In presenting this dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I agree that the Library of the University make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish, this dissertation may be granted by the professor under whose direction it was written when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. In the absence of the professor, the Dean of the Graduate School may grant permission. It is understood that any copying from, or publication of, this dissertation which involves potential financial gain will not be allowed without written permission.

Bo Cheng

Enantiomeric Scaffolds. Molybdenum Pyranyl π-Complexes for the Asymmetric Construction of Oxa-Heterocycles

By
Bo Cheng
Doctor of Philosophy
Department of Chemistry

Lanny S. Liebeskind, Ph.D.
Advisor

Albert Padwa, Ph.D.
Committee Member

Simon B. Blakey, Ph.D. Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the Graduate School

Enantiomeric Scaffolds. Molybdenum Pyranyl π-Complexes for the Asymmetric Construction of Oxa-Heterocycles

By

Bo Cheng
M.S., University of Science and Technology of China, 2004

B.E., Tianjin University, 1999

Advisor: Lanny S. Liebeskind, Ph.D.

An Abstract of
A dissertation submitted to the Faculty of the Graduate School of
Emory University in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
Department of Chemistry

Abstract

Enantiomerically pure $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyranyl) complexes have proven to be excellent enantiomeric organometallic scaffolds for the asymmetric construction of structurally diverse oxygen-containing heterocyclic systems. Chiral, non-racemic η^{3}-(2,3,4)-2-methyl-5-oxopyranyl molybdenum scaffold was prepared with high enantiopurity. An improved method was developed for the synthesis of chiral, non-racemic η^{3}-(2,3,4)-5-oxopyranyl molybdenum scaffold.

Neutral $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyranyl) scaffolds bearing an internal alkoxide can undergo a novel intramolecular '1,5-Michael-like' reaction. Through a one-pot '1,5-Michael-demetalation' sequence, the 6,8-dioxabicyclo[3.2.1]oct-3-en-2-one frame work can be rapidly accessed in good to excellent yields with high enantiopurity. An enantiocontrolled total synthesis of $(+)-(1 R, 2 S, 5 S, 7 R)-2$-hydroxy-exo-brevicomin was completed utilizing the intramolecular '1,5-Michael-demetalation' cascade.

Solid sodium methoxide participates in an unprecedented intermolecular ' $1,5-\mathrm{Michael}-\mathrm{like}$ ' reaction with neutral $\mathrm{TpMo}(\mathrm{CO})_{2}\left(5-\right.$ oxo- η^{3}-pyranyl) complexes with complete regio- and stereocontrol. The resulting dimethoxy complexes lead to the formation of various 2,2,6-trisubstituted and 2,6-trans disubstituted pyranyl molybdenum complexes. The synthetic potential of this methodology was demonstrated by the synthesis of $(2 S, 6 R)$-2,6-dially-2-ethyl-2H-pyranone and ($2 R, 6 S$)-2-ethyl-6-phenylpyranone.

Enantiomeric Scaffolds. Molybdenum Pyranyl π-Complexes for the Asymmetric Construction of Oxa-Heterocycles

By

Bo Cheng
M. Phili., University of Science and Technology of China, 2004
B.E., Tianjin University, 1999

Advisor: Lanny S. Liebeskind, Ph.D.

A dissertation submitted to the Faculty of the Graduate School of Emory University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Chemistry

To my parents

Without you, I would not even think I could make it.

Acknowledgements

First of all, I would like to thank my advisor Dr. Lanny S. Liebeskind for his constant support, guidance and encouragement over the years. I sincerely appreciate him for giving me the freedom to try my own idea and steering me back into the right direction whenever I was lost. This thesis would not have been possible without him.

I am grateful to my committee members Dr McDonald and Dr Padwa. I learnt so much from their classes and insightful discussions. I also want to thank Dr. Blakey for his helpful suggestions on my research proposal and for being my defense committee member. Also, I wish to acknowledgement Dr. Mohler for her kind help on my literature seminar.

I would like to thank Dr. Wu and Dr. Wang from the NMR center, Dr. Fred Strobel from the mass spectrometry center, Dr. Kenneth Hardcastle from X-ray crystallography center and all the wonderful staff in the Chemistry Department for their kindness that made my Ph.D. experience at Emory University a pleasant one.

I also would like to thank all present and previous group members in Liebeskind's group, especially Harry, Hao Li, Hao Yang, Ethel, Songbai, Yongqiang, Wenyong, Zhihui, Shuangpei, Reese, Tom and Emily. It was a great pleasure to work with all of you. Special thanks to Rongbiao and Weiqiang for all the joyful memories we shared as classmates and friends.

My deepest gratitude goes to my parents and my sister for their unconditional love and support in every step of my life. Finally, I would like to thank my husband Tao for everything he did for me along this way. I know he is the one I can always count on.

Table of Contents

Chapter 1 Application of Stoichiometric Transition Metal Complexes in Organic Synthesis 1
Introduction 2
Zirconium Complexes 2
Chromium complexes 6
Molybdenum Complexes 11
Tungsten Complexes 15
Cobalt Complexes 18
Iron complexes 22
Conclusion 26
Chapter 2 Synthesis of 6,8-Dioxabicyclo[3.2.1]oct-3-en-2-one through a Molybdenum-mediated Intramolecular '1,5-Michael-like' Reaction 27
Introduction 28
Results and Discussion 30
Synthesis of Racemic and Chiral, Non-racemic 5-Oxapyranyl Scaffold 86 30
Mukaiyama-aldol Reaction and Aldol Reaction of 5-Oxopyranyl Scaffold 86 and2-Methyl-5-oxopyranyl Scaffold $\mathbf{8 8}$32
Intramolecular ' $1,5-$ Michael-like' Reaction 36
Intramolecular ' $1,5-\mathrm{Michael}-$ demetalation' cascade 40
Total synthesis of $(+)-(1 R, 2 S, 5 S, 7 R)-2$-Hydroxy-exo-Brevicomin. 44
Conclusion 53
Experimental Section 54
Chapter 3 Synthesis of Highly Substituted Pyranones via a Molybdenum-mediated Intermolecular ' 1,5 -Michael-like' Reaction 103
Introduction 104
Results and Discussion 105
Precursors for Intermolecular '1,5-Michael-like' Reaction 105
Intermolecular 1,5-Michael-like Reaction with NaOMe 107
Synthetic Application of Intermolecular '1,5-Michael-like Reaction' of NaOMe113
Conclusion 126
Experimental Section 127
Chapter 4 Toward the Total Synthesis of (-)-Malyngolide 169
Introduction 170
Results and Discussion 172
The Synthesis of 3-Methyl-5-oxopyranyl Molybdenum Scaffold 147 172
Model Study toward the Synthesis of (-)-Malyngolide 177
Attempts to Carry out the Key Semipinacol Rearrangement 179
Conclusion 183
Experimental Section 185

List of Figures

Figure 1. Two Possible Mechanisms for Enantiocontrolled Complexation 32
Figure 2. (\pm) 5-Oxopyranyl Complex 86 and 88 32
Figure 3. Plausible Transition States for Aldol Reaction of 88 35
Figure 4. Infrared Spectra of Syn-89a and '1,5-Michael' Reaction Mixture 39
Figure 5. Spectroscopic Evidence of η^{2}-complex 100 42
Figure 6. 6,8-Dioxabicyclo[3.2.1]octanes 45
Figure 7. Substrates for Intermolecular 1,5-Michael Reaction with NaOMe 106
Figure 8. Possible Pathways for Nucleophilic Functionalization of 109 107
Figure 9. ORTEP View of Complex (\pm)-142a 125
Figure 10. (-)-Malyngolide 172
Figure 11. Expected NOE Effects in Cationic Diene 148 and 149 174
Figure 12. ORTEP View of Cationic Diene (\pm)-148 175
Figure 13. Molybdenum Complexes 86 and 147 178

List of Schemes

Scheme 1. Intramolecular Enyne, Dinyl and Diene Cyclizations Mediated by Zirconocene 3
Scheme 2. Total synthesis of (+)-trans-195A via a Zirconium-mediated Intramolecular Diene Cyclization. 4
Scheme 3. Reduction of Carboxyamide to Imine with $\mathrm{Cp}_{2} \mathrm{ZrHCl}$. 5
Scheme 4. Total Synthesis of Paclitaxel via $\mathrm{Cp}_{2} \mathrm{ZrHCl}-m e d i a t e d ~ R e d u c t i o n ~$ 6
Scheme 5. Synthesis of (S, S)-Isodityrosine by Dötz Benzannulation 7
Scheme 6. Cyclohexadienone Annulation 8
Scheme 7. Total Synthesis of (+)-Phomactin B2 via an Intramolecular Cyclohexadienone Annulation of a Chromium Carbene Complex 9
Scheme 8. Tricarbonylchromium-mediated Dearomatization 9
Scheme 9. Total synthesis of (-)-Acetoxytubipofuran via Chromium-mediated Asymmetric Dearomatization 11
Scheme 10. Molybdenum-mediated Organic Synthesis 12
Scheme 11. Enantiocontrolled Total Synthesis of (-)-Indolizidine 209B Using (η^{3}-dihydropyridinyl)molybdenum Complexes as Chiral Scaffolds 13
Scheme 12. Molybdenum-mediated Cycloaddition Reactions 13
Scheme 13. Total Synthesis of (-)-Bao Gong Teng A by a Molybdenum-mediated [5+2] Cycloaddition 14
Scheme 14. Enantiocontrolled Synthesis of Tricyclodiones via a Molybdenum-mediated
'1,5-Michael-like' Reaction 15
Scheme 15. Reactivity of η^{1}-Alkynyl Tungsten Complexes 15
Scheme 16. Mechanism of the Synthesis of Tungsten-furanyl Diene 16
Scheme 17. Tungsten-mediated Synthesis of Chiral Furanyl Diene 17
Scheme 18. Total Synthesis of (+)-Dihydrocanadensolide through a Tungsten- π-allyl-complexes 18
Scheme 19. Total Synthesis of (-)-Alstonerine 19
Scheme 20. Total Synthesis of (-)-8-O-Methyltetrangomycin via a Cobalt Mediated $[2+2+2]$ Cycloaddition. 20
Scheme 21. 1,4-Asymmetric Induction Using a Cobalt Alkyne Complex 21
Scheme 22. Formal Total Synthesis of Fostriencin via 1,4-Asymmetric Induction Using a Cobalt Alkyne Complex 22
Scheme 23. Iron-mediated Total Synthesis of (+)-Maritidine 24
Scheme 24. Iron-mediated Total Synthesis of Mukonine 24
Scheme 25. Intramolecular Iron-tricarbonyl Promoted Aldehyde-diene Coupling Reaction25
Scheme 26. Proposed Mechanism for Intramolecular Iron-tricarbonyl Promoted Aldehyde-diene Coupling Reaction 26
Scheme 27. Intramolecular ' 1,5 -Michael-like'Reaction of Enolate 29
Scheme 28. Intramolecular '1,5-Michael-like' Reaction of Alkoxide. 30
Scheme 29. Synthesis of Racemic 5-Oxopyranyl Scaffold 86 30
Scheme 30. Synthesis of Chiral, Non-racemic 5-Oxopyranyl Scaffold 86 31
Scheme 31. Problems in Mukaiyama-aldol Reaction of 2-Methyl-5-Oxopyranyl Scaffold 88. 34
Scheme 32. Plausible Mechanism for Intramolecular '1,5-Michael-like' Reaction 39
Scheme 33. Expected Demetalation of 6,8-Dioxabicyclo[3.2.1]octenyl Molybdenum Complexes 40
Scheme 34. Attempts of Demetalation of 6,8-Dioxabicyclo[3.2.1]octenyl Molybdenum Complexes. 41
Scheme 35. Mechanism of 1,5-Michael Reaction-Demetalation Cascade 42
Scheme 36. Possible Epimerization Mechanism 44
Scheme 37. Mori's Total Synthesis of (+)-($1 R, 2 S, 5 S, 7 R)$-2-Hydroxy-exo-Brevicomin... 46
Scheme 38. Prasad's Total Synthesis of (+)-($1 R, 2 S, 5 S, 7 R)$-2-Hydroxy-exo-Brevicomin 47
Scheme 39. Retrosynthetic Analysis of (+)-($1 R, 2 S, 5 S, 7 R$)-2-Hydroxy-exo-Brevicomin. 47
Scheme 40. Synthesis of Racemic 2-Methy-5-oxopyranyl Scaffold $\mathbf{8 8}$ 48
Scheme 41. Diastereomer Formation of $\mathbf{1 0 1}$ with Different Non-racemic Alcohols. 48
Scheme 42. Complexation with 103a 49
Scheme 43. Synthesis of Chiral, Non-racemic 88 50
Scheme 44. Possible Mechanism for the Synthesis of Chiral, Non-racemic 88 52
Scheme 45. Enantiocontrolled Total Synthesis of $(+)-(1 R, 2 S, 5 S, 7 R)$-2-hydroxy-exo-brevicomin 53
Scheme 46. Synthesis of 2,3,6-Trisubstituted Dihydropyrans and Piperidines 105
Scheme 47. Intermolecular 1,5-Michael Reaction with NaOMe 105
Scheme 48. Synthesis of Molybdenum Complexes $\mathbf{1 0 9}$ and $\mathbf{1 1 0}$ 106
Scheme 49. Attempts of Nucleophilic Functionalization of 109a 107
Scheme 50. Intermolecular ' 1,5 -Michael-like' Reaction with LiAlH_{4} 108
Scheme 51. Intermolecular '1,5-Michael-like' Reaction with Alkoxides 109
Scheme 52. Proposed Mechanism for Intermolecular '1,5-Michael-Like' Reaction with NaOMe 111
Scheme 53. Observed Racemization of Intermolecular 1,5-Michael Reaction of 110a. 111
Scheme 54. Proposed Racemization Mechanism for Intermolecular 1,5-Michael Reactionof (-)-110a112
Scheme 55. Optimized Condition for Enantiocontrolled '1,5-Michael' Reaction. 113
Scheme 56. Enantiocontrolled '1,5-Michael' Reaction with NaOMe 113
Scheme 57. Synthesis of 2,2,6-Trisubstituted Molybdenum Complexes 114
Scheme 58. Synthesis of ($2 S, 6 R$)-2,6-Dially-2-Ethyl-2H-Pyranone 116 115
Scheme 59. Methods to syn-Substituents 116
Scheme 60. Proposed Synthesis of 2,6-trans-Disubstituted Molybdenum Complexes from 117. 117
Scheme 61. Synthesis of Complex 123 via Semipinacol Reaction 117
Scheme 62. Attempts to Synthesize 2,6-trans-Substituted Pyranyl Complexes from Substrate 123 118
Scheme 63. Protonation/Nucleophilic Addition Strategy in the Synthesis of Trisubstituted Pyridinyl Molybdenum Complexes 119
Scheme 64. Proposed Synthetic Route to 2,6-trans-Substituted Pyranyl Molybdenum Complexes from Alkylidene 127 119
Scheme 65. Synthesis of Alkylidene 130 120
Scheme 66. Synthesis of 2,6-trans-Sbustituted Molybdenum Complex 134 121
Scheme 67. Protonation/Carbanoin Addition to Tetrasubstituted Pyranyl Molybdenum Complexes 121
Scheme 68. Regioselectivity of Various Nucleophiles 122
Scheme 69. Isomerization of 113d under Protonation/Nucleophilic Addition Condition 123
Scheme 70. Proposed Mechanism for the Isomerization of 113d 123
Scheme 71. Synthesis of $(2 R, 6 S)$-2-Ethyl-6-Phenyl-Pyranone 143 126
Scheme 72. Semipinacol Reaction of Pyranyl and Pyridinyl Molybdenum Scaffolds. 170
Scheme 73. Possible Mechanism of Semipinacol Rearrangement 171
Scheme 74. Proposed Synthetic Route to (-)-Malyngolide 172
Scheme 75. Synthesis of Molybdenum Complex 144 173
Scheme 76. One-pot Synthesis of Molybdenum Complex 146 173
Scheme 77. Hydride Abstraction of Compound 145 174
Scheme 78. Synthesis of Molybdenum Complex 146 from Diene 148. 176
Scheme 79. Possible Route to Dimers 150 176
Scheme 80. Synthesis 3-Methyl-5-Oxopyranyl Scaffold 147 177
Scheme 81. Synthesis of Enone 152 178
Scheme 82. Mukaiyama-aldol Reaction of Complex $\mathbf{8 6}$ with Trioxane 178
Scheme 83. Synthesis of Grignard Reagent 154 179
Scheme 84. Synthesis of Complex 155 179
Scheme 85. Proposed Epoxidation-induced Semipinacol Reaction 180
Scheme 86. Epoxidation of Complex 156 181
Scheme 87. Attempts to Semipinacol Reaction 181
Scheme 88. IOCOCF_{3} Induced Semipinacol Rearrangement. 182
Scheme 89. Attempts to Substitute Iodine in Complex 157 182
Scheme 90. Catalytic Hydrogenation of Complex 157 183
Scheme 91. Hydride Addition of Complex 158 183

List of Tables

Table 1. Mukaiyama-aldol Reaction of Oxopyranyl Scaffold 86 33
Table 2. Aldol Reaction of 2-Methyl-5-Oxopyranyl Scaffold $\mathbf{8 8}$ 35
Table 3. Syn-selective Aldol Reaction of 5-Oxopyranyl Scaffold $\mathbf{8 6}$ 36
Table 4. Synthesis of exo-Intramolecular ' $1,5-$ Michael' Adducts 37
Table 5. Synthesis of endo-Intramolecular ' 1,5 -Michael' Adducts 38
Table 6. Synthesis of exo-6,8-Dioxabicyclo[3.2.1]oct-3-en-2-one 43
Table 7. Synthesis of endo-6,8-Dioxabicyclo[3.2.1]oct-3-en-2-one 44
Table 8. Selected Conditions in the Synthesis of Chiral, Non-racemic 88 51
Table 9. Examples of Intermolecular 1,5-Michael-Like Reaction of NaOMe. 110
Table 10. Synthesis of 2,2,6-Trisubstituted Pyranyl Molybdenum Complexes 114
Table 11. Synthesis of Alkylidene 138. 123
Table 12. Synthesis of 2,6-trans-Substituted Molybdenum Complexes 124
Table 13. Crystal data and structure refinement for (\pm)-142a. 159
Table 14. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters$\left(\AA^{2} \times 10^{3}\right)$ for (\pm)-142a. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalizedUij tensor.160
Table 15. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $(\pm)-142 a$. 163
Table 16. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for (\pm)-142a. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$ 166
Table 17. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for (\pm)-142a 167
Table 18. Optimization of the Synthesis of Molybdenum Complex 146 177
Table 19. Crystal data and structure refinement for complex 148 196
Table 20. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) or 148. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 197
Table 21. Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for 148 198
Table 22. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 148. The anisotropic isplacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$201
Table 23. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 148. 202

List of Abbreviations

$[\alpha]$	specific rotation
Ac	acetyl
anal.	analysis
Aq	aqueous
Ar	argon
Bn	benzyl
br	broad
bu	butyl
${ }^{\circ} \mathrm{C}$	degree Celsius
calcd	calculated
CAN	ceric ammonium nitrate
Cbz	benzyloxycarbonyl
Cy	cyclohexyl
δ	chemical shift(s)
d	doublet
DEAD	diethyl azodicarboxylate
DMAP	dimethylamino pyridine
DME	$1,2-$ dimethoxylethane
Decomp	decomposed
DMSO	dimethyl sulfoxide
E	entgegen
ee	enantiomeric excess
ESI	electrospray ionization
Et	ethyl
FAB	fast atom bombardment
FT	Fourier transform
g	gram(s)
h	hour(s)
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectroscopy
Hz	hertz
IR	Infrared Spectroscopy
i	iso
J	coupling constant
LA	Lewis acid
LDA	lithium diisopropylamide
LiHMDS	lithium bis(trimethylsilyl)amide
mol	mole

m	multiplet
m	meta
m-CPBA	meta-chloroperbenzoic acid
Me	methyl
mg	milligram(s)
MHz	megahertz
min	minute(s)
mL	milliliter(s)
$\mu \mathrm{L}$	microliter(s)
mmol	millimole(s)
mp	melting point
NMR	nuclear magnetic resonance
NMO	N-methylmorpholine oxide
NOE	nuclear Overhauser effect
nm	nanometer(s)
Ns	2-nitrobenzenesulfonyl
PG	protecting group
Ph	phenyl
ppm	parts per million
pr	propyl
py	pyridine
q	quartet
R_{f}	retention factor
rt	room temperature
S	singlet
t	triplet
t	tertiary
TBME	tert-butyl methyl ether
TBS	tert-butyl dimethyl silyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin layer chromatography
Tp	hydridotris(1-pyrazolyl)borate
Tr	triphenylcarbenium
UV	ultraviolet
Z	zusammen

Chapter 1

Application of Stoichiometric Transition Metal Complexes in Organic Synthesis

Introduction

In recent decades transition metal complexes have served as one of the most important categories of reagents in organic reaction in both catalytic and stoichiometric manner. Although considerable attention is drawn to catalytic processes, applications of stoichiometric transition metal complexes in the synthesis of complex organic molecules have made significant progress lately. ${ }^{1}$ Especially with the development of various approaches to prepare enantiomerically pure organometallic complexes, ${ }^{2}$ stoichiometric transition metal complexes become exceptionally valuable for the enantiocontrolled bond constructions. This chapter mainly focuses on recent applications of stoichiometric transition metal complexes in complex organic molecule synthesis, particularly in the area of natural product synthesis. Only six most commonly used stoichiometric transition metal species, zirconium, chromium, molybdenum, tungsten, cobalt and iron complexes are covered in this literature review.

Zirconium Complexes

Zirconium complexes can undergo useful coupling of alkenes and alkynes via

[^0]zirconocene $\left(\mathrm{Cp}_{2} \mathrm{Zr}\right)$ complexes. ${ }^{3}$ The resulting five-membered zirconacycles can be converted into various highly functionalized carbocycles and heterocycles by different cleavage paths. Pioneered by Negishi, ${ }^{4}$ the intramolecular enyne, dinyl and diene cyclizations mediated by zirconocene (Scheme 1) have been widely utilized in complex organic synthesis.

Scheme 1. Intramolecular Enyne, Dinyl and Diene Cyclizations Mediated by Zirconocene

Alkaloid trans-195A was isolated from the skin of dendrobatid frogs, and only very limited amounts are available from natural sources. In 2005, Blechert reported the total synthesis of (+)-trans-195A via a zirconium-mediated intramolecular diene cyclization (Scheme 2). ${ }^{5}$ Mitsunobu reaction of allylic alcohol $\mathbf{1}$ and compound 2 afforded amine 3. Ring-rearrangement metathesis of 4 with $5 \mathrm{~mol} \%$ Grubbs I catalyst provided 2,6-cis-disubstituted tetrahydropyridine derivative 5 in 96% yield and 98% ee. After changing the nitrogen protecting group, cyclization reaction of 5 was carried out with

[^1]$n \mathrm{BuLi}$ and $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ to afforded bicyclic 7 in 74% yield, which went through zirconacycle intermediate 6. Final deprotection with $\mathrm{Pd}-\mathrm{C} / \mathrm{H}_{2}$ afforded (+)-trans-195A in 90\% yield.

Scheme 2. Total synthesis of (+)-trans-195A via a Zirconium-mediated Intramolecular Diene Cyclization

$\mathrm{Cp}_{2} \mathrm{ZrHCl}$, also known as 'Schwartz's reagent', ${ }^{6}$ is well known for the hydrozirconation reaction. In 1996, Ganem developed an approach for reduction of a carboxyamide to an imine in one step with $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ as shown in Scheme 3. ${ }^{7}$ First, amide $\mathbf{8}$ was transformed to hydridozirconocene $\mathbf{9}$ by KH metalation followed by treatment of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$. Although experiments indicated another equivalent of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ was required for the reduction of

[^2]9 to the final imine 10, the mechanism was still unclear.

Scheme 3. Reduction of Carboxyamide to Imine with $\mathrm{Cp}_{2} \mathbf{Z r H C l}$

This novel deoxygenation method was utilized in the synthesis of paclitaxel which is potent against ovarian and breast cancer in human clinical trial. ${ }^{8}$ Paclitaxel can be extracted in very limited amount from pacific yew. In contrast, six primary taxane constituents 11-16 (Scheme 4) that share the identical tetracyclic core structure with paclitaxel can be obtained in substantial quantities from ornamental yew trees. Utilizing this one step carboxyamide to imine reduction with $\mathrm{Cp}_{2} \mathrm{ZrHCl}$, Natural Pharmaceuticals, Inc. developed and implemented a highly convergent commercial synthesis of paclitaxel ${ }^{8}$ from taxane constituents 11-16 (Scheme 4). With this approach, the cost of synthesis of large scale high-purity paclitaxel is reduced dramatically compared to extraction from pacific yew.

[^3]
Scheme 4. Total Synthesis of Paclitaxel via $\mathbf{C p}_{2} \mathbf{Z r H C l}-m e d i a t e d ~ R e d u c t i o n ~$

Chromium complexes

Two stoichiometric forms of chromium complexes are well studied: chromium Fischer carbene complexes ${ }^{9}$ and $\eta^{6}-\mathrm{Cr}(\mathrm{CO})_{3}$-arene complexes. ${ }^{10}$ The Dötz benzannulation reaction ${ }^{11}$ is one of the best-known reactions of chromium carbenes since its discovery ${ }^{12}$ in 1975. In this type of reaction, an α, β-unsaturated pentacarbonyl chromium carbene complex reacts with an alkyne to afford a substituted hydroquinone derivative. In 2005 Pulley reported the synthesis of (S, S)-isodityrosine via the Dötz benzannulation (Scheme

[^4]5). ${ }^{13}$ Carbene complex 19 was subjected to benzannulation in the presence of alkyne 18 at $60^{\circ} \mathrm{C}$. Exposure of the reaction mixture to air oxidized the coordinated chromium, and afforded diaryl ether $\mathbf{2 0}$ in 60% yield. After 7 more steps, compound $\mathbf{2 0}$ was converted to (S, S)-isodityrosine bishydrochloride which is the key structure of a large class of biologically active natural products containing an endocyclic diaryl ether. ${ }^{14}$

Scheme 5. Synthesis of ($\boldsymbol{S}, \boldsymbol{S}$)-Isodityrosine by Dötz Benzannulation

As a variant of previously described benzannulation, in 1984, Wulff reported cyclohexadinone annulation ${ }^{15}$ via Fischer chromium carbene complexes where both substituents of the β-carbon are non-hydrogen (Scheme 6, eq 1). This method allows a rapid construction of cyclohexadienones bearing a quaternary carbon center. Later in

[^5]2007, he extended this methodology to an intramolecular cyclohexadienone annulation ${ }^{16}$ of chromium carbene complexes 22, and applied it to synthesis of macrocycles possessing a highly substituted (including a quaternary carbon center) cyclohexane core structure (Scheme 6, eq 2).

Scheme 6. Cyclohexadienone Annulation

$\mathrm{R}_{2}, \mathrm{R}_{3} \neq \mathrm{H}$

Shown in Scheme 7, in 2007 Wulff completed the total synthesis of (\pm)-phomactin B2 ${ }^{17}$ via the intramolecular cyclohexadienone annulation of chromium carbene complex 24 which was prepared from 23 by Fischer method. The intramolecular cyclohexadienone annulation of $\mathbf{2 4}$ gave a mixture of diastereomer 25A and 25B in a 4:1 ratio. After protecting group exchange and installation of the exocyclic double bond, methylation of the enolate of $\mathbf{2 6}$ afforded 27 as a single diastereomer with the methyl group anti to the macrocyclic tether. Substrate 27 was converted to (\pm)-phomactin after 5 additional steps.

[^6]Scheme 7. Total Synthesis of (\pm)-Phomactin B2 via an Intramolecular Cyclohexadienone Annulation of a Chromium Carbene Complex

25A $\quad 4: 1$
25B

26

27
$\eta^{6}-\mathrm{Cr}(\mathrm{CO})_{3}$-arene complexes are widely used in dearomatization reactions, and provide an efficient route to various substituted cyclohexadienes (Scheme 8). ${ }^{18}$

Scheme 8. Tricarbonylchromium-mediated Dearomatization

[^7]In 2003, an enantioselective ortho-nucleophilic addition of organolithium reagents to $\eta^{6}-\mathrm{Cr}(\mathrm{CO})_{3}$-arene imine complex 28 and its application in the total synthesis of (-)-acetoxylbutipofuran was published by Kündig (Scheme 9). ${ }^{19}$ The observed enantioselectivity was rationalized by addition of the organolithium reagent at the ortho position rather than the ortho' position. This regioselectivity was induced by the steric congestion between the Ph group of the chiral ligand and the $\mathrm{Cr}(\mathrm{CO})_{3}$ group in transition state II. The resulting cyclohexadienyl intermediate 29 underwent sequential acylation, alkylation and imine hydrolysis to afford 30 in 42% yield and 76% ee. Recrystallization of $\mathbf{3 0}$ increased the enantiopurity to $>99 \%$ ee. High enantiopurity $\mathbf{3 0}$ was converted to carbonate 31 via Luche reduction followed by selective protection of primary and secondary hydroxyl groups. Finally, (-)-acetoxylbutipofuran was synthesized from 31 in 8 more steps.

[^8]Scheme 9. Total synthesis of (-)-Acetoxytubipofuran via Chromium-mediated Asymmetric Dearomatization

Molybdenum Complexes

High enantiopurity η^{3}-pyanyl and η^{3}-pyridinyl molybdenum complexes ${ }^{20}$ are easily prepared, and have been demonstrated as versatile enantiomeric scaffolds in the synthesis of complex organic molecules. Since 1999, a number of structurally diverse molecules (Scheme 10) have been synthesized by Liebeskind's group utilizing molybdenum-mediated reactions. ${ }^{21}$

[^9]
Scheme 10. Molybdenum-mediated Organic Synthesis

In 2001, a molybdenum-mediated enantiocontrolled route to 2,3,6-cis- and 2,6-cis-3-trans-trisubstituted was reported. ${ }^{21 \mathrm{e}}$ This novel methodology was employed in the total synthesis of (-)-indolizidine 209B (Scheme 11). Molybdenum complex (+)-32 (> 99% ee) was first converted to dimethoxy complex 33 in 95% yield by bromination followed by addition of NaOMe. Then highly selective methoxide abstraction followed by nucleophilc addition of different carbon nucleophiles afforded 34 in 67% yield and 99% ee. Regio- and stereoselective demetalation of 2,3,6-trisubstituted molybdenum complex 34 provided 35 in 99% ee which was converted to (-)-indolizidine 209B over 2 steps.

Scheme 11. Enantiocontrolled Total Synthesis of (-)-Indolizidine 209B Using

 (η^{3}-dihydropyridinyl)molybdenum Complexes as Chiral Scaffolds

Unsaturated molybdenum complexes such as 36, 37 and 38 can be utilized as chiral scaffolds for the rapid synthesis of various bridged and fused hetereocyclic ring systems via molybdenum-mediated $[4+2],{ }^{21 f, \mathrm{k}}[5+2]^{21 \mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{i}}$ and $[5+3]^{21 \mathrm{~h}}$ cycloadditions (Scheme 12).

Scheme 12. Molybdenum-mediated Cycloaddition Reactions

Utilizing the molybdenum-mediated [5+2] cycloaddition, (-)-Bao Gong Teng A, a Chinese herb medicine, was synthesized in 2006 (Scheme 13). ${ }^{21 j}$ Unsaturated molybdenum complex 39 underwent a regio- and stereocontrolled [5+2] cycloaddition with methyl vinyl ketone gave molybdenum complex 40 in 89% yield (exo:endo 7:1). Oxidative decomplexation of $\mathbf{4 0}$ with CAN afforded the requisite bicyclic diketone $\mathbf{4 1}$ in 87% yield. Finally, 41 was converted to (-)-Bao Gong Teng A in 45% yield and $>99 \%$ ee over 6 steps.

Scheme 13. Total Synthesis of (-)-Bao Gong Teng A by a Molybdenum-mediated [5+2] Cycloaddition

39
$\xrightarrow{6 \text { steps }}$

41
(-)-Bao Gong Teng A

In 2005 an unprecedented molybdenum-mediated '1,5-Michael-like' reaction was reported, ${ }^{21 i}$ in which neutral $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyranyl) and $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyridinyl) complexes underwent direct nucleophilic addition of an internal enolate to the terminus of the allylmolybdenum moiety, and formed a new carbon-carbon bond. Employing this methodology, tricyclodione (-)-43 (Scheme 14) was prepared in $>99 \%$ ee from

5-oxopyanyl molybdenum complex (-)-42 (> 99\% ee) through sequential Mukaiyama-Michael, '1,5-Michael-like' reaction and decomplexation reactions.

Scheme 14. Enantiocontrolled Synthesis of Tricyclodiones via a Molybdenum-mediated '1,5-Michael-like’ Reaction

Tungsten Complexes

The synthesis of complex organic molecules using organotungsten complexes has been extensively studied by Liu's group. ${ }^{\text {If }} \eta^{1}$-Alkynyl, η^{3}-allyl and η^{1}-propargyl tungsten complexes are among those most popular organotungsten species. η^{1}-Alkynyl tungsten complexes are particularly useful since they can react with electrophiles at β-carbon and form a metal- η^{1}-vinylidenium intermediate which undergoes nucleophilic addition regiospecifically at the α-carbon (Scheme 15).

Scheme 15. Reactivity of $\boldsymbol{\eta}^{1}$-Alkynyl Tungsten Complexes

Taking advantage of this reactivity, Liu reported the synthesis of tungsten-furanyl diene ${ }^{22}$ by treatment of alkynyltungsten complexes with $\mathrm{RCH}_{2} \mathrm{CHO}$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. The mechanism of this reaction is shown in Scheme 16.

Scheme 16. Mechanism of the Synthesis of Tungsten-furanyl Diene

In 2003, Liu reported the synthesis of chiral furanyl and pyranyl diene ${ }^{23}$ through this methodology (Scheme 17). Alkynol 44 was first prepared from L-(+)-diethyl tartrate. Metalation of 44 with $\mathrm{CpW}(\mathrm{CO})_{3} \mathrm{Cl}$ afforded tungsten-alkynol complex 45 in 71% yield. Reaction of 45 with acetaldehyde and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ afforded salt 46 which was directly treated with $\mathrm{Et}_{3} \mathrm{~N}$ to afford tungsten diene 47 in 64% yield. Finally, hydrodemetalation of 47 with $\mathrm{Me}_{3} \mathrm{NO}$ afford chiral furanyl diene 48 in 60% yield. Chiral pyranyl diene 49 was also successfully prepared through a similar approach.

[^10]
Scheme 17. Tungsten-mediated Synthesis of Chiral Furanyl Diene

In 1999, Liu and co-workers reported the total synthesis of (+)-dihydrocanadensolide ${ }^{24}$ through a tungsten- π-allyl-complex as shown in Scheme 18. Metalation of chiral propargyl substrate $\mathbf{5 0}$ with $\mathrm{NaCpW}(\mathrm{CO})_{3}$ gave η^{1}-propargyl tungsten complex 51 in 98% yield. Treatment of 51 with catalytic amount of triflic acid induced an intramolecular alkoxycarbonylation reaction, and afforded π-allyl tungsten complex 52 in 85% yield as a mixture of syn and anti isomers. Ligand exchange with NOBF_{4} and NaI led to the formation of 53 that reacted in situ with $\mathrm{TBSOCH}_{2} \mathrm{CHO}$ to furnish compound 54 in 73% yield. Compound 54 was converted to (+)-dihydrocanadensolide in 7 steps.

[^11]
Scheme 18. Total Synthesis of (+)-Dihydrocanadensolide through a

 Tungsten- π-allyl-complexes

Cobalt Complexes

Organocobalt complexes are widely utilized to mediate different type of organic reactions, including Diels-Alder reaction, cobaloxime π-cation cyclizations, Pauson-Khand reaction, Nicholas reaction and cobalt mediated oxidation and reduction reaction. ${ }^{25}$ Since its first report in 1970's, ${ }^{26}$ the Pauson-Khand reaction became the most heavily studied organocobalt mediated reaction. ${ }^{27}$ The required alkyne cobalt intermediates are easily prepared by reacting alkynes with stoichiometric dicobalt octacarbonyl (catalytic Pauson-Khand reactions were also reported under high pressure of carbon monoxide). Martin reported the enantioselective total synthesis of $(-)$-alstonerine ${ }^{28}$ which featured the first application of Pauson-Khand reaction in the synthesis of azabridged bicyclic

[^12]skeleton (Scheme 19). In this total synthesis, Pauson-Khand reaction of enyne 55 with stoichiometric dicobalt octacarbonyl gave cyclopentenone 56 in 94% yield as a single diastereomer, whereas various catalytic conditions only led to the recovery of starting materials.

Scheme 19. Total Synthesis of (-)-Alstonerine

A stereoselective total synthesis of antibiotic (-)-8-O-methyltetrangomycin was reported by Groth (Scheme 20), ${ }^{29}$ that employed a cobalt mediated $[2+2+2]$ cycloaddition ${ }^{30}$ to access the core structure. Addition of lithiated diyne 57 to substituted benzaldehyde 58 afforded compound 59 which was converted to triyne $\mathbf{6 0}$ after deprotection of the trimethylsilyl group and protection of the free hydroxyl group. Cyclization of $\mathbf{6 0}$ by cobalt mediated $[2+2+2]$ cycloaddition afforded tetrahydrobenz[a]anthracene $\mathbf{6 1}$ in 80% yield when using equimolar "jonas" catalyst $\mathrm{CpCo}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$. The synthesis of

[^13](-)-8-O-methyltetrangomycin was completed in 38% yield over three steps from 61.

Scheme 20. Total Synthesis of (-)-8-O-Methyltetrangomycin via a Cobalt Mediated [2+2+2] Cycloaddition

In 2008, Hiyashi's group reported a novel highly diastereoselective 1,4-asymmetric induction 31 using a cobalt alkyne complex (Scheme 21). This is the first example of using a cobalt alkyne complex for a stereoselective reaction via 1,4-chelation. As shown in Scheme 21, the angle of the alkyne triple bond is 180°, whereas that of the alkyne cobalt complex is about 140°. Complexation forces the stereogenic and prestereogenic centers closer to each other, which makes the metal chelation possible, thus generating

[^14]highly stereoselective 1,4 -asymmetric induction.

Scheme 21. 1,4-Asymmetric Induction Using a Cobalt Alkyne Complex

anti-selective or syn-selective

Later, this methodology was utilized in the formal total synthesis of fostriencin ${ }^{32}$ (Scheme 22). Upon treatment of dicobalt octacarbonyl, compound 62 was converted to isolable cobalt alkyne complex 63 in 84% yield. The crucial 1,4 -asymmetric induction was achieved by using $\mathrm{TiCl}_{2}(\mathrm{OiPr})_{2}$ mediated allylation. Removal of cobalt with NMO afforded compound 65 in excellent yield. Compound 65 was further transformed to dephosphofostriecin 66 in 11 steps which is a known key intermediate ${ }^{33}$ to access fostriencin.

[^15]
Scheme 22. Formal Total Synthesis of Fostriencin via 1,4-Asymmetric Induction Using a Cobalt Alkyne Complex

Iron complexes

η^{4}-Diene iron complexes are widely used in organic synthesis due to their convenient preparation, decomplexation, novel reactivity, and compatibility with a wide range of functional groups. ${ }^{34}$ Since those complexes are stable under various reaction conditions, η^{4}-diene iron complexes can be used as 1,3-diene protecting group and stereochemical directing group. Neutral 1,3-diene iron complexes can be converted to cationic dienyl

[^16]complexes which are reactive to a broad range of nucleophiles, and more importantly, the presence of iron provides unique stereo- and regioselectivity to these diene complexes. ${ }^{35}$ In 2008, a formal total synthesis of (\pm)-maritidine ${ }^{36}$ was accomplished by Stephenson and co-workers using cyclohexadienyl iron complex 67 (Scheme 23). Addition of aryllithium reagent 68 to complex 67 afforded 1-arylcyclohexadienyliron complex 69 in 57\% yield. Methoxide abstraction with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ provided isolable salt 70 in 70% yield. One-pot malononitrile addition/in situ desilylation/dealkoxylation/decarboxylation combined with deprotection of the benzylic alcohol furnished organonitrile 71 in 73% yield. After reduction of the nitrile (67\%), cyclization under standard conditions gave tricyclic complex 72 in 47% yield. Finally, protection of the secondary amine followed by decomplexation afforded spiralcyclohexenone 73 which was a known intermediate to (\pm)-Maritidine.

Knölker and co-workers developed an iron-mediated oxidative cyclization using air as oxidant. This methodology was applied to the total synthesis of carbazole alkaloids mukonine ${ }^{37}$ in 2003 (Scheme 24). Electrophilic substitution of 74 with dienyl iron complex salt 75 at room temperature afforded complex 76 in 61% yield. Stirring of 76 in toluene with TFA led to a smooth cyclodehydrogenation and afforded diene iron complex 77 in 50% yield. Oxidative decomplexation of 77 with ferricenium hexafluorophosphate in the presence of sodium carbonate gave mukonine in 50% yield.

