In presenting this dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I agree that the Library of the University make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish, this dissertation may be granted by the professor under whose direction it was written when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. In the absence of the professor, the Dean of the Graduate School may grant permission. It is understood that any copying from, or publication of, this dissertation which involves potential financial gain will not be allowed without written permission.

Bo Cheng

Enantiomeric Scaffolds. Molybdenum Pyranyl π-Complexes for the Asymmetric Construction of Oxa-Heterocycles

By

Bo Cheng Doctor of Philosophy

Department of Chemistry

Lanny S. Liebeskind, Ph.D. Advisor

> Albert Padwa, Ph.D. Committee Member

Simon B. Blakey, Ph.D. Committee Member

Accepted:

Lisa A. Tedesco, Ph.D. Dean of the Graduate School

Date

Enantiomeric Scaffolds. Molybdenum Pyranyl π-Complexes for the Asymmetric Construction of Oxa-Heterocycles

By

Bo Cheng M.S., University of Science and Technology of China, 2004 B.E., Tianjin University, 1999

Advisor: Lanny S. Liebeskind, Ph.D.

An Abstract of A dissertation submitted to the Faculty of the Graduate School of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Chemistry

2008

Abstract

Enantiomerically pure TpMo(CO)₂(η^3 -pyranyl) complexes have proven to be excellent enantiomeric organometallic scaffolds for the asymmetric construction of structurally diverse oxygen-containing heterocyclic systems. Chiral, non-racemic η^3 -(2,3,4)-2methyl-5-oxopyranyl molybdenum scaffold was prepared with high enantiopurity. An improved method was developed for the synthesis of chiral, non-racemic η^3 -(2,3,4)-5-oxopyranyl molybdenum scaffold.

Neutral TpMo(CO)₂(η^3 -pyranyl) scaffolds bearing an internal alkoxide can undergo a novel intramolecular '1,5-Michael-like' reaction. Through a one-pot '1,5-Michael-demetalation' sequence, the 6,8-dioxabicyclo[3.2.1]oct-3-en-2-one frame work can be rapidly accessed in good to excellent yields with high enantiopurity. An enantiocontrolled total synthesis of (+)-(1*R*,2*S*,5*S*,7*R*)-2-hydroxy-*exo*-brevicomin was completed utilizing the intramolecular '1,5-Michael-demetalation' cascade.

Solid sodium methoxide participates in an unprecedented intermolecular '1,5-Michael-like' reaction with neutral TpMo(CO)₂(5-oxo- η^3 -pyranyl) complexes with complete regio- and stereocontrol. The resulting dimethoxy complexes lead to the formation of various 2,2,6-trisubstituted and 2,6-*trans* disubstituted pyranyl molybdenum complexes. The synthetic potential of this methodology was demonstrated by the synthesis of (2*S*,6*R*)-2,6-dially-2-ethyl-2*H*-pyranone and (2*R*,6*S*)-2-ethyl-6-phenyl-pyranone.

Enantiomeric Scaffolds. Molybdenum Pyranyl π-Complexes for the Asymmetric Construction of Oxa-Heterocycles

By

Bo Cheng M. Phili., University of Science and Technology of China, 2004 B.E., Tianjin University, 1999

Advisor: Lanny S. Liebeskind, Ph.D.

A dissertation submitted to the Faculty of the Graduate School of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Chemistry

2008

To my parents

Without you, I would not even think I could make it.

Acknowledgements

First of all, I would like to thank my advisor Dr. Lanny S. Liebeskind for his constant support, guidance and encouragement over the years. I sincerely appreciate him for giving me the freedom to try my own idea and steering me back into the right direction whenever I was lost. This thesis would not have been possible without him.

I am grateful to my committee members Dr McDonald and Dr Padwa. I learnt so much from their classes and insightful discussions. I also want to thank Dr. Blakey for his helpful suggestions on my research proposal and for being my defense committee member. Also, I wish to acknowledgement Dr. Mohler for her kind help on my literature seminar.

I would like to thank Dr. Wu and Dr. Wang from the NMR center, Dr. Fred Strobel from the mass spectrometry center, Dr. Kenneth Hardcastle from X-ray crystallography center and all the wonderful staff in the Chemistry Department for their kindness that made my Ph.D. experience at Emory University a pleasant one.

I also would like to thank all present and previous group members in Liebeskind's group, especially Harry, Hao Li, Hao Yang, Ethel, Songbai, Yongqiang, Wenyong, Zhihui, Shuangpei, Reese, Tom and Emily. It was a great pleasure to work with all of you. Special thanks to Rongbiao and Weiqiang for all the joyful memories we shared as classmates and friends.

My deepest gratitude goes to my parents and my sister for their unconditional love and support in every step of my life. Finally, I would like to thank my husband Tao for everything he did for me along this way. I know he is the one I can always count on.

Table of Contents

Chapter 1 Application of Stoichiometric Transition Metal Complexes in C)rganic		
Synthesis	1		
Introduction	2		
Zirconium Complexes	2		
Chromium complexes			
Molybdenum Complexes			
Tungsten Complexes	15		
Cobalt Complexes	18		
Iron complexes	22		
Conclusion	26		
Chapter 2 Synthesis of 6,8-Dioxabicyclo[3.2.1]oct-3-en-2-one through	gh a		
Molybdenum-mediated Intramolecular '1,5-Michael-like' Reaction	27		
Introduction	28		
Results and Discussion	30		
Synthesis of Racemic and Chiral, Non-racemic 5-Oxapyranyl Scaffold 86.	30		
Mukaiyama-aldol Reaction and Aldol Reaction of 5-Oxopyranyl Scaffold	86 and		
2-Methyl-5-oxopyranyl Scaffold 88	32		
Intramolecular '1,5-Michael-like' Reaction	36		
Intramolecular '1,5-Michael-demetalation' cascade	40		
Total synthesis of (+)-(1R,2S,5S,7R)-2-Hydroxy-exo-Brevicomin	44		
Conclusion	53		
Experimental Section	54		
Chapter 3 Synthesis of Highly Substituted Pyranones via a Molybdenum-me	ediated		
Intermolecular '1,5-Michael-like' Reaction	103		
Introduction	104		
Results and Discussion	105		
Precursors for Intermolecular '1,5-Michael-like' Reaction	105		
Intermolecular 1,5-Michael-like Reaction with NaOMe	107		
Synthetic Application of Intermolecular '1,5-Michael-like Reaction' of N	JaOMe		
	113		
Conclusion	126		
Experimental Section	127		
Chapter 4 Toward the Total Synthesis of (-)-Malyngolide	169		

Introduction	170
Results and Discussion	172
The Synthesis of 3-Methyl-5-oxopyranyl Molybdenum Scaffold 147	172
Model Study toward the Synthesis of (-)-Malyngolide	177
Attempts to Carry out the Key Semipinacol Rearrangement	179
Conclusion	183
Experimental Section	185

List of Figures

39
106
107
125
172
175
178

List of Schemes

Scheme 1. Intramolecular Enyne, Dinyl and Diene Cyclizations Mediated by Zircon	ocene
	3
Scheme 2. Total synthesis of (+)-trans-195A via a Zirconium-mediated Intramolecul	lar
Diene Cyclization	4
Scheme 3. Reduction of Carboxyamide to Imine with Cp ₂ ZrHCl	5
Scheme 4. Total Synthesis of Paclitaxel via Cp2ZrHCl-mediated Reduction	6
Scheme 5. Synthesis of (S,S)-Isodityrosine by Dötz Benzannulation	7
Scheme 6. Cyclohexadienone Annulation	8
Scheme 7. Total Synthesis of (+)-Phomactin B2 via an Intramolecular Cyclohexadie	none
Annulation of a Chromium Carbene Complex	9
Scheme 8. Tricarbonylchromium-mediated Dearomatization	9
Scheme 9. Total synthesis of (-)-Acetoxytubipofuran via Chromium-mediated Asym	netric
Dearomatization	11
Scheme 10. Molybdenum-mediated Organic Synthesis	12
Scheme 11. Enantiocontrolled Total Synthesis of (-)-Indolizidine 209B Using	
$(\eta^3$ -dihydropyridinyl)molybdenum Complexes as Chiral Scaffolds	13
Scheme 12. Molybdenum-mediated Cycloaddition Reactions	13
Scheme 13. Total Synthesis of (-)-Bao Gong Teng A by a Molybdenum-mediated [5-	+2]
Cycloaddition	14
Scheme 14. Enantiocontrolled Synthesis of Tricyclodiones via a Molybdenum-media	ated
'1,5-Michael-like' Reaction	15
Scheme 15. Reactivity of η^1 -Alkynyl Tungsten Complexes	15
Scheme 16. Mechanism of the Synthesis of Tungsten-furanyl Diene	16
Scheme 17. Tungsten-mediated Synthesis of Chiral Furanyl Diene	17
Scheme 18. Total Synthesis of (+)-Dihydrocanadensolide through a	
Tungsten-π-allyl-complexes	18
Scheme 19. Total Synthesis of (-)-Alstonerine	19
Scheme 20. Total Synthesis of (-)-8-O-Methyltetrangomycin via a Cobalt Mediated	
[2+2+2] Cycloaddition	20
Scheme 21. 1,4-Asymmetric Induction Using a Cobalt Alkyne Complex	21
Scheme 22. Formal Total Synthesis of Fostriencin via 1,4-Asymmetric Induction Us	ing a
Cobalt Alkyne Complex	22
Scheme 23. Iron-mediated Total Synthesis of (+)-Maritidine	24
Scheme 24. Iron-mediated Total Synthesis of Mukonine	24

Scheme 25.	Intramolecular Iron-tricarbonyl Promoted Aldehyde-diene Coupling Reaction	on
		25
Scheme 26.	Proposed Mechanism for Intramolecular Iron-tricarbonyl Promoted	
Aldehy	de-diene Coupling Reaction	26
Scheme 27.	Intramolecular '1,5-Michael-like'Reaction of Enolate	29
Scheme 28.	Intramolecular '1,5-Michael-like' Reaction of Alkoxide	30
Scheme 29.	Synthesis of Racemic 5-Oxopyranyl Scaffold 86	30
Scheme 30.	Synthesis of Chiral, Non-racemic 5-Oxopyranyl Scaffold 86	31
Scheme 31.	Problems in Mukaiyama-aldol Reaction of 2-Methyl-5-Oxopyranyl Scaffold	ł
88		34
Scheme 32.	Plausible Mechanism for Intramolecular '1,5-Michael-like' Reaction	39
Scheme 33.	Expected Demetalation of 6,8-Dioxabicyclo[3.2.1]octenyl Molybdenum	
Comple	exes	10
Scheme 34.	Attempts of Demetalation of 6,8-Dioxabicyclo[3.2.1]octenyl Molybdenum	
Comple	exes	11
Scheme 35.	Mechanism of 1,5-Michael Reaction-Demetalation Cascade	12
Scheme 36.	Possible Epimerization Mechanism	14
Scheme 37.	Mori's Total Synthesis of (+)-(1R,2S,5S,7R)-2-Hydroxy-exo-Brevicomin4	16
Scheme 38.	Prasad's Total Synthesis of (+)-(1R,2S,5S,7R)-2-Hydroxy-exo-Brevicomin 4	17
Scheme 39.	Retrosynthetic Analysis of (+)-(1R,2S,5S,7R)-2-Hydroxy-exo-Brevicomin.	17
Scheme 40.	Synthesis of Racemic 2-Methy-5-oxopyranyl Scaffold 88	18
Scheme 41.	Diastereomer Formation of 101 with Different Non-racemic Alcohols	18
Scheme 42.	Complexation with 103a	19
Scheme 43.	Synthesis of Chiral, Non-racemic 88	50
Scheme 44.	Possible Mechanism for the Synthesis of Chiral, Non-racemic 88	52
Scheme 45.	Enantiocontrolled Total Synthesis of	
(+)-(1R)	2,2 <i>S</i> ,5 <i>S</i> ,7 <i>R</i>)-2-hydroxy- <i>exo</i> -brevicomin	53
Scheme 46.	Synthesis of 2,3,6-Trisubstituted Dihydropyrans and Piperidines 10)5
Scheme 47.	Intermolecular 1,5-Michael Reaction with NaOMe 10)5
Scheme 48.	Synthesis of Molybdenum Complexes 109 and 110 10)6
Scheme 49.	Attempts of Nucleophilic Functionalization of 109a 10)7
Scheme 50.	Intermolecular '1,5-Michael-like' Reaction with LiAlH ₄ 10)8
Scheme 51.	Intermolecular '1,5-Michael-like' Reaction with Alkoxides 10)9
Scheme 52.	Proposed Mechanism for Intermolecular '1,5-Michael-Like' Reaction with	
NaOMe	e1	11
Scheme 53.	Observed Racemization of Intermolecular 1,5-Michael Reaction of 110a1	11

Scheme 54. Proposed Racemization Mechanism for Intermolecular 1,5-Michael Rea	ction
of (-)- 110a	112
Scheme 55. Optimized Condition for Enantiocontrolled '1,5-Michael' Reaction	113
Scheme 56. Enantiocontrolled '1,5-Michael' Reaction with NaOMe	113
Scheme 57. Synthesis of 2,2,6-Trisubstituted Molybdenum Complexes	114
Scheme 58. Synthesis of (2 <i>S</i> , 6 <i>R</i>)-2,6-Dially-2-Ethyl-2 <i>H</i> -Pyranone 116	115
Scheme 59. Methods to syn-Substituents	116
Scheme 60. Proposed Synthesis of 2,6-trans-Disubstituted Molybdenum Complexes	from
117	117
Scheme 61. Synthesis of Complex 123 via Semipinacol Reaction	117
Scheme 62. Attempts to Synthesize 2,6-trans-Substituted Pyranyl Complexes from	
Substrate 123	118
Scheme 63. Protonation/Nucleophilic Addition Strategy in the Synthesis of Trisubst	tuted
Pyridinyl Molybdenum Complexes	119
Scheme 64. Proposed Synthetic Route to 2,6-trans-Substituted Pyranyl Molybdenur	n
Complexes from Alkylidene 127	119
Scheme 65. Synthesis of Alkylidene 130	120
Scheme 66. Synthesis of 2,6-trans-Sbustituted Molybdenum Complex 134	121
Scheme 67. Protonation/Carbanoin Addition to Tetrasubstituted Pyranyl Molybdenu	m
Complexes	121
	141
Scheme 68. Regioselectivity of Various Nucleophiles	121
Scheme 68. Regioselectivity of Various Nucleophiles	121 122 on
Scheme 68. Regioselectivity of Various Nucleophiles	121 122 on 123
Scheme 68. Regioselectivity of Various Nucleophiles Scheme 69. Isomerization of 113d under Protonation/Nucleophilic Addition Condition Scheme 70. Proposed Mechanism for the Isomerization of 113d	121 122 on 123 123
Scheme 68. Regioselectivity of Various Nucleophiles Scheme 69. Isomerization of 113d under Protonation/Nucleophilic Addition Condition Scheme 70. Proposed Mechanism for the Isomerization of 113d Scheme 71. Synthesis of (2 <i>R</i> ,6 <i>S</i>)-2-Ethyl-6-Phenyl-Pyranone 143	121 122 on 123 123 126
 Scheme 68. Regioselectivity of Various Nucleophiles Scheme 69. Isomerization of 113d under Protonation/Nucleophilic Addition Condition Scheme 70. Proposed Mechanism for the Isomerization of 113d Scheme 71. Synthesis of (2<i>R</i>,6<i>S</i>)-2-Ethyl-6-Phenyl-Pyranone 143 Scheme 72. Semipinacol Reaction of Pyranyl and Pyridinyl Molybdenum Scaffolds 	121 122 on 123 123 126 170
 Scheme 68. Regioselectivity of Various Nucleophiles	121 122 on 123 123 126 170 171
 Scheme 68. Regioselectivity of Various Nucleophiles	121 122 on 123 123 126 170 171 172
 Scheme 68. Regioselectivity of Various Nucleophiles	121 122 on 123 123 126 170 171 172 173
Scheme 68. Regioselectivity of Various Nucleophiles Scheme 69. Isomerization of 113d under Protonation/Nucleophilic Addition Condition Scheme 70. Proposed Mechanism for the Isomerization of 113d Scheme 71. Synthesis of (2 <i>R</i> ,6 <i>S</i>)-2-Ethyl-6-Phenyl-Pyranone 143 Scheme 72. Semipinacol Reaction of Pyranyl and Pyridinyl Molybdenum Scaffolds Scheme 73. Possible Mechanism of Semipinacol Rearrangement Scheme 74. Proposed Synthetic Route to (-)-Malyngolide Scheme 75. Synthesis of Molybdenum Complex 144	121 122 on 123 123 123 123 126 170 171 172 173 173
 Scheme 68. Regioselectivity of Various Nucleophiles	121 122 on 123 123 123 123 126 170 171 172 173 173 174
 Scheme 68. Regioselectivity of Various Nucleophiles	121 122 on 123 123 126 170 171 172 173 173 174 176
 Scheme 68. Regioselectivity of Various Nucleophiles	121 122 on 123 123 126 170 171 172 173 173 174 176 176
 Scheme 68. Regioselectivity of Various Nucleophiles	121 122 on 123 123 123 123 123 123 126 170 171 172 173 173 174 176 176 177
 Scheme 68. Regioselectivity of Various Nucleophiles	121 122 on 123 123 123 123 123 126 170 170 171 172 173 174 176 176 177 178

Scheme 83. Synthesis of Grignard Reagent 154	
Scheme 84. Synthesis of Complex 155	
Scheme 85. Proposed Epoxidation-induced Semipinacol Reaction	
Scheme 86. Epoxidation of Complex 156	
Scheme 87. Attempts to Semipinacol Reaction	
Scheme 88. IOCOCF ₃ Induced Semipinacol Rearrangement	
Scheme 89. Attempts to Substitute Iodine in Complex 157	
Scheme 90. Catalytic Hydrogenation of Complex 157	
Scheme 91. Hydride Addition of Complex 158	

List of Tables

Table 1. Mukaiyama-aldol Reaction of Oxopyranyl Scaffold 86	33	
Table 2. Aldol Reaction of 2-Methyl-5-Oxopyranyl Scaffold 88	35	
Table 3. Syn-selective Aldol Reaction of 5-Oxopyranyl Scaffold 86	36	
Table 4. Synthesis of <i>exo</i> -Intramolecular '1,5-Michael' Adducts	37	
Table 5. Synthesis of endo-Intramolecular '1,5-Michael' Adducts	38	
Table 6. Synthesis of exo-6,8-Dioxabicyclo[3.2.1]oct-3-en-2-one		
Table 7. Synthesis of endo-6,8-Dioxabicyclo[3.2.1]oct-3-en-2-one	44	
Table 8. Selected Conditions in the Synthesis of Chiral, Non-racemic 88	51	
Table 9. Examples of Intermolecular 1,5-Michael-Like Reaction of NaOMe	110	
Table 10. Synthesis of 2,2,6-Trisubstituted Pyranyl Molybdenum Complexes	114	
Table 11. Synthesis of Alkylidene 138	123	
Table 12. Synthesis of 2,6-trans-Substituted Molybdenum Complexes	124	
Table 13. Crystal data and structure refinement for (±)-142a		
Table 14. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement param	eters	
$(Å^2x \ 10^3)$ for (\pm) -142a. U(eq) is defined as one third of the trace of the orthogonal	nalized	
U ^{ij} tensor	160	
Table 15. Bond lengths [Å] and angles [°] for (±)-142a	163	
Table 16. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for (\pm) -142a. The anisotropic	ropic	
displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + + 2hka^{*b}$]	* U ¹²]	
	166	
Table 17. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å	$2_{x \ 10^{3}}$	
for (±)- 142a	167	
Table 18. Optimization of the Synthesis of Molybdenum Complex 146	177	
Table 19. Crystal data and structure refinement for complex 148	196	
Table 20. Atomic coordinates (x 10^4) and equivalent isotropic displacement param	eters	
$(Å^2x \ 10^3)$ or 148 . U(eq) is defined as one third of the trace of the orthogonalized	zed U ^{ij}	
tensor	197	
Table 21. Bond lengths [Å] and angles [°] for 148	198	
Table 22. Anisotropic displacement parameters ($Å^2x \ 10^3$) for 148 . The anisotropic	;	
isplacement factor exponent takes the form: $-2\pi^2$ [h ² a ^{*2} U ¹¹ + + 2 h k a [*] b	* U ¹²]	
	201	
Table 23. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å ²	² x 10 ³)	
for 148	202	

List of Abbreviations

[α]	specific rotation
Ac	acetyl
anal.	analysis
Aq	aqueous
Ar	argon
Bn	benzyl
br	broad
bu	butyl
°C	degree Celsius
calcd	calculated
CAN	ceric ammonium nitrate
Cbz	benzyloxycarbonyl
Су	cyclohexyl
δ	chemical shift(s)
d	doublet
DEAD	diethyl azodicarboxylate
DMAP	dimethylamino pyridine
DME	1,2-dimethoxylethane
Decomp	decomposed
DMSO	dimethyl sulfoxide
Ε	entgegen
ee	enantiomeric excess
ESI	electrospray ionization
Et	ethyl
FAB	fast atom bombardment
FT	Fourier transform
g	gram(s)
h	hour(s)
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectroscopy
Hz	hertz
IR	Infrared Spectroscopy
i	iso
J	coupling constant
LA	Lewis acid
LDA	lithium diisopropylamide
LiHMDS	lithium bis(trimethylsilyl)amide
mol	mole

m	multiplet
т	meta
<i>m</i> -CPBA	meta-chloroperbenzoic acid
Me	methyl
mg	milligram(s)
MHz	megahertz
min	minute(s)
mL	milliliter(s)
μL	microliter(s)
mmol	millimole(s)
mp	melting point
NMR	nuclear magnetic resonance
NMO	N-methylmorpholine oxide
NOE	nuclear Overhauser effect
nm	nanometer(s)
Ns	2-nitrobenzenesulfonyl
PG	protecting group
Ph	phenyl
ppm	parts per million
pr	propyl
ру	pyridine
q	quartet
\mathbf{R}_{f}	retention factor
rt	room temperature
S	singlet
t	triplet
t	tertiary
TBME	<i>tert</i> -butyl methyl ether
TBS	tert-butyl dimethyl silyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin layer chromatography
Тр	hydridotris(1-pyrazolyl)borate
Tr	triphenylcarbenium
UV	ultraviolet
Ζ	zusammen

<u>Chapter 1</u>

Application of Stoichiometric Transition Metal Complexes in

Organic Synthesis

Introduction

In recent decades transition metal complexes have served as one of the most important categories of reagents in organic reaction in both catalytic and stoichiometric manner. Although considerable attention is drawn to catalytic processes, applications of stoichiometric transition metal complexes in the synthesis of complex organic molecules have made significant progress lately.¹ Especially with the development of various approaches to prepare enantiomerically pure organometallic complexes,² stoichiometric transition metal complexes become exceptionally valuable for the enantiocontrolled bond constructions. This chapter mainly focuses on recent applications of stoichiometric transition metal complexes in complex organic molecule synthesis, particularly in the area of natural product synthesis. Only six most commonly used stoichiometric transition metal species, zirconium, chromium, molybdenum, tungsten, cobalt and iron complexes are covered in this literature review.

Zirconium Complexes

Zirconium complexes can undergo useful coupling of alkenes and alkynes via

¹ For recent reviews, see: (a) Fairlamb, I. J. S. *Annu, Pre. Prog. Chem., Sect. B* **2003**, *99*, 138-160. (b) Fratt, R.; Christie, S. D. R. *J. Chem. Soc., Perkin Trans.1* **2002**, 447-458. (c) Fletcher, A. J.; Christie, S. D. *J. Chem. Soc., Perkin Trans.1* **2001**, 1-13. (d) Lloyd-Jones, G. C.; Fairlamb, I. J. S. *Annu, Pre. Prog. Chem., Sect. B*, **2001**, *97*, 113-141. (e) Comely, A. C.; Gibson, S. E.; Sur, S. J. Chem. Soc., Perkin Trans.1 **2000**, 109-124. (f) Li, C. -L.; Liu, R. -S. *Chem. Rev.* **2000**, *100*, 3127-3162. (g) Comely, A. C.; Gibson, S. E. J. Chem. Soc., Perkin Trans.1 **1998**, 819-834. (i) Blagg, J. *Contemp. Org. Synth.* **1995**, *2*, 43-64.

² For a recent review, see: Paley, R. S. Chem. Rev. 2002, 102, 1493-1523.

zirconocene (Cp₂Zr) complexes.³ The resulting five-membered zirconacycles can be converted into various highly functionalized carbocycles and heterocycles by different cleavage paths. Pioneered by Negishi,⁴ the intramolecular enyne, dinyl and diene cyclizations mediated by zirconocene (Scheme 1) have been widely utilized in complex organic synthesis.

Scheme 1. Intramolecular Enyne, Dinyl and Diene Cyclizations Mediated by Zirconocene

Alkaloid *trans*-195A was isolated from the skin of dendrobatid frogs, and only very limited amounts are available from natural sources. In 2005, Blechert reported the total synthesis of (+)-*trans*-195A *via* a zirconium-mediated intramolecular diene cyclization (Scheme 2).⁵ Mitsunobu reaction of allylic alcohol **1** and compound **2** afforded amine **3**. Ring-rearrangement metathesis of **4** with 5 mol % Grubbs I catalyst provided 2,6-*cis*-disubstituted tetrahydropyridine derivative **5** in 96% yield and 98% ee. After changing the nitrogen protecting group, cyclization reaction of **5** was carried out with

³ For reviews, see: (a) Negishi, E.; Takahashi, T. Acc. Chem. Res. **1994**, 27, 124-130. (b) Broene, R. D.; Buchwald, S. L. Science **1993**, 261, 1696-1701.

⁴ (a) Negishi, E.; Cederbaum, F. E.; Takahashi, T. *Tetrahedron Lett.* **1986**, *25*, 2829-2832. (b) Negishi, E.; Swanson, D. R.; Cederbaum, F. E.; Takahashi, T. *Tetrahedron Lett.* **1987**, *9*, 917-920. (c) Rousset, C. J.; Swanson, D. R.; Lamaty, F.; Negishi, E. *Tetrahedron Lett.* **1989**, *38*, 5105-5108.

⁵ Holub, N.; Neidhöfer, J.; Blecher, S. Org. Lett. 2005, 7, 1227-1229.

*n*BuLi and Cp₂ZrCl₂ to afforded bicyclic **7** in 74% yield, which went through zirconacycle intermediate **6**. Final deprotection with Pd-C/H₂ afforded (+)-*trans*-195A in 90% yield.

Scheme 2. Total synthesis of (+)-*trans*-195A *via* a Zirconium-mediated Intramolecular Diene Cyclization

 Cp_2ZrHCl , also known as 'Schwartz's reagent',⁶ is well known for the hydrozirconation reaction. In 1996, Ganem developed an approach for reduction of a carboxyamide to an imine in one step with Cp_2ZrHCl as shown in Scheme 3.⁷ First, amide **8** was transformed to hydridozirconocene **9** by KH metalation followed by treatment of Cp_2ZrHCl . Although experiments indicated another equivalent of Cp_2ZrHCl was required for the reduction of

⁶ (a) Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. **1976**, 15, 333-340. (b) For a brief review, see: Eduardo, F-M. Synlett **1999**, 7, 1179.

⁷ Schedler, D. J. A.; Li, J.; Ganem, B. J. Org. Chem. **1996**, *61*, 4115-4119.

9 to the final imine 10, the mechanism was still unclear.

Scheme 3. Reduction of Carboxyamide to Imine with Cp₂ZrHCl

This novel deoxygenation method was utilized in the synthesis of paclitaxel which is potent against ovarian and breast cancer in human clinical trial.⁸ Paclitaxel can be extracted in very limited amount from pacific yew. In contrast, six primary taxane constituents **11-16** (Scheme 4) that share the identical tetracyclic core structure with paclitaxel can be obtained in substantial quantities from ornamental yew trees. Utilizing this one step carboxyamide to imine reduction with Cp₂ZrHCl, Natural Pharmaceuticals, Inc. developed and implemented a highly convergent commercial synthesis of paclitaxel⁸ from taxane constituents **11-16** (Scheme 4). With this approach, the cost of synthesis of large scale high-purity paclitaxel is reduced dramatically compared to extraction from pacific yew.

⁸ Ganem, B.; Franke, R. R. J. Org. Chem. 2007, 72, 3981-3987.

Scheme 4. Total Synthesis of Paclitaxel via Cp₂ZrHCl-mediated Reduction

Chromium complexes

Two stoichiometric forms of chromium complexes are well studied: chromium Fischer carbene complexes⁹ and η^6 -Cr(CO)₃-arene complexes.¹⁰ The Dötz benzannulation reaction¹¹ is one of the best-known reactions of chromium carbenes since its discovery¹² in 1975. In this type of reaction, an α,β -unsaturated pentacarbonyl chromium carbene complex reacts with an alkyne to afford a substituted hydroquinone derivative. In 2005 Pulley reported the synthesis of (*S,S*)-isodityrosine *via* the Dötz benzannulation (Scheme

⁹ For reviews, see: (a) Barluenga, J.; Fermandez-Rodriguez, M. A.; Aguilar, E. J. Organomet. Chem. 2005, 690, 539-587. (b) Barbuenga, J.; Santamaria, J.; Tomas, M. Chem. Rev. 2004, 104, 2259-2283. (c) De Meijere, A.; Schirmer, H.; Duetsch, M. Angew. Chem., Int. Ed. Engl. 2000, 39, 3964-4002. (d) Wulff, W. D. Organometallics 1998, 17, 3116-3134.

¹⁰ For a recent review on (arene)Cr(CO)₃ complexes, see: Marta, R.; Gema, D.; Javier, P-C. *Chem. Soc. Rev.* **2007**, *36*, 1589-1604.

¹¹ For reviews, see: (a) Dötz, K. H.; Wenzel, B.; Jahr, H. C. In *Topics in Current Chemistry*, Schalley, C. A.; Vögtle, F.; Dötz, K. H., Eds.; Springer: Berlin/Heidelberg, 2004; Vol 248, p 68-80. (b) Dötz, K. H.; Tomuschat, P. *Chem. Soc. Rev.* **1999**, *28*, 187-198.

¹² Dötz, K. H. Angew. Chem., Int. Ed. Engl. 1975, 14, 644-645.

5).¹³ Carbene complex **19** was subjected to benzannulation in the presence of alkyne **18** at 60 °C. Exposure of the reaction mixture to air oxidized the coordinated chromium, and afforded diaryl ether **20** in 60% yield. After 7 more steps, compound **20** was converted to (*S*,*S*)-isodityrosine bishydrochloride which is the key structure of a large class of biologically active natural products containing an endocyclic diaryl ether.¹⁴

Scheme 5. Synthesis of (*S*,*S*)-Isodityrosine by Dötz Benzannulation

As a variant of previously described benzannulation, in 1984, Wulff reported cyclohexadinone annulation¹⁵ *via* Fischer chromium carbene complexes where both substituents of the β -carbon are non-hydrogen (Scheme 6, eq 1). This method allows a rapid construction of cyclohexadienones bearing a quaternary carbon center. Later in

¹³ Gupta, A.; Sen, S.; Harmata, M.; Pulley, S. R. J. Org. Chem. 2005, 70, 7422-7425.

¹⁴ Fry, S. C. Biochem. J. **1982**, 204, 449-455.

¹⁵ Tang, P-C.; Wulff, W. D. J. Am. Chem. Soc. 1984, 106, 1132-1133.

2007, he extended this methodology to an intramolecular cyclohexadienone annulation¹⁶ of chromium carbene complexes 22, and applied it to synthesis of macrocycles possessing a highly substituted (including a quaternary carbon center) cyclohexane core structure (Scheme 6, eq 2).

Scheme 6. Cyclohexadienone Annulation

Shown in Scheme 7, in 2007 Wulff completed the total synthesis of (\pm) -phomactin B2¹⁷ via the intramolecular cyclohexadienone annulation of chromium carbene complex 24 which was prepared from 23 by Fischer method. The intramolecular cyclohexadienone annulation of 24 gave a mixture of diastereomer 25A and 25B in a 4:1 ratio. After protecting group exchange and installation of the exocyclic double bond, methylation of the enolate of 26 afforded 27 as a single diastereomer with the methyl group anti to the macrocyclic tether. Substrate 27 was converted to (\pm) -phomactin after 5 additional steps.

 ¹⁶ Huang, J.; Wang, H.; Wu, C.; Wulff, W. D. Org. Lett. 2007, 9, 2799-2802.
 ¹⁷ Huang, J.; Wu, C.; Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 13366-13367.

Scheme 7. Total Synthesis of (±)-Phomactin B2 via an Intramolecular Cyclohexadienone Annulation of a Chromium Carbene Complex

 η^{6} -Cr(CO)₃-arene complexes are widely used in dearomatization reactions, and provide an efficient route to various substituted cyclohexadienes (Scheme 8).¹⁸

¹⁸ For review, see: Pape, A.; Kaliappan, K.; Kündig, E. P. Chem. Rev. 2000, 100, 2917-2940.

In 2003, an enantioselective *ortho*-nucleophilic addition of organolithium reagents to η^{6} -Cr(CO)₃-arene imine complex **28** and its application in the total synthesis of (-)-acetoxylbutipofuran was published by Kündig (Scheme 9). ¹⁹ The observed enantioselectivity was rationalized by addition of the organolithium reagent at the *ortho* position rather than the *ortho*' position. This regioselectivity was induced by the steric congestion between the Ph group of the chiral ligand and the Cr(CO)₃ group in transition state II. The resulting cyclohexadienyl intermediate **29** underwent sequential acylation, alkylation and imine hydrolysis to afford **30** in 42% yield and 76% ee. Recrystallization of **30** increased the enantiopurity to > 99% ee. High enantiopurity **30** was converted to carbonate **31** *via* Luche reduction followed by selective protection of primary and secondary hydroxyl groups. Finally, (-)-acetoxylbutipofuran was synthesized from **31** in 8 more steps.

¹⁹ Kündig, E. P.; Cannas, R.; Laxmisha, M.; Liu, R.; Tchertchian, S. J. Am. Chem. Soc. 2003, 125, 5642-5643.

Scheme 9. Total synthesis of (-)-Acetoxytubipofuran *via* Chromium-mediated Asymmetric Dearomatization

Molybdenum Complexes

High enantiopurity η^3 -pyanyl and η^3 -pyridinyl molybdenum complexes²⁰ are easily prepared, and have been demonstrated as versatile enantiomeric scaffolds in the synthesis of complex organic molecules. Since 1999, a number of structurally diverse molecules (Scheme 10) have been synthesized by Liebeskind's group utilizing molybdenum-mediated reactions.²¹

²⁰ Coombs, T. C.; Lee IV, M. D.; Wong, H.; Armstrong, M.; Cheng, B.; Chen, W.; Moretto, A. F.; Liebeskind, L. S. J. Org. Chem. **2008**, 73, 882-888.

²¹ (a) Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 5811-5812. (b) Yin, J.; Llorente, I.; Villanueva, L. A.; Liebeskind, L. S. J. Am. Chem.Soc. 2000, 122, 10458-10459. (c) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. 2000, 2, 3909-3911. (d) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. 2000, 2, 4083-4086. (e) Shu, C.; Alcudia, A.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 12477-12487. (f) Arrayás, R. G.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 6185-6186. (g) Shu, C.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 9026-9027. (i) Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 9026-9027. (i) Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2005, 127, 11258-11259. (j) Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2006, 128, 465-472. (k) Arrayás, R. G.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1816-1825. (l) Garnier, E. C.; Liebeskind, L. S. J. Am. Chem. Soc. 2008, 130, 7449-7458.

Scheme 10. Molybdenum-mediated Organic Synthesis

In 2001, a molybdenum-mediated enantiocontrolled route to 2,3,6-*cis*- and 2,6-*cis*-3-*trans*-trisubstituted was reported.^{21e} This novel methodology was employed in the total synthesis of (-)-indolizidine 209B (Scheme 11). Molybdenum complex (+)-**32** (> 99% ee) was first converted to dimethoxy complex **33** in 95% yield by bromination followed by addition of NaOMe. Then highly selective methoxide abstraction followed by nucleophilc addition of different carbon nucleophiles afforded **34** in 67% yield and 99% ee. Regio- and stereoselective demetalation of 2,3,6-trisubstituted molybdenum complex **34** provided **35** in 99% ee which was converted to (-)-indolizidine 209B over 2 steps.

Scheme 11. Enantiocontrolled Total Synthesis of (-)-Indolizidine 209B Using $(\eta^3$ -dihydropyridinyl)molybdenum Complexes as Chiral Scaffolds

Unsaturated molybdenum complexes such as **36**, **37** and **38** can be utilized as chiral scaffolds for the rapid synthesis of various bridged and fused hetereocyclic ring systems *via* molybdenum-mediated [4+2],^{21f,k} $[5+2]^{21a,c,d,i}$ and $[5+3]^{21h}$ cycloadditions (Scheme 12).

Scheme 12. Molybdenum-mediated Cycloaddition Reactions

Utilizing the molybdenum-mediated [5+2] cycloaddition, (-)-Bao Gong Teng A, a Chinese herb medicine, was synthesized in 2006 (Scheme 13).^{21j} Unsaturated molybdenum complex **39** underwent a regio- and stereocontrolled [5+2] cycloaddition with methyl vinyl ketone gave molybdenum complex **40** in 89% yield (*exo:endo* 7:1). Oxidative decomplexation of **40** with CAN afforded the requisite bicyclic diketone **41** in 87% yield. Finally, **41** was converted to (-)-Bao Gong Teng A in 45% yield and > 99% ee over 6 steps.

Scheme 13. Total Synthesis of (-)-Bao Gong Teng A by a Molybdenum-mediated [5+2] Cycloaddition

In 2005 an unprecedented molybdenum-mediated '1,5-Michael-like' reaction was reported,²¹ⁱ in which neutral TpMo(CO)₂(η^3 -pyranyl) and TpMo(CO)₂(η^3 -pyridinyl) complexes underwent direct nucleophilic addition of an internal enolate to the terminus of the allylmolybdenum moiety, and formed a new carbon-carbon bond. Employing this methodology, tricyclodione (-)-**43** (Scheme 14) was prepared in > 99% ee from

5-oxopyanyl molybdenum complex (-)-42 (> 99% ee) through sequential Mukaiyama-Michael, '1,5-Michael-like' reaction and decomplexation reactions.

Scheme 14. Enantiocontrolled Synthesis of Tricyclodiones *via* a Molybdenum-mediated '1,5-Michael-like' Reaction

Tungsten Complexes

The synthesis of complex organic molecules using organotungsten complexes has been extensively studied by Liu's group.^{1f} η^1 -Alkynyl, η^3 -allyl and η^1 -propargyl tungsten complexes are among those most popular organotungsten species. η^1 -Alkynyl tungsten complexes are particularly useful since they can react with electrophiles at β -carbon and form a metal- η^1 -vinylidenium intermediate which undergoes nucleophilic addition regiospecifically at the α -carbon (Scheme 15).

Scheme 15. Reactivity of η^1 -Alkynyl Tungsten Complexes

W=CpW(CO)₃

Taking advantage of this reactivity, Liu reported the synthesis of tungsten-furanyl diene²² by treatment of alkynyltungsten complexes with RCH2CHO and BF3·Et2O. The mechanism of this reaction is shown in Scheme 16.

Scheme 16. Mechanism of the Synthesis of Tungsten-furanyl Diene

In 2003, Liu reported the synthesis of chiral furanyl and pyranyl diene²³ through this methodology (Scheme 17). Alkynol 44 was first prepared from L-(+)-diethyl tartrate. Metalation of 44 with CpW(CO)₃Cl afforded tungsten-alkynol complex 45 in 71% yield. Reaction of 45 with acetaldehyde and BF₃·Et₂O afforded salt 46 which was directly treated with Et₃N to afford tungsten diene **47** in 64% yield. Finally, hydrodemetalation of **47** with Me₃NO afford chiral furanyl diene 48 in 60% yield. Chiral pyranyl diene 49 was also successfully prepared through a similar approach.

 ²² Liang, K.; Li, W.; Lee, G.; Peng, S.; Liu, R. J. Am.Chem. Soc. 1997, 119, 4404-4412.
 ²³ Huang, H.; Liu, R. J. Org. Chem. 2003, 68, 805-810.

In 1999, Liu and co-workers reported the total synthesis of (+)-dihydrocanadensolide²⁴ through a tungsten- π -allyl-complex as shown in Scheme 18. Metalation of chiral propargyl substrate **50** with NaCpW(CO)₃ gave η^1 -propargyl tungsten complex **51** in 98% yield. Treatment of **51** with catalytic amount of triflic acid induced an intramolecular alkoxycarbonylation reaction, and afforded π -allyl tungsten complex **52** in 85% yield as a mixture of *syn* and *anti* isomers. Ligand exchange with NOBF₄ and NaI led to the formation of **53** that reacted *in situ* with TBSOCH₂CHO to furnish compound **54** in 73% yield. Compound **54** was converted to (+)-dihydrocanadensolide in 7 steps.

²⁴ Chen, M.; Narkunan, K.; Liu, R. J. Org. Chem. 1999, 64, 8311-8318.

Scheme 18. Total Synthesis of (+)-Dihydrocanadensolide through a Tungsten-π-allyl-complexes

Cobalt Complexes

Organocobalt complexes are widely utilized to mediate different type of organic reactions, including Diels-Alder reaction, cobaloxime π -cation cyclizations, Pauson-Khand reaction, Nicholas reaction and cobalt mediated oxidation and reduction reaction.²⁵ Since its first report in 1970's,²⁶ the Pauson-Khand reaction became the most heavily studied organocobalt mediated reaction.²⁷ The required alkyne cobalt intermediates are easily prepared by reacting alkynes with stoichiometric dicobalt octacarbonyl (catalytic Pauson-Khand reactions were also reported under high pressure of carbon monoxide). Martin reported the enantioselective total synthesis of (-)-alstonerine²⁸ which featured the first application of Pauson-Khand reaction in the synthesis of azabridged bicyclic

²⁵ For a comprehensive review, see: Welker, M. E. Curr. Org. Chem. 2001, 5, 785-807.

²⁶ Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E.; Foreman, M. I. J. Chem. Soc., Perkin Trans. 1 1973, 977-981.

²⁷ For reviews, see: (a) Gibson, S. E.; Mainolfi, N. Angew. Chem., Int. Ed. Engl. **2005**, 44, 3022-3037. (b) Blanco-Urgoiti, J.; Anorbe, L.; Perez-Serrano, L.; Dominguez, G.; Perez-Castells, J. Chem. Soc. Rev. **2004**, 33, 32-42.

²⁸ Miller, K. A.; Martin, S. F. Org. Lett. 2007, 9, 1113-1116.

skeleton (Scheme 19). In this total synthesis, Pauson-Khand reaction of enyne **55** with stoichiometric dicobalt octacarbonyl gave cyclopentenone **56** in 94% yield as a single diastereomer, whereas various catalytic conditions only led to the recovery of starting materials.

(-)-alstonerine

A stereoselective total synthesis of antibiotic (-)-8-*O*-methyltetrangomycin was reported by Groth (Scheme 20),²⁹ that employed a cobalt mediated [2+2+2] cycloaddition³⁰ to access the core structure. Addition of lithiated diyne **57** to substituted benzaldehyde **58** afforded compound **59** which was converted to triyne **60** after deprotection of the trimethylsilyl group and protection of the free hydroxyl group. Cyclization of **60** by cobalt mediated [2+2+2] cycloaddition afforded tetrahydrobenz[*a*]anthracene **61** in 80% yield when using equimolar "jonas" catalyst CpCo(C₂H₄)₂. The synthesis of

²⁹ Kesenheimer, C.; Groth, U. Org. Lett. 2006, 8, 2507-2510.

³⁰ For reviews, see: (a) Gandon, V.; Aubert, C.; Malacria, M. *Chem. Comm.* **2006**, 2209-2217. (b) Varela, J. A.; Saá, C. *Chem. Rev.* **2003**, *103*, 3787-3801.
(-)-8-O-methyltetrangomycin was completed in 38% yield over three steps from 61.

