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Abstract

Understanding spatial-temporal trends using communication-efficient federated
tensor factorization for incomplete data

By Linghui Zeng

Extracting trends from spatio-temporal data, such as the Google COVID-19 Search
Trends Symptoms Dataset or Chicago Crime Dataset, can be used to investigate
changes related to health or the environment, respectively. Tensor factorization can
naturally capture space and time dependence to identify meaningful patterns.

Recent advances in federated tensor learning have further enabled joint learning
across multiple sources in a privacy-preserving manner. Yet, measurements can be
erroneous and missing in spatio-temporal data and can negatively impact the cur-
rent federated tensor factorization approaches. In this paper, we develop a robust
federated tensor factorization framework, FedTefid, that is not only efficient from
a communication and computational perspective but also able to extract temporal
patterns from incomplete data via a temporal smoothness constraint. Experiment re-
sults show that our proposed method can recover the spatio-temporal patterns even
with 90% of the measurements missing.
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Chapter 1

Introduction

Patterns identified in spatio-temporal data can be used to better understand the im-

pacts of changes related to health or the environment. As a motivating example,

COVID-19 has greatly impacted people’s lives in the last two years. The COVID-

19 Search Trends symptoms dataset [8] can be used to extract meaningful trends to

gain insight into the impact of the virus on communities as well as to detect out-

breaks earlier. With the need to model both time and space simultaneously to better

understand the changes across regions and over time, we express as a third-order

spatio-temporal tensor [7], or multidimensional array, where each element captures

the number of searches for each county for a certain week. Tensor decomposition, such

as CANDECOMP/PARAFAC (CP) decomposition, can then be used to analyze the

data and extract hidden and meaningful patterns from the data. In particular, CP

decomposition factorizes the higher-order tensor as a sum of several rank-one ten-

sors (i.e. outer products of N vectors) and has been widely used in many domains,

including psychometrics, computer vision, and computational phenotyping.

In real applications, multidimensional data may not always be stored in one loca-

tion. For example, consider the scenario where each region of the United States (i.e.

West, South West, Mid-West, South East, North East) collects the COVID-19 search
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data locally and the data cannot be stored at a central server either due to privacy

concerns or sheer volume. For such cases, federated tensor factorization can be used to

communicate the county-level symptom trends with the Centers for Disease Control

and Prevention (CDC). Federated tensor factorization has been proposed to improve

the scalability for decentralized data [6, 9, 14]. It also shares the spirit of privacy

preserving of the more general federated learning [5], as it avoids communicating the

raw tensor and individual-level data.

Unfortunately, existing federated tensor factorization methods cannot readily han-

dle incomplete data, which is ubiquitous across different domains due to various rea-

sons in the data collection process. In the web search setting, data is often anonymized

by either not reporting the data or setting the values to be zero. Another factor might

be that different regions or sites have different data collection and data processing

techniques, which can yield widely different sampling strategies that need to be dealt

with. Similarly, the machines collecting the measurements may suddenly fail and not

be able to capture the data and results in missing entries.

To solve the missing data problem in federated tensor factorization, we propose

FedTefid, a Federated tensor factorization framework with temporal constraints for

incomplete data. Our model can robustly extract temporal patterns from spatio-

temporal data with missing entries by utilizing the temporal smoothness property

and only modeling the observed data. We demonstrate the benefit of FedTefid on

two spatio-temporal datasets, the Chicago Crime dataset and the COVID-19 Search

Trends Symptoms dataset. Our experimental results illustrate that our method can

recover the patterns even with 90% of the measurements missing.
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Chapter 2

Background

2.1 Tensor

A tensor [7] can be defined as a multidimensional array. The order of a tensor is the

number of its dimensions. A matrix is a second-order tensor. A higher order tensor is

denoted byX . And the termmode is used to refer to a specific dimension. An order D

tensor is denoted by X ∈ RI1×I2×...×ID , where Xi1,i2,...,iD indicates its (i1, i2, ..., iD)-th

element. The index set of all tensor entries is denoted by I, where |I| =
∏D

d=1 Id.

