spectral band, while the number of bands 

is sufficient to capture the inter scale network variation observed by Billings et al. (2015). 

Spatial filtering utilized a 50-component ICA decomposition. The ICA transform 

matric was calculated as part of the HCP beta-release of group-ICA maps (Human 

Connectome Project 2014). The number of components was chosen by identifying the 

intersection between the eigenvalues of a volunteer’s real concatenated input data matrix, and 

a randomly shuffled version of that matrix, and choosing a number of components that just 

exceeded this point of intersect (data not shown). 

5.1.4. Manifold Embedding 

Each temporal sample for each volunteer’s high-dimensional state descriptor (50 

spatial components by 8 spectral components) was pairwise compared using the Pearson 

correlation distance, 

 𝑑𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖ 

= 1 −
(𝑥𝑖 − 𝑥�̅�)(𝑥𝑗 − 𝑥�̅�)

′

√(𝑥𝑖 − 𝑥�̅�)(𝑥𝑖 
− 𝑥�̅�)

′
√(𝑥𝑗 − 𝑥�̅�)(𝑥𝑗 − 𝑥�̅�)

′
. 

(5.1) 
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Because of the theoretically optimal whitening properties of the wavelet transform, 

and because we have normalized time series via z-scoring, the Pearson correlation distance 

highlights coordinated deviations from normative spectral intensities.  

Manifold embedding was performed with the algorithm t-Distributed Stochastic 

Neighborhood Embedding (t-SNE) (van der Maaten and Hinton 2008, van der Maaten, 

Postma et al. 2009, Berman, Choi et al. 2014). The algorithm begins by transforming high-

dimensional pairwise distances into conditional probabilities, 𝑝𝑗|𝑖, along a Gaussian probability 

distribution, 

 

𝑝𝑗|𝑖 =

exp (−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎𝑖
2 )

∑ exp (−
‖𝑥𝑖 − 𝑥𝑘‖2

2𝜎𝑖
2 )𝑘≠𝑖

. (5.2) 

The variable 𝜎𝑖 is equal to the variance of the high-dimensional data when multiplied 

by a Gaussian centered over point i. The width of each Gaussian is adjusted to cover an 

equivalent amount of points. Formally, the width is adjusted until the base 2 exponent of the 

Shannon entropy measured in the stochastic distribution around the ith point achieves a fixed 

value termed the perplexity. For the present study, we follow the recommendation from van 

der Maaten & Hinton (2008) of a perplexity equal to 30. Collectively, the transformation from 

inter-sample distances to conditional probabilities emphasizes the natural associations of each 

sample to its neighbors. The authors of t-SNE also described a problem with previous 

implementations of SNE-based algorithms wherein moderately dissimilar samples, in the high-

dimensional space, crowd together in the low-dimensional map (van der Maaten and Hinton 

2008). Therefore, t-SNE calculates the low-dimensional probabilities, 𝑄, using a distribution 

having a much longer tail than in the high-dimensional case. A good choice to avoid this 

problem was found to be the Student t-distribution with one degree of freedom: 
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𝑞𝑖𝑗 =
(1 + ‖𝑦𝑖 − 𝑦𝑗‖

2
)

−1

∑ (1 + ‖𝑦𝑘 − 𝑦𝑙‖2)−1 𝑘≠𝑙
, (5.3) 

where ‖𝑦𝑖 − 𝑦𝑗‖ is the Euclidean distance between samples i and j in the low-dimensional 

space.  

A natural cost function, 𝐶, to calculate the fidelity of the low-dimensional 

representation relative to the high-dimensional data is the Kullback-Liebler (KL) divergence 

which is related to the cross-entropy between the two distributions. A symmetrized version of 

the KL divergence is used here to expedite computation time and to balance the cost of 

representing points that are close together in the high-dimensional space as distant points in 

the low-dimensional space, and vice-versa. Thus,  

 𝐶 = ∑ KL(𝑃||𝑄)

𝑖

= ∑ ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖

. 
(5.4) 

The joint probabilities in the high-dimensional space are calculated as 𝑝𝑖𝑗 =
𝑝𝑗|𝑖+𝑝𝑖|𝑗

2𝑛
, where 𝑛 

are the number of samples.  