In 2008, Hiyashi's group reported a novel highly diastereoselective 1,4-asymmetric induction³¹ using a cobalt alkyne complex (Scheme 21). This is the first example of using a cobalt alkyne complex for a stereoselective reaction *via* 1,4-chelation. As shown in Scheme 21, the angle of the alkyne triple bond is 180 °, whereas that of the alkyne cobalt complex is about 140 °. Complexation forces the stereogenic and prestereogenic centers closer to each other, which makes the metal chelation possible, thus generating

³¹ Hayashi, Y.; Yamaguchi, H.; Toyoshima, M.; Nasu, S.; Ochiai, K.; Shoji, M. Organometallics 2008, 27, 163-165.

highly stereoselective 1,4-asymmetric induction.

Scheme 21. 1,4-Asymmetric Induction Using a Cobalt Alkyne Complex

Later, this methodology was utilized in the formal total synthesis of fostriencin³² (Scheme 22). Upon treatment of dicobalt octacarbonyl, compound 62 was converted to isolable cobalt alkyne complex 63 in 84% yield. The crucial 1,4-asymmetric induction was achieved by using TiCl₂(O*i*Pr)₂ mediated allylation. Removal of cobalt with NMO afforded compound 65 in excellent yield. Compound 65 was further transformed to dephosphofostriecin 66 in 11 steps which is a known key intermediate³³ to access fostriencin.

 ³² Hayashi, Y.; Yamaguchi, H.; Toyashima, M.; Okado, K.; Toyo, T.; Shoji, M. *Org. Lett.* 2008, *10*, 1405-1408.
 ³³ Miyashita, K.; Ikejiri, M.; Kawasaki, H.; Maemura, S.; Imanishi, T. *J. Am. Chem. Soc.* 2003, *123*, 8238-8243.

Scheme 22. Formal Total Synthesis of Fostriencin *via* 1,4-Asymmetric Induction Using a Cobalt Alkyne Complex

Iron complexes

 η^4 -Diene iron complexes are widely used in organic synthesis due to their convenient preparation, decomplexation, novel reactivity, and compatibility with a wide range of functional groups.³⁴ Since those complexes are stable under various reaction conditions, η^4 -diene iron complexes can be used as 1,3-diene protecting group and stereochemical directing group. Neutral 1,3-diene iron complexes can be converted to cationic dienyl

³⁴ For a recent review, see: Donaldson, W. A. Curr. Org. Chem. 2000, 4, 837-868.

complexes which are reactive to a broad range of nucleophiles, and more importantly, the presence of iron provides unique stereo- and regioselectivity to these diene complexes.³⁵ In 2008, a formal total synthesis of (\pm)-maritidine³⁶ was accomplished by Stephenson and co-workers using cyclohexadienyl iron complex **67** (Scheme 23). Addition of aryllithium reagent **68** to complex **67** afforded 1-arylcyclohexadienyliron complex **69** in 57% yield. Methoxide abstraction with Ph₃CBF₄ provided isolable salt **70** in 70% yield. One-pot malononitrile addition/*in situ* desilylation/dealkoxylation/decarboxylation combined with deprotection of the benzylic alcohol furnished organonitrile **71** in 73% yield. After reduction of the nitrile (67%), cyclization under standard conditions gave tricyclic complex **72** in 47% yield. Finally, protection of the secondary amine followed by decomplexation afforded spiralcyclohexenone **73** which was a known intermediate to (\pm)-Maritidine.

Knölker and co-workers developed an iron-mediated oxidative cyclization using air as oxidant. This methodology was applied to the total synthesis of carbazole alkaloids mukonine³⁷ in 2003 (Scheme 24). Electrophilic substitution of **74** with dienyl iron complex salt **75** at room temperature afforded complex **76** in 61% yield. Stirring of **76** in toluene with TFA led to a smooth cyclodehydrogenation and afforded diene iron complex **77** in 50% yield. Oxidative decomplexation of **77** with ferricenium hexafluorophosphate in the presence of sodium carbonate gave mukonine in 50% yield.

³⁵ For reviews, see: (a) Pearson, A. J. *Science* **1984**, 223, 895-901. (b) Pearson, A. J. In *Comprehensive Organic Synthesis*; Trost, B. M; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, p 665-689.

³⁶ Roe, S.; Stephenson, G. R. Org. Lett. **2008**, 10, 189-192.

³⁷ Knölker, H-J.; Wolpert, M. *Tetrahedron* **2003**, *59*, 5317-5322.

Scheme 23. Iron-mediated Total Synthesis of (±)-Maritidine

Scheme 24. Iron-mediated Total Synthesis of Mukonine

Pearson's group developed an intramolecular iron tricarbonyl promoted [6+2] ene type of spirocyclization reaction in which a cyclohexadieneiron tricarbonyl moiety couples with

a pendant olefin to afford two diastereomeric spirocyclic iron complexes.³⁸ Recently, they successfully expanded the scope of this methodology to an intramolecular iron-tricarbonyl promoted aldehyde-diene coupling reaction (Scheme 25).³⁹ Under photothermal conditions, complex **78** underwent intramolecular cyclocoupling to afford **79** and **80** in 54% yield and around 1 : 7 ratio. Iron complex **80** was converted to diene **81** by oxidative decomplexation with $CuCl_2$ in 79% yield. More complex substrates **82** and **83** also participated in this reaction, and afforded tricyclic diene **84** in 42% yield over 2 steps.

Scheme 25. Intramolecular Iron-tricarbonyl Promoted Aldehyde-diene Coupling Reaction

Possible mechanism of this intramolecular iron mediated carbonyl-ene spirocyclization is shown in Scheme 26. This proposed mechanism is similar to the previously reported all

³⁸ (a) Pearson, A. J.; Zettler, M. W. *J. Am. Chem. Soc.* **1989**, *111*, 3908-3918. (b) Pearson, A. J.; Wang, X. *J. Am. Chem. Soc.* **2003**, *125*, 13326-13327. (c) Pearson, A. J.; Wang, X.; Dorange, I. B. *Org. Lett.* **2004**, *6*, 2535-2538. (d) Pearson, A. J.; Sun, H.; Wang, X. *J. Org. Chem.* **2007**, *72*, 2547-2557.

³⁹ Pearson, A. J.; Sun, H. J. Org. Chem. 2007, 72, 7693-7700.

carbon spirocyclization reaction.^{38a} The preference for the formation of **80** is probably due to coordination of the iron atom with the newly formed hydroxyl group, thus slowing down the diene migration to form **79**.

Scheme 26. Proposed Mechanism for Intramolecular Iron-tricarbonyl Promoted Aldehyde-diene Coupling Reaction

Conclusion

Transition metal complexes imparted novel reactivity and selectivity to their attached organic fragments, thus providing unique opportunities to construct various organic molecules. Along with the continuing discovery of novel reactivity and development of convenient preparation of enantiomerically pure organometallic complexes, the application of stoichiometric transition metal complexes in the total synthesis of natural products will attract more attention in the synthetic community.

<u>Chapter 2</u>

Synthesis of 6,8-Dioxabicyclo[3.2.1]oct-3-en-2-one through a Molybdenum-mediated Intramolecular '1,5-Michael-like' Reaction

Introduction

As versatile organometallic enantiomeric scaffolds. high enantiopurity TpMo(CO)₂(η^3 -pyranyl) and TpMo(CO)₂(η^3 -pyridinyl) complexes have been utilized in the asymmetric construction of structurally diverse heterocyclic systems. Different strategies including molybdenum mediated sequential functionalization ⁴⁰ and cycloaddition reactions⁴¹ have been applied in the elaboration of the enantiomeric scaffolds. Although neutral η^3 -allylmolybdenum complexes are normally considered unreactive toward direct nucleophilic functionalization on the π -carbon, recently, an unprecedented '1,5-Michael-like' reaction⁴² (Scheme 27) was reported in which neutral TpMo(CO)₂(η^3 -pyranyl) and TpMo(CO)₂(η^3 -pyridinyl) complexes underwent direct nucleophilic addition of an internal enolate to the terminus of an allylmolybdenum moiety, and formed a new carbon-carbon bond.

 ⁴⁰ (a) Yin, J.; Llorente, I.; Cillanueva, L. A.; Liebeskind, L. S. *J. Am. Chem. Soc.* 2000, *122*, 10458-10459. (b) Shu, C.; Alcudia, A.; Yin, J.; Liebeskind, L. S. *J. Am. Chem. Soc.* 2001, *123*, 12477-12487. (c) Shu, C.; Liebeskind, L. S. *J. Am. Chem. Soc.* 2003, *125*, 2878-2879.
 ⁴¹ (a) Yin, L: Liebeskind, L. S. *J. Am. Chem. Soc.* 1000, *121*, 5012, 6014.

⁴¹ (a) Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 5811–5812. (b) Malinakova, H.; Liebeskind, L. S. Org. Lett.
2000, 2, 3909-3911. (c) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. 2000, 2, 4083–4086. (d) Arrayás, R. G.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 9026. (e) Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2006, 128, 465-472. (f) Arrayás, R. G.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1816–1825. (g) Garnier, E. C.; Liebeskind, L. S. J. Am. Chem. Soc. 2008, 130, 7449-7458.

⁴² Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2005, 127, 11258-11259.

Scheme 27. Intramolecular '1,5-Michael-like'Reaction of Enolate

Intrigued by this unusual reactivity of neutral η^3 -allylmolybdenum complexes, we decided to examine the scope of this type of reaction. Herein we report that TpMo(CO)₂(η^3 -pyranyl) complexes bearing an internal alkoxide can participate in intramolecular '1,5-Michael-like' reactions, and a new carbon-oxygen bond is formed and stereospecifically (Scheme 28). Moreover, regiothrough one-pot а '1,5-Michael-decomplexation' sequence, a variety of complex organic molecules featuring the 6,8-dioxabicyclo[3.2.1]octane framework can be rapidly accessed with complete stereocontrol. The synthetic potential of this methodology was demonstrated by a highly enantiocontrolled total synthesis of (+)-(1R,2S,5S,7R)-2-hydroxy-exobrevicomin.

Scheme 28. Intramolecular '1,5-Michael-like' Reaction of Alkoxide

Results and Discussion

Synthesis of Racemic and Chiral, Non-racemic 5-Oxapyranyl Scaffold 86

The racemic 5-oxopyranyl scaffold **86** was prepared from furfuryl alcohol through sequential Achmatowicz rearrangement,⁴³ acetylation of the corresponding alcohol and complexation with (DMF)₃Mo(CO)₃ followed by ligand exchange with potassium hydridotris(1-pyrazolyl)borate⁴⁴(KTp) (Scheme 29).⁴⁵

Scheme 29. Synthesis of Racemic 5-Oxopyranyl Scaffold 86

⁴³ Achmatowicz, O., Jr.; Bukowski, P.; Szechner, B.; Zwierzchowska, Z.; Zamojski, A. *Tetrahedron* **1971**, *27*, 1973-1996.

⁴⁴ Trofimenko, S. J. Am. Chem. Soc. **1967**, 89, 3170-3177.

⁴⁵ Coombs, T. C.; Lee, M. D., IV; Wong, H.; Armstrong, M. A.; Cheng, B.; Chen, W.; Moretto, A. F.; Liebeskind, L. S. *J. Org. Chem.* **2008**, *73*, 882-888.

Both antipodes of chiral, non-racemic scaffold **86** can be synthesized as depicted in Scheme 30.⁴⁵ Racemic allylic acetate **85** was first converted to substituted pyranone **87** by ZnCl₂-mediated diastereomer formation with commercially available (*S*)-1-phenyl butanol. The two diastereomers of **87** can be resolved by chromatography. Then **87a** (faster eluting diastereomer) and **87b**⁴⁶ (slower eluting diastereomer) underwent oxidative addition to (DMF)₃Mo(CO)₃; Subsequent treatment with KTp gave (+)-**86** (48%, 98.9% ee) and (-)-**86** (61%, 97.6% ee) respectively. After recrystallization, the enantiopurity of both (+)-**86** and (-)-**86** can be increased to > 99% ee.

Scheme 30. Synthesis of Chiral, Non-racemic 5-Oxopyranyl Scaffold 86

In an earlier report, (R)-pantolactone derived pyranones underwent oxidative addition to

⁴⁶ Because **87A** and **87B** are liquids, the absolute configurations haven't been determined yet.

(DMF)₃Mo(CO)₃ predominantly with inversion of configuration.⁴⁷ Compared to previous methods with pantolactone, this improved approach probably minimized the formation of undesired enantiomer from a coordination-induced retention pathway⁴⁸(Figure 1), thus providing (-)-86 and (+)-86 with higher enantiopurity after complexation.⁴⁵

Figure 1. Two Possible Mechanisms for Enantiocontrolled Complexation

Mukaiyama-aldol Reaction and Aldol Reaction of 5-Oxopyranyl Scaffold 86 and

2-Methyl-5-oxopyranyl Scaffold 88

The synthetic studies of the intramolecular '1,5-Michael-like' reaction started with transformation of (\pm) -5-oxopyranyl complex 86 and 88⁴⁹ (Figure 2) to the corresponding alcohols 89 by Mukaiyama-aldol or traditional aldol reactions.

Figure 2. (±) 5-Oxopyranyl Complex 86 and 88

⁴⁷ Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. **1999**, *121*, 5811-5812.
⁴⁸ Ward, Y. D.; Villanueva, L. A.; Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. **1996**, *118*, 897-898.

⁴⁹ Synthesis of complex **88** will be discussed later in this chapter.

As shown in Table 1, Mukaiyama-aldol reaction of (\pm) -5-oxopyranyl complex **86** with different aldehyde⁵⁰ gave good to excellent combined yields of the corresponding *anti* and *syn* alcohols. The relative configurations of these alcohols were determined by comparing the vicinal coupling constant between the hydrogen adjacent to the hydroxyl group and the hydrogen on the pyran ring,⁵¹ and further confirmed by X-ray diffraction analysis.⁵²

TpMo(CO) ₂		ТрМс	(CO) ₂	TpMo(CO) ₂	VIO(CO) ₂	
		1.TBSOTf, Et ₃ N CH ₂ Cl ₂ , 23 °C 2. RCHO, TiCl ₄ -78 °C	O H R O H	+	C ,,,OH R	
86			anti -89	syn- 89		
Entry	Ketone	Aldehyde	anti:syn	% Yield	%ee	
1	(-)-86	acetaldehyde	2:1	85, (-) -89a	98.7 ^a	
2	(±) -86	propaldehyde	1:1	76, 89b		
3	(±) -86	crotonaldehyde	2:1	41, 89c		
4	(±) -86	PhCHO	9:1	90, 89d		
5	(+)-86	3-NO2PhCHO	4.1	88 89 e		

Table 1. Mukaiyama-aldol Reaction of Oxopyranyl Scaffold 86

a) Starting from 98.7% ee (-)-86.

In contrast to 5-oxopyranyl complex **86**, 2-methyl-5-oxopyranyl complex **88** failed to give the desired Mukaiyama-aldol adducts under similar conditions. As a control experiment, the silyl enol ether was isolated in 92% yield in the first step (TBSOTf/Et₃N), and the structure was determined to be compound **90** (Scheme 31). Generation of the silyl

⁵⁰ This reaction was established and extensively studied by Dr. Heilam Wong and Dr. Yongqiang Zhang.

⁵¹ Wong, H. Ph.D. Dissertation, Emory University, 2006.

⁵² Dr. Yongqiang Zhang, Liebeskind's group research report, Emory University.

enol ether at low temperature (-78 °C to -40 °C) followed by addition of pre-mixed TiCl₄ and CH₃CHO (-78 °C) afforded the unexpected aldol adduct **91** which should derive from the condensation of silyl enol ether **92** and CH₃CHO. However, all attempts to isolate **92** were unsuccessful. It is assumed that **92** is the kinetically favored silyl enol ether form, which might easily isomerize to the thermodynamically more stable **90** at higher temperature. Compound **90** is stable, and didn't isomerize to complex **93** under thermal conditions (40 to 100 °C).

Scheme 31. Problems in Mukaiyama-aldol Reaction of 2-Methyl-5-Oxopyranyl Scaffold 88

As an alternative to a Mukaiyama-aldol reaction, it was found that complex **88** could be converted to hydroxyl compounds **89** through a traditional aldol reaction (Table 2). For aliphatic aldehydes, *anti*-isomers were the major adducts although no significant

diastereoselectivity was observed. The slight preference for *anti* selectivity could be rationalized by a chair-like transition state⁵³ (Figure 3, A). One crucial factor in this aldol reaction is the selection of solvent. Among different solvents that have been investigated, dichloromethane was the most efficient one in terms of yields. Other solvents, such as THF, dimethoxyethane and Et₂O, only gave low yields of products. Results of the aldol reaction of **88** with different bases under different conditions are summarized in Table 2.

Table 2. Aldol Reaction of 2-Methyl-5-Oxopyranyl Scaffold 88

TpMo(CO) ₂ 0 1.base/CH ₂ Cl ₂ 2. RCHO 88				TpMo(CO) ₂ R anti- 89	TpM		
Entry	Ketone	Aldehyde	Temp (°C)	Base	anti:syn	Yield (%)	% ee
1	(±) -88	acetaldehyde	- 78	LiHMDS	2:1	61, 89f	
2	(±) -88	propaldehyde	- 78	LDA	5:1	36, 89g	
3	(±) -88	propaldehyde	-78	LiHMDS	4:1	80, 89g	
4	(±)- 88	propaldehvde	-78	KHMDS	2:1	35. 89 g	

1:2^a

1:3^a

LiHMDS

LiHMDS

63, **89h**

82, 89h

98.7^e

a) The anti/syn selectivity was determined by HPLC of crude product mixture.

-78

- 90^b

b) MeOH/liquid N₂ bath; temperature was around -90 °C.

acrolein

acrolein

c) Starting from 98% ee (-)-88.

(±)-**88**

(-)-88

5

6

Figure 3. Plausible Transition States for Aldol Reaction of 88

⁵³ Zimmerman, H.E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920-1923.

It should be noted, unlike aliphatic aldehydes, acrolein displayed diastereoselectivity favoring the *syn*-isomer in the aldol reaction with **88** (Table 2, entries 5 and 6). Lower reaction temperature (-90 °C) could slightly increase the *syn* selectivity. Since the production of *syn* isomer from an *E*-enolate through a cyclic transition state implicates a boat-like transition state,⁵⁴ a possible transition state was proposed in Figure 3 (B). A similar trend was also reported for the aldol reaction of complex **86** with some α,β -unsaturated aldehydes (Table 3).⁵⁵ The *syn*-selective aldol reaction of pyranyl scaffolds **86** and **88** seems to be aldehyde dependent (α,β -unsaturated aldehydes); The reason behind remains unclear at this writing.

		O 1. LIHMDS 2. RCHO -78 °C THF	R O R		, ,,ОН
	86		anti	syn	
Entry	Ketone	Aldehyde	Temp (°C)	anti:syn	Yield (%)
1	(±) -86	acrolein	- 78	1:9	30
2	(±)- 86	crotonaldehyde	- 78	3:7	33

 Table 3. Syn-selective Aldol Reaction of 5-Oxopyranyl Scaffold 86⁵⁵

TpMo(CO)₂

TpMo(CO)₂

Intramolecular '1,5-Michael-like' Reaction

TpMo(CO)₂

Treatment of syn-89 or anti-89 with NaH followed by Me₃OBF₄ quenching generated

1,5-Michael adducts exo-94 and endo-95 respectively in moderate to excellent yields as

⁵⁴ For examples of boat-like transition state in Aldol reaction, see: (a) Gennari, C.; Colombo, L.; Scolastico, C.; Todeschini, R. *Tetrahedron* **1984**, *40*, 4051-4058. (b) Denmark, S. E.; Wong, K-T.; Stavenger, R. A. J. Am. Chem. Soc. **1997**, *119*, 2333-2334.

⁵⁵ Dr. Yongqiang Zhang, Liebeskind's group research report, Emory University.

depicted in Table 4 and Table 5.⁵⁶ This novel transformation proceeds with complete facial diastereoselectivity which is caused by the attack of the internal alkoxide from the opposite face of the bulky TpMo(CO)₂ unit. The *exo* and *endo* relationship are determined by the stereochemistry of hydroxyl groups in **89**: *syn*-**89** afforded *exo* stereoisomers whereas *anti*-**89** afforded *endo* stereoisomers. This *exo/endo* relationship is confirmed by comparing the coupling constants between the hydrogen atoms adjacent to the bridging oxygen atoms and their vicinal neighbors. Normally, the coupling constant of the *exo* isomers are around 0-1 Hz, whereas the coupling constants of *endo* isomers are relatively larger, around 3.6 Hz.⁵⁷

$ \begin{array}{c} \text{TpMo(CO)}_{2} \\ & & & \\ &$			$\overrightarrow{HF} = \begin{bmatrix} R^2 & TpMo(CO)_2 \\ 0 & OMe \\ R^1 & H \end{bmatrix}$		
(<u>+</u>	-)-syn- 89		(<u>+</u>)-exo- 94		
Entry	syn- 89	\mathbf{R}^1	R^2	Yield (%)	
1	(-)- 89a	Me	Н	93, 94a	
2	(±) -89b	Et	Н	97, 94b	
3	(±) -89f	Me	Me	99, 94c	
4	(±)- 89g	Et	Me	98, 94d	

Table 4. Synthesis of exo-Intramolecular '1,5-Michael' Adducts

⁵⁶ Among different solvents (CH₂Cl₂, THF, Et₂O, toluene) that have been investigated, THF gave the best yields.

⁵⁷ The *exo* and *endo* relationship are established previously by X-ray crystallographic analysis and NMR studies, see: Yin,

J.; Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 5811-5812.

ТрМ R ²	Ho(CO) ₂ OH H R ²	1. NaH/THF 2. Me₃OBF₄/THF 0 °C	R ² TpMo O OMe H R ¹	(CO) ₂
(<u>+</u>)-ant i-89		(<u>+</u>)-endo- 95	
Entry	anti- 89	\mathbf{R}^1	\mathbb{R}^2	Yield (%)
1	(-)- 89 a	Me	H	79 95 a
2	() 090 (+)-80f	Me	Me	76, 95h
2	(±)-80g	Et	Mo	70, 750
3	(±) -89g	Еl	IVIE	99, 950

Table 5. Synthesis of endo-Intramolecular '1,5-Michael' Adducts

In this intramolecular 1,5-Michael-like reaction, *syn* aldol adducts gave faster reactions than their *anti* analogs. For the *syn* adducts, the reactions could be completed in 1 h. On the other hand, for the *anti* isomers, it normally took 5 hours to finish the reaction.

It is proposed that the '1,5-Michael-like reaction' is facilitated by the propensity of TpMo(CO)₂ moiety to favor 6-coordinate over 7 coordinate structures,⁵⁸ which would generate an anionic TpMo(CO)₂ intermediate **96** that possesses a good π -back-bonding enone ligand (Scheme 32). Infrared analysis of the '1,5-Michael-like' reaction of compound *syn*-**89a** provided evidence of the electron rich intermediate **96**. It was discovered that in the reaction mixture two metal carbonyl stretches shifted from 1927 cm⁻¹ and 1831 cm⁻¹ (*syn*-**89a**) to 1890cm⁻¹ and 1723 cm⁻¹ (reaction mixture) (Figure 4). The carbonyl stretch at C-5 also shifted from 1613 cm⁻¹ (*syn*-**89a**) to 1605 cm⁻¹ (reaction mixture). Since the wavenumber of carbonyl stretch reflects the available electron density

⁵⁸ Curtis, M. D.; Shiu, K. B.; Butler, W. M. Organometallics **1983**, *2*, 1475-1477.

on the metal (more electron density, smaller wave number),⁵⁹ it is indicated that an electron rich metal center was formed during the 1,5-Michael process. Further confirmation will be needed to verify this hypothesis, such as crystal structures of 96 with different counter ion.

Scheme 32. Plausible Mechanism for Intramolecular '1,5-Michael-like' Reaction

Figure 4. Infrared Spectra of Syn-89a and '1,5-Michael' Reaction Mixture

⁵⁹ Lambert, J. B.; Shurvell, H. F.; Cooks, R. G. Organic Structural Spectroscopy; Prentice Hall: New Jersy, 1998; p 183-184.

Intramolecular '1,5-Michael-demetalation' cascade

After completion of the study of intramolecular '1,5-Michael-like' reaction, the demetalation study of 6,8-dioxabicyclo[3.2.1]octenyl molybdenum complexes *exo-94* and *endo-95* to their corresponding enones was carried out (Scheme 33).

Scheme 33. Expected Demetalation of 6,8-Dioxabicyclo[3.2.1]octenyl Molybdenum Complexes

Although oxidative demetalation with cerium(IV) ammonium nitrate or CuCl₂ were demonstrated very effective in the decomplexation of various molybdenum complexes containing a terminal methoxy group in the π -allyl unit,^{41a,41c,42} demetalation of the 6,8-dioxabicyclo[3.2.1]octenyl molybdenum complexes under similar conditions only afforded the desired enones in low yields without recovery of starting materials (Scheme 34). Other demetalation protocols,⁶⁰ including photolytic protodemetalation (TFA/UV) and reductive demetalation (NOPF₆ followed by NaCNBH₃), were also not able to

⁶⁰ Moretto, A. F.; Liebeskind, L. S. J. Org. Chem. 2000, 65, 7445-7455.

provide the desired products.

Scheme 34. Attempts of Demetalation of 6,8-Dioxabicyclo[3.2.1]octenyl Molybdenum Complexes

Considering that 1,5-Michael-like reactions go through an η^2 anionic TpMo(CO)₂ intermediate (Scheme 35, compound **98**), a novel '1,5-Michael reaction-demetalation' cascade was developed as shown in Scheme 35. Quenching 1,5-Michael intermediate **98** with NOPF₆ afforded unstable η^2 -complexes **99** which could undergo spontaneous decomplexation to afford the desired bicyclic enones.⁶¹

⁶¹ Dimethoxyethane was employed as solvent in this reaction. Comparing to THF, intramolecular 1,5-Michael reaction proceeds slowly in DME. However, it seemed the TpMo(CO)₂ moiety in the η^2 intermediate was easier to dissociate in DME than in THF.

The formation of the η^2 TpMo(CO)₂ intermediate **99** was confirmed by isolation and characterization of η^2 -complex **100**⁶² (Figure 5). The assigned structure of **100** is consistent with its spectroscopic data. ¹³C NMR of **100** confirmed a carbonyl shift at 204.0 ppm. Infrared analysis revealed the NO stretching band at 1679 cm⁻¹. Meanwhile, the metal carbonyl shifted to 2011 cm⁻¹ which also indicates the presence of NO. High resolution mass spectra also confirmed the composition of **100**.

Figure 5. Spectroscopic Evidence of η^2 -complex 100

This novel one-pot '1,5-Michael-like reaction-demetalation' sequence efficiently

 $^{^{62}}$ When using THF as solvent, complex **100** was isolated in 45% yield as a bright yellow solid. Only less than 5% enone was isolated in this reaction.

combines 1,5-Michael reaction with decomplexation, and provides a rapid access to the 6,8-dioxabicyclo[3.2.1]octane skeleton in only 2 steps from parent scaffolds **86** and **88**. The scope of the 1,5-Michael-reation-demetalation cascade is depicted in Table 6 and Table 7. It was demonstrated that this sequence proceeded with no detectable enantiopurity loss when carried out with chiral, non-racemic molybdenum complexes (-)-*syn*-**89a** and (-)-*anti*-**89a**. For example, both (-)-(1S,5S,7R)-7-methyl-6,8-dioxabicyclo [3.2.1]oct-3-en-2-one (*exo*-**96a**) (Table 6, entry 1) and (-)-(1R,5R,7S)-7-methyl-6,8-dioxabicyclo [3.2.1]oct-3-en-2-one (*endo*-**97a**) (Table 7, entry 4) were prepared in 98.7% ee.

TpMo(CO)₂ 1.NaH/DME 2.NOPF₆ or NOBF₄ DME. -20 °C R^1 syn**-89** exo-**96** R^2 \mathbb{R}^1 % Yield % ee Entry syn-89 98.7^b Η 1 (-)-89a Me 80, 96a 2 Η 56, 96b (±)-89c E-prop-1-envl 3 phenyl (±)-89d Η 56, 96c

Η

Me

21, **96d**^c

73, **96e**

_

3-NO₂C₆H₄

Et

Table 6. Synthesis of *exo*-6,8-Dioxabicyclo[3.2.1]oct-3-en-2-ones^a

a) NOPF₆ and NOBF₄ were equal effective in this reaction.

(±)-89e

(±)-89g

b) Starting from 98.7% ee (-)-syn-89a.

c) Preliminary result.

4

5

1.NaH/DME 2.NOPF₆ or NOBF₄ DME. -20 °C R^1 anti-89 endo-**97** \mathbb{R}^1 R^2 anti-89 Yield (%) Entry % ee 98 7^b (-)-89a Me Η 70, **97**a 1 2 (±)-89c E-prop-1-enyl Η 44, **97b** 3 phenyl Η 61, **97c**^c (±)-89d 4 (±)-89g Et Me 66, **97d**

Table 7. Synthesis of *endo*-6,8-Dioxabicyclo[3.2.1]oct-3-en-2-one^a

a) NOPF₆ and NOBF₄ were equal effective in this reaction.

TpMo(CO)₂

b) Starting from 98.7% ee (-)-anti-89a.

c) Epimerization was observed at C7 (exo:endo 3:10).

The epimerization of at C-7 in **97c** (Table 7, entry 3) might be due to a retro-aldol reaction of *anti*-**89d** followed by another aldol reaction (Scheme 36). The resulting *syn*-**89d** could be further converted to *exo*-**96c** *via* '1,5-Michael-demetalation' reaction.

Scheme 36. Possible Epimerization Mechanism

Total synthesis of (+)-(1R,2S,5S,7R)-2-Hydroxy-exo-Brevicomin

Alkylated 6,8-dioxabicyclo[3.2.1]octane skeletons represent the basic structure of a series

of bark beetle pheromones such as *exo*-brevicomin⁶³ and frontalin⁶⁴ (Figure 6). These pheromones play a major role in the communication systems of different beetles.⁶⁵ In 1996, Francke and co-workers⁶⁶ isolated and identified several new hydroxylated brevicomin derivatives from male mountain pine beetles, *Dendroctounus ponderosae*. As an application of the intramolecular '1,5-Michael-like' reaction, the enantiocontrolled synthesis of (+)-(1*R*,2*S*,5*S*,7*R*)-2-hydroxy-*exo*-brevicomin was investigated.

Figure 6. 6,8-Dioxabicyclo[3.2.1]octanes

The synthesis of alkylated 6,8-dioxabicyclo[3.2.1]octane skeletons has received continual attention^{65,67,68} during the past decades due to the important bioactivities (insect pheromones) of molecules possessing this structural unit. Moreover, research shows that only one single enantiomer is bioactive⁶⁹ in 60% percent of those chiral pheromones. For

⁶³ Silverstein, R. M.; Brownlee, R. G.; Bellas, T. S. Science 1968, 159, 889-891.

⁶⁴ Kinzer, G. W.; Fentiman, A. F. Jr.; Page, T. F. Jr.; Foltz, R. L.; Vite, J. P.; Pitman, G. B. Nature 1969, 221, 477-478.

⁶⁵ Frank, W.; Schröder, W. Curr. Org. Chem. 1999, 3, 407-443.

⁶⁶ Francke, W.; Schröder, F.; Philipp, P.; Meyer, H.; Sinnwell, V.; Gries, F. Bioorg. Med. Chem. 1996, 4, 363-374.

⁶⁷ Mundy, B. P.; Lipkowitz, K. B.; Dirks, G. W. Heterocycles 1977, 6, 51-76.

⁶⁸ Jun, J.-G. Synlett 2003, 12, 1759-1777.

⁶⁹ Mori, K. Eur. J. Org. Chem. 1998, 1479-1489.

example, only (+)-*exo*-brevicomin was found to be the bioactive enantiomer.⁷⁰ Therefore, enantiocontrolled syntheses of these molecules are more important than their racemic forms.

Among various synthetic approaches to alkylated 6,8-dioxabicyclo[3.2.1]octane skeletons, the most commonly used method is intramolecular ketalization, which involves asymmetric dihydroxylation or epoxidation. To date, there are two total syntheses of (+)-(1R,2S,5S,7R)-2-hydroxy-*exo*-brevicomin reported respectively by the Mori⁷¹ (Scheme 37) and Prasad groups⁷² (Scheme 38). Both of them featured the intramolecular ketalization as the key step.

⁷⁰ Wood, D. L.; Browne, L. E.; Ewing, B.; Lindahl, K.; Bedard, W. D.; Tilden, P. E.; Mori, K.; Pitman, G. B.; Hughes, P. R. *Science* **1976**, *192*, 896-898.

⁷¹ Takikawa, H.; Shimbo, K-I.; Mori, K. Liebigs Ann. 1997, 821-824.

⁷² Prasad, K. R.; Anbarasan, P. Synlett **2006**, *13*, 2087-2088.

Scheme 38. Prasad's Total Synthesis of (+)-(1*R*,2*S*,5*S*,7*R*)-2-Hydroxy-*exo*-Brevicomin

Our retrosynthetic analysis of (+)-(1R,2S,5S,7R)-2-hydroxy-exo-brevicomin is outlined in Scheme 39. It was envisioned that (+)-(1R,2S,5S,7R)-2-hydroxy-exo-brevicomin could be derived from dioxabicylic enone exo-96e which the intramolecular was '1,5-Michael-demetalation' adduct of molybdenum complex syn-89g. Complex syn-89g could be synthesized from 2-methyl-5-oxopyranyl scaffold 88 via traditional aldol reaction. If successful, this enantiomeric organometallic scaffold strategy should provide a novel and concise assembly of (+)-(1R,2S,5S,7R)-2-hydroxy-exo-brevicomin with full stereocontrol.

Scheme 39. Retrosynthetic Analysis of (+)-(1R,2S,5S,7R)-2-Hydroxy-exo-Brevicomin

Racemic 2-methyl-5-oxopyranyl scaffold **88** was synthesized from 5-methyl-2furanmethanol *via* sequential Achmatowicz rearrangement, acetylation of the

corresponding alcohol, complexation with (DMF)₃Mo(CO)₃ and subsequent ligand exchange with KTp (Scheme 40).⁴⁵

 $BF_3 \cdot Et_2O$ mediated diastereomer formation of **101** with different commercially available chiral, non-racemic alcohols (Scheme 41) led to the formation of various diastereomeric 6-alkoxypyranones in good to excellent yields. However, only (*S*)-1-phenyl butanol and ethyl (*R*)-2-hydroxy-4-phenylbutyrate substituted pyranone **103** and **104** could be resolved by column chromatography.

Complexation of **103a**⁷³ (faster eluting diastereomer, > 99% ee) with 2 equiv $(DMF)_3Mo(CO)_3$ at -40 °C to room temperature only afforded 2-methyl-5-oxopyranyl scaffold **88** in 1.8% ee (Scheme 42). Presumably, the benzylic alkoxide and the methyl group in **103** exhibit similar steric effect on the dihydropyran ring which allows the Mo(0) to approach the enone from both sides of the ring, thus importing no facial selectivity compared with substrate **87A** and **87B** (Scheme 30).

Scheme 42. Complexation with 103a

Gratifyingly, complexation of **104a** (faster eluting diastereomer)⁷⁴ and **104b** (slower eluting diastereomer) with low concentrations of $(DMF)_3Mo(CO)_3$ in dichloromethane provided 2-methyl-5-oxopyranyl scaffold **88** with moderate ee. In order to improve the ee, the complexation conditions had been extensively studied. After optimization, ⁷⁵ complexation of **104a** afforded (-)-2-methyl-5-oxopyranyl scaffold **88**⁷⁶ in 40% yield and 81% ee, whereas **104b** afforded (+)-**88** in 18% yield and 93% ee (Scheme 43). The

⁷³ The absolute configuration of **103A** is unknown.

⁷⁴ The absolute configuration of **104a** and **104b** are unknown at this writing.

⁷⁵ Following methods listed in: Ward, Y. D.; Villanueva, L. A.; Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. **1996**, *118*, 897-898.

⁷⁶ The absolute configuration was determined later by the total synthesis of (+)-(1R,2S,5S,7R)-2-hydroxy-*exo*-brevicomin *via* (-)-**88**.

enantiopurity of (-)-**88** can be increased to > 98% ee after recrystallization⁷⁷ in dichloromethane and hexanes.

Scheme 43. Synthesis of Chiral, Non-racemic 88

Selected examples of different conditions (concentration, temperature, addition sequence, reaction time and solvents) explored in the enantiocontrolled complexation are shown in Table 8. At low concentrations of both (DMF)₃Mo(CO)₃ and **104**, the complexation of **104a** and **104b** provided moderate yields and reproducible ee (> 80% ee). To achieve higher yields, dichloromethane involved in this reaction should be freshly dried and degassed.

⁷⁷ (-)-**88** tends to crystallize as a single enantiomer.

Entry	SM	solvent	Time A ^a	Time	Concn	Concn	Yield	0/- 00
				$\mathbf{B}^{\mathbf{b}}$	of Mo(0) ^c	of SM	(%)	70 00
1	104a	DCM	j	24 h	0.62 (0,83 eq.) ^{d,f}	0.75	24	83.5
2	104b	DCM	j	4 d	0.16 (0,91 eq.) ^{d,f}	0.18	22	33.5
3	104a	THF	j	24 h	0.043 (0.7 eq.) ^e	0.33 ^g	30	9
4	104b	DCM	10 min	30 min	0.037(0.81 eq) ^e	0.091	28	79.1
5	104b	DCM	20 min	30 min	$7.4 \times 10^{-3} (0.64 \text{ eq.})^{e}$	0.017^{h}	45	85.1
6	104a	DCM	25 min	1 h	8.8x10 ⁻³ (0.70 eq.) ^e	0.018^{h}	24	87
7	104a	DCM	45 min	1 h	9.7x10 ⁻³ (0.65 eq.) ^e	0.022^{h}	40^{i}	81
8	104b	DCM	30 min	1 h	$8.2 \times 10^{-3} (0.65 \text{ eq.})^{e}$	0.018 ^h	18	93.1

Table 8. Selected Conditions in the Synthesis of Chiral, Non-racemic 88

a) The addition time of Mo(0) to SM; b) Time after the addition of Mo(0); c) 1 equiv of SM; d) (Tol)Mo(CO)₃ as Mo(0) source; e) (DMF)₃Mo(CO)₃ as Mo(0) source; f) (Tol)Mo(CO)₃ was added as a solid to a solution of SM; g) A solution of of SM in THF was added a solution of (DMF)₃Mo(CO)₃ in THF; h) A solution of (DMF)₃Mo(CO)₃ at -78 °C in DCM was added dropwise to a solution of SM in DCM at rt *via* cannula; i) Yield based on recovery of SM is 69%. j) Addition of SM into Mo(0) solution.

According to a previous study,⁴⁸ two possible mechanisms are shown in Scheme 44 to rationalize this enantiocontrolled complexation. First, the bulky alkoxy group might cause the addition of Mo(0) from its opposite face and lead to inversion of configuration in the oxidative addition step. It is also possible that Mo(0) could first coordinate to the carbonyl group, then be delivered to the same face as the alkoxy group (retention addition). Given the fact that the absolute configurations⁷⁸ of **104a** and **104b** haven't been confirmed yet, the exact mechanism is still under investigation.

⁷⁸ Efforts are still underway to determine the absolute configurations of **104A** and **104B**.

Scheme 44. Possible Mechanism for the Synthesis of Chiral, Non-racemic 88

Having the enantiomeric (-)-**88** in hand, the synthesis of (+)-(1*R*,2*S*,5*S*,7*R*)-2-hydroxy-*exo*-brevicomin is detailed in Scheme 45. Aldol reaction of 98% ee (-)-**88** with acrolein⁷⁹ furnished *syn* and *anti*-**89h** in 82% yield (*syn* : *anti* = 3:1, HPLC). Since *syn* and *anti*-**89h** are inseparable by simple column chromatography on silica gel, the mixture of *syn* and *anti*-**89h** was directly converted to *syn* and *anti*-**89g**⁸⁰ by Pd catalyzed hydrogenation in 91% yield and 98% ee. Following the 1,5-Michael-demetalation protocol, (-)-*syn*-**89g** was transformed to bicyclic acetal **96e** in 73% yield (98% ee) which experienced smooth hydrogenation to afford ketone **106** in 80% yield. Finally, reduction of the carbonyl with NaBH₄ accomplished the synthesis of (+)-(1*R*,2*S*,5*S*,7*R*)-2-hydroxy-*exo*-brevicomin **107** in 82% yield ($[\alpha]_D^{20} = +40.3$, c = 1.10, CHCl₃, Lit.⁷¹ $[\alpha]_D^{24} = +33.3$, c = 1.94, CHCl₃,). The spectroscopic properties of compound (+)-**107** are in full accordance with those of the natural product.^{71,72}

 ⁷⁹ Acrolein was intentionally selected instead of propaldehyde for its higher *syn* selectivity in Aldol reaction.
 ⁸⁰ Anti-**89h** can be converted to *syn*-**89h** by Mitsunobu reaction.

 $[\]begin{array}{c} \text{TpMo(CO)}_2 \\ \text{(\pm)-anti-89h} \end{array} \qquad \begin{array}{c} \text{TpMo(CO)}_2 \\ \text{(\pm)-syn-89h} \end{array} \qquad \begin{array}{c} \text{TpMo(CO)}_2 \\ \text{(\pm)-syn-89h} \end{array} \qquad \begin{array}{c} \text{TpMo(CO)}_2 \\ \text{(\pm)-syn-89h} \end{array}$

TpMo(CO)₂ TpMo(CO)₂ TpMo(CO)₂ 1. LIHMDS -90 °C Pd-C/H OH OH 91% 2. ö syn:anti 3:1 н 82% (-)-88 89h (-)-89g syn:anti 3:1 (HPLC) 98%ee 98% ee Pd-C, H₂ OH NaBH₄ 1. NaH \cap 2. NOPF₆ 80% MeOH 0 °C DME 82% dr 11:1 73% (-)-**96e** (+)-106 (+)-107 98% ee (+)-(1R,2S,5S,7R) -2-hydroxy-exo-brevicomin

Scheme 45. Enantiocontrolled Total Synthesis of (+)-(1*R*,2*S*,5*S*,7*R*)-2-hydroxy-*exo*-brevicomin

Conclusion

Neutral TpMo(CO)₂(η^3 -pyranyl) scaffolds bearing an internal alkoxide underwent a novel intramolecular '1,5-Michael-like' reaction. Through a one-pot '1,5-Michael-decomplexation' sequence, 6,8-dioxabicyclo[3.2.1]oct-3-en-2-one frame work can be easily accessed in good to excellent yields with high enantiopurity. A total synthesis of (+)-(1*R*,2*S*,5*S*,7*R*)-2-hydroxy-*exo*-brevicomin was accomplished to showcase this novel transformation.

Experimental Section

General Methods. Unless otherwise indicated, all ¹H and ¹³C NMR spectra were recorded on a Varian Inova 400 MHz (400 MHz ¹H, 100 MHz ¹³C) or Varian Inova 600 MHz (600 MHz¹H, 150 MHz¹³C) at room temperature in CDCl₃, CD₂Cl₂, C₆D₆ or acetone-d6. Spectra were internally referenced to CDCl₃ (7.26 ppm for H¹ and 77.0 ppm for ${}^{13}C$), CD₂Cl₂ (5.31 ppm for H¹ and 53.8 ppm for ${}^{13}C$), C₆D₆ (7.16 ppm for H¹ and 128.0 ppm for 13 C) or acetone- d_6 (2.05 ppm for H¹ and 29.8 ppm for 13 C). IR spectra were recorded on ASI React-IR[®] 1000 FT-IR spectrometer, equipped with a silicon probe or a Nicolet 380 FT-IR with a Smart Orbit diamond crystal plate. Peaks are reported (cm⁻¹) with the following relative intensities: s (strong, 67-100%), m (medium, 40-67%), w (weak, 20-40%) and br (broad). Since almost all of the Tp molybdenum complexes decompose at about 180-200 °C melting points are not significant and are not shown in the experimental section. Analytical thin-layer chromatography (TLC) was carried out on commercial Merck aluminum back silica gel plates (silica gel 60 F_{254} , thickness: 200 μ m) with fluorescent indicator (F-254). Optical rotations were measured Perkin-Elmer 241MC or Perkin-Elmer Model 341 polarimeters. Visualization was accomplished by UV light, stained with 5% phosphomolybdic acid (PMA) in ethanol or with ceric ammonium molybdate water solution. Column chromatography was performed on 60-230 Mesh silica gel (Silicycle or Merck). Unless otherwise specified, all solvents are dried over 4Å molecular sieves, titrated for water level with a Fisher Coulomatic K-F titrator before using, and degassed by bubbling through argon or nitrogen for 10 minutes or dispensed and used directly from a Seca Solvent System purchased from Glass Contour. All reactions were carried out under a nitrogen or argon atmosphere, and all reaction flasks were flamed or oven dried prior to use.