Figure 2.1: A third-order tensor: X ∈ RI×J×K



4

2.1.1 Rank-One Tensors

A nth-order tensor [7] X ∈ RI1×I2×...×IN is rank one if it can be written as the outer

product of N vectors, i.e.,

X = a(1) ◦ a(1) ◦ ... ◦ a(N).

The symbol “◦” represents the vector outer product, and each element of the

tensor is the product of its corresponding vector elements, i.e.,

X i1i2...iN = a
(1)
i1
a
(2)
i2
...a

(N)
iN

for all 1 ≤ in ≤ In.

Figure 2.2: A rank-one third-order tensor: X = a ◦ b ◦ c. The (i, j, k) element of X
is given by xijk = aibjck

2.1.2 Tensor Matricization

Tensor matricization [7] is the process to reorder the elements of an nth-order tensor

into a matrix. The mode-n matricization of a tensor X ∈ RI1×I2×...×IN is denoted by

X(n) and the mode-n fibers are arranged to be the columns of the resulting matrix.

The tensor element (i1, i2, ..., iN) will be mapped to matrix element (in, j) where

j = 1 +
∑N

k=1,k ̸=n(ik − 1)Jk with Jk =
∏k−1

m=1,m ̸=n Im.
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For a tensor X ∈ R3×4×2 with frontal slices:

X1 =


1 4 7 10

2 5 8 11

3 6 9 12

 , X2 =


13 16 19 22

14 17 20 23

15 18 21 24

 ,

the three mode-n unfoldings are

X(1) =


1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24

 ,

X(2) =



1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24


,

X(3) =

 1 2 3 4 5 ... 9 10 11 12

13 14 15 16 17 ... 21 22 23 24

 .

2.2 CP Decomposition

In 1927, Hitchcock proposed the idea of expressing a tensor as the sum of a finite

number of rank-one tensors, and the idea became popular after another introduction

as CP (CANDECOMP/PARAFAC) decomposition.

The CP decomposition [7] factorizes a tensor into a sum of component rank-one

tensors. For example, a third-order tensor X ∈ RI×J×K can be approximated as:

X ≈
R∑

r=1

ar ◦ br ◦ cr,

where R is a positive integer and ar ∈ RI , br ∈ RJ , cr ∈ RK .
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And each element of the tensor can be approximated as

xijk ≈
R∑

r=1

airbjrckr for i = 1, 2, ..., I; j = 1, 2, ..., J ; k = 1, 2, ..., K.

Figure 2.3: CP decomposition of a third-order tensor

The rank of a tensor X , denoted as rank(X ), is the smallest number of rank-one

tensors that can generate X as their sum. However, there is no finite algorithm to

determine the rank of a tensor. In practice, we evaluate different ranks by fitting the

various CP decomposition models and pick the “best” one.

For a third-order tensor X ∈ RI×J×K , the standard computation for a CP decom-

position with rank R that best approximates X is to solve the following objective

function:

min
x̂

||X − X̂ ||, with X̂ =
R∑

r=1

λrar ◦ br ◦ cr = [[λ;A,B,C]]. (2.1)

2.2.1 Generalized CP

The above formulation (Eq. (2.1) assumes the data is numeric and follows a normal

distribution. However in practice, data may not satisfy this assumption as is the case

with nonnegative, discrete, or boolean data. Thus, a framework to generalize CP [4]

to a broad category of loss functions was developed. The objective function of the
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generalized CP tensor factorization (GTF) can be expressed as

argmin
U

F (U ,X ) =
∑
i∈I

f(U(i),X (i)), (2.2)

where U =
∑R

i=1U(1)(:, i) ◦ ... ◦ U(D)(:, i) is the sum of R rank-one tensors, U(d)

represents the factor matrix of mode d, ◦ represents the vector outer product, and

f(U(i),X (i)) denotes the element-wise loss function. The common CP model in Eq.

(2.1) uses the least square loss, f(U(i),X (i)) = 1
2
(U(i)−X (i))2.