This collective description of high-dimensional and low-dimensional spaces, as well as 

the relationship between them, emphasizes both that similar map points are modeled by small 

pairwise distances and that dissimilar map points are modeled by large pairwise distances. This 

is the case at all but the finest scales, at which point, the numerator of equation (5.3) is 

dominated by a constant rather than by variations from the input data. The t-SNE algorithm 

is implemented as a gradient descent process. The form of the gradient, as well as detailed 

notes on methods to improve the speed of convergence may be found in van der Maaten and 

Hinton (2008).  

The initial construction of a t-SNE embedding is computationally expensive: O(n2). 

For a compute node having 256 GB of RAM, the maximum number of double precision data 
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points that may be included in a single t-SNE embedding is limited to about 90,000 samples. 

The full complement of 4 resting state scans and 14 task scans contains 8,680 images for each 

of the 446 included volunteers. To overcome the computational limits of embedding larger 

datasets, the present study follows the recommendations from Berman et al. for training a 

low-dimensional embedding space from a subsampling of data points (Berman, Choi et al. 

2014). Briefly, t-SNE embeddings were generated from each of 446 volunteers, individually. 

Next, 200 sample points were pulled from each volunteer’s embedding, at random, and in 

proportion to the density of points within the embedding. A group-level embedding was then 

trained from each volunteer’s sample of 200 time points. The best low-dimensional locations 

of the remaining time points vis-à-vis the trained embedding were then calculated in two steps: 

1) Approximate the out-of-sample point’s low dimensional location as a weighted sum of its 

nearest neighbors in the full high-dimensional space. 2) Determine the local KL divergence 

minimum by changing only the location of the out-of-sample point. As this minimization is 

not convex, it is worthwhile to jitter the out-of-sample point’s initial low-dimensional location 

by sampling from a range of its high-dimensional neighbors. This procedure reduces the 

computational load to O(n). The subsampling procedure greatly increases the interpretability 

of the resulting map by removing the bias experienced among sequentially sampled points—

and hence, temporally correlated points—when they are embedded simultaneously.  

5.1.5. Sub-Space Identification and Characterization 

One method to summarize 2-dimensional point distributions is by convolution with a 

Gaussian filter. In order to account for both coarse and fine features of the embedded 

distribution, two filter radiuses were selected for the present study—one at 1/32 the maximum 

displacement from the map center and the other at 1/256. Particularly dense map regions are 
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segmented from one another, in a data-driven fashion, by taking the watershed transform of 

the inverse of each density map (Meyer 1994).  

5.1.6. Velocity Field 

Instantaneous velocities, were calculated by taking the difference in the embedded 

location of successive sample points. The group-level displacement magnitude was averaged, 

separately, in each of the 4 cardinal Euclidean directions, -i, +j, +i, and -j, for each point in a 

32x32 grid. Results were normalized to unit magnitude. 

5.1.7. Comparing Embeddings 

Embeddings were segmenting against the HCP’s experimentally defined states, i.e. the 

resting-state and the task-based scans. To test the inference that scan-segmented maps 

depicted distinct brain-state distributions, we conducted an ANOVA with multiple 

comparisons testing using a bootstrapped sample of each experimentally defined state. Points 

within each bootstrap realization were chosen from segmented group-level datasets. The lower 

bound to the number of points in each bootstrap realization sample was chosen to ensure a 

full coverage of the state’s embedded range. The upper bound was chosen to ensure that few 

points were sampled twice in any two bootstrap realizations.  

Bootstrap realizations were pairwise compared using the Structural Similarity Index 

(SSIM) (Zhou, Bovik et al. 2004). SSIM measures the similarity between two images, x and y, 

as the multiplicative combination of three image quantities, the cross-luminance, I, cross-

variance, c, and cross-structure, s. Thus:  

 
𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝐼(𝑥, 𝑦)]𝛼 ⋅ [𝑐(𝑥, 𝑦)]𝛽 ⋅ [𝑠(𝑥, 𝑦)]𝛾, (5.5) 

where 
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𝐼(𝑥, 𝑦) =

2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
, (5.6) 

 
𝑐(𝑥, 𝑦) =

2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
, 

(5.7) 

 
𝑠(𝑥, 𝑦) =

𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
, 

(5.8) 

and where μx, μy, σx,σy, and σxy are the local means, standard deviations, and cross-covariance 

for images x, y. The values 𝐶3, 𝐶3, and 𝐶3 are small constants given by 𝐶1 = (𝐾1𝐿)2, 𝐶2 =

(𝐾2𝐿)2, and 𝐶3 = 𝐶2/2. Here L is the dynamic range of pixel values. The variable 𝐾1 ≪ 1, 

and the variable 𝐾2 ≪ 1. The exponents over each SSIM term were set to 1 so as to weight 

each term equally. SSIM values range between 0, no image similarity, and 1, complete image 

similarity. SSIM statistical testing was conducted simultaneously for all SSIM pairs (50*50/2 

independent comparisons). Maps were deemed to provide insignificant segmentation if the 

95% confidence interval of the within-state SSIM fell within or below the range of any of its 

between-state SSIM 95% confidence intervals. The multivariate construction of the SSIM 

algorithm makes it a useful technique for quantifying the differences between density maps. 