[(S)-1-Phenyl-butoxy]-6H-pyran-3-one, 87a and [(S)-1-Phenyl-butoxy]-6H-pyran-3-one, 87b

To a 250-mL flask charged with 2-acetoxy-5-oxo-5,6-dihydro-2*H*-pyran, **85** (4.0 g, 25.6 mmol, 1 equiv) and (*S*)-(-)-1-phenyl-1-butanol⁸¹ (98% ee, 3.85 g, 25.6 mmol, 1 equiv) in CH₂Cl₂ (30 mL) under argon was added ZnCl₂ (1.0 M in Et₂O, 7.7 mL, 7.7 mmol, 0.3 equiv). The solution was stirred at room temperature for 67 hours, after which TLC indicated no starting material was left. The mixture was transferred into a separatory funnel containing H₂O (50 mL) and CH₂Cl₂ (50 mL). The organic layer was collected, washed with brine (50 mL), dried over MgSO₄, filtered, and concentrated. The crude material was further purified by column chromatography on silica gel (10% EtOAc in hexanes) to afford the less polar diastereomer **87a** (1.8 g, 29%), and more polar diastereomer **87b** (3.2 g, 51%) as colorless liquids.

87a: TLC ($R_f = 0.66$ hexanes-EtOAc 4:1). $[\alpha]_D^{20} = -90.1$ (c = 0.75, CH₂Cl₂). IR

⁸¹ (S)-(-)-1-phenyl-1-butanol was purchsed from Fluka, and used directly.
(cm⁻¹): 2961 (m), 2934 (m), 2871 (m), 1702 (s), 1455 (m), 1397(s), 1262(s). ¹H NMR (400 MHz, CDCl₃): δ 7.34 (m, 5H), 6.76 (dd, J = 10.2 Hz, 3.4 Hz, 1H), 6.12 (d, J = 10.0 Hz, 1H), 5.00 (d, J = 3.2 Hz, 1H), 4.76 (dd, J = 8.0 Hz, 5.6 Hz, 1H), 4.56 (d, J = 16.8 Hz, 1H), 4.12 (d, J = 16.8 Hz, 1H), 1.88 (m, 1H), 1.66 (m, 1H), 1.47 (m, 1H), 1.32 (m, 1H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 194.9, 144.8, 141.4, 128.6, 128.6, 128.0, 127.6, 126.9, 126.9, 89.9, 79.2, 66.4, 40.1, 19.3, 13.8. HRMS (ESI) Calcd for C₁₅H₁₉O₃ ([M + H]⁺): 247.1329. Found: 247.1326.

87b: TLC (R_f = 0.57 hexanes-EtOAc 4:1). $[α]_D^{20}$ = -113.3 (*c* = 0.444, CH₂Cl₂). IR (cm⁻¹): 2961 (m), 2934 (m), 2876 (m), 1702 (s), 1455 (m), 1393(s), 1262(s). ¹H NMR (400 MHz, CDCl₃): δ 7.30 (m, 5H), 6.93 (dd, *J* = 10.2 Hz, 3.4 Hz, 1H), 6.12 (d, *J* = 10.4 Hz, 1H), 5.39 (d, *J* = 3.2 Hz, 1H), 4.59 (t, *J* = 6.8 Hz, 1H), 3.95 (d, *J* = 17.2 Hz, 1H), 3.72 (d, *J* = 17.2 Hz, 1H), 1.88 (m, 1H), 1.72 (m, 1H), 1.32 (m, 2H), 0.93 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 195.0, 144.1, 142.4, 128.3, 128.3, 127.7, 127.6, 126.4(2), 93.4, 82.3, 66.1, 39.3, 18.9, 13.9. HRMS (ESI) Calcd for C₁₅H₁₉O₃ [M + H]⁺: 247.1329. Found: 247.1336.

(+)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2R)-(η-2,3,4)-5-oxo-5,6-dihydro-2H
-pyran-2-yl]molybdenum, (+)-86

To a Schlenk flask charged with a solution of Mo(CO)₃(DMF)₃ (7.52 g, 18.80 mmol, 2 equiv) in degassed dry CH₂Cl₂ (40 mL) under argon at -40 °C was slowly added a solution of 87a (2.32 g, 9.42 mmol, 1 equiv) in degassed CH₂Cl₂(10 mL). The reaction mixture was allowed to warm up to -20 °C over 1 hour, and then warmed to -10 °C over 30 min. The reaction was warmed to 0 °C and stirred for 2 hours before allowing the reaction to warm to room temperature over 30 min. Solid potassium hydridotris(1-pyrazolyl)borate (KTp) (5.22 g, 20.70 mmol, 2.2 equiv) was added in one portion and the reaction was stirred for 1 hour at room temperature. The solution was then passed through a pad of silica gel, eluting with EtOAc. Solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford a yellow solid (+)-86 (2.1 g, 48%) in 98.9% ee. This compound tends to crystallize as a racemate, and therefore slow crystallization in hexanes/ CH_2Cl_2 afforded the product in >99% ee when the first few crystals that formed were removed, and the filtrate was collected and dried under *vacuum*.

Characterization (+)-86 can be found in reference 41a.

(+)-**86**: $[\alpha]_D^{20} = +447.8$ (*c* = 0.090, CH₂Cl₂). HPLC: CHIRALPAK AS-RH column, CH₃CN : H₂O = 55 : 45, 1.0 mL/min., $\lambda = 254$ nm, t_R = 11.43 min, >99% ee.

(-)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S)-η-(2,3,4)-5-oxo-5,6-dihydro-2Hpyran-2-yl]molybdenum, (-)-86

To a Schlenk flask charged with a solution of Mo(CO)₃(DMF)₃ (4.63 g, 11.6 mmol, 2 equiv) in degassed, dry CH₂Cl₂ (30 mL) under argon at -40 °C was slowly added a solution of 87b (1.43 g, 5.80 mmol, 1 equiv) in degassed CH₂Cl₂(10 mL). The reaction mixture was allowed to warm up to -20 °C over 1 hour, and then warmed to 0 °C over 30 min. After the reaction was slowly warmed to room temperature over 30 min, solid potassium hydridotris(1-pyrazolyl)borate (KTp) (3.22 g, 12.77 mmol, 2.2 equiv) was added in one portion. After stirring for 1 hour at room temperature, the solution was passed through a pad of silica gel, eluting with EtOAc. The solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford a yellow solid product (-)-86 (1.64 g, 61%) in 97.6% ee. This compound tends to crystallize as a racemate, and therefore slow crystallization in hexanes/ CH_2Cl_2 afforded the product in >99% ee when the first few crystals that formed were removed, and the filtrate was collected and dried under vacuum.

Characterization (-)-86 can be found in reference 41a.

(-)-**86**: $[\alpha]_D^{20} = -525.8$ (*c* = 0.095, CH₂Cl₂). HPLC: CHIRALPAK AS-RH column, CH₃CN : H₂O = 55 : 45, 1.0 mL/min., $\lambda = 254$ nm, t_R = 14.62 min, >99% ee.

(-)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]{ $(2S,6S)-(\eta-2,3,4)-6-[(S)-1-hydroxylethyl]-5-oxo-5,6-dihydro-2H-pyran-2-yl}molybdenum, (-)-$ *anti-89* $a and (-)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]{<math>(2S,6S)-\eta-(2,3,4)-6-[(R)-1-hydroxylethyl]-5-oxo-5,6-dihydro-2H-pyran-2-yl}molybdenum, (-)-$ *syn-89*a.

To a Schlenk flask charged with a solution of (-)-86 (540 mg, 98.7% ee, 1.17 mmol, 1 equiv) in CH₂Cl₂ (10 mL) was successively added Et₃N (0.19 mL, 1.35 mmol, 1.15 equiv) and TBSOTf (0.31 mL, 1.35 mmol, 1.15 equiv). The reaction mixture was stirred for 30 min at room temperature, then cooled down to -78 °C. To this mixture was slowly added a low-temperature (-78 °C) premixed solution of acetaldehyde (92 µL, 1.64 mmol, 1.4 equiv) and TiCl₄ (1.0 M in CH₂Cl₂, 1.52 mL, 1.52 mmol, 1.3 equiv) in CH₂Cl₂ (3 mL) via syringe. The mixture was stirred for 10 min at -78 °C and then quenched with water (1 mL). The cold bath was removed, and the reaction mixture was allowed to warm to room temperature and then purged to a separatory funnel containing CH₂Cl₂ (10 mL) and water (10 mL). The aqueous layer was separated and extracted with CH₂Cl₂ (10 mL). The combined organic phases were washed with brine (20 mL), dried over MgSO₄, filtered, concentrated, and purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford (-)-anti-89a (330 mg, 66%) as a yellow solid, and (-)-syn-89a (170 mg, 34%) as a yellow solid.

(-)-*anti*-**89a**: TLC ($R_f = 0.39$, hexanes-EtOAc 1:1). IR (cm⁻¹): 3401 (w), 3127 (w), 2980 (w), 2934 (w), 2899(w), 2486 (w), 1961 (s), 1872 (s), 1640 (m), 1505 (w), 1409 (m), 1305 (m), 1220 (m), 1123 (m), 1050 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.53 (d, J = 1.9 Hz, 1H), 7.91 (d, J = 1.9 Hz, 1H), 7.66 (d, J = 1.9 Hz, 1H), 7.63 (d, J = 2.2 Hz, 1H), 7.60 (d, J = 2.2 Hz, 1H), 7.53 (d, J = 2.2 Hz, 1H), 7.37 (dd, J = 1.9, 4.8 Hz, 1H), 6.33 (t, J = 2.2 Hz, 1H), 6.28 (t, J = 2.2 Hz, 1H), 6.23 (t, J = 2.2 Hz, 1H), 4.78 (dd, J = 2.2, 6.0 Hz, 1H), 4.21 (dd, J = 4.8, 6.4 Hz, 1H), 3.95 (m, 1H), 3.27 (d, J = 6.4 Hz, 1H), 3.08 (d, J = 4.8 Hz, 1H), 0.99 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 224.5, 223.6, 195.1, 147.7, 143.9, 141.8, 136.65, 136.62, 135.0, 107.5, 106.6, 106.4, 106.1, 79.0, 69.5, 68.8, 65.0, 18.7. Anal. Calcd for C₁₈H₁₉BMoN₆O₅: C, 42.72; H, 3.78; N, 16.60. Found: C, 42.32; H, 3.81; N, 16.17.

(-)-*anti*-**89a**: $[\alpha]_D^{20} = -357$ (*c* = 0.105, CH₂Cl₂). HPLC: CHIRALPAK AS-RH column, CH₃CN : H₂O with 0.1% TFA = 35 : 65, 0.9 mL/min., $\lambda = 254$ nm, t_R = 21.65 min, 98.7% ee. Enantiomer: t_R = 14.78 min.

(-)-*syn*-**89a**: TLC ($R_f = 0.31$, hexanes-EtOAc 1:1). IR (cm⁻¹): 3405 (w), 3127 (w), 2976 (w), 2934 (w), 2490 (w), 1961 (s), 1872 (s), 1644 (m), 1505 (m), 1409 (m), 1305 (m), 1220 (m), 1123 (m), 1050 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.53 (d, J = 1.9 Hz, 1H), 7.91 (d, J = 2.2 Hz, 1H), 7.67 (d, J = 2.2 Hz, 1H), 7.63 (d, J = 1.9 Hz, 1H), 7.61 (d, J = 1.9 Hz, 1H), 7.53 (d, J = 1.9 Hz, 1H), 7.42 (dd, J = 2.22 Hz, J = 4.76 Hz, 1H), 6.33 (t, J = 2.2 Hz, 1H), 6.28 (t, J = 2.2 Hz, 1H), 6.23 (t, J = 2.2 Hz, 1H), 4.78 (dd, J = 2.2, 6.0 Hz, 1H), 4.20 (dd, J = 4.8, 6.4 Hz, 1H), 4.15 (m, 1H), 3.31 (d, J = 3.2 Hz, 1H), 2.39 (d, J = 1.9 Hz, 1

8.9 Hz, 1H), 1.25 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): 224.7, 223.7, 195.0, 147.7, 144.0, 141.8, 136.63, 136.61, 135.0, 108.0, 106.6, 106.3 106.1, 78.9, 70.4, 68.8, 65.1, 19.2. Anal. Calcd for C₁₈H₁₉BMoN₆O₅: C, 42.72; H, 3.78; N, 16.60. Found: C, 43.01; H, 3.94; N, 16.34.

(-)-*syn*-**89a**: $[\alpha]_D^{20} = -603$ (*c* = 0.125, CH₂Cl₂). HPLC: CHIRALPAK AS-RH column, CH₃CN : H₂O = 40 : 60, 0.9 mL/min., $\lambda = 254$ nm, t_{*R*} = 14.41 min, 98.7% ee. Enantiomer: t_{*R*} = 11.77 min.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]{(2*S*,6*S*)- η -(2,3,4)-6-[(*S*,*E*)-1-hydroxylbuten-2-yl]-5-oxo-5,6-dihydro-2*H*-pyran-2-yl}molybdenum, (±)-*anti*-89c and

 $(\pm) - Dicarbonyl[hydridotris(1-pyrazolyl)borato]{(2S,6S)-\eta-(2,3,4)-6-[(R,E)-1-(R,E)-1)-(R,E)-1-(R,E)$

hydroxylbuten-2-yl]-5-oxo-5,6-dihydro-2*H*-pyran-2-yl}molybdenum, (±)-syn-89c.

To a Schlenk flask charged with a solution of (\pm)-**86** (120 mg, 0.26 mmol, 1 equiv) in CH₂Cl₂ (5 mL) was successively added Et₃N (40 µL, 0.29 mmol, 1.1 equiv) and TBSOTf (63 µL, 0.3 mmol, 1.05 equiv). The reaction mixture was stirred for 30 min at room temperature, then cooled down to -78 °C. To this mixture was slowly added a low-temperature (-78 °C) premixed solution of crotonaldehyde (31 µL, 0.36 mmol, 1.4

equiv) and TiCl₄ (1.0 M in CH₂Cl₂, 0.34 mL, 0.34 mmol, 1.3 equiv) in CH₂Cl₂ (2 mL) *via* syringe. The mixture was stirred for 10 min at -78 °C and then quenched with water (1 mL). The cold bath was removed, and the reaction mixture was allowed to warm to room temperature and then purged to a separatory funnel containing CH₂Cl₂ (10 mL) and water (30 mL). The combined organic layers were washed with water (2 × 10 mL) and brine (10 mL), dried over Na₂SO₄, filtered, concentrated, and purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford (-)-*anti*-**89c**(37 mg, 27%) as a yellow solid, and (-)-*syn*-**89c**(19 mg, 14%) as a yellow solid.

(±)-*anti*-**89c**: TLC ($R_f = 0.48$, hexanes-EtOAc 1:1). IR (cm⁻¹): 3397 (m), 3127 (m), 2918 (w), 2887 (w), 2490 (m), 1961 (s), 1872 (s), 1644 (m), 1505 (m), 1409 (m), 1305 (m), 1220 (m), 1123 (m), 1050 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, J = 1.9 Hz, 1H), 7.91 (d, J = 2.2 Hz, 1H), 7.66 (d, J = 1.9 Hz, 1H), 7.63 (d, J = 2.5 Hz, 1H), 7.61 (d, J = 2.2 Hz, 1H), 7.53 (d, J = 2.5 Hz, 1H), 7.40 (dd, J = 2.2, 4.8 Hz, 1H), 6.32 (t, J = 2.5 Hz, 1H), 6.27 (t, J = 2.2 Hz, 1H), 6.23 (t, J = 2.2 Hz, 1H), 5.80 (dqd, J = 15.3, 8.9, 1.0 Hz, 1H), 5.56 (ddq, J = 15.3, 7.3, 1.6 Hz, 1H), 4.79 (dd, J = 1.9, 6.0 Hz, 1H), 4.25 (m, 1H), 4.19 (dd, J = 4.8, 6.0 Hz, 1H), 3.42 (d, J = 5.4 Hz, 1H), 2.89 (d, J = 3.8 Hz, 1H), 1.75 (dd, J = 6.7, 1.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 224.6, 223.6, 194.2, 147.6, 143.9, 141.8, 136.60, 136.58, 135.0, 130.1, 128.5, 107.6, 106.6, 106.3, 106.0, 78.5, 73.8, 69.7, 65.1, 18.1. Anal. Calcd for C₂₀H₂₁BMoN₆O₅: C, 45.14; H, 3.98; N, 15.79. Found: C, 45.28; H, 4.12; N, 15.85.

(±)-syn-89c: TLC ($R_f = 0.34$, hexanes-EtOAc 1:1). IR (cm⁻¹): 3412 (m), 3127 (w),

2918 (w), 2887 (w), 2490 (m), 1961 (s), 1872 (s), 1644 (m), 1505 (m), 1409 (m), 1305 (m), 1220 (m), 1123 (m), 1050 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, *J* = 1.9 Hz, 1H), 7.91 (d, *J* = 1.9 Hz, 1H), 7.66 (d, *J* = 2.2 Hz, 1H), 7.63 (d, *J* = 2.2 Hz, 1H), 7.60 (d, *J* = 1.9 Hz, 1H), 7.53 (d, *J* = 2.2 Hz, 1H), 7.41 (dd, *J* = 2.2, 4.8 Hz, 1H), 6.32 (t, *J* = 2.2 Hz, 1H), 6.27 (t, *J* = 2.5 Hz, 1H), 6.23 (t, *J* = 2.2 Hz, 1H), 5.80 (dqd, *J* = 15.3, 6.4, 1.3 Hz, 1H), 5.56 (ddq, *J* = 15.3, 6.4, 1.6 Hz, 1H), 4.83 (dd, *J* = 1.9, 6.4 Hz, 1H), 4.43 (m, 1H), 4.20 (dd, *J* = 4.8, 6.4 Hz, 1H), 3.41 (d, *J* = 3.2 Hz, 1H), 2.56 (d, *J* = 8.9 Hz, 1H), 1.74 (dt, *J* = 6.4, 1.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 224.7, 223.6, 194.5, 147.6, 144.0, 141.8, 136.62, 136.58, 135.0, 129.2, 129.0, 108.1, 106.6, 106.3, 106.1, 78.3, 73.2, 70.4, 65.0, 18.1. Anal. Calcd for C₂₀H₂₁BMoN₆O₅: C, 45.14; H, 3.98; N, 15.79. Found: C, 44.97; H, 4.01; N, 15.57.

 $(\pm) - \text{Dicarbonyl}[hydridotris(1-pyrazolyl)borato]{(2S,6S)-\eta-(2,3,4)-6-[(R)-hydroxy-(phenyl)methyl]-5-oxo-5,6-dihydro-2H-pyran-2-yl}molybdenum, (\pm)-anti-89d and (\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,6S)-\eta-(2,3,4)-6-((S)-hydroxy-(phenyl)methyl)-5-oxo-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-syn-89d.$

To a Schlenk flask charged with a solution of (\pm) -86 (462 mg, 1.00 mmol, 1 equiv) in CH₂Cl₂ (20 mL) was successively added Et₃N (0.15 mL, 1.10 mmol, 1.1 equiv) and

TBSOTf (0.25 mL, 1.10 mmol, 1.1 equiv). The reaction mixture was stirred for 30 min at room temperature, then cooled down to -78 °C. To this mixture was slowly added a low temperature (-78 °C) premixed solution of benzaldehyde (141 μ L, 1.4 mmol, 1.4 equiv) and TiCl₄ (1.0 M in CH₂Cl₂, 1.3 mL, 1.30 mmol, 1.3 equiv) in CH₂Cl₂ (5 mL) *via* syringe. The mixture was stirred for 10 min at -78 °C and then quenched with water (1 mL). The cold bath was removed, and the reaction mixture was allowed to warm to room temperature and then purged to a separatory funnel containing CH₂Cl₂ (20 mL) and water (30 mL). The combined organic layers were washed with water (2 × 10 mL) and brine (10 mL), dried over MgSO₄, filtered, concentrated, and purified by column chromatography on silica gel (hexanes-EtOAc-CH₂Cl₂ 4:1:5) to afford (±)-*anti*-**89d** (460 mg, 81%) as a yellow solid, and (±)-*syn*-**89d** (51 mg, 9%) as a yellow solid.

(±)-*anti*-**89d**: TLC ($R_f = 0.30$, hexanes-EtOAc-CH₂Cl₂ 2:1:4). IR (cm⁻¹): 3416 (br, m), 1965 (s), 1876 (s), 1637 (m), 1409 (w), 1305 (w), 1220 (w), 1123 (w), 1054 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.50 (d, J = 2.0 Hz, 1 H), 7.85 (d, J = 2.0 Hz, 1 H), 7.58 (d, J= 2.0 Hz, 1 H), 7.57 (d, J = 2.0 Hz, 1 H), 7.50 (d, J = 2.0 Hz, 1 H), 7.37 (d, J = 2.0 Hz, 1 H), 7.38-7.28 (m, 5 H), 7.23 (dd, J = 2.0, 4.8 Hz, 1H), 6.29 (t, J = 2.4 Hz, 1 H), 6.21 (t, J= 2.4 Hz, 1 H), 6.19 (t, J = 2.4 Hz, 1 H), 4.86 (d, J = 6.4 Hz, 1 H), 4.63 (dd, J = 6.0, 1.6 Hz, 1 H), 3.88 (d, J = 4.8 Hz, 1 H), 3.65 (d, J = 6.0 Hz), 3.60 (br s, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 224.2, 223.4, 194.3, 147.7, 141.6, 138.9, 136.3, 134.7, 128.2, 127.4, 107.3, 106.4, 106.0, 105.8, 78.3, 74.5, 68.9, 64.7. HRMS (ESI) calcd for C₂₃H₂₂BMoN₆O₅ ([M+H]⁺): 571.0793. Found: 571.0803. (±)-*syn*-**89d**: TLC ($R_f = 0.24$, hexanes-EtOAc-CH₂Cl₂ 2:1:4). IR (cm⁻¹): 3412 (br, m), 1961 (s), 1876 (s), 1640 (s), 1409 (s), 1305 (s), 1220 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.50 (d, J = 2.0 Hz, 1 H), 7.85 (d, J = 2.0 Hz, 1 H), 7.59 (s, 1 H), 7.586 (s, 1 H), 7.57 (d, J= 2.0 Hz, 1 H), 7.37 (dd, J = 2.0, 0.4Hz, 1 H), 7.38-7.28 (m, 5 H), 7.29 (dd, J = 4.8, 2.4 Hz, 1H), 6.30 (t, J = 2.4 Hz, 1 H), 6.23 (t, J = 2.4 Hz, 1 H), 6.19 (t, J = 2.4 Hz, 1 H), 5.07 (d, J = 3.6 Hz, 1 H), 4.69 (dd, J = 6.0, 2.0 Hz, 1 H), 3.94 (dd, J = 6.0, 4.8 Hz, 1 H), 3.68 (d, J = 3.6 Hz, 1 H), 3.48 (br s, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 224.4, 223.4, 194.1, 147.4, 143.8, 141.6, 140.0, 136.3, 134.8, 128.2, 127.7, 126.5, 107.6, 106.3, 106.1, 105.8, 77.8, 73.7, 70.0, 64.9. HRMS (ESI) calcd for C₂₃H₂₂BMoN₆O₅ ([M+H]⁺): 571.0793. Found: 571.0806.

 $(\pm) - Dicarbonyl[hydridotris(1-pyrazolyl)borato]{(2S,6S)-\eta-(2,3,4)-6-[(R)-hydroxy (3-nitrophenyl)methyl]-5-oxo-5,6-dihydro-2H-pyran-2-yl}molybdenum, (\pm)-anti-89e and$

 $(\pm) - Dicarbonyl[hydridotris(1-pyrazolyl)borato]{(2S,6S)-\eta-(2,3,4)-6-[(S)-hydroxy(3-nitrophenyl)methyl]-5-oxo-5,6-dihydro-2H-pyran-2-yl}molybdenum, (\pm)-syn-89e.$

To a Schlenk flask charged with a solution of (±)-86 (170 mg, 0.37 mmol, 1 equiv) in

CH₂Cl₂ (10 mL) was successively added Et₃N (56.4 μ L, 0.41 mmol, 1.1 equiv) and TBSOTf (93 μ L, 0.41 mmol, 1.1 equiv). The reaction mixture was stirred for 30 min at room temperature, then cooled down to -78 °C. To this mixture was slowly added a low-temperature (-78 °C) premixed solution of 3-nitrobenzaldehyde (110 mg, 0.74 mmol, 2 equiv) and TiCl₄ (1.0 M in CH₂Cl₂, 0.7 mL, 0.7 mmol, 1.9 equiv) in CH₂Cl₂ (1 mL) *via* syringe. The mixture was stirred for 10 min at -78 °C and then quenched with water (1 mL). The cold bath was removed, and the reaction mixture was allowed to warm to room temperature and then purged to a separatory funnel containing CH₂Cl₂ (10 mL) and water (30 mL). The combined organic layers were washed with water (2 × 10 mL) and brine (10 mL), dried over Na₂SO₄, filtered, concentrated, and purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford (±)-*anti*-**89e** (162 mg, 72%) as a yellow solid, and (±)-*syn*-**89e** (38 mg, 17%) as a yellow solid.

(±)-*anti*-**89e**: TLC ($R_f = 0.44$ hexanes-EtOAc 1:1). IR (cm⁻¹): 3393 (br w), 2490 (w), 1956 (s), 1880 (s), 1633 (s), 1529 (s), 1409 (s), 1351(s), 1285 (s). ¹H NMR (600 MHz, CDCl₃): δ 8.49 (d, J = 2.4 Hz, 1 H), 8.28 (s, 1 H), 8.18 (dt, J = 7.2, 1.2 Hz, 1 H), 7. 86 (d, J = 1.8 Hz, 1 H), 7.74 (d, J = 7.2 Hz, 1 H), 7.60 (dd, J = 4.8, 2.4 Hz, 2 H), 7.57 (d, J = 1.8 Hz, 1 H), 7.55 (t, J = 8.1 Hz, 1 H), 7.51 (d, J = 2.4 Hz, 1 H), 7.20 (dd, J = 4.8, 1.8 Hz, 1 H), 6.31 (t, J = 2.1 Hz, 1 H), 6.24 (t, J = 2.1 Hz, 1 H), 6.22 (t, J = 2.4 Hz, 1 H), 4.88 (dd, J = 7.2, 2.4 Hz, 1 H), 4.73 (dd, J = 6.6, 2.4 Hz, 1 H), 4.19 (d, J = 2.4 Hz, 1 H), 4.07 (dd, J = 5.4, 4.8 Hz, 1 H), 3.48 (d, J = 7.2 Hz, 1 H). ¹³C NMR (150 MHz, CDCl₃): δ 223.5, 223.0, 194.1, 148.0, 147.4, 143.8, 141.6, 141.5, 136.5 (2C), 134.8, 133.4, 129.1, 123.1,

122.7, 106.5, 106.2, 105.9 (2C), 77.4, 73.4, 69.4, 64.9. HRMS (ESI) calcd for $C_{23}H_{21}BMoN_7O_7 ([M+H]^+)$: 616.0644. Found: 616.0655.

(±)-*syn*-**89e**: TLC ($R_f = 0.29$ hexanes-EtOAc 1:1). IR (cm⁻¹): 3393 (br w), 2926 (w), 2490 (w), 1956 (s), 1876 (s), 1633 (m), 1529 (s), 1409 (s), 1351(s), 1305 (s). ¹H NMR (600 MHz, CDCl₃): δ 8.50 (d, J = 1.8 Hz, 1 H), 8.31 (s, 1 H), 8.16 (dd, J = 8.4, 1.2 Hz, 1 H), 7. 83 (d, J = 1.8 Hz, 1 H), 7.72 (d, J = 7.2 Hz, 1 H), 7.60 (m, 2 H), 7.58 (d, J = 2.4 Hz, 1 H), 7.54 (t, J = 7.8 Hz, 1 H), 7.51 (d, J = 1.8 Hz, 1 H), 7.27 (dd, J = 4.5, 2.1 Hz, 1 H), 6.31 (t, J = 2.1 Hz, 1 H), 6.24 (t, J = 2.4 Hz, 1 H), 6.20 (t, J = 2.4 Hz, 1 H), 5.16 (br s, 1 H), 4.67 (dd, J = 6.0, 1.8 Hz, 1 H), 4.00 (dd, J = 6.0, 4.8 Hz, 1 H), 3.82 (br d, J = 6.6, 6.6 Hz, 1 H), 3.67 (d, J = 3.6 Hz, 1 H). ¹³C NMR (150 MHz, CDCl₃): δ 223.9, 223.0, 193.3, 148.1, 147.4, 143.8, 142.1, 141.5, 136.5 (2C), 134.8, 132.5, 129.1, 122.8, 121.8, 106.5, 106.3, 106.2, 105.9, 77.2, 72.8, 70.3, 64.9. HRMS (ESI) calcd for C₂₃H₂₁BMoN₇O₇ ([M+H]⁺): 616.0644. Found: 616.0646.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2R)- η -(2,3,4)-3-(tert-

butyldimethylsilyloxy)-6-methyl--3,4-dihydro-2H-pyran-2-yl]molybdenum, (±)-90.

To a Schlenk flask charged with a solution of (\pm) -**88** (500 mg, 1.05 mmol, 1 equiv) in CH₂Cl₂ (10 mL) at room temperature was successively added Et₃N (0.16 mL, 1.16 mmol, 1.1 equiv) and TBSOTf (0.27 mL, 1.16 mmol, 1.1 equiv). The reaction mixture turned

from purple suspension to brownish yellow solution. After being stirred for 3 hr, the solution was directly passed through a short silica gel column. The solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel (hexanes-EtOAc 2:1) to afford **90** (573 mg, 92%) as a brown solid.

(±)-**90**: TLC ($R_f = 0.78$, hexanes-EtOAc 1:2). IR (cm⁻¹): 2957 (w), 2930 (m), 2474 (w), 1938 (s), 1853 (s), 1656 (w), 1505 (m), 1463 (m), 1409 (m). ¹H NMR (400 Hz, acetone- d_6): δ 8.45 (br s, 1H), 8.14 (br s, 1H), 8.10 (d, J = 1.6 Hz, 1H), 7.84 (br s, 1H), 7.74 (d, J = 1.6 Hz, 1H), 7.70 (br s, 3H), 7.68 (d, J = 2.4 Hz, 1H), 6.29 (t, J = 2.2 Hz, 1H), 6.25 (d, J = 2.2 Hz, 1H), 6.22 (br s, 1H), 5.85 (br s, 1H), 5.16 (br s, 1H), 2.84 (br s, 1H), 1.74 (br s, 3H), 0.43 (br s, 9H), 0.05 (br s, 3H), 0.04 (br s, 3H). ¹³C NMR (100 Hz, CDCl₃): 229.5, 223.1, 145.4, 143.1, 142.4, 141.7, 135.6, 135.0, 134.2, 105.9, 105.1, 105.0, 104.5, 104.1, 91.0, 60.9, 24.9, 17.8, 17.4, -4.92. HRMS (ESI) Calcd for C₂₃H₃₁BMoN₆O₄Si ($[M]^+$): 592.1318. Found: 592.1331.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,6S)-η-(2,3,4)-2-(2hydroxylpropyl)-5-oxo-5,6-dihydro-2H-pyran-2-yl]molybdenum, (±)-91.

68

To a Schlenk flask charged with a solution of (\pm) -88 (95 mg, 0.20 mmol, 1 equiv) in CH₂Cl₂ (5 mL) at -78 °C was successively added Et₃N (31 µL, 0.22 mmol, 1.1 equiv) and TBSOTf (51 µL, 0.22 mmol, 1.1 equiv). The reaction mixture was slowly warmed to -40 °C over 15 min and stirred for 10 min at -40 °C. The reaction mixture was cooled down to -78 °C. To this mixture was slowly added a low-temperature (-78 °C) premixed solution of acetaldehyde (34 µL, 0.60 mmol, 3 equiv) and TiCl₄ (1.0 M in CH₂Cl₂, 0.54 mL, 0.54 mmol, 2.7 equiv) in CH₂Cl₂ (2 mL) via syringe. The mixture was stirred for 10 min at -78 °C and then guenched with water (1 mL). The cold bath was removed, and the reaction mixture was allowed to warm to room temperature and then purged to a separatory funnel containing CH₂Cl₂ (10 mL) and water (10 mL). The combined organic layers were washed with water $(2 \times 10 \text{ mL})$ and brine (10 mL), dried over MgSO₄, filtered, concentrated, and purified by column chromatography on silica gel (hexanes-EtOAc 2:1) to afford brownish pink solid (\pm) -91 (72 mg, 69%) as a inseparable mixture of two stereomers (10 : 1, determined by ${}^{1}H$ NMR).

(±)-**91** (major isomer): TLC ($R_f = 0.36$, hexanes-EtOAc 1:2). IR (cm⁻¹): 3389 (br w), 2486 (w), 1934 (s), 1841 (s), 1625 (s), 1509 (m), 1409 (s), 1309 (s). ¹H NMR (400 Hz, CDCl₃): δ 8.46 (br s, 1H), 8.30 (br s, 1H), 7.68 (br s, 1H), 7.58 (br s, 3H), 6.23 (br s, 3H), 4.96 (d, J = 6.0 Hz, 1H), 4.73 (d, J = 6.4 Hz, 1H), 4.36 (m, 1H), 3.74 (s, 2H), 3.05 (dd, J = 14.4, 6.0 Hz, 1H), 2.97 (dd, J = 14.4, 4.8 Hz, 1H), 1.39 (d, J = 6.4 Hz, 1H). ¹³C NMR (100 Hz, CDCl₃): δ 240.0, 227.0, 190.3, 147.5 (br), 144.62 (br), 144.6, 142.9 (br), 136.1 (br), 135.6 (br), 134.8 (br), 105.9(3C), 74.0, 68.3, 67.7, 67.3, 46.4, 22.9. HRMS (ESI)

Calcd for C₁₉H₂₂BMoN₆O₅ ([M+H]⁺): 523.0793. Found: 523.0811.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]{(2*S*,6*S*)- η -(2,3,4)-6-[(*S*)-1-hydroxyethyl]-2-methyl-5-oxo-5,6-dihydro-2*H*-pyran-2-yl}molybdenum, (±)-*anti*-89f and

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]{ $(2S,6S)-\eta-(2,3,4)-6-[(R)-1-$

hydroxyethyl)-2-methyl-5-oxo-5,6-dihydro-2*H*-pyran-2-yl}molybdenum, (±)-*syn*-89f.

To a solution of (\pm) -**88** (137 g, 0.29 mmol, 1 equiv) in dry CH₂Cl₂(5 mL) was added LiHMDS (1.0 M in THF, 0.58 mL, 0.58 mmol, 4 equiv) at -78 °C. The reaction mixture was stirred at -78 °C for 30 min followed by addition of acetaldehyde (65 µL, 1.16 mmol, 4 equiv). After being stirred for 15 min at -78 °C, the reaction was quenched with saturated NH₄Cl (1 mL). Then the cold solution was purged to a separatory funnel and washed with H₂O (10 mL) and CH₂Cl₂ (10 mL). The organic layers were collected and washed with brine (10 mL), dried over MgSO₄, filtered, concentrated, and purified by column chromatography on silica gel (CH₂Cl₂-EtOAc-hexanes 4:2:1) to afford (\pm)-*anti*-**89f** (59 mg, 39%) as a brown solid, and (\pm)-*syn*-**89f** (32 mg, 22%) as a brown solid.

(±)-*anti*-**89f**: TLC ($R_f = 0.27$, CH₂Cl₂-EtOAc-hexanes 4:2:1). IR (cm⁻¹): 3420 (br m),

2976 (w), 2930 (w), 2490 (m), 1930 (s), 1841 (s), 1629 (s), 1521 (s), 1409 (s), 1305(s), 1220 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.48 (br s, 1H), 8.29 (br s, 1H), 7.60 (br, 4H), 6.25 (br s, 3H), 4.89 (d, *J* = 6.0 Hz, 1H), 4.53 (d, *J* = 6.0 Hz, 1H), 3.94 (m, 1H), 3.59 (d, *J* = 6.0 Hz, 1H), 2.98 (d, *J* = 4.0 Hz, 1H), 2.64 (s, 3H), 1.22 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 239.6, 227.5, 191.2, 147.7(br), 144.7(br), 144.5, 142.4(br), 136.2(br), 135.5(br), 134.5(br), 106.0(br 3C), 81.5, 72.5, 68.7, 67.1, 24.2, 18.7. HRMS (ESI) Calcd for C₁₉H₂₂BMoN₆O₅ ([M+H]⁺) : 523.0793. Found: 523.0793.

(±)-*syn*-**89f**: TLC (R_f = 0.21 CH₂Cl₂-EtOAc-hexanes 4:2:1). IR (cm⁻¹): 3397 (br w), 2926 (w), 2486 (w), 1930 (s), 1837 (s), 1621 (s), 1525 (m), 1409 (m), 1305(m), 1220 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.44 (br s, 1H), 8.27 (br s, 1H), 7.56 (br, 4H), 6.22 (br s, 3H), 4.91 (d, J = 6.4 Hz, 1H), 4.50 (d, J = 6.0 Hz, 1H), 4.20 (qd, J = 6.8, 2.8 Hz, 1H), 3.62 (d, J = 2.8 Hz, 1H), 2.61 (s, 3H), 1.20 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 239.8, 228.0, 192.0, 147.7(br), 147.3, 144.6(br), 142.5(br), 136.2(br), 135.6(br), 134.7(br), 106.0(br 3C), 81.4, 72.3, 68.7, 67.6, 24.3, 19.0. HRMS (ESI) Calcd for C₁₉H₂₂BMoN₆O₅ ([M+H]⁺): 523.0793. Found: 523.0797.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]{(2*S*,6*S*)-η-(2,3,4)-6-[(*S*)-1-hydroxypropyl]-2-methyl-5-oxo-5,6-dihydro-2*H*-pyran-2-yl}molybdenum,
(±)-*anti*-89g and

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]{ $(2S,6S)-\eta-(2,3,4)-6-[(R)-1-$

hydroxypropyl]-2-methyl-5-oxo-5,6-dihydro-2*H*-pyran-2-yl}molybdenum,

(±)-syn-89g.

To a solution of (\pm) -88 (2.7 g, 5.67 mmol, 1 equiv) in dry CH₂Cl₂ (100 mL) was added LiHMDS (1.0 M in THF, 11. 34 mL, 11.34 mmol) at -78 °C. The reaction mixture was stirred at -78 °C for 30 min followed by addition of propaldehyde (1.64 mL, 22.68 mmol, 4 equiv). After being stirred for 15 min at -78 °C, the reaction was quenched with saturated NH₄Cl (5 mL). Then the solution was immediately washed with H₂O (2 x 50 mL) and brine (50 mL). The combined organic layers were dried over MgSO₄, filtered, concentrated, and purified column chromatography silica by on gel (CH₂Cl₂-EtOAc-hexanes 4:2:1) to afford (±)-anti-89g (1.9 g, 63%) as a brown solid, and (±)-*syn*-**89g** (0.5 g, 17%) as a brown solid.

(±)-*anti*-**89g**: TLC ($R_f = 0.60$, CH₂Cl₂-EtOAc-hexanes 4:2:1). IR (cm⁻¹): 3424 (br m), 2926 (m), 2486 (s),1934 (s), 1841 (s), 1629 (s), 1521 (s), 1409 (s), 1305(s), 1220 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.48 (br s, 1H), 8.30 (br s, 1H), 7.60 (br, 4H), 6.24 (br s, 3H), 4.89 (d, J = 6.0 Hz, 1H), 4.53 (d, J = 6.0 Hz, 1H), 3.70 (m, 1H), 3.65 (d, J = 6.0 Hz, 1H), 2.95 (d, J = 4.4 Hz, 1H), 2.62 (s, 3H), 1.68 (m, 1H), 1.45 (m, 1H), 0.99 (t, J = 8.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 239.6, 227.6, 191.6, 147.7, 144.8, 144.7, 142.4, 136.4, 135.5, 134.5, 106.1(3C), 80.5, 73.6, 72.5, 67.2, 25.6, 24.3, 9.6. HRMS (ESI) Calcd for C₂₀H₂₄BMoN₆O₅ ([M+H]⁺): 537.0950. Found: 537.0943.

(±)-*syn*-**89g**: TLC ($R_f = 0.40$, CH₂Cl₂-EtOAc-hexanes 4:2:1). IR (cm⁻¹): 3362 (m), 2922

(m), 2486 (m), 1922 (s), 1830 (s), 1633 (s), 1505 (s), 1409 (s), 1305(s), 1216 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.46 (br s, 1H), 8.28 (br s, 1H), 7.60 (br, 4H), 6.24 (br s, 3H), 4.92 (d, *J* = 6.0 Hz, 1H), 4.48 (d, *J* = 6.0 Hz, 1H), 3.95 (m, 1H), 3.70 (d, *J* = 2.4 Hz, 1H), 2.61 (s, 3H), 2.95 (br s, 1H), 1.52 (m, 2H), 0.98 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 239.6, 228.2, 192.3, 148.2, 147.6, 144.5, 142.4, 136.2, 135.5, 134.6, 105.9 (3C), 80.6, 74.2, 72.0, 67.5, 26.0, 24.3, 10.3. HRMS (ESI) Calcd for C₂₀H₂₄BMoN₆O₅ ([M+H]⁺): 537.0950. Found: 537.0946.

General procedure for the intramolecular '1,5-Michael-like' reaction.

To a Schlenk flask charged with molybdenum complex *syn*-**89** or *anti*-**89** (1 equiv) in dry THF was added NaH (60% dispersed in mineral oil, 2 equiv) under argon. After being stirred for 2 to 6 h at room temperature, the reaction was cooled to 0 °C. To the reaction mixture was added solid Me₃OBF₄ (2 equiv). *More* Me_3OBF_4 may be needed to complete the reaction, which highly depends on the quality of the Me_3OBF_4 . Then the reaction was stirred at 0 °C for indicated time after which TLC showed the formation of a new compound. The reaction was quenched by adding Et₃N at 0 °C. The cold solution was directly passed through a short silica gel column (pre-neutralized by 5% Et₃N) with Et₂O. The solvents were completely removed on a rotary evaporator, and the residue was further purified by flash chromatography on silica gel neutralized with 5% Et₃N.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S,2S,5S,7R)- η -(2,3,4)-2-

methoxy-7-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (±)-94a.

Following the general procedure, to a THF (3 mL) solution of the molybdenum complex *syn*-**89a** (43 mg, 0.085 mmol, 1 equiv) was added NaH (6.8 mg, 0.17 mmol, 2 equiv). The reaction mixture was stirred at room temperature for 30 min, then cooled to 0 $^{\circ}$ C followed by addition of solid Me₃OBF₄ (25 mg, 0.17 mmol, 2 equiv). The resulting mixture was stirred for 40 min at 0 $^{\circ}$ C, and quenched with Et₃N (1 mL). After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes-EtOAc (2 : 1) to afford **94a** (41 mg, 93%) as a yellow solid.