2.2.2 CP Decomposition with Missing Data

Data with missing entries is ubiquitous in various domains, including bibliometrics,

social network analysis and computer vision. As the increasing uses of tensor as the

representation of data, methods to accurately capture the latent structures within

tensor with the existence of missing entries, and possibly reconstructing the missing

entries (i.e. tensor completion) began to draw scholars’ attention.

CP-WOPT [1] (CP Weighted OPTimization) formulates the CP decomposition

for incomplete tensor as a weighted least squares problem that models only the ob-

served entries, and uses a first-order optimization approach to solve the weighted least

squares problem. However, CP-WOPT can only be used under a centralized setting,

where all the data are stored and computed together, and its generalized for all kinds

of tensors without specialized focus on the specialty of spatial-temporal tensors.

2.3 Federated Learning

The performance of a machine learning model highly depends on the quality and

quantity of training data. However, some data may not be permitted for use because

of privacy issues. Also, training with a huge amount of data may incur a huge amount
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of money for data storage and computational power. Thus, it becomes natural to seek

a way to both store data and train the model in a decentralized fashion.

Federated learning (FL) is a machine learning framework where many clients (e.g.

mobile devices or organizations) collaboratively train a model under the arrangement

of a central server (e.g. service provider), while the training data are kept decentral-

ized [5]. Under the framework of FL, data are stored locally and not directly shared.

Only the intermediate results (e.g. parameter updates) will be communicated with

the central server. Thus, FL allow us to train a model with as much data as possible

with privacy conservation and efficient storage.

2.3.1 Federated Tensor Factorization

Suppose there are K clients capturing I1 individual information under the federated

setting, and the tensor X ∈ RI1×I2×...×ID is collectively held by the K clients. We

consider the horizontally partitioned setting, where each client has the same feature

space, but non-overlapping individuals. Thus, the local tensor at each client is denoted

as X k ∈ RI1k×I2×...×ID , meaning that each client has information on I1k individuals,

and
∑K

k=1 I1k = I1. The objective function of federated GTF is:

argmin
U(d)

K∑
k=1

F (U ,X k), s.t.U = U(1) ◦ ... ◦U(D) (2.3)

FedGTF-EF-PC

Recently, FedGTF-EF-PC [11] was proposed to efficiently solve Eq. (2.3). FedGTF-

EF-PC proposed a three-step approach for reducing the uplink communication cost

of federated generalized tensor factorization without compromising the convergence

speed. FedGTF-EF-PC introduced a randomized block update, where only the com-

pressed partial gradient of a sampled block is sent to the central server. The algorithm

also reduces the number of communication rounds by only periodically sending up-
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dates. At the element level, the algorithm also employs gradient compression and

error feedback mechanism to reduce the communication cost without hurting con-

vergences. However, FedGTF-EF-PC assumes that all entries are observed. While a

straightforward approach is to assume that all missing entries are 0, this can cause a

severe degradation in the results and bias the learned latent factors.
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Chapter 3

Proposed Method

We propose FedTefid, an extension of the FedGTF-EF-PC model, that can robustly

identify spatio-temporal patterns even from incomplete data. We first formulate a new

objective function to explicitly model only the observed entries in the local tensors.

Then we incorporate a temporal smoothing technique that can mitigate the effect of

erroneous and noisy data to better learn the temporal factors.

The execution of FedTefid is demonstrated in Fig. 3.1.

Figure 3.1: Illustration of the process of FedTefid.
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3.1 Federated GTF with Missing Data

Suppose we have a mask tensor, M, which denotes the missing entries in X , where

Mi1,i2,...iD =


0, if Xi1,i2,...iD is missing

1, if Xi1,i2,...iD is observed

The GTF objective function in Eq. (2.2) can be expressed as:

argmin
U

F (U ,X ) =
∑
i∈I

f(M(i) ∗ U(i),M(i) ∗ X (i)). (3.1)

For example, using the least square loss, the equivalent objective function to Eq. (2.1)

is then expressed as:

argmin
U

F (U ,X ) =
∑
i∈I

1

2
(M(i) ∗ U(i)−M(i) ∗ X (i))2 (3.2)

as demonstrated in [1].