Density maps contained equal numbers of points to ensure that the SSIM metric to remain 

balanced.  

5.1.8. Real-Time Dynamics 

Group level brain-state dynamics are characterized through map segmentation at the 

level of each task’s block-design contrasts. For instance, MOTION task blocks are segmented 

into movement of the tongue, the left hand, right hands, etc. The total set of block-design 

contrasts, from all individuals and from each individual’s task repetitions, are aligned at time t 

= 0s, the start of the block (including the cue, if present). Group level density images are then 
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calculated for each aligned image acquisition. The resting state was aligned to a single time 

point. 

5.1.9. Permutation Testing for Labeling the Embedded map. 

To test the preference of labeled times and conditions for particular map regions, a 

null distribution was constructed by randomly permuting the labels assigned to each embedded 

point. Thereafter, it is possible to compare the mean number of points randomly assigned to 

each region, under a particular condition/time, with the actual number of points in that region, 

at that same condition/time. Map regions may then be labeled in terms of the preference of 

each region for particular condition/times. 



100 

5.2. Results 

To test the degree to which resting and tasked brains develop distinct dynamics, we 

segmented time points during the REST1 and REST2 scans from all task-scan time points. 

The results are displayed as density maps in part A of figure 5.1. The resting brain tends to 

adopt a range of states in the map’s periphery, while the task-active brain tends to develop 

brain states at the map’s interior. To represent the brain’s dynamic transitions across the 

embedded state space, part B displays point-to-point state changes as a velocity field. The 

results demonstrate that the resting brain’s most rapid transitions occur in regions densely 

populated during tasks. In the task-active segmentation, the highest velocities are found at the 

map’s center, between two interior regions densely populated during tasks. Regions of low 

velocity are distributed in patches throughout the task segmentation.  



101 

 

Figure 5.1 compares 2D Euclidean embeddings of instantaneous brain states, separated for the resting state and the task-active state. 
For ease of reference, the embedding space is divided into an 8x8 grid. Alphanumeric labels mark grid vertices. Part A displays the 
distribution of embedded points as a Gaussian cloud. The Gaussian filter radius equaled 1/32 the maximum point displacement 
from the embedding’s center. Part B displays the velocity field from an aggregation of points within a 32x32 grid in each of the 4 
cardinal directions across the map space. All results were normalized to unit magnitude. 
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While the embedding is a continuous state space, the presence of multiple densely 

populated regions suggests an ensemble of discrete states that the brain adopts. Figure 5.2 

takes on a discretized perspective by tracing boundaries around the resting-state 

segmentation’s dense regions. Formally, each state-space parcel is a catchment basin formed 

by taking the watershed transform of the density map’s inverse (Meyer, 1994). Part A of the 

figure codes regions in terms of the percentage of points in each parcel. Owing to its sheer 

size, a sprawling domain in the map’s interior contains the largest proportion of samples (4% 

to 5%, magenta boarder). The brain’s propensity for adopting configurations within this parcel 

increases during task scans, when 6% to 7% of points form a similar density (see figure 5.3). 

The average brain state within this region sustains relatively slow (~0.019 Hz), low-amplitude, 

in-phase activations across most of the brain’s static networks (part A, right) (see figure 5.4 

for a description of each network). The region is often populated during the fixation periods 

of most tasks (see the supplemental movie).  