[^17]Scheme 23. Iron-mediated Total Synthesis of (\pm)-Maritidine

Scheme 24. Iron-mediated Total Synthesis of Mukonine

Pearson's group developed an intramolecular iron tricarbonyl promoted [6+2] ene type of spirocyclization reaction in which a cyclohexadieneiron tricarbonyl moiety couples with
a pendant olefin to afford two diastereomeric spirocyclic iron complexes. ${ }^{38}$ Recently, they successfully expanded the scope of this methodology to an intramolecular iron-tricarbonyl promoted aldehyde-diene coupling reaction (Scheme 25). ${ }^{39}$ Under photothermal conditions, complex 78 underwent intramolecular cyclocoupling to afford $\mathbf{7 9}$ and $\mathbf{8 0}$ in 54\% yield and around 1:7 ratio. Iron complex $\mathbf{8 0}$ was converted to diene $\mathbf{8 1}$ by oxidative decomplexation with CuCl_{2} in 79% yield. More complex substrates $\mathbf{8 2}$ and 83 also participated in this reaction, and afforded tricyclic diene $\mathbf{8 4}$ in 42% yield over 2 steps.

Scheme 25. Intramolecular Iron-tricarbonyl Promoted Aldehyde-diene Coupling Reaction

82

83

84

Possible mechanism of this intramolecular iron mediated carbonyl-ene spirocyclization is
shown in Scheme 26. This proposed mechanism is similar to the previously reported all

[^18]carbon spirocyclization reaction. ${ }^{38 \mathrm{a}}$ The preference for the formation of $\mathbf{8 0}$ is probably due to coordination of the iron atom with the newly formed hydroxyl group, thus slowing down the diene migration to form 79.

Scheme 26. Proposed Mechanism for Intramolecular Iron-tricarbonyl Promoted Aldehyde-diene Coupling Reaction

Conclusion

Transition metal complexes imparted novel reactivity and selectivity to their attached organic fragments, thus providing unique opportunities to construct various organic molecules. Along with the continuing discovery of novel reactivity and development of convenient preparation of enantiomerically pure organometallic complexes, the application of stoichiometric transition metal complexes in the total synthesis of natural products will attract more attention in the synthetic community.

Chapter 2

Synthesis of 6,8-Dioxabicyclo[3.2.1]oct-3-en-2-one through a Molybdenum-mediated Intramolecular '1,5-Michael-like' Reaction

Introduction

As versatile organometallic enantiomeric scaffolds, high enantiopurity $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyranyl) and $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyridinyl) complexes have been utilized in the asymmetric construction of structurally diverse heterocyclic systems. Different strategies including molybdenum mediated sequential functionalization ${ }^{40}$ and cycloaddition reactions ${ }^{41}$ have been applied in the elaboration of the enantiomeric scaffolds. Although neutral η^{3}-allylmolybdenum complexes are normally considered unreactive toward direct nucleophilic functionalization on the π-carbon, recently, an unprecedented ' 1,5 -Michael-like' reaction ${ }^{42}$ (Scheme 27) was reported in which neutral $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyranyl) and $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyridinyl) complexes underwent direct nucleophilic addition of an internal enolate to the terminus of an allylmolybdenum moiety, and formed a new carbon-carbon bond.

[^19]Scheme 27. Intramolecular '1,5-Michael-like'Reaction of Enolate

Intrigued by this unusual reactivity of neutral η^{3}-allylmolybdenum complexes, we decided to examine the scope of this type of reaction. Herein we report that $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyranyl) complexes bearing an internal alkoxide can participate in intramolecular ' 1,5 -Michael-like' reactions, and a new carbon-oxygen bond is formed regio- and stereospecifically (Scheme 28). Moreover, through a one-pot '1,5-Michael-decomplexation' sequence, a variety of complex organic molecules featuring the 6,8 -dioxabicyclo[3.2.1]octane framework can be rapidly accessed with complete stereocontrol. The synthetic potential of this methodology was demonstrated by a highly enantiocontrolled total synthesis of $(+)-(1 R, 2 S, 5 S, 7 R)$-2-hydroxy-exobrevicomin.

Scheme 28. Intramolecular '1,5-Michael-like’ Reaction of Alkoxide

Results and Discussion

Synthesis of Racemic and Chiral, Non-racemic 5-Oxapyranyl Scaffold 86

The racemic 5-oxopyranyl scaffold 86 was prepared from furfuryl alcohol through sequential Achmatowicz rearrangement, ${ }^{43}$ acetylation of the corresponding alcohol and complexation with $(\mathrm{DMF})_{3} \mathrm{Mo}(\mathrm{CO})_{3}$ followed by ligand exchange with potassium hydridotris(1-pyrazolyl)borate ${ }^{44}(\mathrm{KTp})$ (Scheme 29). ${ }^{45}$

Scheme 29. Synthesis of Racemic 5-Oxopyranyl Scaffold 86

[^20]Both antipodes of chiral, non-racemic scaffold 86 can be synthesized as depicted in Scheme $30 .{ }^{45}$ Racemic allylic acetate $\mathbf{8 5}$ was first converted to substituted pyranone 87 by ZnCl_{2}-mediated diastereomer formation with commercially available (S)-1-phenyl butanol. The two diastereomers of 87 can be resolved by chromatography. Then 87a (faster eluting diastereomer) and $\mathbf{8 7 b}{ }^{46}$ (slower eluting diastereomer) underwent oxidative addition to $(\mathrm{DMF})_{3} \mathrm{Mo}(\mathrm{CO})_{3}$; Subsequent treatment with KTp gave $(+)-\mathbf{8 6}$ $(48 \%, 98.9 \%$ ee $)$ and (-)-86 ($61 \%, 97.6 \%$ ee) respectively. After recrystallization, the enantiopurity of both $(+)-\mathbf{8 6}$ and (-)-86 can be increased to $>99 \%$ ee.

Scheme 30. Synthesis of Chiral, Non-racemic 5-Oxopyranyl Scaffold 86

In an earlier report, (R)-pantolactone derived pyranones underwent oxidative addition to

[^21]$(\mathrm{DMF})_{3} \mathrm{Mo}(\mathrm{CO})_{3}$ predominantly with inversion of configuration. ${ }^{47}$ Compared to previous methods with pantolactone, this improved approach probably minimized the formation of undesired enantiomer from a coordination-induced retention pathway ${ }^{48}$ (Figure 1), thus providing (-)-86 and (+)-86 with higher enantiopurity after complexation. ${ }^{45}$

undesired coordination-induced retention pathway

inversion addition

Figure 1. Two Possible Mechanisms for Enantiocontrolled Complexation

Mukaiyama-aldol Reaction and Aldol Reaction of 5-Oxopyranyl Scaffold 86 and

2-Methyl-5-oxopyranyl Scaffold 88

The synthetic studies of the intramolecular ' 1,5 -Michael-like' reaction started with transformation of (\pm)-5-oxopyranyl complex $\mathbf{8 6}$ and $\mathbf{8 8}^{49}$ (Figure 2) to the corresponding alcohols 89 by Mukaiyama-aldol or traditional aldol reactions.

86

88

Figure 2. (土) 5-Oxopyranyl Complex 86 and 88

[^22]As shown in Table 1, Mukaiyama-aldol reaction of (\pm)-5-oxopyranyl complex 86 with different aldehyde ${ }^{50}$ gave good to excellent combined yields of the corresponding anti and syn alcohols. The relative configurations of these alcohols were determined by comparing the vicinal coupling constant between the hydrogen adjacent to the hydroxyl group and the hydrogen on the pyran ring, ${ }^{51}$ and further confirmed by X-ray diffraction analysis. ${ }^{52}$

Table 1. Mukaiyama-aldol Reaction of Oxopyranyl Scaffold 86

a) Starting from 98.7% ee (-)-86

In contrast to 5-oxopyranyl complex 86, 2-methyl-5-oxopyranyl complex $\mathbf{8 8}$ failed to give the desired Mukaiyama-aldol adducts under similar conditions. As a control experiment, the silyl enol ether was isolated in 92% yield in the first step ($\mathrm{TBSOTf} / \mathrm{Et}_{3} \mathrm{~N}$), and the structure was determined to be compound 90 (Scheme 31). Generation of the silyl

[^23]enol ether at low temperature $\left(-78{ }^{\circ} \mathrm{C}\right.$ to $\left.-40^{\circ} \mathrm{C}\right)$ followed by addition of pre-mixed TiCl_{4} and $\mathrm{CH}_{3} \mathrm{CHO}\left(-78^{\circ} \mathrm{C}\right)$ afforded the unexpected aldol adduct 91 which should derive from the condensation of silyl enol ether $\mathbf{9 2}$ and $\mathrm{CH}_{3} \mathrm{CHO}$. However, all attempts to isolate $\mathbf{9 2}$ were unsuccessful. It is assumed that $\mathbf{9 2}$ is the kinetically favored silyl enol ether form, which might easily isomerize to the thermodynamically more stable 90 at higher temperature. Compound $\mathbf{9 0}$ is stable, and didn't isomerize to complex $\mathbf{9 3}$ under thermal conditions (40 to $100^{\circ} \mathrm{C}$).

Scheme 31. Problems in Mukaiyama-aldol Reaction of 2-Methyl-5-Oxopyranyl Scaffold 88

As an alternative to a Mukaiyama-aldol reaction, it was found that complex 88 could be converted to hydroxyl compounds 89 through a traditional aldol reaction (Table 2). For aliphatic aldehydes, anti-isomers were the major adducts although no significant
diastereoselectivity was observed. The slight preference for anti selectivity could be rationalized by a chair-like transition state ${ }^{53}$ (Figure 3, A). One crucial factor in this aldol reaction is the selection of solvent. Among different solvents that have been investigated, dichloromethane was the most efficient one in terms of yields. Other solvents, such as THF, dimethoxyethane and $\mathrm{Et}_{2} \mathrm{O}$, only gave low yields of products. Results of the aldol reaction of $\mathbf{8 8}$ with different bases under different conditions are summarized in Table 2.

Table 2. Aldol Reaction of 2-Methyl-5-Oxopyranyl Scaffold 88

			$\xrightarrow{\mathrm{I}_{2}}$			 syn-89	
Entry	Ketone	Aldehyde	Temp (${ }^{\circ} \mathrm{C}$)	Base	anti:syn	Yield (\%)	\% ee
1	(\pm)-88	acetaldehyde	- 78	LiHMDS	2:1	61, 89f	
2	(\pm)-88	propaldehyde	-78	LDA	5:1	36, 89g	
3	(\pm)-88	propaldehyde	-78	LiHMDS	4:1	80, 89g	
4	(\pm)-88	propaldehyde	-78	KHMDS	2:1	35, 89g	
5	(\pm)-88	acrolein	-78	LiHMDS	$1: 2^{\text {a }}$	63, 89h	
6	(-)-88	acrolein	$-90^{\text {b }}$	LiHMDS	$1: 3^{\text {a }}$	82, 89h	$98.7^{\text {e }}$

a) The anti/syn selectivity was determined by HPLC of crude product mixture.
b) MeOH /liquid N_{2} bath; temperature was around $-90^{\circ} \mathrm{C}$.
c) Starting from 98% ee (-)-88.
A

chair-like
B

Figure 3. Plausible Transition States for Aldol Reaction of $\mathbf{8 8}$

[^24]It should be noted, unlike aliphatic aldehydes, acrolein displayed diastereoselectivity favoring the syn-isomer in the aldol reaction with $\mathbf{8 8}$ (Table 2 , entries 5 and 6). Lower reaction temperature $\left(-90{ }^{\circ} \mathrm{C}\right)$ could slightly increase the syn selectivity. Since the production of $s y n$ isomer from an E-enolate through a cyclic transition state implicates a boat-like transition state, ${ }^{54}$ a possible transition state was proposed in Figure 3 (B). A similar trend was also reported for the aldol reaction of complex $\mathbf{8 6}$ with some α, β-unsaturated aldehydes (Table 3). ${ }^{55}$ The syn-selective aldol reaction of pyranyl scaffolds $\mathbf{8 6}$ and $\mathbf{8 8}$ seems to be aldehyde dependent (α, β-unsaturated aldehydes); The reason behind remains unclear at this writing.

Table 3. Syn-selective Aldol Reaction of 5-Oxopyranyl Scaffold 86 ${ }^{55}$

Entry	Ketone	Aldehyde	Temp $\left({ }^{\circ} \mathrm{C}\right)$	anti:syn	Yield (\%)
1	$(\pm)-\mathbf{8 6}$	acrolein	-78	$1: 9$	30
2	$(\pm)-\mathbf{8 6}$	crotonaldehyde	-78	$3: 7$	33

Intramolecular '1,5-Michael-like’ Reaction

Treatment of syn-89 or anti-89 with NaH followed by $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ quenching generated 1,5-Michael adducts exo-94 and endo-95 respectively in moderate to excellent yields as

[^25]depicted in Table 4 and Table $5 .{ }^{56}$ This novel transformation proceeds with complete facial diastereoselectivity which is caused by the attack of the internal alkoxide from the opposite face of the bulky $\mathrm{TpMo}(\mathrm{CO})_{2}$ unit. The exo and endo relationship are determined by the stereochemistry of hydroxyl groups in 89: syn-89 afforded exo stereoisomers whereas anti-89 afforded endo stereoisomers. This exo/endo relationship is confirmed by comparing the coupling constants between the hydrogen atoms adjacent to the bridging oxygen atoms and their vicinal neighbors. Normally, the coupling constant of the exo isomers are around $0-1 \mathrm{~Hz}$, whereas the coupling constants of endo isomers are relatively larger, around $3.6 \mathrm{~Hz} .{ }^{57}$

Table 4. Synthesis of exo-Intramolecular '1,5-Michael’ Adducts

[^26]Table 5. Synthesis of endo-Intramolecular '1,5-Michael' Adducts

(\pm)-anti-89
(\pm-endo-95

Entry	anti-89	R^{1}	R^{2}	Yield (\%)
1	$(-)-\mathbf{8 9 a}$	Me	H	$79, \mathbf{9 5 a}$
2	$(\pm) \mathbf{8 9 f}$	Me	Me	$\mathbf{7 6 , 9 5 b}$
3	$(\pm) \mathbf{- 8 9 g}$	Et	Me	$99, \mathbf{9 5 c}$

In this intramolecular 1,5-Michael-like reaction, syn aldol adducts gave faster reactions than their anti analogs. For the syn adducts, the reactions could be completed in 1 h . On the other hand, for the anti isomers, it normally took 5 hours to finish the reaction.

It is proposed that the ' 1,5 -Michael-like reaction' is facilitated by the propensity of $\mathrm{TpMo}(\mathrm{CO})_{2}$ moiety to favor 6 -coordinate over 7 coordinate structures, ${ }^{58}$ which would generate an anionic $\mathrm{TpMo}(\mathrm{CO})_{2}$ intermediate 96 that possesses a good π-back-bonding enone ligand (Scheme 32). Infrared analysis of the '1,5-Michael-like' reaction of compound syn-89a provided evidence of the electron rich intermediate 96. It was discovered that in the reaction mixture two metal carbonyl stretches shifted from 1927 cm^{-1} and $1831 \mathrm{~cm}^{-1}(\operatorname{syn}-89 a)$ to $1890 \mathrm{~cm}^{-1}$ and $1723 \mathrm{~cm}^{-1}$ (reaction mixture) (Figure 4). The carbonyl stretch at C-5 also shifted from $1613 \mathrm{~cm}^{-1}(\operatorname{syn}-\mathbf{8 9 a})$ to $1605 \mathrm{~cm}^{-1}$ (reaction mixture). Since the wavenumber of carbonyl stretch reflects the available electron density

[^27]on the metal (more electron density, smaller wave number), ${ }^{59}$ it is indicated that an electron rich metal center was formed during the 1,5-Michael process. Further confirmation will be needed to verify this hypothesis, such as crystal structures of $\mathbf{9 6}$ with different counter ion.

Scheme 32. Plausible Mechanism for Intramolecular '1,5-Michael-like’ Reaction

Blue--syn-89a
Green-reaction mixtue

Figure 4. Infrared Spectra of Syn-89a and '1,5-Michael' Reaction Mixture

[^28]
Intramolecular '1,5-Michael-demetalation' cascade

After completion of the study of intramolecular '1,5-Michael-like' reaction, the demetalation study of 6,8-dioxabicyclo[3.2.1] octenyl molybdenum complexes exo-94 and endo-95 to their corresponding enones was carried out (Scheme 33).

Scheme 33. Expected Demetalation of 6,8-Dioxabicyclo[3.2.1]octenyl Molybdenum Complexes

Although oxidative demetalation with cerium(IV) ammonium nitrate or CuCl_{2} were demonstrated very effective in the decomplexation of various molybdenum complexes containing a terminal methoxy group in the π-allyl unit, ${ }^{4 \mathrm{a}, 41 \mathrm{c}, 42}$ demetalation of the 6,8-dioxabicyclo[3.2.1]octenyl molybdenum complexes under similar conditions only afforded the desired enones in low yields without recovery of starting materials (Scheme 34). Other demetalation protocols, ${ }^{60}$ including photolytic protodemetalation (TFA/UV) and reductive demetalation $\left(\mathrm{NOPF}_{6}\right.$ followed by $\left.\mathrm{NaCNBH}_{3}\right)$, were also not able to

[^29]provide the desired products.

Scheme 34. Attempts of Demetalation of 6,8-Dioxabicyclo[3.2.1]octenyl Molybdenum Complexes

Considering that 1,5 -Michael-like reactions go through an η^{2} anionic $\mathrm{TpMo}(\mathrm{CO})_{2}$ intermediate (Scheme 35, compound 98), a novel '1,5-Michael reaction-demetalation' cascade was developed as shown in Scheme 35. Quenching 1,5-Michael intermediate 98 with NOPF_{6} afforded unstable η^{2}-complexes 99 which could undergo spontaneous decomplexation to afford the desired bicyclic enones. ${ }^{61}$

[^30]
Scheme 35. Mechanism of 1,5-Michael Reaction-Demetalation Cascade

The formation of the $\eta^{2} \mathrm{TpMo}(\mathrm{CO})_{2}$ intermediate 99 was confirmed by isolation and characterization of η^{2}-complex $\mathbf{1 0 0}^{62}$ (Figure 5). The assigned structure of $\mathbf{1 0 0}$ is consistent with its spectroscopic data. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 0 0}$ confirmed a carbonyl shift at 204.0 ppm . Infrared analysis revealed the NO stretching band at $1679 \mathrm{~cm}^{-1}$. Meanwhile, the metal carbonyl shifted to $2011 \mathrm{~cm}^{-1}$ which also indicates the presence of NO. High resolution mass spectra also confirmed the composition of $\mathbf{1 0 0}$.

Figure 5. Spectroscopic Evidence of $\boldsymbol{\eta}^{2}$-complex 100

This novel one-pot '1,5-Michael-like reaction-demetalation' sequence efficiently

[^31]combines 1,5 -Michael reaction with decomplexation, and provides a rapid access to the 6,8-dioxabicyclo[3.2.1] octane skeleton in only 2 steps from parent scaffolds $\mathbf{8 6}$ and $\mathbf{8 8}$. The scope of the 1,5-Michael-reation-demetalation cascade is depicted in Table 6 and Table 7. It was demonstrated that this sequence proceeded with no detectable enantiopurity loss when carried out with chiral, non-racemic molybdenum complexes $(-)-$ syn-89a and (-)-anti-89a. For example, both (-)-($1 S, 5 S, 7 R$)-7-methyl-6,8-dioxabicyclo [3.2.1]oct-3-en-2-one (exo-96a) (Table 6, entry 1) and (-)-(1R,5R,7S)-7-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one (endo-97a) (Table 7, entry 4) were prepared in 98.7\% ee.

Table 6. Synthesis of exo-6,8-Dioxabicyclo[3.2.1]oct-3-en-2-ones ${ }^{\text {a }}$

	 syn-	1. NaH/DME 2. NOPF_{6} or NOBF_{4} DME, $-20^{\circ} \mathrm{C}$			
Entry	syn-89	R ${ }^{1}$	R^{2}	\% Yield	\% ee
1	(-)-89a	Me	H	80, 96a	$98.7{ }^{\text {b }}$
2	(\pm)-89c	E-prop-1-enyl	H	56, 96b	-
3	(\pm)-89d	phenyl	H	56, 96c	-
4	(\pm)-89e	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	H	21, 96d ${ }^{\text {c }}$	-
5	(\pm)-89g	Et	Me	73, 96e	-

a) NOPF_{6} and NOBF_{4} were equal effective in this reaction.
b) Starting from 98.7% ee (-)-syn-89a.
c) Preliminary result.

Table 7. Synthesis of endo-6,8-Dioxabicyclo[3.2.1]oct-3-en-2-one ${ }^{\text {a }}$

Entry	anti-89	R^{1}	R^{2}	Yield (\%)	\% ee
1	$(-)-\mathbf{8 9 a}$	Me	H	$70, \mathbf{9 7 a}$	98.7^{b}
2	$(\pm) \mathbf{- 8 9 c}$	E-prop-1-enyl	H	$44,97 \mathrm{~b}$	-
3	$(\pm) \mathbf{- 8 9 d}$	phenyl	H	$61,97 \mathbf{c}^{\mathrm{c}}$	-
4	$(\pm) \mathbf{- 8 9 g}$	Et	Me	$66,97 \mathrm{~d}$	-

a) NOPF_{6} and NOBF_{4} were equal effective in this reaction.
b) Starting from 98.7% ee (-)-anti-89a.
c) Epimerization was observed at C7 (exo:endo 3:10).

The epimerization of at C-7 in 97c (Table 7, entry 3) might be due to a retro-aldol reaction of anti-89d followed by another aldol reaction (Scheme 36). The resulting syn-89d could be further converted to exo-96c via '1,5-Michael-demetalation' reaction.

Scheme 36. Possible Epimerization Mechanism

Total synthesis of (+)-(1R,2S,5S,7R)-2-Hydroxy-exo-Brevicomin

Alkylated 6,8-dioxabicyclo[3.2.1]octane skeletons represent the basic structure of a series
of bark beetle pheromones such as exo-brevicomin ${ }^{63}$ and frontalin ${ }^{64}$ (Figure 6). These pheromones play a major role in the communication systems of different beetles. ${ }^{65}$ In 1996, Francke and co-workers ${ }^{66}$ isolated and identified several new hydroxylated brevicomin derivatives from male mountain pine beetles, Dendroctounus ponderosae. As an application of the intramolecular '1,5-Michael-like' reaction, the enantiocontrolled synthesis of $(+)-(1 R, 2 S, 5 S, 7 R)$-2-hydroxy-exo-brevicomin was investigated.

6,8-Dioxabicyclo[3.2.1]octane

exo-brevicomin

frontalin

hydroxy-exo-brevicomin

2-hydroxy-exo-brevicomin

Figure 6. 6,8-Dioxabicyclo[3.2.1]octanes

The synthesis of alkylated 6,8-dioxabicyclo[3.2.1]octane skeletons has received continual attention ${ }^{65,67,68}$ during the past decades due to the important bioactivities (insect pheromones) of molecules possessing this structural unit. Moreover, research shows that only one single enantiomer is bioactive ${ }^{69}$ in 60% percent of those chiral pheromones. For

[^32]example, only (+)-exo-brevicomin was found to be the bioactive enantiomer. ${ }^{70}$ Therefore, enantiocontrolled syntheses of these molecules are more important than their racemic forms.

Among various synthetic approaches to alkylated 6,8-dioxabicyclo[3.2.1]octane skeletons, the most commonly used method is intramolecular ketalization, which involves asymmetric dihydroxylation or epoxidation. To date, there are two total syntheses of (+)($1 R, 2 S, 5 S, 7 R$)-2-hydroxy-exo-brevicomin reported respectively by the Mori ${ }^{71}$ (Scheme 37) and Prasad groups ${ }^{72}$ (Scheme 38). Both of them featured the intramolecular ketalization as the key step.

Scheme 37. Mori's Total Synthesis of (+)-(1R,2S,5S,7R)-2-Hydroxy-exo-Brevicomin

[^33]Scheme 38. Prasad's Total Synthesis of
(+)-(1R,2S,5S,7R)-2-Hydroxy-exo-Brevicomin

Our retrosynthetic analysis of $(+)-(1 R, 2 S, 5 S, 7 R)$-2-hydroxy-exo-brevicomin is outlined in Scheme 39. It was envisioned that (+)-(1R,2S,5S,7R)-2-hydroxy-exo-brevicomin could be derived from dioxabicylic enone exo-96e which was the intramolecular '1,5-Michael-demetalation' adduct of molybdenum complex syn-89g. Complex syn-89g could be synthesized from 2-methyl-5-oxopyranyl scaffold 88 via traditional aldol reaction. If successful, this enantiomeric organometallic scaffold strategy should provide a novel and concise assembly of $(+)-(1 R, 2 S, 5 S, 7 R)$-2-hydroxy-exo-brevicomin with full stereocontrol.

Scheme 39. Retrosynthetic Analysis of (+)-(1R,2S,5S,7R)-2-Hydroxy-exo-Brevicomin

Racemic 2-methyl-5-oxopyranyl scaffold $\mathbf{8 8}$ was synthesized from 5-methyl-2furanmethanol via sequential Achmatowicz rearrangement, acetylation of the
corresponding alcohol, complexation with $(\mathrm{DMF})_{3} \mathrm{Mo}(\mathrm{CO})_{3}$ and subsequent ligand exchange with KTp (Scheme 40). ${ }^{45}$

Scheme 40. Synthesis of Racemic 2-Methy-5-oxopyranyl Scaffold 88

$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ mediated diastereomer formation of $\mathbf{1 0 1}$ with different commercially available chiral, non-racemic alcohols (Scheme 41) led to the formation of various diastereomeric 6-alkoxypyranones in good to excellent yields. However, only (S)-1-phenyl butanol and ethyl (R)-2-hydroxy-4-phenylbutyrate substituted pyranone $\mathbf{1 0 3}$ and $\mathbf{1 0 4}$ could be resolved by column chromatography.

Scheme 41. Diastereomer Formation of 101 with Different Non-racemic Alcohols

Complexation of 103a ${ }^{73}$ (faster eluting diastereomer, $>99 \%$ ee) with 2 equiv (DMF) $)_{3} \mathrm{Mo}(\mathrm{CO})_{3}$ at $-40{ }^{\circ} \mathrm{C}$ to room temperature only afforded 2-methyl-5-oxopyranyl scaffold 88 in 1.8% ee (Scheme 42). Presumably, the benzylic alkoxide and the methyl group in $\mathbf{1 0 3}$ exhibit similar steric effect on the dihydropyran ring which allows the $\mathrm{Mo}(0)$ to approach the enone from both sides of the ring, thus importing no facial selectivity compared with substrate 87A and 87B (Scheme 30).

Scheme 42. Complexation with 103a

Gratifyingly, complexation of 104a (faster eluting diastereomer) ${ }^{74}$ and 104b (slower eluting diastereomer) with low concentrations of $(\mathrm{DMF})_{3} \mathrm{Mo}(\mathrm{CO})_{3}$ in dichloromethane provided 2-methyl-5-oxopyranyl scaffold $\mathbf{8 8}$ with moderate ee. In order to improve the ee, the complexation conditions had been extensively studied. After optimization, ${ }^{75}$ complexation of 104a afforded (-)-2-methyl-5-oxopyranyl scaffold $\mathbf{8 8}^{76}$ in 40% yield and 81% ee, whereas 104b afforded (+)-88 in 18% yield and 93% ee (Scheme 43). The

[^34]enantiopurity of (-)-88 can be increased to $>98 \%$ ee after recrystallization ${ }^{77}$ in dichloromethane and hexanes.

Scheme 43. Synthesis of Chiral, Non-racemic 88

Selected examples of different conditions (concentration, temperature, addition sequence, reaction time and solvents) explored in the enantiocontrolled complexation are shown in Table 8. At low concentrations of both $(\mathrm{DMF})_{3} \mathrm{Mo}(\mathrm{CO})_{3}$ and $\mathbf{1 0 4}$, the complexation of 104a and 104b provided moderate yields and reproducible ee ($>80 \%$ ee). To achieve higher yields, dichloromethane involved in this reaction should be freshly dried and degassed.

[^35]Table 8. Selected Conditions in the Synthesis of Chiral, Non-racemic 88

Entry	SM	solvent	Time $\mathrm{A}^{\text {a }}$	Time B^{b}	Concn of $\operatorname{Mo}(0)^{\text {c }}$	Concn of SM	Yield (\%)	\% ee
1	104a	DCM	-	24 h	0.62 (0,83 eq. $)^{\text {d,f }}$	0.75	24	83.5
2	104b	DCM	-	4 d	0.16 (0,91 eq. $)^{\text {d,f }}$	0.18	22	33.5
3	104a	THF	-	24 h	0.043 (0.7 eq. $)^{\text {e }}$	$0.33{ }^{\text {g }}$	30	9
4	104b	DCM	10 min	30 min	$0.037(0.81 \mathrm{eq})^{\mathrm{e}}$	0.091	28	79.1
5	104b	DCM	20 min	30 min	$7.4 \times 10^{-3}(0.64 \mathrm{eq} .)^{\mathrm{e}}$	0.017^{h}	45	85.1
6	104a	DCM	25 min	1 h	$8.8 \times 10^{-3}(0.70 \mathrm{eq} .)^{\mathrm{e}}$	0.018^{h}	24	87
7	104a	DCM	45 min	1 h	$9.7 \times 10^{-3}(0.65 \mathrm{eq} .)^{\mathrm{e}}$	0.022^{h}	$40^{\text {i }}$	81
8	104b	DCM	30 min	1 h	$8.2 \times 10^{-3}(0.65 \mathrm{eq} .)^{\text {e }}$	$0.018^{\text {h }}$	18	93.1

a) The addition time of $\operatorname{Mo}(0)$ to SM ; b) Time after the addition of $\mathrm{Mo}(0)$; c) 1 equiv of SM ; d) $(\mathrm{Tol}) \mathrm{Mo}(\mathrm{CO})_{3}$ as $\operatorname{Mo}(0)$ source; e) $(\mathrm{DMF})_{3} \mathrm{Mo}(\mathrm{CO})_{3}$ as $\operatorname{Mo}(0)$ source; f$)(\mathrm{Tol}) \mathrm{Mo}(\mathrm{CO})_{3}$ was added as a solid to a solution of $\left.\mathrm{SM} ; \mathrm{g}\right) \mathrm{A}$ solution of of SM in THF was added a solution of $(\mathrm{DMF})_{3} \mathrm{Mo}(\mathrm{CO})_{3}$ in THF; h) A solution of (DMF) ${ }_{3} \mathrm{Mo}(\mathrm{CO})_{3}$ at -78 ${ }^{\circ} \mathrm{C}$ in DCM was added dropwise to a solution of SM in DCM at rt via cannula; i) Yield based on recovery of SM is 69%. j) Addition of SM into $\mathrm{Mo}(0)$ solution.

According to a previous study, ${ }^{48}$ two possible mechanisms are shown in Scheme 44 to rationalize this enantiocontrolled complexation. First, the bulky alkoxy group might cause the addition of $\operatorname{Mo}(0)$ from its opposite face and lead to inversion of configuration in the oxidative addition step. It is also possible that $\operatorname{Mo}(0)$ could first coordinate to the carbonyl group, then be delivered to the same face as the alkoxy group (retention addition). Given the fact that the absolute configurations ${ }^{78}$ of 104a and 104b haven't been confirmed yet, the exact mechanism is still under investigation.

[^36]
Scheme 44. Possible Mechanism for the Synthesis of Chiral, Non-racemic 88

Having the enantiomeric (-)-88 in hand, the synthesis of $(+)-(1 R, 2 S, 5 S, 7 R)-$ 2-hydroxy-exo-brevicomin is detailed in Scheme 45. Aldol reaction of 98% ee (-)-88 with acrolein 79 furnished syn and anti-89h in 82% yield (syn : anti $=3: 1$, HPLC). Since syn and anti-89h are inseparable by simple column chromatography on silica gel, the mixture of syn and anti-89h was directly converted to syn and anti-89g ${ }^{80}$ by Pd catalyzed hydrogenation in 91% yield and 98% ee. Following the 1,5-Michael-demetalation protocol, (-)-syn-89g was transformed to bicyclic acetal 96e in 73% yield (98% ee) which experienced smooth hydrogenation to afford ketone 106 in 80% yield. Finally, reduction of the carbonyl with NaBH_{4} accomplished the synthesis of $(+)-(1 R, 2 S, 5 S, 7 R)-$ 2-hydroxy-exo-brevicomin 107 in 82% yield $\left([\alpha]_{\mathrm{D}}{ }^{20}=+40.3, c=1.10, \mathrm{CHCl}_{3}\right.$, Lit. $^{71}[\alpha]_{\mathrm{D}}{ }^{24}=+33.3, c=1.94, \mathrm{CHCl}_{3}$,). The spectroscopic properties of compound $(+)-\mathbf{1 0 7}$ are in full accordance with those of the natural product. ${ }^{71,72}$

[^37]
Scheme 45. Enantiocontrolled Total Synthesis of

 (+)-(1R,2S,5S,7R)-2-hydroxy-exo-brevicomin

Conclusion

Neutral $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyranyl) scaffolds bearing an internal alkoxide underwent a novel intramolecular '1,5-Michael-like' reaction. Through a one-pot '1,5-Michael-decomplexation' sequence, 6,8-dioxabicyclo[3.2.1]oct-3-en-2-one frame work can be easily accessed in good to excellent yields with high enantiopurity. A total synthesis of $(+)-(1 R, 2 S, 5 S, 7 R)$-2-hydroxy-exo-brevicomin was accomplished to showcase this novel transformation.

Experimental Section

General Methods. Unless otherwise indicated, all ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Inova $400 \mathrm{MHz}\left(400 \mathrm{MHz}{ }^{1} \mathrm{H}, 100 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$ or Varian Inova 600 $\mathrm{MHz}\left(600 \mathrm{MHz}{ }^{1} \mathrm{H}, 150 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$ at room temperature in $\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{6} \mathrm{D}_{6}$ or acetone- $d 6$. Spectra were internally referenced to $\mathrm{CDCl}_{3}\left(7.26 \mathrm{ppm}\right.$ for H^{1} and 77.0 ppm for ${ }^{13} \mathrm{C}$), $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (5.31 ppm for H^{1} and 53.8 ppm for ${ }^{13} \mathrm{C}$), $\mathrm{C}_{6} \mathrm{D}_{6}\left(7.16 \mathrm{ppm}\right.$ for H^{1} and 128.0 ppm for ${ }^{13} \mathrm{C}$) or acetone- $d_{6}\left(2.05 \mathrm{ppm}\right.$ for H^{1} and 29.8 ppm for ${ }^{13} \mathrm{C}$). IR spectra were recorded on ASI React-IR ${ }^{\circledR} 1000$ FT-IR spectrometer, equipped with a silicon probe or a Nicolet 380 FT-IR with a Smart Orbit diamond crystal plate. Peaks are reported $\left(\mathrm{cm}^{-1}\right)$ with the following relative intensities: s (strong, $67-100 \%$), m (medium, 40-67\%), w (weak, $20-40 \%$) and br (broad). Since almost all of the Tp molybdenum complexes decompose at about $180-200{ }^{\circ} \mathrm{C}$ melting points are not significant and are not shown in the experimental section. Analytical thin-layer chromatography (TLC) was carried out on commercial Merck aluminum back silica gel plates (silica gel $60 \mathrm{~F}_{254}$, thickness: $200 \mu \mathrm{~m}$) with fluorescent indicator (F-254). Optical rotations were measured Perkin-Elmer 241MC or Perkin-Elmer Model 341 polarimeters. Visualization was accomplished by UV light, stained with 5% phosphomolybdic acid (PMA) in ethanol or with ceric ammonium molybdate water solution. Column chromatography was performed on 60-230 Mesh silica gel (Silicycle or Merck). Unless otherwise specified, all solvents are dried over $4 \AA$ molecular sieves, titrated for water level with a Fisher Coulomatic K-F titrator before
using, and degassed by bubbling through argon or nitrogen for 10 minutes or dispensed and used directly from a Seca Solvent System purchased from Glass Contour. All reactions were carried out under a nitrogen or argon atmosphere, and all reaction flasks were flamed or oven dried prior to use.

87a and 87b
[(S)-1-Phenyl-butoxy]-6H-pyran-3-one, 87a and [(S)-1-Phenyl-butoxy]-6H-pyran-3-one, 87b

To a $250-\mathrm{mL}$ flask charged with 2 -acetoxy-5-oxo-5,6-dihydro-2H-pyran, 85 (4.0 g, $25.6 \mathrm{mmol}, 1$ equiv) and (S)-(-)-1-phenyl-1-butanol ${ }^{81}$ (98% ee, $3.85 \mathrm{~g}, 25.6 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ under argon was added $\mathrm{ZnCl}_{2}\left(1.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 7.7 \mathrm{~mL}, 7.7$ mmol, 0.3 equiv). The solution was stirred at room temperature for 67 hours, after which TLC indicated no starting material was left. The mixture was transferred into a separatory funnel containing $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic layer was collected, washed with brine (50 mL), dried over MgSO_{4}, filtered, and concentrated. The crude material was further purified by column chromatography on silica gel ($10 \% \mathrm{EtOAc}$ in hexanes) to afford the less polar diastereomer 87a (1.8 g, 29\%), and more polar diastereomer 87b (3.2 g, 51\%) as colorless liquids.

87a: TLC $\left(\mathrm{R}_{f}=0.66\right.$ hexanes-EtOAc 4:1). $[\alpha]_{\mathrm{D}}{ }^{20}=-90.1\left(c=0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \quad$ IR

[^38]$\left(\mathrm{cm}^{-1}\right): 2961$ (m), 2934 (m), 2871 (m), 1702 (s), 1455 (m), 1397(s), 1262(s). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.34(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{dd}, J=10.2 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H})$, $0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 194.9,144.8,141.4,128.6$, 128.6, 128.0, 127.6, 126.9, 126.9, 89.9, 79.2, 66.4, 40.1, 19.3, 13.8. HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$247.1329. Found: 247.1326.

87b: TLC $\left(\mathrm{R}_{f}=0.57\right.$ hexanes-EtOAc 4:1). $[\alpha]_{\mathrm{D}}{ }^{20}=-113.3\left(c=0.444, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (cm^{-1}): 2961 (m), 2934 (m), 2876 (m), 1702 (s), 1455 (m), 1393(s), 1262(s). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.30(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{dd}, J=10.2 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $(\mathrm{d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): δ 195.0, 144.1, 142.4, 128.3, 128.3, 127.7, 127.6, 126.4(2), 93.4, 82.3, 66.1, 39.3, 18.9, 13.9. HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 247.1329$. Found: 247.1336.

(+)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2R)-(η-2,3,4)-5-oxo-5,6-dihydro-2H -pyran-2-yl]molybdenum, (+)-86

To a Schlenk flask charged with a solution of $\operatorname{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}(7.52 \mathrm{~g}, 18.80 \mathrm{mmol}$, 2 equiv) in degassed dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ under argon at $-40{ }^{\circ} \mathrm{C}$ was slowly added a solution of 87a ($2.32 \mathrm{~g}, 9.42 \mathrm{mmol}, 1$ equiv) in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was allowed to warm up to $-20^{\circ} \mathrm{C}$ over 1 hour, and then warmed to $-10{ }^{\circ} \mathrm{C}$ over 30 min . The reaction was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 hours before allowing the reaction to warm to room temperature over 30 min . Solid potassium hydridotris(1-pyrazolyl)borate (KTp) ($5.22 \mathrm{~g}, 20.70 \mathrm{mmol}, 2.2$ equiv) was added in one portion and the reaction was stirred for 1 hour at room temperature. The solution was then passed through a pad of silica gel, eluting with EtOAc. Solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford a yellow solid (+)-86 (2.1 g, 48%) in 98.9% ee. This compound tends to crystallize as a racemate, and therefore slow crystallization in hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded the product in $>99 \%$ ee when the first few crystals that formed were removed, and the filtrate was collected and dried under vacuum.

Characterization (+)-86 can be found in reference 41a.
$(+)-86:[\alpha]_{\mathrm{D}}{ }^{20}=+447.8\left(c=0.090, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC: CHIRALPAK AS-RH column, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=55: 45,1.0 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm}, \mathrm{t}_{R}=11.43 \mathrm{~min},>99 \%$ ee.

(-)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S)- η-(2,3,4)-5-oxo-5,6-dihydro-2H-

 pyran-2-yl]molybdenum, (-)-86To a Schlenk flask charged with a solution of $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}(4.63 \mathrm{~g}, 11.6 \mathrm{mmol}, 2$ equiv) in degassed, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ under argon at $-40{ }^{\circ} \mathrm{C}$ was slowly added a solution of $\mathbf{8 7 b}\left(1.43 \mathrm{~g}, 5.80 \mathrm{mmol}\right.$, 1 equiv) in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was allowed to warm up to $-20^{\circ} \mathrm{C}$ over 1 hour, and then warmed to $0^{\circ} \mathrm{C}$ over 30 min . After the reaction was slowly warmed to room temperature over 30 min , solid potassium hydridotris(1-pyrazolyl)borate (KTp) (3.22 g, $12.77 \mathrm{mmol}, 2.2$ equiv) was added in one portion. After stirring for 1 hour at room temperature, the solution was passed through a pad of silica gel, eluting with EtOAc. The solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford a yellow solid product (-)-86 $(1.64 \mathrm{~g}, 61 \%)$ in 97.6% ee. This compound tends to crystallize as a racemate, and therefore slow crystallization in hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded the product in $>99 \%$ ee when the first few crystals that formed were removed, and the filtrate was collected and dried under vacuum.

Characterization (-)-86 can be found in reference 41a.
$(-)$-86: $[\alpha]_{\mathrm{D}}{ }^{20}=-525.8\left(c=0.095, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC: CHIRALPAK AS-RH column, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=55: 45,1.0 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm}, \mathrm{t}_{R}=14.62 \mathrm{~min},>99 \%$ ee.