3.1.1 Gradient updates with observed entries

For the least squares loss, since M(i) = 0 for missing entries at i, it can be shown

that Eq. (3.2) is equivalent to the following:

argmin
U

F (U ,X ) =
∑

i∈I−P

1

2
(U(i)−X (i))2,

where P denotes the index set of all the missing entries.

Based on the above formulation, we only need to calculate the gradients with

the observed entries. During each round of communication, FedGTF-EF-PC calcu-

lates the partial stochastic gradients using an efficient fiber sampling technique of

the randomized factor. To reflect the changes in Eq. (3.1), we modify the sampling
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mechanism of the FedGTF-EF-PC algorithm to only sample the indices of the ob-

served entries using the mask tensor, M for the partial stochastic gradients, thereby

ignoring any element in the index set of missing entries, P . We hereby refer to this

extension as FedGTFM.

3.2 Temporal smoothing

Although FedGTFM offers some robustness to missing entries by ignoring the gradi-

ents associated with the missing entries, the model may still not be able to identify

factors in data with large amounts of missing entries. Therefore, we utilize the tem-

poral smoothness property of real-world data, where two successive values along the

temporal dimension tend to be closely related to each other [2, 15]. We do so by

adding a smoothness regularization along the temporal dimension. Without loss of

generality, we assume the tth mode is the temporal dimension. We modify the objec-

tive function in Eq. (3.1) to incorporate a regularization function on U(t):

argmin
U

F (U ,X ) =
∑
i∈I

f(M(i) ∗ U(i),M(i) ∗ X (i)) + λR
(
U(t)

)
In particular, we explore both the 2-norm constraint [15] and the 1-norm constraint

on the temporal factor to encourage temporal smoothness and further recover the

missing entries.

3.2.1 L2 norm

First, we define a smoothness constraint matrix L ∈ R(It−1)×It as Ljj = 1 and

Lj(j+1) = −1,∀ 0 ≤ j ≤ It − 1 where It is the size of the temporal mode. For
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example,

L =



1 −1

1 −1

. . .

1 −1


(3.3)

Thus, if we minimize ||LU(t)||2F =
∑In−1

i=1 |U(t)(i) −U(t)(i + 1)|2, we are encouraging

consecutive values in the temporal factor to not change dramatically. Incorporating

the above constraint with the least squares loss yields the following objective function:

argmin
U

F (U ,X ) =
∑

i∈I−P

1

2
(U(i)−X (i))2 + λ||LU(t)||2F . (3.4)

The regularization parameter λ determines the importance of enforcing the smooth-

ness between two consecutive values. Higher values of λ will penalize solutions that

have high temporal variability and therefore may not appropriately reflect the true

patterns. However, if there are large amounts of missing data, higher regularization

values may help the algorithm recover the original patterns as real-world data tend

to be closely related to each other.

Given the 2-norm smoothness constraint, the gradient of λ||LU(t)||2F can be calcu-

lated as λLT ∗L ∗U(t). It is important to note that only the partial gradients related

to U(t) will need to be updated to include this term.

3.2.2 L1 norm

We use the same smoothness constraint matrix as shown in Eq. (3.3). For the 1-

norm constraint, we define R
(
U(t)

)
= λ||LU(t)||1. Note that minimizing ||LU(t)||1 =∑In−1

i=1 |U(t)(i) − U(t)(i + 1)| can also encourage consecutive values in the temporal

factor to not change dramatically. The major difference is that the 1-norm will not

heavily punish drastic temporal changes should such a pattern truly exist in the data.
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The objective function with the L1 norm regularization is:

argmin
U

F (U ,X ) =
∑

i∈I−P

1

2
(U(i)−X (i))2 + λ||LU(t)||1. (3.5)

Similar to above, the regularization parameter λ controls the extent of smoothness

along the temporal dimension. While the 1-norm is not a smooth function, for non-

zero values of U(t), the gradient for λ||LU(t)||1 can be calculated as λsign(L ∗U(t)).