 

Figure 5.2 highlights the brain states adopted within watershed regions of the embedding space as participants reside in the resting-
state. Part A (left) displays the percentage of points lying within each region. Part B (left) displays the median amount of time 
participants dwelled in each region. A similar analysis is performed for the task data in figure 5.3. The mean spatio-spectral brain 
state from the regions highlighted in magenta (left) are charted to the right. Each of the 50 ICA resting-state networks are categorized 
into one of five classes: ‘Vis,’ visual network; ‘SMN,’ somatomotor network; ‘OFN,’ orbito-frontal network; ‘VFN,’ ventral-
frontal network.  
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Figure 5.3 elaborates on the point distributions within watershed catchment-basins for task-active maps. Part A displays the 
percentage of points contained within each region. Part B displays the dwell-time for each region, reported as the mean number of 
temporally contiguous points contained within each region. 
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Figure 5.4 displays the relatedness between each of the 50 ICA components. Data were generated using the FSLNets toolbox 
provided through the HCP. The hierarchical clustering map was calculated from time-series from each ICA network back-projected 
for each volunteer included in the original analysis. The projection onto the brain of each of 5 ICA clusters is also shown. 
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Figure 5.5 displays the dwell-time distribution for the highlighted regions in parts A and B (respectively) of figure 5.2. 

To gain a better understanding of the dynamic characteristics of resting-state parcels, 

part B of figure 5.2 displays the median time volunteers continuously dwelt in each parcel. 

Although maximum resting-state dwell times reached as high as 30 s (see figure 5.5), median 
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dwell times did not exceed 2.5 s 

during rest. This finding is a 

confirmation that the resting brain 

often transitions between states. 

Dwell times tended to increase in 

duration during tasks (see figure 

5.3). The mean brain state of one 

region having a long dwell time 

(magenta boarder) shows the 

brain to sustain activations in the 

same ICA networks as the state 

highlighted in part A. However, 

the second region’s activations 

increase in magnitude. Further, 

they occur in two separate 

frequency bands, with either 

band’s activations flipped to the 

opposite phase from the other.  

The wide range of 

experimental states adopted 

Figure 5.1 displays t-SNE embeddings of 
instantaneous brain states, segmented by scan, 
and represented as the normalized density of each 
scan’s embedded points. Task datasets include 
BOLD images during all periods of the scan, 
including any cue events, all contrasting task 
stimuli, any responses from volunteers, and any 
fixation blocks. The Gaussian filter radius 
equaled 1/32 the maximum point displacement 
from the embedding’s center 
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during HCP scans provides a natural means to segment instantaneous brain-states. Figure 5.6 

displays group-level map densities produced by such a segmentation. Bootstrap sampling 

provided a sample distribution to assess structural image similarity within-states, and also 

between-states (figure 5.7). Larger within-scan SSIM values indicate that the brain adopts a 

tighter range of states during the scan. Comparatively large between-scan SSIM values indicate 

that the two scans evoke similar varieties of brain states. Multiple comparisons statistics 

performed on these results determined that the repeated resting-state scans, alone, bear 

statistically similar continuous state distributions (see figure 5.8). Figure 5.9 displays the results 

of the same analysis when data are segmented against all block-design contrasts and task-

related events. 

 

Figure 5.7  plots the mean structural similarity index (SSIM) between normalized density embeddings, segmented across scans. For 
each scan type, the sample distribution was bootstrapped from 50 realizations of 2500 timepoints, randomly sampled from the group-
level data set. The number of time points provides a representative sampling of each scan’s embedded distribution. Asterisks indicate 
between-scan comparisons whose mean SSIM was not significantly less than either within-scan mean SSIM. 
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Figure 5.8 displays the descriptive statistics from bootstrap, between-scan, structural similarity index testing as a box-stem plot.  
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* Caption appears on next page 
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Figure 5.9 displays and compares 2D Euclidean embeddings of instantaneous brain states, segmented by within-scan events. Part A 
displays the density of each scan’s embedded points. Part B displays the mean structural similarity index (SSIM) from 50 bootstrap 
comparisons, with 2500 points per comparison. Asterisks indicate between-group comparisons whose SSIM was not significantly less 
than either within-group comparison.  
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Figure 5.10 analyzes 2D Euclidean embeddings of instantaneous brain states segmented in terms of both block-design task contrasts, 
and by the acquisition time of temporally aligned task blocks during the SOCIAL scan. The bar chart shows the mean value of the 
bootstrapped structural similarity index of the within (blue=mentalizing, and yellow=random) and the between (green) block-design-
contrast embeddings. For each task contrast, the sample distribution was bootstrapped from 25 realizations of 250 timepoints, 
randomly sampled from the group-level data set. Fewer bootstrap time points are used to accommodate the reduced sample size in each 
segmentation. Daggers above the bar chart point to the aligned block times whose embedding density images are displayed in the inset 
images. Red boxes define the boundary regions given closer scrutiny in figure 5.11. 