(-)-anti-89a

(-)-syn-89a

(-)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]\{(2S,6S)-($\eta-2,3,4)-6-[(S)-1-$

hydroxylethyl]-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum, (-)-anti-89a and

(-)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]\{(2S,6S)- $\eta-(2,3,4)-6-[(R)-1-$

 hydroxylethyl]-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum, (-)-syn-89a.To a Schlenk flask charged with a solution of (-)-86 (540 mg, 98.7% ee, $1.17 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was successively added $\mathrm{Et}_{3} \mathrm{~N}(0.19 \mathrm{~mL}, 1.35 \mathrm{mmol}, 1.15$ equiv $)$ and $\operatorname{TBSOTf}(0.31 \mathrm{~mL}, 1.35 \mathrm{mmol}, 1.15$ equiv). The reaction mixture was stirred for 30 \min at room temperature, then cooled down to $-78^{\circ} \mathrm{C}$. To this mixture was slowly added a low-temperature $\left(-78{ }^{\circ} \mathrm{C}\right.$) premixed solution of acetaldehyde ($92 \mu \mathrm{~L}, 1.64 \mathrm{mmol}, 1.4$ equiv) and $\mathrm{TiCl}_{4}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.52 \mathrm{~mL}, 1.52 \mathrm{mmol}, 1.3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ via syringe. The mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ and then quenched with water (1 $\mathrm{mL})$. The cold bath was removed, and the reaction mixture was allowed to warm to room temperature and then purged to a separatory funnel containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered, concentrated, and purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford (-)-anti-89a (330 mg, 66\%) as a yellow solid, and (-)-syn-89a (170 mg, 34\%) as a yellow solid.
(-)-anti-89a: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.39\right.$, hexanes-EtOAc 1:1). IR $\left(\mathrm{cm}^{-1}\right): 3401(\mathrm{w}), 3127$ (w), 2980 (w), 2934 (w), 2899(w), 2486 (w), 1961 (s), 1872 (s), 1640 (m), 1505 (w), 1409 (m), $1305(\mathrm{~m}), 1220(\mathrm{~m}), 1123(\mathrm{~m}), 1050(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.53(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ $(\mathrm{d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=1.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=2.2,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{dd}, J=4.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 224.5$, 223.6, 195.1, 147.7, 143.9, 141.8, 136.65, 136.62, 135.0, 107.5, 106.6, 106.4, 106.1, 79.0, 69.5, 68.8, 65.0, 18.7. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BMoN}_{6} \mathrm{O}_{5}: \mathrm{C}, 42.72 ; \mathrm{H}, 3.78 ; \mathrm{N}, 16.60$. Found: C, 42.32; H, 3.81; N, 16.17.
(-)-anti-89a: $[\alpha]_{\mathrm{D}}{ }^{20}=-357\left(c=0.105, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC: CHIRALPAK AS-RH column, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with 0.1% TFA $=35: 65,0.9 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm}, \mathrm{t}_{R}=21.65 \mathrm{~min}$, 98.7% ee. Enantiomer: $\mathrm{t}_{R}=14.78 \mathrm{~min}$.
(-)-syn-89a: TLC $\left(\mathrm{R}_{f}=0.31\right.$, hexanes-EtOAc 1:1). IR $\left(\mathrm{cm}^{-1}\right): 3405(\mathrm{w}), 3127(\mathrm{w}), 2976$ (w), 2934 (w), 2490 (w), 1961 (s), 1872 (s), 1644 (m), 1505 (m), 1409 (m), 1305 (m), $1220(\mathrm{~m}), 1123(\mathrm{~m}), 1050(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.53(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.91(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=2.22 \mathrm{~Hz}, J=4.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=2.2,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20(\mathrm{dd}, J=4.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=$
8.9 Hz, 1H), $1.25(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): 224.7$, 223.7, 195.0, 147.7, 144.0, 141.8, 136.63, 136.61, 135.0, 108.0, 106.6, 106.3 106.1, 78.9, 70.4, 68.8, 65.1, 19.2. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BMoN}_{6} \mathrm{O}_{5}$: C, 42.72; H, 3.78; N, 16.60. Found: C, 43.01; H, 3.94; N, 16.34.
$(-)$-syn-89a: $[\alpha]_{\mathrm{D}}{ }^{20}=-603\left(c=0.125, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC: CHIRALPAK AS-RH column, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=40: 60,0.9 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm}, \mathrm{t}_{R}=14.41 \mathrm{~min}, 98.7 \%$ ee. Enantiomer: $\mathrm{t}_{R}=11.77 \mathrm{~min}$.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]\{(2S,6S)- $\eta-(2,3,4)-6-[(S, E)-1-$ hydroxylbuten-2-yl]-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum, (土)-anti-89c and
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]\{(2S,6S)- $\eta-(2,3,4)-6-[(R, E)-1-$ hydroxylbuten-2-yl]-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum, (土)-syn-89c.

To a Schlenk flask charged with a solution of (\pm)-86 ($120 \mathrm{mg}, 0.26 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was successively added $\mathrm{Et}_{3} \mathrm{~N}(40 \mu \mathrm{~L}, 0.29 \mathrm{mmol}, 1.1$ equiv $)$ and TBSOTf ($63 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.05$ equiv). The reaction mixture was stirred for 30 min at room temperature, then cooled down to $-78{ }^{\circ} \mathrm{C}$. To this mixture was slowly added a low-temperature $\left(-78{ }^{\circ} \mathrm{C}\right)$ premixed solution of crotonaldehyde ($31 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.4$
equiv) and $\mathrm{TiCl}_{4}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.34 \mathrm{~mL}, 0.34 \mathrm{mmol}, 1.3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ via syringe. The mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ and then quenched with water (1 $\mathrm{mL})$. The cold bath was removed, and the reaction mixture was allowed to warm to room temperature and then purged to a separatory funnel containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 10 \mathrm{~mL})$ and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford (-)-anti-89c(37 mg, 27\%) as a yellow solid, and (-)-syn-89c(19 mg, 14\%) as a yellow solid.
(\pm)-anti-89c: TLC $\left(\mathrm{R}_{f}=0.48\right.$, hexanes-EtOAc 1:1). IR $\left(\mathrm{cm}^{-1}\right): 3397(\mathrm{~m}), 3127(\mathrm{~m})$, 2918 (w), 2887 (w), 2490 (m), 1961 (s), 1872 (s), 1644 (m), 1505 (m), 1409 (m), 1305 (m), 1220 (m), 1123 (m), $1050(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.52(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.91(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=2.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.27(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dqd}, J=15.3,8.9,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.56$ (ddq, $J=15.3,7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=1.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H})$, $4.19(\mathrm{dd}, J=4.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dd}$, $J=6.7,1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 224.6,223.6,194.2,147.6,143.9$, $141.8,136.60,136.58,135.0,130.1,128.5,107.6,106.6,106.3,106.0,78.5,73.8,69.7$, 65.1, 18.1. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BMoN}_{6} \mathrm{O}_{5}$: C, 45.14 ; $\mathrm{H}, 3.98$; N, 15.79. Found: C, 45.28; H, 4.12; N, 15.85.
(\pm)-syn-89c: TLC $\left(\mathrm{R}_{f}=0.34\right.$, hexanes-EtOAc 1:1). IR $\left(\mathrm{cm}^{-1}\right): 3412(\mathrm{~m}), 3127$ (w),

2918 (w), 2887 (w), 2490 (m), 1961 (s), 1872 (s), 1644 (m), 1505 (m), 1409 (m), 1305 (m), 1220 (m), 1123 (m), $1050(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.52(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.91(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=2.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.27(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dqd}, J=15.3,6.4,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.56(\mathrm{ddq}, ~ J=15.3,6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=1.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H})$, $4.20(\mathrm{dd}, J=4.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dt}$, $J=6.4,1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 224.7,223.6,194.5,147.6,144.0$, $141.8,136.62,136.58,135.0,129.2,129.0,108.1,106.6,106.3,106.1,78.3,73.2,70.4$, 65.0, 18.1. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BMoN}_{6} \mathrm{O}_{5}$: C, 45.14; H, 3.98; N, 15.79. Found: C, 44.97; H, 4.01; N, 15.57.

anti-89d

syn-89d
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]\{(2S,6S)- η-(2,3,4)-6-[(R)-hydroxy-(phenyl)methyl]-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum, (\pm)-anti-89d and (\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,6S)- $\boldsymbol{\eta}$-(2,3,4)-6-((S)-hydroxy-(phenyl)methyl)-5-oxo-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-syn-89d.

To a Schlenk flask charged with a solution of (\pm)-86 ($462 \mathrm{mg}, 1.00 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was successively added $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 1.10 \mathrm{mmol}, 1.1$ equiv) and
$\operatorname{TBSOTf}(0.25 \mathrm{~mL}, 1.10 \mathrm{mmol}, 1.1$ equiv). The reaction mixture was stirred for 30 min at room temperature, then cooled down to $-78^{\circ} \mathrm{C}$. To this mixture was slowly added a low temperature $\left(-78{ }^{\circ} \mathrm{C}\right)$ premixed solution of benzaldehyde ($141 \mu \mathrm{~L}, 1.4 \mathrm{mmol}, 1.4$ equiv) and TiCl_{4} (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.3 \mathrm{~mL}, 1.30 \mathrm{mmol}$, 1.3 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ via syringe. The mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ and then quenched with water $(1 \mathrm{~mL})$. The cold bath was removed, and the reaction mixture was allowed to warm to room temperature and then purged to a separatory funnel containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 10 \mathrm{~mL})$ and brine (10 mL), dried over MgSO_{4}, filtered, concentrated, and purified by column chromatography on silica gel (hexanes- $-\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2} 4: 1: 5$) to afford (\pm)-anti-89d (460 $\mathrm{mg}, 81 \%$) as a yellow solid, and (\pm)-syn-89d ($51 \mathrm{mg}, 9 \%$) as a yellow solid.
(\pm)-anti-89d: TLC $\left(\mathrm{R}_{f}=0.30\right.$, hexanes- $\left.-\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1: 4\right)$. IR $\left(\mathrm{cm}^{-1}\right): 3416(\mathrm{br}, \mathrm{m})$, 1965 (s), 1876 (s), 1637 (m), 1409 (w), 1305 (w), 1220 (w), 1123 (w), 1054 (m). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1$ H), 7.38-7.28 (m, 5 H$), 7.23(\mathrm{dd}, J=2.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=6.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 3.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 224.2,223.4,194.3,147.7,141.6,138.9,136.3,134.7,128.2,127.4$, 107.3, 106.4, 106.0, 105.8, 78.3, 74.5, 68.9, 64.7. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 571.0793 . Found: 571.0803.
(\pm)-syn-89d: TLC $\left(\mathrm{R}_{f}=0.24\right.$, hexanes- $\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 2:1:4). IR $\left(\mathrm{cm}^{-1}\right): 3412$ (br, m), 1961 (s), 1876 (s), 1640 (s), 1409 (s), 1305 (s), 1220 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.586(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=2.0,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{dd}, J=4.8,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.30(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ $(\mathrm{d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=6.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ $(\mathrm{d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 224.4,223.4$, 194.1, $147.4,143.8,141.6,140.0,136.3,134.8,128.2,127.7,126.5,107.6,106.3,106.1,105.8$, 77.8, 73.7, 70.0, 64.9. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 571.0793$. Found: 571.0806.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]\{(2S,6S)- $\eta-(2,3,4)-6-[(R)$-hydroxy (3-nitrophenyl)methyl]-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum, (\pm)-anti-89e and
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]\{(2S,6S)- η-(2,3,4)-6-[(S)-hydroxy (3-nitrophenyl)methyl]-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum, (\pm)-syn-89e.

To a Schlenk flask charged with a solution of $(\pm)-86(170 \mathrm{mg}, 0.37 \mathrm{mmol}, 1$ equiv $)$ in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was successively added $\mathrm{Et}_{3} \mathrm{~N}(56.4 \mu \mathrm{~L}, 0.41 \mathrm{mmol}, 1.1$ equiv) and TBSOTf ($93 \mu \mathrm{~L}, 0.41 \mathrm{mmol}, 1.1$ equiv). The reaction mixture was stirred for 30 min at room temperature, then cooled down to $-78{ }^{\circ} \mathrm{C}$. To this mixture was slowly added a low-temperature $\left(-78^{\circ} \mathrm{C}\right)$ premixed solution of 3-nitrobenzaldehyde ($110 \mathrm{mg}, 0.74 \mathrm{mmol}$, 2 equiv) and $\mathrm{TiCl}_{4}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.7 \mathrm{~mL}, 0.7 \mathrm{mmol}, 1.9$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ via syringe. The mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ and then quenched with water (1 $\mathrm{mL})$. The cold bath was removed, and the reaction mixture was allowed to warm to room temperature and then purged to a separatory funnel containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 10 \mathrm{~mL})$ and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford (\pm)-anti-89e (162 mg, 72\%) as a yellow solid, and (\pm)-syn- $\mathbf{8 9} \mathbf{e}(38 \mathrm{mg}, 17 \%)$ as a yellow solid.
(\pm)-anti-89e: TLC $\left(\mathrm{R}_{f}=0.44\right.$ hexanes-EtOAc 1:1). IR $\left(\mathrm{cm}^{-1}\right): 3393$ (br w), $2490(\mathrm{w})$, 1956 (s), 1880 (s), 1633 (s), 1529 (s), 1409 (s), 1351 (s), 1285 (s). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{dt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=4.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=4.8,1.8 \mathrm{~Hz}, 1$ H), $6.31(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}$, $J=7.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J$ $=5.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 223.5$, $223.0,194.1,148.0,147.4,143.8,141.6,141.5,136.5$ (2C), 134.8, 133.4, 129.1, 123.1,
122.7, 106.5, 106.2, 105.9 (2C), 77.4, 73.4, 69.4, 64.9. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BMoN}_{7} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$616.0644. Found: 616.0655 .
(\pm)-syn-89e: TLC $\left(\mathrm{R}_{f}=0.29\right.$ hexanes-EtOAc 1:1). IR $\left(\mathrm{cm}^{-1}\right): 3393$ (br w), 2926 (w), 2490 (w), 1956 (s), 1876 (s), 1633 (m), 1529 (s), 1409 (s), 1351(s), 1305 (s). ${ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl_{3}): $\delta 8.50(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1$ H), $7.83(\mathrm{~d}, ~ J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=4.5,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.31(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{br} \mathrm{s}, 1$ H), $4.67(\mathrm{dd}, J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=6.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{br} \mathrm{d}, J=6.6,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 223.9,223.0$, 193.3, $148.1,147.4,143.8,142.1,141.5,136.5$ (2C), 134.8, 132.5, 129.1, 122.8, 121.8, 106.5, $106.3,106.2,105.9,77.2,72.8,70.3,64.9$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BMoN}_{7} \mathrm{O}_{7}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right):$616.0644. Found: 616.0646.

90

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2R)- η-(2,3,4)-3-(tert-

butyldimethylsilyloxy)-6-methyl--3,4-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-90.

To a Schlenk flask charged with a solution of (\pm)-88 ($500 \mathrm{mg}, 1.05 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature was successively added $\mathrm{Et}_{3} \mathrm{~N}(0.16 \mathrm{~mL}, 1.16 \mathrm{mmol}$, 1.1 equiv) and TBSOTf ($0.27 \mathrm{~mL}, 1.16 \mathrm{mmol}, 1.1$ equiv). The reaction mixture turned
from purple suspension to brownish yellow solution. After being stirred for 3 hr , the solution was directly passed through a short silica gel column. The solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel (hexanes-EtOAc 2:1) to afford $\mathbf{9 0}$ ($573 \mathrm{mg}, 92 \%$) as a brown solid.
$(\pm)-90:$ TLC $\left(R_{f}=0.78\right.$, hexanes-EtOAc 1:2). IR $\left(\mathrm{cm}^{-1}\right): 2957(\mathrm{w}), 2930(\mathrm{~m}), 2474(\mathrm{w})$, 1938 (s), 1853 (s), 1656 (w), 1505 (m), 1463 (m), 1409 (m). ${ }^{1} \mathrm{H}$ NMR (400 Hz , acetone- d_{6}): $\delta 8.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.68(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.25(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 1.74 (br s, 3 H), 0.43 (br s, 9 H), 0.05 (br s, 3 H), 0.04 (br s, 3 H). ${ }^{13} \mathrm{C}$ NMR (100 Hz , CDCl_{3}): 229.5, 223.1, 145.4, 143.1, 142.4, 141.7, 135.6, 135.0, 134.2, 105.9, 105.1, 105.0, 104.5, 104.1, 91.0, 60.9, 24.9, 17.8, 17.4, -4.92. HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BMoN}_{6} \mathrm{O}_{4} \mathrm{Si}\left([\mathrm{M}]^{+}\right)$: 592.1318. Found: 592.1331.

91
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,6S)- η-(2,3,4)-2-(2-hydroxylpropyl)-5-oxo-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-91.

To a Schlenk flask charged with a solution of (\pm)-88 ($95 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was successively added $\mathrm{Et}_{3} \mathrm{~N}(31 \mu \mathrm{~L}, 0.22 \mathrm{mmol}, 1.1$ equiv) and TBSOTf ($51 \mu \mathrm{~L}, 0.22 \mathrm{mmol}, 1.1$ equiv). The reaction mixture was slowly warmed to -40 ${ }^{\circ} \mathrm{C}$ over 15 min and stirred for 10 min at $-40^{\circ} \mathrm{C}$. The reaction mixture was cooled down to $-78^{\circ} \mathrm{C}$. To this mixture was slowly added a low-temperature $\left(-78{ }^{\circ} \mathrm{C}\right)$ premixed solution of acetaldehyde ($34 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 3$ equiv) and $\mathrm{TiCl}_{4}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.54 \mathrm{~mL}, 0.54$ mmol, 2.7 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ via syringe. The mixture was stirred for 10 min at -78 ${ }^{\circ} \mathrm{C}$ and then quenched with water $(1 \mathrm{~mL})$. The cold bath was removed, and the reaction mixture was allowed to warm to room temperature and then purged to a separatory funnel containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over MgSO_{4}, filtered, concentrated, and purified by column chromatography on silica gel (hexanes-EtOAc 2:1) to afford brownish pink solid (\pm)-91 ($72 \mathrm{mg}, 69 \%$) as a inseparable mixture of two stereomers (10: 1, determined by ${ }^{1} \mathrm{H}$ NMR).
$(\pm)-91$ (major isomer): TLC $\left(\mathrm{R}_{f}=0.36\right.$, hexanes-EtOAc 1:2). IR $\left(\mathrm{cm}^{-1}\right): 3389$ (br w), 2486 (w), 1934 (s), 1841 (s), 1625 (s), 1509 (m), 1409 (s), 1309 (s). ${ }^{1} H$ NMR (400 Hz , CDCl_{3}): $\delta 8.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.58(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 6.23(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$, $4.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{dd}, J$ $=14.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=14.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 Hz, CDCl_{3}): $\delta 240.0,227.0,190.3,147.5$ (br), 144.62 (br), 144.6, 142.9 (br), 136.1 (br), 135.6 (br), 134.8 (br), 105.9(3C), 74.0, 68.3, 67.7, 67.3, 46.4, 22.9. HRMS (ESI)

Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 523.0793. Found: 523.0811.

(\pm)-anti-89f

(土)-syn-89f
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]\{(2S,6S)- $\eta-(2,3,4)-6-[(S)-1-$ hydroxyethyl]-2-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum, (\pm)-anti-89f and
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato] $\{(2 S, 6 S)-\eta-(2,3,4)-6-[(R)-1-$ hydroxyethyl)-2-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum, (\pm)-syn-89f.

To a solution of $(\pm)-\mathbf{8 8}(137 \mathrm{~g}, 0.29 \mathrm{mmol}, 1$ equiv $)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added LiHMDS (1.0 M in THF, $0.58 \mathrm{~mL}, 0.58 \mathrm{mmol}, 4$ equiv) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min followed by addition of acetaldehyde $(65 \mu \mathrm{~L}, 1.16 \mathrm{mmol}$, 4 equiv). After being stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. Then the cold solution was purged to a separatory funnel and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic layers were collected and washed with brine (10 mL), dried over MgSO_{4}, filtered, concentrated, and purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}\right.$-hexanes $\left.4: 2: 1\right)$ to afford (\pm)-anti-89f ($59 \mathrm{mg}, 39 \%$) as a brown solid, and (\pm)-syn-89f ($32 \mathrm{mg}, 22 \%$) as a brown solid.
(\pm)-anti-89f: TLC $\left(\mathrm{R}_{f}=0.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOAc-hexanes 4:2:1). IR $\left(\mathrm{cm}^{-1}\right): 3420$ (br m),

2976 (w), 2930 (w), 2490 (m), 1930 (s), 1841 (s), 1629 (s), 1521 (s), 1409 (s), 1305(s), 1220 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.48$ (br s, 1H), 8.29 (br s, 1H), $7.60(\mathrm{br}, 4 \mathrm{H})$, $6.25(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 4.89(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 239.6,227.5,191.2,147.7(\mathrm{br}), 144.7(\mathrm{br}), 144.5,142.4(\mathrm{br})$, 136.2(br), 135.5(br), 134.5(br), 106.0(br 3C), 81.5, 72.5, 68.7, 67.1, 24.2, 18.7. HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 523.0793. Found: 523.0793.
(\pm)-syn-89f: TLC $\left(\mathrm{R}_{f}=0.21 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOAc-hexanes 4:2:1). IR $\left(\mathrm{cm}^{-1}\right): 3397$ (br w), 2926 (w), 2486 (w), 1930 (s), 1837 (s), 1621 (s), 1525 (m), 1409 (m), 1305(m), 1220 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.44$ (br s, 1H), 8.27 (br s, 1H), 7.56 (br, 4H), $6.22(\mathrm{br} \mathrm{s}$, $3 \mathrm{H}), 4.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{qd}, J=6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.62(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 239.8,228.0,192.0,147.7(\mathrm{br}), 147.3,144.6(\mathrm{br}), 142.5(\mathrm{br}), 136.2(\mathrm{br})$, 135.6(br), 134.7(br), 106.0(br 3C), 81.4, 72.3, 68.7, 67.6, 24.3, 19.0. HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 523.0793. Found: 523.0797.

(\pm)-anti-89g

$(\pm)-$ syn-89g

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato] $\{(2 S, 6 S)-\eta-(2,3,4)-6-[(S)-1-$

 hydroxypropyl]-2-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum,(\pm)-anti- $\mathbf{8 9 g}$ and

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato] $](2 S, 6 S)-\eta-(2,3,4)-6-[(R)-1-$ hydroxypropyl]-2-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum,

(\pm)-syn-89g.

To a solution of (\pm) - $\mathbf{8 8}\left(2.7 \mathrm{~g}, 5.67 \mathrm{mmol}, 1\right.$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added LiHMDS (1.0 M in THF, 11. $34 \mathrm{~mL}, 11.34 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min followed by addition of propaldehyde $(1.64 \mathrm{~mL}, 22.68 \mathrm{mmol}$, 4 equiv). After being stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. Then the solution was immediately washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50$ mL) and brine (50 mL). The combined organic layers were dried over MgSO_{4}, filtered, concentrated, and purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOAc-hexanes 4:2:1) to afford (\pm)-anti- $89 \mathrm{~g}(1.9 \mathrm{~g}, 63 \%)$ as a brown solid, and (\pm)-syn-89g ($0.5 \mathrm{~g}, 17 \%$) as a brown solid.
(\pm)-anti-89g: TLC $\left(\mathrm{R}_{f}=0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOAc-hexanes 4:2:1). IR $\left(\mathrm{cm}^{-1}\right): 3424$ (br m), 2926 (m), 2486 (s), 1934 (s), 1841 (s), 1629 (s), 1521 (s), 1409 (s), 1305 (s), 1220 (s). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 8.48$ (br s, 1H), 8.30 (br s, 1H), 7.60 (br, 4H), 6.24 (br s, 3H), $4.89(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.95(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{t}, J=8.4 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 239.6,227.6,191.6,147.7,144.8,144.7,142.4$, 136.4, 135.5, 134.5, 106.1(3C), 80.5, 73.6, 72.5, 67.2, 25.6, 24.3, 9.6. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 537.0950$. Found: 537.0943.
(\pm)-syn-89g: TLC $\left(\mathrm{R}_{f}=0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOAc-hexanes 4:2:1). IR $\left(\mathrm{cm}^{-1}\right): 3362(\mathrm{~m}), 2922$
(m), 2486 (m), 1922 (s), 1830 (s), 1633 (s), 1505 (s), 1409 (s), 1305 (s), 1216 (s). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 8.46$ (br s, 1H), 8.28 (br s, 1H), $7.60(\mathrm{br}, 4 \mathrm{H}), 6.24(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$, $4.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.61(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 239.6,228.2,192.3,148.2,147.6,144.5,142.4,136.2,135.5,134.6,105.9$ (3C), 80.6, 74.2, 72.0, 67.5, 26.0, 24.3, 10.3. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BMoN}_{6} \mathrm{O}_{5}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 537.0950$. Found: 537.0946.

General procedure for the intramolecular '1,5-Michael-like’ reaction.

To a Schlenk flask charged with molybdenum complex syn-89 or anti-89 (1 equiv) in dry THF was added NaH (60% dispersed in mineral oil, 2 equiv) under argon. After being stirred for 2 to 6 h at room temperature, the reaction was cooled to $0^{\circ} \mathrm{C}$. To the reaction mixture was added solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ (2 equiv). More $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ may be needed to complete the reaction, which highly depends on the quality of the $\mathrm{Me}_{3} \mathrm{OBF}_{4}$. Then the reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for indicated time after which TLC showed the formation of a new compound. The reaction was quenched by adding $\mathrm{Et}_{3} \mathrm{~N}$ at $0^{\circ} \mathrm{C}$. The cold solution was directly passed through a short silica gel column (pre-neutralized by $5 \% \mathrm{Et}_{3} \mathrm{~N}$) with $\mathrm{Et}_{2} \mathrm{O}$. The solvents were completely removed on a rotary evaporator, and the residue was further purified by flash chromatography on silica gel neutralized with $5 \% \mathrm{Et}_{3} \mathrm{~N}$.

94a

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S,2S,5S,7R)- η-(2,3,4)-2-

methoxy-7-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (\pm)-94a.

Following the general procedure, to a THF (3 mL) solution of the molybdenum complex syn-89a ($43 \mathrm{mg}, 0.085 \mathrm{mmol}, 1$ equiv) was added $\mathrm{NaH}(6.8 \mathrm{mg}, 0.17 \mathrm{mmol}, 2$ equiv). The reaction mixture was stirred at room temperature for 30 min , then cooled to 0 ${ }^{\circ} \mathrm{C}$ followed by addition of solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}(25 \mathrm{mg}, 0.17 \mathrm{mmol}, 2$ equiv). The resulting mixture was stirred for 40 min at $0^{\circ} \mathrm{C}$, and quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes-EtOAc (2: 1) to afford 94a (41 mg, 93\%) as a yellow solid.
(\pm)-94a: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.64\right.$, hexanes-EtOAc 1:1). IR $\left(\mathrm{cm}^{-1}\right): 2980(\mathrm{~m}), 2930(\mathrm{~m}), 2482$ (m), 1930 (s), 1841 (s), 1505 (s), 1409 (s), 1305 (s), 1212 (s). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.44(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16$ $(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{dd}, J=7.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 230.0,227.7,146.2,144.6,140.1,136.4,135.8$, 134.3, 131.6, 105.6, 105.45, 105.39, 102.9, 78.5, 78.2, 57.1, 51.6, 54.7, 21.1. HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 523.0790. Found: 523.0793.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S,2S,5S,7R)- $\boldsymbol{\eta}$-(2,3,4)-7-ethyl-

2-methoxy-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (\pm)-94b.

Following the general procedure, to a THF (5 mL) solution of the molybdenum complex syn-89b ($52 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was added $\mathrm{NaH}(8 \mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv). The reaction mixture was stirred at room temperature for 1 h , then cooled to $0{ }^{\circ} \mathrm{C}$ followed by addition of solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}(30 \mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv). The resulting mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$, and quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (2:1) to afford 94b (52 mg, 97\%) as a yellow solid.
$(\pm)-94 \mathbf{b}:$ TLC $\left(\mathrm{R}_{f}=0.70\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2972(\mathrm{w}), 2482(\mathrm{w}), 1930(\mathrm{~s})$, 1841 (s), 1505 (m), 1409 (s), 1305 (s), 1212 (s). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.45$ (d, J $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=1.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{dd}, J=5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.47(\mathrm{~m}, 2 \mathrm{H})$, $0.97(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 229.7$, 227.5, 146.2, 144.6, $140.2,136.4,135.8,134.3,131.6,105.6,105.45,105.38,102.8,83.8,76.8,57.2,56.6$, 54.8, 27.8, 10.0. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 537.0950$. Found: 537.0949.

94c
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S,2S,5S,7R)- $\eta-(2,3,4)-$
5,7-dimethyl-2-methoxy-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (\pm)-94c.
Following the general procedure, to a THF (3 mL) solution of the molybdenum complex syn-89f ($20 \mathrm{mg}, 0.038 \mathrm{mmol}, 1$ equiv) was added $\mathrm{NaH}(3 \mathrm{mg}, 0.075 \mathrm{mmol}, 2$ equiv). The reaction mixture was stirred at room temperature for 1 h , then cooled to $0{ }^{\circ} \mathrm{C}$ followed by addition of solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}(11.3 \mathrm{mg}, 0.076 \mathrm{mmol}, 2$ equiv $)$. The resulting mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, and quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (2: 1) to afford 94c (20.2 mg, 99\%) as a yellow solid.
$(\pm)-94 c:$ TLC $\left(\mathrm{R}_{f}=0.66\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2980(\mathrm{w}), 2945(\mathrm{w}), 2463(\mathrm{w})$, 1934 (s), 1841 (s), 1505 (m), 1409 (s), 1305 (s), 1216 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.50(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.15(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 231.7,228.0,146.2,144.7,141.2,136.4,135.8$, $134.3,126.1,108.6,105.7,105.42,105.37,80.0,77.1,64.9,57.0,56.4,23.0,12.3$. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 537.0950. Found: 537.0946.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S,2S,5S,7R)- η-(2,3,4)-7-ethyl-5-methyl-2-methoxy-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (\pm)-94d.

Following the general procedure, to a THF (8 mL) solution of the molybdenum complex syn- $\mathbf{8 9 g}$ ($32 \mathrm{mg}, 0.06 \mathrm{mmol}, 1$ equiv) was added $\mathrm{NaH}(4.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 2$ equiv). The reaction mixture was stirred at room temperature for 1 h , then cooled to $0^{\circ} \mathrm{C}$ followed by addition of solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}(17.7 \mathrm{mg}, 0.12 \mathrm{mmol}, 2$ equiv). The resulting mixture was stirred for 40 min at $0{ }^{\circ} \mathrm{C}$, and quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes-EtOAc (2:1) to afford $\mathbf{9 4 d}(32 \mathrm{mg}, 98 \%)$ as a yellow solid.
$(\pm)-94 d: \operatorname{TLC}\left(\mathrm{R}_{f}=0.62\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2964(\mathrm{~m}), 2937(\mathrm{~m}), 2482$ (m), 1938 (s), 1849 (s), 1505 (m), 1423 (s), 1409 (s), 1305 (s), 1216 (s). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.50(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J$ $=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$, 1.62-1.48(m, 2H), $0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 231.7,228.5$, $146.5,145.0,141.5,136.6,136.1,134.5,126.3,108.6,105.9,105.7,105.6,83.0,73.4$, 65.6, 57.5, 56.5, 28.3, 23.0, 10.2. HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$:
551.1106. Found: 551.1104.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S,2S,5S,7S)- η-(2,3,4)-2-

methoxy-7-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (\pm)-95a.

Following the general procedure, to a THF (1.5 mL) solution of the molybdenum complex anti-89a ($54 \mathrm{mg}, 0.107 \mathrm{mmol}, 1$ equiv) was added $\mathrm{NaH}(8.5 \mathrm{mg}, 0.21 \mathrm{mmol}, 2$ equiv). The reaction mixture was stirred at room temperature for 4.5 h , then cooled to 0 ${ }^{\circ} \mathrm{C}$ followed by addition of solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}(31.5 \mathrm{mg}, 0.21 \mathrm{mmol}, 2$ equiv). The resulting mixture was stirred for 40 min at $0{ }^{\circ} \mathrm{C}$, and quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes-EtOAc (2:1) to afford 95a (44 mg, 93\%) as a yellow solid.
(\pm)-95a: TLC $\left(\mathrm{R}_{f}=0.62\right.$, hexanes-EtOAc 1:1). IR $\left(\mathrm{cm}^{-1}\right): 2984(\mathrm{w}), 2934(\mathrm{w}), 2482$ (m), 1926 (s), 1841 (s), 1505 (s), 1409 (s), 1305 (s), 1212 (s). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.22(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.176(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=$ $3.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{qd}, J=6.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
$\delta 230.7,228.4,146.2,144.8,140.1,136.4,135.8,134.3,132.0,105.6,105.50,105.47$, $102.5,76.8,76.3,57.2,56.3,54.4,15.0$. HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BMoN}_{6} \mathrm{O}_{5}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 523.0793$. Found: 523.0793.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S,2S,5S,7S)- $\eta-(2,3,4)-$

5,7-dimethyl-2-methoxy-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (\pm)-95b.

Following the general procedure, to a THF (5 mL) solution of the molybdenum complex anti-89f ($50 \mathrm{mg}, 0.096 \mathrm{mmol}, 1$ equiv) was added $\mathrm{NaH}(7.7 \mathrm{mg}, 0.19 \mathrm{mmol}, 2$ equiv). The reaction mixture was stirred at room temperature for 4 h , then cooled to $0{ }^{\circ} \mathrm{C}$ followed by addition of solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}(28.4 \mathrm{mg}, 0.19 \mathrm{mmol}, 2$ equiv). The resulting mixture was stirred for 40 min at $0{ }^{\circ} \mathrm{C}$, and quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes-EtOAc (2:1) to afford 95b ($39 \mathrm{mg}, 76 \%$) as a yellow solid.
$(\pm)-\mathbf{9 5 b}: \operatorname{TLC}\left(\mathrm{R}_{f}=0.41\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2991(\mathrm{~m}), 2941(\mathrm{w}), 2482$ (m), 1934 (s), 1841 (s), 1505 (s), 1409 (s), 1305 (s), 1216 (s). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.47(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{dd}, J=3.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=8.0$,
$1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 232.7,229.1,146.1,144.9,141.1,136.4,135.8,134.3,126.3,108.1,105.6$, 105.5, 105.4, 78.3, 75.5, 64.9, 58.8, 54.4, 22.5, 15.0. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 537.0950 . Found: 537.0946

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S,2S,5S,7S)- η-(2,3,4)-7-ethyl-5-methyl-2-methoxy-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (\pm)-95c.

Following the general procedure, to a THF (8 mL) solution of the molybdenum complex anti-89g ($48 \mathrm{mg}, 0.09 \mathrm{mmol}, 1$ equiv) was added $\mathrm{NaH}(7.2 \mathrm{mg}, 0.18 \mathrm{mmol}, 2$ equiv). The reaction mixture was stirred at room temperature for 5 h , then cooled to $0{ }^{\circ} \mathrm{C}$ followed by addition of solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}(26.6 \mathrm{mg}, 0.18 \mathrm{mmol}, 2$ equiv). The resulting mixture was stirred for 40 min at $0^{\circ} \mathrm{C}$, and quenched with $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes-EtOAc (2:1) to afford 95c (49 mg, 99\%) as a yellow solid.
$(\pm)-95 \mathrm{c}: \mathrm{TLC}\left(\mathrm{R}_{f}=0.60\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2972(\mathrm{w}), 2941(\mathrm{w}), 2482(\mathrm{w})$, 1930 (s), 1841 (s), 1505 (m), 1409 (m), 1305 (m), 1216 (s). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.24(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J$
$=3.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{td}, J=7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=$ $7.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 233.0,228.9,146.1,144.9,141.0,136.5,135.8,134.3$, $126.9,107.9,105.6,105.5,105.4,82.0,77.7,64.6,58.8,54.4,23.0,22.5,10.9$. HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 551.1106. Found: 551.1103.

100
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S,3R,5S,7R)- $\boldsymbol{\eta}$-(3,4)-7-methyl-5-oxo-6,8-dioxabicyclo[3.2.1]oct-3-en-3-yl]molybdenum, (\pm)-100.

To a Schlenk flask charged with (\pm)-syn-89a ($141 \mathrm{mg}, 0.28 \mathrm{mmol}, 1$ equiv) in dry THF $(6 \mathrm{~mL})$ was added $\mathrm{NaH}(60 \%$ dispersed in mineral oil, $22.4 \mathrm{mg}, 0.56 \mathrm{mmol}, 2$ equiv) under argon. After being stirred for 30 min at room temperature, the reaction mixture was cooled to $-15{ }^{\circ} \mathrm{C}$ followed by addition of $\mathrm{NOPF}_{6}(153 \mathrm{mg}, 1.11 \mathrm{mmol}, 4.0$ equiv) as a solid. The orange solution turned yellowish brown immediately with vigorous bubbling. After 5 min at $-20^{\circ} \mathrm{C}$, the reaction was opened to air, and the cold bath was removed. The reaction was allowed to slowly warm to room temperature and stirred for 45 min . Then the reaction mixture was directly subjected to column chromatography on silica gel (hexanes-EtOAc 2:1) to afford $\mathbf{1 0 0}(64 \mathrm{mg}, 45 \%)$ as a yellow solid.
(\pm)-100: TLC $\left(\mathrm{R}_{f}=0.33\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2494(\mathrm{~m}), 2011(\mathrm{~s}), 1679(\mathrm{~s})$,

1660 (s), 1505 (s), 1409 (s), 1305 (s), 1243 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16$ (d, J $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~m}, 2 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{qd}, J=6.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=8.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=8.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 217.2,204.0,144.0,143.8,140.9,136.8,136.0,135.5,106.4,106.1,105.8$, 103.1, 84.5, 74.9, 72.4, 58.4, 20.6. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BMoN}_{7} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 510.0589. Found: 510.0589.

General procedure for intramolecular 1,5-Michael reaction and demetalation

 cascade.To a Schlenk flask charged with syn-89 or anti-89 (1 equiv) in dry dimethoxyethane was added NaH (60% dispersed in mineral oil, 2 equiv) under argon. After being stirred for 2 to 6 h at room temperature, the reaction mixture was cooled to $-20^{\circ} \mathrm{C}$ followed by addition of NOPF_{6} or NOBF_{4} (4.0 equiv) as a solid. The orange solution turned brown immediately with vigorous bubbling. After 5 min at $-20^{\circ} \mathrm{C}$, the reaction was opened to air, and the cold bath was removed. The reaction was allowed to slowly warm to room temperature and stirred for additional 30 min . Then the reaction mixture was washed immediately with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, concentrated, and purified by column chromatography on silica gel.

(-)-(1S,5S,7R)-7-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (-)-96a.

Following the general procedure, (-)-syn-89a ($125 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv) was dissolved in dry DME (8 mL), and reacted with NaH (60% dispersed in mineral oil, 20 $\mathrm{mg}, 0.5 \mathrm{mmol}, 2$ equiv) for 2 h followed by adding $\mathrm{NOBF}_{4}(121 \mathrm{mg}, 0.98 \mathrm{mmol}, 4$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (-)-96a (28 mg, 98.7\% ee, 81\%) as a colorless oil.
(-)-96a: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.59\right.$, hexanes-EtOAc 2: 1). IR $\left(\mathrm{cm}^{-1}\right): 2926(\mathrm{w}), 1695(\mathrm{~s}), 1046$ (w), 934 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.10(\mathrm{dd}, J=9.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dt}, J=$ 9.6, 1.2 Hz, 1H), $5.82(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{qd}, J=6.4,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 194.7, 147.6, 126.6, 96.6, 85.0, 70.8, 19.9. HRMS (ESI) Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 141.0546. Found: 141.0544.
$(-)-96 \mathbf{a}:[\alpha]_{D}{ }^{20}=-230.1\left(c=1.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC: CHIRALPAK AS-RH column, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with $0.1 \% \mathrm{TFA}=10: 90,0.5 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm}, \mathrm{t}_{R}=22.33 \mathrm{~min}, 98.7 \%$ ee. Enantiomer: $\mathrm{t}_{R}=18.19 \mathrm{~min}$.

$(\pm)-(1 S, 5 S, 7 R)-7-[(E)$-prop-1-enyl]-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, $(\pm)-96 b$.

Following the general procedure, syn-89c ($92 \mathrm{mg}, 0.17 \mathrm{mmol}, 1$ equiv) was dissolved in dry DME (5 mL), and reacted with $\mathrm{NaH}(60 \%$ dispersed in mineral oil, $13.8 \mathrm{mg}, 0.34$ mmol, 2 equiv) for 3 h followed by adding $\mathrm{NOPF}_{6}(125 \mathrm{mg}, 0.69 \mathrm{mmol}, 4$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded 96b (16 mg, 56\%) as a colorless oil.
$(\pm)-96 \mathbf{b}: \operatorname{TLC}\left(\mathrm{R}_{f}=0.75\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2918(\mathrm{~m}), 1698(\mathrm{~s}), 1451(\mathrm{w})$, $1374(\mathrm{~m}), 1247(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13$ (dd, $\left.J=9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.06$ $(\mathrm{d}, J=10.0,1 \mathrm{H}), 5.86(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{ddq}, J=8.4,8.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.44(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 194.4,147.6,131.1,127.2,126.6,96.7,84.6,75.5,17.7$. HRMS (ESI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$167.0703. Found: 167.0699.