3.3 FedTefid

Given the new objective functions in Eq. (3.4) and (3.5), the goal is for each of the

clients to achieve consensus on the factor matricesUd,∀ 1 ≤ d ≤ D. FedTefid utilizes

the same approaches as FedGTF-EF-PC to reduce the uplink communication cost.

In each iteration, for each client (k) in the federated setting, FedTefid calculates

the gradient on the randomized sampled mode [13] with only the observed entries.

Sampled entries for gradient calculation can be generated by fiber sampling [3] with

|S| fibers. Let O denote the sampled observed entries for gradient calculation, |O| =

||S| ∗D| − |#missing| and Hd denote the Hadamard Product between all the factor

matrices except Ud. The corresponding entries for Hd is then denoted as O′. The

partial stochastic gradient with observed data can be calculate as:

Gk
d[j] = Yk

(d)(O)Hk
d(O

′) (3.6)

as demonstrated in [11], where Gk
d[j] denotes the partial stochastic gradient for client

k during t iteration on sampled mode d, Y(d) is the d-unfolding of the element-

wise partial gradient Y ∈ RI1×I2×...×ID , where Y(i) = ∂f(U(i),X (i))
∂U(i)

, and Hk(O′) =

Uk
(1)(O

′
1)⊛ ...⊛Uk

(d−1)(O
′
(d−1))⊛Uk

(d+1)(O
′
(d+1))⊛ ...⊛Uk

(D)(O
′
(D)) where ⊛ represents

the Hadamard Product. If mode d is the temporal mode t, a smoothness constraint
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will be added to the gradient:

Gk
d[j] = Gk

d[j] + λLT ∗ L ∗U(t) (3.7)

or:

Gk
d[j] = Gk

d[j] + λsign(L ∗U(t)) (3.8)

Then, the gradient is updated with error feedback as

Gk
d[j] = Gk

d[j] + Ek
d[j − 1] (3.9)

where Ek
d[j−1] is the stored error. If this is not a communication iteration, each client

updates the factor tensor with the computed gradient: Uk
d[j] = Uk

d[j − 1] + γGk
d[j].

If this is a communication iteration, the gradient is compressed as Ck
d[j], the low-

precision representation of Ck
d[j].The client sends the compressed updated gradient

Ck
d[j] to the central server and updates the error as:

Ek
d[j] = Gk

d[j]−Ck
d[j] (3.10)

After receiving gradients from each client, the central server averages the received

gradients as Gc
d[j]and updates the central factor matrix as:

Uc
d[j] = Uc

d[j − 1] + γGc
d[j] (3.11)

and broadcast Uc
d[j] to each client.

Each client updates the factor tensor with the gradient received from the central
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Algorithm 1 FedTefid

Require: Mask tensor M, randomized sampled mode sequences ds[0], ds[1], ..., ds[J ], ini-
tialized U , and client(k).

1: for j = 0, 1, ..., J do
2: On each client(k) where k ∈ K
3: for d = 1, 2, ..., D do
4: if d = ds[j] then
5: Each client compute stochastic gradient with observed data only (eq. 3.6, 3.8);
6: Conduct error feedback (eq. 3.9, 3.10) and gradient compression steps, and send

the compressed gradients to server;
7: Server updates the factor matrix with the averaged compressed gradients from

all clients, and broadcast the updated factor matrix to each client(eq. 3.11);
8: Clients update local factors G (eq. 3.12);
9: else if d ̸= ds[j] then
10: Unselected blocks are kept unchanged.
11: end if
12: end for
13: end for

server as:

Uk
d = Uc

d[j]. (3.12)

Note that FedTefid preserves the communication efficiency of FedGTF-EF-PC

as it reduces the communication cost both in the mode-level and element-level. Not

only is only a single mode updated, but each partial gradient is compressed into the

low-precision representation with errors fixed using the error-feedback mechanism.