The block design of HCP task scans—where stimuli are presented in rigidly timed 

sequences over several blocks—makes it possible to identify significant differences in the 

point-wise evolution of brain-states during the navigation of contrasting tasks, i.e., fine-scale 

brain dynamics. While the main text of the present manuscript uses the SOCIAL scan as an 

example, similar results are found for each set of block-design contrasts. (A movie illustrating 

the time-locked brain state distributions for all block-design contrasts may be found in the 

supplemental materials). Figure 5.10 outlines the point-wise state transitions during each 

SOCIAL task contrast’s 35 s block. A bar chart of the mean SSIM at each time point surveys 

the focality of the progression of brain states evoked by either stimuli. Comparing the SSIM 

between stimuli provides a metric of state colocalization. The results demonstrate that, during 

the first 4 to 5 seconds of the stimulus, brain states in both conditions are incoherent. After 

~7 s, both conditions achieve focal brain states, with the mentalizing condition being much 
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more compactly delineated. After ~12 s, both conditions assume similar brain states. The 

onset of the fixation block causes brain states to, again, disperse across the embedding. In the 

latter half of the fixation block, participants who witnessed a mentalizing condition tend to 

linger in a very tightly localized brain state. This suggests that a more characteristic variety of 

rumination occurs in response to the mentalizing stimulus. Density maps from time points 

having focal brain states are shown in the insets of figure 5.10 and close up in figure 5.11.  

 

Figure 5.11 details the brain-state differences between task contrasts by displaying close-up views of the boxed areas from figure 5.10. 
Boxed areas are 1/8 the total map space, on a side. Each column is from the same map boundary region. Data are displayed as 2-
dimensional histograms from a 32x32 grid inside each box. Column colorbars share the same upper limits.  

To check the uniqueness of each contrast’s associated brain states, figure 5.11 

magnifies the most densely populated regions in each contrast’s embedding at those time 

points presented in figure 5.10. After ~8 s, volunteers’ brains are observed to adopt adjacent 

and disjoint states. A short time later (~15 s), participants may adopt similar states albeit with 

the mentalizing stimulus inducing brains to adopt a more focal subset of the random stimulus’ 

state space. A similar observation obtains during the fixation block (~32 s) with the mentalizing 

stimuli evoking a focal subset relative to the random stimuli’s state space. 
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Figure 5.12 displays the statistical affinity of time-resolved and condition-dependent brain-states for a set of watershed map region. 
Map regions were segmented using a fine-grained density map generated from all studied time points. This granularity was motivated 
by the focal organization of map points in figure 5.11. Here, the filter width was set to 1/256th the distance of the furthest map point 
from the map’s center. Part B displays the most probable state associated with each watershed map region. Regions where no 
significantly associated state was found were marked in black. Part C pursues the hypothesis that volunteers adopt different brain 
states around the 11th image of the SOCIAL task when presented with either the mentalizing (green) or the random (red) stimulus. 
Map regions significantly populated in response to either stimuli, at this instant, are outlined in yellow, while regions statistically 
populated by only one stimulus are outlined in their respective colors. Part  C’s density map is from only SOCIAL scan data. The  
red boxes in parts A and B outline the range of part C. 
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The extremely focused distribution of brain states during particular moments of block-

design tasks motivated a closer investigation of the statistical distribution of embedded points 

at particular moments in time. To conduct this analysis, we generated a watershed 

segmentation of the embedded space after convolving all points on the embedded map with 

a very narrow Gaussian filter (figure 5.12, part A). We then labeled each embedded point in 

terms of the experimental condition under which the brain-state was generated, as well as in 

terms of the time that state was generated relative to the start of each experimental block. 

Next, we randomly permuted the point labels 100 times to generate a null distribution of the 

embedded point locations for each condition, at each time point. Finally, we calculated the z-

statistic of the probability that the number of embedded points in each watershed region was 

greater in the real data than in the permuted data. The significance threshold was initially set 

to a p-value of 5%. With Bonferroni correction for multiple comparisons across ~5000 

watershed regions and ~1000 individual time points, the significance threshold was set to a p-

values less than 1e-8. Part B of figure 5.12 color-codes fine-grained watershed regions in terms 

of the most probable state associated with that region. For simplicity, all time points from a 

given condition share the same color coding. Part C of the figure addresses the inference from 

figures 5.10 and 5.11 that the contrasting conditions in the SOCIAL task result in highly 

stereotypical brain states at especially 𝑡 ≅ 8𝑠 after the start of the block. As inferred from 