(\pm)-(1S,5S,7R)-7-phenyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (\pm)-96c.

Following the general procedure, syn-89d ($50 \mathrm{mg}, 0.09 \mathrm{mmol}, 1$ equiv) was dissolved in dry DME (5 mL), and reacted with $\mathrm{NaH}(60 \%$ dispersed in mineral oil, $7 \mathrm{mg}, 0.18$ mmol, 2 equiv) for 3 h followed by adding NOPF_{6} ($63.3 \mathrm{mg}, 0.35 \mathrm{mmol}, 4$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 4:1) afforded 96c (10 mg, 56\%) as a colorless oil.
$(\pm)-96 \mathrm{c}: \mathrm{TLC}\left(\mathrm{R}_{f}=0.65\right.$, hexanes-EtOAc 3: 1). IR $\left(\mathrm{cm}^{-1}\right): 2922(\mathrm{w}), 1695(\mathrm{~s}), 1494(\mathrm{w})$,

1455 (w), 1374 (w). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 7.23$ (dd, $J=9.6,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=9.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 194.0,147.6,138.4,128.7$ (2C), 128.6, 126.7, 126.3 (2C), 97.3, 86.6, 76.0. HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$203.0703. Found: 203.0703.

96d

(\pm)-(1S,5S,7R)-7-(3-nitrophenyl)-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (\pm)-96d.

Following the general procedure, syn-89e ($82 \mathrm{mg}, 0.13 \mathrm{mmol}, 1$ equiv) was dissolved in dry DME (5 mL), and reacted with $\mathrm{NaH}(60 \%$ dispersed in mineral oil, $10.7 \mathrm{mg}, 0.26$ mmol, 2 equiv) for 3 h followed by adding $\mathrm{NOPF}_{6}(96.5 \mathrm{mg}, 0.52 \mathrm{mmol}, 4$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded 96d ($7 \mathrm{mg}, 21 \%$) as a white solid.
$(\pm)-96 \mathrm{~d}: \operatorname{TLC}\left(\mathrm{R}_{f}=0.54\right.$, hexanes-EtOAc 3: 1). IR $\left(\mathrm{cm}^{-1}\right): 2922(\mathrm{~m}), 1695(\mathrm{~s}), 1529(\mathrm{~s})$, 1347 (s), 1251 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.27$ (t, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.21 (ddd, $J=$ $8.0,2.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=9.6$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=9.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{t}$, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): δ 193.1, 148.4, 147.6, 140.8, 132.2, 129.8, 126.9, 123.5, 121.3, 97.5, 86.4, 75.1. HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 248.0554. Found: 248.0550.

(\pm)-(1S,5S,7R)-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (\pm)-96e.

Following the general procedure, $\mathbf{s y n - 8 9 g}(210 \mathrm{mg}, 0.39 \mathrm{mmol}, 1$ equiv) was dissolved in dry DME (10 mL), and reacted with $\mathrm{NaH}(60 \%$ dispersed in mineral oil, $31 \mathrm{mg}, 0.78$ mmol, 2 equiv) for 2 h followed by adding $\mathrm{NOPF}_{6}(287 \mathrm{mg}, 1.57 \mathrm{mmol}, 4$ equiv). Purification by column chromatography on silica gel hexanes-EtOAc 4:1) afforded 96e ($40 \mathrm{mg}, 73 \%$) as a light yellow oil.
(\pm)-96e: TLC $\left(\mathrm{R}_{f}=0.50\right.$, hexanes-EtOAc 4: 1). IR $\left(\mathrm{cm}^{-1}\right): 2968(\mathrm{~m}), 2926(\mathrm{~m}), 1702(\mathrm{~s})$, 1390 (s), 1254 (s), 1108 (s), 1034 (s). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.95$ (d, $J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.00(\mathrm{dd}, J=10.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dt}, J=6.0,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 195.1,150.8,125.7,103.5,84.1 .77 .0,27.1,21.9,9.6$. HRMS (ESI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 169.0859$. Found: 169.0855.

(-)-97a

(-)-(1S,5S,7S)-7-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (-)-97a.

Following the general procedure, (-)-anti-89a ($120 \mathrm{mg}, 0.24 \mathrm{mmol}, 1$ equiv) was dissolved in dry DME (8 mL), and reacted with NaH (60% dispersed in mineral oil, 19
$\mathrm{mg}, 0.48 \mathrm{mmol}, 2$ equiv) for 5 h followed by adding $\mathrm{NOBF}_{4}(120 \mathrm{mg}, 0.97 \mathrm{mmol}, 4$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (-)-97a ($23 \mathrm{mg}, 98.7 \%$ ee, 70%) as a colorless oil.
$(-)-97 \mathrm{a}: \operatorname{TLC}\left(\mathrm{R}_{f}=0.59\right.$, hexanes-EtOAc 2: 1). IR $\left(\mathrm{cm}^{-1}\right): 2984(\mathrm{~m}), 2922(\mathrm{~m}), 1702$ (s), 1374 (s), 1239 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{dd}, J=9.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10$ $(\mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=5.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~m}$, $1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 194.1,150.3,127.9,95.7$, 83.4, 71.1, 15.7. HRMS (ESI) Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 141.0546. Found: 141.0550. $(-)-97 \mathrm{a}:[\alpha]_{\mathrm{D}}{ }^{20}=-573.6^{0}\left(c=1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC: CHIRALPAK AS-RH column, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with $0.1 \% \mathrm{TFA}=10: 90,0.5 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm}, \mathrm{t}_{R}=25.12 \mathrm{~min}, 98.7 \%$ ee. Enantiomer: $\mathrm{t}_{R}=20.00 \mathrm{~min}$.

97b

(\pm)-(1S,5S,7S)-7-((E)-prop-1-enyl)-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (\pm)-97b.

Following the general procedure, anti-89c ($80 \mathrm{mg}, 0.15 \mathrm{mmol}, 1$ equiv) was dissolved in dry DME (5 mL), and reacted with $\mathrm{NaH}(60 \%$ dispersed in mineral oil, $12 \mathrm{mg}, 0.30$ mmol, 2 equiv) for 3 h followed by adding $\mathrm{NOPF}_{6}(108 \mathrm{mg}, 0.60 \mathrm{mmol}, 4$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 4:1) afforded 97b (11 mg, 44%) as a colorless oil.
$(\pm)-97 \mathrm{~b}: \operatorname{TLC}\left(\mathrm{R}_{f}=0.44\right.$, hexanes-EtOAc 4:1). IR $\left(\mathrm{cm}^{-1}\right): 2922(\mathrm{~m}), 1702(\mathrm{~s}), 1447$
(w), 1374 (m), 1212(s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28(\mathrm{dd}, J=9.6,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.10(\mathrm{~d}, J=9.6,1 \mathrm{H}), 5.86(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=14.8,6.8 \mathrm{~Hz} 1 \mathrm{H}), 5.75(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{ddq}, J=7.4,7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.66(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=6.8,1.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): δ 193.7, 149.7, 133.2, 128.2, 124.2, 96.0, 83.2, 76.3, 17.8. HRMS (ESI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 167.0703. Found: 167.0699.

$(\pm)-(1 S, 5 S, 7 S)-7-p h e n y l-6,8-d i o x a b i c y c l o[3.2 .1]$ oct-3-en-2-one, (\pm)-97c.
Following the general procedure, anti-89d ($83 \mathrm{mg}, 0.146 \mathrm{mmol}, 1$ equiv) was dissolved in dry DME (5 mL), and reacted with $\mathrm{NaH}(60 \%$ dispersed in mineral oil, 11.6 $\mathrm{mg}, 0.29 \mathrm{mmol}, 2$ equiv) for 6 h followed by adding $\mathrm{NOPF}_{6}(105 \mathrm{mg}, 0.58 \mathrm{mmol}, 4$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 4:1) afforded $97 \mathrm{c}(18 \mathrm{mg}, 61 \%)$ as a colorless oil and $\mathbf{9 6 c}(5 \mathrm{mg}, 17 \%)$ as a colorless oil.
$(\pm)-97 \mathrm{c}: \operatorname{TLC}\left(\mathrm{R}_{f}=0.79\right.$, hexanes-EtOAc 2: 1). IR $\left(\mathrm{cm}^{-1}\right): 1710(\mathrm{~s}), 1235(\mathrm{w}), 1069(\mathrm{~s})$, 984 (m), 907 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34$ (dd, $J=9.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31-7.19 $(\mathrm{m}, 5 \mathrm{H}), 5.97(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ $(\mathrm{dd}, J=6.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.6,148.5,134.3,129.1$, 128.4 (2C), 128.2, 125.8 (2C), 96.7, 84.4, 76.8. HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3}$ ([M-H $\left.]^{+}\right):$201.0542. Found: 201.0542.

97d

(\pm)-(1S,5S,7S)-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (\pm)-97d.

Following the general procedure, anti-89g ($170 \mathrm{mg}, 0.32 \mathrm{mmol}, 1$ equiv) was dissolved in dry DME (8 mL), and reacted with $\mathrm{NaH}(60 \%$ dispersed in mineral oil, $26 \mathrm{mg}, 0.65$ mmol, 2 equiv) for 6 h followed by adding $\mathrm{NOPF}_{6}(232 \mathrm{mg}, 1.28 \mathrm{mmol}, 4$ equiv). Purification by column chromatography on silica gel (hexanes/EtOAc 3:1) afforded 97d ($35 \mathrm{mg}, 66 \%$) as a colorless oil.
$(\pm)-97 \mathrm{~d}: \mathrm{TLC}\left(\mathrm{R}_{f}=0.66\right.$, hexanes-EtOAc 2: 1). IR $\left(\mathrm{cm}^{-1}\right): 2968(\mathrm{~m}), 2941(\mathrm{~m}), 1695$ (s), 1556 (s), 1386 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.12(\mathrm{~d}, J=9.62 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}$, $J=9.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=6.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{qd}, J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}$, $3 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 194.2, 153.6, 127.2, 102.7, 83.7. 78.1, 23.8, 22.2, 10.7. HRMS (ESI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 169.0859. Found: 169.0855.

(\pm)-6-Hydroxy-6-methyl-6H-pyran-3-one, (\pm)-101.
5-Methyl-2-furanmethanol ${ }^{82}$ ($5.0 \mathrm{~g}, 44.6 \mathrm{mmol}, 1.0$ equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
${ }^{82}$ 5-Methyl-2-furanmethanol was purchased from Aldrich, and used directly.
$(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Then $m-\operatorname{CPBA}(77 \%, 10.5 \mathrm{~g}, 46.8 \mathrm{mmol}, 1.05$ equiv) was added to the reaction portion by portion (5 g each). After stirring at $0^{\circ} \mathrm{C}$ for 15 min , the reaction was slowly warmed to room temperature, and stirred for 1 hr . Then the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, and the solid was vacuum filtered at low temperature. The filtrate was concentrated on a rotary evaporator, and purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford 101 as a yellow solid ($5.6 \mathrm{~g}, 98 \%$).
(\pm)-101. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.86(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 195.3,149.3,126.2,92.7,66.4,27.6$.

102

(\pm)-2-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl acetate, (\pm)-102.

In a 250 mL flask with $\mathbf{1 0 1}\left(4.7 \mathrm{~g}, 36.7 \mathrm{mmol}, 1.0\right.$ equiv) under argon, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added until all solid was dissolved. After cooling the solution to $0{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(5.38 \mathrm{~mL}$, $38.6 \mathrm{mmol}, 1.05$ equiv. $)$, $\mathrm{Ac}_{2} \mathrm{O}(3.79 \mathrm{~mL}, 40.4 \mathrm{mmol}, 1.1$ equiv) and a crystal of DMAP were added to the reaction respectively. After stirring at $0^{\circ} \mathrm{C}$ for 2 hr , the reaction was slowly warmed to room temperature and stirred for 15 min . Then the mixture was purged into a separatory funnel and washed with saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ $\mathrm{mL})$. The organic layers were collected and washed with brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated to afford a deep red oil ($5.0 \mathrm{~g}, 81 \%$), which was used
directly in the next step without further purification.
(\pm)-102: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.34(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H})$.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][η-(2,3,4)-2-methyl-5-oxo-5,6-dihydro-

2H-pyran-2-yl]molybdenum, (\pm)-88.

To a Schlenk flask charged with a solution of $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}(5.5 \mathrm{~g}, 5.87 \mathrm{mmol}, 1.2$ equiv) in degassed, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ under argon was slowly added a solution of $\mathbf{1 0 2}$ $\left(1.95 \mathrm{~g}, 5.87 \mathrm{mmol}, 1.0\right.$ equiv) in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred for 2.5 h , and then solid $\mathrm{KTp}(3.49 \mathrm{~g}, 5.87 \mathrm{mmol}, 1.2$ equiv) was added in one portion. After stirring for 1 h at room temperature, the solution was passed through a pad of silica gel with EtOAc. The solvents were completely removed on a rotary evaporator, and the residue was purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford a brown solid (\pm)-88 ($3.1 \mathrm{~g}, 57 \%$).
(\pm)-88: TLC $\left(\mathrm{R}_{f}=0.32\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2486(\mathrm{w}), 2250(\mathrm{w}), 1934(\mathrm{~s})$, 1841 (s), 1637(s), $1521(\mathrm{~m}), 1305$ (m), 1220 (m), 1123 (m). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.44(\operatorname{br~s}, 1 \mathrm{H}), 8.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.60(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 6.22(\mathrm{~s}, 3 \mathrm{H}), 4.85(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 239.7$, $227.6,189.9,147.5,146.7,144.7,142.4,136.3,135.5,134.5,105.9(3), 72.7,68.6,67.2$,
24.3. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 479.0531. Found: 479.0530.

less polar
faster eluting isomer 104a

more polar slower eluting isomer 104b

(2R)-ethyl 2-(2-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yloxy)-4-phenylbutanoate,

 104a and 104b.To a 100 mL flask charged with 6-hydroxy-6-methyl-6H-pyran-3-one $101(1.75 \mathrm{~g}, 13.7$ mmol, 1.1 equiv), ethyl (R)-(-)-2-hydroxy-4-phenylbutyrate ${ }^{83}(2.59 \mathrm{~g}, 12.4 \mathrm{mmol}, 1$ equiv) and activated $4 \AA$ molecular sieves under argon was added dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$, and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.7 \mathrm{~mL}, 1.92 \mathrm{~g}, 13.6 \mathrm{mmol}, 1$ equiv $)$ was added. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched with adding $\mathrm{Et}_{3} \mathrm{~N}$ ($3.47 \mathrm{~mL}, 24.9 \mathrm{mmol}, 2$ equiv). Then reaction mixture was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$, then directly filtered through a short pad of Celite with EtOAc and concentrated. The residue was passed through a short silica gel column, and eluted with 20% EtOAc in hexanes. Solvents were completely removed on a rotary evaporator, and the crude material was further purified by column chromatography on silica gel (hexanes-EtOAc 9:1) to afford the less polar diastereomer 104a (1.63 g, 41\%), and more polar diastereomer 104b ($1.71 \mathrm{~g}, 43 \%$) as colorless oils. Additional 1 to 2 times column chromatography under

[^39]same condition were performed to obtain 104a and 104b for $>99 \%$ ee.

104a: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.50\right.$, hexanes-EtOAc 4:1). IR $\left(\mathrm{cm}^{-1}\right): 1741(\mathrm{~s}), 1695(\mathrm{~s}), 1455(\mathrm{~m})$, $1382(\mathrm{~m}), 1282(\mathrm{~m}) .{ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.19(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H})$, $1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.4,172.5,148.0,140.8$, 128.5 (2C), 128.4 (2C), 126.7, 126.1, 96.5, 70.8, 67.3, 61.1, 34.8, 31.2, 23.6, 14.2. HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{5}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 336.1807. Found: 336.1806.

104a: $[\alpha]_{D}{ }^{20}=-20.8\left(c=1.395, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC: CHIRALPAK OJ-RH column, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=40: 60,0.9 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm}, \mathrm{t}_{R}=16.30 \mathrm{~min},>99 \%$ ee.

104b: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.42\right.$, hexanes-EtOAc 4:1). IR $\left(\mathrm{cm}^{-1}\right): 1749(\mathrm{~s}), 1695(\mathrm{~s}), 1455(\mathrm{~m})$, $1382(\mathrm{~m}), 1282(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{qd}, J=6.8,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H})$, $1.51(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 194.0,172.5,148.5$, 140.7, 128.5 (2C), 128.3 (2C), 126.8, 126.2, 96.5, 70.9, 66.9, 61.0, 35.1, 31.3, 23.5, 14.2. HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 319.1542. Found: 319.1540.

104b: $[\alpha]_{\mathrm{D}}{ }^{20}=-22.2 \quad\left(c=1.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC: CHIRALPAK OJ-RH column, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=40: 60,0.9 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm}, \mathrm{t}_{R}=12.70 \mathrm{~min},>99 \%$ ee.

 (-)-88

(-)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S)- η-(2,3,4)-2-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl]molybdenum, (-)-88.

In a 100 mL Schlenk flask, $\operatorname{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}(0.289 \mathrm{~g}, 0.72 \mathrm{mmol}, 1$ equiv) was dissolved in freshly degassed dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ at room temperature under argon for 5 min. Then the $\operatorname{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}$ solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Via a cannula, the $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}$ solution was added dropwise to a 200 mL Schlenk flask charged with a vigorous stirred solution of $\mathbf{1 0 4 a}(0.35 \mathrm{~g}, 1.1 \mathrm{mmol}, 1.4$ equiv) in freshly degassed dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ under argon over 45 min at room temperature. Upon addition of the $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}$ solution, the reaction mixture was stirred for 1 h at room temperature, then solid potassium hydridotris(1-pyrazolyl)borate $(\mathrm{KTp})(0.37 \mathrm{~g}, 1.47 \mathrm{mmol}, 2$ equiv) was added in one portion. After stirring for 1 hour at room temperature, the reaction solution was directly passed through a pad of silica gel, eluting with EtOAc. The solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford a brown solid (-)-88 $(0.135 \mathrm{~g}, 40 \%)$ in 81% ee. Meanwhile, 0.22 g 104a was recovered without loss of enantiopurity. Complex (-)-88 tends to crystallize as a single enantiomer, therefore slow crystallization in hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded the product in $>98 \%$ ee when the crystals formed were collected, and the filtrate was removed.

Characterization as in (\pm)-88.
$(-)-88:[\alpha]_{\mathrm{D}}{ }^{20}=-346\left(c=0.025, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC: CHIRALPAK AS-RH column, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with $0.1 \% \mathrm{TFA}=50: 50,1.0 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm}, \mathrm{t}_{R}=14.95 \mathrm{~min},>98 \%$ ee. Enantiomer: $\mathrm{t}_{R}=8.53 \mathrm{~min}$

(+)-88

(+)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2-R)- $\boldsymbol{\eta}$-(2,3,4)-2-methyl-5-oxo-5,6-di-hydro-2H-pyran-2-yl]molybdenum, (+)-88.

In a 100 mL Schlenk flask, $\operatorname{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}(0.163 \mathrm{~g}, 0.40 \mathrm{mmol}, 1$ equiv) was dissolved in degassed dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at room temperature under argon for 5 min . Then the $\operatorname{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}$ solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Via a cannula, the cold $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}$ solution was added dropwise to a 200 mL Schlenk flask charged with a vigorous stirring solution of $\mathbf{1 0 4 b}(0.20 \mathrm{~g}, 0.62 \mathrm{mmol}, 1.55$ equiv) in degassed dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ under argon over 30 min at room temperature. Upon addition of the $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}$ solution, the reaction mixture was stirred for 1 h at room temperature, then solid potassium hydridotris(1-pyrazolyl)borate $(\mathrm{KTp})(0.158 \mathrm{~g}, 0.62 \mathrm{mmol}, 1.55$ equiv) was added in one portion. After stirring for 1 hour at room temperature, the reaction solution was directly passed through a pad of silica gel, eluting with EtOAc. The solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel (EtOAc-hexanes 1:1) to afford a brown solid (+)-88 ($0.036 \mathrm{~g}, 18 \%$) in 93% ee.
$(+)-88:[\alpha]_{\mathrm{D}}{ }^{20}=+112\left(c=0.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC: CHIRALPAK AS-RH column, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with $0.1 \% \mathrm{TFA}=50: 50,1.0 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm}, \mathrm{t}_{r}=8.53 \mathrm{~min}, 93 \%$ ee. Enantiomer: $\mathrm{t}_{r}=14.95 \mathrm{~min}$

Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,6S)- η-(2,3,4)-2-methyl-6-(1-hydroxylpropen-2-yl)-5-oxo-5,6-dihydro-2H-pyran-2-yl]molybdenum, 89h.

To a stirring solution of (-)-88(0.252 g, 98\% ee, 0.53 mmol , 1 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7$ mL) was added LiHMDS (1.0 M in THF, 2.1 mL , $2.1 \mathrm{mmol}, 4$ equiv) at $-90{ }^{\circ} \mathrm{C}$ (MeOH/liquid N_{2} bath). After being stirred at $-90^{\circ} \mathrm{C}$ for 30 min , acrolein $(0.7 \mathrm{~mL})$ was added to the solution, and stirred for 10 min at $-90^{\circ} \mathrm{C}$ followed by quenching with $\mathrm{H}_{2} \mathrm{O}$ $(1.5 \mathrm{~mL})$ and diluting with $\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{~mL})$. Then the reaction mixture was washed immediately with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried over MgSO_{4}, filtered, concentrated, and purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOAc-hexanes 4:2:1) to afford brown solid $\mathbf{8 9 h}(0.23 \mathrm{~g}, 82 \%)$ as a inseparable mixture of syn and anti isomers (syn:anti=3:1).

The ratio of $s y n$ and anti was determined by HPLC. HPLC: Eclipse XDB-C8 ($5 \mu \mathrm{~m}$,
$4.6 \times 150 \mathrm{~mm}$) column, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with $0.1 \% \mathrm{TFA}=50: 50,1.0 \mathrm{~mL} / \mathrm{min} ., \lambda=254$ $\mathrm{nm}, \mathrm{t}_{R}($ anti $)=6.18 \mathrm{~min}, \mathrm{t}_{R}($ syn $)=7.05 \mathrm{~min}$.

Since $\mathbf{8 9 h}$ is an inseparable mixture of anti and syn isomers, the following NMR data of 89h are only for reference.

89h: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOAc-hexanes 4:2:1). $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3401(\mathrm{w}), 2482(\mathrm{w})$, 1930 (s), 1830 (s$), 1621$ (s$), 1521$ (m), 1409 (m), 1305 (s), 1216(s). ${ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}): $\delta 8.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.57(\mathrm{br}, 4 \mathrm{H}), 6.21(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H})$, $5.37(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=4.8 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.79(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 240.0,239.6,227.9,227.3,191.3,190.3,147.7$, $146.9,144.4,144.3,142.4,136.3,135.8,135.7,135.0,134.5,117.5,117.4,106.0$ (3C), 81.0, 79.8, 73.7, 73.3, 73.1, 72.5, 67.5, 24.2. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BMoN}_{6} \mathrm{O}_{5}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right):$535.0793. Found: 535.0788.

89h

$n-89 \mathrm{~g}$

(-)-anti-89g
(-)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]\{(2S,6S)- $\eta-(2,3,4)-6-[(R)-1-$ hydroxypropyl]-2-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum, (-)-syn-89g and (-)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]\{(2S,6S)- $\eta-(2,3,4)-6-[(S)-1-$

hydroxypropyl]-2-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum,

(-)-anti-89g.
To a Schlenk flask equipped with a hydrogen balloon and charged with $124 \mathrm{mg} \mathrm{Pd} / \mathrm{C}$ ($10 \mathrm{wt} \%$), $\mathbf{8 9 h}$ ($124 \mathrm{mg}, 98 \%$ ee, $0.23 \mathrm{mmol}, 1.0$ equiv) was added dry EtOAc (4 mL). After stirring for 2 h at room temperature, the suspension was filtered through a short plug of Celite, concentrated, and purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-EtOAc-hexanes $\left.4: 2: 1\right)$ to afford (-)-anti-89g as a brown solid $(28 \mathrm{mg}, 98 \%$ ee, 22.5%), and (-)-syn-89g as a brown solid ($85 \mathrm{mg}, 98 \% \mathrm{ee}, 68.5 \%$).

Characterization as in (\pm-syn-89g and (\pm)-anti-89g.
$(-)$-syn-89g: $[\alpha]_{D}{ }^{20}=-328\left(c=0.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC: CHIRALPAK AS-RH column,
$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with $0.1 \% \mathrm{TFA}=40: 60,1.0 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm}, \mathrm{t}_{R}=17.58 \mathrm{~min},>98 \%$ ee. Enantiomer: $\mathrm{t}_{R}=21.62 \mathrm{~min}$.
(-)-anti-89g: $[\alpha]_{\mathrm{D}}{ }^{20}=-331\left(c=0.055, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

105
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]\{(2S,6S)- $\boldsymbol{\eta}$-(2,3,4)-2-methyl-6-[(R)-1-(4 -nitrobenzoyloxy)propyl]-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum, (土)-105.

To a stirred solution of anti-89g ($125 \mathrm{mg}, 0.23 \mathrm{mmol}, 1$ equiv), $\mathrm{Ph}_{3} \mathrm{P}(184 \mathrm{mg}, 0.70$ mmol, 3 equiv) and p-nitrobenzoic acid ($117 \mathrm{mg}, 0.70 \mathrm{mmol}, 3$ equiv) in THF (10 mL) at
$0{ }^{\circ} \mathrm{C}$ was added diethylazodicarboxylate ($0.11 \mathrm{~mL}, 0.67 \mathrm{mmol}, 2.9$ equiv). After being stirred for 20 min at $0^{\circ} \mathrm{C}$, the reaction mixture was slowly warmed to room temperature and stirred for 2 h . Then the solution was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel eluting with hexanes-EtOAc (3:1) to afford $\mathbf{1 0 5}$ ($135 \mathrm{mg}, 84 \%$) as a red-brown solid.
$(\pm)-105: \operatorname{TLC}\left(\mathrm{R}_{f}=0.51\right.$, hexanes : $\left.\mathrm{EtOAc}=2: 1\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3119(\mathrm{w}), 2976(\mathrm{~m}), 2486$ (m), 2250 (w), 1938 (s), 1845 (s), 1729 (s), 1640 (s), 1529 (s), 1409 (s). ${ }^{1} \mathrm{H}^{2}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.61-7.49(\mathrm{br} \mathrm{m}, 4 \mathrm{H}), 6.22(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 5.47(\mathrm{td}, J=7.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.78(\mathrm{~m}$, $2 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 240.5,226.9,189.4,163.4$, $150.5,147.7$ (br), 144.9 (br), 142.7, 142.2 (br), 136.3 (br), 135.6 (br), 135.4, 134.5 (br), 130.7 (2C), 123.7 (2C), 106.0 (br 2C), 105.5 (br), 78.3, 77.1, 73.5, 68.5, 24.3, 23.9, 9.7. HRMS (ESI) Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 686.1063. Found: 686.1059.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]\{(2S,6S)- $\eta-(2,3,4)-6-[(R)-1-$ hydroxypropyl]-2-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl\}molybdenum, (\pm)-syn-89g.

To a stirred suspension of 105 ($24 \mathrm{mg}, 0.035 \mathrm{mmol}, 1$ equiv) in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added solid NaOH ($3.6 \mathrm{mg}, 0.35 \mathrm{mmol}, 10$ equiv) at room temperature. The suspension slowly changed to a deep brown color solution. After being stirred for 5 min at room temperature, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2 x 10 mL). The combined organic layers were concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ - EtOAc -hexanes $\left.4: 2: 1\right)$ to afford $\operatorname{syn} \mathbf{- 8 9 g}(11 \mathrm{mg}, 59 \%)$ as a brown solid.

Characterization as in (\pm)-syn-89g.

$(-)-96 e$

(-)-(1S,5S,7R)-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (-)-96e.

To a 25 mL Schlenk flask charged with (-)-syn-89h (200 mg, 98% ee, $0.375 \mathrm{mmol}, 1$ equiv) in dry dimethoxyethane (14 mL) was added $\mathrm{NaH}(60 \%$ dispersed in mineral oil) ($30 \mathrm{mg}, 0.75 \mathrm{mmol}, 2$ equiv) under argon. After stirred for 2.5 h at room temperature, the reaction mixture was cooled to $-20^{\circ} \mathrm{C}$ followed by adding $\mathrm{NOPF}_{6}(273 \mathrm{mg}, 1.50 \mathrm{mmol}, 4$ equiv) as a solid. The orange solution turned to brown immediately with vigorous bubbling. After 5 min at $-20^{\circ} \mathrm{C}$, the reaction was opened to air, and slowly warmed to room temperature in 30 min . Then the reaction mixture was washed immediately with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})$. The aqueous layer was separated and extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over MgSO_{4}, filtered, concentrated, and purified by column chromatography on silica gel (hexane-ethyl acetate $4: 1$) to give (-)-96e as a slight yellow oil ($46 \mathrm{mg}, 98 \%$ ee, 73%).

Characterization as in (\pm)-96e.
$(-)-\mathbf{9 6 e}:[\alpha]_{\mathrm{D}}{ }^{20}=-282.2\left(c=1.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HPLC: CHIRALPAK AS-RH column, $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with 0.1% TFA $=20: 80,0.8 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm}, \mathrm{t}_{R}=22.40 \mathrm{~min}$, $>98 \%$ ee. Enantiomer: $\mathrm{t}_{R}=16.51 \mathrm{~min}$

(+)-(1S,5S,7R)-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octan-2-one, (+)-106.

To a Schlenk flask equipped with a hydrogen balloon and charged with $40 \mathrm{mg} \mathrm{Pd} / \mathrm{C}$ ($10 \mathrm{wt} \%$) and compound (-)-96e ($40 \mathrm{mg}, 98 \%$ ee, $0.238 \mathrm{mmol}, 1.0$ equiv) was added dry EtOAc (2 mL). After stirring for 2 h at room temperature, the suspension was filtered through a short plug of Celite, concentrated, and purified by column chromatography on silica gel (hexanes-EtOAc 3:1) to afford (+)-106 as a colorless oil (32 mg, 80\%).
$(+)-106: \operatorname{TLC}\left(\mathrm{R}_{f}=0.42\right.$, hexane-EtOAc 3: 1$) .[\alpha]_{\mathrm{D}}{ }^{20}=+33.2\left(c=0.95, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR $\left(\mathrm{cm}^{-1}\right): 2964(\mathrm{~m}), 2926(\mathrm{~m}), 2853(\mathrm{~m}), 1733(\mathrm{~s}), 1463(\mathrm{~m}), 1386(\mathrm{~m}), 1266(\mathrm{~m}), 1220(\mathrm{~m})$, $1173(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.13(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.39$ $(\mathrm{m}, 2 \mathrm{H}), 2.17-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3}): $\delta 206.1,107.9,83.7,80.3,35.2,32.6,27.7,24.3,9.6$. HRMS (ESI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{3}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 188.1281. Found: 188.1280.

(+)-(1R,2S,5S,7R)- 2-hydroxy-exo-brevicomin, (+)-107.

To a stirred solution of (+)-106 (29 mg, 0.17 mmol , 1 equiv) in $\mathrm{MeOH}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}\left(9.8 \mathrm{mg}, 0.256 \mathrm{mmol}, 1.5\right.$ equiv). After being stirred for 20 min at $0{ }^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x}$ 10 mL), and the combined extracts were dried over MgSO_{4}, and concentrated on the rotary evaporator. The residue was purified by column chromatography on silica gel (hexane-EtOAc 1:1) to afford (+)-($1 R, 2 S, 5 S, 7 R$)-2-hydroxy-exo-brevicomin 107 as a colorless oil ($22 \mathrm{mg}, 75 \%$), and ($1 R, 2 R, 5 S, 7 R$)-2-hydroxy-exo-brevicomin as a colorless oil ($2 \mathrm{mg}, 6.8 \%$)
(+)-107: TLC $\left(\mathrm{R}_{f}=0.51\right.$, hexanes-EtOAc 1:1). $[\alpha]_{\mathrm{D}}{ }^{20}=+40.3\left(c=1.10, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right): 3432$ (brm), 2961 (s), 2941 (s), 2880 (m), 1648 (w), 1463 (s), 1368 (s), 1239 (s), 1197 (s), 1173 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 4.18$ (t, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.39(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 107.4,81.4,77.7,66.6,35.8,29.2,27.3,24.7$, 10.4. HRMS (ESI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 173.1172. Found: 173.1170 .

Chapter 3

Synthesis of Highly Substituted Pyranones via a
Molybdenum-mediated Intermolecular '1,5-Michael-like' Reaction

Introduction

Readily available and high enantiopurity $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyranyl) and $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyridinyl) complexes have proven to be excellent enantiomeric organometallic scaffolds for the asymmetric construction of structurally diverse heterocyclic systems. This laboratory previously reported the enantiocontrolled synthesis of 2,3,6-trisubstituted dihydropyrans ${ }^{84}$ and piperidines ${ }^{85}$ from 2,6-dimethoxy molybdenum complexes 108 (Scheme 46) via a highly regioselective methoxide abstraction/nucleophilic addition sequence. During the investigation of the novel intramolecular ' 1,5 -Michael-like' reaction, ${ }^{86}$ it was found that neutral $\mathrm{TpMo}(\mathrm{CO})_{2}$ (η^{3}-pyranyl) scaffolds also participate in an intermolecular ' 1,5 -Michael-like' reaction with solid sodium methoxide (Scheme 47). The resulting dimethoxy complexes underwent smooth methoxide abstraction/nucleophilic addition to afford trisubstituted pyranyl complexes in good to excellent yields. The synthetic potential of this intermolecular '1,5-Michael-like' reaction of NaOMe was demonstrated by the synthesis of 2,2,6-trisubstitued pyranones and 2,6-trans-disubstituted pyranones.

[^40]Scheme 46. Synthesis of 2,3,6-Trisubstituted Dihydropyrans and Piperidines

Scheme 47. Intermolecular 1,5-Michael Reaction with NaOMe

Results and Discussion

Precursors for Intermolecular '1,5-Michael-like’ Reaction

Two kinds of substrates have been investigated in the intermolecular ' 1,5 -Michael-like' reaction: α, α-disubstituted ketone 109 and enone 110 (Figure 7).

109

110

Figure 7. Substrates for Intermolecular 1,5-Michael Reaction with NaOMe

The synthetic sequence for $\mathbf{1 0 9}$ and $\mathbf{1 1 0}$ was developed by Dr. Yongqiang Zhang, and is summarized in Scheme $48 .{ }^{87}$ First, oxopyranyl scaffold 86 was transformed into the corresponding exocyclic enones $\mathbf{1 1 0}$ (both Z and E isomers) in excellent yields through Mukaiyama-aldol reaction and mesylate elimination. Grignard reagents addition to substrate $\mathbf{1 1 0}$ gave tertiary alcohols $\mathbf{1 1 1}$ which were treated with one equivalent of HCl to induce a semipinacol rearrangement and afforded complexes 109 in almost quantitative yields with complete control of stereochemistry.

Scheme 48. Synthesis of Molybdenum Complexes 109 and 110

[^41]
Intermolecular 1,5-Michael-like Reaction with NaOMe

The initial study of the intermolecular '1-5-Michael-like' reaction started with complex 109. Figure 8 shows two possible reaction pathways for complexes 109 upon treatment with carbon nucleophiles: 1,2-addition of the carbonyl or 1,5 -addition through the π-allyl unit.

Figure 8. Possible Pathways for Nucleophilic Functionalization of 109

Not surprisingly, the carbonyl group in 109a (Scheme 49) was quite robust to 1,2-addition with MeMgCl presumably due to the adjacent quaternary carbon center. This result stimulated a study of possible intermolecular ' 1,5 -Michael-like' reactions. Different carbon nucleophiles including Grignard reagents, organolithium reagents, and organocopper reagents were explored. However, after quenching the reaction with $\mathrm{Me}_{3} \mathrm{OBF}_{4}$, no desired intermolecular '1,5-Michael' adduct was identified.

Scheme 49. Attempts of Nucleophilic Functionalization of 109a

In contrast, an intermolecular 1,5-Michael reaction was observed between a hydride $\left(\mathrm{LiAlH}_{4}\right)$ and 109a (Scheme 50). The '1,5-Michael' adduct complex 112 was successfully isolated in 49\% yield.

Scheme 50. Intermolecular '1,5-Michael-like' Reaction with LiAlH_{4}

Having confirmed that neutral $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyranyl) complexes could be subjected to intermolecular nucleophilic functionalization, the scope of nucleophiles for this novel transformation was investigated. It was envisioned that if a methoxy group could be introduced via '1,5-Michael-like' reaction, sequential methoxide abstraction followed by functionalization with different carbon nucleophiles would provide rapid access to various trisubstituted pyranyl complexes. ${ }^{88}$ With this idea in mind, the ' $1,5-$ Michael-like' reaction with solid sodium methoxide was extensively studied, and gratifyingly, methoxide was found to add to complex 109a in THF^{89} and afforded the desired intermolecular 1,5-Michael adducts after $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ quench ${ }^{90}$ (Scheme 51). In addition, other alkoxides such as KOt Bu were also explored and gave the ' 1,5 -Michael' adduct in

[^42]good yield.

Scheme 51. Intermolecular '1,5-Michael-like’ Reaction with Alkoxides

The intermolecular '1,5-Michael-like' reaction proceeded smoothly with both α, α-disubstituted ketone complexes (Table 9, Entries 1-2) and enone complexes (Table 9, Entries 3-7). ${ }^{91}$ Although complexes 113b and 113d (Table 9, entries 4 and 6) could be synthesized through 1,5-Michael-like reaction with NaOMe , they easily underwent partial isomerization to the corresponding Z isomers when taking ${ }^{13} \mathrm{C}$ NMR in CDCl_{3}.

Based on the previous study of intramolecular ' 1,5 -Michael-like' reactions, ${ }^{92}$ the $\mathrm{TpMo}(\mathrm{CO})_{2}$ moiety should cause complete facial selectivity in the intermolecular '1,5-Michael-like' reactions. Methoxide only approaches the terminal π-carbon from the opposite face of the bulky $\mathrm{TpMo}(\mathrm{CO})_{2}$.

[^43]Table 9. Examples of Intermolecular 1,5-Michael-Like Reaction of NaOMe
Entry

Similar to the proposed mechanism for the intramolecular '1,5-Michael-like' reaction with solid NaOMe described in Chapter 2, Scheme 32, an anionic η^{2}-molybdenum
intermediate was proposed to be involved in the intermolecular ' 1,5 -Michael-like' reaction with NaOMe (Scheme 52). The infrared analysis of the reaction mixture of 100a and NaOMe revealed that two metal carbonyl ${ }^{93}$ shifted from 1965 and $1880 \mathrm{~cm}^{-1}$ (complex 110a) to 1888 and $1783 \mathrm{~cm}^{-1}$ (the reaction mixture), which suggests the reaction intermediatan possesses an electron rich metal center.

Scheme 52. Proposed Mechanism for Intermolecular '1,5-Michael-Like’ Reaction with $\mathrm{NaOMe}{ }^{93}$

During the investigation of enantiocontrolled ' 1,5 -Michael-like' reaction of (-)-110a with NaOMe under standard conditions, partial racemization was observed (Scheme 53).

Scheme 53. Observed Racemization of Intermolecular 1,5-Michael Reaction of 110a

This racemization might come from the racemization of the starting enone (-)-110a

[^44](Scheme 54). Under 1,5-Michael conditions, $\mathrm{TpMo}(\mathrm{CO})_{2}$ moiety in enone (-)-110a could slip from a η^{3}-complex to a η^{1}-complex. Then excessive methoxide in the reaction mixture would facilitate the ring-opening of pyran ring and form a metal carbene species. Upon subsequent ring-closure, $\mathrm{TpMo}(\mathrm{CO})_{2}$ could reside at both enantiotropic faces of the pyran ring, thus causing the racemization of (-)-110a.

Scheme 54. Proposed Racemization Mechanism for Intermolecular 1,5-Michael Reaction of (-)-110a

To suppress the undesired racemization, we lowered the reaction temperature and shortened the reaction time of the first step (addition of methoxide) to avoid the undesired ring-opening of 110a. Reaction of (-)-110a with 20 equiv NaOMe in 45 min at $0{ }^{\circ} \mathrm{C}$ afforded (+)-113c in 60% yield with almost no enantiopurity loss (Scheme 55). Later, after optimization, Maurice Lee demonstrated that 97.5% ee (-)-110a could be converted to (+)-113c in 76% yield and 98% ee (Scheme 56) in which higher reaction concentrations increased the reaction yield significantly.

Scheme 55. Optimized Condition for Enantiocontrolled '1,5-Michael' Reaction

Scheme 56. Enantiocontrolled '1,5-Michael' Reaction with NaOMe^{94}

Synthetic Application of Intermolecular '1,5-Michael-like Reaction' of NaOMe

Dimethoxy molybdenum complexes 113a-g (Table 9) enable further functionalization of the pyranyl molybdenum scaffolds via the previously established methoxide abstraction/nucleophilic addition sequence. This strategy was successfully applied to the synthesis of 2,2,6-trisubstituted pyranones and 2,6-trans-disubstitued pyranones.