(±)-94a: TLC ($R_f = 0.64$, hexanes-EtOAc 1:1). IR (cm⁻¹): 2980 (m), 2930 (m), 2482 (m), 1930 (s), 1841 (s), 1505 (s), 1409 (s), 1305 (s), 1212 (s). ¹H NMR (600 MHz, CDCl₃): δ 8.44 (d, J = 1.2 Hz, 1H), 7.95 (d, J = 1.8 Hz, 1H), 7.61 (s, 2H), 7.57 (d, J = 1.2 Hz, 1H), 7.49 (d, J = 1.8 Hz, 1H), 6.24 (t, J = 2.1 Hz, 1H), 6.20 (t, J = 1.8 Hz, 1H), 6.16 (t, J = 2.1 Hz, 1H), 5.51 (d, J = 2.8 Hz, 1H), 4.28 (q, J = 6.2 Hz, 1H), 4.12 (d, J = 1.2 Hz, 1H), 3.83 (dd, J = 7.2, 3.0 Hz, 1H), 3.66 (d, J = 7.2 Hz, 1H), 3.25 (s, 3H), 1.26 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 230.0, 227.7, 146.2, 144.6, 140.1, 136.4, 135.8, 134.3, 131.6, 105.6, 105.45, 105.39, 102.9, 78.5, 78.2, 57.1, 51.6, 54.7, 21.1. HRMS (ESI) Calcd for C₁₉H₂₂BMON₆O₅ ([M+H]⁺): 523.0790. Found: 523.0793.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S, 2S, 5S, 7R)- η -(2,3,4)-7-ethyl-

2-methoxy-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (±)-94b.

Following the general procedure, to a THF (5 mL) solution of the molybdenum complex *syn*-**89b** (52 mg, 0.10 mmol, 1 equiv) was added NaH (8 mg, 0.20 mmol, 2 equiv). The reaction mixture was stirred at room temperature for 1 h, then cooled to 0 $^{\circ}$ C followed by addition of solid Me₃OBF₄ (30 mg, 0.20 mmol, 2 equiv). The resulting mixture was stirred for 1 h at 0 $^{\circ}$ C, and quenched with Et₃N (1 mL). After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (2 : 1) to afford **94b** (52 mg, 97%) as a yellow solid.

(±)-**94b**: TLC ($R_f = 0.70$, hexanes-EtOAc 2:1). IR (cm⁻¹): 2972 (w), 2482 (w), 1930 (s), 1841 (s), 1505 (m), 1409 (s), 1305 (s), 1212 (s). ¹H NMR (600 MHz, CDCl₃): δ 8.45 (d, J= 1.2 Hz, 1H), 7.96 (d, J = 1.2 Hz, 1H), 7.61 (t, J = 1.8 Hz, 2H), 7.57 (d, J = 1.2 Hz, 1H), 7.49 (d, J = 1.6 Hz, 1H), 6.24 (t, J = 1.4 Hz, 1H), 6.20 (t, J = 1.6 Hz, 1H), 6.16 (t, J = 1.6 Hz, 1H), 5.50 (dd, J = 1.6, 0.4 Hz, 1H), 4.19 (d, J = 1.2 Hz, 1H), 4.02 (t, J = 4.4 Hz, 1H), 3.84 (dd, J = 5.2, 1.6 Hz, 1H), 3.68 (d, J = 5.2 Hz, 1H), 3.27 (s, 3H), 1.62-1.47 (m, 2H), 0.97 (d, J = 5.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 229.7, 227.5, 146.2, 144.6, 140.2, 136.4, 135.8, 134.3, 131.6,105.6, 105.45, 105.38, 102.8, 83.8, 76.8, 57.2, 56.6, 54.8, 27.8, 10.0. HRMS (ESI) Calcd for C₂₀H₂₄BMoN₆O₅ ([M+H]⁺): 537.0950. Found: 537.0949.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S,2S,5S,7R)-η-(2,3,4)-

5,7-dimethyl-2-methoxy-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (±)-94c.

Following the general procedure, to a THF (3 mL) solution of the molybdenum complex *syn*-**89f** (20 mg, 0.038 mmol, 1 equiv) was added NaH (3 mg, 0.075 mmol, 2 equiv). The reaction mixture was stirred at room temperature for 1 h, then cooled to 0 °C followed by addition of solid Me₃OBF₄ (11.3 mg, 0.076 mmol, 2 equiv). The resulting mixture was stirred for 1 h at 0 °C, and quenched with Et₃N (1 mL). After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes/EtOAc (2 : 1) to afford **94c** (20.2 mg, 99%) as a yellow solid.

(±)-**94c**: TLC ($R_f = 0.66$, hexanes-EtOAc 2:1). IR (cm⁻¹): 2980 (w), 2945 (w), 2463 (w), 1934 (s), 1841 (s), 1505 (m), 1409 (s), 1305 (s), 1216 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.50 (d, J = 1.6 Hz, 1H), 8.05 (d, J = 1.6 Hz, 1H), 7.63 (d, J = 1.6 Hz, 1H), 7.60 (d, J =2.0 Hz, 2H), 7.50 (d, J = 2.0 Hz, 1H), 6.26 (t, J = 2.2 Hz, 1H), 6.20 (t, J = 2.2 Hz, 1H), 6.15 (t, J = 2.2 Hz, 1H), 4.23 (q, J = 6.4 Hz, 1H), 4.20 (d, J = 1.6 Hz, 1H), 3.90 (d, J =7.6 Hz, 1H), 3.73 (dd, J = 8.2, 1.8 Hz, 1H), 3.34 (s, 3H), 1.73 (s, 3H), 1.25 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 231.7, 228.0, 146.2, 144.7, 141.2, 136.4, 135.8, 134.3, 126.1, 108.6, 105.7, 105.42, 105.37, 80.0, 77.1, 64.9, 57.0, 56.4, 23.0, 12.3. HRMS (ESI) Calcd for C₂₀H₂₄BMoN₆O₅ ([M+H]⁺): 537.0950. Found: 537.0946.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S, 2S, 5S, 7R)- η -(2,3,4)-7-ethyl-5methyl-2-methoxy-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (±)-94d.

Following the general procedure, to a THF (8 mL) solution of the molybdenum complex *syn*-**89g** (32 mg, 0.06 mmol, 1 equiv) was added NaH (4.8 mg, 0.12 mmol, 2 equiv). The reaction mixture was stirred at room temperature for 1 h, then cooled to 0 °C followed by addition of solid Me₃OBF₄ (17.7 mg, 0.12 mmol, 2 equiv). The resulting mixture was stirred for 40 min at 0 °C, and quenched with Et₃N (1 mL). After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes-EtOAc (2 : 1) to afford **94d** (32 mg, 98%) as a yellow solid.

(±)-94d: TLC ($R_f = 0.62$, hexanes-EtOAc 2:1). IR (cm⁻¹): 2964 (m), 2937 (m), 2482 (m), 1938 (s), 1849 (s), 1505 (m), 1423 (s), 1409 (s), 1305 (s), 1216 (s). ¹H NMR (600 MHz, CDCl₃): δ 8.50 (d, J = 1.8 Hz, 1H), 8.07 (d, J = 2.4 Hz, 1H), 7.63 (d, J = 1.8 Hz, 1H), 7.60 (d, J = 2.4 Hz, 2H), 7.50 (d, J = 2.4 Hz, 1H), 6.26 (t, J = 2.1 Hz, 1H), 6.20 (t, J = 2.1 Hz, 1H), 6.15 (t, J = 2.1 Hz, 1H), 4.28 (d, J = 2.4 Hz, 1H), 3.97 (t, J = 6.6 Hz, 1H), 3.91 (d, J = 7.8 Hz, 1H), 3.75 (dd, J = 7.8, 1.8 Hz, 1H), 3.38 (s, 3H), 1.72 (s, 3H), 1.62-1.48 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 231.7, 228.5, 146.5, 145.0, 141.5, 136.6, 136.1, 134.5, 126.3, 108.6, 105.9, 105.7, 105.6, 83.0, 73.4, 65.6, 57.5, 56.5, 28.3, 23.0, 10.2. HRMS (ESI) Calcd for C₂₁H₂₆BMoN₆O₅ ([M+H]⁺):

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S, 2S, 5S, 7S)- η -(2, 3, 4)-2methoxy-7-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (±)-95a.

Following the general procedure, to a THF (1.5 mL) solution of the molybdenum complex *anti*-**89a** (54 mg, 0.107 mmol, 1 equiv) was added NaH (8.5 mg, 0.21 mmol, 2 equiv). The reaction mixture was stirred at room temperature for 4.5 h, then cooled to 0 $^{\circ}$ C followed by addition of solid Me₃OBF₄ (31.5 mg, 0.21 mmol, 2 equiv). The resulting mixture was stirred for 40 min at 0 $^{\circ}$ C, and quenched with Et₃N (1 mL). After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes-EtOAc (2 : 1) to afford **95a** (44 mg, 93%) as a yellow solid.

(±)-**95a**: TLC ($R_f = 0.62$, hexanes-EtOAc 1:1). IR (cm⁻¹): 2984 (w), 2934 (w), 2482 (m), 1926 (s), 1841 (s), 1505 (s), 1409 (s), 1305(s), 1212 (s). ¹H NMR (600 MHz, CDCl₃): δ 8.41 (d, J = 1.8 Hz, 1H), 7.90 (d, J = 1.8 Hz, 1H), 7.63 (d, J = 2.4 Hz, 1H), 7.62 (d, J = 1.8 Hz, 1H), 7.57 (d, J = 2.4 Hz, 1H), 7.49 (d, J = 2.4 Hz, 1H), 6.23 (t, J = 2.1 Hz, 1H), 6.22 (t, J = 2.4 Hz, 1H), 6.176 (t, J = 2.4 Hz, 1H), 5.38 (d, J = 1.8 Hz, 1H), 4.44 (dd, J = 3.9, 1.5 Hz, 1H), 4.22 (qd, J = 6.6, 3.6 Hz, 1H), 3.87 (dd, J = 7.8, 2.4 Hz, 1H), 3.75 (d, J = 7.8 Hz, 1H), 3.12 (s, 3H), 1.49 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃):

δ 230.7, 228.4, 146.2, 144.8, 140.1, 136.4, 135.8, 134.3, 132.0, 105.6, 105.50, 105.47, 102.5, 76.8, 76.3, 57.2, 56.3, 54.4, 15.0. HRMS (ESI) Calcd for C₁₉H₂₂BMoN₆O₅ ([M+H]⁺): 523.0793. Found: 523.0793.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S,2S,5S,7S)-η-(2,3,4)-

5,7-dimethyl-2-methoxy-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (±)-95b.

Following the general procedure, to a THF (5 mL)solution of the molybdenum complex *anti*-**89f** (50 mg, 0.096 mmol, 1 equiv) was added NaH (7.7 mg, 0.19 mmol, 2 equiv). The reaction mixture was stirred at room temperature for 4 h, then cooled to 0 °C followed by addition of solid Me₃OBF₄ (28.4 mg, 0.19 mmol, 2 equiv). The resulting mixture was stirred for 40 min at 0 °C, and quenched with Et₃N (1 mL). After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes-EtOAc (2 : 1) to afford **95b** (39 mg, 76%) as a yellow solid.

(±)-**95b**: TLC ($R_f = 0.41$, hexanes-EtOAc 2:1). IR (cm⁻¹): 2991 (m), 2941 (w), 2482 (m), 1934 (s), 1841 (s), 1505 (s), 1409 (s), 1305 (s), 1216 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.47 (d, J = 1.6 Hz, 1H), 8.00 (d, J = 1.6 Hz, 1H), 7.61 (m, 3H), 7.49 (d, J = 2.4 Hz, 2H), 6.25 (t, J = 2.2 Hz, 1H), 6.21 (t, J = 2.2 Hz, 1H), 6.16 (t, J = 2.2 Hz, 1H), 4.54 (dd, J = 3.6, 1.6 Hz, 1H), 4.26 (m, 1H), 3.96 (d, J = 8.0 Hz, 1H), 3.82 (dd, J = 8.0,

1.6 Hz, 1H), 3.22 (s, 3H), 1.69 (s, 3H), 1.45 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 232.7, 229.1, 146.1, 144.9, 141.1, 136.4, 135.8, 134.3, 126.3, 108.1, 105.6, 105.5, 105.4, 78.3, 75.5, 64.9, 58.8, 54.4, 22.5, 15.0. HRMS (ESI) Calcd for C₂₀H₂₄BMoN₆O₅ ([M+H]⁺): 537.0950. Found: 537.0946

 $(\pm) - Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1S,2S,5S,7S)-\eta-(2,3,4)-7-ethyl-5-methyl-2-methoxy-6,8-dioxabicyclo[3.2.1]oct-3-en-2-yl]molybdenum, (\pm)-95c.$

Following the general procedure, to a THF (8 mL) solution of the molybdenum complex *anti*-**89g** (48 mg, 0.09 mmol, 1 equiv) was added NaH (7.2 mg, 0.18 mmol, 2 equiv). The reaction mixture was stirred at room temperature for 5 h, then cooled to 0 $^{\circ}$ C followed by addition of solid Me₃OBF₄ (26.6 mg, 0.18 mmol, 2 equiv). The resulting mixture was stirred for 40 min at 0 $^{\circ}$ C, and quenched with Et₃N (1 mL). After work up, the crude product was purified by flash chromatography on silica gel eluting with hexanes-EtOAc (2 : 1) to afford **95c** (49 mg, 99%) as a yellow solid.

(±)-95c: TLC (R_f = 0.60, hexanes-EtOAc 2:1). IR (cm⁻¹): 2972 (w), 2941 (w), 2482 (w), 1930 (s), 1841 (s), 1505 (m), 1409 (m), 1305 (m), 1216 (s). ¹H NMR (600 MHz, CDCl₃):
δ 8.47 (d, J = 2.4 Hz, 1H), 7.99 (d, J = 2.4 Hz, 1H), 7.61 (m, 3H), 7.49 (d, J = 1.2 Hz, 1H), 6.24 (t, J = 2.4 Hz, 1H), 6.21 (t, J = 2.1 Hz, 1H), 6.16 (t, J = 2.4 Hz, 1H), 4.57 (dd, J

= 3.6, 1.2 Hz, 1H), 4.01 (td, J = 7.2, 3.6 Hz, 1H), 3.96 (d, J = 7.8 Hz, 1H), 3.80 (dd, J = 7.8, 2.1 Hz, 1H), 3.16 (s, 3H), 1.90-1.69 (m, 2H),1.69 (s, 3H), 1.09 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 233.0, 228.9, 146.1, 144.9, 141.0, 136.5, 135.8, 134.3, 126.9, 107.9, 105.6, 105.5, 105.4, 82.0, 77.7, 64.6, 58.8, 54.4, 23.0, 22.5, 10.9. HRMS (ESI) Calcd for C₂₁H₂₆BMoN₆O₅ ([M+H]⁺): 551.1106. Found: 551.1103.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(1*S*,3*R*,5*S*,7*R*)- η -(3,4)-7-methyl-5oxo-6,8-dioxabicyclo[3.2.1]oct-3-en-3-yl]molybdenum, (±)-100.

To a Schlenk flask charged with (\pm)-*syn*-**89a** (141 mg, 0.28 mmol, 1 equiv) in dry THF (6 mL) was added NaH (60% dispersed in mineral oil, 22.4 mg, 0.56 mmol, 2 equiv) under argon. After being stirred for 30 min at room temperature, the reaction mixture was cooled to -15 °C followed by addition of NOPF₆ (153 mg, 1.11 mmol, 4.0 equiv) as a solid. The orange solution turned yellowish brown immediately with vigorous bubbling. After 5 min at -20 °C, the reaction was opened to air, and the cold bath was removed. The reaction was allowed to slowly warm to room temperature and stirred for 45 min. Then the reaction mixture was directly subjected to column chromatography on silica gel (hexanes-EtOAc 2:1) to afford **100** (64 mg, 45%) as a yellow solid.

(±)-100: TLC ($R_f = 0.33$, hexanes-EtOAc 2:1). IR (cm⁻¹): 2494 (m), 2011 (s), 1679 (s),

1660 (s), 1505 (s), 1409 (s), 1305 (s), 1243 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.16 (d, *J* = 2.0 Hz, 1H), 8.01 (d, *J* = 2.0 Hz, 1H), 7.72 (d, *J* = 2.4 Hz, 1H), 7.70 (d, *J* = 2.4 Hz, 1H), 7.62 (d, *J* = 1.6 Hz, 1H), 7.21 (d, *J* = 2.0 Hz, 1H), 6.44 (m, 2H), 6.24 (s, 1H), 6.12 (t, *J* = 2.2 Hz, 1H), 4.37 (qd, *J* = 6.2, 1.0 Hz, 1H), 4.17 (d, *J* = 1.2 Hz, 1H), 3.72 (dd, *J* = 8.8, 1.6 Hz, 1H), 3.00 (dd, *J* = 8.8, 0.6 Hz, 1H), 1.36 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 217.2, 204.0, 144.0, 143.8, 140.9, 136.8, 136.0, 135.5, 106.4, 106.1, 105.8, 103.1, 84.5, 74.9, 72.4, 58.4, 20.6. HRMS (ESI) Calcd for C₁₇H₁₉BMoN₇O₅([M+H]⁺): 510.0589. Found: 510.0589.

General procedure for intramolecular 1,5-Michael reaction and demetalation cascade.

To a Schlenk flask charged with *syn*-**89** or *anti*-**89** (1 equiv) in dry dimethoxyethane was added NaH (60% dispersed in mineral oil, 2 equiv) under argon. After being stirred for 2 to 6 h at room temperature, the reaction mixture was cooled to -20 °C followed by addition of NOPF₆ or NOBF₄ (4.0 equiv) as a solid. The orange solution turned brown immediately with vigorous bubbling. After 5 min at -20 °C, the reaction was opened to air, and the cold bath was removed. The reaction was allowed to slowly warm to room temperature and stirred for additional 30 min. Then the reaction mixture was washed immediately with CH₂Cl₂ and H₂O. The aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over MgSO₄, filtered, concentrated, and purified by column chromatography on silica gel.

(-)-(1*S*,5*S*,7*R*)-7-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (-)-96a.

Following the general procedure, (-)-*syn*-**89a** (125 mg, 0.25 mmol, 1 equiv) was dissolved in dry DME (8 mL), and reacted with NaH (60% dispersed in mineral oil, 20 mg, 0.5 mmol, 2 equiv) for 2 h followed by adding NOBF₄ (121 mg, 0.98 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (-)-**96a** (28 mg, 98.7% ee, 81%) as a colorless oil.

(-)-96a: TLC (R_f = 0.59, hexanes-EtOAc 2: 1). IR (cm⁻¹): 2926 (w), 1695 (s), 1046 (w), 934 (m). ¹H NMR (400 MHz, CDCl₃): δ 7.10 (dd, *J* = 9.6, 3.2 Hz, 1H), 6.05 (dt, *J* = 9.6, 1.2 Hz, 1H), 5.82 (d, *J* = 2.8 Hz, 1H), 4.32 (t, *J* = 1.4 Hz, 1H), 4.03 (qd, *J* = 6.4, 1.2 Hz, 1H), 1.39 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.7, 147.6, 126.6, 96.6, 85.0, 70.8, 19.9. HRMS (ESI) Calcd for C₇H₉O₃ ([M+H]⁺): 141.0546. Found: 141.0544.

(-)-96a: $[\alpha]_D^{20} = -230.1$ (*c* = 1.35, CH₂Cl₂). HPLC: CHIRALPAK AS-RH column, CH₃CN : H₂O with 0.1% TFA = 10 : 90, 0.5 mL/min., $\lambda = 254$ nm, t_R = 22.33 min, 98.7% ee. Enantiomer: t_R = 18.19 min.

(±)-(1*S*,5*S*,7*R*)-7-[(*E*)-prop-1-enyl]-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (±)-96b.

Following the general procedure, *syn*-**89c** (92 mg, 0.17 mmol, 1 equiv) was dissolved in dry DME (5 mL), and reacted with NaH (60% dispersed in mineral oil, 13.8 mg, 0.34 mmol, 2 equiv) for 3 h followed by adding NOPF₆ (125 mg, 0.69 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded **96b** (16 mg, 56%) as a colorless oil.

(±)-**96b**: TLC ($R_f = 0.75$, hexanes-EtOAc 2:1). IR (cm⁻¹): 2918 (m), 1698 (s), 1451 (w), 1374 (m), 1247 (m). ¹H NMR (400 MHz, CDCl₃): δ 7.13 (dd, J = 9.6, 2.8 Hz, 1H), 6.06 (d, J = 10.0, 1H), 5.86 (d, J = 2.8 Hz, 1H), 5.84 (m, 1H), 4.92 (ddq, J = 8.4, 8.2, 1.6 Hz, 1H), 4.44 (t, J = 1.4 Hz, 1H), 4.26 (d, J = 8.0 Hz, 1H), 1.74 (dd, J = 6.4, 1.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.4, 147.6, 131.1, 127.2, 126.6, 96.7, 84.6, 75.5, 17.7. HRMS (ESI) Calcd for C₉H₁₁O₃ ([M+H]⁺): 167.0703. Found: 167.0699.

(±)-(1*S*,5*S*,7*R*)-7-phenyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (±)-96c.

Following the general procedure, *syn*-**89d** (50 mg, 0.09 mmol, 1 equiv) was dissolved in dry DME (5 mL), and reacted with NaH (60% dispersed in mineral oil, 7 mg, 0.18 mmol, 2 equiv) for 3 h followed by adding NOPF₆ (63.3 mg, 0.35 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 4:1) afforded **96c** (10 mg, 56%) as a colorless oil.

(±)-96c: TLC ($R_f = 0.65$, hexanes-EtOAc 3: 1). IR (cm⁻¹): 2922 (w), 1695 (s), 1494 (w),

1455 (w), 1374 (w). ¹H NMR (400 MHz, CDCl₃): δ 7.35(m, 5H), 7.23 (dd, J = 9.6, 3.6 Hz, 1H), 6.15 (dd, J = 9.6, 0.8 Hz, 1H), 4.86 (d, J = 1.2 Hz, 1H), 4.57 (d, J = 1.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 194.0, 147.6, 138.4, 128.7 (2C), 128.6, 126.7, 126.3 (2C), 97.3, 86.6, 76.0. HRMS (ESI) Calcd for C₁₂H₁₁O₃ ([M+H]⁺): 203.0703. Found: 203.0703.

96d

(±)-(1*S*,5*S*,7*R*)-7-(3-nitrophenyl)-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (±)-96d.

Following the general procedure, *syn*-**89e** (82 mg, 0.13 mmol, 1 equiv) was dissolved in dry DME (5 mL), and reacted with NaH (60% dispersed in mineral oil, 10.7 mg, 0.26 mmol, 2 equiv) for 3 h followed by adding NOPF₆ (96.5 mg, 0.52 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded **96d** (7 mg, 21%) as a white solid.

(±)-96d: TLC ($R_f = 0.54$, hexanes-EtOAc 3: 1). IR (cm⁻¹): 2922 (m), 1695 (s), 1529 (s), 1347 (s), 1251 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.27 (t, J = 2.0 Hz, 1H), 8.21 (ddd, J =8.0, 2.4, 1.2 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.57 (t, J = 8.4 Hz, 1H), 7.28 (dd, J = 9.6, 3.2 Hz, 1H), 6.19 (dd, J = 9.6, 1.2 Hz, 1H), 6.16 (d, J = 3.2 Hz, 1H), 4.95 (s, 1H), 4.56 (t, J = 1.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 193.1, 148.4, 147.6, 140.8, 132.2, 129.8, 126.9, 123.5, 121.3, 97.5, 86.4, 75.1. HRMS (ESI) Calcd for C₁₂H₁₀NO₅ ([M+H]⁺): 248.0554. Found: 248.0550.

(±)-(1*S*,5*S*,7*R*)-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (±)-96e.

Following the general procedure, *syn*-89g (210 mg, 0.39 mmol, 1 equiv) was dissolved in dry DME (10 mL), and reacted with NaH (60% dispersed in mineral oil, 31 mg, 0.78 mmol, 2 equiv) for 2 h followed by adding NOPF₆ (287 mg, 1.57 mmol, 4 equiv). Purification by column chromatography on silica gel hexanes-EtOAc 4:1) afforded **96e** (40 mg, 73 %) as a light yellow oil.

(±)-96e: TLC (R_f = 0.50, hexanes-EtOAc 4: 1). IR (cm⁻¹): 2968 (m), 2926 (m), 1702 (s), 1390 (s), 1254 (s), 1108 (s), 1034 (s). ¹H NMR (600 MHz, CDCl₃): δ 6.95 (d, J = 10.2 Hz, 1H), 6.00 (dd, J = 10.2, 2.1Hz, 1H), 4.33 (t, J = 1.2 Hz, 1H), 3.75 (dt, J = 6.0, 1.8 Hz, 1H), 1.69 (m, 2H), 1.69 (s, 3H), 0.98 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 195.1, 150.8, 125.7, 103.5, 84.1. 77.0, 27.1, 21.9, 9.6. HRMS (ESI) Calcd for C₉H₁₃O₃ ([M+H]⁺): 169.0859. Found: 169.0855.

(-)-(1*S*,5*S*,7*S*)-7-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (-)-97a.

Following the general procedure, (-)-anti-89a (120 mg, 0.24 mmol, 1 equiv) was dissolved in dry DME (8 mL), and reacted with NaH (60% dispersed in mineral oil, 19

mg, 0.48 mmol, 2 equiv) for 5 h followed by adding NOBF₄ (120 mg, 0.97 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (-)-**97a** (23 mg, 98.7% ee, 70%) as a colorless oil.

(-)-**97a**: TLC ($R_f = 0.59$, hexanes-EtOAc 2: 1). IR (cm⁻¹): 2984 (m), 2922 (m), 1702 (s), 1374 (s), 1239 (s). ¹H NMR (400 MHz, CDCl₃): δ 7.29 (dd, J = 9.6, 3.2 Hz, 1H), 6.10 (dt, J = 7.6, 1.0 Hz, 1H), 5.70 (d, J = 3.2 Hz, 1H), 4.70 (dd, J = 5.8, 1.0 Hz, 1H), 4.38 (m, 1H), 1.17 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.1, 150.3, 127.9, 95.7, 83.4, 71.1, 15.7. HRMS (ESI) Calcd for C₇H₉O₃ ([M+H]⁺): 141.0546. Found: 141.0550.

(-)-**97a**: $[\alpha]_D^{20} = -573.6^\circ$ (*c* = 1.05, CH₂Cl₂). HPLC: CHIRALPAK AS-RH column, CH₃CN : H₂O with 0.1% TFA = 10 : 90, 0.5 mL/min., $\lambda = 254$ nm, t_R = 25.12 min, 98.7% ee. Enantiomer: t_R = 20.00 min.

(±)-(1*S*,5*S*,7*S*)-7-((*E*)-prop-1-enyl)-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (±)-97b.

Following the general procedure, *anti*-**89c** (80 mg, 0.15 mmol, 1 equiv) was dissolved in dry DME (5 mL), and reacted with NaH (60% dispersed in mineral oil, 12 mg, 0.30 mmol, 2 equiv) for 3 h followed by adding NOPF₆ (108 mg, 0.60 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 4:1) afforded **97b** (11 mg, 44 %) as a colorless oil.

(±)-97b: TLC ($R_f = 0.44$, hexanes-EtOAc 4:1). IR (cm⁻¹): 2922 (m), 1702 (s), 1447

(w), 1374 (m), 1212(s). ¹H NMR (400 MHz, CDCl₃): δ 7.28 (dd, J = 9.6, 3.2 Hz, 1H), 6.10 (d, J = 9.6, 1H), 5.86 (d, J = 2.8 Hz, 1H), 5.84 (dt, J = 14.8, 6.8 Hz 1H), 5.75 (d, J = 3.2 Hz, 1H), 5.11 (ddq, J = 7.4, 7.4, 1.2 Hz, 1H), 4.74-4.66 (m, 1H), 1.67 (dd, J = 6.8, 1.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 193.7, 149.7, 133.2, 128.2, 124.2, 96.0, 83.2, 76.3, 17.8. HRMS (ESI) Calcd for C₉H₁₁O₃ ([M+H]⁺): 167.0703. Found: 167.0699.

(±)-(1*S*,5*S*,7*S*)-7-phenyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (±)-97c.

Following the general procedure, *anti*-**89d** (83 mg, 0.146 mmol, 1 equiv) was dissolved in dry DME (5 mL), and reacted with NaH (60% dispersed in mineral oil, 11.6 mg, 0.29 mmol, 2 equiv) for 6 h followed by adding NOPF₆ (105 mg, 0.58 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 4:1) afforded **97c** (18 mg, 61%) as a colorless oil and **96c** (5 mg, 17%) as a colorless oil.

(±)-97c: TLC ($R_f = 0.79$, hexanes-EtOAc 2: 1). IR (cm⁻¹): 1710 (s), 1235 (w), 1069 (s), 984 (m), 907 (s). ¹H NMR (400 MHz, CDCl₃): δ 7.34 (dd, J = 9.6, 3.2 Hz, 1H), 7.31-7.19 (m, 5H), 5.97 (d, J = 9.6 Hz, 1H), 5.96 (d, J = 2.8 Hz, 1H), 5.47 (d, J = 6.4 Hz, 1H), 4.99 (dd, J = 6.0, 1.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 192.6, 148.5, 134.3, 129.1, 128.4 (2C), 128.2, 125.8 (2C), 96.7, 84.4, 76.8. HRMS (ESI) Calcd for C₁₂H₁₁O₃ ([M-H]⁺): 201.0542. Found: 201.0542.

(±)-(1*S*,5*S*,7*S*)-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (±)-97d.

Following the general procedure, *anti*-**89g** (170 mg, 0.32 mmol, 1 equiv) was dissolved in dry DME (8 mL), and reacted with NaH (60% dispersed in mineral oil, 26 mg, 0.65 mmol, 2 equiv) for 6 h followed by adding NOPF₆ (232 mg, 1.28 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes/EtOAc 3:1) afforded **97d** (35 mg, 66 %) as a colorless oil.

(±)-97d: TLC ($R_f = 0.66$, hexanes-EtOAc 2: 1). IR (cm⁻¹): 2968 (m), 2941 (m), 1695 (s), 1556 (s), 1386 (s). ¹H NMR (400 MHz, CDCl₃): δ 7.12 (d, J = 9.62 Hz, 1H), 6.04 (dd, J = 9.6, 1.2 Hz, 1H), 4.69 (dd, J = 6.0, 1.2 Hz, 1H), 4.20 (qd, J = 6.0, 1.8 Hz, 1H), 1.66 (s, 3H), 1.43 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.2, 153.6, 127.2, 102.7, 83.7. 78.1, 23.8, 22.2, 10.7. HRMS (ESI) Calcd for C₉H₁₃O₃ ([M+H]⁺): 169.0859. Found: 169.0855.

(±)-6-Hydroxy-6-methyl-6*H*-pyran-3-one, (±)-101.

5-Methyl-2-furanmethanol⁸² (5.0 g, 44.6 mmol, 1.0 equiv.) was dissolved in CH₂Cl₂

⁸² 5-Methyl-2-furanmethanol was purchased from Aldrich, and used directly.

(100 mL) at 0 °C. Then *m*-CPBA (77%, 10.5 g, 46.8 mmol, 1.05 equiv) was added to the reaction portion by portion (5 g each). After stirring at 0 °C for 15 min, the reaction was slowly warmed to room temperature, and stirred for 1 hr. Then the mixture was cooled to -78 °C, and the solid was vacuum filtered at low temperature. The filtrate was concentrated on a rotary evaporator, and purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford **101** as a yellow solid (5.6 g, 98%).

(±)-101. ¹H NMR (600 MHz, CDCl₃): δ 6.86 (d, J = 9.6 Hz, 1H), 6.03 (d, J = 10.8 Hz, 1H), 4.53 (d, J = 16.8 Hz, 1H), 4.09 (d, J = 16.8 Hz, 1H), 3.76 (br s, 1H), 1.61 (s, 3H).
¹³C NMR (100 MHz, CDCl₃): δ 195.3, 149.3, 126.2, 92.7, 66.4, 27.6.

02

(±)-2-methyl-5-oxo-5,6-dihydro-2*H*-pyran-2-yl acetate, (±)-102.

In a 250 mL flask with **101** (4.7 g, 36.7 mmol, 1.0 equiv) under argon, CH₂Cl₂ was added until all solid was dissolved. After cooling the solution to 0 °C, Et₃N (5.38 mL, 38.6 mmol, 1.05 equiv.), Ac₂O (3.79 mL, 40.4 mmol, 1.1 equiv) and a crystal of DMAP were added to the reaction respectively. After stirring at 0 °C for 2 hr, the reaction was slowly warmed to room temperature and stirred for 15min. Then the mixture was purged into a separatory funnel and washed with saturated NaHCO₃ (100 mL) and CH₂Cl₂ (50 mL). The organic layers were collected and washed with brine (50 mL), dried over MgSO₄, filtered, and concentrated to afford a deep red oil (5.0g, 81%), which was used

directly in the next step without further purification.

(±)-102: ¹H NMR (300 MHz, CDCl₃): δ 6.34 (d, J = 10.2 Hz, 1H), 6.08 (d, J = 10.2 Hz, 1H), 4.58 (d, J = 17.4 Hz, 1H), 4.21 (d, J = 17.1 Hz, 1H), 2.06 (s, 3H), 1.80 (s, 3H).

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][η -(2,3,4)-2-methyl-5-oxo-5,6-dihydro-2*H*-pyran-2-yl]molybdenum, (±)-88.

To a Schlenk flask charged with a solution of $Mo(CO)_3(DMF)_3$ (5.5 g, 5.87 mmol, 1.2 equiv) in degassed, dry CH₂Cl₂ (40 mL) under argon was slowly added a solution of **102** (1.95 g, 5.87 mmol, 1.0 equiv) in degassed CH₂Cl₂ (10 mL) at room temperature. The reaction mixture was stirred for 2.5 h, and then solid KTp (3.49 g, 5.87 mmol, 1.2 equiv) was added in one portion. After stirring for 1 h at room temperature, the solution was passed through a pad of silica gel with EtOAc. The solvents were completely removed on a rotary evaporator, and the residue was purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford a brown solid (±)-**88** (3.1 g, 57%).

(±)-**88**: TLC ($R_f = 0.32$, hexanes-EtOAc 2:1). IR (cm⁻¹): 2486 (w), 2250 (w), 1934 (s), 1841 (s), 1637(s), 1521(m), 1305 (m), 1220 (m), 1123 (m). ¹H NMR (600 MHz, CDCl₃): δ 8.44 (br s, 1H), 8.30 (br s, 1H), 7.60 (br s, 4H), 6.22 (s, 3H), 4.85 (d, J = 6.0 Hz, 1H), 4.47 (d, J = 6.0 Hz, 1H), 3.76 (s, 2H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 239.7, 227.6, 189.9, 147.5, 146.7, 144.7, 142.4, 136.3, 135.5, 134.5, 105.9(3), 72.7, 68.6, 67.2,

(2*R*)-ethyl 2-(2-methyl-5-oxo-5,6-dihydro-2*H*-pyran-2-yloxy)-4-phenylbutanoate, 104a and 104b.

To a 100 mL flask charged with 6-hydroxy-6-methyl-6*H*-pyran-3-one **101** (1.75 g, 13.7 mmol, 1.1 equiv), ethyl (*R*)-(-)-2-hydroxy-4-phenylbutyrate⁸³ (2.59 g, 12.4 mmol, 1 equiv) and activated 4 Å molecular sieves under argon was added dry CH_2Cl_2 (20 mL). The solution was cooled to -78 °C, and $BF_3 \cdot Et_2O$ (1.7 mL, 1.92 g, 13.6 mmol, 1 equiv) was added. After stirring at -78 °C for 1 h, the reaction was quenched with adding Et_3N (3.47 mL, 24.9 mmol, 2 equiv). Then reaction mixture was stirred for 15 min at -78 °C, then directly filtered through a short pad of Celite with EtOAc and concentrated. The residue was passed through a short silica gel column, and eluted with 20% EtOAc in hexanes. Solvents were completely removed on a rotary evaporator, and the crude material was further purified by column chromatography on silica gel (hexanes-EtOAc 9:1) to afford the less polar diastereomer **104a** (1.63 g, 41%), and more polar diastereomer **104b** (1.71g, 43%) as colorless oils. *Additional 1 to 2 times column chromatography under*

⁸³ Ethyl (*R*)-(-)-2-hydroxy-4-phenylbutyrate was purchsed from Aldrich, and used directly.

same condition were performed to obtain 104a and 104b for >99% ee.

104a: TLC ($R_f = 0.50$, hexanes-EtOAc 4:1). IR (cm⁻¹): 1741 (s), 1695 (s), 1455 (m), 1382 (m), 1282 (m). ¹H NMR (400 MHz, CDCl₃): δ 7.29 (m, 3H), 7.21 (m, 2H), 6.81 (d, J = 10.8 Hz, 1H), 6.10 (d, J = 10.4 Hz, 1H), 4.55 (d, J = 17.2 Hz, 1H), 4.31 (t, J = 6.4 Hz, 1H), 4.19 (m, 2H), 3.99 (d, J = 17.2 Hz, 1H), 2.72 (m, 2H), 2.07 (m, 2H), 1.54 (s, 3H), 1.29 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.4, 172.5, 148.0, 140.8, 128.5 (2C), 128.4 (2C), 126.7, 126.1, 96.5, 70.8, 67.3, 61.1, 34.8, 31.2, 23.6, 14.2. HRMS (ESI) Calcd for C₁₈H₂₆NO₅ ([M+NH₄]⁺): 336.1807. Found: 336.1806.

104a: $[\alpha]_D^{20} = -20.8$ (*c* = 1.395, CH₂Cl₂). HPLC: CHIRALPAK OJ-RH column, CH₃CN : H₂O = 40 : 60, 0.9 mL/min., $\lambda = 254$ nm, t_R = 16.30 min, >99% ee.

104b: TLC ($R_f = 0.42$, hexanes-EtOAc 4:1). IR (cm⁻¹): 1749 (s), 1695 (s), 1455 (m), 1382 (m), 1282 (m). ¹H NMR (400 MHz, CDCl₃): δ 7.29 (m, 3H), 7.19 (m, 2H), 6.85 (d, J = 10.4 Hz, 1H), 6.10 (d, J = 10.4 Hz, 1H), 4.36 (t, J = 6.2 Hz, 1H), 4.36 (d, J = 16.8 Hz, 1H), 4.21 (qd, J = 6.8, 0.8 Hz, 2H), 4.08 (d, J = 16.8 Hz, 1H), 2.71 (m, 2H), 2.08 (m, 2H), 1.51 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 194.0, 172.5, 148.5, 140.7, 128.5 (2C), 128.3 (2C), 126.8, 126.2, 96.5, 70.9, 66.9, 61.0, 35.1, 31.3, 23.5, 14.2. HRMS (ESI) Calcd for C₁₈H₂₃O₅ ([M+H]⁺): 319.1542. Found: 319.1540.

104b: $[\alpha]_D^{20} = -22.2$ (*c* = 1.55, CH₂Cl₂). HPLC: CHIRALPAK OJ-RH column, CH₃CN : H₂O = 40 : 60, 0.9 mL/min., $\lambda = 254$ nm, t_R = 12.70 min, >99% ee.

(-)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S)-η-(2,3,4)-2-methyl-5-oxo-5,6dihydro-2*H*-pyran-2-yl]molybdenum, (-)-88.

In a 100 mL Schlenk flask, Mo(CO)₃(DMF)₃ (0.289 g, 0.72 mmol, 1 equiv) was dissolved in freshly degassed dry CH₂Cl₂ (75 mL) at room temperature under argon for 5 min. Then the Mo(CO)₃(DMF)₃ solution was cooled to -78 °C. Via a cannula, the Mo(CO)₃(DMF)₃ solution was added dropwise to a 200 mL Schlenk flask charged with a vigorous stirred solution of 104a (0.35 g, 1.1 mmol, 1.4 equiv) in freshly degassed dry CH₂Cl₂ (50 mL) under argon over 45 min at room temperature. Upon addition of the $Mo(CO)_3(DMF)_3$ solution, the reaction mixture was stirred for 1 h at room temperature, then solid potassium hydridotris(1-pyrazolyl)borate (KTp) (0.37 g, 1.47 mmol, 2 equiv) was added in one portion. After stirring for 1 hour at room temperature, the reaction solution was directly passed through a pad of silica gel, eluting with EtOAc. The solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel (hexanes-EtOAc 1:1) to afford a brown solid (-)-88 (0.135 g, 40%) in 81% ee. Meanwhile, 0.22g 104a was recovered without loss of enantiopurity. Complex (-)-88 tends to crystallize as a single enantiomer, therefore slow crystallization in hexanes/ CH_2Cl_2 afforded the product in >98% ee when the crystals formed were collected, and the filtrate was removed.

Characterization as in (\pm) -88.

(-)-**88**: $[\alpha]_D^{20} = -346$ (*c* = 0.025, CH₂Cl₂). HPLC: CHIRALPAK AS-RH column, CH₃CN : H₂O with 0.1% TFA = 50 : 50, 1.0 mL/min., $\lambda = 254$ nm, t_R = 14.95 min, >98% ee. Enantiomer: t_R = 8.53 min

(+)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2-*R*)-η-(2,3,4)-2-methyl-5-oxo-5,6-dihydro-2*H*-pyran-2-yl]molybdenum, (+)-88.

In a 100 mL Schlenk flask, $Mo(CO)_3(DMF)_3$ (0.163 g, 0.40 mmol, 1 equiv) was dissolved in degassed dry CH_2Cl_2 (50 mL) at room temperature under argon for 5 min. Then the $Mo(CO)_3(DMF)_3$ solution was cooled to -78 °C. *Via* a cannula, the cold $Mo(CO)_3(DMF)_3$ solution was added dropwise to a 200 mL Schlenk flask charged with a vigorous stirring solution of **104b** (0.20 g, 0.62 mmol, 1.55 equiv) in degassed dry CH_2Cl_2 (35 mL) under argon over 30 min at room temperature. Upon addition of the $Mo(CO)_3(DMF)_3$ solution, the reaction mixture was stirred for 1 h at room temperature, then solid potassium hydridotris(1-pyrazolyl)borate (KTp) (0.158 g, 0.62 mmol, 1.55 equiv) was added in one portion. After stirring for 1 hour at room temperature, the reaction solution was directly passed through a pad of silica gel, eluting with EtOAc. The solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel (EtOAc-hexanes 1:1) to afford a brown solid (+)-**88** (0.036 g, 18%) in 93% ee.

Characterization as in (\pm) -88.

(+)-88: $[\alpha]_D^{20} = +112$ (*c* = 0.02, CH₂Cl₂). HPLC: CHIRALPAK AS-RH column, CH₃CN : H₂O with 0.1% TFA = 50 : 50, 1.0 mL/min., $\lambda = 254$ nm, t_r = 8.53 min, 93% ee. Enantiomer: t_r = 14.95 min

Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,6S)- η -(2,3,4)-2-methyl-6-(1-hydroxylpropen-2-yl)-5-oxo-5,6-dihydro-2H-pyran-2-yl]molybdenum, 89h.

To a stirring solution of (-)-**88** (0.252 g, 98% ee, 0.53 mmol, 1 equiv) in dry CH₂Cl₂ (7 mL) was added LiHMDS (1.0 M in THF, 2.1 mL, 2.1 mmol, 4 equiv) at -90 °C (MeOH/liquid N₂ bath). After being stirred at -90 °C for 30 min, acrolein (0.7 mL) was added to the solution, and stirred for 10 min at -90 °C followed by quenching with H₂O (1.5 mL) and diluting with Et₂O (7 mL). Then the reaction mixture was washed immediately with Et₂O (20 mL) and H₂O (20 mL). The aqueous layer was separated and extracted with Et₂O (20 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, filtered, concentrated, and purified by column chromatography on silica gel (CH₂Cl₂-EtOAc-hexanes 4:2:1) to afford brown solid **89h** (0.23 g, 82%) as a inseparable mixture of *syn* and *anti* isomers (*syn* : *anti* = 3 : 1).

The ratio of syn and anti was determined by HPLC. HPLC: Eclipse XDB-C8 (5 µm,

4.6 x 150 mm) column, CH₃CN : H₂O with 0.1% TFA = 50 : 50, 1.0 mL/min., λ = 254 nm, t_{*R*}(*anti*) = 6.18 min, t_{*R*}(*syn*) = 7.05 min.

Since **89h** is an inseparable mixture of anti and syn isomers, the following NMR data of **89h** are only for reference.