figure 5.11, the social stimulus induces highly focal brain states in the map space below and to 

the right of grid location e3 (green borders). While some brain states generated by the random 

stimulus overlap this region (yellow border), these brain states mostly lie above grid line e or 

to the left of grid line 3 (red borders). 
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Figure 5.13 addresses the likelihood that each of the experimental condition results in any of the brain states. Conditions are aligned 
task blocks. The resting state is taken as a single condition. Watershed regions are from a fine-grained density map, and resulted in 
~5000 regions. A z-statistic was calculated across all possible affinities. The null distribution was generated by randomly permuting 
the labels associated with each point 100 times. The top plot highlights statistically significant affinities (after Bonferroni correction). 
The bottom plot displays each comparison’s p-value. 
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Figure 5.14 displays the difference between the brain states of participants at ~8 seconds after being given either a mentalizing (A) 
or the random (B) visual stimulus during the SOCIAL scan. The brain state is an average from the maximally populated embedding 
region from within a 32x32 grid (magenta points). 

We can gain insights into how the brain responds to the contrasting stimuli by 

projecting a local averaging of the state space (magenta points) onto a model brain surface. 

Figure 5.14 displays the contrast between the mentalizing and random stimuli at 7.92 s (TR = 

11). Whereas higher frequency (>=0.037 Hz) activations are similar, the lower frequency 

(<=0.019 Hz) brain states bear marked differences. At infra-slow frequencies (0.01 Hz) the 

mentalizing stimuli induces in-phase oscillations between the visual, parietal, sensorimotor, and 

lateral prefrontal cortices. This contrasts with brains experiencing the random stimulus for 

which the visual and left parietal cortex are out-of-phase relative to the anterior prefrontal, left 

orbitofrontal, and left parietal networks. Slow (0.019 Hz) activations are similar between block 

contrasts save for, 1) the inclusion of the medial prefrontal cortex within the positive-phase 

network during the mentalizing condition, and 2) stronger negative-phase activation in the 

anterior prefrontal cortex among volunteers receiving the random stimulus. Task-based 

activation studies of the same task-contrasts identified similar areas of contrasting brain 
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activity, including the medial prefrontal cortex, lateral parietal cortices, and the visual cortex 

(Barch et al., 2013; Castelli et al., 2000).
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5.3. Discussion 

The present analytical framework, where BOLD dynamics are interpreted as 

multiscalar, instantaneous events overcomes many of the challenges faced in the study of brain 

dynamics. Unlike methods based on sliding window correlation, it avoids the challenges 

involved in choosing a window length (Hindriks et al., 2016; Shakil et al., 2016). Additionally, 

whereas previous studies using clustering tended to delineate brain states into a fixed number, 

k, of categories (Calhoun et al., 2014), manifold embedding optimizes a low-dimensional 

representation of the high-dimensional data, allowing a continuous distribution. Nevertheless, 

it remains possible to identify discrete state categories via subsequent analyses (e.g., through a 

watershed transformation of the continuous state space).  

The statistically significant differences between the state-space distributions of each 

task provides assurance that the embedded state space effectively differentiates between 

activation patterns related to different tasks (figures 5.6 and 5.7). On the other hand, the 

statistically insignificant differences between the state-space distributions of the repeated 

resting-state scans provide assurance that the embedded state space does not overspecify 

differences between brain states. The identification of fine-grained differences between the 

brain states of task contrasts confirms our hypothesis that common stimuli result in short 

distances between embedding points. Our qualitative and quantitative analysis shows that the 

random and mentalizing portions of the social task inhabit adjacent but disjoint map regions 

(figures 5.10 through 5.14). 

The segmentation of the embedded space allows the identification of networks whose 

coactivations (or lack there-of), at particular frequencies and phases, are predominant in any 

given state (figure 5.2). Our analysis of the SOCIAL scan demonstrates this point when brain 

regions involved in attention (lateral prefrontal) mental representation (parietal cortex) and 
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somatic representation (somatomotor cortex) are slowly driven, in-phase, with activations of 

the visual system.  

One of the advantages of the 2D representation obtained from t-SNE is the ease of 

exploratory data analysis.  From the distribution of the data, one can hypothesize about the 

similarities of different tasks, identify common trajectories, identify states and substates, etc.  