Moreover, FedTefid only communicates every few rounds, which further reduces the

uplink communication cost. Algorithm 1 summarizes the key steps of FedTefid.
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Chapter 4

Experiments

We evaluate our model and answer two important questions:

1. How does FedTefid compare with other state-of-the-art federated tensor fac-

torization methods on two different datasets?

2. Does direct modeling of missing data entries and temporal smoothness con-

straints in FedTefid help performance?

To achieve these goals, for each experiment, we perform 3 runs with random

initializations and summarize them with their means.

4.1 Datasets

We use two real-world, publicly available spatio-temporal datasets.

Chicago Crime A dataset that describes the crime reports in the city of Chicago,

ranging from January 1st, 2001 to December 11th, 2017 [12]. We pre-process the data

to obtain a 3rd order tensor of size 77×207×32, representing the community, month,

and type-of-crime factor correspondingly. There are 50.51% of non-zero entries in this

tensor.
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COVID-19 Open Data A dataset that describes the search trends on COVID-

related symptoms from each county [8]. We use the data from 2020 and construct a

3rd order tensor of size 3035× 52× 422 that represent the county, week, and search-

terms respectively. This tensor has 44.01% non-zero entries.

4.2 Baselines

We compare FedTefid with the following three baselines:

• FedGTF: The FedGTF-EF-PC model run on the incomplete tensor with miss-

ing entries treated as 0.

• FedGTFM: FedTefid without temporal smoothing (λ = 0) where the partial

gradient is calculated with observed entries.

• LocTefid: A localized version of FedTefid which does not communicate with

the central server but models missing data and temporal smoothness on the

temporal factor.

4.3 Hyper-parameter tuning

4.3.1 Rank

First, we determine the optimal rank for the Chicago Crime tensor and the COVID-19

tensor. We evaluate R from 2 to 30 and plot the objective without the regularization,

see Eq. (3.2). We use 3 runs and summarize with their means to obtain the values

here.

From fig. 4.1, we can observe that tensor decomposition for the Chicago Crime

tensor with rank 2 gives the smallest loss, meaning that rank 2 is the optimal rank.

However, the small rank (rank 2) may not yield interpretable results, especially to



19

Figure 4.1: Comparison of various rank for Chicago Crime tensor decomposition. The
x-axis represents the rank, the y-axis represents the loss.

Figure 4.2: Comparison of various rank for COVID-19 tensor decomposition. The
x-axis represents the rank, the y-axis represents the loss.

understand the patterns. Thus, we use a slightly larger rank (R = 6) which results

in a small increase in loss for the rest of the experiments.

From fig. 4.2, we can observe that tensor decomposition for the COVID-19 open
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Figure 4.3: Comparison of various penalty λ on the Chicago Crime with different
ratios of missing data. The x-axis represents the penalty λ, the y-axis represents
the fms score between the resulting FedTefid decomposition and the decomposition
without missing entries.

data with rank 10 gives the smallest rank, suggesting that rank 10 is the optimal

rank. Thus, we use rank 10 for the case study on the COVID-19 open data.

4.3.2 Smoothness penalty

Then, we explore the impacts of the weights of the smoothness penalty and illustrate

with an example of FedTefid L2. We use the Chicago Crime tensor to search ap-

propriate penalty λ for FedTefid with L2 constraint; similar searches are perform

for the FedTefid L1 and on the COVID-19 tensor.

We evaluate the performance based on the factor match score [7]. We use the

factorized tensor learned by FedGTF-EF-PC without any missing data as the gold

standard, and compute the factor match score between the four different models

and the gold standard. If A and B are single component ktensors that have been

normalized so that their weights are λa and λb, then the score is defined as score =

penalty ∗ (a′1 ∗ b1) ∗ (a′2 ∗ b2) ∗ ... ∗ (a′R ∗ bR), where the penalty is define by penalty =
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1− |λa−λb)
max(λa,λb)

. The factor match score quantifies how well the extracted factors match

with the original ones, with 1 denoting a perfect match.