89h: TLC ($R_f = 0.44$, CH₂Cl₂-EtOAc-hexanes 4:2:1). IR (cm⁻¹): 3401 (w), 2482 (w), 1930 (s), 1830 (s), 1621 (s), 1521 (m), 1409 (m), 1305(s), 1216(s). ¹H NMR (600 MHz, CDCl₃): δ 8.44 (br s, 1H), 8.23 (br s, 1H), 7.57 (br, 4H), 6.21 (br s, 3H), 5.84 (m, 1H), 5.37 (d, J = 17.4 Hz, 1H), 5.27 (d, J = 10.2 Hz, 1H), 4.91 (d, J = 6.0 Hz, 1H), 4.50 (d, J = 6.0 Hz, 1H), 4.49 (m, 1H), 4.36 (t, J = 4.8 Hz, 0.3H), 3.79 (d, J = 3.6 Hz, 1H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 240.0, 239.6, 227.9, 227.3, 191.3, 190.3, 147.7, 146.9, 144.4, 144.3, 142.4, 136.3, 135.8, 135.7, 135.0, 134.5, 117.5, 117.4, 106.0 (3C), 81.0, 79.8, 73.7, 73.3, 73.1, 72.5, 67.5, 24.2. HRMS (ESI) Calcd for C₂₀H₂₂BMoN₆O₅ ([M+H]⁺): 535.0793. Found: 535.0788.

(-)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]{(2S,6S)-η-(2,3,4)-6-[(R)-1-hydroxypropyl]-2-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl}molybdenum,
(-)-syn-89g and

 $(-) - Dicarbonyl[hydridotris(1-pyrazolyl)borato]{(2S,6S)-\eta-(2,3,4)-6-[(S)-1-(S)-1)-(2,3,4)-6-[(S)-1)-(2,3,4)-(2,3,$

hydroxypropyl]-2-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl}molybdenum,

(-)-anti-89g.

To a Schlenk flask equipped with a hydrogen balloon and charged with 124 mg Pd/C (10 wt %), **89h** (124 mg, 98% ee, 0.23 mmol, 1.0 equiv) was added dry EtOAc (4 mL). After stirring for 2 h at room temperature, the suspension was filtered through a short plug of Celite, concentrated, and purified by column chromatography on silica gel (CH₂Cl₂-EtOAc-hexanes 4:2:1) to afford (-)-*anti*-**89g** as a brown solid (28 mg, 98% ee, (22.5%), and (-)-*syn*-**89g** as a brown solid (85 mg, 98% ee, (68.5%)).

Characterization as in (\pm) -syn-89g and (\pm) -anti-89g.

(-)-*syn*-**89g**: $[\alpha]_D^{20} = -328$ (*c* = 0.02, CH₂Cl₂). HPLC: CHIRALPAK AS-RH column, CH₃CN : H₂O with 0.1% TFA = 40 : 60, 1.0 mL/min., $\lambda = 254$ nm, t_R = 17.58 min, >98% ee. Enantiomer: t_R = 21.62 min.

(-)-*anti*-**89g**: $[\alpha]_{D}^{20}$ = -331 (*c* = 0.055, CH₂Cl₂).

105

 $(\pm) - Dicarbonyl[hydridotris(1-pyrazolyl)borato] \{ (2S,6S) - \eta - (2,3,4) - 2 - methyl - 6 - [(R) - 1 - (4 - nitrobenzoyloxy)propyl] - 5 - 0x0 - 5,6 - dihydro - 2H - pyran - 2 - yl \} molybdenum, (\pm) - 105.$

To a stirred solution of *anti*-**89g** (125 mg, 0.23 mmol, 1 equiv), Ph₃P (184 mg, 0.70 mmol, 3 equiv) and *p*-nitrobenzoic acid (117mg, 0.70 mmol, 3 equiv) in THF (10 mL) at

0 °C was added diethylazodicarboxylate (0.11 mL, 0.67 mmol, 2.9 equiv). After being stirred for 20 min at 0 °C, the reaction mixture was slowly warmed to room temperature and stirred for 2 h. Then the solution was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel eluting with hexanes-EtOAc (3:1) to afford **105** (135 mg, 84%) as a red-brown solid.

(±)-105: TLC (R_f = 0.51, hexanes : EtOAc = 2:1). IR (cm⁻¹): 3119 (w), 2976 (m), 2486 (m), 2250 (w), 1938 (s), 1845 (s), 1729 (s), 1640 (s), 1529 (s), 1409 (s). ¹H NMR (600 MHz, CDCl₃): δ 8.49 (br s, 1H), 8.31 (d, *J* = 8.4 Hz, 2H), 8.29 (br s, 1H), 8.23 (d, *J* = 8.4 Hz, 2H), 7.61-7.49 (br m, 4H), 6.22 (br s, 3H), 5.47 (td, *J* = 7.2, 2.6 Hz, 1H), 4.91 (d, *J* = 6.0 Hz, 1H), 4.55 (d, *J* = 6.0 Hz, 1H), 3.84 (d, *J* = 3.0 Hz, 1H), 2.68 (s, 3H), 1.92-1.78 (m, 2H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 240.5, 226.9, 189.4, 163.4, 150.5, 147.7 (br), 144.9 (br), 142.7, 142.2 (br), 136.3 (br), 135.6 (br), 135.4, 134.5 (br), 130.7 (2C), 123.7 (2C), 106.0 (br 2C), 105.5 (br), 78.3, 77.1, 73.5, 68.5, 24.3, 23.9, 9.7. HRMS (ESI) Calcd for C₂₇H₂₇BMoN₆O₅ ([M+H]⁺): 686.1063. Found: 686.1059.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato]{ $(2S,6S)-\eta-(2,3,4)-6-[(R)-1-hydroxypropyl]-2-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl}molybdenum, (±)-svn-89g.$

To a stirred suspension of **105** (24 mg, 0.035 mmol, 1 equiv) in MeOH (1 mL) was added solid NaOH (3.6 mg, 0.35 mmol, 10 equiv) at room temperature. The suspension slowly changed to a deep brown color solution. After being stirred for 5 min at room temperature, the reaction was quenched with saturated NH₄Cl, and extracted with Et₂O (2 x 10 mL). The combined organic layers were concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (CH₂Cl₂-EtOAc-hexanes 4:2:1) to afford *syn*-**89g** (11 mg, 59%) as a brown solid.

Characterization as in (\pm) -syn-89g.

(-)-(1*S*,5*S*,7*R*)-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]oct-3-en-2-one, (-)-96e.

To a 25 mL Schlenk flask charged with (-)-*syn*-**89h** (200 mg, 98% ee, 0.375 mmol, 1 equiv) in dry dimethoxyethane (14 mL) was added NaH (60% dispersed in mineral oil) (30 mg, 0.75 mmol, 2 equiv) under argon. After stirred for 2.5 h at room temperature, the reaction mixture was cooled to -20 °C followed by adding NOPF₆ (273 mg, 1.50 mmol, 4 equiv) as a solid. The orange solution turned to brown immediately with vigorous bubbling. After 5 min at -20 °C, the reaction was opened to air, and slowly warmed to room temperature in 30 min. Then the reaction mixture was washed immediately with CH₂Cl₂ (15 mL) and H₂O (7 mL). The aqueous layer was separated and extracted with

 CH_2Cl_2 (15 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, filtered, concentrated, and purified by column chromatography on silica gel (hexane-ethyl acetate 4 :1) to give (-)-**96e** as a slight yellow oil (46 mg, 98% ee, 73%).

Characterization as in (\pm) -96e.

(-)-96e: $[\alpha]_D^{20} = -282.2$ (*c* = 1.22, CH₂Cl₂). HPLC: CHIRALPAK AS-RH column, CH₃CN : H₂O with 0.1% TFA = 20 : 80, 0.8 mL/min., $\lambda = 254$ nm, t_R = 22.40 min, >98% ee. Enantiomer: t_R = 16.51 min

(+)-(1*S*,5*S*,7*R*)-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octan-2-one, (+)-106.

To a Schlenk flask equipped with a hydrogen balloon and charged with 40 mg Pd/C (10 wt %) and compound (-)-**96e** (40 mg, 98% ee, 0.238 mmol, 1.0 equiv) was added dry EtOAc (2 mL). After stirring for 2 h at room temperature, the suspension was filtered through a short plug of Celite, concentrated, and purified by column chromatography on silica gel (hexanes-EtOAc 3:1) to afford (+)-**106** as a colorless oil (32 mg, 80%).

(+)-**106**: TLC ($R_f = 0.42$, hexane-EtOAc 3: 1). $[\alpha]_D^{20} = +33.2$ (c = 0.95, CH₂Cl₂). IR (cm⁻¹): 2964 (m), 2926 (m), 2853 (m), 1733 (s), 1463 (m), 1386 (m), 1266 (m), 1220 (m), 1173 (m). ¹H NMR (400 MHz, CDCl₃): δ 4.13 (s, 1H), 3.97 (t, J = 6.6 Hz, 1H), 2.56-2.39 (m, 2H), 2.17-2.03 (m, 2H), 1.58 (s, 3H), 1.67-1.48 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C

NMR (100 MHz, CDCl₃): δ 206.1, 107.9, 83.7, 80.3, 35.2, 32.6, 27.7, 24.3, 9.6. HRMS (ESI) Calcd for C₉H₁₈NO₃ ([M+NH₄]⁺): 188.1281. Found: 188.1280.

(+)-(1*R*,2*S*,5*S*,7*R*)- 2-hydroxy-*exo*-brevicomin, (+)-107.

To a stirred solution of (+)-**106** (29 mg, 0.17 mmol, 1 equiv) in MeOH (2 mL) at 0 °C was added NaBH₄ (9.8 mg, 0.256 mmol, 1.5 equiv). After being stirred for 20 min at 0 °C, the reaction was quenched with H₂O (3 mL). The mixture was extracted with Et₂O (2 x 10 mL), and the combined extracts were dried over MgSO₄, and concentrated on the rotary evaporator. The residue was purified by column chromatography on silica gel (hexane-EtOAc 1:1) to afford (+)-(1*R*,2*S*,5*S*,7*R*)-2-hydroxy-*exo*-brevicomin **107** as a colorless oil (22 mg, 75%), and (1*R*,2*R*,5*S*,7*R*)-2- hydroxy-*exo*-brevicomin as a colorless oil (2 mg, 6.8%)

(+)-107: TLC ($R_f = 0.51$, hexanes-EtOAc 1:1). [α]_D²⁰ = +40.3 (c = 1.10, CHCl₃). IR (cm⁻¹): 3432 (br m), 2961 (s), 2941 (s), 2880 (m), 1648 (w), 1463 (s), 1368 (s), 1239 (s), 1197 (s), 1173 (s). ¹H NMR (400 MHz, C₆D₆): δ 4.18 (t, J = 6.6 Hz, 1H), 3.80 (d, J = 3.6 Hz, 1H), 3.62 (m, 1H), 1.72-1.39 (m, 6H), 1.44 (s, 3H), 1.17 (br s, 1H), 0.91 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, C₆D₆): δ 107.4, 81.4, 77.7, 66.6, 35.8, 29.2, 27.3, 24.7, 10.4. HRMS (ESI) Calcd for C₉H₁₇O₃ ([M+H]⁺): 173.1172. Found: 173.1170.

<u>Chapter 3</u>

Synthesis of Highly Substituted Pyranones via a

Molybdenum-mediated Intermolecular '1,5-Michael-like' Reaction

Introduction

TpMo(CO)₂(η^3 -pyranyl) enantiopurity Readily available and high and TpMo(CO)₂(η^3 -pyridinyl) complexes have proven to be excellent enantiomeric organometallic scaffolds for the asymmetric construction of structurally diverse heterocyclic systems. This laboratory previously reported the enantiocontrolled synthesis of 2.3.6-trisubstituted dihydropyrans⁸⁴ and piperidines⁸⁵ from 2.6-dimethoxy molybdenum complexes 108 (Scheme 46) via a highly regioselective methoxide abstraction/nucleophilic addition sequence. During the investigation of the novel intramolecular '1,5-Michael-like' reaction,⁸⁶ it was found that neutral TpMo(CO)₂ $(\eta^3$ -pyranyl) scaffolds also participate in an intermolecular '1,5-Michael-like' reaction with solid sodium methoxide (Scheme 47). The resulting dimethoxy complexes underwent smooth methoxide abstraction/nucleophilic addition to afford trisubstituted pyranyl complexes in good to excellent yields. The synthetic potential of this intermolecular '1,5-Michael-like' reaction of NaOMe was demonstrated by the synthesis of 2,2,6-trisubstitued pyranones and 2,6-trans-disubstituted pyranones.

⁸⁴ Yin, J.; Llorente, I.; Villanueva, L. A.; Liebeskind, L. S. J. Am. Chem. Soc. 2000, 122, 10458-10459.

⁸⁵ (a) Shu, C.; Alcudia, A.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. **2001**, 123, 12477-12487. (b) Shu, C.; Liebeskind, L. S. J. Am. Chem. Soc. **2003**, 125, 2878-2879.

⁸⁶ Chapter 2, Scheme 28.

Scheme 46. Synthesis of 2,3,6-Trisubstituted Dihydropyrans and Piperidines

Scheme 47. Intermolecular 1,5-Michael Reaction with NaOMe

Results and Discussion

Precursors for Intermolecular '1,5-Michael-like' Reaction

Two kinds of substrates have been investigated in the intermolecular '1,5-Michael-like' reaction: α , α -disubstituted ketone **109** and enone **110** (Figure 7).

Figure 7. Substrates for Intermolecular 1,5-Michael Reaction with NaOMe

The synthetic sequence for **109** and **110** was developed by Dr. Yongqiang Zhang, and is summarized in Scheme 48.⁸⁷ First, oxopyranyl scaffold **86** was transformed into the corresponding exocyclic enones **110** (both *Z* and *E* isomers) in excellent yields through Mukaiyama-aldol reaction and mesylate elimination. Grignard reagents addition to substrate **110** gave tertiary alcohols **111** which were treated with one equivalent of HCl to induce a semipinacol rearrangement and afforded complexes **109** in almost quantitative yields with complete control of stereochemistry.

Scheme 48. Synthesis of Molybdenum Complexes 109 and 110

⁸⁷ Most complexes **109** and **110** were prepared according to Dr. Yongqiang Zhang's procedure. Detailed mechanism and procedures can be found in Dr. Yongqiang Zhang's research reports.

Intermolecular 1,5-Michael-like Reaction with NaOMe

The initial study of the intermolecular '1-5-Michael-like' reaction started with complex **109**. Figure 8 shows two possible reaction pathways for complexes **109** upon treatment with carbon nucleophiles: 1,2-addition of the carbonyl or 1,5-addition through the π -allyl unit.

Figure 8. Possible Pathways for Nucleophilic Functionalization of 109

Not surprisingly, the carbonyl group in **109a** (Scheme 49) was quite robust to 1,2-addition with MeMgCl presumably due to the adjacent quaternary carbon center. This result stimulated a study of possible intermolecular '1,5-Michael-like' reactions. Different carbon nucleophiles including Grignard reagents, organolithium reagents, and organocopper reagents were explored. However, after quenching the reaction with Me₃OBF₄, no desired intermolecular '1,5-Michael' adduct was identified.

Scheme 49. Attempts of Nucleophilic Functionalization of 109a

In contrast, an intermolecular 1,5-Michael reaction was observed between a hydride (LiAlH₄) and **109a** (Scheme 50). The '1,5-Michael' adduct complex **112** was successfully isolated in 49% yield.

Scheme 50. Intermolecular '1,5-Michael-like' Reaction with LiAlH₄

Having confirmed that neutral TpMo(CO)₂(η^3 -pyranyl) complexes could be subjected to intermolecular nucleophilic functionalization, the scope of nucleophiles for this novel transformation was investigated. It was envisioned that if a methoxy group could be introduced *via* '1,5-Michael-like' reaction, sequential methoxide abstraction followed by functionalization with different carbon nucleophiles would provide rapid access to various trisubstituted pyranyl complexes.⁸⁸ With this idea in mind, the '1,5-Michael-like' reaction with solid sodium methoxide was extensively studied, and gratifyingly, methoxide was found to add to complex **109a** in THF⁸⁹ and afforded the desired intermolecular 1,5-Michael adducts after Me₃OBF₄ quench⁹⁰ (Scheme 51). In addition, other alkoxides such as KO*t*Bu were also explored and gave the '1,5-Michael' adduct in

⁸⁸ As shown in Scheme 47.

⁸⁹ No reaction was observed in CH₂Cl₂, Et₂O and TBME.

⁹⁰ Reaction temperature has to be lower to 0 °C before adding Me₃OBF₄ to prevent the cationic ring opening polymerization of THF. For reference, see: (a) Hrkach, J. S.; Matyjaszewski, K. *Macromolecules* **1990**, *23*, 4042-4046. (b) Burrows, R. C.; Crowe, B. F. J. Appl. Poly. Sci. **1962**, *6*, 465-473. (c) Buyle, A. M.; Matyjaszewski, K.; Penczek, St. *Macromolecules* **1977**, *10*, 269-274.

good yield.

The intermolecular '1,5-Michael-like' reaction proceeded smoothly with both α,α -disubstituted ketone complexes (Table 9, Entries 1-2) and enone complexes (Table 9, Entries 3-7).⁹¹ Although complexes **113b** and **113d** (Table 9, entries 4 and 6) could be synthesized through 1,5-Michael-like reaction with NaOMe, they easily underwent partial isomerization to the corresponding *Z* isomers when taking ¹³C NMR in CDCl₃. Based on the previous study of intramolecular '1,5-Michael-like' reactions, ⁹² the TpMo(CO)₂ moiety should cause complete facial selectivity in the intermolecular '1,5-Michael-like' reactions. Methoxide only approaches the terminal π -carbon from the opposite face of the bulky TpMo(CO)₂.

⁹¹ Acidic α -proton at 6-Monosubstituted molybdenum complex led to other side reactions under basic conditions, thus giving low yields of 1,5-Michael reaction. For example:

⁹² Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2005, 127, 11258-11259.

Table 9. Examples of Intermolecular 1,5-Michael-Like Reaction of NaOMe

Similar to the proposed mechanism for the intramolecular '1,5-Michael-like' reaction with solid NaOMe described in Chapter 2, Scheme 32, an anionic η^2 -molybdenum

intermediate was proposed to be involved in the intermolecular '1,5-Michael-like' reaction with NaOMe (Scheme 52). The infrared analysis of the reaction mixture of **100a** and NaOMe revealed that two metal carbonyl⁹³ shifted from 1965 and 1880 cm⁻¹ (complex **110a**) to 1888 and 1783 cm⁻¹ (the reaction mixture), which suggests the reaction intermediatan possesses an electron rich metal center.

Scheme 52. Proposed Mechanism for Intermolecular '1,5-Michael-Like' Reaction with NaOMe⁹³

During the investigation of enantiocontrolled '1,5-Michael-like' reaction of (-)-**110a** with NaOMe under standard conditions, partial racemization was observed (Scheme 53).

Scheme 53. Observed Racemization of Intermolecular 1,5-Michael Reaction of 110a

This racemization might come from the racemization of the starting enone (-)-110a

⁹³ Lee, M. D., IV, Ph.D. thesis, Emory University, 2008.

(Scheme 54). Under 1,5-Michael conditions, TpMo(CO)₂ moiety in enone (-)-**110a** could slip from a η^3 -complex to a η^1 -complex. Then excessive methoxide in the reaction mixture would facilitate the ring-opening of pyran ring and form a metal carbene species. Upon subsequent ring-closure, TpMo(CO)₂ could reside at both enantiotropic faces of the pyran ring, thus causing the racemization of (-)-**110a**.

Scheme 54. Proposed Racemization Mechanism for Intermolecular 1,5-Michael Reaction of (-)-110a

To suppress the undesired racemization, we lowered the reaction temperature and shortened the reaction time of the first step (addition of methoxide) to avoid the undesired ring-opening of **110a**. Reaction of (-)-**110a** with 20 equiv NaOMe in 45 min at 0 $^{\circ}$ C afforded (+)-**113c** in 60% yield with almost no enantiopurity loss (Scheme 55). Later, after optimization, Maurice Lee demonstrated that 97.5% ee (-)-**110a** could be converted to (+)-**113c** in 76% yield and 98% ee (Scheme 56) in which higher reaction concentrations increased the reaction yield significantly.

Scheme 55. Optimized Condition for Enantiocontrolled '1,5-Michael' Reaction

Scheme 56. Enantiocontrolled '1,5-Michael' Reaction with NaOMe⁹⁴

Synthetic Application of Intermolecular '1,5-Michael-like Reaction' of NaOMe

Dimethoxy molybdenum complexes **113a-g** (Table 9) enable further functionalization of the pyranyl molybdenum scaffolds *via* the previously established methoxide abstraction/nucleophilic addition sequence. This strategy was successfully applied to the synthesis of 2,2,6-trisubstituted pyranones and 2,6-*trans*-disubstitued pyranones.

Synthesis of 2,2,6-trisubstitued Pyranones

Conversion of the 2-methoxy molybdenum complexes **113a** and **113b** to the corresponding 2,2,6-trisubstituted complexes was accomplished by ionization of methoxy group with HBF₄. This was followed by the addition of carbon nucleophiles at -78 °C. This sequence is illustrated in Scheme 57, and the yields of trisubstituted molybdenum

⁹⁴ Lee, M. D., IV, Ph.D. thesis, Emory University, 2008.

complexes are listed in Table 10. In this process, the formation of cationic dienes **115** was very efficient and smooth. Different carbon nucleophiles selectively added to the carbon adjacent to the pyranyl oxygen from the opposite face of bulky $TpMo(CO)_2$, and furnished various 2,2,6-trisubstituted molybdenum complexes **114** in good to excellent yields with complete regio- and stereoselectivity.

Scheme 57. Synthesis of 2,2,6-Trisubstituted Molybdenum Complexes

Table 10. Synthesis of 2,2,6-Trisubstituted Pyranyl Molybdenum Complexes

Entry	Substrate	\mathbf{R}^1	\mathbf{R}^2	R ³ M	Yield (%)
1	113a	Et	vinyl	MeMgCl	83, 114a
2	113a	Et	vinyl	VinylMgCl	90, 114b
3	113a	Et	vinyl	PhenylMgCl	94, 114c
4	113b	Et	allyl	iPrMgCl	65, 114d
5	113b	Et	allyl	AllylMgCl	82, 114e
6	113b	Et	allyl	lithium phenylacetylide	74, 114f

Oxidative demetalation of trisubstituted molybdenum complexes **114** with ceric ammonium nitrate should provide the 2,2,6-trisubstituted pyranones. In fact, complex **114e** was decomplexed to afford (2S,6R)-2,6-dially-2-ethyl-2*H*-pyranone **116** in 56% yield (Scheme 58).

Scheme 58. Synthesis of (2S, 6R)-2,6-Dially-2-Ethyl-2H-Pyranone 116

Synthesis of 2,6-trans disubstituted pyranones

Traditionally, organometallic scaffolds are functionalized by conversion of a neutral allylmolybdenum to either a cationic η^4 -diene or by CO \rightarrow NO⁺ exchange to generate a cationic η^3 -allylmolybdenum complex. Subsequent reaction with a nucleophile takes place from the opposite face to the TpMo moiety. As a result, when multiple substituents are introduced, they necessarily end up oriented *cis* to each other. Therefore, how to fully control the relative stereochemistry of enantiomeric scaffolds, and deliver two substituents *trans* to each other on the enantiomeric scaffolds remains a challenge in our enantiomeric scaffolding approach.

Two general methods have been successfully developed in our lab to introduce a substituent *syn* to the $TpMo(CO)_2$ unit from enone **110** (Scheme 59): catalytic hydrogenation and 1,2-Luche reduction of the carbonyl followed by a stereospecific semipinacol reaction.

Starting from complex 117, three designed routes were to access the 2,6-trans-disubstituted molybdenum complexes (Scheme 60). First, intermolecular 1,5-Michael reaction of **117** with NaOMe would provide dimethoxy complex **118** which could undergo methoxy abstraction with HBF₄ and sequential nucleophile addition to afford 2,6-trans-disubstituted molybdenum complexes 119. Second, 1,2-addition of the carbonyl in 117 will give tertiary alcohol 120 which might be transformed to 2,6-trans-disubstituted molybdenum complex 121 via hydroxyl abstraction with TrPF₆ followed by addition of nucleophiles. Finally, ligand exchange with NO⁺ could provide a cationic η^3 -allylmolybdenum complexes, subsequent reaction with a nucleophile might provide 2,6-trans-disubstituted pyranone 122.95

⁹⁵ This method has not been studied so far.

Scheme 60. Proposed Synthesis of 2,6-*trans*-Disubstituted Molybdenum Complexes from 117

To investigate the strategies described above, substrate **123** (Scheme 61) was synthesized first from enone **110a** by Luche reduction followed by HCl induced 1,2-hydride migration (semipinacol reaction).

Scheme 61. Synthesis of Complex 123 via Semipinacol Reaction

However, intermolecular 1,5-Michael reaction of NaOMe with **123** only led to the methylation of the ketone enolate (Scheme 62, eq 1). Treatment of **123** with MeLi⁹⁶ generated **126** in 64% yield (Scheme 62, eq 2). Upon treatment of HBF₄, the reaction

⁹⁶ No reaction was observed with MeMgCl.

changed from orange to purple immediately,⁹⁷ but complex **126** was not observed after addition of methyl magnesium chloride.

Scheme 62. Attempts to Synthesize 2,6-*trans*-Substituted Pyranyl Complexes from Substrate 123

Inspired by the protonation/nucleophilic addition strategy developed by Dr. Heilam Wong in the synthesis of trisubstituted tetrahydropyridinyl molybdenum complexes⁹⁸ (Scheme 63). protonation/hydride addition approach proposed а was prepare to 2,6-trans-disubstituted pyranyl molybdenum complexes (Scheme 64). If alkylidene 127 can be synthesized, then protonation of the exocyclic double bond would generate a molybdenum stabilized cationic diene 128. Subsequent delivery of a hydride should occur regiospecifically at the carbon adjacent to the pyranyl oxygen from the opposite face the bulky TpMo(CO)₂ unit. As a result, the substituent at C-2 would be 'pushed' syn to the TpMo $(CO)_2$ and *trans* to the substituent at C-6.

⁹⁷ Purple color might indicate decomposition of the reaction mixture.

⁹⁸ Wong, H., Ph.D. thesis, Emory University, 2006.

Scheme 63. Protonation/Nucleophilic Addition Strategy in the Synthesis of Trisubstituted Pyridinyl Molybdenum Complexes

Scheme 64. Proposed Synthetic Route to 2,6-*trans*-Substituted Pyranyl Molybdenum Complexes from Alkylidene 127

To test this protonation/hydride addition strategy, alkylidene **130** was prepared *via* two different methods as depicted in Scheme 65. First, addition of methyl magnesium chloride to enone **110a** followed by immediate acetylation of the alkoxide afforded complex **131** in 51% yield.⁹⁹ Acetoxy abstraction with $TrPF_6$ and subsequent addition of methyl magnesium chloride gave complex **130** in 50% yield. Complex **130** can also be prepared through intramolecular '1,5-Michael reaction' of enone **110a** with NaOMe. Methoxide abstraction of the 1,5-Michael adduct **113c** followed by addition of methyl magnesium chloride provided **132** in 95% yield. Compound **132** was coverted to alkylidene **130** in 50% yield by another methoxide abstraction and subsequent addition of

 $^{^{99}}$ The low yields presumably came from the acetylation since the produced alkoxide was blocked by the bulky TpMo(CO)_2.

methyl magnesium chloride. The low yields of the last step of both methods can be explained by their common reaction intermediate cationic diene **133**. Diene **133** has three competitive addition sites which might affect the regioselectivity and lead to the low yields.¹⁰⁰

Scheme 65. Synthesis of Alkylidene 130

The protonation/hydride addition strategy was proven very efficient for alkylidene **130** (Scheme 66). Protonation of the electron-rich exocyclic double bond in complex **130** with HBF_4 followed by addition of NaCNBH₃ furnished the desired 2,6-*trans* substituted complexes **134** in 90% yield.

¹⁰⁰ There were minor products in both reactions. However, they were not identified. For further studies on the methoxy abstraction/nucleophilic addition reaction of complex **113** and **132**, see: Lee, M. D., IV, Ph.D. thesis, Emory University, 2008.

Meanwhile, two different Grignard reagents were also found to effectively react with the generated cationic η^4 -diene regiospecifically at C-2 to generate a quaternary carbon center (Scheme 67).¹⁰¹

Scheme 67. Protonation/Carbanoin Addition to Tetrasubstituted Pyranyl Molybdenum Complexes

Unfortunately, attempts to expand the scope of alkylidene complexes *via* the second method shown in Scheme 65 using various carbon nucleophiles other than methyl Grignard reagent encountered complicated regioselectivity¹⁰² (Scheme 68). Maurice Lee systematically studied the regioselectivity of methoxy abstraction/nucleophilic addition sequence of complex **113c** with different nucleophiles. Some trends were observed and

¹⁰¹ Tetrasubstituted **136** is not stable. It underwent partial thermal rearrangement to form complex **137** on a rotary evaporator.

¹⁰² For details, see: Lee, M. D., IV, Ph.D. thesis, Emory University, 2008.

summarized by Maurice Lee as shown in Scheme 68, but the reason is still not fully understood.

Among the substrates listed in Scheme 68, alkylidene **138** can be directly subjected to the protonation/hydride addition sequence without further manipulation. Therefore, the synthetic study of 2,6-*trans*-disubstituted molybdenum complexes started with preparation complex **138**. Conversion of dimethoxy complexes **113** to alkylidenes **138** proceeded smoothly with moderate yields as shown in Table 11. Aryl anions added to C-6 regiospecifically as described in Scheme 68 (path A).

¹⁰³ Lee, M. D., IV, Ph.D. thesis, Emory University, 2008.

Table 11. Synthesis of Alkylidene 138

	MeO ^V O ^{Me} R ¹ 113	1. HBF₄ 2. R ² M, -78 °C R ² =Aryl	R ^{2¹} 0 R ² 138
Entry	R ¹	R ²	Yield (%)

(m-OMe)Phenyl

2-mesityl

81, 138b

62, 138c

Et, 113e

Ph, 113g

2

3

It should be mentioned dimethoxy Z-alkylidenes are better substrates for protonation/hydride addition reaction since *E*-alkylidenes are easily isomerized to their *Z* analogs under protonation/nucleophilic addition conditions. For example, upon treatment of HBF₄ and PhMgCl, *E*-alkylidene **113d** was converted to **138a**, **141** and *Z*-alkylidene **113c** (all isolated) (Scheme 69).

Scheme 69. Isomerization of 113d under Protonation/Nucleophilic Addition Condition

This result can be rationalized by the competition between methoxide abstraction and protonation of the exocyclic double bond in **113d** (Scheme 70). Protonation of the **113d** followed by deprotonation with PhMgCl afforded the more stable dimethoxy complex **113c** which could lead to the formation of complex **138a** (Scheme 70, path A), whereas

methoxide abstraction of **113d** and subsequent addition of phenyl magnesium chloride afforded *E*-alkylidene **141** (Scheme 70, path B).

Scheme 70. Proposed Mechanism for the Isomerization of 113d

Finally, the protonation/hydride addition reaction converted substrates **138** to 2,6-*trans* substituted complexes **142** smoothly in 52% to 92% yields (Table 12).

Table 12. Synthesis of 2,6-trans-Substituted Molybdenum Complexes

Single X-ray crystallographic analysis of (\pm) -142a (Figure 9) confirmed its structure: (1)

phenyl and ethyl group are *trans* to each other; (2) ethyl group is *syn* to $TpMo(CO)_2$. As a result, our hypothesis was also proved: the hydride addition proceeded from the opposite face of $TpMo(CO)_2$ unit and regiospecifically at C-2.

Figure 9. ORTEP View of Complex (±)-142a

The synthetic potential of this methodology was tested by demetalation of **142a** with CAN to afford *trans*-2-ethyl-6-phenyl dihydropyranone **143**¹⁰⁴ in 44% yield (Scheme 71). The relative stereochemistry in **143** is unambiguously established by NOE measurements.

 $^{^{104}}$ Then enantiocontrolled synthesis of (-)-143 has been completed by Lee, M. D., IV.

Conclusion

Solid sodium methoxide can undergo efficient intermolecular '1,5-Michael-like' reaction with neutral TpMo(CO)₂(5-oxo- η^3 -pyranyl) complexes with complete regio- and stereocontrol. Ionization of the methoxy group with HBF₄ followed by carbon nucleophiles addition affords 2,2,6-trisubstituted and 2,6-*trans* disubstituted pyranyl molybdenum complexes in good to excellent yields. The potential of this novel transformation was demonstrated by the synthesis of 2,2,6-trisubstitued pyranone **116** and 2,6-*trans*-disubstitued pyranone **143**.

Experimental Section

Molybdenum complexes **109a**, **109b**, **110a**, **110b**, **110c**, **110d** were prepared according to Dr. Yongqiang Zhang's procedure.¹⁰⁵

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S)- η -(2,3,4)-6-(Z)-benzylidene)-5-

oxo-5,6-dihydro-2*H*-pyran-2-yl]molybdenum, (±)-*Z*-110e.

To a solution of *anti*-**89d** (175 mg, 0.31 mmol, 1 equiv) in CH₂Cl₂ (10 mL) was added DMAP (18.8 mg, 0.15 mmol, 0.5 equiv), Et₃N (647 μ L, 0.46 mmol, 1.5 equiv), and methanesulfonyl chloride (31 μ L, 0.40 mmol, 1.3 equiv). The reaction mixture was stirred 10 min at room temperature. TLC monitoring the reaction indicated the disappearance of the starting material and formation of the mesylated product. The solution was passed through a short pad of silica gel (50% EtOAc in hexanes). The solvents were completely removed on a rotary evaporator, and the residue was dissolved in CH₂Cl₂ (5 mL). The solution was cooled down to 0 °C and DBU (69 μ L, 0.46 mmol, 1.5 equiv) was slowly added via syringe. The reaction mixture was stirred for 45 min at room temperature. The solution was again passed through a short pad of silica gel, concentrated, and purified by column chromatography on silica gel (hexane-EtOAc 1:1)

¹⁰⁵ Dr. Yongqiang Zhang, Liebeskind's group final research report, p 27-36, Emory University.
to afford the minor isomer (\pm)-*E*-**110e** (3 mg, 2%) and the major isomer (\pm)-*Z*-**110e** (160 mg, 94%) as yellow solid.

(±)-*E*-**110e**: TLC ($R_f = 0.58$, hexanes-EtOAc 1:1). ¹H NMR (600 MHz, CDCl₃): δ 8.52 (d, J = 1.2 Hz, 1H), 7.93 (d, J = 1.2 Hz, 1H), 7.67 (d, J = 2.4 Hz, 1H), 7.62 (m, 3H), 7.60 (d, J = 1.8 Hz, 1H), 7.52 (d, J = 2.4 Hz, 1H), 7.30-7.24 (m, 4H), 6.34 (s, 1H), 6.32 (t, J = 2.4 Hz, 1H), 6.28 (t, J = 2.1 Hz, 1H), 6.22 (t, J = 2.4 Hz, 1H), 4.95 (dd, J = 6.6, 1.8 Hz, 1H), 4.33 (dd, J = 6.3, 4.5 Hz, 1H). HRMS (ESI) Calcd for C₂₃H₂₀BMoN₆O₄ ([M+H]⁺): 553.0688. Found: 553.0689.

(±)-*Z*-**110e**: TLC ($R_f = 0.53$, hexanes-EtOAc 1:1). ¹H NMR (600 MHz, CDCl₃): δ 8.53 (d, *J* = 1.8 Hz, 1H), 7.98 (d, *J* = 1.8 Hz, 1H), 7.75 (s, 2H), 7.74 (s, 1H), 7.67 (d, *J* = 2.4 Hz, 1H), 7.64 (d, *J* = 1.8 Hz, 1H), 7.55 (d, *J* = 2.4 Hz, 1H), 7.40 (dd, *J* = 4.8, 2.4 Hz, 1H), 7.55 (t, *J* = 7.5 Hz, 2H), 7.28 (m, 1H), 6.83 (s, 1H), 6.32 (m, 2H), 6.25 (t, *J* = 1.8 Hz, 1H), 5.06 (dd, *J* = 6.6, 2.4 Hz, 1H), 5.11 (d, *J* = 6.6, 4.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 223.8, 222.1, 181.1, 147.2, 143.4, 143.1, 141.3, 136.3, 136.2, 134.6, 133.8, 130.1 (2C), 128.2 (2C), 127.7, 111.7, 108.3, 106.2, 105.9, 105.6, 102.9, 71.8, 66.4. HRMS (ESI) Calcd for C₂₃H₂₀BMoN₆O₄ ([M+H]⁺): 553.0688. Found: 553.0689.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)-η-(3.4.5)-2-ethyl-3-

methoxy-6-vinyl-3,6-dihydro-2*H*-pyran-3-yl]molybdenum, (±)-112.

To a Schlenk flask charged with a solution of **109a** (23 mg, 0.044 mmol, 1 equiv.) in THF (2 mL) was added LiAlH₄ (1.0 M in THF, 44 μ L, 0.044 mmol, 1 equiv) at 0 °C. The reaction mixture was stirred at that temperature for 5 min, and then quenched with Me₃OBF₄ (13mg, 0.088 mmol, 2 equiv.). After being stirred at room temperature for 40 min, the reaction was diluted with CH₂Cl₂, and then passed through a short pad of silica gel. The solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel (hexanes-EtOAc 3:1) to afford an orange solid product 112 (11 mg, 49%).

(±)-112: TLC ($R_f = 0.87$, hexanes-EtOAc 2:1). ¹H NMR (400 MHz, CDCl₃): δ 8.32 (d, J = 2.0 Hz, 1H), 7.80 (d, J = 2.0 Hz, 1H), 7.65 (d, J = 2.0 Hz, 1H), 7.60 (d, J = 2.0 Hz, 1H), 7.50 (d, J = 2.4 Hz, 1H), 7.43 (d, J = 2.0 Hz, 1H), 6.20 (m, 3H), 5.84 (dd, J = 17.2, 11.2 Hz, 1H), 5.25 (m, 2H), 4.13 (dd, J = 12.4, 1.60 Hz, 1H), 3.91 (d, J = 8.0 Hz, 1H), 3.75 (dd, J = 12.4, 0.8 Hz, 1H), 3.69 (d, J = 8.4 Hz, 1H), 2.68 (s, 3H), 2.10-2.45 (m, 2H), 0.90 (t, J = 7.6 Hz, 3H).

General procedure for intermolecular 1,5-Michael-like reaction of NaOMe.

To a solution of molybdenum complex **109** or **110** (1 equiv) in dry THF was added solid NaOMe (10 equiv) under argon. After being stirred at room temperature for 3.5 to 5 hours, the reaction was cooled to 0 °C. To the reaction mixture was added solid Me₃OBF₄ (10 equiv). Then the reaction was stirred at 0 °C from 40 min to 1 hour after which TLC indicated the formation of a new compound. The reaction was quenched by adding Et_3N at 0 °C. The cold solution was directly passed through a short silica gel column (pre-neutralized by 5% Et_3N) with Et_2O . The solvents were completely removed on a rotary evaporator, and the residue was further purified by column chromatography on silica gel neutralized with 5% Et_3N .

113a

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R,6S)-η-(3.4.5)-2,5 dimethoxy-6-ethyl-6-vinyl-3,6-dihydro-2*H*-pyran-3-yl]molybdenum, (±)-113a.

Following the *general procedure*, **109a** (150 mg, 0.29 mmol, 1 equiv) was dissolved in THF (20 mL), and reacted with NaOMe (165 mg, 3.0 mmol, 10 equiv) for 5 h followed by adding solid Me₃OBF₄ (480 mg, 3.2 mmol, 11 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 4:1) afforded **113a** (140 mg, 88%) as a dark orange solid.

(±)-**113a**: TLC ($R_f = 0.62$, hexanes-EtOAc 3:1). IR (cm⁻¹): 2937 (m), 2482 (m), 1926 (s), 1826 (s), 1505(s), 1305 (s), 1227 (s). ¹H NMR (600 MHz, CDCl₃): δ 8.27 (d, J = 1.8 Hz, 1H), 7.76 (d, J = 1.8 Hz, 1H), 7.66 (d, J = 2.4 Hz, 1H), 7.60 (d, J = 1.8 Hz, 1H), 7.50 (d, J = 2.4 Hz, 1H), 7.45 (d, J = 1.8 Hz, 1H), 6.29 (dd, J = 17.4, 10.8 Hz, 1H), 6.20 (m, 3H), 5.21 (d, J = 18.0 Hz, 1H), 5.11 (d, J = 10.8 Hz, 1H), 4.83 (s, 1H), 4.10 (d, J = 7.8 Hz,

1H), 3.77 (d, J = 7.2 Hz, 1H), 3.45 (s, 3H), 2.63 (s, 3H), 2.31-2.43 (m, 2H), 0.99 (t, J = 7.8 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 232.9, 228.3, 146.8, 146.0, 145.3, 143.6, 139.3, 136.2, 135.4, 134.7, 113.4, 105.6, 105.6, 105.5, 101.1, 78.1, 61.7, 55.4, 54.0, 53.6, 28.4, 7.2. HRMS (ESI) Calcd for C₂₂H₂₇BMoN₆O₅ ([M]⁺): 564.1185. Found: 564.1187.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2*S*,3*R*,6*S*)-η-(3.4.5)-6-allyl-2,5dimethoxy-6-ethyl-3,6-dihydro-2*H*-pyran-3-yl]molybdenum, (±)-113b.

Following the *general procedure*, **109b** (80 mg, 0.15 mmol, 1 equiv) was dissolved in THF (10 mL), and reacted with NaOMe (86 mg, 1.50 mmol, 10 equiv.) for 4.5 h followed by adding solid Me₃OBF₄ (223 mg, 1.50 mmol, 10 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-**113b** (65 mg, 75%) as a dark orange solid.

(±)-113b: TLC ($R_f = 0.67$, hexanes-EtOAc 3:1). IR (cm⁻¹): 2937 (m), 2482 (m), 1926 (s), 1826 (s), 1517(m), 1409(s), 1305 (s), 1224 (s), 1119 (s). ¹H NMR (600 MHz, CDCl₃): δ 8.25 (d, J = 1.8 Hz, 1H), 7.71 (d, J = 1.8 Hz, 1H), 7.65 (d, J = 1.8 Hz, 1H), 7.59 (d, J = 1.8 Hz, 1H), 7.50 (d, J = 1.8 Hz, 1H), 7.45 (d, J = 2.4 Hz, 1H), 6.19 (m, 3H), 5.96 (m, 1H), 5.04 (dd, J = 17.1, 2.1 Hz, 1H), 4.96 (dd, J = 10.4, 2.1 Hz, 1H), 4.82 (s, 1H), 4.09 (d, J = 8.4 Hz, 1H), 3.71 (d, J = 7.8 Hz, 1H), 3.45 (s, 3H), 2.85 (d, J = 8.6 Hz, 2H), 2.55 (s,

3H), 2.29 (m, 2H), 1.03 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 233.1, 228.4, 151.1, 146.0, 145.2, 139.3, 136.1, 135.3, 135.3 134.7, 115.7, 105.61, 105.59, 105.57, 101.1, 78.1, 60.9, 55.6, 54.0, 52.6, 46.6, 27.2, 7.0. HRMS (ESI) Calcd for $C_{23}H_{26}BMoN_6O_4$ ([M-OMe]⁺): 547.1157. Found: 547.1169.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)- η -(3,4,5)-6-(Z)-

ethylidene-2,5-dimethoxy-3,6-dihydro-2*H*-pyran-3-yl]molybdenum, (±)-113c.

Following the *general procedure*, **110a** (50 mg, 0.102 mmol, 1 equiv) was dissolved in THF (3 mL), and reacted with NaOMe (55 mg, 1.02 mmol, 10 equiv) for 3.5 h followed by adding solid Me₃OBF₄ (150mg, 1.02 mmol, 10 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 2:1) afforded (\pm)-**113c** (48 mg, 88%) as a brown solid.