The resulting hypotheses can be addressed through further statistical analysis as demonstrated 

for the social task, or they might motivate more specific experiments designed to address the 

questions in other ways.  Regardless of the following analysis, t-SNE provides a powerful tool 

for characterizing functional neuroimaging data. 

Insight into resting state fMRI. Given the success of t-SNE at differentiating between 

tasks, the present study’s embedded state space may offer new insights into lingering questions 

on the character of the resting state (Lowe, 2012). The wide spatial extent, absence of low 

velocity regions, and overall short dwell times, converge on the finding that the resting-state 

is not a singular condition. As the only difference between rest and task is the absence of an 

explicit stimuli, the preference resting brains display for peripheral map regions marks the 

resting-state as mostly distinct from each of the 7 task states. One notable exception is the 

interior map region roughly bounded by grid vertices f5, f7, e5 and e7. Details of the region’s 

contribution from each task contrast (figure 5.9) the LANGUAGE scan’s story condition, the 

EMOTION scan’s neutral stimulus, WM 0 back challenges, and the collection of time points 

when no stimulus information was explicitly provided (labeled rest). The region may therefore 

relate to times when volunteers are externally oriented albeit with low cognitive demands. 

Indeed, volunteer brains often populate this region during the fixation blocks of most tasks 

(see supplemental videos of especially the GAMBLING and RELATIONAL scans). Another 

notable exception is the projection of MOTOR and SOCIAL brain states to locations further 
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out in the map’s periphery than the significant REST regions in figure 5.12 part B. Despite the 

general lack of overlap between the REST and TASK conditions, the REST condition itself 

exhibits several dense concentrations of time points similar to those observed during the tasks, 

suggesting that these network configurations constitute common brain states during the 

resting condition. 

Limitations. The generation of the embedding’s features comes directly from a 

combination of the input data and the analytical model. As always, the BOLD signal’s lack of 

direct sensitivity to neural activity limits our ability to infer the underlying neurophysiology 

from the functional imaging data. Noise in the BOLD signal (from residual physiological 

noise, motion, or the scanner) will affect the embedding of the data. 

 Regarding the analysis itself, the symmetric distribution of contrasting brain-states 

across the map may owe itself to the use of signed wavelet coefficients. Like all spectral 

decompositions, the wavelet transform inherently generates phase information as complex 

coefficients. The present study projects complex coefficients onto the set of real numbers, 

thus limiting the analysis to account for two phases, separated by 180⁰. Other studies have 

found good segmentation when comparing BOLD signals across additional phases (Chang 

and Glover, 2010; Yaesoubi et al., 2015). The utility of incorporating phase information 

supports the notion that regional activations bear some degree of phase-coupling (Thompson 

GJ, 2014; Tort et al., 2010). Future studies may appropriate this natural feature of brain activity 

by characterizing the data in alternative metric spaces that better utilize complex-valued data 

in the high-dimensional space, and better distribute their states into a low-dimensional space. 

Furthermore, it should be noted that while using as a wavelet kernel for the spectral 

transform is expected to result in improved time frequency localization relative to a short-time 

Fourier transform, it is possible to tune the kernel function to extract additional information 
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about BOLD dynamics. In addition to requiring that the transform kernel decay smoothly to 

0 after a short time, we might also require that the kernel somehow better represent the BOLD 

signal’s underlying impulse waveform. Such kernels may be developed by directly “lifting” the 

temporal shape from the data itself (Sweldens, 1998). Such a procedure would provide better 

localization of the BOLD signal’s energy into fewer wavelet coefficients, and thus improve 

the ability to differentiate between states. 

Future directions. This study demonstrates an analytical technique to observe BOLD 

dynamics that performs well in segmenting contrasting activities. This approach provides a 

simple way to summarize patterns of brain state dynamics across various tasks as well as when 

participants are at rest.  The ready capacity to chart brain-state dynamics against experimental 

stimuli raises the interest for demarcating the functional space of other varieties of conditions. 

Indeed, study methods are readily amenable to describing brain state dynamics of differing 

populations and animal models including patient populations.  One potential application for 

the t-SNE embedding is to determine whether it can identify specific states that are present in 

patients but not in healthy controls.  Another area of interest utilizes the preserved timing 

information to determine common trajectories of brain activity across states during task and 

rest.  The t-SNE embedding facilitates exploratory analysis but can also be used to identify 

significant differences between tasks or populations using additional analysis.  While 

permutation tests were applied for most of the statistical analyses shown in this manuscript, 

more sophisticated approaches should also be pursued.  