Fig. 4.3 summarizes the comparison of various penalty λ on the Chicago Crime

with different ratios of missing data. We can observe that, for small missing ratio

(less than 50%), small penalty weights like 1 gives better results, while for larger

missing ratio (more than 50%), the larger penalty weight like 10 or even 100 gives

better results. This illustrates the importance of tuning the regularization parameter

appropriately based on the percentage of missing data. For the remainder of the

experiments, I use optimal parameter λ depends on the missing ratio. For example, I

use λ = 1 for experiments on the Chicago Crime tensor with 20% missing, and λ = 10

for that with 50% missing.

4.4 Uniformly missing data

Using the Chicago Crime tensor, we first analyze the performance of the models when

data is uniformly missing at random across all the sites. We randomly partition the

tensor into 8 different sites (each holds 12.25%) and use the same missing ratio across

all the sites.

Fig. 4.4 summarizes the comparison between the various methods under the

uniformly missing paradigm. We can observe that FedTefid L1, FedTefid L2 and

FedGTFM significantly outperform FedGTF, illustrating the limitations of assuming

missing entries are zero. FedGTFM performs reasonably well as it uses only the

observed entries for stochastic gradient descent, which allows it to capture the latent

information of the original tensor. We note that the temporal information helps

FedTefid obtain better performance for larger amounts of missing data, as it utilizes

the temporal smoothness property to recover the original temporal patterns.

Fig. 4.5 zooms in to compare the performance of FedTefid L1, FedTefid L2 and
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Figure 4.4: Comparison of the various methods on the Chicago Crime tensor with
rank 6 on different ratios of missing data.

Figure 4.5: Zooming in to see the comparison of the various methods on the Chicago
Crime with rank 6 on different ratios of missing data.

FedGTFM.We can observe that, FedGTFM slightly outperform FedTefid L1, FedTefid

L2 at missing ratio of 0.2. That’s legitimate, as masking a small ratio of data leads

to a increase in sparsity, which is equivalent to a random drop out on gradient,

and that can help converge theoretically. For larger missing ratios, we can observe
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Figure 4.6: The comparison of the various methods on the Chicago Crime with rank
2 on different ratios of missing data.

that FedTefid L2 performs the best, but FedTefid L1 also performs better than

FedGTFM.

We also use the optimal rank (rank 2) to compare the the performance of FedTefid L1,

FedTefid L2 and FedGTFM in fig 4.6.

4.5 Skewed missing data

Next, we assess the methods on the setting where each site has different ratios of

missing data. For this setting, we split the Chicago Crime dataset amongst 5 different

sites, where two of the sites had higher ratios of missing data (i.e., > 70%). Tab.

4.1 presents the results of the four methods on four different settings of missing data.

We can observe that FedTefidand FedGTFM are robust when different sites have

different ratios of missing data and outperform both FedGTF and LocTefid. We

also notice that there is a sizeable gap between the federated methods and the non-

federated setting. This illustrates the importance of allowing different sites to share

information with the central server. Moreover, it highlights that sites with more
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Table 4.1: Performance on the methods on Chicago Crime data with skewed missing
data across the five sites. The mask ratios across four settings are {10, 30, 50, 70,
90}, {10, 10, 50, 70, 90}, {10, 30, 40, 80, 90}, {30, 20, 30, 80, 90} for setting 1, 2, 3,
and 4 respectively.

Setting FedTefid FedGTFM FedGTF LocTefid
1 0.894 0.872 0.523 0.280
2 0.821 0.802 0.549 0.391
3 0.822 0.821 0.607 0.304
4 0.905 0.881 0.643 0.261

missing data can leverage information from sites with less missing data to identify

the latent factors.

4.6 Case study on COVID-19 Open Data

We illustrate FedTefid to identify temporal search trends using the COVID-19 Search

Trends symptoms dataset. We split the original tensor into the 5 regions, West,

South West, Mid-West, South East, North East, to mimic the scenario where each

region collects the data locally and communicates with a central server (e.g., CDC)

to monitor the trends of COVID-19 and its variants. This setting has several benefits

as it can preserve the privacy of the county-level data as only the gradients are sent

while also allowing data collection and processing to be localized and have different

missing percentages as demonstrated in Tab. 4.1.