(±)-**113c**: TLC ($R_f = 0.53$, hexanes-EtOAc 2:1). IR (cm⁻¹): 2930 (w), 2482 (w), 1926 (s), 1841 (s), 1505 (s), 1409 (s), 1305(s), 1239 (s). ¹H NMR (600 MHz, CDCl₃): δ 8.30 (d, J = 2.4 Hz, 1H), 7.69 (d, J = 2.4 Hz, 1H), 7.65 (d, J = 1.8 Hz, 1H), 7.62 (d, J = 2.4 Hz, 1H), 7.58 (d, J = 1.8 Hz, 1H), 7.49 (d, J = 1.8 Hz, 1H), 6.21 (t, J = 2.1 Hz, 1H), 6.20 (t, J = 2.1 Hz, 1H), 6.17 (t, J = 2.1 Hz, 1H), 5.62 (q, J = 7.2 Hz, 1H), 4.98 (s, 1H), 4.11 (d, J = 7.8 Hz, 1H), 3.76 (d, J = 8.4 Hz, 1H), 3.49 (s, 3H), 3.01 (s, 3H), 1.81 (t, J = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 232.1, 227.5, 146.6, 144.0, 142.2, 139.4, 136.3, 135.7, 134.6, 134.6, 105.6, 105.5, 105.4, 105.2, 99.8, 57.4, 56.1, 54.9, 52.4, 10.0. HRMS (ESI) Calcd for C₂₀H₂₃BMoN₆O₅ ([M]⁺): 536.0872. Found: 536.0870.

113d

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)- η -(3,4,5)-6-(E)-

ethylidene-2,5-dimethoxy-3,6-dihydro-2*H*-pyran-3-yl]molybdenum, (±)-113d.

Following the *general procedure*, **110b** (49 mg, 0.10 mmol, 1 equiv) was dissolved in THF (6 mL), and reacted with NaOMe (57 mg, 1.0 mmol, 10 equiv) for 4 h followed by adding solid Me₃OBF₄ (222 mg, 1.50 mmol, 15 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-**113d** (35 mg, 66%) as a dark orange solid.

(±)-**113d**: TLC ($R_f = 0.62$, hexanes-EtOAc 2:1). IR (cm⁻¹): 2930 (m), 2482 (m), 2250 (w), 1926 (s), 1841 (s), 1502 (s), 1409 (s), 1305(s), 1239 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, J = 1.6 Hz, 1H), 7.70 (d, J = 1.6 Hz, 1H), 7.66 (d, J = 2.4 Hz, 1H), 7.63 (d, J = 2.0 Hz, 1H), 7.58 (d, J = 2.0 Hz, 1H), 7.50 (d, J = 2.0 Hz, 1H), 6.22 (q, J = 2.4 Hz, 2H), 6.19 (t, J = 2.2 Hz, 1H), 5.35 (q, J = 7.8 Hz, 1H), 4.82 (d, J = 1.2 Hz, 1H), 4.08 (dd, J = 8.0, 1.6 Hz, 1H), 3.83 (d, J = 8.0 Hz, 1H), 3.46 (s, 3H), 3.01 (s, 3H), 2.07 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 232.0, 226.9, 146.8, 144.5, 140.5, 139.4, 137.0,

136.3, 135.7, 134.7, 109.6, 105.7, 105.5(2C), 99.5, 58.9, 56.3, 54.5, 52.6, 12.7. HRMS (ESI) Calcd for C₂₀H₂₄BMoN₆O₅ ([M]⁺): 537.0950. Found: 537.0958.

$(\pm) - Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R) - \eta - (3,4,5) - 6 - (Z) -$

propylidene-2,5-dimethoxy-3,6-dihydro-2*H*-pyran-3-yl]molybdenum, (±)-113e.

Following the *general procedure*, **110c** (53 mg, 0.105 mmol, 1 equiv) was dissolved in THF (5 mL), and reacted with NaOMe (60 mg, 1.05 mmol, 10 equiv) for 4 h followed by adding solid Me₃OBF₄ (246 mg, 1.58 mmol, 15 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-**113e** (41 mg, 71%) as a dark orange solid.

(±)-**113e**: TLC ($R_f = 0.58$, hexanes-EtOAc 2:1). IR (cm⁻¹): 2930 (w), 2482 (w), 1926 (s), 1841 (s), 1505 (w), 1409 (m), 1305(m), 1235 (m). ¹H NMR (400 MHz, CDCl₃): $\delta 8.30$ (d, J = 2.0 Hz, 1H), 7.70 (d, J = 2.0 Hz, 1H), 7.65 (d, J = 1.6 Hz, 1H), 7.62 (d, J = 2.4 Hz, 1H), 7.58 (d, J = 2.0 Hz, 1H), 7.50 (dd, J = 2.0, 0.6 Hz, 1H), 6.21 (t, J = 2.2 Hz, 1H), 6.20 (t, J = 2.4 Hz, 1H), 6.17 (t, J = 2.0 Hz, 1H), 5.56 (t, J = 7.2 Hz, 1H), 4.96 (d, J = 0.8 Hz, 1H), 4.09 (dd, J = 8.0, 1.6 Hz, 1H), 3.77 (d, J = 8.0 Hz, 1H), 3.48 (s, 3H), 3.01 (s, 3H), 2.37-2.18 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta 232.2, 227.2, 146.7, 144.1, 141.0, 139.4, 136.3, 135.7, 134.7, 134.4, 113.0, 105.7, 105.5, 12.5 (m)$

105.4, 99.8, 57.6, 56.2, 54.9, 52.4, 18.1, 14.7. HRMS (ESI) Calcd for C₂₁H₂₅BMoN₆O₅ ([M+H]⁺): 551.1106. Found: 551.1110.

113f

$(\pm) - Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S, 3R) - \eta - (3, 4, 5) - 6 - (E) - (E$

propylidene-2,5-dimethoxy-3,6-dihydro-2*H*-pyran-3-yl]molybdenum, (±)-113f.

Following the *general procedure*, **110d** (48 mg, 0.096 mmol, 1 equiv) was dissolved in THF (5 mL), and reacted with NaOMe (54.3 mg, 0.96 mmol, 10 equiv) for 5 h followed by adding solid Me₃OBF₄ (141 mg, 0.96 mmol, 10 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (±)-**113f** (33 mg, 63%) as a dark orange solid. *The* ¹³*C NMR spectra of* **113f** *displayed as a mixture of* **113e** *and* **113f** *since* **113f** *partially converted to* **113e** *in CDCl*₃ *during the* ¹³*C NMR experiment.*

(±)-**113f**: TLC ($R_f = 0.51$, hexanes-EtOAc 3:1). IR (cm⁻¹): 2922 (m), 2482 (w), 1926 (s), 1841 (s), 1505 (s), 1409 (s), 1305 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, J = 2.0 Hz, 1H), 7.68 (d, J = 2.0 Hz, 1H), 7.66 (d, J = 2.4 Hz, 1H), 7.63 (d, J = 2.0 Hz, 1H), 7.59 (d, J = 2.0 Hz, 1H), 7.50 (d, J = 2.0 Hz, 1H), 6.22 (t, J = 2.4 Hz, 1H), 6.21 (t, J = 2.4 Hz, 1H), 6.19 (t, J = 2.2 Hz, 1H), 5.26 (t, J = 7.8 Hz, 1H), 4.82 (d, J = 1.1 Hz, 1H), 4.08 (dd, J = 8.4, 1.2 Hz, 1H), 3.84 (d, J = 8.4 Hz, 1H), 3.46 (s, 3H), 3.02 (s, 3H), 2.65-2.51 (m, 2H), 1.08 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 232.0, 226.8, 146.8, 144.4,

139.4(2C), 136.5, 136.3, 135.7, 134.7, 117.6, 105.7, 105.5(2C), 99.4, 58.8, 56.3, 54.5, 52.5, 20.3, 15.5. HRMS (ESI) Calcd for C₂₁H₂₆BMoN₆O₅ ([M+H]⁺): 551.1106. Found: 551.1110.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)-η-(3,4,5)-6-(Z)-benzylidene2,5-dimethoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (±)-113g.

Following the *general procedure*, **110e** (110 mg, 0.20 mmol, 1 equiv) was dissolved in THF (8 mL), and reacted with NaOMe (114 mg, 2.0 mmol, 10 equiv) for 5 h followed by adding solid Me₃OBF₄ (296 mg, 2.0 mmol, 10 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (\pm)-**113g** (31 mg, 26%) as a brown solid.

(±)-**113g**: TLC ($R_f = 0.40$, hexanes-EtOAc 3:1). IR (cm⁻¹): 2930 (m), 2842 (m), 1926 (s), 1841 (s), 1505 (s), 1409 (s),1305 (s), 1235 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, J = 1.6 Hz, 1H), 7.74 (d, J = 2.0 Hz, 1H), 7.71 (s, 1H), 7.69 (s, 1H), 7.67 (d, J = 1.6 Hz, 1H), 7.64 (d, J = 2.4 Hz, 1H), 7.61 (d, J = 2.0 Hz, 1H), 7.50 (d, J = 2.0 Hz, 1H), 7.29 (t, J = 7.6 Hz, 2H), 7.13 (d, J = 7.4 Hz, 1H), 6.44 (s, 1H), 6.24 (t, J = 2.2 Hz, 1H), 6.21 (t, J = 2.2 Hz, 1H), 6.20 (t, J = 2.4 Hz, 1H), 5.09 (s, 1H), 4.23 (dd, J = 8.4, 1.6 Hz, 1H), 3.94 (d, J = 8.0 Hz, 1H), 3.44 (s, 3H), 3.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 232.0, 226.9,

146.7, 144.2, 143.6, 139.4, 136.4, 135.8(2C), 134.7, 132.9, 129.1(2C), 128.2(2C), 126.1, 107.7, 105.8, 105.6, 105.5, 99.8, 59.0, 56.5, 55.0, 52.1. HRMS (ESI) Calcd for C₂₅H₂₅BMoN₆O₅ ([M]⁺): 598.1028. Found: 598.1037.

General procedure for ionization/nucleophilic addition reaction of 113a and 113b.

In a Schlenk flask, molybdenum complexes **113a** or **113b** (1 equiv) was dissolved in CH₂Cl₂ at 0 °C under argon. HBF₄ (54 wt% in Et₂O, 1.5 equiv.) was added dropwise to the reaction mixture and stirred for 5 min after which TLC indicated *almost* complete disappearance of starting material. Then the reaction was cooled to -78 °C, commercially available Grignard or organolithium reagent (3 or 4 equiv) was added to the solution. After 10 min, the reaction was quenched with MeOH (1 mL) at -78 °C, and then diluted with EtOAc and water. The organic layer was separated and washed with brine. The combined organic layers were dried over MgSO₄, and concentrated under low pressure. The residue was further purified by column chromatography on silica gel.

114a

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)- η -(3,4,5)-2-ethyl-3-methoxy-6-methyl-2-vinyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (±)-114a.

Following the general procedure, 113a (70 mg, 0.124 mmol, 1 equiv) was dissolved in

CH₂Cl₂ (5 mL) at 0 °C, and reacted with HBF₄ (26 μ L, 0.186 mmol, 1.5 equiv) followed by addition of 3.0 M MeMgCl in THF (124 μ L, 0.372 mmol, 3 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (±)-**114a** (56 mg, 83%) as a dark orange solid.

(±)-**114a**: TLC (R_f =0.69, hexanes-EtOAc 3:1). IR (cm⁻¹): 2988 (w), 2934 (m), 2482 (m), 1918 (s), 1818 (s), 1517 (m), 1432 (m), 1305(m), 1224 (m). ¹H NMR (600 MHz, CDCl₃): δ 8.27 (d, J = 1.8 Hz, 1H), 7.80 (d, J = 1.8 Hz, 1H), 7.66 (d, J = 2.4 Hz, 1H), 7.60 (d, J = 1.8 Hz, 1H), 7.50 (d, J = 1.8 Hz, 1H), 7.44 (d, J = 2.4 Hz, 1H), 6.22 (m, 4H), 5.20 (dd, J = 18.0, 0.9 Hz, 1H), 5.09 (d, J = 11.4 Hz, 1H), 4.21 (q, J = 6.6 Hz, 1H), 4.05 (d, J = 7.8 Hz, 1H), 3.76 (d, J = 7.8 Hz, 1H), 2.62 (s, 3H), 2.17-2.46 (m, 2H), 1.49 (d, J = 7.2 Hz, 3H), 0.98 (t, J = 7.5Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 233.2, 228.8, 146.9, 146.0, 145.5, 145.3, 139.3, 136.0, 135.3, 134.7, 112.8, 105.53, 105.52, 105.5, 77.2, 71.1, 61.8, 59.9, 52.7, 31.7, 27.2, 7.3. HRMS (ESI) Calcd for C₂₂H₂₇BMoN₆O₄ ([M+H]⁺): 548.1235. Found: 548.1236.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)- η -(3,4,5)-2-ethyl-2,6divinyl-3-methoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (±)-114b.

Following the general procedure, 113a (30 mg, 0.053mmol, 1 equiv) was dissolved in

CH₂Cl₂(1 mL) at 0 °C, and reacted with HBF₄ (11 μ L, 0.080 mmol, 1.5 equiv) followed by addition of 1.4 M VinylMgCl in THF (152 μ L, 0.212 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (±)-**114b** (27 mg, 90%) as a brown solid.

(±)-114b: TLC ($R_f = 0.66$, hexanes-EtOAc 3:1). IR (cm⁻¹): 2980 (w), 2937 (w), 2482 (w), 1918 (s), 1822 (s), 1505 (m), 1409 (m), 1305 (m), 1224 (m), 1119 (s). ¹H NMR (600 MHz, CDCl₃): δ 8.29 (d, J = 1.8 Hz, 1H), 7.79 (d, J = 1.8 Hz, 1H), 7.66 (d, J = 2.4 Hz, 1H), 7.60 (d, J = 2.4 Hz, 1H), 7.51 (d, J = 2.4 Hz, 1H), 7.44 (d, J = 1.8 Hz, 1H), 6.24 (dd, J = 17.1, 9.4 Hz, 1H), 6.20 (m, 3H), 6.16 (dd, J = 17.7, 11.1 Hz, 1H), 5.27 (d, J = 16.8 Hz, 1H), 5.17 (d, J = 18.0 Hz, 1H), 5.11 (d, J = 11.4 Hz, 1H), 5.08 (d, J = 10.2 Hz, 1H), 4.40 (d, J = 8.4 Hz, 1H), 4.07 (d, J = 8.4 Hz, 1H), 3.78 (d, J = 7.8 Hz, 1H), 2.62 (s, 3H), 2.18-2.48 (m, 2H), 0.96 (t, J = 7.2Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 232.9, 228.6, 146.7, 146.0, 145.4, 144.9, 143.0, 139.3, 136.1, 135.4, 134.7, 115.9, 113.6, 105.59, 105.56, 105.52, 77.5, 76.6, 61.7, 57.2, 52.9, 31.3, 7.2. HRMS (ESI) Calcd for C₂₃H₂₇BMoN₆O₄ ([M]⁺): 560.1235. Found: 548.1248.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)- η -(3,4,5)-2-ethyl-3-methoxy-6-phenyl-2-vinyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (±)-114c.

Following the *general procedure*, **113a** (30 mg, 0.053mmol, 1 equiv) was dissolved in $CH_2Cl_2(1 \text{ mL})$ at 0 °C, and reacted with HBF₄ (11 µL, 0.080 mmol, 1.5 equiv) followed by addition of 2.0 M PhMgCl in THF (80 µL, 0.159 mmol, 3 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (±)-**114c** (30 mg, 94%) as a dark orange solid.

(±)-**114c**: TLC ($R_f = 0.53$, hexanes-EtOAc 3:1). IR (cm⁻¹): 2980 (w), 2937 (w), 2482 (m), 1918 (s), 1826(s), 1515 (m), 1409 (m), 1305 (m), 1227 (m), 1119 (m). ¹H NMR (600 MHz, CDCl₃): δ 8.32 (d, J = 1.2 Hz, 1H), 7.82 (d, J = 1.2 Hz, 1H), 7.69 (d, J = 1.8 Hz, 1H), 7.66 (d, J = 7.2 Hz, 2H), 7.64 (d, J = 1.8 Hz, 1H), 7.55 (d, J = 1.8 Hz, 1H), 7.52 (d, J = 1.2 Hz, 1H), 7.33 (t, J = 7.5 Hz, 2H), 7.27 (d, J = 7.2 Hz, 1H), 6.23 (m, 3H), 5.40 (dd, J = 18.0, 10.8 Hz, 1H), 5.13 (s, 1H), 4.71 (d, J = 17.4 Hz, 1H), 4.55 (d, J = 10.8 Hz, 1H), 4.52 (d, J = 8.4 Hz, 1H), 4.03 (d, J = 7.8 Hz, 1H), 2.66 (s, 3H), 2.48-2.15 (m, 2H), 0.93 (t, J = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 233.3, 229.1, 147.6, 146.1, 145.4, 144.1, 143.1, 139.2, 136.2, 135.5, 134.7, 129.5, 129.5, 127.6, 127.6, 127.3, 112.6, 105.6, 105.6, 105.6, 78.1, 74.7, 62.2, 55.1, 53.1, 31.1, 7.2. HRMS (ESI) Calcd for C₂₇H₂₉BMoN₆O₄ ([M]⁺): 610.1392. Found: 560.1388.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)- η -(3,4,5)-2-allyl-2-

ethyl-6-isopropyl-3-methoxy-3,6-dihydro-2*H*-pyran-3-yl]molybdenum, (±)-114d.

Following the *general procedure*, **113b** (32 mg, 0.055mmol, 1 equiv) was dissolved in $CH_2Cl_2(1 \text{ mL})$ at 0 °C, and reacted with HBF₄ (11 µL, 0.080 mmol, 1.5 equiv) followed by addition of 2.0 M *i*PrMgCl in THF (83 µL, 0.166 mmol, 3 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (±)-**114d** (21 mg, 65%) as a dark orange solid.

(±)-**114d**: TLC ($R_f = 0.56$, hexanes-EtOAc 3:1). IR (cm⁻¹): 2941 (w), 2482 (w), 1918 (s), 1822 (s), 1513 (m), 1409 (m), 1305(m), 1220 (m), 1119 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, J = 2.0 Hz, 1H), 7.74 (d, J = 1.6 Hz, 1H), 7.63 (d, J = 2.4 Hz, 1H), 7.59 (d, J = 2.4 Hz, 1H), 7.49 (d, J = 2.4 Hz, 1H), 7.42 (d, J = 2.0 Hz, 1H), 6.20-6.17 (m, 3H), 5.98-5.87 (m, 1H), 5.00 (d, J = 16.8 Hz, 1H), 4.94 (d, J = 10.0 Hz, 1H), 4.34 (d, J = 8.0 Hz, 1H), 3.65 (d, J = 8.0 Hz, 1H), 3.48 (d, J = 10.0 Hz, 1H), 2.90 (dd, J = 14.0, 6.4 Hz, 1H), 2.47 (dd, J = 13.6, 7.6 Hz, 1H), 2.46 (s, 3H), 2.36-2.18 (m, 2H), 1.93-1.83 (m, 1H), 1.11 (d, J = 6.4 Hz, 3H), 1.08 (d, J = 6.4 Hz, 3H), 1.10 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 234.0, 229.3, 148.4, 146.0, 145.6, 139.3, 136.0, 135.6, 135.3, 134.6, 115.4, 105.5, 105.47, 105.43, 81.1, 78.4, 62.4, 55.8, 55.2, 48.2, 36.9, 27.6, 20.6, 20.5, 7.1. HRMS (ESI) Calcd for C₂₅H₃₃BMoN₆O₄ ([M]⁺): 590.1705. Found: 590.1704.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)- η -(3,4,5)-2.6-diallyl-2ethyl-3-methoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (±)-114e.

Following the *general procedure*, **113b** (215 mg, 0.37mmol, 1 equiv) was dissolved in $CH_2Cl_2(5 \text{ mL})$ at 0 °C, and reacted with HBF₄ (77.3 µL, 0.56 mmol, 1.5 equiv) followed by addition of 2.0 M AllylMgCl in THF (560 µL, 1.12 mmol, 3 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (±)-**114e** (180 mg, 82%) as a dark orange solid.

(±)-**114e**: TLC ($R_f = 0.65$, hexanes-EtOAc 3:1). IR (cm⁻¹): 2961 (w), 2482 (w), 1918 (s), 1822 (s), 1513 (m), 1409 (m), 1305 (m), 1220 (m), 1119 (m). ¹H NMR (600 MHz, CDCl₃): δ 8.26 (d, J = 2.4 Hz, 1H), 7.75 (d, J = 1.8 Hz, 1H), 7.65 (d, J = 2.4 Hz, 1H), 7.59 (d, J = 1.8 Hz, 1H), 7.50 (d, J = 2.4 Hz, 1H), 7.41 (d, J = 2.4 Hz, 1H), 6.20-6.19 (m, 3H), 5.99-5.89 (m, 2H), 5.21 (dd, J = 17.1, 1.5 Hz, 1H), 5.15 (d, J = 10.2 Hz, 1H), 5.04 (dd, J = 17.1, 1.5 Hz, 1H), 4.99 (d, J = 10.2 Hz, 1H), 4.18 (d, J = 8.4 Hz, 1H), 4.07 (dd, J = 8.4, 5.4 Hz, 1H), 3.64 (d, J = 8.4 Hz, 1H), 2.78-2.71 (m, 2H), 2.61 (dd, J = 14.4, 8.2 Hz, 1H), 2.53 (s, 3H), 2.47 (m, 1H), 2.32-2.23 (m, 2H), 1.01 (d, J = 7.5 Hz, 3H), 1.08 (d, J = 6.4 Hz, 3H), 1.10 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 233.4, 228.8, 149.3, 146.0, 145.4, 138.3, 136.0, 135.8, 135.3(2C), 134.7, 117.0, 115.9, 105.51, 105.47(2C), 77.9, 74.3, 61.0, 57.1, 52.5, 48.8, 46.1, 28.4, 7.5. HRMS (ESI) Calcd for

 $C_{25}H_{32}BMoN_6O_4$ ([M+H]⁺): 589.1627. Found: 589.1624.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)-η-(3,4,5)-2-allyl-2-ethyl-3-methoxy-6-(phenylethynyl)-3,6-dihydro-2*H*-pyran-3-yl]molybdenum,
(±)-114f.

Following the *general procedure*, **113b** (65 mg, 0.11mmol, 1 equiv) was dissolved in $CH_2Cl_2(3 \text{ mL})$ at 0 °C, and reacted with HBF₄ (24 µL, 0.17 mmol, 1.5 equiv) followed by addition of 1.0 M Lithium phenylacetylide in THF (450 µL, 0.45 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (±)-**114f** (54 mg, 74%) as a dark orange solid.

(±)-**114f**: TLC (R_f = 0.53, hexanes-EtOAc 3:1). IR (cm⁻¹): 2482 (w), 1922 (s), 1826 (s), 1505 (m), 1409 (m), 1305(m), 1220 (m), 1119 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.28 (d, J = 1.6 Hz, 1H), 7.76 (d, J = 2.0 Hz, 1H), 7.66 (d, J = 1.6 Hz, 1H), 7.61 (d, J = 2.0 Hz, 1H), 7.51 (m, 2H), 7.45 (m, 2H), 7.32 (m, 3H), 6.21 (m, 3H), 6.13 (m, 1H), 5.10 (d, J = 16.0 Hz, 1H), 5.02 (d, J = 10.0 Hz, 1H), 4.92 (d, J = 0.8 Hz, 1H), 4.31 (d, J = 7.8, 1.0 Hz, 1H), 3.73 (d, J = 8.0 Hz, 1H), 3.18 (dd, J = 14.4, 5.2 Hz, 1H), 3.05 (dd, J = 14.6, 8.6 Hz, 1H), 2.62 (s, 3H), 2.27 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 233.0, 228.4, 150.2, 146.2, 145.5, 139.7, 136.4, 135.8, 135.7, 135.0, 131.6 (2C), 128.5

(2C), 128.4, 123.3, 116.1, 105.9, 105.8, 105.8, 93.0, 85.2, 78.8, 62.9, 59.8, 57.4, 53.2,
46.3, 28.8, 8.1. HRMS (ESI) Calcd for C₃₀H₃₂BMoN₆O₄ ([M+H]⁺): 649.1628. Found:
649.1618.

(±)-(2*S*,6*R*)-2,6-diallyl-2-ethyl-2*H*-pyran-3(6H)-one, (±)-116.

To a solution of molybdenum complex (\pm)-**114e** (121 mg, 0.21 mmol, 1.0 equiv) in THF/H₂O (3:1, 12 mL) was added Et₃N (43 µL, 0.62 mmol, 1.5 equiv) at 0 °C. Then a solution of ceric ammonium nitrate (905 mg, 1.65 mmol, 8.0 equiv) in water (3 mL) was added dropwise over 5 min. Upon addition, the orange solution changed to light yellow. The reaction was allowed to stir at room temperature for 10 minutes, and then partitioned between CH₂Cl₂ (20 mL) and water (20 mL). The organic layers were collected and washed with brine, dried over MgSO₄, concentrated and purified by column chromatography on silica gel (hexanes-EtOAc 6:1) to afford (\pm)-**116** as a colorless oil (24 mg, 56%).

(±)-**116**: TLC ($R_f = 0.60$, hexanes-EtOAc 6:1). IR (cm⁻¹): 2980 (m), 2829 (m), 1687 (s), 1069 (m). ¹H NMR (400 MHz, CDCl₃): δ 6.43 (dd, J = 10.2, 1.4 Hz, 1H), 5.60 (dd, J = 10.4, 2.4 Hz, 1H), 5.85 (m, 2H), 5.17-5.02 (m, 4H), 4.45 (m, 1H), 2.58-2.36 (m, 4H), 1.86-1.74 (m, 1H), 1.66-1.37 (m, 1H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 198.7, 149.6, 133.4, 133.3, 125.5, 118.1, 117.8, 82.9, 68.0, 39.3, 38.4, 25.6,

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,5S)- η -(2,3,4)-6-(Z)-

ethylidene-5-methoxy-5-methyl-5,6-dihydro-2*H*-pyran-2-yl]molybdenum, (±)-132.

In a Schlenk flask, molybdenum complexes **113c** (41 mg, 0.077 mmol, 1.0 equiv) was dissolved in CH₂Cl₂ (2 mL) at 0 °C under argon. HBF₄ (54 wt% in Et₂O, 16 μ L, 0.12 mmol, 1.5 equiv) was added dropwise to the reaction mixture and stirred for 5 min after which TLC indicated *almost* complete disappearance of starting material. Then the reaction was cooled to -78 °C, MeMgCl (3.0 M in THF, 115 μ L, 0.35 mmol, 4.5 equiv) was added dropwise to the solution. After 10 min, the reaction was quenched with MeOH (1 mL) at -78 °C, and then diluted with EtOAc and water. The organic layer was separated and washed with brine. The combined organic layers were dried over MgSO₄, and concentrated under low pressure. The residue was further purified by column chromatography on silica gel (hexanes-EtOAc 3:1) to afford (±)-**132** (38 mg, 95%) as a yellow solid.

(±)-132: TLC ($R_f = 0.71$, hexanes-EtOAc 2:1). IR (cm⁻¹): 2482 (m), 1953 (s), 1868 (s), 1505 (m), 1407 (s), 1305 (s), 1220 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.51 (d, J = 1.8 Hz, 1H), 7.84 (d, J = 1.8 Hz, 1H), 7.74 (d, J = 2.0 Hz, 1H), 7.56 (s, 2H), 7.47 (d, J = 2.1

Hz, 1H), 7.05 (dd, J = 4.2, 2.2 Hz, 1H), 6.25 (t, J = 2.2 Hz, 1H), 6.19 (t, J = 2.2 Hz, 1H), 6.18 (t, J = 2.2 Hz, 1H), 4.93 (q, J = 7.2 Hz, 1H), 4.67 (dd, J = 7.6, 2.2 Hz, 1H), 3.59 (s, 3H), 3.40 (dd, J = 7.8, 4.4 Hz, 1H), 1.64 (s, 3H), 1.52 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 227.2, 225.5, 151.1, 146.9, 142.0, 141.8, 136.1, 136.0, 134.4, 108.6, 106.0, 105.6, 105.4, 101.1, 76.3, 68.9, 57.1, 49.1, 31.4, 9.6. HRMS (ESI) Calcd for C₂₀H₂₄BMoN₆O₄ ([M+H]⁺): 521.1001. Found: 521.1023.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(3S,6R)-η-(3,4,5)-3,6-dimethyl-2-(Z) -ethylidene-2,6-dihydro-6H-pyran-3-yl]molybdenum, (±)-130.

In a Schlenk flask, molybdenum complexes **132** (45 mg, 0.087 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (2 mL) at -40 °C under argon. HBF₄ (54 wt% in Et₂O, 18 µL, 0.13 mmol, 1.5 equiv) was added dropwise to the reaction mixture and stirred for 5 min after which TLC indicated disappearance of starting material. Then the reaction was cooled to -78 °C, MeMgCl (3.0 M in THF, 130 µL, 0.39 mmol, 4.5 equiv) was added dropwise to the solution. After 10 min, the reaction was quenched with MeOH (1 mL) at -78 °C, and then diluted with EtOAc (10 mL) and water. The organic layer was separated and washed with brine (5 mL). The combined organic layers were dried over MgSO₄, and concentrated under low pressure. The residue was further purified by careful column chromatography on silica gel (hexanes-CH₂Cl₂ 1:1) to afford (±)-**130** (21 mg, 50%) as a

yellow solid.

(±)-130: TLC ($R_f = 0.38$, hexanes-CH₂Cl₂ 1:1). IR (cm⁻¹): 2484 (w), 1924 (s), 1841 (s), 1405 (m), 1306 (m), 1216 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.46 (d, J = 2.1 Hz, 1H), 7.68 (d, J = 1.8 Hz, 1H), 7.63 (s, 2H), 7.60 (d, J = 1.8 Hz, 1H), 7.46 (d, J = 2.4 Hz, 1H), 6.23 (t, J = 2.0 Hz, 1H), 6.21 (t, J = 2.0 Hz, 1H), 6.17 (t, J = 2.0 Hz, 1H), 5.01 (q, J = 6.7 Hz, 1H), 4.34 (q, J = 6.4 Hz, 1H), 4.01 (dd, J = 7.4, 1.6 Hz, 1H), 3.95 (d, J = 7.4 Hz, 1H), 1.85 (s, 3H), 1.70 (d, J = 7.2 Hz, 3H), 1.47 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 232.8, 226.6, 148.5, 146.9, 145.5, 139.2, 136.5, 135.9, 134.44, 105.7, 105.5, 105.2, 102.7, 96.3, 74.5, 69.8, 60.2, 25.2, 22.3, 10.4. HRMS (ESI) Calcd for C₂₀H₂₄BMoN₆O₃ ([M+H]⁺): 505.1052. Found: 505.1052.

 $(\pm) - Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2R,3S,6R) - \eta - (3,4,5) - 3,6 - \eta - (3,4,5) - 3,6 - \eta - (3,4,5) - \eta - (3,4,$

dimethyl-2-ethyl-3,6-dihydro-2*H*-pyran-3-yl]molybdenum, (±)-134.

In a Schlenk flask, molybdenum complexes **130** (20 mg, 0.040 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (3 mL) at 0 °C under argon. HBF₄ (54 wt% in Et₂O, 16 µL, 0.12 mmol, 3 equiv) was added dropwise to the reaction mixture and stirred for 15 min after which TLC indicated disappearance of starting material. Then NaCNBH₃ (1.0 M in THF, 160 µL, 0.16 mmol, 4 equiv) was added dropwise to the solution. After 10 min at 0 °C, the reaction was warmed to room temperature, and stirred for additional 30 min. Then the

reaction mixture was directly put on a silica gel column for purification (hexanes-EtOAc 2:1) to afford (\pm)-134 (18 mg, 90%) as a yellow solid.

(±)-**134**: TLC ($R_f = 0.61$, hexanes-EtOAc 2:1). IR (cm⁻¹): 2472 (w), 1930 (s), 1841 (s), 1405 (m), 1305 (m), 1212 (m), 1050 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.46 (d, J = 2.0 Hz, 1H), 7.80 (d, J = 2.0 Hz, 1H), 7.62 (d, J = 2.0 Hz, 1H), 7.60 (d, J = 2.0 Hz, 1H), 7.52 (d, J = 2.0 Hz, 1H), 7.46 (d, J = 1.6 Hz, 1H), 6.19 (m, 3H), 4.13 (t, J = 5.6 Hz, 1H), 3.98-3.90 (m, 2H), 3.72 (dd, J = 9.2, 3.6 Hz, 1H), 1.95 (m, 2H), 1.75 (s, 3H), 1.47 (d, J = 6.4 Hz, 3H), 0.95 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 233.3, 228.6, 146.3, 146.1, 139.5, 136.4, 135.6, 134.2, 105.5, 105.4, 105.1, 99.3, 77.9, 72.8, 68.3, 64.6, 24.4, 23.7, 21.5, 11.5. HRMS (ESI) Calcd for C₂₀H₂₅BMoN₆O₃ ([M]⁺): 506.1130. Found: 506.1145.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2*R*,3*S*,6*R*)-η-(3,4,5)-2-ethyl-2,3,6trimethyl-3,6-dihydro-2*H*-pyran-3-yl]molybdenum, (±)-135.

In a Schlenk flask, molybdenum complexes **130** (6 mg, 0.012 mmol, 1.0 equiv) was dissolved CH_2Cl_2 (1 mL) at 0 °C under argon. HBF₄ (54 wt% in Et₂O, 2.5 µL, 0.018 mmol, 1.5 equiv) was added to the reaction mixture and stirred for 5 min. Then the reaction was cooled to -78 °C, MeMgCl (3.0 M in THF, 16 µL, 0.048 mmol, 4 equiv) was added dropwise to the solution. After 10 min at -78 °C, the cold reaction mixture was

directly put on a silica gel column for purification (hexanes- CH_2Cl_2 1:2) to afford (±)-135 (4 mg, 67%) as a yellow solid.

(±)-135: TLC (R_f = 0.47, hexanes-CH₂Cl₂ 1:2). ¹H NMR (600 MHz, CDCl₃): δ 8.38 (d, J = 1.8 Hz, 1H), 7.80 (d, J = 2.4 Hz, 1H), 7.63 (d, J = 1.8 Hz, 1H), 7.59 (d, J = 1.8 Hz, 1H), 7.52 (d, J = 1.2 Hz, 1H), 7.45 (d, J = 1.8 Hz, 1H), 6.19 (m, 3H), 4.23 (q, J = 7.2 Hz, 1H), 4.19 (d, J = 7.2 Hz, 1H), 4.13 (d, J = 6.6 Hz, 1H), 2.25 (m, 1H), 1.81 (m, 1H), 1.67 (s, 3H), 1.54 (s, 3H), 1.52 (d, J = 6.6 Hz, 3H), 0.94 (t, J = 7.6 Hz, 3H).

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3S,6R)- η -(3,4,5)-2-allyl-3,6-

dimethyl-2-ethyl-3,6-dihydro-2*H*-pyran-3-yl]molybdenum, (±)-136.

In a Schlenk flask, molybdenum complexes **130** (20 mg, 0.040 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (3 mL) at 0 °C under argon. HBF₄ (54 wt% in Et₂O, 11 µL, 0.08 mmol, 2 equiv) was added dropwise to the reaction mixture and stirred for 10 min after which TLC indicated disappearance of starting material. Then the reaction was cooled to -78 °C, allyl magnesium chloride (2.0 M in THF, 80 µL, 0.16 mmol, 4 equiv) was added dropwise to the solution. The color of the reaction changed from dark orange to yellow. After 10 min at 0 °C, the reaction was quenched with H₂O (1 mL), diluted with CH₂Cl₂ and H₂O. The organic layer was separated and washed with brine. The combined organic layers were dried over MgSO₄, and concentrated under low pressure. The residue was

further purified by column chromatography on silica gel (hexanes-CH₂Cl₂ 1:1) to afford (\pm)-**136** (14 mg, 65%) as a yellow solid. *136 was slowly converted to 137 on rotary evaporato upon heating*.

(±)-136: TLC (R_f = 0.47, hexanes-CH₂Cl₂ 1:1). ¹H NMR (400 MHz, CDCl₃): δ 8.37
(d, J = 2.0 Hz, 1H), 7.80 (d, J = 2.0 Hz, 1H), 7.63 (d, J = 1.6 Hz, 1H), 7.59 (d, J = 1.6 Hz, 1H), 7.51 (d, J = 2.0 Hz, 1H), 7.45 (dd, J = 2.4, 0.8 Hz, 1H), 6.20 (m, 3H), 6.09 (m, 1H), 5.12-5.01 (m, 2H), 4.26 (q, J = 7.2 Hz, 1H), 4.20 (d, J = 7.6 Hz, 1H), 4.16 (d, J = 7.6 Hz, 1H), 2.79-2.58 (m, 2H), 2.24-2.10 (m, 2H), 1.67 (s, 3H), 1.56 (s, 3H), 1.01 (t, J = 7.6 Hz, 3H).

General procedure for synthesis alkylidene 138 *via* inonizaion/nucleophilic addition reaction

In a Schlenk flask, molybdenum complex **113** (1 equiv) was dissolved in CH_2Cl_2 at 0 °C to -20 °C under argon. HBF₄(54 wt% in Et₂O, 1.5 equiv.) was added dropwise to the reaction mixture and stirred for 5 to 10 min. Then the reaction was cooled to -78 °C, commercially available Grignard (4 to 4.5 equiv) was added to the solution. After 10 min, the reaction was quenched with MeOH (1 mL) at -78 °C, and diluted with EtOAc and water. The organic layers were separated and washed with brine. The combined organic layers were dried over MgSO₄, and concentrated under low pressure. The residue was further purified by column chromatography on silica gel.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(3S,6R)- η -(3,4,5)-2-(Z)ethylidene-3-methoxy-3,6-dihydro-2H-pyran-3-yl]molybdenum, (±)-138a.

Following the *general procedure*, **113c** (230 mg, 0.43 mmol, 1 equiv) was dissolved in CH_2Cl_2 (4 mL) at 0 °C, and reacted with HBF₄ (0.12 mL, 0.86 mmol, 2 equiv) followed by addition of 2.0 M PhMgCl in THF (0.97 mL, 1.93 mmol, 4.5 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (±)-**138a** (140 mg, 74%) as an orange solid.

(±)-**138a**: TLC ($R_f = 0.40$, hexanes-EtOAc 3:1). IR (cm⁻¹): 2481 (w), 1921 (s), 1837 (s), 1406 (m), 1305 (m), 1234 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.35 (d, J = 1.6 Hz, 1H), 7.74 (d, J = 2.0 Hz, 1H), 7.66 (d, J = 1.6 Hz, 1H), 7.62 (d, J = 2.0 Hz, 1H), 7.51 (t, J = 2.0 Hz, 2H), 7.45 (d, J = 7.4 Hz, 2H), 7.39 (t, J = 7.0 Hz, 2H), 7.31 (d, J = 7.4 Hz, 1H), 6.22 (t, J = 2.0 Hz, 1H), 6.19 (t, J = 2.0 Hz, 1H), 6.18 (t, J = 2.3 Hz, 1H), 5.50 (q, J = 7.4 Hz, 1H), 5.23 (s, 1H), 4.25 (dd, J = 8.2, 1.6 Hz, 1H), 3.70 (d, J = 8.2 Hz, 1H), 2.93 (s, 3H), 1.80 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 232.0, 227.5, 146.9, 145.7, 144.6, 144.4, 139.5, 136.5, 135.8, 134.9, 131.8, 128.7 (2C), 127.5, 125.7 (2C), 105.8, 105.6 (2C), 102.2, 75.9, 57.5, 56.9, 54.9, 10.3. HRMS(ESI) Calcd for C₂₅H₂₆BMoN₆O₄ ([M+H]⁺): 583.1157. Found: 583.1162.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(3S,6R)-η-(3,4,5)-3-methoxy-6-(3-methoxlphenyl)-2-(Z)-propylidene-3,6-dihydro-2H-pyran-3-yl]molybdenum,
(±)-138b.

Following the *general procedure*, **113e** (13 mg, 0.024 mmol, 1 equiv) was dissolved in $CH_2Cl_2(1 \text{ mL})$ at 0 °C, and reacted with HBF₄ (4.9 µL, 0.036 mmol, 1.5 equiv) followed by addition of 3-methoxyphenylmagnesium bromide (1.0 M in THF, 95 µL, 0.96 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 4:1) afforded (±)-**138b** (12 mg, 81%) as an orange solid.

(±)-138b: TLC ($R_f = 0.43$, hexanes-EtOAc 3:1). IR (cm⁻¹): 2964 (ws), 2934(w), 2482 (w), 1926 (s), 1841 (s), 1602 (m), 1505 (m), 1409 (m), 1305 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.35 (d, J = 2.0 Hz, 1H), 7.74 (d, J = 2.0 Hz, 1H), 7.66 (d, J = 2.4 Hz, 1H), 7.62 (d, J = 2.4 Hz, 1H), 7.51 (d, J = 1.2 Hz, 2H), 7.30 (t, J = 3.8 Hz, 1H), 7.05 (d, J = 7.2 Hz, 1H), 7.06 (t, J = 2.4 Hz, 1H), 6.84 (dd, J = 8.0, 2.0 Hz, 1H), 6.23 (t, J = 2.0 Hz, 1H), 6.18 (m, 2H), 5.45 (t, J = 7.4 Hz, 1H), 5.17 (s, 1H), 4.23 (dd, J = 8.4, 1.6 Hz, 1H), 3.83 (s, 3H), 3.71 (d, J = 8.0 Hz, 1H), 2.94 (s, 3H), 2.29 (m, 2H), 1.00 (d, J = 7.4 Hz, 139.3, 136.3, 135.7, 134.7, 131.2, 129.4, 118.0, 112.5, 111.4, 110.0, 105.6, 105.4(2C), 75.5, 57.1, 57.0, 55.2, 54.8, 18.1, 14.8. HRMS(ESI) Calcd for C₂₇H₃₀BMoN₆O₅

([M+H]⁺): 627.1419. Found: 627.1427.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(3S,6R)-η-(3,4,5)-2-(Z)-benzyliden-3
 -methoxy-6-mesityl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (±)-138c.

Following the *general procedure*, **113g** (28 mg, 0.047 mmol, 1 equiv) was dissolved in $CH_2Cl_2(1 \text{ mL})$ at -20 °C, and reacted with HBF₄ (10 µL, 0.07 mmol, 1.5 equiv) followed by addition of 2-mesityl magnesium bromide (1.0 M in THF, 188 µL, 0.19 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 4:1) afforded (±)-**138c** (20 mg, 62%) as an orange solid.

(±)-138c: TLC (R_f = 0.46 hexanes-EtOAc 3:1). ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, J = 2.4 Hz, 1H), 7.87 (d, J = 2.0 Hz, 1H), 7.68 (d, J = 2.4 Hz, 1H), 7.63 (s, 1H), 7.62(s, 1H), 7.60 (s, 1H), 7.51 (d, J = 2.4 Hz, 1H), 7.45 (d, J = 2.0 Hz, 1H), 7.20 (t, J = 7.8 Hz, 2H), 7.02 (t, J = 7.2 Hz, 1H), 6.90(s, 2H), 6.25 (t, J = 2.2 Hz, 1H), 6.22 (t, J = 2.2 Hz, 1H), 6.18 (t, J = 2.0 Hz, 1H), 6.17 (s, 1H), 5.93 (s, 1H), 4.27 (d, J = 8,8 Hz, 1H), 3.97 (d, J = 8,8 Hz, 1H), 2.92 (s, 3H), 2.48 (s, 6H), 2.30 (s, 3H).

General procedure for the protonation/hydride addition reaction of alkylidenes 138

In a Schlenk flask, molybdenum complexes 138 (1 equiv) was dissolved in CH₂Cl₂ at 0

°C under argon. A solution of HBF₄ (54 wt% in Et₂O, 1.5 equiv.) was added to the reaction and stirred for 10 min. Then NaCNBH₃ (1.0 M in THF, 4 equiv) was added dropwise to the reaction mixture. After 10 min at 0 °C, the reaction was slowly warmed to room temperature for 30 min. Then the reaction mixture was directly put on a silica gel column for purification. (Or, on large scale, the reaction mixture was partitioned between water and CH₂Cl₂. The aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated under low pressure. The residue was further purified by column chromatography on silica gel.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2*R*,3*S*,6*R*)-η-(3,4,5)-2-ethyl-3methoxy-6-phenyl-3,6-dihydro-2*H*-pyran-3-yl]molybdenum, (±)-142a.