Synthesis of 2,2,6-trisubstitued Pyranones

Conversion of the 2-methoxy molybdenum complexes 113a and 113b to the corresponding 2,2,6-trisubstituted complexes was accomplished by ionization of methoxy group with HBF_{4}. This was followed by the addition of carbon nucleophiles at $-78{ }^{\circ} \mathrm{C}$. This sequence is illustrated in Scheme 57, and the yields of trisubstituted molybdenum

[^45]complexes are listed in Table 10. In this process, the formation of cationic dienes 115 was very efficient and smooth. Different carbon nucleophiles selectively added to the carbon adjacent to the pyranyl oxygen from the opposite face of bulky $\mathrm{TpMo}(\mathrm{CO})_{2}$, and furnished various 2,2,6-trisubstituted molybdenum complexes 114 in good to excellent yields with complete regio- and stereoselectivity.

Scheme 57. Synthesis of 2,2,6-Trisubstituted Molybdenum Complexes

Table 10. Synthesis of 2,2,6-Trisubstituted Pyranyl Molybdenum Complexes

Entry	Substrate	$\mathbf{R}^{\mathbf{1}}$	\mathbf{R}^{2}	$\mathbf{R}^{\mathbf{3}} \mathbf{M}$	Yield (\%)
1	113a	Et	vinyl	MeMgCl	$83, \mathbf{1 1 4 a}$
2	113a	Et	vinyl	VinylMgCl	$90, \mathbf{1 1 4 b}$
3	113a	Et	vinyl	PhenylMgCl	$94, \mathbf{1 1 4 \mathbf { c }}$
4	113b	Et	allyl	$i \mathrm{PrMgCl}$	$65, \mathbf{1 1 4 d}$
5	113b	Et	allyl	AllylMgCl	$82, \mathbf{1 1 4 e}$
6	113b	Et	allyl	lithium phenylacetylide	$74, \mathbf{1 1 4 f}$

Oxidative demetalation of trisubstituted molybdenum complexes 114 with ceric ammonium nitrate should provide the $2,2,6$-trisubstituted pyranones. In fact, complex 114e was decomplexed to afford ($2 S, 6 R$)-2,6-dially-2-ethyl-2H-pyranone 116 in 56% yield (Scheme 58).

Scheme 58. Synthesis of (2S, 6R)-2,6-Dially-2-Ethyl-2H-Pyranone 116

Synthesis of 2,6-trans disubstituted pyranones

Traditionally, organometallic scaffolds are functionalized by conversion of a neutral allylmolybdenum to either a cationic η^{4}-diene or by $\mathrm{CO} \rightarrow \mathrm{NO}^{+}$exchange to generate a cationic η^{3}-allylmolybdenum complex. Subsequent reaction with a nucleophile takes place from the opposite face to the TpMo moiety. As a result, when multiple substituents are introduced, they necessarily end up oriented cis to each other. Therefore, how to fully control the relative stereochemistry of enantiomeric scaffolds, and deliver two substituents trans to each other on the enantiomeric scaffolds remains a challenge in our enantiomeric scaffolding approach.

Two general methods have been successfully developed in our lab to introduce a substituent syn to the $\mathrm{TpMo}(\mathrm{CO})_{2}$ unit from enone 110 (Scheme 59): catalytic hydrogenation and 1,2-Luche reduction of the carbonyl followed by a stereospecific semipinacol reaction.

Scheme 59. Methods to syn-Substituents

Starting from complex 117, three routes were designed to access the 2,6-trans-disubstituted molybdenum complexes (Scheme 60). First, intermolecular 1,5-Michael reaction of $\mathbf{1 1 7}$ with NaOMe would provide dimethoxy complex 118 which could undergo methoxy abstraction with HBF_{4} and sequential nucleophile addition to afford 2,6-trans-disubstituted molybdenum complexes 119. Second, 1,2-addition of the carbonyl in 117 will give tertiary alcohol 120 which might be transformed to 2,6-trans-disubstituted molybdenum complex 121 via hydroxyl abstraction with TrPF_{6} followed by addition of nucleophiles. Finally, ligand exchange with NO^{+}could provide a cationic η^{3}-allylmolybdenum complexes, subsequent reaction with a nucleophile might provide 2,6-trans-disubstituted pyranone 122. ${ }^{95}$

[^46]Scheme 60. Proposed Synthesis of 2,6-trans-Disubstituted Molybdenum Complexes from 117

To investigate the strategies described above, substrate 123 (Scheme 61) was synthesized first from enone 110a by Luche reduction followed by HCl induced 1,2-hydride migration (semipinacol reaction).

Scheme 61. Synthesis of Complex 123 via Semipinacol Reaction

However, intermolecular 1,5-Michael reaction of NaOMe with 123 only led to the methylation of the ketone enolate (Scheme 62, eq 1). Treatment of $\mathbf{1 2 3}$ with MeLi ${ }^{96}$ generated 126 in 64% yield (Scheme 62, eq 2). Upon treatment of HBF_{4}, the reaction

[^47]changed from orange to purple immediately, ${ }^{97}$ but complex 126 was not observed after addition of methyl magnesium chloride.

Scheme 62. Attempts to Synthesize 2,6-trans-Substituted Pyranyl Complexes from Substrate 123

Inspired by the protonation/nucleophilic addition strategy developed by Dr. Heilam Wong in the synthesis of trisubstituted tetrahydropyridinyl molybdenum complexes ${ }^{98}$ (Scheme 63), a protonation/hydride addition approach was proposed to prepare 2,6-trans-disubstituted pyranyl molybdenum complexes (Scheme 64). If alkylidene 127 can be synthesized, then protonation of the exocyclic double bond would generate a molybdenum stabilized cationic diene 128. Subsequent delivery of a hydride should occur regiospecifically at the carbon adjacent to the pyranyl oxygen from the opposite face the bulky $\mathrm{TpMo}(\mathrm{CO})_{2}$ unit. As a result, the substituent at $\mathrm{C}-2$ would be 'pushed' syn to the $\mathrm{TpMo}(\mathrm{CO})_{2}$ and trans to the substituent at $\mathrm{C}-6$.

[^48]
Scheme 63. Protonation/Nucleophilic Addition Strategy in the Synthesis of Trisubstituted Pyridinyl Molybdenum Complexes

Scheme 64. Proposed Synthetic Route to 2,6-trans-Substituted Pyranyl Molybdenum Complexes from Alkylidene 127

To test this protonation/hydride addition strategy, alkylidene $\mathbf{1 3 0}$ was prepared via two different methods as depicted in Scheme 65. First, addition of methyl magnesium chloride to enone 110a followed by immediate acetylation of the alkoxide afforded complex 131 in 51% yield. ${ }^{99}$ Acetoxy abstraction with TrPF_{6} and subsequent addition of methyl magnesium chloride gave complex 130 in 50% yield. Complex 130 can also be prepared through intramolecular '1,5-Michael reaction' of enone 110a with NaOMe . Methoxide abstraction of the 1,5-Michael adduct 113c followed by addition of methyl magnesium chloride provided 132 in 95% yield. Compound 132 was coverted to alkylidene $\mathbf{1 3 0}$ in 50% yield by another methoxide abstraction and subsequent addition of

[^49]methyl magnesium chloride. The low yields of the last step of both methods can be explained by their common reaction intermediate cationic diene 133. Diene 133 has three competitive addition sites which might affect the regioselectivity and lead to the low yields. ${ }^{100}$

Scheme 65. Synthesis of Alkylidene 130

The protonation/hydride addition strategy was proven very efficient for alkylidene 130 (Scheme 66). Protonation of the electron-rich exocyclic double bond in complex 130 with HBF_{4} followed by addition of NaCNBH_{3} furnished the desired 2,6-trans substituted complexes 134 in 90\% yield.

[^50]
Scheme 66. Synthesis of 2,6-trans-Sbustituted Molybdenum Complex 134

Meanwhile, two different Grignard reagents were also found to effectively react with the generated cationic η^{4}-diene regiospecifically at C-2 to generate a quaternary carbon center (Scheme 67). ${ }^{101}$

Scheme 67. Protonation/Carbanoin Addition to Tetrasubstituted Pyranyl Molybdenum Complexes

Unfortunately, attempts to expand the scope of alkylidene complexes via the second method shown in Scheme 65 using various carbon nucleophiles other than methyl Grignard reagent encountered complicated regioselectivity ${ }^{102}$ (Scheme 68). Maurice Lee systematically studied the regioselectivity of methoxy abstraction/nucleophilic addition sequence of complex 113c with different nucleophiles. Some trends were observed and

[^51]summarized by Maurice Lee as shown in Scheme 68, but the reason is still not fully understood.

Scheme 68. Regioselectivity of Various Nucleophiles ${ }^{103}$

Among the substrates listed in Scheme 68, alkylidene 138 can be directly subjected to the protonation/hydride addition sequence without further manipulation. Therefore, the synthetic study of 2,6-trans-disubstituted molybdenum complexes started with preparation complex 138. Conversion of dimethoxy complexes 113 to alkylidenes 138 proceeded smoothly with moderate yields as shown in Table 11. Aryl anions added to C-6 regiospecifically as described in Scheme 68 (path A).

[^52]Table 11. Synthesis of Alkylidene 138

Entry	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	Yield (\%)
1	$\mathrm{Me}, \mathbf{1 1 3 c}$	Ph	$56, \mathbf{1 3 8 a}$
2	$\mathrm{Et}, \mathbf{1 1 3 e}$	(m -OMe)Phenyl	$81, \mathbf{1 3 8 b}$
3	$\mathrm{Ph}, \mathbf{1 1 3 g}$	2-mesityl	$62, \mathbf{1 3 8 c}$

It should be mentioned dimethoxy Z-alkylidenes are better substrates for protonation/hydride addition reaction since E-alkylidenes are easily isomerized to their Z analogs under protonation/nucleophilic addition conditions. For example, upon treatment of HBF_{4} and PhMgCl, E-alkylidene 113d was converted to 138a, 141 and Z-alkylidene 113c (all isolated) (Scheme 69).

Scheme 69. Isomerization of 113d under Protonation/Nucleophilic Addition

 Condition

This result can be rationalized by the competition between methoxide abstraction and protonation of the exocyclic double bond in 113d (Scheme 70). Protonation of the 113d followed by deprotonation with PhMgCl afforded the more stable dimethoxy complex 113c which could lead to the formation of complex 138a (Scheme 70, path A), whereas
methoxide abstraction of 113d and subsequent addition of phenyl magnesium chloride afforded E-alkylidene 141 (Scheme 70, path B).

Scheme 70. Proposed Mechanism for the Isomerization of 113d

Path A: protonation followed by deprotonation
Path B: methoxide abstraction followed by nucleophilic addtiion

Finally, the protonation/hydride addition reaction converted substrates 138 to 2,6-trans substituted complexes 142 smoothly in 52% to 92% yields (Table 12).

Table 12. Synthesis of 2,6-trans-Substituted Molybdenum Complexes

Entry	Substrate	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	Yield (\%)
1	$\mathbf{1 3 8 a}$	Me	Ph	$92, \mathbf{1 4 2 a}$
2	$\mathbf{1 3 8 b}$	Et	(m-OMe)Phenyl	$83, \mathbf{1 4 2 b}$
3	$\mathbf{1 3 8 c}$	Ph	2-mesityl	$85, \mathbf{1 4 2 c}$

Single X-ray crystallographic analysis of (\pm)-142a (Figure 9) confirmed its structure: (1)
phenyl and ethyl group are trans to each other; (2) ethyl group is $s y n$ to $\mathrm{TpMo}(\mathrm{CO})_{2}$. As a result, our hypothesis was also proved: the hydride addition proceeded from the opposite face of $\mathrm{TpMo}(\mathrm{CO})_{2}$ unit and regiospecifically at $\mathrm{C}-2$.

Figure 9. ORTEP View of Complex (\pm)-142a

The synthetic potential of this methodology was tested by demetalation of 142 a with CAN to afford trans-2-ethyl-6-phenyl dihydropyranone 143^{104} in 44% yield (Scheme 71).

The relative stereochemistry in $\mathbf{1 4 3}$ is unambiguously established by NOE measurements.

[^53]
Scheme 71. Synthesis of (2R,6S)-2-Ethyl-6-Phenyl-Pyranone 143

Conclusion

Solid sodium methoxide can undergo efficient intermolecular '1,5-Michael-like' reaction with neutral $\mathrm{TpMo}(\mathrm{CO})_{2}\left(5-\right.$ oxo- η^{3}-pyranyl $)$ complexes with complete regio- and stereocontrol. Ionization of the methoxy group with HBF_{4} followed by carbon nucleophiles addition affords 2,2,6-trisubstituted and 2,6-trans disubstituted pyranyl molybdenum complexes in good to excellent yields. The potential of this novel transformation was demonstrated by the synthesis of 2,2,6-trisubstitued pyranone 116 and 2,6-trans-disubstitued pyranone 143.

Experimental Section

Molybdenum complexes 109a, 109b, 110a, 110b, 110c, 110d were prepared according to Dr. Yongqiang Zhang's procedure. ${ }^{105}$

(土)-Z-110e

$(\pm)-E-110 e$

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S)- η-(2,3,4)-6-(Z)-benzylidene)-5-

 oxo-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-Z-110e.To a solution of anti-89d ($175 \mathrm{mg}, 0.31 \mathrm{mmol}$, 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added DMAP ($18.8 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.5$ equiv), $\mathrm{Et}_{3} \mathrm{~N}(647 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 1.5$ equiv), and methanesulfonyl chloride ($31 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 1.3$ equiv). The reaction mixture was stirred 10 min at room temperature. TLC monitoring the reaction indicated the disappearance of the starting material and formation of the mesylated product. The solution was passed through a short pad of silica gel (50\% EtOAc in hexanes). The solvents were completely removed on a rotary evaporator, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The solution was cooled down to $0^{\circ} \mathrm{C}$ and $\mathrm{DBU}(69 \mu \mathrm{~L}, 0.46 \mathrm{mmol}$, 1.5 equiv) was slowly added via syringe. The reaction mixture was stirred for 45 min at room temperature. The solution was again passed through a short pad of silica gel, concentrated, and purified by column chromatography on silica gel (hexane-EtOAc 1:1)

[^54]to afford the minor isomer $(\pm)-E-\mathbf{1 1 0 e}(3 \mathrm{mg}, 2 \%)$ and the major isomer (\pm)-Z-110e (160 mg, 94%) as yellow solid.
$(\pm)-E-110 \mathrm{e}: \operatorname{TLC}\left(\mathrm{R}_{f}=0.58\right.$, hexanes-EtOAc 1:1). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.52$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 3 \mathrm{H}), 7.60$ $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 4 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=6.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{dd}, J=6.3,4.5 \mathrm{~Hz}, 1 \mathrm{H})$. HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 553.0688. Found: 553.0689.
$(\pm)-Z-110 e:$ TLC $\left(\mathrm{R}_{f}=0.53\right.$, hexanes-EtOAc 1:1). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.53$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.06(\mathrm{dd}, J=6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=6.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 223.8,222.1,181.1,147.2,143.4,143.1,141.3,136.3,136.2,134.6,133.8,130.1$ (2C), 128.2 (2C), 127.7, 111.7, 108.3, 106.2, 105.9, 105.6, 102.9, 71.8, 66.4. HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 553.0688 . Found: 553.0689.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)- η-(3.4.5)-2-ethyl-3-

methoxy-6-vinyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-112.

To a Schlenk flask charged with a solution of 109a ($23 \mathrm{mg}, 0.044 \mathrm{mmol}, 1$ equiv.) in THF (2 mL) was added $\mathrm{LiAlH}_{4}\left(1.0 \mathrm{M}\right.$ in THF, $44 \mu \mathrm{~L}, 0.044 \mathrm{mmol}, 1$ equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at that temperature for 5 min , and then quenched with $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ (13mg, $0.088 \mathrm{mmol}, 2$ equiv.). After being stirred at room temperature for 40 min, the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then passed through a short pad of silica gel. The solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel (hexanes-EtOAc 3:1) to afford an orange solid product $112(11 \mathrm{mg}, 49 \%)$.
(\pm)-112: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.87\right.$, hexanes-EtOAc 2:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.32(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~m}, 3 \mathrm{H}), 5.84(\mathrm{dd}, J=17.2$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{dd}, J=12.4,1.60 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75(\mathrm{dd}, J=12.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.45(\mathrm{~m}, 2 \mathrm{H})$, $0.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.

General procedure for intermolecular 1,5-Michael-like reaction of $\mathbf{N a O M e}$.

To a solution of molybdenum complex $\mathbf{1 0 9}$ or $\mathbf{1 1 0}$ (1 equiv) in dry THF was added solid NaOMe (10 equiv) under argon. After being stirred at room temperature for 3.5 to 5 hours, the reaction was cooled to $0{ }^{\circ} \mathrm{C}$. To the reaction mixture was added solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ (10 equiv). Then the reaction was stirred at $0^{\circ} \mathrm{C}$ from 40 min to 1 hour after which TLC
indicated the formation of a new compound. The reaction was quenched by adding $\mathrm{Et}_{3} \mathrm{~N}$ at $0{ }^{\circ} \mathrm{C}$. The cold solution was directly passed through a short silica gel column (pre-neutralized by $5 \% \mathrm{Et}_{3} \mathrm{~N}$) with $\mathrm{Et}_{2} \mathrm{O}$. The solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel neutralized with $5 \% \mathrm{Et}_{3} \mathrm{~N}$.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R,6S)- η-(3.4.5)-2,5-dimethoxy-6-ethyl-6-vinyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-113a.

Following the general procedure, 109a ($150 \mathrm{mg}, 0.29 \mathrm{mmol}, 1$ equiv) was dissolved in THF (20 mL), and reacted with $\mathrm{NaOMe}(165 \mathrm{mg}, 3.0 \mathrm{mmol}, 10$ equiv) for 5 h followed by adding solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ ($480 \mathrm{mg}, 3.2 \mathrm{mmol}, 11$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 4:1) afforded 113a (140 mg, 88\%) as a dark orange solid.
(\pm)-113a: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.62\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2937(\mathrm{~m}), 2482(\mathrm{~m}), 1926$ (s), 1826 (s), 1505 (s), 1305 (s), 1227 (s). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.27$ (d, $J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=17.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~m}$, $3 \mathrm{H}), 5.21(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.43(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=$ 7.8 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 232.9,228.3,146.8,146.0,145.3,143.6$, $139.3,136.2,135.4,134.7,113.4,105.6,105.6,105.5,101.1,78.1,61.7,55.4,54.0,53.6$, 28.4, 7.2. HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}]^{+}\right)$: 564.1185. Found: 564.1187.

113b
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R,6S)- η-(3.4.5)-6-allyl-2,5-dimethoxy-6-ethyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (土)-113b.

Following the general procedure, 109b ($80 \mathrm{mg}, 0.15 \mathrm{mmol}, 1$ equiv) was dissolved in THF (10 mL), and reacted with $\mathrm{NaOMe}(86 \mathrm{mg}, 1.50 \mathrm{mmol}, 10$ equiv.) for 4.5 h followed by adding solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ ($223 \mathrm{mg}, 1.50 \mathrm{mmol}$, 10 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-113b ($65 \mathrm{mg}, 75 \%$) as a dark orange solid.
(\pm)-113b: TLC $\left(\mathrm{R}_{f}=0.67\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2937(\mathrm{~m}), 2482(\mathrm{~m}), 1926$ (s), 1826 (s), 1517 (m), 1409(s), 1305 (s), 1224 (s), 1119 (s). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~m}, 3 \mathrm{H}), 5.96(\mathrm{~m}$, $1 \mathrm{H}), 5.04(\mathrm{dd}, J=17.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=10.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}$,
$3 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 233.1$, 228.4, $151.1,146.0,145.2,139.3,136.1,135.3,135.3$ 134.7, 115.7, 105.61, 105.59, 105.57, 101.1, 78.1, 60.9, 55.6, 54.0, 52.6, 46.6, 27.2, 7.0. HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{BMoN}_{6} \mathrm{O}_{4}$ ([M-OMe] ${ }^{+}$): 547.1157 . Found: 547.1169.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)- $\boldsymbol{\eta}$-(3,4,5)-6-(Z)-ethylidene-2,5-dimethoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (土)-113c.

Following the general procedure, 110a ($50 \mathrm{mg}, 0.102 \mathrm{mmol}, 1$ equiv) was dissolved in THF (3 mL), and reacted with $\mathrm{NaOMe}(55 \mathrm{mg}, 1.02 \mathrm{mmol}$, 10 equiv) for 3.5 h followed by adding solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ (150 mg , $1.02 \mathrm{mmol}, 10$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 2:1) afforded (\pm)-113c (48 mg, 88\%) as a brown solid.
$(\pm)-113 \mathrm{c}: \mathrm{TLC}\left(\mathrm{R}_{f}=0.53\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2930(\mathrm{w}), 2482(\mathrm{w}), 1926$ (s), 1841 (s), 1505 (s), 1409 (s), 1305(s), 1239 (s). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, 1H), $7.58(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J$ $=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 232.1,227.5,146.6,144.0,142.2,139.4,136.3,135.7$, 134.6, 134.6, 105.6, 105.5, 105.4, 105.2, 99.8, 57.4, 56.1, 54.9, 52.4, 10.0. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}]^{+}\right): 536.0872$. Found: 536.0870.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)- $\boldsymbol{\eta}$-(3,4,5)-6-(E)-

 ethylidene-2,5-dimethoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-113d.Following the general procedure, 110b ($49 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv) was dissolved in THF (6 mL), and reacted with $\mathrm{NaOMe}(57 \mathrm{mg}, 1.0 \mathrm{mmol}$, 10 equiv) for 4 h followed by adding solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ ($222 \mathrm{mg}, 1.50 \mathrm{mmol}, 15$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-113d ($35 \mathrm{mg}, 66 \%$) as a dark orange solid.
(\pm)-113d: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.62\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2930(\mathrm{~m}), 2482(\mathrm{~m}), 2250$ (w), 1926 (s), 1841 (s), 1502 (s), 1409 (s), 1305 (s), 1239 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.34(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{q}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.19(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=$ $8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 232.0,226.9,146.8,144.5,140.5,139.4,137.0$,
$136.3,135.7,134.7,109.6,105.7,105.5(2 \mathrm{C}), 99.5,58.9,56.3,54.5,52.6,12.7$. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BMoN}_{6} \mathrm{O}_{5}$ ([M] $]^{+}$): 537.0950. Found: 537.0958.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)- η-(3,4,5)-6-(Z)-propylidene-2,5-dimethoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-113e.

Following the general procedure, 110c ($53 \mathrm{mg}, 0.105 \mathrm{mmol}, 1$ equiv) was dissolved in THF (5 mL), and reacted with $\mathrm{NaOMe}(60 \mathrm{mg}, 1.05 \mathrm{mmol}, 10$ equiv) for 4 h followed by adding solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ (246 mg, $1.58 \mathrm{mmol}, 15$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-113e ($41 \mathrm{mg}, 71 \%$) as a dark orange solid.
(\pm)-113e: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.58\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2930(\mathrm{w}), 2482(\mathrm{w}), 1926$ (s), 1841 (s), 1505 (w), 1409 (m), 1305(m), 1235 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=2.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.20(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J$ $=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.01$ (s, 3H), 2.37-2.18 (m, 2H), $1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$: $\delta 232.2,227.2,146.7,144.1,141.0,139.4,136.3,135.7,134.7,134.4,113.0,105.7,105.5$,
105.4, 99.8, 57.6, 56.2, 54.9, 52.4, 18.1, 14.7. HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BMoN}_{6} \mathrm{O}_{5}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 551.1106$. Found: 551.1110.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)- η-(3,4,5)-6-(E)-propylidene-2,5-dimethoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-113f.

Following the general procedure, 110d ($48 \mathrm{mg}, 0.096 \mathrm{mmol}, 1$ equiv) was dissolved in THF (5 mL), and reacted with $\mathrm{NaOMe}(54.3 \mathrm{mg}, 0.96 \mathrm{mmol}, 10$ equiv) for 5 h followed by adding solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ ($141 \mathrm{mg}, 0.96 \mathrm{mmol}$, 10 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-113f ($33 \mathrm{mg}, 63 \%$) as a dark orange solid. The ${ }^{13} C$ NMR spectra of $113 f$ displayed as a mixture of $113 e$ and $113 f$ since 113 f partially converted to 113 e in CDCl_{3} during the ${ }^{13} \mathrm{C} N M R$ experiment.
$(\pm)-\mathbf{1 1 3 f}: \operatorname{TLC}\left(\mathrm{R}_{f}=0.51\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2922(\mathrm{~m}), 2482(\mathrm{w}), 1926$ (s), 1841 (s), 1505 (s), 1409 (s), 1305 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.34$ (d, $J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.19(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}$, $J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.51(\mathrm{~m}$, $2 \mathrm{H}), 1.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 232.0,226.8,146.8,144.4$,
$139.4(2 \mathrm{C}), 136.5,136.3,135.7,134.7,117.6,105.7,105.5(2 \mathrm{C}), 99.4,58.8,56.3,54.5$, 52.5, 20.3, 15.5. HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 551.1106. Found: 551.1110.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)-ఇ-(3,4,5)-6-(Z)-benzylidene-2,5-dimethoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-113g.

Following the general procedure, 110e ($110 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv) was dissolved in THF (8 mL) , and reacted with $\mathrm{NaOMe}(114 \mathrm{mg}, 2.0 \mathrm{mmol}, 10$ equiv) for 5 h followed by adding solid $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ ($296 \mathrm{mg}, 2.0 \mathrm{mmol}$, 10 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc $3: 1$) afforded (\pm)-113g (31 mg, 26\%) as a brown solid.
$(\pm)-\mathbf{1 1 3 g}: \operatorname{TLC}\left(\mathrm{R}_{f}=0.40\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2930(\mathrm{~m}), 2842(\mathrm{~m}), 1926$ (s), 1841 (s), 1505 (s), 1409 (s), 1305 (s), 1235 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.31$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 232.0,226.9$,
$146.7,144.2,143.6,139.4,136.4,135.8(2 \mathrm{C}), 134.7,132.9,129.1(2 \mathrm{C}), 128.2(2 \mathrm{C}), 126.1$, 107.7, 105.8, 105.6, 105.5, 99.8, 59.0, 56.5, 55.0, 52.1. HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}]^{+}\right): 598.1028$. Found: 598.1037.

General procedure for ionization/nucleophilic addition reaction of 113a and 113b.

In a Schlenk flask, molybdenum complexes 113a or 113b (1 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ under argon. $\mathrm{HBF}_{4}\left(54 \mathrm{wt} \%\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 1.5$ equiv.) was added dropwise to the reaction mixture and stirred for 5 min after which TLC indicated almost complete disappearance of starting material. Then the reaction was cooled to $-78^{\circ} \mathrm{C}$, commercially available Grignard or organolithium reagent (3 or 4 equiv) was added to the solution. After 10 min , the reaction was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and then diluted with EtOAc and water. The organic layer was separated and washed with brine. The combined organic layers were dried over MgSO_{4}, and concentrated under low pressure. The residue was further purified by column chromatography on silica gel.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)- $\boldsymbol{\eta}$-(3,4,5)-2-ethyl-3-methoxy-6-methyl-2-vinyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-114a.

Following the general procedure, 113a ($70 \mathrm{mg}, 0.124 \mathrm{mmol}, 1$ equiv) was dissolved in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and reacted with $\mathrm{HBF}_{4}(26 \mu \mathrm{~L}, 0.186 \mathrm{mmol}, 1.5$ equiv) followed by addition of 3.0 M MeMgCl in THF ($124 \mu \mathrm{~L}, 0.372 \mathrm{mmol}, 3$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-114a (56 mg , 83%) as a dark orange solid.
(\pm)-114a: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.69\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2988(\mathrm{w}), 2934(\mathrm{~m}), 2482$ (m), 1918 (s), 1818 (s), 1517 (m), 1432 (m), 1305(m), 1224 (m). ${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NMR}$ (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.27(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~m}, 4 \mathrm{H})$, $5.20(\mathrm{dd}, J=18.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 233.2,228.8,146.9$, $146.0,145.5,145.3,139.3,136.0,135.3,134.7,112.8,105.53,105.52,105.5,77.2,71.1$, 61.8, 59.9, 52.7, 31.7, 27.2, 7.3. HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 548.1235. Found: 548.1236.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)- $\boldsymbol{\eta}$-(3,4,5)-2-ethyl-2,6-divinyl-3-methoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-114b.

Following the general procedure, 113a ($30 \mathrm{mg}, 0.053 \mathrm{mmol}, 1$ equiv) was dissolved in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and reacted with $\mathrm{HBF}_{4}(11 \mu \mathrm{~L}, 0.080 \mathrm{mmol}, 1.5$ equiv) followed by addition of 1.4 M VinylMgCl in THF ($152 \mu \mathrm{~L}, 0.212 \mathrm{mmol}, 4$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-114b (27 mg , 90%) as a brown solid.
$(\pm) \mathbf{- 1 1 4 b}: \operatorname{TLC}\left(\mathrm{R}_{f}=0.66\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2980(\mathrm{w}), 2937(\mathrm{w}), 2482$ (w), 1918 (s), 1822 (s), 1505 (m), 1409 (m), 1305 (m), 1224 (m), 1119 (s). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.29(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}$, $J=17.1,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~m}, 3 \mathrm{H}), 6.16(\mathrm{dd}, J=17.7,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.17(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H})$, 2.18-2.48 (m, 2H), $0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 232.9,228.6$, 146.7, 146.0, 145.4, 144.9, 143.0, 139.3, 136.1, 135.4, 134.7, 115.9, 113.6, 105.59, 105.56, 105.52, 77.5, 76.6, 61.7, 57.2, 52.9, 31.3, 7.2. HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}]^{+}\right): 560.1235$. Found: 548.1248.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)- $\boldsymbol{\eta}$-(3,4,5)-2-ethyl-3-methoxy-6-phenyl-2-vinyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-114c.

Following the general procedure, 113a ($30 \mathrm{mg}, 0.053 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and reacted with $\mathrm{HBF}_{4}(11 \mu \mathrm{~L}, 0.080 \mathrm{mmol}, 1.5$ equiv) followed by addition of 2.0 M PhMgCl in THF ($80 \mu \mathrm{~L}, 0.159 \mathrm{mmol}$, 3 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-114c (30 mg , 94%) as a dark orange solid.
(\pm)-114c: TLC $\left(\mathrm{R}_{f}=0.53\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2980(\mathrm{w}), 2937$ (w), 2482 (m), 1918 (s), 1826(s), 1515 (m), 1409 (m), 1305 (m), 1227 (m), 1119 (m). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.32(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~m}, 3 \mathrm{H}), 5.40(\mathrm{dd}$, $J=18.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.15(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 233.3,229.1,147.6,146.1,145.4,144.1$, 143.1, 139.2, 136.2, 135.5, 134.7, 129.5, 129.5, 127.6, 127.6, 127.3, 112.6, 105.6, 105.6, 105.6, 78.1, 74.7, 62.2, 55.1, 53.1, 31.1, 7.2. HRMS (ESI) Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BMoN}_{6} \mathrm{O}_{4}$ $\left([\mathrm{M}]^{+}\right):$610.1392. Found: 560.1388.

114d
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)- $\boldsymbol{\eta}$-(3,4,5)-2-allyl-2-

ethyl-6-isopropyl-3-methoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-114d.

Following the general procedure, 113b ($32 \mathrm{mg}, 0.055 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and reacted with $\mathrm{HBF}_{4}(11 \mu \mathrm{~L}, 0.080 \mathrm{mmol}, 1.5$ equiv) followed by addition of $2.0 \mathrm{M} i \operatorname{PrMgCl}$ in THF ($83 \mu \mathrm{~L}, 0.166 \mathrm{mmol}, 3$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-114d (21 mg , 65%) as a dark orange solid.
$(\pm) \mathbf{- 1 1 4 d}: \operatorname{TLC}\left(\mathrm{R}_{f}=0.56\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2941(\mathrm{w}), 2482(\mathrm{w}), 1918$ (s), 1822 (s), 1513 (m), 1409 (m), 1305 (m), 1220 (m), 1119 (m). ${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.26(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-6.17(\mathrm{~m}$, $3 \mathrm{H}), 5.98-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=14.0,6.4$ Hz, 1H), 2.47 (dd, $J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.83(\mathrm{~m}$, $1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 234.0,229.3,148.4,146.0,145.6,139.3,136.0,135.6,135.3,134.6$, $115.4,105.5,105.47,105.43,81.1,78.4,62.4,55.8,55.2,48.2,36.9,27.6,20.6,20.5,7.1$. HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{BMoN}_{6} \mathrm{O}_{4}$ ([M] ${ }^{+}$): 590.1705. Found: 590.1704.

114e

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)- η-(3,4,5)-2.6-diallyl-2-

 ethyl-3-methoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (土)-114e.Following the general procedure, 113b ($215 \mathrm{mg}, 0.37 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and reacted with $\mathrm{HBF}_{4}(77.3 \mu \mathrm{~L}, 0.56 \mathrm{mmol}, 1.5$ equiv) followed by addition of 2.0 M AllylMgCl in THF ($560 \mu \mathrm{~L}, 1.12 \mathrm{mmol}, 3$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-114e (180 mg, 82%) as a dark orange solid.
$(\pm) \mathbf{- 1 1 4 e}: \operatorname{TLC}\left(\mathrm{R}_{f}=0.65\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2961(\mathrm{w}), 2482(\mathrm{w}), 1918$ (s), 1822 (s), 1513 (m), 1409 (m), 1305 (m), 1220 (m), 1119 (m). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.26(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-6.19(\mathrm{~m}$, $3 \mathrm{H}), 5.99-5.89(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{dd}, J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$ (dd, $J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J$ $=8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=14.4,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 233.4,228.8,149.3$, $146.0,145.4,138.3,136.0,135.8,135.3(2 \mathrm{C}), 134.7,117.0,115.9,105.51,105.47(2 \mathrm{C})$, 77.9, 74.3, 61.0, 57.1, 52.5, 48.8, 46.1, 28.4, 7.5. HRMS (ESI) Calcd for
$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 589.1627 . Found: 589.1624.

$114 f$
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)- $\boldsymbol{\eta}$-(3,4,5)-2-allyl-2-ethyl-3-methoxy-6-(phenylethynyl)-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-114f.

Following the general procedure, 113b ($65 \mathrm{mg}, 0.11 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and reacted with $\mathrm{HBF}_{4}(24 \mu \mathrm{~L}, 0.17 \mathrm{mmol}, 1.5$ equiv) followed by addition of 1.0 M Lithium phenylacetylide in THF ($450 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded $(\pm)-\mathbf{1 1 4 f}(54 \mathrm{mg}, 74 \%)$ as a dark orange solid.
(\pm)-114f: TLC $\left(\mathrm{R}_{f}=0.53\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2482(\mathrm{w}), 1922(\mathrm{~s}), 1826(\mathrm{~s})$, $1505(\mathrm{~m}), 1409(\mathrm{~m}), 1305(\mathrm{~m}), 1220(\mathrm{~m}), 1119(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.28$ $(\mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 3 \mathrm{H}), 6.21(\mathrm{~m}, 3 \mathrm{H}), 6.13(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=7.8,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=14.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=14.6,8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 233.0,228.4,150.2,146.2,145.5,139.7,136.4,135.8,135.7,135.0,131.6$ (2C), 128.5
(2C), 128.4, 123.3, 116.1, 105.9, 105.8, 105.8, 93.0, 85.2, 78.8, 62.9, 59.8, 57.4, 53.2, 46.3, 28.8, 8.1. HRMS (ESI) Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 649.1628. Found: 649.1618.

116

(\pm)-(2S,6R)-2,6-diallyl-2-ethyl-2H-pyran-3(6H)-one, (\pm)-116.

To a solution of molybdenum complex $(\pm) \mathbf{- 1 1 4 e}(121 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0$ equiv) in THF $/ \mathrm{H}_{2} \mathrm{O}(3: 1,12 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}\left(43 \mu \mathrm{~L}, 0.62 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. Then a solution of ceric ammonium nitrate ($905 \mathrm{mg}, 1.65 \mathrm{mmol}, 8.0$ equiv) in water (3 mL) was added dropwise over 5 min . Upon addition, the orange solution changed to light yellow. The reaction was allowed to stir at room temperature for 10 minutes, and then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The organic layers were collected and washed with brine, dried over MgSO_{4}, concentrated and purified by column chromatography on silica gel (hexanes-EtOAc 6:1) to afford (\pm)-116 as a colorless oil (24 $\mathrm{mg}, 56 \%)$.
(\pm)-116: TLC $\left(\mathrm{R}_{f}=0.60\right.$, hexanes-EtOAc 6:1). IR $\left(\mathrm{cm}^{-1}\right): 2980(\mathrm{~m}), 2829(\mathrm{~m}), 1687$ (s), $1069(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.43(\mathrm{dd}, J=10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J$ $=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~m}, 2 \mathrm{H}), 5.17-5.02(\mathrm{~m}, 4 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.36(\mathrm{~m}, 4 \mathrm{H})$, $1.86-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.37(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 198.7,149.6,133.4,133.3,125.5,118.1,117.8,82.9,68.0,39.3,38.4,25.6$,
7.5. HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 207.1380. Found: 207.1377.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,5S)- η-(2,3,4)-6-(Z)-
ethylidene-5-methoxy-5-methyl-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-132.
In a Schlenk flask, molybdenum complexes $\mathbf{1 1 3 c}(41 \mathrm{mg}, 0.077 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon. $\mathrm{HBF}_{4}\left(54 \mathrm{wt} \%\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 16 \mu \mathrm{~L}, 0.12$ mmol, 1.5 equiv) was added dropwise to the reaction mixture and stirred for 5 min after which TLC indicated almost complete disappearance of starting material. Then the reaction was cooled to $-78^{\circ} \mathrm{C}, \mathrm{MeMgCl}$ (3.0 M in THF, $115 \mu \mathrm{~L}, 0.35 \mathrm{mmol}, 4.5$ equiv) was added dropwise to the solution. After 10 min , the reaction was quenched with MeOH $(1 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, and then diluted with EtOAc and water. The organic layer was separated and washed with brine. The combined organic layers were dried over MgSO_{4}, and concentrated under low pressure. The residue was further purified by column chromatography on silica gel (hexanes-EtOAc 3:1) to afford (\pm)-132 (38 mg, 95\%) as a yellow solid.
(\pm)-132: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.71\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2482(\mathrm{~m}), 1953(\mathrm{~s}), 1868$ (s), 1505 (m), 1407 (s), 1305 (s), $1220(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.51$ (d, $J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=2.1$
$\mathrm{Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=4.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.18(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=7.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}$, $3 \mathrm{H}), 3.40(\mathrm{dd}, J=7.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 227.2,225.5,151.1,146.9,142.0,141.8,136.1,136.0,134.4$, 108.6, 106.0, 105.6, 105.4, 101.1, 76.3, 68.9, 57.1, 49.1, 31.4, 9.6. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 521.1001$. Found: 521.1023.

130

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(3S,6R)- η-(3,4,5)-3,6-dimethyl-2-(Z)

 -ethylidene-2,6-dihydro-6H-pyran-3-yl]molybdenum, ($\mathbf{\pm}$)-130.In a Schlenk flask, molybdenum complexes 132 ($45 \mathrm{mg}, 0.087 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-40{ }^{\circ} \mathrm{C}$ under argon. $\mathrm{HBF}_{4}\left(54 \mathrm{wt} \%\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 18 \mu \mathrm{~L}, 0.13$ mmol, 1.5 equiv) was added dropwise to the reaction mixture and stirred for 5 min after which TLC indicated disappearance of starting material. Then the reaction was cooled to $-78^{\circ} \mathrm{C}, \mathrm{MeMgCl}(3.0 \mathrm{M}$ in THF, $130 \mu \mathrm{~L}, 0.39 \mathrm{mmol}, 4.5$ equiv) was added dropwise to the solution. After 10 min , the reaction was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and then diluted with EtOAc $(10 \mathrm{~mL})$ and water. The organic layer was separated and washed with brine (5 mL). The combined organic layers were dried over MgSO_{4}, and concentrated under low pressure. The residue was further purified by careful column chromatography on silica gel (hexanes- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1\right)$ to afford (\pm) $\mathbf{- 1 3 0}(21 \mathrm{mg}, 50 \%)$ as a
yellow solid.
(\pm)-130: TLC $\left(\mathrm{R}_{f}=0.38\right.$, hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1). IR $\left(\mathrm{cm}^{-1}\right): 2484(\mathrm{w}), 1924(\mathrm{~s}), 1841$ (s), $1405(\mathrm{~m}), 1306(\mathrm{~m}), 1216(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.46(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.23(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{q}, J$ $=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 232.8,226.6,148.5,146.9,145.5,139.2,136.5,135.9,134.44,105.7$, 105.5, 105.2, 102.7, 96.3, 74.5, 69.8, 60.2, 25.2, 22.3, 10.4. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BMoN}_{6} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$505.1052. Found: 505.1052.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2R,3S,6R)- $\boldsymbol{\eta}-(3,4,5)-3,6-$ dimethyl-2-ethyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-134.