We use the optimal rank 10 for the CP decomposition for the COVID-19 tensor.

Fig. 4.7 shows the extracted temporal trends of 10 topics using FedGTF-EF-PC

with complete data. And Fig. 4.8 shows the extracted temporal trends of 10 topics

using FedTefid on incomplete data with 50% missing entries. We can observe that

FedTefid captures the trends well even with 50% data missing, and the trends in

Fig. 4.8 seems to be more robust.

For illustrative purposes, we highlight the top 3 highest-weighted search term

topics (U3) and the temporal trends. Fig. 4.9 showcases the weekly trends over the
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Figure 4.7: Temporal trends of the 10 extracted topics using FedGTF-EF-PC on
complete data. The x-axis represents the timestamps (weeks in 2020) and the y-axis
represents the value of the topics.

last 22 weeks in 2020 (July 20th to December 31st). For example, we can see that

the three topics have similar trends from week 30 to week 35, then the orange topic

(i.e., pain, low back pain, cough) has the opposite temporal trend as the green topic

(i.e., abdominal obesity, lightheadedness, developmental disability).

Besides temporal trends of the topics, we can also explore the relationships be-

tween terms and extracted topics as in Fig. 4.10, and between counties and extracted

topics as in Fig. 4.11.

We are also able to find similar counties with FedTefid. For example, we can

normalize the county factor matrix (U(1)) of the 10 extracted topics and calculate

the closest counties to Union County in Georgia using Euclidean distance. We find

that the following counties share similar trends on COVID-related symptoms: Ben-

ton (WA), Wyandot (OH), Santa Barbara (CA), Kittitas (WA), Cumberland (ME),

Miami (OH), Lubbock (TX), McPherson (KS), Lancaster (NE), and Adams (MS).

Researchers can then use these similar counties to further analyze the factors that
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Figure 4.8: Temporal trends of the 10 extracted topics using FedTefid on incomplete
data with 50% missing entries. The x-axis represents the timestamps (weeks in 2020)
and the y-axis represents the value of the topics.

influence the spreading of COVID-19 within communities and the variants with dif-

ferent symptoms.
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Figure 4.9: Temporal trends of top 3 extracted topics. The x-axis represents the
timestamps (week 30 - 52 in year 2020) and the y-axis represents the value of the
topics. The legends show the top 3 most frequent search terms for each topic.

Figure 4.10: The heatmap of top 3 extracted topics. The x-axis represents the top 3
extracted topics (0 as Itch, Pain, Common cold; 2 as Pain, Low back pain, Cough;
4 as Abdominal obesity, Lightheadedness, Developmental disability) and the y-axis
represents the terms that weighted the most in topic 2. The colors show the weights
of terms on each topic.
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Figure 4.11: The heatmap of some Georgia counties. The x-axis represents the top
3 extracted topics (0 as Itch, Pain, Common cold; 2 as Pain, Low back pain, Cough;
4 as Abdominal obesity, Lightheadedness, Developmental disability) and the y-axis
represents some Georgia counties. The colors show the weights of counties on each
topic.
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Chapter 5

Conclusion

In this paper, we study the missing data problem in federated tensor factorization.

We propose a communication-efficient federated tensor factorization for incomplete

data, FedTefid, which builds on the framework of FedGTF-EF-PC and extends it to

model only the observed entries and incorporate a temporal smoothness constraint.

We demonstrate the benefits of using FedTefid on uniformly missing data and data

with skewed missing ratio, and we demonstrate a sample use case of FedTefid with

the COVID-19 Open Data.

There are some future directions to be consider after this study. One is to explore

more about the smoothness constraints. For example, we can consider using different

weights, except 1 and -1, for the smoothness constraint matrix. For example, we

can try run ARIMA model on the dataset and use the resulting coefficients for the

smoothness constraint matrix[10]. Besides that, it’s worthy to explore how to extend

the methods for data types other than spatio-temporal tensors.
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