Following the *general procedure*, **138a** (24 mg, 0.041 mmol, 1 equiv) was dissolved in $CH_2Cl_2(1 \text{ mL})$ at 0 °C, and reacted with HBF₄ (8.6 µL, 0.062 mmol, 1.5 equiv) followed by addition of 1.0 M NaCNBH₃ in THF (165 µL, 0.164 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (±)-**142a** (22 mg, 92%) as an orange solid.

(±)-142a: TLC ($R_f = 0.45$, hexanes-EtOAc 3:1). IR (cm⁻¹): 2482 (m), 2250 (w), 1922 (s), 1830 (s), 1505 (m), 1432 (m), 1305 (m), 1220 (m), 1117 (m), 1047 (s). ¹H NMR (400

MHz, CDCl₃): δ 8.37 (d, J = 1.8 Hz, 1H), 7.81 (d, J = 2.0 Hz, 1H), 7.70 (d, J = 7.4 Hz, 2H), 7.67 (d, J = 2.0 Hz, 1H), 7.63 (d, J = 2.2 Hz, 1H), 7.56 (d, J = 1.6 Hz, 1H), 7.52 (d, J = 2.0 Hz, 1H), 7.41 (t, J = 7.4 Hz, 2H), 7.34 (d, J = 7.0 Hz, 1H), 6.23 (t, J = 1.6 Hz, 1H), 6.23 (t, J = 2.0 Hz, 1H), 6.20 (t, J = 2.2 Hz, 1H), 5.03 (s, 1H), 4.30 (dd, J = 7.8, 1.4 Hz, 1H), 3.90 (d, J = 8.0 Hz, 1H), 3.66 (dd, J = 8.2, 4.2 Hz, 1H), 2.79 (s, 3H), 2.20-2.07 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 232.0, 229.4, 146.1, 145.2, 142.1, 141.5, 139.2, 136.2, 135.6, 134.6, 128.3 (2C), 128.2 (2C), 127.7, 105.6, 105.5 (2C), 74.0, 71.4, 59.7, 55.2, 54.2, 22.1, 10.8. HRMS (ESI) Calcd for C₂₅H₂₈BMoN₆O₄ ([M+H]⁺): 585.1314. Found: 585.1320.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2R,3S,6R)-η-(3,4,5)-3-methoxy-6-(
3-mthoxylphenyl)-2-propyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (±)-142b.

Following the *general procedure*, **138b** (12 mg, 0.019 mmol, 1 equiv) was dissolved in $CH_2Cl_2(1 \text{ mL})$ at 0 °C, and reacted with HBF₄ (8.6 µL, 0.062 mmol, 1.5 equiv) followed by addition of NaCNBH₃ (1.0 M in THF, 79.6 µL, 0.077 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (±)-**142b** (10 mg, 83%) as an orange solid.

(±)-142a: TLC ($R_f = 0.38$, hexanes-EtOAc 3:1). IR (cm⁻¹): 2961 (w), 2937 (w), 2482

(w), 1918 (s), 1826 (s), 1598 (m), 1505 (m), 1409 (m), 1305 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, J = 2.0 Hz, 1H), 7.82 (d, J = 2.4 Hz, 1H), 7.66 (d, J = 2.4 Hz, 1H), 7.63 (d, J = 2.4 Hz, 1H), 7.55 (d, J = 1.6 Hz, 1H), 7.52 (t, J = 2.4 Hz, 1H), 7.35-7.29 (m, 2H), 7.25 (m, 1H), 6.88 (dt, J = 7.2, 2.0 Hz, 1H), 6.23 (m, 2H), 6.20 (t, J = 2.2 Hz, 1H), 4.99 (s, 1H), 4.27 (dd, J = 8.2, 1.4 Hz, 1H), 3.87 (d, J = 8.4 Hz, 1H), 3.84 (s, 3H), 3.76 (dd, J = 8.8, 3.2 Hz, 1H), 2.79 (s, 3H), 2.17-1.99 (m, 2H), 1.60-1.48 (m, 1H), 1.29-1.16 (m, 1H), 0.85 (t, J = 8.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 232.0, 229.3, 159.4, 146.1, 145.2, 143.2, 142.1, 139.2, 136.2, 135.6, 134.6, 129.1, 120.6, 114.2, 112.9, 105.6, 105.5 (2C), 73.9, 69.7, 59.6, 55.2, 55.0, 54.3, 30.7, 19.5, 13.9. HRMS(ESI) Calcd for C₂₇H₃₁BMoN₆O₅ ([M]⁺): 628.1498. Found: 628.1519.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2*R*,3*S*,6*R*)-η-(3,4,5)-2-benzyl-6mesityl-3-methoxy-3,6-dihydro-2*H*-pyran-3-yl]molybdenum, (±)-142c.

Following the *general procedure*, **138c** (20 mg, 0.029 mmol, 1 equiv) was dissolved in $CH_2Cl_2(1 \text{ mL})$ at 0 °C, and reacted with HBF₄ (6.1 µL, 0.044 mmol, 1.5 equiv) followed by addition of NaCNBH₃ (1.0 M in THF, 117 µL, 0.117 mmol, 4 equiv). Purification by column chromatography on silica gel (hexanes-EtOAc 3:1) afforded (±)-**142c** (17 mg, 85%) as an orange solid

(±)-**142c**: TLC ($R_f = 0.40$, hexanes-EtOAc 3:1). IR (cm⁻¹): 3007 (w), 2968 (w), 2934 (w), 2482 (w), 1918 (s), 1826 (s), 1505 (m), 1409 (m), 1305 (m). ¹H NMR (400 MHz, CDCl₃): δ 8.38 (d, J = 1.6 Hz, 1H), 7.91 (d, J = 2.04 Hz, 1H), 7.69 (d, J = 2.0 Hz, 1H), 7.64 (d, J = 2.4 Hz, 1H), 7.52 (d, J = 2.0 Hz, 2H), 7.17-7.07 (m, 5H), 6.75 (s, 2H), 6.23 (m, 3H), 5.36 (d, J = 1.2 Hz, 1H), 4.39 (dd, J = 8.0, 1.2 Hz, 1H), 4.14(dd, J = 8.8, 4.4 Hz, 1H), 4.05 (d, J = 8.0 Hz, 1H), 3.42 (d, J = 8.8 Hz, 1H), 3.41 (d, J = 4.4 Hz, 1H), 2.87 (s, 3H), 2.48 (s, 6H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 233.3, 230.0, 146.1, 145.3, 141.5, 139.41, 139.37, 138.2, 136.8, 136.2, 135.6, 134.6, 134.0, 130.4 (2), 129.5 (2), 127.7 (2), 125.5, 105.7, 105.6 (2), 72.4, 72.2, 64.3, 57.7, 54.4, 35.5, 23.2 (2), 20.6, 14.1. HRMS(ESI) Calcd for C₃₃H₃₅BMoN₆O₄ ([M]⁺): 688.1861. Found: 688.1867.

(±)-(2*R*,6*S*)-2-Ethyl-6-phenyl-6*H*-pyran-3-one, (±)-143.

To a solution of molybdenum complex (\pm)-**142a** (85 mg, 0.15 mmol, 1.0 equiv) in THF/H₂O (3:1, 6 mL) was added Et₃N (31 µL, 0.22 mmol, 1.5 equiv) at 0 °C. Then a solution of ceric ammonium nitrate (640 mg, 1.17 mmol, 8.0 equiv) in water (3 mL) was added dropwise over 5 min. Upon addition, the orange solution changed to light yellow. The reaction was allowed to stir at room temperature for 10 minutes, and then partitioned between CH₂Cl₂ (20 mL) and water (20 mL). The organic layers were collected and washed with brine, dried over MgSO₄, concentrated and purified by column

chromatography on silica gel (hexanes-CH₂Cl₂ 1:1) to afford (\pm)-143 as a colorless oil (13 mg, 44%).

(±)-**143**: TLC ($R_f = 0.68$, hexanes-EtOAc 2:1). IR (cm⁻¹): 2968 (m), 2934 (m), 1687 (s), 1445 (m), 1386 (m), 1262 (m), 1065 (m). ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.34 (m, 5H), 7.13 (dd, J = 10.4, 2.8 Hz, 1H), 6.21 (dd, J = 10.4, 2.0 Hz, 1H), 5.48 (t, J = 2.4 Hz, 1H), 4.05 (dd, J = 8.0, 5.2 Hz, 1H), 1.89-1.79 (m, 2H), 1.02 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 196.6, 149.2, 137.3, 128.8 (2C), 128.7, 127.8 (2C), 126.2, 78.6, 72.1, 22.6, 9.9. HRMS (ESI) Calcd for C₁₃H₁₅O₂ ([M+H]⁺): 203.1067. Found: 203.1065.

X-Ray Crystallographic Study:

A suitable crystal of (±)-**142a** was coated with Paratone N oil, suspended in a small fiber loop and placed in a cooled nitrogen gas stream at 173 K on a Bruker D8 APEX II CCD sealed tube diffractometer with graphite monochromated CuK_{α} (1.54178 Å) radiation. Data were measured using a series of combinations of phi and omega scans with 10 s frame exposures and 0.5° frame widths. Data collection, indexing and initial cell refinements were all carried out using APEX II¹⁰⁶ software. Frame integration and final cell refinements were done using SAINT¹⁰⁷ software. The final cell parameters were determined from least-squares refinement on 6486 reflections.

 ¹⁰⁶ APEX II, **2005**, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison WI 53711-5373.
 ¹⁰⁷ SAINT Version 6.45A, **2003**, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison WI 53711-5373.

The structure was solved using Direct methods and difference Fourier techniques (SHELXTL, V6.12).¹⁰⁸ Hydrogen atoms were placed their expected chemical positions using the HFIX command and were included in the final cycles of least squares with isotropic U_{ij} 's related to the atom's ridden upon. Only the Mo and O atoms were refined anisotropically. Scattering factors and anomalous dispersion corrections are taken from the *International Tables for X-ray Crystallography*.¹⁰⁹ Structure solution, refinement, graphics and generation of publication materials were performed by using SHELXTL, V6.12 software. Additional details of data collection and structure refinement are given in Table 13.

Identification code	(±)- 142a	
Empirical formula	C25 H27 B Mo N6 O4	
Formula weight	582.28	
Temperature	173(2) K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P1	
Unit cell dimensions	a = 8.9047(5) Å	$\alpha = 83.821(3)^{\circ}$.
	b = 9.2012(6) Å	β= 77.038(3)°.
	c = 16.2022(9) Å	$\gamma = 88.191(4)^{\circ}$.
Volume	1286.13(13) Å ³	
Ζ	2	
Density (calculated)	1.504 Mg/m ³	

Table 13. Crystal data and structure refinement for (±)-142a

¹⁰⁸ SHELXTL V6.12, **2002**, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison WI 53711-5373.

¹⁰⁹ A. J. C. Wilson (ed), *International Tables for X-ray Crystallography, Volume C.* Kynoch, Academic Publishers, Dordrecht, **1992**, Tables 6.1.1.4 (pp. 500-502) and 4.2.6.8 (pp. 219-222).

Absorption coefficient	4.535 mm ⁻¹
F(000)	596
Crystal size	0.15 x 0.10 x 0.08 mm ³
Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 61.16° Absorption correction Max. and min. transmission	2.81 to 61.16°. -10<=h<=10, -10<=k<=9, -18<=l<=18 11088 5379 [R(int) = 0.0218] 90.7 % Semi-empirical from equivalents 0.7130 and 0.5495
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters Goodness-of-fit on F ²	5379 / 3 / 329 1.039
Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter	R1 = 0.0349, wR2 = 0.0865 R1 = 0.0378, wR2 = 0.0896 0.498(19)
Largest diff. peak and hole	0.697 and -0.536 e.Å ⁻³

Table 14. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for (±)-142a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
B(1)	-419(15)	8172(17)	802(9)	31(3)
C(1)	-1079(11)	6261(12)	2933(6)	41(3)
C(2)	-1786(11)	7549(11)	3160(6)	42(2)
C(3)	-1760(13)	8307(15)	2423(7)	39(3)
C(4)	-1607(11)	4973(12)	-53(6)	29(2)
C(5)	-2460(9)	5972(10)	-453(5)	26(2)
C(6)	-2169(11)	7280(12)	-178(6)	31(2)

C(7)	3461(12)	6803(13)	80(7)	25(2)
C(8)	3717(12)	8168(13)	-284(7)	30(3)
C(9)	2388(11)	8923(13)	-23(6)	30(3)
C(10)	-789(13)	3073(15)	1439(7)	32(3)
C(11)	1685(10)	3463(11)	294(6)	17(2)
C(12)	2170(9)	4252(10)	2215(5)	26(2)
C(13)	906(12)	3129(13)	2394(6)	27(2)
C(14)	1481(13)	1545(15)	2249(7)	35(3)
C(15)	3844(12)	2466(12)	1534(6)	34(3)
C(16)	3425(9)	4013(10)	1633(5)	18(2)
C(17)	5111(13)	2459(13)	620(7)	37(3)
C(18)	5698(9)	737(10)	693(5)	42(2)
C(19)	4604(12)	6233(12)	1815(6)	45(3)
C(20)	2119(7)	798(6)	3024(3)	44(3)
C(21)	1760(7)	1341(6)	3814(4)	42(2)
C(22)	2320(8)	641(7)	4489(3)	52(3)
C(23)	3239(8)	-602(7)	4374(3)	47(3)
C(24)	3599(7)	-1145(6)	3585(3)	55(2)
C(25)	3039(7)	-445(6)	2910(3)	49(2)
B(1B)	9401(14)	4524(15)	7072(9)	26(3)
C(1B)	5498(14)	5770(15)	7873(8)	35(3)
C(2B)	5292(13)	4306(14)	8207(7)	37(3)
C(3B)	6703(12)	3643(14)	7893(7)	37(3)
C(4B)	10588(11)	7474(12)	8033(6)	29(2)
C(5B)	11411(10)	6355(10)	8400(6)	31(2)
C(6B)	11087(10)	5132(11)	8082(6)	26(2)
C(7B)	10352(10)	6560(11)	4998(5)	32(2)
C(8B)	11117(10)	5247(11)	4784(6)	39(2)
C(9B)	10645(12)	4186(15)	5525(7)	35(3)
C(10B)	7383(14)	9087(15)	7628(8)	40(3)
C(11B)	9681(14)	9547(15)	6522(7)	33(3)
C(12B)	7108(9)	8427(9)	5627(5)	21(2)
C(13B)	8158(13)	9537(14)	5551(8)	36(3)
C(14B)	7527(14)	11040(15)	5636(8)	35(3)
C(15B)	5015(11)	10142(12)	6504(6)	28(2)
C(16B)	5726(13)	8619(14)	6217(7)	43(3)

C(17B)	3955(15)	10328(15)	7261(8)	49(3)
C(18B)	3142(9)	11602(9)	7496(5)	38(2)
C(19B)	4636(12)	6368(12)	6013(6)	43(3)
C(20B)	7023(7)	11799(6)	4866(3)	33(2)
C(21B)	6597(7)	13260(6)	4909(3)	52(2)
C(22B)	6038(8)	14026(6)	4252(4)	65(2)
C(23B)	5905(9)	13331(7)	3552(3)	71(4)
C(24B)	6331(8)	11870(7)	3509(3)	47(2)
C(25B)	6890(7)	11104(5)	4166(4)	44(2)
Mo(1)	716(1)	4666(1)	1204(1)	24(1)
Mo(1B)	8258(1)	7952(1)	6731(1)	24(1)
N(1)	-629(10)	6266(11)	2106(6)	28(2)
N(2)	-800(9)	7679(10)	1792(5)	28(2)
N(3)	-855(10)	5687(11)	452(5)	28(2)
N(4)	-1183(9)	7089(10)	357(5)	19(2)
N(5)	2064(9)	6642(10)	511(5)	27(2)
N(6)	1364(10)	7980(11)	517(5)	26(2)
N(1B)	6956(9)	5982(9)	7347(5)	21(2)
N(2B)	7648(10)	4614(12)	7439(6)	31(2)
N(3B)	9827(9)	7021(10)	7534(5)	20(2)
N(4B)	10164(11)	5515(12)	7551(6)	34(2)
N(5B)	9494(10)	6369(12)	5826(6)	32(2)
N(6B)	9921(9)	4999(11)	6144(5)	28(2)
O(1)	-1593(12)	2062(11)	1504(6)	50(3)
O(2)	1979(10)	2851(11)	-277(5)	41(2)
O(3)	2623(9)	1527(8)	1533(5)	32(2)
O(4)	4588(10)	4927(10)	1466(5)	40(2)
O(1B)	6889(10)	9841(10)	8208(5)	34(2)
O(2B)	10511(11)	10502(12)	6448(7)	52(3)
O(3B)	6265(9)	11096(10)	6424(5)	36(2)
O(4B)	4430(9)	7667(10)	6483(6)	40(2)

B(1)-N(4)	1.546(18)	C(20)-C(25)	1.3900
B(1)-N(6)	1.561(16)	C(21)-C(22)	1.3900
B(1)-N(2)	1.582(16)	C(22)-C(23)	1.3900
C(1)-N(1)	1.309(12)	C(23)-C(24)	1.3900
C(1)-C(2)	1.371(14)	C(24)-C(25)	1.3900
C(2)-C(3)	1.312(15)	B(1B)-N(6B)	1.492(16)
C(3)-N(2)	1.347(15)	B(1B)-N(4B)	1.525(18)
C(4)-C(5)	1.375(13)	B(1B)-N(2B)	1.543(15)
C(4)-N(3)	1.392(14)	C(1B)-N(1B)	1.390(14)
C(5)-C(6)	1.379(14)	C(1B)-C(2B)	1.399(18)
C(6)-N(4)	1.361(13)	C(2B)-C(3B)	1.393(16)
C(7)-N(5)	1.287(13)	C(3B)-N(2B)	1.295(15)
C(7)-C(8)	1.333(16)	C(4B)-N(3B)	1.274(14)
C(8)-C(9)	1.359(15)	C(4B)-C(5B)	1.403(14)
C(9)-N(6)	1.370(14)	C(5B)-C(6B)	1.351(14)
C(10)-O(1)	1.173(15)	C(6B)-N(4B)	1.332(14)
C(10)-Mo(1)	1.966(13)	C(7B)-N(5B)	1.383(12)
C(11)-O(2)	1.111(13)	C(7B)-C(8B)	1.406(13)
C(11)-Mo(1)	1.966(9)	C(8B)-C(9B)	1.456(15)
C(12)-C(16)	1.321(12)	C(9B)-N(6B)	1.349(15)
C(12)-C(13)	1.509(15)	C(10B)-O(1B)	1.222(15)
C(12)-Mo(1)	2.299(8)	C(10B)-Mo(1B)	1.891(12)
C(13)-C(14)	1.554(17)	C(11B)-O(2B)	1.146(16)
C(13)-Mo(1)	2.299(11)	C(11B)-Mo(1B)	1.922(14)
C(14)-O(3)	1.361(13)	C(12B)-C(13B)	1.384(16)
C(14)-C(20)	1.577(13)	C(12B)-C(16B)	1.397(14)
C(15)-O(3)	1.411(14)	C(12B)-Mo(1B)	2.250(7)
C(15)-C(16)	1.476(14)	C(13B)-C(14B)	1.485(18)
C(15)-C(17)	1.649(14)	C(13B)-Mo(1B)	2.293(12)
C(16)-O(4)	1.316(12)	C(14B)-O(3B)	1.504(13)
C(17)-C(18)	1.653(14)	C(14B)-C(20B)	1.513(13)
C(19)-O(4)	1.384(14)	C(15B)-C(17B)	1.393(15)
C(20)-C(21)	1.3900	C(15B)-O(3B)	1.414(14)

Table 15. Bond lengths [Å] and angles $[\circ]$ for (\pm) -142a
C(15B)-C(16B)	1.592(16)	O(2)-C(11)-Mo(1)	166.3(9)
C(16B)-O(4B)	1.430(15)	C(16)-C(12)-C(13)	117.6(9)
C(17B)-C(18B)	1.401(15)	C(16)-C(12)-Mo(1)	91.9(5)
C(19B)-O(4B)	1.470(13)	C(13)-C(12)-Mo(1)	70.8(5)
C(20B)-C(21B)	1.3900	C(12)-C(13)-C(14)	114.4(9)
C(20B)-C(25B)	1.3900	C(12)-C(13)-Mo(1)	70.8(5)
C(21B)-C(22B)	1.3900	C(14)-C(13)-Mo(1)	116.8(7)
C(22B)-C(23B)	1.3900	O(3)-C(14)-C(13)	111.2(10)
C(23B)-C(24B)	1.3900	O(3)-C(14)-C(20)	108.1(9)
C(24B)-C(25B)	1.3900	C(13)-C(14)-C(20)	111.4(9)
Mo(1)-N(3)	2.182(9)	O(3)-C(15)-C(16)	116.2(8)
Mo(1)-N(5)	2.258(9)	O(3)-C(15)-C(17)	108.8(8)
Mo(1)-N(1)	2.303(9)	C(16)-C(15)-C(17)	106.2(8)
Mo(1B)-N(3B)	2.208(8)	O(4)-C(16)-C(12)	120.6(9)
Mo(1B)-N(1B)	2.202(8)	O(4)-C(16)-C(15)	115.5(8)
Mo(1B)-N(5B)	2.262(10)	C(12)-C(16)-C(15)	116.1(9)
N(1)-N(2)	1.361(13)	C(15)-C(17)-C(18)	100.1(8)
N(3)-N(4)	1.314(13)	C(21)-C(20)-C(25)	120.0
N(5)-N(6)	1.362(13)	C(21)-C(20)-C(14)	121.5(6)
N(1B)-N(2B)	1.393(14)	C(25)-C(20)-C(14)	118.5(6)
N(3B)-N(4B)	1.407(14)	C(20)-C(21)-C(22)	120.0
N(5B)-N(6B)	1.384(14)	C(23)-C(22)-C(21)	120.0
		C(24)-C(23)-C(22)	120.0
N(4)-B(1)-N(6)	107.9(10)	C(25)-C(24)-C(23)	120.0
N(4)-B(1)-N(2)	108.6(10)	C(24)-C(25)-C(20)	120.0
N(6)-B(1)-N(2)	104.6(9)	N(6B)-B(1B)-N(4B)	107.7(10)
N(1)-C(1)-C(2)	112.0(9)	N(6B)-B(1B)-N(2B)	115.7(9)
C(3)-C(2)-C(1)	103.0(9)	N(4B)-B(1B)-N(2B)	106.9(10)
C(2)-C(3)-N(2)	110.5(11)	N(1B)-C(1B)-C(2B)	110.8(11)
C(5)-C(4)-N(3)	109.3(9)	C(3B)-C(2B)-C(1B)	104.2(11)
C(4)-C(5)-C(6)	103.6(8)	N(2B)-C(3B)-C(2B)	109.5(11)
N(4)-C(6)-C(5)	111.1(9)	N(3B)-C(4B)-C(5B)	112.9(10)
N(5)-C(7)-C(8)	111.5(10)	C(6B)-C(5B)-C(4B)	104.9(8)
C(7)-C(8)-C(9)	106.1(9)	N(4B)-C(6B)-C(5B)	107.6(9)
C(8)-C(9)-N(6)	107.7(10)	N(5B)-C(7B)-C(8B)	109.6(9)
O(1)-C(10)-Mo(1)	172.9(10)	C(7B)-C(8B)-C(9B)	106.1(8)

N(6B)-C(9B)-C(8B)	104.0(10)	N(5)-Mo(1)-C(12)	94.8(3)
O(1B)-C(10B)-Mo(1B)	176.8(11)	C(10)-Mo(1)-C(13)	67.9(4)
O(2B)-C(11B)-Mo(1B)	175.9(11)	C(11)-Mo(1)-C(13)	101.0(4)
C(13B)-C(12B)-C(16B)	114.0(9)	N(3)-Mo(1)-C(13)	145.1(3)
C(13B)-C(12B)-Mo(1B)	74.0(6)	N(5)-Mo(1)-C(13)	133.2(4)
C(16B)-C(12B)-Mo(1B)	88.0(6)	C(12)-Mo(1)-C(13)	38.3(4)
C(12B)-C(13B)-C(14B)	117.0(10)	C(10)-Mo(1)-N(1)	99.1(4)
C(12B)-C(13B)-Mo(1B)	70.6(6)	C(11)-Mo(1)-N(1)	170.4(4)
C(14B)-C(13B)-Mo(1B)	120.9(8)	N(3)-Mo(1)-N(1)	78.5(3)
C(13B)-C(14B)-O(3B)	111.6(10)	N(5)-Mo(1)-N(1)	85.7(3)
C(13B)-C(14B)-C(20B)	115.9(10)	C(12)-Mo(1)-N(1)	84.2(3)
O(3B)-C(14B)-C(20B)	110.7(9)	C(13)-Mo(1)-N(1)	87.7(3)
C(17B)-C(15B)-O(3B)	108.8(9)	C(10B)-Mo(1B)-C(11B)	78.5(5)
C(17B)-C(15B)-C(16B)	125.4(10)	C(10B)-Mo(1B)-N(3B)	87.1(4)
O(3B)-C(15B)-C(16B)	106.9(8)	C(11B)-Mo(1B)-N(3B)	81.8(4)
C(12B)-C(16B)-O(4B)	129.0(11)	C(10B)-Mo(1B)-N(1B)	93.5(5)
C(12B)-C(16B)-C(15B)	125.8(11)	C(11B)-Mo(1B)-N(1B)	160.9(4)
O(4B)-C(16B)-C(15B)	102.4(8)	N(3B)-Mo(1B)-N(1B)	80.4(3)
C(18B)-C(17B)-C(15B)	127.7(11)	C(10B)-Mo(1B)-C(12B)	111.3(4)
C(21B)-C(20B)-C(25B)	120.0	C(11B)-Mo(1B)-C(12B)	100.8(4)
C(21B)-C(20B)-C(14B)	115.9(6)	N(3B)-Mo(1B)-C(12B)	161.7(3)
C(25B)-C(20B)-C(14B)	124.0(6)	N(1B)-Mo(1B)-C(12B)	98.3(3)
C(20B)-C(21B)-C(22B)	120.0	C(10B)-Mo(1B)-N(5B)	170.1(5)
C(21B)-C(22B)-C(23B)	120.0	C(11B)-Mo(1B)-N(5B)	102.4(4)
C(22B)-C(23B)-C(24B)	120.0	N(3B)-Mo(1B)-N(5B)	83.4(3)
C(25B)-C(24B)-C(23B)	120.0	N(1B)-Mo(1B)-N(5B)	82.5(3)
C(24B)-C(25B)-C(20B)	120.0	C(12B)-Mo(1B)-N(5B)	78.3(3)
C(10)-Mo(1)-C(11)	80.8(5)	C(10B)-Mo(1B)-C(13B)	102.1(5)
C(10)-Mo(1)-N(3)	82.8(4)	C(11B)-Mo(1B)-C(13B)	65.3(5)
C(11)-Mo(1)-N(3)	92.0(4)	N(3B)-Mo(1B)-C(13B)	142.8(4)
C(10)-Mo(1)-N(5)	158.9(4)	N(1B)-Mo(1B)-C(13B)	133.7(4)
C(11)-Mo(1)-N(5)	91.1(4)	C(12B)-Mo(1B)-C(13B)	35.4(4)
N(3)-Mo(1)-N(5)	78.0(3)	N(5B)-Mo(1B)-C(13B)	87.1(4)
C(10)-Mo(1)-C(12)	106.1(4)	C(1)-N(1)-N(2)	104.8(9)
C(11)-Mo(1)-C(12)	105.1(3)	C(1)-N(1)-Mo(1)	135.0(8)
N(3)-Mo(1)-C(12)	161.7(3)	N(2)-N(1)-Mo(1)	118.8(6)

C(3)-N(2)-N(1)	105.7(8)	C(3B)-N(2B)-B(1B)	130.6(11)
C(3)-N(2)-B(1)	128.9(10)	N(1B)-N(2B)-B(1B)	116.6(9)
N(1)-N(2)-B(1)	121.8(9)	C(4B)-N(3B)-N(4B)	104.1(9)
N(4)-N(3)-C(4)	108.3(9)	C(4B)-N(3B)-Mo(1B)	137.6(8)
N(4)-N(3)-Mo(1)	126.0(7)	N(4B)-N(3B)-Mo(1B)	118.3(7)
C(4)-N(3)-Mo(1)	125.6(7)	C(6B)-N(4B)-N(3B)	110.4(9)
N(3)-N(4)-C(6)	107.6(9)	C(6B)-N(4B)-B(1B)	128.0(10)
N(3)-N(4)-B(1)	119.8(9)	N(3B)-N(4B)-B(1B)	121.3(9)
C(6)-N(4)-B(1)	132.6(10)	C(7B)-N(5B)-N(6B)	104.7(8)
C(7)-N(5)-N(6)	108.1(9)	C(7B)-N(5B)-Mo(1B)	132.8(8)
C(7)-N(5)-Mo(1)	132.6(8)	N(6B)-N(5B)-Mo(1B)	119.8(6)
N(6)-N(5)-Mo(1)	119.3(6)	C(9B)-N(6B)-N(5B)	112.7(9)
N(5)-N(6)-C(9)	106.1(8)	C(9B)-N(6B)-B(1B)	127.6(10)
N(5)-N(6)-B(1)	122.4(10)	N(5B)-N(6B)-B(1B)	119.2(9)
C(9)-N(6)-B(1)	127.6(10)	C(14)-O(3)-C(15)	112.2(9)
C(1B)-N(1B)-N(2B)	102.7(9)	C(16)-O(4)-C(19)	125.5(8)
C(1B)-N(1B)-Mo(1B)	133.1(8)	C(15B)-O(3B)-C(14B)	115.9(9)
N(2B)-N(1B)-Mo(1B)	122.8(6)	C(16B)-O(4B)-C(19B)	111.7(8)
C(3B)-N(2B)-N(1B)	112.5(9)		

Symmetry transformations used to generate equivalent atoms:

Table 16. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for (\pm) -142a. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2hk$ $a^*b^*U^{12}$]

	U ¹¹	U ²²	U33	U23	U13	U12
B(1B)	31(4)	11(4)	36(5)	-1(3)	-14(3)	14(3)
Mo(1)	30(1)	20(1)	25(1)	-2(1)	-10(1)	4(1)
Mo(1B)	28(1)	19(1)	26(1)	-2(1)	-10(1)	4(1)
O(1)	64(5)	32(6)	55(6)	17(4)	-24(4)	-24(5)
O(2)	52(5)	35(5)	36(5)	-9(4)	-7(3)	15(4)
O(3)	49(4)	12(4)	44(4)	-12(3)	-29(3)	9(4)
O(4)	43(5)	31(6)	44(5)	6(4)	-7(4)	-2(4)
O(1B)	44(4)	29(5)	33(4)	-8(3)	-14(3)	6(4)

O(2B)	49(5)	51(7)	61(6)	-5(5)	-21(4)	-4(5)
O(3B)	36(4)	37(5)	29(4)	4(3)	4(3)	6(4)
O(4B)	43(5)	29(5)	59(5)	-13(4)	-32(4)	5(4)

Table 17. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for (±)-142a

	X	у	Z	U(eq)
H(1)	-679	9370	634	38
H(1)	-935	5476	3320	50
H(2)	-2186	7819	3703	50
H(3)	-2326	9159	2347	46
H(4)	-1543	3976	-110	35
H(5)	-3085	5805	-822	31
H(6)	-2591	8176	-337	38
H(7)	4199	6061	30	30
H(8)	4622	8532	-644	36
H(9)	2206	9902	-182	36
H(12)	2067	5082	2504	31
H(13)	-130	3366	2576	33
H(14)	615	970	2184	42
H(15)	4347	2087	1994	40
H(17A)	5948	3131	580	45
H(17B)	4635	2691	139	45
H(18A)	6131	450	1178	63
H(18B)	6478	681	181	63
H(18C)	4867	95	696	63
H(19A)	3753	6854	1731	67
H(19B)	5551	6752	1593	67
H(19C)	4503	5948	2412	67
H(21)	1144	2173	3891	51
H(22)	2079	1004	5017	62
H(23)	3614	-1071	4826	56

H(24)	4215	-1977	3508	66
H(25)	3280	-808	2381	59
H(1B)	9763	3463	7225	31
H(1B)	4759	6503	7986	42
H(2B)	4414	3873	8558	44
H(3B)	6930	2656	7994	45
H(4B)	10598	8445	8142	35
H(5B)	12041	6436	8779	38
H(6B)	11444	4193	8211	31
H(7B)	10414	7425	4638	39
H(8B)	11790	5088	4272	47
H(9B)	10805	3179	5564	42
H(12B)	7304	7625	5314	25
H(13B)	9036	9537	5021	43
H(14B)	8371	11626	5720	42
H(15B)	4492	10532	6055	34
H(17C)	3174	9592	7310	59
H(17D)	4496	10034	7710	59
H(18D)	3896	12359	7405	57
H(18E)	2534	11567	8068	57
H(18F)	2484	11802	7102	57
H(19D)	4712	6579	5412	64
H(19E)	3759	5759	6256	64
H(19F)	5554	5870	6109	64
H(21B)	6686	13725	5378	62
H(22B)	5753	15003	4281	78
H(23B)	5531	13843	3112	85
H(24B)	6242	11405	3040	57
H(25B)	7175	10126	4137	52

<u>Chapter 4</u>

Toward the Total Synthesis of (-)-Malyngolide

Introduction

Chiral molybdenum complexes can be employed as scaffolds for the asymmetric construction of highly functionalized heterocycles. Several methods have been developed in our lab to build 2,3,6-trisubstituted dihydropyrans ¹¹⁰ and multi-substituted piperidines.^{111,112} More recently, our group member Dr. Yongqiang Zhang discovered a new type of reaction of molybdenum complexes. Treatment of allyl hydroxyl molybdenum complexes with HCl resulted in a novel rearrangement reaction, which is called semipinacol rearrangement (Scheme 72).

Scheme 72. Semipinacol Reaction of Pyranyl and Pyridinyl Molybdenum Scaffolds¹¹³

A possible mechanism of the stereoselective semipinacol reaction is shown in Scheme 73. As observed in traditional pinacol rearrangement, R groups that possess the ability to stabilize a carbon cation prefer to rearrange in both pyranyl and pyridinyl molybdenum

¹¹⁰ Yin, J. J.; Llorente, I.; Villanueva, L. A.; Liebeskind, L. S. J. Am. Chem. Soc. 2000, 122, 10458-10459.

¹¹¹ Shu, C.T.; Alcudia, A.; Yin, J. J.; Liebeskind, L. S. J. Am. Chem. Soc. **2001**, 123, 12477-12487.

¹¹² Shu, C.T.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 2878-2879.

¹¹³ Dr. Yongqiang Zhang, Liebeskind's group research report, Emory University.

complexes. This rearrangement provides an innovative extension of the synthetic power of molybdenum scaffolds in the construction of quaternary carbon centers in both dihydropyran and piperidine rings.

Scheme 73. Possible Mechanism of Semipinacol Rearrangement

(-)-Malyngolide (Figure 10) is a naturally occurring δ-lactonic compound, which was isolated from marine algae and exhibits antibiotic activity against pathogenic species of *Mycobacterium smegmatis* and *Streptococcus pyngenes*.¹¹⁴ Since the first paper published by Mukaiyama in 1980,¹¹⁵ a number of reports have appeared about the total synthesis of (-)-malyngolide. ¹¹⁶ Normally, the quaternary carbon center in (-)-malyngolide was built up by preparation of a stereogenic tertiary alcohol followed by subsequent ring closure^{116b,c,e,f,g}. Herein, a synthetic route to (-)-malyngolide was utilized as the key transformation to build the chiral quaternary carbon center.

¹¹⁴ Koumbis, A. E.; Dieti, K. M.; Vikentiu, M. G.; Gallos, J. K. Tetrahedron Lett. 2003, 44, 2513-2516.

¹¹⁵ Saktio, Y.; Tanaka, S.; Asami, M.; Mukaiyama, T. Chem. Lett. **1980**, 1223-1226.

¹¹⁶ For recent publications about the total synthesis of (-)-malyngolide, see: (a) Wan, Z. H.; Nelson, S. G. J. Am. Chem. Soc. 2000, 122, 10470-10471. (b) Trost, B. M.; Tang, W.; Schulte, J. L. Org. Lett. 2000, 2, 4013-4015. (c) Suzuki, T.; Ohmori, K.; Suzuki, K. Org. Lett. 2001, 3, 1741-744. (d) Ghosh, A. K.; Shirai, M. Tetrahedron Lett. 2001, 42, 6231-6233. (e) Mizutani, H.; Watanabe, M.; Honda, T. Tetrahedron, 2002, 58, 8929-8936. (f) Carda, M.; Rodríguez, S.; Castillo, E.; Bellido, A.; Díaz-Oltra, S.; Marco, J. A. Tetrahedron 2003, 59, 857-864. (g) Koumbis, A. E.; Dieeti, K. M.; Vikentiou, M. G; Gallos, J. K. Tetrahedron Lett. 2003, 44, 2513-2516.

Figure 10. (-)-Malyngolide

Results and Discussion

The Synthesis of 3-Methyl-5-oxopyranyl Molybdenum Scaffold 147

The synthesis of 3-methyl-5-oxopryanyl scaffold 147 commenced with the preparation of

enone **144**,¹¹⁷ which was synthesized *via* oxymercuration of commercially available propargyl ether followed by intramolecular aldol condensation and dehydration. These reactions gave satisfactory yields as shown in Scheme 75. With enone **144** in hand, molybdenum complex **145** was obtained by metalation of **144** under standard conditions¹¹⁸ in 62% yield.

Scheme 75. Synthesis of Molybdenum Complex 144

Treatment of complex **145** with solid Ph_3CPF_6 at -78 °C followed by addition of Et₃N at 0 °C afforded the unsaturated molybdenum complex **146** (Scheme 76). However, as a one-pot reaction, the yield of **146** was relatively low (33%).

Scheme 76. One-pot Synthesis of Molybdenum Complex 146

With the intention of increasing the yield, this reaction was carried out in two separate steps. The hydride abstraction of complex **145** gave diene complex in satisfactory yield

¹¹⁷ Skinnemoen, K.; Undheim, K. Acta Chem. Scan. B 1980, 34, 295-297.

¹¹⁸ Ward, Y. D.; Villanueva, L. A.; Allred, G. D.; Liebeskind, L. S. Organometallics **1996**, 15, 4201-4210.

(93%) (Scheme 77). Although there are two possible sites for the hydride abstraction, only one regio-isomer of the cationic diene complex was observed. Attempts to determine the structure of diene by ¹H NOE experiment failed to find the desired NOE effect (Figure 11) since the cationic diene complex decomposed very quickly (30 min - 60 min) in CD_2Cl_2 at room temperature.

Scheme 77. Hydride Abstraction of Compound 145

Figure 11. Expected NOE Effects in Cationic Diene 148 and 149

To confirm the structure, a crystal of diene complex suitable for a diffraction study was grown in CH_2Cl_2 /hexanes at -10 °C.¹¹⁹ As shown in Figure 12, the structure of cationic diene molybdenum complex was confirmed as compound **148** by the X-ray diffraction study; hence the hydride abstraction went through path A as shown in Scheme 77. The regioselectivity of the hydride abstraction with Ph_3CPF_6 is consistent with the

¹¹⁹ The diene cyrstal easily decomposed in dichloromethane at room temperature.

observation of Pearson¹²⁰ in the hydride abstraction of organoiron π -complexes, which was rationalized by the frontier molecular orbital theory. According to his arguments, the hydride abstraction will place the strongest π -donor¹²¹ in the C-3 position (Scheme 77), and generates the most stable cationic complex.

Figure 12. ORTEP View of Cationic Diene (±)-148

Started from diene 148, the deprotonation only afforded complex 146 in 15% yield (Scheme 78). Different bases (Et₃N, KOSiMe₃ and KHMDS) and solvents (acetonitrile, nitromethane, *t*-butyldimethyl ether, diethyl ether) were examined, but none of them improved the yield.

¹²⁰ Eisenstein, O.; Butler, W. M.; Pearson, A. J. *Organometallics* **1984**, *3*, 1150-1157. ¹²¹ In our case, the methoxy group is a better π -donor compared to the methyl group.

During the study of the deprotonation reaction of compound **148**, dimers **150**¹²² were isolated from the reaction mixture (Scheme 79). The dimers **150** might derive from the nucleophilic addition of unsaturated molybdenum complex **146** to the diene complex **148**. To avoid the potential dimerization between **146** and **148**, the addition sequence of molybdenum diene complex **148** and different bases was intentionally reversed (addition of a solution of diene **148** into a solution of base). Gratifyingly, the yield was improved to 71% on a 550 mg scale (Table 18, entry 7). Yields of **146** using different bases and solvents are summarized in Table 18.

¹²² The proposed structure of **150** as shown in Scheme 79 is based on its ¹H NMR spectra which displayed two sets of proton signals from Tp. IR spectra of **150** also revealed an additional carbonyl absorption peak, which supported this hypothetic structure. However, no further evidence was obtained to verify this hypothesis.

Table 18. Optimization of the Synthesis of Molybdenum Complex 146

Entry	Base	Conditions	Solvent	Yield (%)
1	Et ₃ N	10 equiv	CH_2Cl_2	15
2	KOSiMe ₃	5 equiv	CH_2Cl_2	19
3	KHMDS	1.2 equiv	CH_2Cl_2	20
4	Et ₃ N	10 equiv	CH_2Cl_2	48
5	Et ₃ N	10 equiv	TBME	32
6	Et ₃ N	10 equiv	Et ₂ O	34
7	Et ₃ N	10 equiv (reverse addition)	CH_2Cl_2	71

Finally, treatment of complex **146** with 0.5M HCl in ethanol afforded 3-methyl-5-oxopyranyl scaffold **147** in 90% yield (Scheme 80).

Scheme 80. Synthesis 3-Methyl-5-Oxopyranyl Scaffold 147

Model Study toward the Synthesis of (-)-Malyngolide

Since 3-methyl-5-oxopyranyl scaffold **147** and 5-oxopyranyl scaffold **86** (Figure 13) share a similar pyranyl skeleton with a carbonyl group at C-5, molybdenum complex **86** was chosen to carry out the model study toward the synthesis of (-)-malyngolide.

Figure 13. Molybdenum Complexes 86 and 147

Conversion of 5-oxopyranyl complex **86** to hydroxyl complex **151** was accomplished by an aldol reaction and subsequent mesylation and dehydration (Scheme 81). Although the dehydration gave a high yield of complex **152**, the yield of the aldol reaction was only 33%. This result might due to the poor solubility of paraformaldehyde in THF. Even if the HCHO gas was introduced to this reaction, at -78 °C the gas HCHO easily solidified again.

Scheme 81. Synthesis of Enone 152

Compared to traditional aldol reaction, the Mukaiyam-aldol reaction of complex **86** with trioxane afforded **151** in higher yield (50%) (Scheme 82).

Scheme 82. Mukaiyama-aldol Reaction of Complex 86 with Trioxane

The nine carbon Grignard reagent needed for the synthesis of (-)-malyngolide was obtained from the vinyl bromide **153**. Compound **153** was prepared following a literature procedure.¹²³ As can be seen from Scheme 83, 2,3-dibromo carboxylic acid was readily prepared by bromination of the *trans*-2-decenoic acid in CH_2Cl_2 . Microwave irradiation (20 seconds) of *anti*-2,3 dibromoalkanoic acid in DMF, in the presence of 1.05 equiv of triethylamine, gave the corresponding vinyl bromide **153** as a mixture of both *Z* and *E* isomers in excellent yields.

Scheme 83. Synthesis of Grignard Reagent 154

Addition of Grignard reagent **154** to compound **152** gave a moderate yield of the tertiary alcohol **155** (54%) (Scheme 84).