In a Schlenk flask, molybdenum complexes $\mathbf{1 3 0}$ ($20 \mathrm{mg}, 0.040 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon. $\mathrm{HBF}_{4}\left(54 \mathrm{wt} \%\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 16 \mu \mathrm{~L}, 0.12$ mmol, 3 equiv) was added dropwise to the reaction mixture and stirred for 15 min after which TLC indicated disappearance of starting material. Then NaCNBH_{3} (1.0 M in THF, $160 \mu \mathrm{~L}, 0.16 \mathrm{mmol}, 4$ equiv) was added dropwise to the solution. After 10 min at $0{ }^{\circ} \mathrm{C}$, the reaction was warmed to room temperature, and stirred for additional 30 min . Then the
reaction mixture was directly put on a silica gel column for purification (hexanes-EtOAc $2: 1)$ to afford $(\pm)-134(18 \mathrm{mg}, 90 \%)$ as a yellow solid.
(\pm)-134: $\mathrm{TLC}\left(\mathrm{R}_{f}=0.61\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2472(\mathrm{w}), 1930(\mathrm{~s}), 1841$ (s), $1405(\mathrm{~m}), 1305(\mathrm{~m}), 1212(\mathrm{~m}), 1050(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.46(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~m}, 3 \mathrm{H}), 4.13(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.98-3.90 (m, 2H), $3.72(\mathrm{dd}, J=9.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=$ 6.4 Hz, 3H), $0.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 233.3$, 228.6, $146.3,146.1,139.5,136.4,135.6,134.2,105.5,105.4,105.1,99.3,77.9,72.8,68.3,64.6$, 24.4, 23.7, 21.5, 11.5. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{BMoN}_{6} \mathrm{O}_{3}$ ([M] $\left.{ }^{+}\right):$506.1130. Found: 506.1145.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2R,3S,6R)- η-(3,4,5)-2-ethyl-2,3,6-

 trimethyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-135.In a Schlenk flask, molybdenum complexes $130(6 \mathrm{mg}, 0.012 \mathrm{mmol}, 1.0$ equiv) was dissolved $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon. $\mathrm{HBF}_{4}\left(54 \mathrm{wt} \%\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 2.5 \mu \mathrm{~L}, 0.018$ mmol, 1.5 equiv) was added to the reaction mixture and stirred for 5 min . Then the reaction was cooled to $-78^{\circ} \mathrm{C}, \mathrm{MeMgCl}(3.0 \mathrm{M}$ in THF, $16 \mu \mathrm{~L}, 0.048 \mathrm{mmol}, 4$ equiv) was added dropwise to the solution. After 10 min at $-78^{\circ} \mathrm{C}$, the cold reaction mixture was
directly put on a silica gel column for purification (hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:2) to afford (\pm)-135 ($4 \mathrm{mg}, 67 \%$) as a yellow solid.
$(\pm)-135: \operatorname{TLC}\left(\mathrm{R}_{f}=0.47\right.$, hexanes- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 2\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.38(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~m}, 3 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.67$ $(\mathrm{s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)- η-(3,4,5)-2-allyl-3,6-

 dimethyl-2-ethyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-136.In a Schlenk flask, molybdenum complexes $130(20 \mathrm{mg}, 0.040 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon. $\mathrm{HBF}_{4}\left(54 \mathrm{wt} \%\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 11 \mu \mathrm{~L}, 0.08$ mmol, 2 equiv) was added dropwise to the reaction mixture and stirred for 10 min after which TLC indicated disappearance of starting material. Then the reaction was cooled to $-78^{\circ} \mathrm{C}$, allyl magnesium chloride (2.0 M in THF, $80 \mu \mathrm{~L}, 0.16 \mathrm{mmol}, 4$ equiv) was added dropwise to the solution. The color of the reaction changed from dark orange to yellow. After 10 min at $0{ }^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated and washed with brine. The combined organic layers were dried over MgSO_{4}, and concentrated under low pressure. The residue was
further purified by column chromatography on silica gel (hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$) to afford $(\pm)-136(14 \mathrm{mg}, 65 \%)$ as a yellow solid. 136 was slowly converted to 137 on rotary evaporato upon heating.
$(\pm)-136: \operatorname{TLC}\left(\mathrm{R}_{f}=0.47\right.$, hexanes- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.37$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~m}, 3 \mathrm{H}), 6.09(\mathrm{~m}, 1 \mathrm{H})$, 5.12-5.01 (m, 2H), $4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.79-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H})$.

General procedure for synthesis alkylidene 138 via inonizaion/nucleophilic addition

reaction

In a Schlenk flask, molybdenum complex 113 (1 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 0 ${ }^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$ under argon. $\mathrm{HBF}_{4}\left(54 \mathrm{wt} \%\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 1.5$ equiv.) was added dropwise to the reaction mixture and stirred for 5 to 10 min . Then the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$, commercially available Grignard (4 to 4.5 equiv) was added to the solution. After 10 min , the reaction was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and diluted with EtOAc and water. The organic layers were separated and washed with brine. The combined organic layers were dried over MgSO_{4}, and concentrated under low pressure. The residue was further purified by column chromatography on silica gel.

138a
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(3S,6R)- $\boldsymbol{\eta}$-(3,4,5)-2-(Z)-ethylidene-3-methoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-138a.

Following the general procedure, 113c ($230 \mathrm{mg}, 0.43 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and reacted with $\mathrm{HBF}_{4}(0.12 \mathrm{~mL}, 0.86 \mathrm{mmol}$, 2 equiv) followed by addition of 2.0 M PhMgCl in THF ($0.97 \mathrm{~mL}, 1.93 \mathrm{mmol}, 4.5$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-138a (140 mg, 74%) as an orange solid.
(\pm)-138a: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.40\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2481(\mathrm{w}), 1921(\mathrm{~s}), 1837$ (s), 1406 (m), 1305 (m), $1234(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.35(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J$ $=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.22(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{q}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~s}$, $3 \mathrm{H}), 1.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 232.0,227.5,146.9,145.7$, $144.6,144.4,139.5,136.5,135.8,134.9,131.8,128.7$ (2C), 127.5, 125.7 (2C), 105.8, 105.6 (2C), 102.2, 75.9, 57.5, 56.9, 54.9, 10.3. HRMS(ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{BMoN}_{6} \mathrm{O}_{4}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 583.1157$. Found: 583.1162.

138b
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(3S,6R)- $\boldsymbol{\eta}$-(3,4,5)-3-methoxy-6-(3-methoxlphenyl)-2-(Z)-propylidene-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-138b.

Following the general procedure, 113e ($13 \mathrm{mg}, 0.024 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and reacted with $\mathrm{HBF}_{4}(4.9 \mu \mathrm{~L}, 0.036 \mathrm{mmol}, 1.5$ equiv) followed by addition of 3-methoxyphenylmagnesium bromide (1.0 M in THF, $95 \mu \mathrm{~L}, 0.96 \mathrm{mmol}, 4$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 4:1) afforded (\pm)-138b (12 mg, 81\%) as an orange solid.
$(\pm)-\mathbf{1 3 8 b}: \operatorname{TLC}\left(\mathrm{R}_{f}=0.43\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2964(\mathrm{ws}), 2934(\mathrm{w}), 2482$ (w), 1926 (s), 1841 (s), 1602 (m), 1505 (m), 1409 (m), 1305 (m). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.18(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 231.8,226.9,159.6,147.2,146.7,144.3,143.2$, $139.3,136.3,135.7,134.7,131.2,129.4,118.0,112.5,111.4,110.0,105.6,105.4(2 \mathrm{C})$, $75.5,57.1,57.0,55.2,54.8,18.1,14.8$. HRMS(ESI) Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{BMoN}_{6} \mathrm{O}_{5}$
$\left([\mathrm{M}+\mathrm{H}]^{+}\right):$627.1419. Found: 627.1427.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(3S,6R)- η-(3,4,5)-2-(Z)-benzyliden-3 -methoxy-6-mesityl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-138c.

Following the general procedure, 113g ($28 \mathrm{mg}, 0.047 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$, and reacted with $\mathrm{HBF}_{4}(10 \mu \mathrm{~L}, 0.07 \mathrm{mmol}$, 1.5 equiv) followed by addition of 2-mesityl magnesium bromide (1.0 M in THF, $188 \mu \mathrm{~L}, 0.19 \mathrm{mmol}, 4$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 4:1) afforded (\pm)-138c (20 mg, 62\%) as an orange solid.
(\pm)-138c: $\mathrm{TLC}\left(\mathrm{R}_{f}=0.46\right.$ hexanes-EtOAc $\left.3: 1\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.33(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}$, $1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.25(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.18(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=8,8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}$, $J=8,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$.

General procedure for the protonation/hydride addition reaction of alkylidenes 138 In a Schlenk flask, molybdenum complexes 138 (1 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 0
${ }^{\circ} \mathrm{C}$ under argon. A solution of HBF_{4} ($54 \mathrm{wt} \%$ in $\mathrm{Et}_{2} \mathrm{O}, 1.5$ equiv.) was added to the reaction and stirred for 10 min . Then $\mathrm{NaCNBH}_{3}(1.0 \mathrm{M}$ in THF, 4 equiv) was added dropwise to the reaction mixture. After 10 min at $0^{\circ} \mathrm{C}$, the reaction was slowly warmed to room temperature for 30 min . Then the reaction mixture was directly put on a silica gel column for purification. (Or, on large scale, the reaction mixture was partitioned between water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under low pressure. The residue was further purified by column chromatography on silica gel.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2R,3S,6R)- $\boldsymbol{\eta}$-(3,4,5)-2-ethyl-3-methoxy-6-phenyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-142a.

Following the general procedure, 138a ($24 \mathrm{mg}, 0.041 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and reacted with $\mathrm{HBF}_{4}(8.6 \mu \mathrm{~L}, 0.062 \mathrm{mmol}, 1.5$ equiv) followed by addition of $1.0 \mathrm{M} \mathrm{NaCNBH}_{3}$ in THF ($165 \mu \mathrm{~L}, 0.164 \mathrm{mmol}$, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-142a (22 mg , 92%) as an orange solid.
(\pm)-142a: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.45\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2482(\mathrm{~m}), 2250(\mathrm{w}), 1922$ (s), 1830 (s), 1505 (m), 1432 (m), 1305 (m), 1220 (m), 1117 (m), 1047 (s). ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.37(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.23(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=7.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.07$ $(\mathrm{m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 232.0,229.4,146.1$, $145.2,142.1,141.5,139.2,136.2,135.6,134.6,128.3$ (2C), 128.2 (2C), 127.7, 105.6, 105.5 (2C), 74.0, 71.4, 59.7, 55.2, 54.2, 22.1, 10.8. HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 585.1314$. Found: 585.1320.

142b

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2R,3S,6R)- $\boldsymbol{\eta}$-(3,4,5)-3-methoxy-6-(

3-mthoxylphenyl)-2-propyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-142b.

Following the general procedure, $\mathbf{1 3 8 b}(12 \mathrm{mg}, 0.019 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and reacted with $\mathrm{HBF}_{4}(8.6 \mu \mathrm{~L}, 0.062 \mathrm{mmol}, 1.5$ equiv) followed by addition of NaCNBH_{3} (1.0 M in THF, $79.6 \mu \mathrm{~L}, 0.077 \mathrm{mmol}$, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-142b (10 mg , 83%) as an orange solid.
(\pm-142a: TLC $\left(\mathrm{R}_{f}=0.38\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 2961$ (w), $2937(\mathrm{w}), 2482$
(w), 1918 (s), 1826 (s), 1598 (m), 1505 (m), 1409 (m), 1305 (m). ${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.36(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{dt}, J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.76$ $(\mathrm{dd}, J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.17-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.16$ (m, 1H), $0.85(\mathrm{t}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 232.0,229.3,159.4$, $146.1,145.2,143.2,142.1,139.2,136.2,135.6,134.6,129.1,120.6,114.2,112.9,105.6$, 105.5 (2C), 73.9, 69.7, 59.6, 55.2, 55.0, 54.3, 30.7, 19.5, 13.9. HRMS(ESI) Calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}]^{+}\right):$628.1498. Found: 628.1519.

(土)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2R,3S,6R)- η-(3,4,5)-2-benzyl-6-mesityl-3-methoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-142c.

Following the general procedure, 138c ($20 \mathrm{mg}, 0.029 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and reacted with $\mathrm{HBF}_{4}(6.1 \mu \mathrm{~L}, 0.044 \mathrm{mmol}, 1.5$ equiv) followed by addition of $\mathrm{NaCNBH}_{3}(1.0 \mathrm{M}$ in THF, $117 \mu \mathrm{~L}, 0.117 \mathrm{mmol}, 4$ equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-142c (17 mg , 85%) as an orange solid
$(\pm)-142 c: \operatorname{TLC}\left(\mathrm{R}_{f}=0.40\right.$, hexanes-EtOAc 3:1). IR $\left(\mathrm{cm}^{-1}\right): 3007(\mathrm{w}), 2968(\mathrm{w}), 2934$ (w), 2482 (w), 1918 (s), 1826 (s), 1505 (m), 1409 (m), 1305 (m). ${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.38(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=2.04 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 5 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}), 6.23$ $(\mathrm{m}, 3 \mathrm{H}), 5.36(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=8.8,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~s}$, $3 \mathrm{H}), 2.48(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 233.3,230.0,146.1$, $145.3,141.5,139.41,139.37,138.2,136.8,136.2,135.6,134.6,134.0,130.4$ (2), 129.5 (2), 127.7 (2), 125.5, 105.7, 105.6 (2), 72.4, 72.2, 64.3, 57.7, 54.4, 35.5, 23.2 (2), 20.6, 14.1. HRMS(ESI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}]^{+}\right):$688.1861. Found: 688.1867 .

143

(\pm)-(2R,6S)-2-Ethyl-6-phenyl-6H-pyran-3-one, (\pm)-143.

To a solution of molybdenum complex (\pm)-142a ($85 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(3: 1,6 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}\left(31 \mu \mathrm{~L}, 0.22 \mathrm{mmol}, 1.5\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. Then a solution of ceric ammonium nitrate ($640 \mathrm{mg}, 1.17 \mathrm{mmol}, 8.0$ equiv) in water (3 mL) was added dropwise over 5 min . Upon addition, the orange solution changed to light yellow. The reaction was allowed to stir at room temperature for 10 minutes, and then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The organic layers were collected and washed with brine, dried over MgSO_{4}, concentrated and purified by column
chromatography on silica gel (hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$) to afford $(\pm) \mathbf{- 1 4 3}$ as a colorless oil (13 mg, 44\%).
$(\pm)-143: \operatorname{TLC}\left(\mathrm{R}_{f}=0.68\right.$, hexanes-EtOAc 2:1). IR $\left(\mathrm{cm}^{-1}\right): 2968(\mathrm{~m}), 2934(\mathrm{~m}), 1687$ (s), 1445 (m), 1386 (m), 1262 (m), 1065 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.34$ $(\mathrm{m}, 5 \mathrm{H}), 7.13(\mathrm{dd}, J=10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=10.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{t}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=8.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): δ 196.6, 149.2, 137.3, 128.8 (2C), 128.7, 127.8 (2C), 126.2, 78.6, 72.1, 22.6, 9.9. HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$203.1067. Found: 203.1065.

X-Ray Crystallographic Study:

A suitable crystal of (\pm) - $\mathbf{1 4 2 a}$ was coated with Paratone N oil, suspended in a small fiber loop and placed in a cooled nitrogen gas stream at 173 K on a Bruker D8 APEX II CCD sealed tube diffractometer with graphite monochromated $\mathrm{CuK}_{\alpha}(1.54178 \AA)$ radiation. Data were measured using a series of combinations of phi and omega scans with 10 s frame exposures and 0.5° frame widths. Data collection, indexing and initial cell refinements were all carried out using APEX II ${ }^{106}$ software. Frame integration and final cell refinements were done using SAINT ${ }^{107}$ software. The final cell parameters were determined from least-squares refinement on 6486 reflections.

[^55]The structure was solved using Direct methods and difference Fourier techniques (SHELXTL, V6.12). ${ }^{108}$ Hydrogen atoms were placed their expected chemical positions using the HFIX command and were included in the final cycles of least squares with isotropic U_{ij} ' s related to the atom's ridden upon. Only the Mo and O atoms were refined anisotropically. Scattering factors and anomalous dispersion corrections are taken from the International Tables for X-ray Crystallography. ${ }^{109}$ Structure solution, refinement, graphics and generation of publication materials were performed by using SHELXTL, V6.12 software. Additional details of data collection and structure refinement are given in Table 13.

Table 13. Crystal data and structure refinement for (\pm)-142a

Identification code	$(\pm) \mathbf{- 1 4 2 a}$	
Empirical formula	$\mathrm{C} 25 \mathrm{H} 27 \mathrm{~B} \mathrm{Mo} \mathrm{N6} \mathrm{O4}$	
Formula weight	582.28	
Temperature	$173(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal system	Triclinic	
Space group	P 1	$\alpha=83.821(3)^{\circ}$.
Unit cell dimensions	$\mathrm{a}=8.9047(5) \AA$	$\beta=77.038(3)^{\circ}$.
	$\mathrm{b}=9.2012(6) \AA$	$\gamma=88.191(4)^{\circ}$.
	$\mathrm{c}=16.2022(9) \AA$	
Volume	$1286.13(13) \AA^{3}$	
Z	2	
Density (calculated)	$1.504 \mathrm{Mg} / \mathrm{m}^{3}$	

[^56]| Absorption coefficient | $4.535 \mathrm{~mm}^{-1}$ |
| :--- | :--- |
| $\mathrm{~F}(000)$ | 596 |
| Crystal size | $0.15 \times 0.10 \times 0.08 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 2.81 to 61.16°. |
| Index ranges | $-10<=\mathrm{h}<=10,-10<=\mathrm{k}<=9,-18<=1<=18$ |
| Reflections collected | 11088 |
| Independent reflections | $5379[\mathrm{R}(\mathrm{int})=0.0218]$ |
| Completeness to theta $=61.16^{\circ}$ | 90.7% |
| Absorption correction | $\mathrm{Semi}-\mathrm{empirical}$ from equivalents |
| Max. and min. transmission | 0.7130 and 0.5495 |
| Refinement method | $\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$ |
| Data / restraints / parameters | $5379 / 3 / 329$ |
| Goodness-of-fit on F^{2} | 1.039 |
| Final R indices [I>2sigma(I)] | $\mathrm{R} 1=0.0349, \mathrm{wR} 2=0.0865$ |
| R indices (all data) | $\mathrm{R} 1=0.0378, \mathrm{wR} 2=0.0896$ |
| Absolute structure parameter | $0.498(19)$ |
| Largest diff. peak and hole | 0.697 and $-0.536 \mathrm{e} . \AA^{-3}$ |

Table 14. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for (\pm)-142a. $U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{B}(1)$	$-419(15)$	$8172(17)$	$802(9)$	$31(3)$
$\mathrm{C}(1)$	$-1079(11)$	$6261(12)$	$2933(6)$	$41(3)$
$\mathrm{C}(2)$	$-1786(11)$	$7549(11)$	$3160(6)$	$42(2)$
$\mathrm{C}(3)$	$-1760(13)$	$8307(15)$	$2423(7)$	$39(3)$
$\mathrm{C}(4)$	$-1607(11)$	$4973(12)$	$-53(6)$	$29(2)$
$\mathrm{C}(5)$	$-2460(9)$	$5972(10)$	$-453(5)$	$26(2)$
$\mathrm{C}(6)$	$-2169(11)$	$7280(12)$	$-178(6)$	$31(2)$

C(7)	3461(12)	6803(13)	80(7)	25(2)
C(8)	3717(12)	8168(13)	-284(7)	30(3)
C(9)	2388(11)	8923(13)	-23(6)	30(3)
C(10)	-789(13)	3073(15)	1439(7)	32(3)
$\mathrm{C}(11)$	1685(10)	3463(11)	294(6)	17(2)
$\mathrm{C}(12)$	2170(9)	4252(10)	2215(5)	26(2)
$\mathrm{C}(13)$	906(12)	3129(13)	2394(6)	27(2)
$\mathrm{C}(14)$	1481(13)	1545(15)	2249(7)	35(3)
$\mathrm{C}(15)$	3844(12)	2466(12)	1534(6)	34(3)
$\mathrm{C}(16)$	3425(9)	4013(10)	1633(5)	18(2)
$\mathrm{C}(17)$	5111(13)	2459(13)	620(7)	37(3)
C(18)	5698(9)	737(10)	693(5)	42(2)
$\mathrm{C}(19)$	4604(12)	6233(12)	1815(6)	45(3)
$\mathrm{C}(20)$	2119(7)	798(6)	3024(3)	44(3)
$\mathrm{C}(21)$	1760(7)	1341(6)	3814(4)	42(2)
$\mathrm{C}(22)$	2320(8)	641(7)	4489(3)	52(3)
$\mathrm{C}(23)$	3239(8)	-602(7)	4374(3)	47(3)
C(24)	3599(7)	-1145(6)	3585(3)	55(2)
$\mathrm{C}(25)$	3039(7)	-445(6)	2910(3)	49(2)
B(1B)	9401(14)	4524(15)	7072(9)	26(3)
C(1B)	5498(14)	5770(15)	7873(8)	35(3)
C(2B)	5292(13)	4306(14)	8207(7)	37(3)
C(3B)	6703(12)	3643(14)	7893(7)	37(3)
C(4B)	10588(11)	7474(12)	8033(6)	29(2)
C(5B)	11411(10)	6355(10)	8400(6)	31(2)
C(6B)	11087(10)	5132(11)	8082(6)	26(2)
C(7B)	10352(10)	6560(11)	4998(5)	32(2)
C(8B)	11117(10)	5247(11)	4784(6)	39(2)
C(9B)	10645(12)	4186(15)	5525(7)	35(3)
C(10B)	7383(14)	9087(15)	7628(8)	40(3)
$\mathrm{C}(11 \mathrm{~B})$	9681(14)	9547(15)	6522(7)	33(3)
C(12B)	7108(9)	8427(9)	5627(5)	21(2)
C(13B)	8158(13)	9537(14)	5551(8)	36(3)
C(14B)	7527(14)	11040(15)	5636(8)	35(3)
C(15B)	5015(11)	10142(12)	6504(6)	28(2)
C(16B)	5726(13)	8619(14)	6217(7)	43(3)

C(17B)	$3955(15)$	$10328(15)$	$7261(8)$	$49(3)$
C(18B)	$3142(9)$	$11602(9)$	$7496(5)$	$38(2)$
C(19B)	$4636(12)$	$6368(12)$	$6013(6)$	$43(3)$
C(20B)	$7023(7)$	$11799(6)$	$4866(3)$	$33(2)$
C(21B)	$6597(7)$	$13260(6)$	$4909(3)$	$52(2)$
C(22B)	$6038(8)$	$14026(6)$	$4252(4)$	$65(2)$
C(23B)	$5905(9)$	$13331(7)$	$3552(3)$	$71(4)$
C(24B)	$6331(8)$	$11870(7)$	$3509(3)$	$47(2)$
C(25B)	$6890(7)$	$11104(5)$	$4166(4)$	$44(2)$
Mo(1)	$716(1)$	$4666(1)$	$1204(1)$	$24(1)$
Mo(1B)	$8258(1)$	$7952(1)$	$6731(1)$	$24(1)$
N(1)	$-629(10)$	$6266(11)$	$2106(6)$	$28(2)$
N(2)	$-800(9)$	$7679(10)$	$1792(5)$	$28(2)$
N(3)	$-855(10)$	$5687(11)$	$452(5)$	$28(2)$
N(4)	$-1183(9)$	$7089(10)$	$357(5)$	$19(2)$
N(5)	$2064(9)$	$6642(10)$	$511(5)$	$27(2)$
N(6)	$1364(10)$	$7980(11)$	$517(5)$	$26(2)$
N(1B)	$6956(9)$	$5982(9)$	$7347(5)$	$21(2)$
N(2B)	$7648(10)$	$4614(12)$	$7439(6)$	$31(2)$
N(3B)	$9827(9)$	$7021(10)$	$7534(5)$	$20(2)$
N(4B)	$10164(11)$	$5515(12)$	$7551(6)$	$34(2)$
N(5B)	$9494(10)$	$6369(12)$	$5826(6)$	$32(2)$
N(6B)	$9921(9)$	$4999(11)$	$6144(5)$	$28(2)$
O(1)	$-1593(12)$	$2062(11)$	$1504(6)$	$50(3)$
O(2)	$1979(10)$	$2851(11)$	$-277(5)$	$41(2)$
O(3)	$2623(9)$	$1527(8)$	$1533(5)$	$32(2)$
O(4)	$4588(10)$	$4927(10)$	$1466(5)$	$40(2)$
O(1B)	$6889(10)$	$9841(10)$	$8208(5)$	$34(2)$
O(2B)	$10511(11)$	$10502(12)$	$6448(7)$	$52(3)$
O(3B)	$6265(9)$	$11096(10)$	$6424(5)$	$36(2)$
O(4B)	$4430(9)$	$7667(10)$	$6483(6)$	$40(2)$

Table 15. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for (\pm)-142a

$\mathrm{B}(1)-\mathrm{N}(4)$	1.546(18)	$\mathrm{C}(20)-\mathrm{C}(25)$	1.3900
$\mathrm{B}(1)-\mathrm{N}(6)$	1.561(16)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.3900
$\mathrm{B}(1)-\mathrm{N}(2)$	1.582(16)	$\mathrm{C}(22)$-C(23)	1.3900
$\mathrm{C}(1)-\mathrm{N}(1)$	1.309(12)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.3900
$\mathrm{C}(1)-\mathrm{C}(2)$	1.371(14)	$\mathrm{C}(24)-\mathrm{C}(25)$	1.3900
$\mathrm{C}(2)-\mathrm{C}(3)$	1.312(15)	$\mathrm{B}(1 \mathrm{~B})-\mathrm{N}(6 \mathrm{~B})$	1.492(16)
$\mathrm{C}(3)-\mathrm{N}(2)$	1.347(15)	$\mathrm{B}(1 \mathrm{~B})-\mathrm{N}(4 \mathrm{~B})$	$1.525(18)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.375(13)$	$\mathrm{B}(1 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})$	1.543(15)
$\mathrm{C}(4)-\mathrm{N}(3)$	1.392(14)	$\mathrm{C}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$	1.390 (14)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.379(14)	$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	1.399(18)
$\mathrm{C}(6)-\mathrm{N}(4)$	1.361(13)	$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	$1.393(16)$
$\mathrm{C}(7)-\mathrm{N}(5)$	1.287(13)	$\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})$	1.295(15)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.333(16)	$\mathrm{C}(4 \mathrm{~B})-\mathrm{N}(3 \mathrm{~B})$	1.274(14)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.359(15)$	$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	$1.403(14)$
$\mathrm{C}(9)-\mathrm{N}(6)$	1.370(14)	$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	1.351(14)
$\mathrm{C}(10)-\mathrm{O}(1)$	1.173(15)	$\mathrm{C}(6 \mathrm{~B})-\mathrm{N}(4 \mathrm{~B})$	$1.332(14)$
$\mathrm{C}(10)-\mathrm{Mo}(1)$	1.966(13)	$\mathrm{C}(7 \mathrm{~B})-\mathrm{N}(5 \mathrm{~B})$	1.383(12)
$\mathrm{C}(11)-\mathrm{O}(2)$	1.111(13)	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	1.406(13)
$\mathrm{C}(11)-\mathrm{Mo}(1)$	1.966(9)	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	$1.456(15)$
$\mathrm{C}(12)-\mathrm{C}(16)$	1.321(12)	$\mathrm{C}(9 \mathrm{~B})-\mathrm{N}(6 \mathrm{~B})$	1.349 (15)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.509(15)	$\mathrm{C}(10 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$	1.222(15)
$\mathrm{C}(12)-\mathrm{Mo}(1)$	2.299 (8)	$\mathrm{C}(10 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	1.891(12)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.554(17)	$\mathrm{C}(11 \mathrm{~B})-\mathrm{O}(2 \mathrm{~B})$	1.146(16)
$\mathrm{C}(13)-\mathrm{Mo}(1)$	2.299(11)	$\mathrm{C}(11 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	1.922(14)
$\mathrm{C}(14)-\mathrm{O}(3)$	1.361(13)	$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	1.384(16)
$\mathrm{C}(14)-\mathrm{C}(20)$	1.577(13)	$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	1.397(14)
$\mathrm{C}(15)-\mathrm{O}(3)$	1.411(14)	$\mathrm{C}(12 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	2.250(7)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.476(14)$	$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	$1.485(18)$
$\mathrm{C}(15)-\mathrm{C}(17)$	1.649(14)	$\mathrm{C}(13 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	2.293(12)
$\mathrm{C}(16)-\mathrm{O}(4)$	1.316(12)	$\mathrm{C}(14 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})$	1.504(13)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.653(14)	$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(20 \mathrm{~B})$	1.513(13)
$\mathrm{C}(19)-\mathrm{O}(4)$	1.384(14)	$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})$	1.393(15)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.3900	$\mathrm{C}(15 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})$	1.414(14)

$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	1.592(16)	$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{Mo}(1)$	166.3(9)
$\mathrm{C}(16 \mathrm{~B})-\mathrm{O}(4 \mathrm{~B})$	1.430 (15)	$\mathrm{C}(16)-\mathrm{C}(12)-\mathrm{C}(13)$	117.6(9)
$\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})$	1.401(15)	$\mathrm{C}(16)-\mathrm{C}(12)-\mathrm{Mo}(1)$	91.9(5)
C(19B)-O(4B)	1.470 (13)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{Mo}(1)$	70.8(5)
$\mathrm{C}(20 \mathrm{~B})-\mathrm{C}(21 \mathrm{~B})$	1.3900	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	114.4(9)
$\mathrm{C}(20 \mathrm{~B})-\mathrm{C}(25 \mathrm{~B})$	1.3900	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{Mo}(1)$	70.8(5)
$\mathrm{C}(21 \mathrm{~B})-\mathrm{C}(22 \mathrm{~B})$	1.3900	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{Mo}(1)$	116.8(7)
$\mathrm{C}(22 \mathrm{~B})-\mathrm{C}(23 \mathrm{~B})$	1.3900	$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	111.2(10)
$\mathrm{C}(23 \mathrm{~B})-\mathrm{C}(24 \mathrm{~B})$	1.3900	$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(20)$	108.1(9)
$\mathrm{C}(24 \mathrm{~B})-\mathrm{C}(25 \mathrm{~B})$	1.3900	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(20)$	111.4(9)
$\mathrm{Mo}(1)-\mathrm{N}(3)$	2.182(9)	$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(16)$	116.2(8)
$\mathrm{Mo}(1) \mathrm{N}(5)$	2.258(9)	$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(17)$	108.8(8)
$\mathrm{Mo}(1) \mathrm{N}(1)$	$2.303(9)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(17)$	106.2(8)
$\mathrm{Mo}(1 \mathrm{~B})-\mathrm{N}(3 \mathrm{~B})$	2.208 (8)	$\mathrm{O}(4)-\mathrm{C}(16)-\mathrm{C}(12)$	120.6(9)
$\mathrm{Mo}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$	$2.202(8)$	$\mathrm{O}(4)-\mathrm{C}(16)-\mathrm{C}(15)$	115.5(8)
$\mathrm{Mo}(1 \mathrm{~B})-\mathrm{N}(5 \mathrm{~B})$	2.262(10)	$\mathrm{C}(12)-\mathrm{C}(16)-\mathrm{C}(15)$	116.1(9)
$\mathrm{N}(1)-\mathrm{N}(2)$	1.361(13)	$\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{C}(18)$	100.1(8)
$\mathrm{N}(3)-\mathrm{N}(4)$	1.314(13)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)$	120.0
$\mathrm{N}(5)-\mathrm{N}(6)$	1.362(13)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(14)$	121.5(6)
$\mathrm{N}(1 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})$	1.393(14)	$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(14)$	118.5(6)
$\mathrm{N}(3 \mathrm{~B})-\mathrm{N}(4 \mathrm{~B})$	1.407(14)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	120.0
N(5B)-N(6B)	1.384(14)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	120.0
		$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	120.0
$\mathrm{N}(4)-\mathrm{B}(1)-\mathrm{N}(6)$	107.9(10)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	120.0
$\mathrm{N}(4)-\mathrm{B}(1)-\mathrm{N}(2)$	108.6(10)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(20)$	120.0
$\mathrm{N}(6)-\mathrm{B}(1)-\mathrm{N}(2)$	104.6(9)	$\mathrm{N}(6 \mathrm{~B})-\mathrm{B}(1 \mathrm{~B})-\mathrm{N}(4 \mathrm{~B})$	107.7(10)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	112.0(9)	$\mathrm{N}(6 \mathrm{~B})-\mathrm{B}(1 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})$	115.7(9)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	103.0(9)	$\mathrm{N}(4 \mathrm{~B})-\mathrm{B}(1 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})$	106.9(10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(2)$	110.5(11)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	110.8(11)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(3)$	109.3(9)	$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	104.2(11)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	103.6(8)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	109.5(11)
$\mathrm{N}(4)-\mathrm{C}(6)-\mathrm{C}(5)$	111.1(9)	$\mathrm{N}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	112.9(10)
$\mathrm{N}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	111.5(10)	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	104.9(8)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	106.1(9)	$\mathrm{N}(4 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	107.6(9)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(6)$	107.7(10)	$\mathrm{N}(5 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	109.6(9)
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{Mo}(1)$	172.9(10)	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	106.1(8)

$\mathrm{N}(6 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	104.0(10)	$\mathrm{N}(5)-\mathrm{Mo}(1)-\mathrm{C}(12)$	94.8(3)
$\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	176.8(11)	$\mathrm{C}(10)-\mathrm{Mo}(1)-\mathrm{C}(13)$	67.9(4)
$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	175.9(11)	$\mathrm{C}(11)-\mathrm{Mo}(1)-\mathrm{C}(13)$	101.0(4)
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	114.0(9)	$\mathrm{N}(3)-\mathrm{Mo}(1)-\mathrm{C}(13)$	145.1(3)
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	74.0(6)	$\mathrm{N}(5)-\mathrm{Mo}(1)-\mathrm{C}(13)$	133.2(4)
$\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	88.0(6)	$\mathrm{C}(12)-\mathrm{Mo}(1)-\mathrm{C}(13)$	38.3(4)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	117.0(10)	$\mathrm{C}(10)-\mathrm{Mo}(1)-\mathrm{N}(1)$	99.1(4)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	70.6(6)	$\mathrm{C}(11)-\mathrm{Mo}(1)-\mathrm{N}(1)$	170.4(4)
$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	120.9(8)	$\mathrm{N}(3)-\mathrm{Mo}(1)-\mathrm{N}(1)$	78.5(3)
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})$	111.6(10)	$\mathrm{N}(5)-\mathrm{Mo}(1)-\mathrm{N}(1)$	85.7(3)
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(20 \mathrm{~B})$	115.9(10)	$\mathrm{C}(12)-\mathrm{Mo}(1)-\mathrm{N}(1)$	84.2(3)
$\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(20 \mathrm{~B})$	110.7(9)	$\mathrm{C}(13)-\mathrm{Mo}(1)-\mathrm{N}(1)$	87.7(3)
$\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})$	108.8(9)	$\mathrm{C}(10 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	78.5(5)
$\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	125.4(10)	$\mathrm{C}(10 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{N}(3 \mathrm{~B})$	87.1(4)
$\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	106.9(8)	$\mathrm{C}(11 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{N}(3 \mathrm{~B})$	81.8(4)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{O}(4 \mathrm{~B})$	129.0(11)	$\mathrm{C}(10 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$	93.5(5)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$	125.8(11)	$\mathrm{C}(11 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$	160.9(4)
$\mathrm{O}(4 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$	102.4(8)	$\mathrm{N}(3 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$	80.4(3)
$\mathrm{C}(18 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$	127.7(11)	$\mathrm{C}(10 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	111.3(4)
$\mathrm{C}(21 \mathrm{~B})-\mathrm{C}(20 \mathrm{~B})-\mathrm{C}(25 \mathrm{~B})$	120.0	$\mathrm{C}(11 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	100.8(4)
$\mathrm{C}(21 \mathrm{~B})-\mathrm{C}(20 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	115.9(6)	$\mathrm{N}(3 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	161.7(3)
$\mathrm{C}(25 \mathrm{~B})-\mathrm{C}(20 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	124.0(6)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	98.3(3)
$\mathrm{C}(20 \mathrm{~B})-\mathrm{C}(21 \mathrm{~B})-\mathrm{C}(22 \mathrm{~B})$	120.0	$\mathrm{C}(10 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{N}(5 \mathrm{~B})$	170.1(5)
$\mathrm{C}(21 \mathrm{~B})-\mathrm{C}(22 \mathrm{~B})-\mathrm{C}(23 \mathrm{~B})$	120.0	$\mathrm{C}(11 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{N}(5 \mathrm{~B})$	102.4(4)
$\mathrm{C}(22 \mathrm{~B})-\mathrm{C}(23 \mathrm{~B})-\mathrm{C}(24 \mathrm{~B})$	120.0	$\mathrm{N}(3 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{N}(5 \mathrm{~B})$	83.4(3)
$\mathrm{C}(25 \mathrm{~B})-\mathrm{C}(24 \mathrm{~B})-\mathrm{C}(23 \mathrm{~B})$	120.0	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{N}(5 \mathrm{~B})$	82.5(3)
$\mathrm{C}(24 \mathrm{~B})-\mathrm{C}(25 \mathrm{~B})-\mathrm{C}(20 \mathrm{~B})$	120.0	$\mathrm{C}(12 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{N}(5 \mathrm{~B})$	78.3(3)
$\mathrm{C}(10)-\mathrm{Mo}(1)-\mathrm{C}(11)$	80.8(5)	$\mathrm{C}(10 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	102.1(5)
$\mathrm{C}(10)-\mathrm{Mo}(1)-\mathrm{N}(3)$	82.8(4)	$\mathrm{C}(11 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	65.3(5)
$\mathrm{C}(11)-\mathrm{Mo}(1)-\mathrm{N}(3)$	92.0(4)	$\mathrm{N}(3 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	142.8(4)
$\mathrm{C}(10)-\mathrm{Mo}(1)-\mathrm{N}(5)$	158.9(4)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	133.7(4)
$\mathrm{C}(11)-\mathrm{Mo}(1)-\mathrm{N}(5)$	91.1(4)	$\mathrm{C}(12 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	35.4(4)
$\mathrm{N}(3)-\mathrm{Mo}(1)-\mathrm{N}(5)$	78.0(3)	$\mathrm{N}(5 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	87.1(4)
$\mathrm{C}(10)-\mathrm{Mo}(1)-\mathrm{C}(12)$	106.1(4)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	104.8(9)
$\mathrm{C}(11)-\mathrm{Mo}(1)-\mathrm{C}(12)$	105.1(3)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Mo}(1)$	135.0(8)
$\mathrm{N}(3)-\mathrm{Mo}(1)-\mathrm{C}(12)$	161.7(3)	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{Mo}(1)$	118.8(6)

$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{N}(1)$	$105.7(8)$	$\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{B}(1 \mathrm{~B})$	$130.6(11)$
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{B}(1)$	$128.9(10)$	$\mathrm{N}(1 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{B}(1 \mathrm{~B})$	$116.6(9)$
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{B}(1)$	$121.8(9)$	$\mathrm{C}(4 \mathrm{~B})-\mathrm{N}(3 \mathrm{~B})-\mathrm{N}(4 \mathrm{~B})$	$104.1(9)$
$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{C}(4)$	$108.3(9)$	$\mathrm{C}(4 \mathrm{~B})-\mathrm{N}(3 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	$137.6(8)$
$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{Mo}(1)$	$126.0(7)$	$\mathrm{N}(4 \mathrm{~B})-\mathrm{N}(3 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	$118.3(7)$
$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{Mo}(1)$	$125.6(7)$	$\mathrm{C}(6 \mathrm{~B})-\mathrm{N}(4 \mathrm{~B})-\mathrm{N}(3 \mathrm{~B})$	$110.4(9)$
$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(6)$	$107.6(9)$	$\mathrm{C}(6 \mathrm{~B})-\mathrm{N}(4 \mathrm{~B})-\mathrm{B}(1 \mathrm{~B})$	$128.0(10)$
$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{B}(1)$	$119.8(9)$	$\mathrm{N}(3 \mathrm{~B})-\mathrm{N}(4 \mathrm{~B})-\mathrm{B}(1 \mathrm{~B})$	$121.3(9)$
$\mathrm{C}(6)-\mathrm{N}(4)-\mathrm{B}(1)$	$132.6(10)$	$\mathrm{C}(7 \mathrm{~B})-\mathrm{N}(5 \mathrm{~B})-\mathrm{N}(6 \mathrm{~B})$	$104.7(8)$
$\mathrm{C}(7)-\mathrm{N}(5)-\mathrm{N}(6)$	$108.1(9)$	$\mathrm{C}(7 \mathrm{~B})-\mathrm{N}(5 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	$132.8(8)$
$\mathrm{C}(7)-\mathrm{N}(5)-\mathrm{Mo}(1)$	$132.6(8)$	$\mathrm{N}(6 \mathrm{~B})-\mathrm{N}(5 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	$119.8(6)$
$\mathrm{N}(6)-\mathrm{N}(5)-\mathrm{Mo}(1)$	$119.3(6)$	$\mathrm{C}(9 \mathrm{~B})-\mathrm{N}(6 \mathrm{~B})-\mathrm{N}(5 \mathrm{~B})$	$112.7(9)$
$\mathrm{N}(5)-\mathrm{N}(6)-\mathrm{C}(9)$	$106.1(8)$	$\mathrm{C}(9 \mathrm{~B})-\mathrm{N}(6 \mathrm{~B})-\mathrm{B}(1 \mathrm{~B})$	$127.6(10)$
$\mathrm{N}(5)-\mathrm{N}(6)-\mathrm{B}(1)$	$122.4(10)$	$\mathrm{N}(5 \mathrm{~B})-\mathrm{N}(6 \mathrm{~B})-\mathrm{B}(1 \mathrm{~B})$	$119.2(9)$
$\mathrm{C}(9)-\mathrm{N}(6)-\mathrm{B}(1)$	$127.6(10)$	$\mathrm{C}(14)-\mathrm{O}(3)-\mathrm{C}(15)$	$112.2(9)$
$\mathrm{C}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})$	$102.7(9)$	$\mathrm{C}(16)-\mathrm{O}(4)-\mathrm{C}(19)$	$125.5(8)$
$\mathrm{C}(1 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	$133.1(8)$	$\mathrm{C}(15 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	$115.9(9)$
$\mathrm{N}(2 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{Mo}(1 \mathrm{~B})$	$122.8(6)$	$\mathrm{C}(16 \mathrm{~B})-\mathrm{O}(4 \mathrm{~B})-\mathrm{C}(19 \mathrm{~B})$	$111.7(8)$
$\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})$	$112.5(9)$		

Symmetry transformations used to generate equivalent atoms:

Table 16. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for (\pm)-142a. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} \mathbf{a}^{*} \mathbf{2} \mathbf{U} 11+\ldots+2 h k\right.$ $\left.a^{*} b^{*} \mathbf{U}^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{~B}(1 \mathrm{~B})$	$31(4)$	$11(4)$	$36(5)$	$-1(3)$	$-14(3)$	$14(3)$
$\mathrm{Mo}(1)$	$30(1)$	$20(1)$	$25(1)$	$-2(1)$	$-10(1)$	$4(1)$
$\mathrm{Mo}(1 \mathrm{~B})$	$28(1)$	$19(1)$	$26(1)$	$-2(1)$	$-10(1)$	$4(1)$
$\mathrm{O}(1)$	$64(5)$	$32(6)$	$55(6)$	$17(4)$	$-24(4)$	$-24(5)$
$\mathrm{O}(2)$	$52(5)$	$35(5)$	$36(5)$	$-9(4)$	$-7(3)$	$15(4)$
$\mathrm{O}(3)$	$49(4)$	$12(4)$	$44(4)$	$-12(3)$	$-29(3)$	$9(4)$
$\mathrm{O}(4)$	$43(5)$	$31(6)$	$44(5)$	$6(4)$	$-7(4)$	$-2(4)$
$\mathrm{O}(1 \mathrm{~B})$	$44(4)$	$29(5)$	$33(4)$	$-8(3)$	$-14(3)$	$6(4)$

$\mathrm{O}(2 \mathrm{~B})$	$49(5)$	$51(7)$	$61(6)$	$-5(5)$	$-21(4)$	$-4(5)$
$\mathrm{O}(3 \mathrm{~B})$	$36(4)$	$37(5)$	$29(4)$	$4(3)$	$4(3)$	$6(4)$
$\mathrm{O}(4 \mathrm{~B})$	$43(5)$	$29(5)$	$59(5)$	$-13(4)$	$-32(4)$	$5(4)$

Table 17. Hydrogen coordinates ($x 10^{4}$) and isotropic displacement parameters ($\AA^{2} \mathbf{x}$ 10^{3}) for (\pm)-142a

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(1)$	-679	9370	634	38
$\mathrm{H}(1)$	-935	5476	3320	50
$\mathrm{H}(2)$	-2186	7819	3703	50
$\mathrm{H}(3)$	-2326	9159	2347	46
$\mathrm{H}(4)$	-1543	3976	-110	35
$\mathrm{H}(5)$	-3085	5805	-822	31
$\mathrm{H}(6)$	-2591	8176	-337	38
$\mathrm{H}(7)$	4199	6061	30	30
$\mathrm{H}(8)$	4622	8532	-644	36
$\mathrm{H}(9)$	2206	9902	-182	36
$\mathrm{H}(12)$	2067	5082	2504	31
$\mathrm{H}(13)$	-130	3366	2576	33
$\mathrm{H}(14)$	615	970	2184	42
$\mathrm{H}(15)$	4347	2087	1994	40
$\mathrm{H}(17 \mathrm{~A})$	5948	3131	580	45
$\mathrm{H}(17 B)$	4635	2691	139	45
$\mathrm{H}(18 \mathrm{~A})$	6131	450	1178	63
$\mathrm{H}(18 B)$	6478	681	181	63
$\mathrm{H}(18 \mathrm{C})$	4867	95	696	63
$\mathrm{H}(19 \mathrm{~A})$	3753	6854	1731	67
$\mathrm{H}(19 B)$	5551	6752	1593	67
$\mathrm{H}(19 \mathrm{C})$	4503	5948	2412	67
$\mathrm{H}(21)$	1144	2173	3891	51
$\mathrm{H}(22)$	2079	1004	5017	62
H(23)	3614	-1071	4826	56

H(24)	4215	-1977	3508	66
H(25)	3280	-808	2381	59
H(1B)	9763	3463	7225	31
H(1B)	4759	6503	7986	42
H(2B)	4414	3873	8558	44
H(3B)	6930	2656	7994	45
H(4B)	10598	8445	8142	35
H(5B)	12041	6436	8779	38
H(6B)	11444	4193	8211	31
H(7B)	10414	7425	4638	39
H(8B)	11790	5088	4272	47
H(9B)	10805	3179	5564	42
H(12B)	7304	7625	5314	25
H(13B)	9036	9537	5021	43
H(14B)	8371	11626	5720	42
H(15B)	4492	10532	6055	34
H(17C)	3174	9592	7310	59
H(17D)	4496	10034	7710	59
H(18D)	3896	12359	7405	57
H(18E)	2534	11567	8068	57
H(18F)	2484	11802	7102	57
H(19D)	4712	6579	5412	64
H(19E)	3759	5759	6256	64
H(19F)	5554	5870	6109	64
H(21B)	6686	13725	5378	62
H(22B)	5753	15003	4281	78
H(23B)	5531	13843	3112	85
H(24B)	6242	11405	3040	57
H(25B)	7175	10126	4137	52

Chapter 4

Toward the Total Synthesis of (-)-Malyngolide

Introduction

Chiral molybdenum complexes can be employed as scaffolds for the asymmetric construction of highly functionalized heterocycles. Several methods have been developed in our lab to build 2,3,6-trisubstituted dihydropyrans ${ }^{110}$ and multi-substituted piperidines. ${ }^{111,112}$ More recently, our group member Dr. Yongqiang Zhang discovered a new type of reaction of molybdenum complexes. Treatment of allyl hydroxyl molybdenum complexes with HCl resulted in a novel rearrangement reaction, which is called semipinacol rearrangement (Scheme 72).