The subsampling procedure reduces the computational complexity of fitting an out of 

sample point from O(n^2) operations to O(n). This feature enables future research to chart 

increasingly detailed and comprehensive maps of the brain’s dynamical state space from an 

ever-increasing pool of shared data. One future area of investigation should examine whether 
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data acquired on different scanners or with different parameters (TR, for example) can be 

added to the existing embedding or should be handled separately.
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6. Conclusions and Final Remarks  

While whole-brain imaging provides the ability to look into the active human brain, 

interpreting the meaning of spontaneous fluctuations in 4D BOLD images remains an 

ongoing challenge. Of course, the capacity to distinguish any system’s operation requires raw 

data to be well curated. Chapter 2, demonstrated that the spatial distribution to the global 

BOLD signal exhibits localized hot spots that may be due to coil sensitivity or small amounts 

of motion that increase variance near grey matter/CSF interfaces.  Demeaning, detrending, 

and regression of motion parameters all reduce the relative contribution of these hot spots.  Z 

scoring further reduces the contribution of the hot spots and shows that the entire grey matter 

contributes strongly to the GS.  While widespread, the contributions are not global, being 

reduced in white matter and subcortical regions. The spatial contribution to the BOLD signal 

varies substantially across individuals, a finding that may motivate further examination of the 

previous differences found in patient populations (Hahamy et al., 2014; Yang et al., 2014).  No 

contribution from known repeated large-scale quasi-periodic patterns were observed, but both 

vascular and neural processes remain potential contributors to the global BOLD signal.  Future 

work with hemodynamic contrasts may help to disentangle these components. 

Chapter 3 demonstrated that complex relationships between brain activity at different 

rates causes spectrally delimited BOLD signaling to behave independently from the processes 

at other spectra. A system of functional connectivity networks from functional magnetic 

resonance imaging data in the low frequency oscillation range (0.01 to 0.1 Hz) naturally 

segments out from other frequency bands. Filtering data to passbands within this range greatly 

enhances network quality. Further spectral differentiation within the LFO range is warranted 

by the fact that moderate thresholds of an information theoretic distance metric segment 
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multispectral BOLD LFOs into distinct FC networks. This fractionation is maintained even 

as imaging acquisition parameters (such as the sampling TR and voxel size) are changed. 

Spectral segmentation produces visible alterations in network structure among all groupings 

of volunteers, and particularly within the brain’s default mode network. The appearance of 

degraded network architectures outside the LFF range of some data sets suggests that BOLD 

FC is enhanced by fast repetition times (<= 0.645 s) and by longer scan lengths (>10 min). 

Comparative studies in rodents (Chapter 4) confirms that hemodynamic networks are 

not spandrels, but rather are found in neuroelectric signals. Moreover; this correspondence is 

dependent on spectral scale, with the most positive correlations corresponding to prominent 

LFP rhythms, particularly in the delta (1-4 Hz), alpha (8-12 Hz), and gamma (40-60 Hz) bands. 

These findings confirm that the hemodynamic response is a delayed, and low-pass filtered 

version of coherent neuroelectric activities. 

Multiscale BOLD dynamics are put to use in Chapter 5 to disentangle the complex 

network changes associated with rest and with multiple task-active states. High-dimensional 

graphs depicting point-to-point brain state dynamics are made tractable by embedding the 

graph onto a 2-dimensional sheet. Our analysis of a dynamical brain-state embedding from a 

large population (N=446) concludes that the resting brain actively pursues a range of 

distinctive states from those adopted during explicit tasks. The realization of both resting and 

task-active states involves large-scale, and often phase-locked coordination’s among multiple 

brain regions at particular frequencies. 

The history of the representation of scaling systems has progressed remarkably in the 

information age. In the early 80’s, fractals as algorithms were just entering human knowledge. 

Mandelbrot published The Fractal Geometry of Nature in 1983;  Morlet, Grossman, and others 

coined the name wavelets (French: Ondelettes) in a series of publications from 1982 thru 1984 
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(Daubechies 1992).  The advance of modern computing is pushing the threshold of what kinds 

of multiscale patterns may be uncovered with the advance of deep neuronal networks and 

other techniques from artificial intelligence (Bengio 2009). The present dissertation is a 

demonstration that understanding naturally complex multiscale systems, such as the brain, is 

facilitated by imposing analytical models that account for, and efficiently represent, the 

system’s multiscale properties, and thereby, the codependent structures that emerge at each 

characteristic scale.  
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