Scheme 84. Synthesis of Complex 155

Attempts to Carry out the Key Semipinacol Rearrangement

In the proposed synthetic route to (-)-malyngolide, the epoxidation induced semipinacol

¹²³ Kuang, C. X.; Senboku, H.; Tokuda, M. Tetrahedron Lett. 2001, 42, 3893-3896.

reaction was expected not only to introduce the quaternary carbon center, but also to install the requisite hydroxyl group (Scheme 85). Epoxidation should take place at the more electron-rich exocyclic double bond, and generate a cationic intermediate which would initiate the semipinacol rearrangement.

Unfortunately, the model study of complex 156^{124} with *m*-CPBA and *tert*-butyl hydroperoxide in the presence of vanadyl acetylacetonate¹²⁵ only afforded the recovered starting material and possible demetalation products (Scheme 86). Also, no epoxide formation was observed. Similar to epoxidation, dihydroxylation with commercially available AD-mix- β (with or without of MeSO₂NH₂)¹²⁶ only led to the recovery of the starting material.

¹²⁴ Complex **156** was employed for model study. The synthesis of **156**:

¹²⁵ Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. **1973**, 95, 6136-6137.

¹²⁶ Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. *Chem. Rev.* **1994**, *94*, 2483-2547.

Scheme 86. Epoxidation of Complex 156

Since attempts to directly introduce a hydroxyl group by semipinacol rearrangement were not successful, other electrophiles that would react with the double bond through a cationic or bridged cationic intermediate and introduce a heteroatom were examined (Scheme 87). These electrophiles included [bis(acetoxy)iodo]benzene, 4-nitrobenzenesulfenyl chloride, mercury acetate (oxymercuration) and iodine-silver trifluoroacetate.

Scheme 87. Attempts to Semipinacol Reaction

Among these efforts, only iodine-silver trifluoroacetate successfully initiated the semipinacol rearrangement of complex **156**, and provided the desired semipinacol adduct **157** in 49% yield in CH₂Cl₂ (Scheme 88). In this reaction, the combination of iodine and AgOCOCF₃ generates electrophilic iodine trifluoroacetate (IOCOCF₃) as the reactive iodine source. According to the observation of Lipshutz,¹²⁷ solvents played a major role in the efficiency of reactions between allylic alcohols and IOCOCF₃. Acetonitrile is the

¹²⁷ Lipshutz, B. H; Barton, J. C. J. Am. Chem. Soc. 1992, 114, 1084-1086.

most efficient solvent of those examined. Hence, the solvent was changed from dichloromethane to acetonitrile, and the yield was improved dramatically. The best yield of complex **157** achieved was 82%.

Scheme 88. IOCOCF₃ Induced Semipinacol Rearrangement

Efforts to transfer the iodine in complex **157** to an acetoxyl group, a hydroxyl group and a benzoyloxyl group failed to give the substitution product under various conditions (Scheme 89). The low reactivity of nucleophilic substitution might come from steric hindrance of the iodide which is adjacent to a quaternary carbon center.

Scheme 89. Attempts to Substitute Iodine in Complex 157

Catalytic hydrogenation to reduce the double bond in complex **157** (Scheme 90) using different catalysts including Pd/C, Pd(OH)₂/C ,PtO₂, RhCl(PPh₃)₃ were probed, but all of them gave a mixture of **157** and **158**. Since complexes **157** and **158** are inseparable by

simple silica gel chromatography, hydrogenation conditions still need to be optimized.

Scheme 90. Catalytic Hydrogenation of Complex 157

Finally, all attempts to reduce the carbonyl group in complex **158** were also fruitless (Scheme 91). When complex **158** was treated with NaBH₄, starting materials could be recovered, and decomposition was observed. Whereas when **158** was treated with LiAlH₄ or L-Selectride, the reaction mixture was easily decomposed on the rotary evaporator.¹²⁸

Scheme 91. Hydride Addition of Complex 158

Conclusion

Racemic 3-methyl-5-oxopyranyl molybdenum complex **147** was prepared from commercially available propargyl ether in six steps. As a model study, through a Mukaiyama-aldol reaction and the subsequent dehydration, an exocyclic double bond was introduced to afford 5-oxopyranyl molybdenum complex **86**. The nucleophilic

¹²⁸ Hydride addition might go through a 1,5-Michael reaction pathway instead of 1,2 addition. For a similar example, see Chapter 3, Scheme 50.

addition of the 9-carbon aliphatic Grignard reagent **154** to enone **152** gave the desired molybdenum diene **155**. Iodine-silver trifluoroacetate successfully initiated the semipinacol rearrangement of complex **156**. However, further attempts to manipulate complex **156** towards (-)-malyngolide were not successful.

Experimental Section

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)- η -(3,4,5)-3-methoxyl-5-methyl-3,6-dihydro-2H-pyran-3-yl]molybdenum, (±)-145.

In a Schlenk flask, $(DMF)_3Mo(CO)_3$ (1.7 g, 26.8 mmol, 1.2 equiv) was dissolved in dry, degassed CH₂Cl₂ (100 mL) at room temperature. To this solution, a solution of 5-methyl-2*H*-pyran-3-one (2.5 g, 22.3 mmol, 1 equiv) in CH₂Cl₂ (10 mL) was added. After being stirred for 30 min, TBDMSCl (3.7 g, 24.5 mmol, 1.1 equiv) was added. The reaction was stirred overnight at 25 °C, at which time solid KTp (5.7 g, 22.3 mmol, 1 equiv) was added to the solution. After 1 h, TBAF (14.6 g, 55.8 mmol, 2.5 equiv) was added to reaction, and stirred for 30 min. Then MeI (63.3 g, 0.45 mol, 20 equiv) was added to reaction. After being stirred for 24 h, the reaction mixture was concentrated by rotovap, and filtered through a short silica gel column by CH₂Cl₂ to afford a dark color solution. After concentration at low pressure, the residue was purified by column chromatography on silica gel (hexanes-CH₂Cl₂ 1:1) to afford **145** as a yellow solid (6.68 g, 61%)

(±)-145: IR (cm⁻¹): 2474(m), 1911 (s), 1826 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.53 (s, 1 H), 8.00 (s, 1H), 7.80 (s, 1H), 7.63 (s, 2H), 7.55 (s, 1H), 6.26 (s, 1H), 6.19 (s, 2H), 4.17
(d, J = 12.8 Hz, 1H), 4.01 (s, 1H), 3.99 (d, J = 12.8 Hz, 1H), 3.58 (d, J = 12.0 Hz, 1H),

3.50 (d, J = 12 Hz, 1H), 3.05 (s, 3H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 231.28, 231.25, 146.3, 144.3, 143.5, 136.2, 135.7, 134.4, 120.7, 105.6, 105.3, 105.1, 68.4, 67.8, 63.3, 63.2, 53.8, 20.7. HRMS (ESI) Calcd for C₁₈H₂₁BMoN₆O₄ ([M]⁺): 494.0766. Found: 494.0779.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,3R)- η -(3,4,5)-3-methoxyl-5-methyl-2H-pyran-3-yl]molybdenum, (±)-146.

In a Schlenk flask, Et₃N (0.87 g, 8.6 mmol, 10 equiv) was dissolved in dry, degassed CH_2Cl_2 (20 mL) at 0 °C under nitrogen. Then a solution of complex **148** (0.55 g, 0.86 mmol, 1 equiv) in CH_2Cl_2 was slowly added to the reaction. After being stirred at that temperature for 3 h, the solution was warmed to room temperature, filtered through a layer of Celite, and concentrated. Purification by column chromatography on silica gel (hexanes-ethyl acetate 4:1) afforded **146** as a yellow solid (71%).

(±)-146: IR (cm⁻¹): 2482(m), 1942 (s), 1849 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 2.0 Hz, 1H), 8.04 (d, *J* = 2.0 Hz, 1H), 7.98 (d, *J* = 2.0 Hz, 1H), 7.63 (d, *J* = 2.0 Hz, 1H), 7.62 (d, *J* = 2.0 Hz, 1H), 7.45 (d, *J* = 2.4 Hz, 1H), 7.37 (d, *J* = 2.8 Hz, 1H), 6.26 (t, *J* = 2.2 Hz, 1H), 6.22 (t, *J* = 1.8 Hz, 1H), 6.16 (t, *J* = 2.4 Hz, 1H), 5.63 (d, *J* = 1.2 Hz, 1 H), 4.42 (t, *J* = 1.8 Hz, 1H), 3.55 (s, 3H), 1.13 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 226.7,

222.7, 149.9, 145.5, 142.4, 142.1, 136,4, 136.1, 134.3, 112.9, 107.9, 105.5, 105.3, 105.2, 61.4, 55.2, 52.8, 15.3. HRMS (ESI) Calcd for C₁₈H₂₀BMoN₆O₄ ([M+H]⁺): 493.0688. Found: 493.0692.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S)- η -(2,3,4)-3-methyl-5-oxo-5,6-dihydro-2*H*-pyran-2-yl]molybdenum, (±)-147.

Complex **146** (43.3 mg, 0.09 mmol, 1 equiv) was dissolved in a solution of HCl/EtOH/H₂O (1/8/1). Then the solution was stirred at room temperature for 2 h. After quenching the reaction with saturated NaHCO₃, the aqueous layer was extracted by CH₂Cl₂ (20 mL x 3). The organic layers were collected, and dried over MgSO₄. Purification by column chromatography on silica gel (hexanes-ethyl acetate 2:1) afforded **147** (0.38 g, 90%) as a yellow solid.

(±)-**147**: IR (cm⁻¹): 2490(m), 1965 (s), 1876 (s), 1652 (s). ¹H NMR (600 MHz, CDCl₃): δ 8.39 (d, J = 2.4 Hz, 1H), 7.94 (d, J = 1.8 Hz, 1H), 7.91 (s, 1H), 7.65 (d, J = 3.6 Hz, 1H), 7.63 (d, J =2.4 Hz, 1H), 7.47 (d, J = 2.4 Hz, 1H), 7.09 (d, J = 1.8 Hz, 1H), 6.29 (t, 1H), 6.26 (t, J = 1.8 Hz, 1H), 6.24 (t, J = 1.8 Hz, 1H), 4.6 (d, J = 1.8 Hz, 1H), 3.64 (d, J = 18.0 Hz,1H), 3.42 (d, J = 18.0 Hz, 1H), 1.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 223.6, 221.8, 194.7, 146.9, 143.4, 142.5, 137.0, 136.6, 134.6, 108.4, 106.1, 106.0, 105.7, 72.0, 68.5, 65.6, 16.2. HRMS (ESI) Calcd for C₁₇H₁₈BMoN₆O₄ ([M+H]⁺): 479. 0531. Found: 479.0535.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2*S*,3*R*)-η-(2,3,4,5)-3-methoxyl-5methyl-2*H*-pyran-3-yl]molybdenum hexaflourophosphate (±)-148.

In a Schlenk flask, complex **145** (0.4 g, 0.81 mmol, 1 equiv) was dissolved in dry, degassed CH_2Cl_2 (10 mL) at -78 °C under nitrogen. Then solid $TrPF_6$ (0.35 g, 0.89 mmol, 1.1 equiv) was added to the reaction. After being stirred at that temperature for 1 h, the solution was warmed to 0 °C and stirred for another 4.5 h at which time TBME was added to the reaction to form a brown precipitate. After removal of solvents, the precipitate was washed by TBME (2 x 50 mL), and dried by vacuum.

(±)-148: ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, J = 1.6 Hz, 1H), 8.05 (d, J = 2.0 Hz, 1H), 7.75 (d, J = 2.4 Hz, 1H), 7.71 (d, J = 2.0 Hz, 1H), 7.65 (d, J = 2.0 Hz, 1H), 7.49 (d, J = 2.4 Hz, 1H), 7.22 (d, J = 3.2 Hz, 1H), 6.47 (t, J = 2.4 Hz, 2H), 6.38 (t, J = 2.4 Hz, 1H), 6.21 (d, J = 2.8 Hz, 1H), 3.78 (d, J = 14 Hz, 1 H), 3.38 (d, J = 14 Hz, 1H), 2.99 (s, 3H), 2.67 (s, 3H).

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,6S)- η -(2,3,4)-5-oxo-6-

hydroxymethyl-5,6-dihydro-2*H*-pyran-2-yl]molybdenum, (±)-151.

In a Schlenk flask, complex **86** (1.0 g, 2 mmol, 1 equiv) was dissolved in dry, degassed CH_2Cl_2 (5 mL) at room temperature under nitrogen. Then Et₃N (0.36 mL, 2.4 mmol, 1.2 equiv) was added to reaction. After 5 min stirring, TBSOTf (0.52 ml, 2.1 mmol, 1.05 equiv) was added to reaction. The reaction was stirred at room temperature for another 30 min. After that, the reaction mixture was cooled to -78 °C. Then a premixed mixture (-78 °C) of TiCl₄ (3.20 ml, 3 mmol, 1.5 equiv) and trioxane (0.59 g, 6 mmol, 3 equiv) in dry CH_2Cl_2 (8 mL) was added to reaction. After stirring at -78 °C for 4 h, the reaction was slowly warmed to room temperature, and stirred overnight. After quenched the reaction with distilled water, the aqueous layer was extracted by CH_2Cl_2 (3 x 20 mL). The organic layers were collected, and dried over MgSO₄. Purification by column chromatography on silica gel (hexanes-ethyl acetate 1:2) afforded **151** as a yellow solid (50%).

(±)-151: IR (cm⁻¹): 3417 (br m), 1961 (s), 1872 (s). ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, J = 2.0 Hz, 1H), 7.91 (d, J = 2.0 Hz, 1H), 7.65 (d, J = 1.6 Hz, 1H), 7.62 (d, J = 2.4 Hz, 1H), 7.60 (d, J = 2.0 Hz, 1H), 7.52 (d, J = 2.4 Hz, 1H), 7.38 (dd, J = 4.8, 2 Hz,1H), 6.31 (t, J = 2.4 Hz, 1H), 6.26 (t, J = 2.2 Hz, 1H), 6.22 (t, J = 2.2 Hz, 1H), 4.81 (dd, J = 6.4, 2.4 Hz,1 H), 4.21 (dd, J = 6.4, 4.8 Hz, 1H), 3.89 (dd, J = 12.0, 4.0 Hz, 1H), 3.73 (dd, *J* = 12.0, 4.4 Hz, 1H), 3.43 (t, *J* = 4.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 224.6, 223.6, 194.4, 147.7, 144.0, 141.8, 136.6 (2C), 135.0, 107.6, 106.6, 106.3, 106.0, 76.9, 70.2, 65.2, 63.3. HRMS (ESI) Calcd for C₁₇H₁₈BMoN₆O₅ ([M + H]⁺): 495.0480. Found: 495.0484.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S)-η-(2,3,4)-5-oxo-6-methylene-5,6
 -dihydro-2H-pyran-2-yl]molybdenum, (±)-152.

To a solution of complex **151** (0.26 g, 0.53 mmol, 1 equiv) in dry, degassed CH₂Cl₂(5 mL), DMAP (0.0968 g, 0.8 mmol, 1.5 equiv) and Et₃N (0.11 ml, 0.8 mmol, 1.5 equiv) were added at room temperature. After being stirred for 5min, MsCl (54 μ l, 0.69 mmol, 1.3 equiv) was added to the reaction. The solution was stirred for 10 min. Then the reaction mixture was filtered through a short silica column by EtOAc. The solution was concentrated and dry, degassed CH₂Cl₂ (5 mL) was added under N₂. After the solution was cooled to 0 °C, DBU (0.12 mL, 0.8 mmol, 1.5 equiv) was added to the reaction. After being stirred at 0 °C for 10 min, the solution was filtered through a short silica column by EtOAc. The solution column again by EtOAc. The solution was concentrated, and purified by column chromatography on silica gel (hexanes- ethyl acetate 2:1) to afford **152** as a yellow solid (88%).

(±)-152: IR (cm⁻¹): 2490 (w), 1965 (s), 1884 (s), 1660 (s). ¹H NMR (600 MHz,

CDCl₃): δ 8.52 (d, J = 1.8 Hz, 1H), 7.93 (d, J = 1.8 Hz, 1H), 7.65 (d, J = 1.8 Hz, 1H), 7.62 (d, J = 2.4 Hz, 1H), 7.60 (d, J = 2.4 Hz, 1H), 7.52 (d, J = 2.4 Hz, 1H), 7.17 (dd, J = 4.8, 2.4 Hz, 1H), 6.32 (t, J = 1.8 Hz, 1H), 6.27 (t, J = 1.8 Hz, 1H), 6.23 (t, J = 2.4 Hz, 1H), 5.46 (s, 1H), 4.96 (dd, J = 6.0, 2.4 Hz, 1 H), 4.67 (s, 1H), 4.38 (t, J = 6.0 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 224.4, 222.5, 196.7, 180.6, 150.2, 147.7, 144.0, 141.7, 136.7, 136.6, 135.0, 106.7, 106.4, 106.1, 103.7, 97.9, 72.3, 67.4. HRMS (ESI) Calcd for C₁₇H₁₆BMoN₆O₄ ([M + H]⁺): 477.0375. Found: 477.0387.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2S,5S)- η -(2,3,4)-5-hydroxy-6methylene-5-vinyl-5,6-dihydro-2H-pyran-2-yl]molybdenum, (±)-156.

In a flame dried Schlenk flask, complex **152** (30 mg, 0.063 mmol, 1 equiv) was dissolved in dry, degassed THF (1 mL) at -40 °C under nitrogen. Then vinyl magnesium bromide (1.0 M in THF, 0.3 mL, 0.3 mmol, 5 equiv) was added to reaction. After being stirred for 45 min, the reaction was cooled to -78 °C, and quenched with H_2O (0.5 mL). After warmed to room temperature, the reaction mixture was partitioned with brine and ethyl acetate. The organic layers were collected, and dried over MgSO₄. Purification by column chromatography on silica gel (hexanes-ethyl acetate 2:1) afforded **156** as a yellow solid (66%).

(±)-156: IR (cm⁻¹): 2486 (m), 1945 (s), 1853 (s), 1652 (s), 1505 (m). ¹H NMR (600

MHz, CDCl₃): δ 8.48 (d, J = 1.8 Hz, 1H), 7.94 (d, J = 2.4 Hz, 1H), 7.66 (d, J = 1.8 Hz, 1H), 7.57 (d, J = 2.4 Hz, 1H), 7.56 (d, J = 2.4 Hz, 1H), 7.49 (d, J = 2.4 Hz, 1H), 6.96 (dd, J = 4.9, 3.0 Hz, 1H), 6.28 (t, J = 1.8 Hz, 1H), 6.22 (t, J = 1.8 Hz, 1H), 6.19 (t, J = 1.8 Hz, 1H), 6.12 (dd, J = 17.4, 10.8 Hz, 1H), 5.51 (d, J = 17.4 Hz, 1H), 5.11 (d, J = 10.2 Hz, 1H), 4.65 (s, 1H), 4.61 (dd, J = 7.8, 2.4 Hz, 1H), 3.66 (dd, J = 7.8, 4.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 232.0, 224.4, 158.7, 146.8, 144.3, 142.8, 141.5, 136.2, 136.0, 134.5, 112.0, 106.1, 105.9, 105.7, 105.5, 92.6, 76.5, 76.1, 60.3. HRMS (ESI) Calcd for C₁₉H₂₀BMoN₆O₄ ([M+H⁺]): 505.0688. Found: 505.0702.

(±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2*S*,5*S*)- η -(2,3,4)-5-hydroxy-6methylene-5-(non-1-enyl)-5,6-dihydro-2*H*-pyran-2-yl]molybdenum, (±)-155 (as a mixture of *Z* and *E* isomers).

In a flame dried Schlenk flask, complex **152** (50 mg, 0.1 mmol, 1 equiv) was dissolved in dry, degassed THF (2 mL) at -40 °C under nitrogen. Then a solution of **154** in THF (0.35 mL, 0.25 mmol, 4 equiv) was added to the reaction. After being stirred for 60 min, the reaction was cooled to -78 °C, and quenched with water. After warmed to room temperature, the reaction mixture was washed with brine and ethyl acetate. The organic layers were collected, and dried over MgSO₄. Purification by column chromatography on silica gel (hexanes-ethyl acetate 2:1) afforded 155 as a yellow solid (54%).

Since Z-155 and E-155 can not be separated by simple column chromatography on silica gel, the following ¹H NMR data of the mixture of Z and E isomers are only for reference.

(±)-**155**: ¹H NMR (600 MHz, CDCl₃): δ 8.47 (d, *J* = 1.8 Hz, 1 H), 7.95 (d, *J* = 1.8 Hz), 7.93 (d, *J* = 1.8 Hz, 1H), 7.66 (s, 1H), 7.57 (m, 2 H), 7.49 (d, *J* = 2.4 Hz, 1H), 6.96 (m, 1H), 6.28(t, *J* = 2.4 Hz, 1H), 6.21 (t, *J* = 2.4 Hz, 1H), 6.19 (t, *J* = 1.8 Hz, 1H), 5.91 (dt, 0.3H), 5.75 (dd, 0.3H), 5.64 (d, *J* = 12.8 Hz, 1H), 5.38 (dt, *J* = 12.8 Hz, 9.6, 1H), 4.80 (dd, *J* = 10.8, 2.4 Hz, 1H), 4.68 (s, 1H), 4.63 (d, *J* = 2.4 Hz, 0.3H), 4.62 (s, 0.3H), 4.43 (s, 1.3H), 3.63 (dd, 0.3H), 3.59 (dd, *J* = 10.8, 7.2 Hz, 1H), 2.6-2.4 (m, 2H), 1.4-1.2 (m, 10H), 0.88 (m, 3H).

157 (±)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2*S*,6*S*)- η -(2,3,4)-5-oxo-6-(iodomethyl)-6-vinyl-5,6-dihydro-2*H*-pyran-2-yl]molybdenum, (±)-157.

In a 10 mL Schlenk flask which was protected by aluminum foil, I_2 (18.4 mg, 0.07 mmol, 1.1 equiv) was added to a suspension of silver trifluoroacetate (17.5 mg, 0.08 mmol, 1.2 equiv) in dry CH₃CN (2 mL) under N₂ at room temperature. After being stirred for 30min, the reaction mixture was cooled to -40 °C. Then a solution of **156** (32.3 mg, 0.064 mmol, 1.0 equiv) in dry CH₃CN (2 mL) was slowly added to reaction. After

being stirred for 30 min, the reaction was quenched with $Na_2S_2O_3$. The reaction mixture was slowly warmed to room temperature, and washed with 0.1N $Na_2S_2O_3$ (3 x 20 mL). The combined organic layers were dried over MgSO₄. Purification by column chromatography on silica gel (hexanes- ethyl acetate) afforded **157** as a yellow solid (82%).

(±)-157: IR (cm⁻¹): 2490 (m), 1965 (s), 1880 (s), 1652 (s). ¹H NMR (600 MHz, CDCl₃): δ 8.54 (d, *J* = 1.2 Hz, 1H), 7.91 (d, *J* = 1.8 Hz, 1H), 7.68 (d, *J* = 2.4 Hz, 1H), 7.61 (d, *J* = 2.4 Hz, 1H), 7.59 (d, *J* = 2.4 Hz, 1H), 7.56 (dd, *J* = 4.8, 2.4 Hz, 1H), 7.51 (d, *J* = 2.4 Hz, 1H), 6.32(t, *J* = 2.4 Hz, 1H), 6.26 (t, *J* = 2.4 Hz, 1H), 6.21 (t, *J* = 2.4 Hz, 1H), 5.58 (dd, *J* = 16.8, 10.2 Hz, 1 H), 5.45(d, *J* = 18.8 Hz, 1H), 5.35 (d, *J* = 10.2 Hz, 1H), 4.74 (dd, *J* = 6.0, 2.4 Hz, 1H), 4.17 (t, *J* = 6.4 Hz, 1H), 3.65 (d, *J*=10.2 Hz, 1H), 3.10 (d, *J* = 11.4 Hz, 1H). HRMS (ESI) Calcd for C₁₉H₁₉BIMoN₆O₄ ([M+H]⁺): 630.9654. Found: 630.9659.

X-Ray Crystallographic Study:

A suitable crystal of cationic diene **148** was coated with Paratone N oil, suspended in a small fiber loop and placed in a cooled nitrogen gas stream at 173 K on a Bruker D8 SMART APEX CCD sealed tube diffractometer with graphite monochromated MoK_{α} (0.71073Å) radiation. Data were measured using a series of combinations of phi and omega scans with 10 s frame exposures and 0.3° frame widths. Data collection, indexing

and initial cell refinements were all carried out using SMART¹²⁹ software. Frame integration and final cell refinements were done using SAINT¹³⁰ software. The final cell parameters were determined from least-squares refinement on 5808 reflections. The SADABS¹³¹ program was used to carry out absorption corrections.

The structure was solved using Direct methods and difference Fourier techniques (SHELXTL, V6.12).¹³² Hydrogen atoms were placed their expected chemical positions using the HFIX command and were included in the final cycles of least squares with isotropic U_{ij} 's related to the atom's ridden upon. The C-H distances were fixed at 0.93 Å(aromatic and amide), 0.98 Å (methine), 0.97 Å (methylene), or 0.96 Å (methyl). All non-hydrogen atoms were refined anisotropically. Scattering factors and anomalous dispersion corrections are taken from the *International Tables for X-ray Crystallography*.¹³³ Structure solution, refinement, graphics and generation of publication materials were performed by using SHELXTL, V6.12 software. Additional details of data collection and structure refinement are given in Table 19.

¹²⁹ SMART Version 5.628, **2003**, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison WI 53711-5373.

¹³⁰ SAINT Version 6.36A, **2002**, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison WI 53711-5373.

¹³¹ SADABS Version 2.10, 2003, George Sheldrick, University of Göttingen,

¹³² SHELXTL V6.12, **2002**, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison WI 53711-5373.

¹³³ A. J. C. Wilson (ed), *International Tables for X-ray Crystallography, Volume C.* Kynoch, Academic Publishers, Dordrecht, **1992**, Tables 6.1.1.4 (pp. 500-502) and 4.2.6.8 (pp. 219-222).

Identification code	148			
Empirical formula	C21 H26 B Cl6 F6 M6	C21 H26 B Cl6 F6 Mo N6 O4 P		
Formula weight	890.90			
Temperature	173(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2(1)/c			
Unit cell dimensions	a = 13.7762(15) Å	<i>α</i> = 90°.		
	b = 12.5351(13) Å	β= 96.488(2)°.		
	c = 19.665(2) Å	$\gamma = 90^{\circ}$.		
Volume	3374.1(6) Å ³			
Z	4			
Density (calculated)	1.754 Mg/m ³			
Absorption coefficient	0.984 mm ⁻¹			
F(000)	1776			
Crystal size	0.40 x 0.35 x 0.15 mm	13		
Theta range for data collection	1.49 to 28.35°.			
Index ranges	-18<=h<=18, -16<=k<	<=16, -26<=l<=26		
Reflections collected	45507			
Independent reflections	8401 [R(int) = 0.0435]]		
Completeness to theta = 28.35°	99.5 %			
Absorption correction	Semi-empirical from e	equivalents		
Max. and min. transmission	1.00 and 0.821634			
Refinement method	Full-matrix least-squa	res on F ²		
Data / restraints / parameters	8401 / 0 / 417			
Goodness-of-fit on F ²	1.088			
Final R indices [I>2sigma(I)]	R1 = 0.0582, $wR2 = 0.1616$			
R indices (all data)	R1 = 0.0714, wR2 = 0	.1711		
Largest diff. peak and hole	2.089 and -1.158 e.Å-	2.089 and -1.158 e.Å ⁻³		

 Table 19. Crystal data and structure refinement for complex 148

	Х	У	Z	U(eq)	
Mo(1)	1151(1)	9953(1)	1998(1)	19(1)	
B(1)	3019(3)	8271(4)	1908(2)	27(1)	
C(1)	908(3)	11882(3)	1940(2)	29(1)	
C(2)	1519(3)	11645(3)	2562(2)	27(1)	
C(3)	1101(3)	10947(3)	3001(2)	25(1)	
C(4)	100(3)	10680(3)	2804(2)	29(1)	
C(5)	-539(3)	11523(4)	2431(2)	33(1)	
C(6)	-440(4)	10039(4)	3292(2)	35(1)	
C(7)	3132(4)	11583(5)	3141(2)	42(1)	
C(8)	1814(3)	8616(3)	3449(2)	29(1)	
C(9)	2494(4)	7858(4)	3700(2)	37(1)	
C(10)	3025(3)	7638(4)	3173(2)	34(1)	
C(11)	669(3)	8112(3)	854(2)	28(1)	
C(12)	1109(4)	7242(4)	580(2)	34(1)	
C(13)	2022(4)	7182(3)	926(2)	32(1)	
C(14)	3065(3)	11060(4)	1430(2)	33(1)	
C(15)	4009(4)	10797(4)	1302(3)	40(1)	
C(16)	4124(3)	9745(4)	1501(3)	37(1)	
C(17)	582(3)	10576(3)	1102(2)	28(1)	
C(18)	-175(3)	9341(3)	1994(2)	27(1)	
N(1)	1923(2)	8856(3)	2793(2)	23(1)	
N(2)	2683(3)	8243(3)	2627(2)	26(1)	
N(3)	1294(2)	8558(3)	1351(2)	24(1)	
N(4)	2133(3)	7973(3)	1391(2)	25(1)	
N(5)	2646(3)	10222(3)	1711(2)	26(1)	
N(6)	3315(2)	9416(3)	1746(2)	26(1)	
O(1)	-60(2)	12129(3)	1953(2)	35(1)	
O(2)	2417(2)	12054(2)	2630(2)	31(1)	
O(3)	246(3)	10866(3)	583(2)	45(1)	

Table 20. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) or 148. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(4)	-930(2)	8948(3)	1931(2)	38(1)
P(1)	1857(1)	3814(1)	65(1)	33(1)
F(1)	1588(3)	2938(3)	-513(2)	59(1)
F(2)	2563(3)	4378(3)	-413(2)	70(1)
F(3)	2118(3)	4690(3)	640(2)	58(1)
F(4)	1172(4)	3239(4)	536(2)	95(2)
F(5)	2752(3)	3107(3)	390(2)	77(1)
F(6)	994(3)	4532(4)	-275(2)	71(1)
C(1S)	2835(6)	668(6)	9555(4)	71(2)
C(2S)	5153(6)	3396(8)	10013(4)	80(2)
C(3S)	3482(5)	4073(5)	1966(4)	59(2)
Cl(1S)	3309(2)	317(2)	8801(1)	76(1)
Cl(2S)	2101(2)	-336(2)	9829(1)	87(1)
Cl(3S)	5255(2)	4066(2)	9256(1)	79(1)
Cl(4S)	5470(2)	2041(2)	9968(1)	84(1)
Cl(5S)	3508(2)	5411(1)	2168(1)	75(1)
Cl(6S)	4644(2)	3533(2)	1947(1)	86(1)

Table 21. Bond lengths [Å] and angles [°] for 148

Mo(1)-C(18)	1.980(4)	C(1)-C(2)	1.434(6)
Mo(1)-C(17)	2.004(4)	C(2)-O(2)	1.333(5)
Mo(1)-N(3)	2.184(3)	C(2)-C(3)	1.398(6)
Mo(1)-N(5)	2.223(4)	C(3)-C(4)	1.429(6)
Mo(1)-N(1)	2.255(3)	C(4)-C(5)	1.511(6)
Mo(1)-C(3)	2.342(4)	C(4)-C(6)	1.511(6)
Mo(1)-C(2)	2.420(4)	C(5)-O(1)	1.427(6)
Mo(1)-C(4)	2.441(4)	C(7)-O(2)	1.452(6)
Mo(1)-C(1)	2.443(4)	C(8)-N(1)	1.350(5)
B(1)-N(6)	1.535(6)	C(8)-C(9)	1.386(6)
B(1)-N(2)	1.537(6)	C(9)-C(10)	1.363(7)
B(1)-N(4)	1.544(6)	C(10)-N(2)	1.356(5)
C(1)-O(1)	1.371(6)	C(11)-N(3)	1.348(5)

C(11)-C(12)	1.385(6)	C(17)-Mo(1)-C(3)	119.13(16)
C(12)-C(13)	1.362(7)	N(3)-Mo(1)-C(3)	158.45(13)
C(13)-N(4)	1.346(5)	N(5)-Mo(1)-C(3)	104.45(14)
C(14)-N(5)	1.347(5)	N(1)-Mo(1)-C(3)	78.28(13)
C(14)-C(15)	1.393(7)	C(18)-Mo(1)-C(2)	119.09(16)
C(15)-C(16)	1.379(7)	C(17)-Mo(1)-C(2)	95.82(16)
C(16)-N(6)	1.327(6)	N(3)-Mo(1)-C(2)	160.11(14)
C(17)-O(3)	1.133(5)	N(5)-Mo(1)-C(2)	80.29(14)
C(18)-O(4)	1.146(5)	N(1)-Mo(1)-C(2)	99.12(13)
N(1)-N(2)	1.368(5)	C(3)-Mo(1)-C(2)	34.10(14)
N(3)-N(4)	1.364(5)	C(18)-Mo(1)-C(4)	62.13(16)
N(5)-N(6)	1.364(5)	C(17)-Mo(1)-C(4)	102.88(16)
P(1)-F(4)	1.571(4)	N(3)-Mo(1)-C(4)	140.93(14)
P(1)-F(6)	1.578(4)	N(5)-Mo(1)-C(4)	137.99(14)
P(1)-F(3)	1.588(3)	N(1)-Mo(1)-C(4)	92.60(13)
P(1)-F(2)	1.592(4)	C(3)-Mo(1)-C(4)	34.69(14)
P(1)-F(5)	1.592(4)	C(2)-Mo(1)-C(4)	58.93(14)
P(1)-F(1)	1.594(3)	C(18)-Mo(1)-C(1)	105.16(16)
C(1S)-Cl(2S)	1.737(7)	C(17)-Mo(1)-C(1)	62.28(15)
C(1S)-Cl(1S)	1.743(7)	N(3)-Mo(1)-C(1)	141.87(13)
C(2S)-Cl(3S)	1.730(8)	N(5)-Mo(1)-C(1)	87.93(14)
C(2S)-Cl(4S)	1.759(10)	N(1)-Mo(1)-C(1)	133.38(13)
C(3S)-Cl(5S)	1.723(6)	C(3)-Mo(1)-C(1)	59.66(14)
C(3S)-Cl(6S)	1.742(7)	C(2)-Mo(1)-C(1)	34.30(14)
		C(4)-Mo(1)-C(1)	64.66(14)
C(18)-Mo(1)-C(17)	83.02(18)	N(6)-B(1)-N(2)	109.1(3)
C(18)-Mo(1)-N(3)	80.32(15)	N(6)-B(1)-N(4)	107.4(3)
C(17)-Mo(1)-N(3)	81.54(15)	N(2)-B(1)-N(4)	107.6(3)
C(18)-Mo(1)-N(5)	159.88(15)	O(1)-C(1)-C(2)	120.6(4)
C(17)-Mo(1)-N(5)	89.97(16)	O(1)-C(1)-Mo(1)	110.5(3)
N(3)-Mo(1)-N(5)	80.00(13)	C(2)-C(1)-Mo(1)	72.0(2)
C(18)-Mo(1)-N(1)	97.44(15)	O(2)-C(2)-C(3)	128.4(4)
C(17)-Mo(1)-N(1)	162.53(15)	O(2)-C(2)-C(1)	117.0(4)
N(3)-Mo(1)-N(1)	81.33(12)	C(3)-C(2)-C(1)	114.4(4)
N(5)-Mo(1)-N(1)	83.71(12)	O(2)-C(2)-Mo(1)	121.9(3)
C(18)-Mo(1)-C(3)	95.41(16)	C(3)-C(2)-Mo(1)	69.9(2)
C(1)-C(2)-Mo(1)	73.7(2)	O(4)-C(18)-Mo(1)	173.4(4)
-------------------	----------	---------------------	----------
C(2)-C(3)-C(4)	115.5(4)	C(8)-N(1)-N(2)	105.8(3)
C(2)-C(3)-Mo(1)	76.0(2)	C(8)-N(1)-Mo(1)	134.7(3)
C(4)-C(3)-Mo(1)	76.4(2)	N(2)-N(1)-Mo(1)	119.4(2)
C(3)-C(4)-C(5)	117.3(4)	C(10)-N(2)-N(1)	109.5(3)
C(3)-C(4)-C(6)	118.8(4)	C(10)-N(2)-B(1)	128.9(4)
C(5)-C(4)-C(6)	112.2(4)	N(1)-N(2)-B(1)	121.6(3)
C(3)-C(4)-Mo(1)	68.9(2)	C(11)-N(3)-N(4)	106.6(3)
C(5)-C(4)-Mo(1)	107.6(3)	C(11)-N(3)-Mo(1)	131.4(3)
C(6)-C(4)-Mo(1)	125.8(3)	N(4)-N(3)-Mo(1)	121.9(2)
O(1)-C(5)-C(4)	113.8(4)	C(13)-N(4)-N(3)	109.1(3)
N(1)-C(8)-C(9)	110.5(4)	C(13)-N(4)-B(1)	130.3(4)
C(10)-C(9)-C(8)	105.5(4)	N(3)-N(4)-B(1)	120.6(3)
N(2)-C(10)-C(9)	108.6(4)	C(14)-N(5)-N(6)	106.3(4)
N(3)-C(11)-C(12)	109.7(4)	C(14)-N(5)-Mo(1)	132.4(3)
C(13)-C(12)-C(11)	105.7(4)	N(6)-N(5)-Mo(1)	121.0(3)
N(4)-C(13)-C(12)	109.0(4)	C(16)-N(6)-N(5)	109.9(4)
N(5)-C(14)-C(15)	109.9(4)	C(16)-N(6)-B(1)	128.3(4)
C(16)-C(15)-C(14)	104.7(4)	N(5)-N(6)-B(1)	120.6(3)
N(6)-C(16)-C(15)	109.1(4)	C(1)-O(1)-C(5)	114.5(3)
O(3)-C(17)-Mo(1)	175.7(4)	C(2)-O(2)-C(7)	117.6(4)
F(4)-P(1)-F(6)	92.2(3)	F(2)-P(1)-F(5)	89.3(3)
F(4)-P(1)-F(3)	90.0(2)	F(4)-P(1)-F(1)	89.9(2)
F(6)-P(1)-F(3)	90.4(2)	F(6)-P(1)-F(1)	89.3(2)
F(4)-P(1)-F(2)	179.0(3)	F(3)-P(1)-F(1)	179.6(2)
F(6)-P(1)-F(2)	88.7(3)	F(2)-P(1)-F(1)	89.6(2)
F(3)-P(1)-F(2)	90.5(2)	F(5)-P(1)-F(1)	90.6(2)
F(4)-P(1)-F(5)	89.8(3)	Cl(2S)-C(1S)-Cl(1S)	111.6(4)
F(6)-P(1)-F(5)	178.0(3)	Cl(3S)-C(2S)-Cl(4S)	112.4(4)
F(3)-P(1)-F(5)	89.8(2)	Cl(5S)-C(3S)-Cl(6S)	112.8(4)

Symmetry transformations used to generate equivalent atoms:

U11 1122 1133 U23 1113 1112 Mo(1) 23(1) 18(1) 16(1) 1(1) 2(1) 0(1) B(1) 25(2) 27(2) 28(2) 1(2) 3(2) 2(2)C(1) 39(2) 23(2)23(2) 1(2) 3(2) 0(2)C(2) 36(2) 22(2) 25(2)-3(2)6(2) -1(2)C(3) 31(2) 25(2) 20(2) -4(1)5(2) 0(2)C(4) 33(2) 27(2) 28(2) -3(2)9(2) 3(2) C(5) 34(2) 30(2) 37(2) -4(2)9(2) 7(2) C(6) -2(2)35(2) 41(3) 31(2) -3(2) 13(2) C(7) 40(3) 55(3) 30(2) 1(2) -1(2) -11(2)C(8) 35(2) 29(2) 23(2) 4(2) 3(2) -4(2)C(9) 46(3) 38(2) 26(2)12(2) -8(2) -1(2)C(10) 34(2) 31(2) 33(2) 9(2) -7(2) 2(2) C(11) 36(2) 26(2) 21(2) -2(2)1(2) -4(2)C(12) 50(3) 29(2) -7(2)6(2) 24(2)-5(2)C(13) 25(2) -4(2)11(2) 3(2) 44(3) 29(2) C(14) 40(2) 32(2) 28(2) -1(2)12(2) -10(2)C(15) 43(3) 42(3) 39(2) -4(2)20(2) -16(2)C(16) 29(2) 45(3) 10(2) -3(2) 37(2) -5(2)C(17) 35(2) 24(2) 23(2)0(2)1(2) 3(2) C(18) 26(2) 31(2) 24(2)-2(2)5(2) 3(2) N(1) 27(2) 22(2) 2(1) 1(1) 1(1)20(2)N(2) 27(2) 26(2) 26(2)5(1) -1(1)2(1)N(3) 28(2) 22(2) 20(2) -1(1)2(1) 0(1) N(4) 29(2) 23(2)24(2)-1(1)7(1) 1(1)N(5) 32(2) 24(2) 23(2) 0(1) 0(1)6(1) N(6) 22(2) 30(2) 26(2)-2(1)3(1) -1(1)O(1) 40(2) 26(2) 37(2) 3(1) 5(1) 10(1)O(2) 38(2) 29(2) 27(2) -4(1)6(1) -8(1)O(3) 64(2) 39(2) 4(2) 27(2) 7(1) -14(2)

O(4)

27(2)

43(2)

43(2)

-4(2)

7(1)

-6(1)

Table 22. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for 148. The anisotropic isplacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*}U^{12}]$

P(1)	46(1)	30(1)	22(1)	2(1)	3(1)	4(1)
F(1)	85(3)	46(2)	42(2)	-14(1)	-5(2)	-6(2)
F(2)	83(3)	74(3)	58(2)	-2(2)	30(2)	-19(2)
F(3)	81(3)	47(2)	42(2)	-16(2)	-8(2)	10(2)
F(4)	138(4)	91(3)	64(3)	8(2)	52(3)	-38(3)
F(5)	95(3)	55(2)	71(3)	-8(2)	-33(2)	29(2)
F(6)	62(2)	72(3)	75(3)	0(2)	-15(2)	25(2)
C(1S)	99(6)	57(4)	63(4)	-16(3)	40(4)	-19(4)
C(2S)	84(5)	104(7)	54(4)	1(4)	22(4)	14(5)
C(3S)	60(4)	44(3)	67(4)	-1(3)	-15(3)	-2(3)
Cl(1S)	73(1)	97(1)	62(1)	3(1)	28(1)	-3(1)
Cl(2S)	101(2)	83(1)	90(1)	-26(1)	61(1)	-39(1)
Cl(3S)	82(1)	97(2)	60(1)	4(1)	18(1)	-12(1)
Cl(4S)	97(2)	79(1)	79(1)	-10(1)	25(1)	-11(1)
Cl(5S)	120(2)	45(1)	58(1)	-1(1)	8(1)	10(1)
Cl(6S)	75(1)	72(1)	102(2)	-23(1)	-24(1)	24(1)

Table 23. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å 2x 10 3) for 148

	X	у	Z	U(eq)	
H(1)	3573	7766	1875	32	
H(1)	1239	12258	1582	34	
H(3)	1455	10717	3449	30	
H(5A)	-1120	11173	2185	40	
H(5B)	-770	12016	2772	40	
H(6A)	-1108	9901	3082	53	
H(6B)	-461	10441	3718	53	
H(6C)	-103	9360	3392	53	
H(7A)	2915	11670	3595	63	
H(7B)	3763	11940	3130	63	
H(7C)	3202	10822	3043	63	
H(8)	1337	8923	3702	35	
H(9)	2573	7556	4146	45	

H(10)	3549	7142	3187	40
H(11)	26	8357	713	34
H(12)	832	6784	226	41
H(13)	2502	6665	850	39
H(14)	2760	11731	1333	39
H(15)	4473	11243	1118	48
H(16)	4690	9324	1469	44
H(1S1)	3379	813	9917	85
H(1S2)	2446	1330	9479	85
H(2S1)	4472	3453	10125	96
H(2S2)	5584	3740	10387	96
H(3S1)	3102	3973	1512	70
H(3S2)	3144	3681	2307	70