Scheme 72. Semipinacol Reaction of Pyranyl and Pyridinyl Molybdenum Scaffolds ${ }^{113}$

A possible mechanism of the stereoselective semipinacol reaction is shown in Scheme 73. As observed in traditional pinacol rearrangement, R groups that possess the ability to stabilize a carbon cation prefer to rearrange in both pyranyl and pyridinyl molybdenum

[^57]complexes. This rearrangement provides an innovative extension of the synthetic power of molybdenum scaffolds in the construction of quaternary carbon centers in both dihydropyran and piperidine rings.

Scheme 73. Possible Mechanism of Semipinacol Rearrangement

(-)-Malyngolide (Figure 10) is a naturally occurring δ-lactonic compound, which was isolated from marine algae and exhibits antibiotic activity against pathogenic species of Mycobacterium smegmatis and Streptococcus pyngenes. ${ }^{114}$ Since the first paper published by Mukaiyama in $1980,{ }^{115}$ a number of reports have appeared about the total synthesis of (-)-malyngolide. ${ }^{116}$ Normally, the quaternary carbon center in (-)-malyngolide was built up by preparation of a stereogenic tertiary alcohol followed by subsequent ring closure ${ }^{116 b, c, e, f, g}$. Herein, a synthetic route to (-)-malyngolide was proposed, as shown in Scheme 74, in which the semipinacol rearrangement was utilized as the key transformation to build the chiral quaternary carbon center.

[^58]
(-)-malyngonlide

Figure 10. (-)-Malyngolide

Scheme 74. Proposed Synthetic Route to (-)-Malyngolide

Results and Discussion

The Synthesis of 3-Methyl-5-oxopyranyl Molybdenum Scaffold 147

The synthesis of 3-methyl-5-oxopryanyl scaffold 147 commenced with the preparation of
enone $\mathbf{1 4 4},{ }^{117}$ which was synthesized via oxymercuration of commercially available propargyl ether followed by intramolecular aldol condensation and dehydration. These reactions gave satisfactory yields as shown in Scheme 75. With enone 144 in hand, molybdenum complex 145 was obtained by metalation of 144 under standard conditions ${ }^{118}$ in 62% yield.

Scheme 75. Synthesis of Molybdenum Complex 144

Treatment of complex $\mathbf{1 4 5}$ with solid $\mathrm{Ph}_{3} \mathrm{CPF}_{6}$ at $-78{ }^{\circ} \mathrm{C}$ followed by addition of $\mathrm{Et}_{3} \mathrm{~N}$ at 0 ${ }^{\circ} \mathrm{C}$ afforded the unsaturated molybdenum complex 146 (Scheme 76). However, as a one-pot reaction, the yield of 146 was relatively low (33\%).

Scheme 76. One-pot Synthesis of Molybdenum Complex 146

With the intention of increasing the yield, this reaction was carried out in two separate steps. The hydride abstraction of complex 145 gave diene complex in satisfactory yield

[^59](93\%) (Scheme 77). Although there are two possible sites for the hydride abstraction, only one regio-isomer of the cationic diene complex was observed. Attempts to determine the structure of diene by ${ }^{1} \mathrm{H}$ NOE experiment failed to find the desired NOE effect (Figure 11) since the cationic diene complex decomposed very quickly (30 min $60 \mathrm{~min})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Scheme 77. Hydride Abstraction of Compound 145

148

149

Figure 11. Expected NOE Effects in Cationic Diene 148 and 149

To confirm the structure, a crystal of diene complex suitable for a diffraction study was grown in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes at $-10{ }^{\circ} \mathrm{C} .{ }^{119}$ As shown in Figure 12 , the structure of cationic diene molybdenum complex was confirmed as compound 148 by the X-ray diffraction study; hence the hydride abstraction went through path A as shown in Scheme 77. The regioselectivity of the hydride abstraction with $\mathrm{Ph}_{3} \mathrm{CPF}_{6}$ is consistent with the

[^60]observation of Pearson ${ }^{120}$ in the hydride abstraction of organoiron π-complexes, which was rationalized by the frontier molecular orbital theory. According to his arguments, the hydride abstraction will place the strongest π-donor ${ }^{121}$ in the C-3 position (Scheme 77), and generates the most stable cationic complex.

Figure 12. ORTEP View of Cationic Diene (\pm)-148

Started from diene 148, the deprotonation only afforded complex 146 in 15% yield (Scheme 78). Different bases $\left(\mathrm{Et}_{3} \mathrm{~N}, \mathrm{KOSiMe}_{3}\right.$ and KHMDS) and solvents (acetonitrile, nitromethane, t-butyldimethyl ether, diethyl ether) were examined, but none of them improved the yield.

[^61]
Scheme 78. Synthesis of Molybdenum Complex 146 from Diene 148

During the study of the deprotonation reaction of compound $\mathbf{1 4 8}$, dimers $150{ }^{122}$ were isolated from the reaction mixture (Scheme 79). The dimers 150 might derive from the nucleophilic addition of unsaturated molybdenum complex 146 to the diene complex 148.

To avoid the potential dimerization between 146 and 148, the addition sequence of molybdenum diene complex 148 and different bases was intentionally reversed (addition of a solution of diene 148 into a solution of base). Gratifyingly, the yield was improved to 71% on a 550 mg scale (Table 18, entry 7). Yields of 146 using different bases and solvents are summarized in Table 18.

Scheme 79. Possible Route to Dimers 150

[^62]Table 18. Optimization of the Synthesis of Molybdenum Complex 146

Entry	Base		Conditions	Solvent	Yield (\%)
1	$\mathrm{Et}_{3} \mathrm{~N}$		10 equiv	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	15
2	KOSiMe_{3}		5 equiv	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	19
3	KHMDS		1.2 equiv	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	20
4	$\mathrm{Et}_{3} \mathrm{~N}$		10 equiv	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	48
5	$\mathrm{Et}_{3} \mathrm{~N}$		10 equiv	TBME	32
6	$\mathrm{Et}_{3} \mathrm{~N}$		10 equiv	$\mathrm{Et}_{2} \mathrm{O}$	34
7	$\mathrm{Et}_{3} \mathrm{~N}$	10 equid	iv (reverse addition)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	71

Finally, treatment of complex $\mathbf{1 4 6}$ with 0.5 M HCl in ethanol afforded 3-methyl-5-oxopyranyl scaffold 147 in 90% yield (Scheme 80).

Scheme 80. Synthesis 3-Methyl-5-Oxopyranyl Scaffold 147

Model Study toward the Synthesis of (-)-Malyngolide

Since 3-methyl-5-oxopyranyl scaffold 147 and 5-oxopyranyl scaffold 86 (Figure 13) share a similar pyranyl skeleton with a carbonyl group at C-5, molybdenum complex 86 was chosen to carry out the model study toward the synthesis of (-)-malyngolide.

147

86

Figure 13. Molybdenum Complexes 86 and 147

Conversion of 5-oxopyranyl complex $\mathbf{8 6}$ to hydroxyl complex $\mathbf{1 5 1}$ was accomplished by an aldol reaction and subsequent mesylation and dehydration (Scheme 81). Although the dehydration gave a high yield of complex 152, the yield of the aldol reaction was only 33%. This result might due to the poor solubility of paraformaldehyde in THF. Even if the HCHO gas was introduced to this reaction, at $-78^{\circ} \mathrm{C}$ the gas HCHO easily solidified again.

Scheme 81. Synthesis of Enone 152

Compared to traditional aldol reaction, the Mukaiyam-aldol reaction of complex $\mathbf{8 6}$ with trioxane afforded 151 in higher yield (50\%) (Scheme 82).

Scheme 82. Mukaiyama-aldol Reaction of Complex 86 with Trioxane

The nine carbon Grignard reagent needed for the synthesis of (-)-malyngolide was obtained from the vinyl bromide 153. Compound 153 was prepared following a literature procedure. ${ }^{123}$ As can be seen from Scheme $83,2,3$-dibromo carboxylic acid was readily prepared by bromination of the trans-2-decenoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Microwave irradiation (20 seconds) of anti-2,3 dibromoalkanoic acid in DMF, in the presence of 1.05 equiv of triethylamine, gave the corresponding vinyl bromide 153 as a mixture of both Z and E isomers in excellent yields.

Scheme 83. Synthesis of Grignard Reagent 154

Addition of Grignard reagent 154 to compound 152 gave a moderate yield of the tertiary alcohol 155 (54\%) (Scheme 84).

Scheme 84. Synthesis of Complex 155

152

155

Attempts to Carry out the Key Semipinacol Rearrangement

In the proposed synthetic route to (-)-malyngolide, the epoxidation induced semipinacol

[^63]reaction was expected not only to introduce the quaternary carbon center, but also to install the requisite hydroxyl group (Scheme 85). Epoxidation should take place at the more electron-rich exocyclic double bond, and generate a cationic intermediate which would initiate the semipinacol rearrangement.

Scheme 85. Proposed Epoxidation-induced Semipinacol Reaction

Unfortunately, the model study of complex $156{ }^{124}$ with m-CPBA and tert-butyl hydroperoxide in the presence of vanadyl acetylacetonate ${ }^{125}$ only afforded the recovered starting material and possible demetalation products (Scheme 86). Also, no epoxide formation was observed. Similar to epoxidation, dihydroxylation with commercially available AD-mix- β (with or without of $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$) ${ }^{126}$ only led to the recovery of the starting material.

[^64]${ }^{125}$ Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. 1973, 95, 6136-6137.
${ }^{126}$ Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483-2547.

Scheme 86. Epoxidation of Complex 156

156

Since attempts to directly introduce a hydroxyl group by semipinacol rearrangement were not successful, other electrophiles that would react with the double bond through a cationic or bridged cationic intermediate and introduce a heteroatom were examined (Scheme 87). These electrophiles included [bis(acetoxy)iodo]benzene, 4-nitrobenzenesulfenyl chloride, mercury acetate (oxymercuration) and iodine-silver trifluoroacetate.

Scheme 87. Attempts to Semipinacol Reaction

156

Among these efforts, only iodine-silver trifluoroacetate successfully initiated the semipinacol rearrangement of complex 156, and provided the desired semipinacol adduct 157 in 49% yield in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 88). In this reaction, the combination of iodine and $\mathrm{AgOCOCF}_{3}$ generates electrophilic iodine trifluoroacetate $\left(\mathrm{IOCOCF}_{3}\right)$ as the reactive iodine source. According to the observation of Lipshutz, ${ }^{127}$ solvents played a major role in the efficiency of reactions between allylic alcohols and IOCOCF_{3}. Acetonitrile is the

[^65]most efficient solvent of those examined. Hence, the solvent was changed from dichloromethane to acetonitrile, and the yield was improved dramatically. The best yield of complex 157 achieved was 82%.

Scheme 88. IOCOCF 3 Induced Semipinacol Rearrangement

Efforts to transfer the iodine in complex $\mathbf{1 5 7}$ to an acetoxyl group, a hydroxyl group and a benzoyloxyl group failed to give the substitution product under various conditions (Scheme 89). The low reactivity of nucleophilic substitution might come from steric hindrance of the iodide which is adjacent to a quaternary carbon center.

Scheme 89. Attempts to Substitute Iodine in Complex 157

Catalytic hydrogenation to reduce the double bond in complex 157 (Scheme 90) using different catalysts including $\mathrm{Pd} / \mathrm{C}, \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{PtO}_{2}, \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ were probed, but all of them gave a mixture of 157 and 158. Since complexes 157 and 158 are inseparable by
simple silica gel chromatography, hydrogenation conditions still need to be optimized.

Scheme 90. Catalytic Hydrogenation of Complex 157

Finally, all attempts to reduce the carbonyl group in complex 158 were also fruitless (Scheme 91). When complex 158 was treated with NaBH_{4}, starting materials could be recovered, and decomposition was observed. Whereas when 158 was treated with LiAlH_{4} or ${ }_{L}$-Selectride, the reaction mixture was easily decomposed on the rotary evaporator. ${ }^{128}$

Scheme 91. Hydride Addition of Complex 158

Conclusion

Racemic 3-methyl-5-oxopyranyl molybdenum complex 147 was prepared from commercially available propargyl ether in six steps. As a model study, through a Mukaiyama-aldol reaction and the subsequent dehydration, an exocyclic double bond was introduced to afford 5-oxopyranyl molybdenum complex 86. The nucleophilic

[^66]addition of the 9-carbon aliphatic Grignard reagent 154 to enone 152 gave the desired molybdenum diene 155. Iodine-silver trifluoroacetate successfully initiated the semipinacol rearrangement of complex 156. However, further attempts to manipulate complex 156 towards (-)-malyngolide were not successful.

Experimental Section

145

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)- $\boldsymbol{\eta}$-(3,4,5)-3-methoxyl-5-

 methyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-145.In a Schlenk flask, $(\mathrm{DMF})_{3} \mathrm{Mo}(\mathrm{CO})_{3}(1.7 \mathrm{~g}, 26.8 \mathrm{mmol}, 1.2$ equiv) was dissolved in dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at room temperature. To this solution, a solution of 5-methyl-2H-pyran-3-one ($2.5 \mathrm{~g}, 22.3 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added. After being stirred for $30 \mathrm{~min}, \mathrm{TBDMSCl}(3.7 \mathrm{~g}, 24.5 \mathrm{mmol}, 1.1$ equiv) was added. The reaction was stirred overnight at $25^{\circ} \mathrm{C}$, at which time solid $\mathrm{KTp}(5.7 \mathrm{~g}, 22.3 \mathrm{mmol}, 1$ equiv) was added to the solution. After $1 \mathrm{~h}, \mathrm{TBAF}(14.6 \mathrm{~g}, 55.8 \mathrm{mmol}, 2.5$ equiv) was added to reaction, and stirred for 30 min . Then $\mathrm{MeI}(63.3 \mathrm{~g}, 0.45 \mathrm{~mol}, 20$ equiv) was added to reaction. After being stirred for 24 h , the reaction mixture was concentrated by rotovap, and filtered through a short silica gel column by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a dark color solution. After concentration at low pressure, the residue was purified by column chromatography on silica gel (hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$) to afford 145 as a yellow solid (6.68 g, 61\%)
$(\pm)-145:$ IR $\left(\mathrm{cm}^{-1}\right): 2474(\mathrm{~m}), 1911(\mathrm{~s}), 1826(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.53$ (s, $1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 2 \mathrm{H}), 4.17$ $(\mathrm{d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.50(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $231.28,231.25,146.3,144.3,143.5,136.2,135.7,134.4,120.7,105.6,105.3,105.1,68.4$, 67.8, 63.3, 63.2, 53.8, 20.7. HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}]^{+}\right): 494.0766$. Found: 494.0779.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)- η-(3,4,5)-3-methoxyl-5-methyl-2H-pyran-3-yl]molybdenum, (\pm)-146.

In a Schlenk flask, $\mathrm{Et}_{3} \mathrm{~N}(0.87 \mathrm{~g}, 8.6 \mathrm{mmol}, 10$ equiv) was dissolved in dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen. Then a solution of complex $148(0.55 \mathrm{~g}, 0.86$ mmol, 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was slowly added to the reaction. After being stirred at that temperature for 3 h , the solution was warmed to room temperature, filtered through a layer of Celite, and concentrated. Purification by column chromatography on silica gel (hexanes-ethyl acetate 4:1) afforded 146 as a yellow solid (71\%).
(\pm)-146: $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 2482(\mathrm{~m}), 1942(\mathrm{~s}), 1849(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 226.7$,
$222.7,149.9,145.5,142.4,142.1,136,4,136.1,134.3,112.9,107.9,105.5,105.3,105.2$, 61.4, 55.2, 52.8, 15.3. HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 493.0688$. Found: 493.0692.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S)- η-(2,3,4)-3-methyl-5-oxo-5,6-

dihydro-2H-pyran-2-yl]molybdenum, (\pm)-147.

Complex 146 ($43.3 \mathrm{mg}, 0.09 \mathrm{mmol}, 1$ equiv) was dissolved in a solution of $\mathrm{HCl} / \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1 / 8 / 1)$. Then the solution was stirred at room temperature for 2 h . After quenching the reaction with saturated NaHCO_{3}, the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} x \mathrm{3})$. The organic layers were collected, and dried over MgSO_{4}. Purification by column chromatography on silica gel (hexanes-ethyl acetate 2:1) afforded $147(0.38 \mathrm{~g}, 90 \%)$ as a yellow solid.
(\pm)-147: IR (cm^{-1}): $2490(\mathrm{~m}), 1965$ (s), 1876 (s), $1652(\mathrm{~s}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.39(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{t}, 1 \mathrm{H})$, $6.26(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.6(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=18.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 223.6$, $221.8,194.7,146.9,143.4,142.5,137.0,136.6,134.6,108.4,106.1,106.0,105.7,72.0$, 68.5, 65.6, 16.2. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 479.0531$. Found:
479.0535.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)- η-(2,3,4,5)-3-methoxyl-5-

 methyl-2H-pyran-3-yl]molybdenum hexaflourophosphate (\pm)-148.In a Schlenk flask, complex $145(0.4 \mathrm{~g}, 0.81 \mathrm{mmol}, 1$ equiv) was dissolved in dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under nitrogen. Then solid $\operatorname{TrPF}_{6}(0.35 \mathrm{~g}, 0.89 \mathrm{mmol}$, 1.1 equiv) was added to the reaction. After being stirred at that temperature for 1 h , the solution was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for another 4.5 h at which time TBME was added to the reaction to form a brown precipitate. After removal of solvents, the precipitate was washed by TBME ($2 \times 50 \mathrm{~mL}$), and dried by vacuum.
$(\pm)-\mathbf{1 4 8}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.52(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.21(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}$, $3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H})$.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,6S)- η-(2,3,4)-5-oxo-6-hydroxymethyl-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-151.

In a Schlenk flask, complex 86 ($1.0 \mathrm{~g}, 2 \mathrm{mmol}, 1$ equiv) was dissolved in dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature under nitrogen. Then $\mathrm{Et}_{3} \mathrm{~N}(0.36 \mathrm{~mL}, 2.4 \mathrm{mmol}, 1.2$ equiv) was added to reaction. After 5 min stirring, TBSOTf ($0.52 \mathrm{ml}, 2.1 \mathrm{mmol}, 1.05$ equiv) was added to reaction. The reaction was stirred at room temperature for another 30 min . After that, the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. Then a premixed mixture $\left(-78{ }^{\circ} \mathrm{C}\right)$ of $\mathrm{TiCl}_{4}(3.20 \mathrm{ml}, 3 \mathrm{mmol}, 1.5$ equiv) and trioxane ($0.59 \mathrm{~g}, 6 \mathrm{mmol}, 3$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added to reaction. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 4 h , the reaction was slowly warmed to room temperature, and stirred overnight. After quenched the reaction with distilled water, the aqueous layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were collected, and dried over MgSO_{4}. Purification by column chromatography on silica gel (hexanes-ethyl acetate 1:2) afforded 151 as a yellow solid (50\%).
(\pm)-151: IR (cm^{-1}): 3417 (br m), 1961 (s), 1872 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=4.8,2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.31(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (dd, $J=6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=6.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.73(\mathrm{dd}, J=12.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 224.6, 223.6, 194.4, 147.7, 144.0, 141.8, 136.6 (2C), 135.0, 107.6, 106.6, 106.3, 106.0, 76.9, 70.2, 65.2, 63.3. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 495.0480$. Found: 495.0484.

152

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S)- $\boldsymbol{\eta}$-(2,3,4)-5-oxo-6-methylene-5,6

 -dihydro-2H-pyran-2-yl]molybdenum, (\pm)-152.To a solution of complex 151 ($0.26 \mathrm{~g}, 0.53 \mathrm{mmol}$, 1 equiv) in dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{mL})$, DMAP ($0.0968 \mathrm{~g}, 0.8 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.11 \mathrm{ml}, 0.8 \mathrm{mmol}, 1.5$ equiv) were added at room temperature. After being stirred for $5 \mathrm{~min}, \mathrm{MsCl}(54 \mu \mathrm{l}, 0.69 \mathrm{mmol}$, 1.3 equiv) was added to the reaction. The solution was stirred for 10 min . Then the reaction mixture was filtered through a short silica column by EtOAc. The solution was concentrated and dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added under N_{2}. After the solution was cooled to $0^{\circ} \mathrm{C}, \mathrm{DBU}(0.12 \mathrm{~mL}, 0.8 \mathrm{mmol}, 1.5$ equiv) was added to the reaction. After being stirred at $0^{\circ} \mathrm{C}$ for 10 min , the solution was filtered through a short silica column again by EtOAc. The solution was concentrated, and purified by column chromatography on silica gel (hexanes- ethyl acetate $2: 1$) to afford 152 as a yellow solid (88\%).
(\pm)-152: IR (cm^{-1}): 2490 (w), 1965 (s), 1884 (s), 1660 (s). ${ }^{1} \mathrm{H}$ NMR (600 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 8.52(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=$ $4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 224.4,222.5,196.7,180.6,150.2,147.7,144.0,141.7$, 136.7, 136.6, 135.0, 106.7, 106.4, 106.1, 103.7, 97.9, 72.3, 67.4. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$477.0375. Found: 477.0387.

156

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,5S)- η-(2,3,4)-5-hydroxy-6-

 methylene-5-vinyl-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-156.In a flame dried Schlenk flask, complex 152 ($30 \mathrm{mg}, 0.063 \mathrm{mmol}, 1$ equiv) was dissolved in dry, degassed THF (1 mL) at $-40^{\circ} \mathrm{C}$ under nitrogen. Then vinyl magnesium bromide (1.0 M in THF, $0.3 \mathrm{~mL}, 0.3 \mathrm{mmol}, 5$ equiv) was added to reaction. After being stirred for 45 min , the reaction was cooled to $-78^{\circ} \mathrm{C}$, and quenched with $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$. After warmed to room temperature, the reaction mixture was partitioned with brine and ethyl acetate. The organic layers were collected, and dried over MgSO_{4}. Purification by column chromatography on silica gel (hexanes-ethyl acetate $2: 1$) afforded 156 as a yellow solid (66\%).
(\pm)-156: IR (cm^{-1}): 2486 (m), 1945 (s), 1853 (s), 1652 (s), 1505 (m). ${ }^{1} \mathrm{H}$ NMR (600
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.48(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ $(\mathrm{dd}, J=4.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=17.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, 1H), $4.65(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 232.0,224.4,158.7,146.8,144.3,142.8,141.5,136.2,136.0$, $134.5,112.0,106.1,105.9,105.7,105.5,92.6,76.5,76.1,60.3$. HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right): 505.0688$. Found: 505.0702.

155
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,5S)- $\boldsymbol{\eta}$-(2,3,4)-5-hydroxy-6-methylene-5-(non-1-enyl)-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-155 (as a mixture of Z and E isomers).

In a flame dried Schlenk flask, complex $152(50 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was dissolved in dry, degassed THF (2 mL) at $-40{ }^{\circ} \mathrm{C}$ under nitrogen. Then a solution of $\mathbf{1 5 4}$ in THF $(0.35 \mathrm{~mL}, 0.25 \mathrm{mmol}, 4$ equiv) was added to the reaction. After being stirred for 60 min , the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$, and quenched with water. After warmed to room temperature, the reaction mixture was washed with brine and ethyl acetate. The organic layers were collected, and dried over MgSO_{4}. Purification by column chromatography on
silica gel (hexanes-ethyl acetate 2:1) afforded 155 as a yellow solid (54\%).
Since Z-155 and E-155 can not be separated by simple column chromatography on silica gel, the following ${ }^{l} H$ NMR data of the mixture of Z and E isomers are only for reference.
$(\pm)-\mathbf{1 5 5 :}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.47(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=1.8 \mathrm{~Hz})$, $7.93(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~m}$, $1 \mathrm{H}), 6.28(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dt}$, $0.3 \mathrm{H}), 5.75(\mathrm{dd}, 0.3 \mathrm{H}), 5.64(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dt}, J=12.8 \mathrm{~Hz}, 9.6,1 \mathrm{H}), 4.80$ $(\mathrm{dd}, J=10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.62(\mathrm{~s}, 0.3 \mathrm{H}), 4.43(\mathrm{~s}$, $1.3 \mathrm{H}), 3.63(\mathrm{dd}, 0.3 \mathrm{H}), 3.59(\mathrm{dd}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.6-2.4(\mathrm{~m}, 2 \mathrm{H}), 1.4-1.2(\mathrm{~m}, 10 \mathrm{H})$, $0.88(\mathrm{~m}, 3 \mathrm{H})$.

157
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,6S)- η-(2,3,4)-5-oxo-6-
(iodomethyl)-6-vinyl-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-157.

In a 10 mL Schlenk flask which was protected by aluminum foil, $\mathrm{I}_{2}(18.4 \mathrm{mg}, 0.07$ mmol, 1.1 equiv) was added to a suspension of silver trifluoroacetate ($17.5 \mathrm{mg}, 0.08$ mmol, 1.2 equiv) in dry $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ under N_{2} at room temperature. After being stirred for 30 min , the reaction mixture was cooled to $-40^{\circ} \mathrm{C}$. Then a solution of 156 (32.3 $\mathrm{mg}, 0.064 \mathrm{mmol}, 1.0$ equiv) in dry $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was slowly added to reaction. After
being stirred for 30 min , the reaction was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The reaction mixture was slowly warmed to room temperature, and washed with $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}. Purification by column chromatography on silica gel (hexanes- ethyl acetate) afforded 157 as a yellow solid (82\%).
(\pm)-157: IR (cm^{-1}): 2490 (m), 1965 (s), 1880 (s$), 1652$ (s). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.54(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.32(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J$ $=16.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=$ $6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, 1H). HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BIMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 630.9654 . Found: 630.9659.

X-Ray Crystallographic Study:

A suitable crystal of cationic diene 148 was coated with Paratone N oil, suspended in a small fiber loop and placed in a cooled nitrogen gas stream at 173 K on a Bruker D8 SMART APEX CCD sealed tube diffractometer with graphite monochromated MoK_{α} ($0.71073 \AA$) radiation. Data were measured using a series of combinations of phi and omega scans with 10 s frame exposures and 0.3° frame widths. Data collection, indexing
and initial cell refinements were all carried out using SMART ${ }^{129}$ software. Frame integration and final cell refinements were done using SAINT ${ }^{130}$ software. The final cell parameters were determined from least-squares refinement on 5808 reflections. The SADABS ${ }^{131}$ program was used to carry out absorption corrections.

The structure was solved using Direct methods and difference Fourier techniques (SHELXTL, V6.12). ${ }^{132}$ Hydrogen atoms were placed their expected chemical positions using the HFIX command and were included in the final cycles of least squares with isotropic U_{ij} 's related to the atom's ridden upon. The $\mathrm{C}-\mathrm{H}$ distances were fixed at 0.93 \AA (aromatic and amide), $0.98 \AA$ (methine), $0.97 \AA$ (methylene), or $0.96 \AA$ (methyl). All non-hydrogen atoms were refined anisotropically. Scattering factors and anomalous dispersion corrections are taken from the International Tables for X-ray Crystallography. ${ }^{133}$ Structure solution, refinement, graphics and generation of publication materials were performed by using SHELXTL, V6.12 software. Additional details of data collection and structure refinement are given in Table 19.

[^67]Table 19. Crystal data and structure refinement for complex 148

Identification code	148
Empirical formula	C21 H26 B Cl6 F6 Mo N6 O4 P
Formula weight	890.90
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$a=13.7762(15) \AA \quad \alpha=90^{\circ}$.
	$b=12.5351(13) \AA \quad \beta=96.488(2)^{\circ}$.
	$\mathrm{c}=19.665(2) \AA \quad \gamma=90^{\circ}$.
Volume	3374.1(6) \AA^{3}
Z	4
Density (calculated)	$1.754 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.984 \mathrm{~mm}^{-1}$
$F(000)$	1776
Crystal size	$0.40 \times 0.35 \times 0.15 \mathrm{~mm}^{3}$
Theta range for data collection	1.49 to 28.35°.
Index ranges	$-18<=\mathrm{h}<=18,-16<=\mathrm{k}<=16,-26<=1<=26$
Reflections collected	45507
Independent reflections	$8401[\mathrm{R}(\mathrm{int})=0.0435]$
Completeness to theta $=28.35^{\circ}$	99.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00 and 0.821634
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	8401 / 0 / 417
Goodness-of-fit on F^{2}	1.088
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0582, \mathrm{wR} 2=0.1616$
R indices (all data)	$\mathrm{R} 1=0.0714, \mathrm{wR} 2=0.1711$
Largest diff. peak and hole	2.089 and -1.158 e. \AA^{-3}

Table 20. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ or $148 . U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Mo}(1)$	$1151(1)$	$9953(1)$	$1998(1)$	$19(1)$
$\mathrm{B}(1)$	$3019(3)$	$8271(4)$	$1908(2)$	$27(1)$
$\mathrm{C}(1)$	$908(3)$	$11882(3)$	$1940(2)$	$29(1)$
$\mathrm{C}(2)$	$1519(3)$	$11645(3)$	$2562(2)$	$27(1)$
$\mathrm{C}(3)$	$1101(3)$	$10947(3)$	$3001(2)$	$25(1)$
$\mathrm{C}(4)$	$100(3)$	$10680(3)$	$2804(2)$	$29(1)$
$\mathrm{C}(5)$	$-539(3)$	$11523(4)$	$2431(2)$	$33(1)$
$\mathrm{C}(6)$	$-440(4)$	$10039(4)$	$3292(2)$	$35(1)$
$\mathrm{C}(7)$	$3132(4)$	$11583(5)$	$3141(2)$	$42(1)$
$\mathrm{C}(8)$	$1814(3)$	$8616(3)$	$3449(2)$	$29(1)$
$\mathrm{C}(9)$	$2494(4)$	$7858(4)$	$3700(2)$	$37(1)$
$\mathrm{C}(10)$	$3025(3)$	$7638(4)$	$3173(2)$	$34(1)$
$\mathrm{C}(11)$	$669(3)$	$8112(3)$	$854(2)$	$28(1)$
$\mathrm{C}(12)$	$1109(4)$	$7242(4)$	$580(2)$	$34(1)$
$\mathrm{C}(13)$	$2022(4)$	$7182(3)$	$926(2)$	$32(1)$
$\mathrm{C}(14)$	$3065(3)$	$11060(4)$	$1430(2)$	$33(1)$
$\mathrm{C}(15)$	$4009(4)$	$10797(4)$	$1302(3)$	$40(1)$
$\mathrm{C}(16)$	$4124(3)$	$9745(4)$	$1501(3)$	$37(1)$
$\mathrm{C}(17)$	$582(3)$	$10576(3)$	$1102(2)$	$28(1)$
$\mathrm{C}(18)$	$-175(3)$	$9341(3)$	$1994(2)$	$27(1)$
$\mathrm{N}(1)$	$1923(2)$	$8856(3)$	$2793(2)$	$23(1)$
$\mathrm{N}(2)$	$2683(3)$	$8243(3)$	$2627(2)$	$26(1)$
$\mathrm{N}(3)$	$1294(2)$	$8558(3)$	$1351(2)$	$24(1)$
$\mathrm{N}(4)$	$2133(3)$	$7973(3)$	$1391(2)$	$25(1)$
$\mathrm{N}(5)$	$2646(3)$	$10222(3)$	$1711(2)$	$26(1)$
$\mathrm{N}(6)$	$3315(2)$	$9416(3)$	$1746(2)$	$26(1)$
$\mathrm{O}(1)$	$-60(2)$	$12129(3)$	$1953(2)$	$35(1)$
$\mathrm{O}(2)$	$2417(2)$	$12054(2)$	$2630(2)$	$31(1)$
$\mathrm{O}(3)$	$246(3)$	$10866(3)$	$583(2)$	$45(1)$

$\mathrm{O}(4)$	$-930(2)$	$8948(3)$	$1931(2)$	$38(1)$
$\mathrm{P}(1)$	$1857(1)$	$3814(1)$	$65(1)$	$33(1)$
$\mathrm{F}(1)$	$1588(3)$	$2938(3)$	$-513(2)$	$59(1)$
$\mathrm{F}(2)$	$2563(3)$	$4378(3)$	$-413(2)$	$70(1)$
$\mathrm{F}(3)$	$2118(3)$	$4690(3)$	$640(2)$	$58(1)$
$\mathrm{F}(4)$	$1172(4)$	$3239(4)$	$536(2)$	$95(2)$
$\mathrm{F}(5)$	$2752(3)$	$3107(3)$	$390(2)$	$77(1)$
$\mathrm{F}(6)$	$994(3)$	$4532(4)$	$-275(2)$	$71(1)$
$\mathrm{C}(1 \mathrm{~S})$	$2835(6)$	$668(6)$	$9555(4)$	$71(2)$
$\mathrm{C}(2 \mathrm{~S})$	$5153(6)$	$3396(8)$	$10013(4)$	$80(2)$
$\mathrm{C}(3 \mathrm{~S})$	$3482(5)$	$4073(5)$	$1966(4)$	$59(2)$
$\mathrm{Cl}(1 \mathrm{~S})$	$3309(2)$	$317(2)$	$8801(1)$	$76(1)$
$\mathrm{Cl}(2 \mathrm{~S})$	$2101(2)$	$-336(2)$	$9829(1)$	$87(1)$
$\mathrm{Cl}(3 \mathrm{~S})$	$5255(2)$	$4066(2)$	$9256(1)$	$79(1)$
$\mathrm{Cl}(4 \mathrm{~S})$	$5470(2)$	$2041(2)$	$9968(1)$	$84(1)$
$\mathrm{Cl}(5 \mathrm{~S})$	$3508(2)$	$5411(1)$	$2168(1)$	$75(1)$
$\mathrm{Cl}(6 \mathrm{~S})$	$4644(2)$	$3533(2)$	$1947(1)$	$86(1)$

Table 21. Bond lengths [\AA] and angles [${ }^{\circ}$] for 148

$\mathrm{Mo}(1)-\mathrm{C}(18)$	$1.980(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.434(6)$
$\mathrm{Mo}(1)-\mathrm{C}(17)$	$2.004(4)$	$\mathrm{C}(2)-\mathrm{O}(2)$	$1.333(5)$
$\mathrm{Mo}(1)-\mathrm{N}(3)$	$2.184(3)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.398(6)$
$\operatorname{Mo}(1)-\mathrm{N}(5)$	$2.223(4)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.429(6)$
$\operatorname{Mo}(1)-\mathrm{N}(1)$	$2.255(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.511(6)$
$\operatorname{Mo}(1)-\mathrm{C}(3)$	$2.342(4)$	$\mathrm{C}(4)-\mathrm{C}(6)$	$1.511(6)$
$\mathrm{Mo}(1)-\mathrm{C}(2)$	$2.420(4)$	$\mathrm{C}(5)-\mathrm{O}(1)$	$1.427(6)$
$\mathrm{Mo}(1)-\mathrm{C}(4)$	$2.441(4)$	$\mathrm{C}(7)-\mathrm{O}(2)$	$1.452(6)$
$\mathrm{Mo}(1)-\mathrm{C}(1)$	$2.443(4)$	$\mathrm{C}(8)-\mathrm{N}(1)$	$1.350(5)$
$\mathrm{B}(1)-\mathrm{N}(6)$	$1.535(6)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.386(6)$
$\mathrm{B}(1)-\mathrm{N}(2)$	$1.537(6)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.363(7)$
$\mathrm{B}(1)-\mathrm{N}(4)$	$1.544(6)$	$\mathrm{C}(10)-\mathrm{N}(2)$	$1.356(5)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.371(6)$	$\mathrm{C}(11)-\mathrm{N}(3)$	$1.348(5)$

$\mathrm{C}(11)-\mathrm{C}(12)$	$1.385(6)$	$\mathrm{C}(17)-\mathrm{Mo}(1)-\mathrm{C}(3)$	119.13(16)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.362(7)$	$\mathrm{N}(3)-\mathrm{Mo}(1)-\mathrm{C}(3)$	158.45(13)
$\mathrm{C}(13)-\mathrm{N}(4)$	$1.346(5)$	$\mathrm{N}(5)-\mathrm{Mo}(1)-\mathrm{C}(3)$	104.45(14)
$\mathrm{C}(14)-\mathrm{N}(5)$	$1.347(5)$	$\mathrm{N}(1)-\mathrm{Mo}(1)-\mathrm{C}(3)$	78.28(13)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.393(7)$	$\mathrm{C}(18)-\mathrm{Mo}(1)-\mathrm{C}(2)$	119.09(16)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.379(7)$	$\mathrm{C}(17)-\mathrm{Mo}(1)-\mathrm{C}(2)$	95.82(16)
$\mathrm{C}(16)-\mathrm{N}(6)$	1.327(6)	$\mathrm{N}(3)-\mathrm{Mo}(1)-\mathrm{C}(2)$	160.11(14)
$\mathrm{C}(17)-\mathrm{O}(3)$	$1.133(5)$	$\mathrm{N}(5)-\mathrm{Mo}(1)-\mathrm{C}(2)$	80.29(14)
$\mathrm{C}(18)-\mathrm{O}(4)$	$1.146(5)$	$\mathrm{N}(1)-\mathrm{Mo}(1)-\mathrm{C}(2)$	99.12(13)
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.368(5)$	$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(2)$	34.10(14)
$\mathrm{N}(3)-\mathrm{N}(4)$	$1.364(5)$	$\mathrm{C}(18)-\mathrm{Mo}(1)-\mathrm{C}(4)$	62.13(16)
$\mathrm{N}(5)-\mathrm{N}(6)$	$1.364(5)$	$\mathrm{C}(17)-\mathrm{Mo}(1)-\mathrm{C}(4)$	102.88(16)
$\mathrm{P}(1)-\mathrm{F}(4)$	1.571(4)	$\mathrm{N}(3)-\mathrm{Mo}(1)-\mathrm{C}(4)$	140.93(14)
$\mathrm{P}(1)-\mathrm{F}(6)$	1.578(4)	$\mathrm{N}(5)-\mathrm{Mo}(1)-\mathrm{C}(4)$	137.99(14)
$\mathrm{P}(1)-\mathrm{F}(3)$	1.588(3)	$\mathrm{N}(1)-\mathrm{Mo}(1)-\mathrm{C}(4)$	92.60(13)
$\mathrm{P}(1)-\mathrm{F}(2)$	1.592(4)	$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(4)$	34.69(14)
$\mathrm{P}(1)-\mathrm{F}(5)$	1.592(4)	$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(4)$	58.93(14)
$\mathrm{P}(1)-\mathrm{F}(1)$	1.594(3)	$\mathrm{C}(18)-\mathrm{Mo}(1)-\mathrm{C}(1)$	105.16(16)
$\mathrm{C}(1 \mathrm{~S})-\mathrm{Cl}(2 \mathrm{~S})$	1.737(7)	$\mathrm{C}(17)-\mathrm{Mo}(1)-\mathrm{C}(1)$	62.28(15)
$\mathrm{C}(1 \mathrm{~S})-\mathrm{Cl}(1 \mathrm{~S})$	$1.743(7)$	$\mathrm{N}(3)-\mathrm{Mo}(1)-\mathrm{C}(1)$	141.87(13)
$\mathrm{C}(2 \mathrm{~S})-\mathrm{Cl}(3 \mathrm{~S})$	$1.730(8)$	$\mathrm{N}(5)-\mathrm{Mo}(1)-\mathrm{C}(1)$	87.93(14)
$\mathrm{C}(2 \mathrm{~S})-\mathrm{Cl}(4 \mathrm{~S})$	1.759(10)	$\mathrm{N}(1)-\mathrm{Mo}(1)-\mathrm{C}(1)$	133.38(13)
$\mathrm{C}(3 \mathrm{~S})-\mathrm{Cl}(5 \mathrm{~S})$	$1.723(6)$	$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(1)$	59.66(14)
$\mathrm{C}(3 \mathrm{~S})-\mathrm{Cl}(6 \mathrm{~S})$	$1.742(7)$	$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(1)$	34.30(14)
		$\mathrm{C}(4)-\mathrm{Mo}(1)-\mathrm{C}(1)$	64.66(14)
$\mathrm{C}(18)-\mathrm{Mo}(1)-\mathrm{C}(17)$	83.02(18)	$\mathrm{N}(6)-\mathrm{B}(1)-\mathrm{N}(2)$	109.1(3)
$\mathrm{C}(18)-\mathrm{Mo}(1)-\mathrm{N}(3)$	80.32(15)	$\mathrm{N}(6)-\mathrm{B}(1)-\mathrm{N}(4)$	107.4(3)
$\mathrm{C}(17)-\mathrm{Mo}(1)-\mathrm{N}(3)$	81.54(15)	$\mathrm{N}(2)-\mathrm{B}(1)-\mathrm{N}(4)$	107.6(3)
$\mathrm{C}(18)-\mathrm{Mo}(1)-\mathrm{N}(5)$	159.88(15)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	120.6(4)
$\mathrm{C}(17)-\mathrm{Mo}(1)-\mathrm{N}(5)$	89.97(16)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Mo}(1)$	110.5(3)
$\mathrm{N}(3)-\mathrm{Mo}(1)-\mathrm{N}(5)$	80.00(13)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Mo}(1)$	72.0(2)
$\mathrm{C}(18)-\mathrm{Mo}(1)-\mathrm{N}(1)$	97.44(15)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	128.4(4)
$\mathrm{C}(17)-\mathrm{Mo}(1)-\mathrm{N}(1)$	162.53(15)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	117.0(4)
$\mathrm{N}(3)-\mathrm{Mo}(1)-\mathrm{N}(1)$	81.33(12)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	114.4(4)
$\mathrm{N}(5)-\mathrm{Mo}(1)-\mathrm{N}(1)$	83.71(12)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Mo}(1)$	121.9(3)
$\mathrm{C}(18)-\mathrm{Mo}(1)-\mathrm{C}(3)$	95.41(16)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Mo}(1)$	69.9(2)

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Mo}(1)$	$73.7(2)$	$\mathrm{O}(4)-\mathrm{C}(18)-\mathrm{Mo}(1)$	$173.4(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$115.5(4)$	$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{N}(2)$	$105.8(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Mo}(1)$	$76.0(2)$	$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{Mo}(1)$	$134.7(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Mo}(1)$	$76.4(2)$	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{Mo}(1)$	$119.4(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$117.3(4)$	$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{N}(1)$	$109.5(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	$118.8(4)$	$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{B}(1)$	$128.9(4)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)$	$112.2(4)$	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{B}(1)$	$121.6(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Mo}(1)$	$68.9(2)$	$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{N}(4)$	$106.6(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Mo}(1)$	$107.6(3)$	$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Mo}(1)$	$131.4(3)$
$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{Mo}(1)$	$125.8(3)$	$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{Mo}(1)$	$121.9(2)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$113.8(4)$	$\mathrm{C}(13)-\mathrm{N}(4)-\mathrm{N}(3)$	$109.1(3)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$110.5(4)$	$\mathrm{C}(13)-\mathrm{N}(4)-\mathrm{B}(1)$	$130.3(4)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$105.5(4)$	$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{B}(1)$	$120.6(3)$
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	$108.6(4)$	$\mathrm{C}(14)-\mathrm{N}(5)-\mathrm{N}(6)$	$106.3(4)$
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	$109.7(4)$	$\mathrm{C}(14)-\mathrm{N}(5)-\mathrm{Mo}(1)$	$132.4(3)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$105.7(4)$	$\mathrm{N}(6)-\mathrm{N}(5)-\mathrm{Mo}(1)$	$121.0(3)$
$\mathrm{N}(4)-\mathrm{C}(13)-\mathrm{C}(12)$	$109.0(4)$	$\mathrm{C}(16)-\mathrm{N}(6)-\mathrm{N}(5)$	$109.9(4)$
$\mathrm{N}(5)-\mathrm{C}(14)-\mathrm{C}(15)$	$109.9(4)$	$\mathrm{C}(16)-\mathrm{N}(6)-\mathrm{B}(1)$	$128.3(4)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$104.7(4)$	$\mathrm{N}(5)-\mathrm{N}(6)-\mathrm{B}(1)$	$120.6(3)$
$\mathrm{N}(6)-\mathrm{C}(16)-\mathrm{C}(15)$	$109.1(4)$	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(5)$	$114.5(3)$
$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{Mo}(1)$	$175.7(4)$	$\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{C}(7)$	$117.6(4)$
$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}(6)$	$92.2(3)$	$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(5)$	$89.3(3)$
$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}(3)$	$90.0(2)$	$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}(1)$	$89.9(2)$
$\mathrm{F}(6)-\mathrm{P}(1)-\mathrm{F}(3)$	$90.4(2)$	$\mathrm{F}(6)-\mathrm{P}(1)-\mathrm{F}(1)$	$89.3(2)$
$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}(2)$	$179.0(3)$	$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(1)$	$179.6(2)$
$\mathrm{F}(6)-\mathrm{P}(1)-\mathrm{F}(2)$	$88.7(3)$	$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(1)$	$89.6(2)$
$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(2)$	$90.5(2)$	$\mathrm{F}(5)-\mathrm{P}(1)-\mathrm{F}(1)$	$90.6(2)$
$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}(5)$	$\mathrm{Cl}(2 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{Cl}(1 \mathrm{~S})$	$111.6(4)$	
$\mathrm{F}(6)-\mathrm{P}(1)-\mathrm{F}(5)$	$\mathrm{Cl}(3 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})-\mathrm{Cl}(4 \mathrm{~S})$	$112.4(4)$	
$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(5)$	$178.0(3)$	$\mathrm{Cl}(5 \mathrm{~S})-\mathrm{C}(3 \mathrm{~S})-\mathrm{Cl}(6 \mathrm{~S})$	$112.8(4)$
	$89.8(2)$		

[^68]Table 22. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 148. The anisotropic isplacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathbf{U}^{11}+\ldots+2 h k a^{*} b^{*}\right.$ $\left.\mathrm{U}^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U13	U^{12}
Mo(1)	23(1)	18(1)	16(1)	1(1)	2(1)	0(1)
B(1)	25(2)	27(2)	28(2)	1(2)	3(2)	2(2)
C(1)	39(2)	23(2)	23(2)	1(2)	3(2)	0 (2)
C(2)	36(2)	22(2)	25(2)	-3(2)	6 (2)	-1(2)
C(3)	31(2)	25(2)	20(2)	-4(1)	5(2)	0(2)
C(4)	33(2)	27(2)	28(2)	-3(2)	9(2)	3(2)
C(5)	34(2)	30(2)	37(2)	-4(2)	9(2)	7(2)
C(6)	35(2)	41(3)	31(2)	-3(2)	13(2)	-2(2)
C(7)	40(3)	55(3)	30(2)	1(2)	-1(2)	-11(2)
C(8)	35(2)	29(2)	23(2)	4(2)	3(2)	-4(2)
C(9)	46(3)	38(2)	26(2)	12(2)	-8(2)	-1(2)
$\mathrm{C}(10)$	34(2)	31(2)	33(2)	9(2)	-7(2)	2(2)
C(11)	36(2)	26(2)	21(2)	-2(2)	1(2)	-4(2)
$\mathrm{C}(12)$	50(3)	29(2)	24(2)	-7(2)	6(2)	-5(2)
C(13)	44(3)	25(2)	29(2)	-4(2)	11(2)	3(2)
C(14)	40(2)	32(2)	28(2)	-1(2)	12(2)	-10(2)
$\mathrm{C}(15)$	43(3)	42(3)	39(2)	-4(2)	20(2)	-16(2)
C(16)	29(2)	45(3)	37(2)	-5(2)	10(2)	-3(2)
C(17)	35(2)	24(2)	23(2)	0 (2)	1(2)	3(2)
C(18)	26(2)	31(2)	24(2)	-2(2)	5(2)	3(2)
$\mathrm{N}(1)$	27(2)	22(2)	20(2)	2(1)	1(1)	1(1)
N(2)	27(2)	26(2)	26(2)	5(1)	-1(1)	2(1)
N(3)	28(2)	22(2)	20(2)	-1(1)	2(1)	$0(1)$
N(4)	29(2)	23(2)	24(2)	-1(1)	7(1)	1(1)
N(5)	32(2)	24(2)	23(2)	$0(1)$	6 (1)	0(1)
N(6)	22(2)	30(2)	26(2)	-2(1)	3(1)	-1(1)
$\mathrm{O}(1)$	40(2)	26(2)	37(2)	3(1)	5(1)	10(1)
$\mathrm{O}(2)$	38(2)	29(2)	27(2)	-4(1)	6(1)	-8(1)
$\mathrm{O}(3)$	64(2)	39(2)	27(2)	7(1)	-14(2)	4(2)
$\mathrm{O}(4)$	27(2)	43(2)	43(2)	-4(2)	7(1)	-6(1)

$\mathrm{P}(1)$	$46(1)$	$30(1)$	$22(1)$	$2(1)$	$3(1)$	$4(1)$
$\mathrm{F}(1)$	$85(3)$	$46(2)$	$42(2)$	$-14(1)$	$-5(2)$	$-6(2)$
$\mathrm{F}(2)$	$83(3)$	$74(3)$	$58(2)$	$-2(2)$	$30(2)$	$-19(2)$
$\mathrm{F}(3)$	$81(3)$	$47(2)$	$42(2)$	$-16(2)$	$-8(2)$	$10(2)$
$\mathrm{F}(4)$	$138(4)$	$91(3)$	$64(3)$	$8(2)$	$52(3)$	$-38(3)$
$\mathrm{F}(5)$	$95(3)$	$55(2)$	$71(3)$	$-8(2)$	$-33(2)$	$29(2)$
$\mathrm{F}(6)$	$62(2)$	$72(3)$	$75(3)$	$0(2)$	$-15(2)$	$25(2)$
$\mathrm{C}(1 \mathrm{~S})$	$99(6)$	$57(4)$	$63(4)$	$-16(3)$	$40(4)$	$-19(4)$
$\mathrm{C}(2 \mathrm{~S})$	$84(5)$	$104(7)$	$54(4)$	$1(4)$	$22(4)$	$14(5)$
$\mathrm{C}(3 \mathrm{~S})$	$60(4)$	$44(3)$	$67(4)$	$-1(3)$	$-15(3)$	$-2(3)$
$\mathrm{Cl}(1 \mathrm{~S})$	$73(1)$	$97(1)$	$62(1)$	$3(1)$	$28(1)$	$-3(1)$
$\mathrm{Cl}(2 \mathrm{~S})$	$101(2)$	$83(1)$	$90(1)$	$-26(1)$	$61(1)$	$-39(1)$
$\mathrm{Cl}(3 \mathrm{~S})$	$82(1)$	$97(2)$	$60(1)$	$4(1)$	$18(1)$	$-12(1)$
$\mathrm{Cl}(4 \mathrm{~S})$	$97(2)$	$79(1)$	$79(1)$	$-10(1)$	$25(1)$	$-11(1)$
$\mathrm{Cl}(5 \mathrm{~S})$	$120(2)$	$45(1)$	$58(1)$	$-1(1)$	$8(1)$	$10(1)$
$\mathrm{Cl}(6 \mathrm{~S})$	$75(1)$	$72(1)$	$102(2)$	$-23(1)$	$-24(1)$	$24(1)$

Table 23. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathbf{x}\right.$ $10{ }^{3}$) for 148

	x	y	z	$U(e q)$
$H(1)$	3573	7766	1875	32
$H(1)$	1239	12258	1582	34
$H(3)$	1455	10717	3449	30
H(5A)	-1120	11173	2185	40
H(5B)	-770	12016	2772	40
H(6A)	-1108	9901	3082	53
H(6B)	-461	10441	3718	53
H(6C)	-103	9360	3392	53
H(7A)	2915	11670	3595	63
H(7B)	3763	11940	3130	63
H(7C)	3202	10822	3043	63
H(8)	1337	8923	3702	35
H(9)	2573	7556	4146	45

$\mathrm{H}(10)$	3549	7142	3187	40
$\mathrm{H}(11)$	26	8357	713	34
$\mathrm{H}(12)$	832	6784	226	41
$\mathrm{H}(13)$	2502	6665	850	39
$\mathrm{H}(14)$	2760	11731	1333	39
$\mathrm{H}(15)$	4473	11243	1118	48
$\mathrm{H}(16)$	4690	9324	1469	44
$\mathrm{H}(1 \mathrm{~S} 1)$	3379	813	9917	85
$\mathrm{H}(1 \mathrm{~S} 2)$	2446	1330	9479	85
$\mathrm{H}(2 \mathrm{~S} 1)$	4472	3453	10125	96
$\mathrm{H}(2 \mathrm{~S} 2)$	5584	3740	10387	96
$\mathrm{H}(3 \mathrm{~S} 1)$	3102	3973	1512	70
$\mathrm{H}(3 \mathrm{~S} 2)$	3144	3681	2307	70

[^0]: ${ }^{1}$ For recent reviews, see: (a) Fairlamb, I. J. S. Annu, Pre. Prog. Chem., Sect. B 2003, 99, 138-160. (b) Fratt, R.; Christie, S. D. R. J. Chem. Soc., Perkin Trans. 1 2002, 447-458. (c) Fletcher, A. J.; Christie, S. D. J. Chem. Soc., Perkin Trans. 1 2001, 1-13. (d) Lloyd-Jones, G. C.; Fairlamb, I. J. S. Annu, Pre. Prog. Chem., Sect. B, 2001, 97, 113-141. (e) Comely, A. C.; Gibson, S. E.; Sur, S. J. Chem. Soc., Perkin Trans. 1 2000, 109-124. (f) Li, C. -L.; Liu, R. -S. Chem. Rev. 2000, 100, 3127-3162. (g) Comely, A. C.; Gibson, S. E. J. Chem. Soc., Perkin Trans.1, 1999, 223-228. (h) Donohoe, T. J.; Harji, R. R.; Moore, P. R.; Waring, M. J. J. Chem. Soc., Perkin Trans. 1 1998, 819-834. (i) Blagg, J. Contemp. Org. Synth. 1995, 2, 43-64.
 ${ }^{2}$ For a recent review, see: Paley, R. S. Chem. Rev. 2002, 102, 1493-1523.

[^1]: ${ }^{3}$ For reviews, see: (a) Negishi, E.; Takahashi, T. Acc. Chem. Res. 1994, 27, 124-130. (b) Broene, R. D.; Buchwald, S. L. Science 1993, 261, 1696-1701.
 ${ }^{4}$ (a) Negishi, E.; Cederbaum, F. E.; Takahashi, T. Tetrahedron Lett. 1986, 25, 2829-2832. (b) Negishi, E.; Swanson,D. R.; Cederbaum, F. E.; Takahashi, T. Tetrahedron Lett. 1987, 9, 917-920. (c) Rousset, C. J.; Swanson, D. R.; Lamaty, F.; Negishi, E. Tetrahedron Lett. 1989, 38, 5105-5108.
 ${ }^{5}$ Holub, N.; Neidhöfer, J.; Blecher, S. Org. Lett. 2005, 7, 1227-1229.

[^2]: ${ }^{6}$ (a) Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. 1976, 15, 333-340. (b) For a brief review, see: Eduardo, F-M. Synlett 1999, 7, 1179.
 ${ }^{7}$ Schedler, D. J. A.; Li, J.; Ganem, B. J. Org. Chem. 1996, 61, 4115-4119.

[^3]: ${ }^{8}$ Ganem, B.; Franke, R. R. J. Org. Chem. 2007, 72, 3981-3987.

[^4]: ${ }^{9}$ For reviews, see: (a) Barluenga, J.; Fermandez-Rodriguez, M. A.; Aguilar, E. J. Organomet. Chem. 2005, 690, 539-587. (b) Barbuenga, J.; Santamaria, J.; Tomas, M. Chem. Rev. 2004, 104, 2259-2283. (c) De Meijere, A.; Schirmer, H.; Duetsch, M. Angew. Chem., Int. Ed. Engl. 2000, 39, 3964-4002. (d) Wulff, W. D. Organometallics 1998, 17, 3116-3134.
 ${ }^{10}$ For a recent review on (arene) $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes, see: Marta, R.; Gema, D.; Javier, P-C. Chem. Soc. Rev. 2007, 36, 1589-1604.
 ${ }^{11}$ For reviews, see: (a) Dötz, K. H.; Wenzel, B.; Jahr, H. C. In Topics in Current Chemistry, Schalley, C. A.; Vögtle, F.; Dötz, K. H., Eds.; Springer: Berlin/Heidelberg, 2004; Vol 248, p 68-80. (b) Dötz, K. H.; Tomuschat, P. Chem. Soc. Rev. 1999, 28, 187-198.
 ${ }^{12}$ Dötz, K. H. Angew. Chem., Int. Ed. Engl. 1975, 14, 644-645.

[^5]: ${ }^{13}$ Gupta, A.; Sen, S.; Harmata, M.; Pulley, S. R. J. Org. Chem. 2005, 70, 7422-7425.
 ${ }_{15}^{14}$ Fry, S. C. Biochem. J. 1982, 204, 449-455.
 ${ }^{15}$ Tang, P-C.; Wulff, W. D. J. Am. Chem. Soc. 1984, 106, 1132-1133.

[^6]: ${ }^{16}$ Huang, J.; Wang, H.; Wu, C.; Wulff, W. D. Org. Lett. 2007, 9, 2799-2802.
 ${ }^{17}$ Huang, J.; Wu, C.; Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 13366-13367.

[^7]: ${ }^{18}$ For review, see: Pape, A.; Kaliappan, K.; Kündig, E. P. Chem. Rev. 2000, 100, 2917-2940.

[^8]: ${ }^{19}$ Kündig, E. P.; Cannas, R.; Laxmisha, M.; Liu, R.; Tchertchian, S. J. Am. Chem. Soc. 2003, 125, 5642-5643.

[^9]: ${ }^{20}$ Coombs, T. C.; Lee IV, M. D.; Wong, H.; Armstrong, M.; Cheng, B.; Chen, W.; Moretto, A. F.; Liebeskind, L. S. J. Org. Chem. 2008, 73, 882-888.
 ${ }^{21}$ (a) Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 5811-5812. (b) Yin, J.; Llorente, I.; Villanueva, L. A.; Liebeskind, L. S. J. Am. Chem.Soc. 2000, 122, 10458-10459. (c) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. 2000, 2, 3909-3911. (d) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. 2000, 2, 4083-4086. (e) Shu, C.; Alcudia, A.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 12477-12487. (f) Arrayás, R. G.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 6185-6186. (g) Shu, C.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 2878-2879. (h) Arrayás, R. G.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 9026-9027. (i) Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2005, 127, 11258-11259. (j) Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2006, 128, 465-472. (k) Arrayás, R. G.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1816-1825. (1) Garnier, E. C.; Liebeskind, L. S. J. Am. Chem. Soc. 2008, 130, 7449-7458.

[^10]: ${ }^{22}$ Liang, K.; Li, W.; Lee, G.; Peng, S.; Liu, R. J. Am.Chem. Soc. 1997, 119, 4404-4412.
 ${ }^{23}$ Huang, H.; Liu, R. J. Org. Chem. 2003, 68, 805-810.

[^11]: ${ }^{24}$ Chen, M.; Narkunan, K.; Liu, R. J. Org. Chem. 1999, 64, 8311-8318.

[^12]: ${ }^{25}$ For a comprehensive review, see: Welker, M. E. Curr. Org. Chem. 2001, 5, 785-807.
 ${ }^{26}$ Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E.; Foreman, M. I. J. Chem. Soc., Perkin Trans. 1 1973, 977-981.
 ${ }^{27}$ For reviews, see: (a) Gibson, S. E.; Mainolfi, N. Angew. Chem., Int. Ed. Engl. 2005, 44, 3022-3037. (b) Blanco-Urgoiti, J.; Anorbe, L.; Perez-Serrano, L.; Dominguez, G.; Perez-Castells, J. Chem. Soc. Rev. 2004, 33, 32-42.
 ${ }^{28}$ Miller, K. A.; Martin, S. F. Org. Lett. 2007, 9, 1113-1116.

[^13]: ${ }^{29}$ Kesenheimer, C.; Groth, U. Org. Lett. 2006, 8, 2507-2510.
 ${ }^{30}$ For reviews, see: (a) Gandon, V.; Aubert, C.; Malacria, M. Chem. Comm. 2006, 2209-2217. (b) Varela, J. A.; Saá, C. Chem. Rev. 2003, 103, 3787-3801.

[^14]: ${ }^{31}$ Hayashi, Y.; Yamaguchi, H.; Toyoshima, M.; Nasu, S.; Ochiai, K.; Shoji, M. Organometallics 2008, 27, 163-165.

[^15]: ${ }^{32}$ Hayashi, Y.; Yamaguchi, H.; Toyashima, M.; Okado, K.; Toyo, T.; Shoji, M. Org. Lett. 2008, 10, 1405-1408.
 ${ }^{33}$ Miyashita, K.; Ikejiri, M.; Kawasaki, H.; Maemura, S.; Imanishi, T. J. Am. Chem. Soc. 2003, 123, 8238-8243.

[^16]: ${ }^{34}$ For a recent review, see: Donaldson, W. A. Curr. Org. Chem. 2000, 4, 837-868.

[^17]: ${ }^{35}$ For reviews, see: (a) Pearson, A. J. Science 1984, 223, 895-901. (b) Pearson, A. J. In Comprehensive Organic Synthesis; Trost, B. M; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, p 665-689.
 ${ }^{36}$ Roe, S.; Stephenson, G. R. Org. Lett. 2008, 10, 189-192.
 ${ }^{37}$ Knölker, H-J.; Wolpert, M. Tetrahedron 2003, 59, 5317-5322.

[^18]: ${ }^{38}$ (a) Pearson, A. J.; Zettler, M. W. J. Am. Chem. Soc. 1989, 111, 3908-3918. (b) Pearson, A. J.; Wang, X. J. Am. Chem. Soc. 2003, 125, 13326-13327. (c) Pearson, A. J.; Wang, X.; Dorange, I. B. Org. Lett. 2004, 6, 2535-2538. (d) Pearson, A. J.; Sun, H.; Wang, X. J. Org. Chem. 2007, 72, 2547-2557.

 39 Pearson, A. J.; Sun, H. J. Org. Chem. 2007, 72, 7693-7700.

[^19]: ${ }^{40}$ (a) Yin, J.; Llorente, I.; Cillanueva, L. A.; Liebeskind, L. S. J. Am. Chem. Soc. 2000, 122, 10458-10459. (b) Shu, C.; Alcudia, A.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 12477-12487. (c) Shu, C.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 2878-2879.
 ${ }^{41}$ (a) Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 5811-5812. (b) Malinakova, H.; Liebeskind, L. S. Org. Lett.. 2000, 2, 3909-3911. (c) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. 2000, 2, 4083-4086. (d) Arrayás, R. G.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 9026. (e) Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2006, 128, 465-472. (f) Arrayás, R. G.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1816-1825. (g) Garnier, E. C.; Liebeskind, L. S. J. Am. Chem. Soc. 2008, 130, 7449-7458.
 ${ }^{42}$ Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2005, 127, 11258-11259.

[^20]: 43 Achmatowicz, O., Jr.; Bukowski, P.; Szechner, B.; Zwierzchowska, Z.; Zamojski, A. Tetrahedron 1971, 27, 1973-1996.
 ${ }^{44}$ Trofimenko, S. J. Am. Chem. Soc. 1967, 89, 3170-3177.
 ${ }^{45}$ Coombs, T. C.; Lee, M. D., IV; Wong, H.; Armstrong, M. A.; Cheng, B.; Chen, W.; Moretto, A. F.; Liebeskind, L. S. J. Org. Chem. 2008, 73, 882-888.

[^21]: ${ }^{46}$ Because 87A and 87B are liquids, the absolute configurations haven't been determined yet.

[^22]: ${ }^{47}$ Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 5811-5812.
 ${ }^{48}$ Ward, Y. D.; Villanueva, L. A.; Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 897-898.
 ${ }^{49}$ Synthesis of complex $\mathbf{8 8}$ will be discussed later in this chapter.

[^23]: ${ }^{50}$ This reaction was established and extensively studied by Dr. Heilam Wong and Dr. Yongqiang Zhang.
 ${ }_{52}^{51}$ Wong, H. Ph.D. Dissertation, Emory University, 2006.
 ${ }^{52}$ Dr. Yongqiang Zhang, Liebeskind's group research report, Emory University.

[^24]: ${ }^{53}$ Zimmerman, H.E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920-1923.

[^25]: ${ }^{54}$ For examples of boat-like transition state in Aldol reaction, see: (a) Gennari, C.; Colombo, L.; Scolastico, C.; Todeschini, R. Tetrahedron 1984, 40, 4051-4058. (b) Denmark, S. E.; Wong, K-T.; Stavenger, R. A. J. Am. Chem. Soc. 1997, 119, 2333-2334.
 ${ }^{55}$ Dr. Yongqiang Zhang, Liebeskind's group research report, Emory University.

[^26]: ${ }_{57}^{56}$ Among different solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{THF}, \mathrm{Et}_{2} \mathrm{O}\right.$, toluene) that have been investigated, THF gave the best yields.
 ${ }^{57}$ The exo and endo relationship are established previously by X-ray crystallographic analysis and NMR studies, see: Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 5811-5812.

[^27]: ${ }^{58}$ Curtis, M. D.; Shiu, K. B.; Butler, W. M. Organometallics 1983, 2, 1475-1477.

[^28]: ${ }^{59}$ Lambert, J. B.; Shurvell, H. F.; Cooks, R. G. Organic Structural Spectroscopy; Prentice Hall: New Jersy, 1998; p 183-184.

[^29]: ${ }^{60}$ Moretto, A. F.; Liebeskind, L. S. J. Org. Chem. 2000, 65, 7445-7455.

[^30]: ${ }^{61}$ Dimethoxyethane was employed as solvent in this reaction. Comparing to THF, intramolecular 1,5-Michael reaction proceeds slowly in DME. However, it seemed the $\mathrm{TpMo}(\mathrm{CO})_{2}$ moiety in the η^{2} intermediate was easier to dissociate in DME than in THF.

[^31]: ${ }^{62}$ When using THF as solvent, complex 100 was isolated in 45% yield as a bright yellow solid. Only less than 5% enone was isolated in this reaction.

[^32]: ${ }^{63}$ Silverstein, R. M.; Brownlee, R. G.; Bellas, T. S. Science 1968, 159, 889-891.
 ${ }^{64}$ Kinzer, G. W.; Fentiman, A. F. J..; Page, T. F. Jr.; Foltz, R. L.; Vite, J. P.; Pitman, G. B. Nature 1969, 221, 477-478.
 ${ }_{65}^{65}$ Frank, W.; Schröder, W. Curr. Org. Chem. 1999, 3, 407-443.
 ${ }^{66}$ Francke, W.; Schröder, F.; Philipp, P.; Meyer, H.; Sinnwell, V.; Gries, F. Bioorg. Med. Chem. 1996, 4, 363-374.
 ${ }^{67}$ Mundy, B. P.; Lipkowitz, K. B.; Dirks, G. W. Heterocycles 1977, 6, 51-76.
 ${ }^{68}$ Jun, J.-G. Synlett 2003, 12, 1759-1777.
 ${ }^{69}$ Mori, K. Eur. J. Org. Chem. 1998, 1479-1489.

[^33]: ${ }^{70}$ Wood, D. L.; Browne, L. E.; Ewing, B.; Lindahl, K.; Bedard, W. D.; Tilden, P. E.; Mori, K.; Pitman, G. B.; Hughes, P. R. Science 1976, 192, 896-898.
 ${ }^{71}$ Takikawa, H.; Shimbo, K-I.; Mori, K. Liebigs Ann.1997, 821-824.
 ${ }^{72}$ Prasad, K. R.; Anbarasan, P. Synlett 2006, 13, 2087-2088.

[^34]: ${ }^{73}$ The absolute configuration of 103A is unknown.
 ${ }_{75}$ The absolute configuration of 104a and $\mathbf{1 0 4 b}$ are unknown at this writing.
 ${ }^{75}$ Following methods listed in: Ward, Y. D.; Villanueva, L. A.; Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 897-898.
 ${ }^{76}$ The absolute configuration was determined later by the total synthesis of $(+)-(1 R, 2 S, 5 S, 7 R)$-2-hydroxy-exobrevicomin via (-)-88.

[^35]: ${ }^{77}$ (-)-88 tends to crystallize as a single enantiomer.

[^36]: ${ }^{78}$ Efforts are still underway to determine the absolute configurations of $\mathbf{1 0 4 A}$ and 104B.

[^37]: ${ }_{80}^{79}$ Acrolein was intentionally selected instead of propaldehyde for its higher syn selectivity in Aldol reaction.
 ${ }^{80}$ Anti-89h can be converted to syn-89h by Mitsunobu reaction.

 (\pm)-anti-89h
 $(\pm)-105$
 (\pm)-syn-89h

[^38]: ${ }^{81}$ (S)-(-)-1-phenyl-1-butanol was purchsed from Fluka, and used directly.

[^39]: ${ }^{83}$ Ethyl (R)-(-)-2-hydroxy-4-phenylbutyrate was purchsed from Aldrich, and used directly.

[^40]: ${ }^{84}$ Yin, J.; Llorente, I.; Villanueva, L. A.; Liebeskind, L. S. J. Am. Chem. Soc. 2000, 122, 10458-10459.
 ${ }^{85}$ (a) Shu, C.; Alcudia, A.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 12477-12487. (b) Shu, C.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 2878-2879.
 ${ }^{86}$ Chapter 2, Scheme 28.

[^41]: ${ }^{87}$ Most complexes 109 and 110 were prepared according to Dr. Yongqiang Zhang's procedure. Detailed mechanism and procedures can be found in Dr. Yongqiang Zhang's research reports.

[^42]: ${ }^{88}$ As shown in Scheme 47.
 ${ }^{89}$ No reaction was observed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}$ and TBME.
 ${ }^{90}$ Reaction temperature has to be lower to $0{ }^{\circ} \mathrm{C}$ before adding $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ to prevent the cationic ring opening polymerization of THF. For reference, see: (a) Hrkach, J. S.; Matyjaszewski, K. Macromolecules 1990, 23, 4042-4046. (b) Burrows, R. C.; Crowe, B. F. J. Appl. Poly. Sci. 1962, 6, 465-473. (c) Buyle, A. M.; Matyjaszewski, K.; Penczek, St. Macromolecules 1977, 10, 269-274.

[^43]: ${ }^{91}$ Acidic α-proton at 6-Monosubstituted molybdenum complex led to other side reactions under basic conditions, thus giving low yields of $1,5-\mathrm{Micha}$ l reaction. For example:

 both isolated
 ${ }^{92}$ Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2005, 127, 11258-11259.

[^44]: ${ }^{93}$ Lee, M. D., IV, Ph.D. thesis, Emory University, 2008.

[^45]: ${ }^{94}$ Lee, M. D., IV, Ph.D. thesis, Emory University, 2008.

[^46]: ${ }^{95}$ This method has not been studied so far.

[^47]: ${ }^{96}$ No reaction was observed with MeMgCl .

[^48]: ${ }^{97}$ Purple color might indicate decomposition of the reaction mixture.
 ${ }^{98}$ Wong, H., Ph.D. thesis, Emory University, 2006.

[^49]: ${ }^{99}$ The low yields presumably came from the acetylation since the produced alkoxide was blocked by the bulky $\mathrm{TpMo}(\mathrm{CO})_{2}$.

[^50]: ${ }^{100}$ There were minor products in both reactions. However, they were not identified. For further studies on the methoxy abstraction/nucleophilic addition reaction of complex 113 and 132, see: Lee, M. D., IV, Ph.D. thesis, Emory University, 2008.

[^51]: ${ }^{101}$ Tetrasubstituted $\mathbf{1 3 6}$ is not stable. It underwent partial thermal rearrangement to form complex $\mathbf{1 3 7}$ on a rotary evaporator.

 136

 137
 ${ }^{102}$ For details, see: Lee, M. D., IV, Ph.D. thesis, Emory University, 2008.

[^52]: ${ }^{103}$ Lee, M. D., IV, Ph.D. thesis, Emory University, 2008.

[^53]: 104 Then enantiocontrolled synthesis of (-)-143 has been completed by Lee, M. D., IV.

[^54]: ${ }^{105}$ Dr. Yongqiang Zhang, Liebeskind's group final research report, p 27-36, Emory University.

[^55]: ${ }^{106}$ APEX II, 2005, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison WI 53711-5373.
 ${ }^{107}$ SAINT Version 6.45A, 2003, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison WI 53711-5373.

[^56]: ${ }^{108}$ SHELXTL V6.12, 2002, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison WI 53711-5373.
 109 A. J. C. Wilson (ed), International Tables for X-ray Crystallography, Volume C. Kynoch, Academic Publishers, Dordrecht, 1992, Tables 6.1.1.4 (pp. 500-502) and 4.2.6.8 (pp. 219-222).

[^57]: ${ }^{110}$ Yin, J. J.; Llorente, I.; Villanueva, L. A.; Liebeskind, L. S. J. Am. Chem. Soc. 2000, 122, 10458-10459.
 ${ }_{111}^{111}$ Shu, C.T.; Alcudia, A.; Yin, J. J.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 12477-12487.
 ${ }_{112}$ Shu, C.T.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 2878-2879.
 ${ }^{113}$ Dr. Yongqiang Zhang, Liebeskind's group research report, Emory University.

[^58]: ${ }_{114}^{114}$ Koumbis, A. E.; Dieti, K. M.; Vikentiu, M. G.; Gallos, J. K. Tetrahedron Lett. 2003, 44, 2513-2516.
 ${ }_{115}$ Saktio, Y.; Tanaka, S.; Asami, M.; Mukaiyama, T. Chem. Lett. 1980, 1223-1226.
 ${ }^{116}$ For recent publications about the total synthesis of (-)-malyngolide, see: (a) Wan, Z. H.; Nelson, S. G. J. Am. Chem. Soc. 2000, 122, 10470-10471. (b) Trost, B. M.; Tang, W.; Schulte, J. L. Org. Lett. 2000, 2, 4013-4015. (c) Suzuki, T.; Ohmori, K.; Suzuki, K. Org. Lett. 2001, 3, 1741-744. (d) Ghosh, A. K.; Shirai, M. Tetrahedron Lett. 2001, 42, 6231-6233. (e) Mizutani, H.; Watanabe, M.; Honda, T. Tetrahedron, 2002, 58, 8929-8936. (f) Carda, M.; Rodríguez, S.; Castillo, E.; Bellido, A.; Díaz-Oltra, S.; Marco, J. A. Tetrahedron 2003, 59, 857-864. (g) Koumbis, A. E.; Dieeti, K. M.; Vikentiou, M. G.; Gallos, J. K. Tetrahedron Lett. 2003, 44, 2513-2516.

[^59]: ${ }_{117}^{117}$ Skinnemoen, K.; Undheim, K. Acta Chem. Scan. B 1980, 34, 295-297.
 ${ }^{118}$ Ward, Y. D.; Villanueva, L. A.; Allred, G. D.; Liebeskind, L. S. Organometallics 1996, 15, 4201-4210.

[^60]: ${ }^{119}$ The diene cyrstal easily decomposed in dichloromethane at room temperature.

[^61]: ${ }^{120}$ Eisenstein, O.; Butler, W. M.; Pearson, A. J. Organometallics 1984, 3, 1150-1157.
 ${ }^{121}$ In our case, the methoxy group is a better π-donor compared to the methyl group.

[^62]: ${ }^{122}$ The proposed structure of $\mathbf{1 5 0}$ as shown in Scheme 79 is based on its ${ }^{1} \mathrm{H}$ NMR spectra which displayed two sets of proton signals from Tp. IR spectra of $\mathbf{1 5 0}$ also revealed an additional carbonyl absorption peak, which supported this hypothetic structure. However, no further evidence was obtained to verify this hypothesis.

[^63]: ${ }^{123}$ Kuang, C. X.; Senboku, H.; Tokuda, M. Tetrahedron Lett. 2001, 42, 3893-3896.

[^64]: ${ }^{124}$ Complex 156 was employed for model study. The synthesis of 156:

 152
 156

[^65]: ${ }^{127}$ Lipshutz, B. H; Barton, J. C. J. Am. Chem. Soc. 1992, 114, 1084-1086.

[^66]: 128 Hydride addition might go through a 1,5-Michael reaction pathway instead of 1,2 addition. For a similar example, see Chapter 3, Scheme 50.

[^67]: ${ }^{129}$ SMART Version 5.628, 2003, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison WI 53711-5373.
 ${ }_{130}$ SAINT Version 6.36A, 2002, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison WI 53711-5373.
 ${ }^{131}$ SADABS Version 2.10, 2003, George Sheldrick, University of Göttingen,
 ${ }^{132}$ SHELXTL V6.12, 2002, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison WI 53711-5373.
 ${ }^{133}$ A. J. C. Wilson (ed), International Tables for X-ray Crystallography, Volume C. Kynoch, Academic Publishers, Dordrecht, 1992, Tables 6.1.1.4 (pp. 500-502) and 4.2.6.8 (pp. 219-222).

[^68]: Symmetry transformations used to generate equivalent atoms:

