Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Anastassia Etropolski

Rational Points on Curves

By

Anastassia Etropolski
Doctor of Philosophy

Mathematics

David Zureick-Brown
Advisor
\qquad

Ken Ono

Committee Member

Parimala Raman
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

Rational Points on Curves

By

Anastassia Etropolski

B.A., Bard College, 2011

Advisor: David Zureick-Brown, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics

Abstract
Rational Points on Curves
By Anastassia Etropolski

This thesis investigates three areas of arithmetic geometry, all of which fit under the umbrella of "rational points on curves," yet are distinct and require completely different methods of proof. The first is a generalization of a theorem of Drew Sutherland (which generalizes a theorem of Nicholas Katz) on a local-global question that arises when studying Galois representations associated to elliptic curves. The second is a recent joint result with David Zureick-Brown and Jackson Morrow on cubic torsion on elliptic curves. In particular, we resolve an open problem in the field by classifying the subgroups which can occur as the torsion subgroup for an elliptic curve over a cubic number field. The final project is also the resolution of an open problem; in particular, the full classification of algebraic function fields with class number 3.

Rational Points on Curves

By

Anastassia Etropolski

B.A., Bard College, 2011

Advisor: David Zureick-Brown, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics

Contents

1 A Local-Global principle for Galois representations 1
1.1 Introduction 1
1.2 Preliminaries 3
1.2.1 Galois representations and the Chebotarev density theorem 3
1.2.2 Subgroups of $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ 5
1.2.3 Image of inertia 9
1.3 Local-Global principle for subgroups of $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ 11
1.3.1 Split and nonsplit Cartan 11
1.3.2 Normalizer of a split Cartan 15
1.3.3 Normalizer of a nonsplit Cartan 19
1.4 Modular curves and specific counterexamples 21
2 Torsion on Elliptic Curves 24
2.1 Introduction and Background 24
2.1.1 Modular curves 24
2.1.2 Torsion points on modular curves 25
2.1.3 Cubic torsion 26
2.1.4 \quad Sporadic torsion 26
2.1.5 The Mordell-Weil sieve 26
2.2 Classification of cubic torsion 28
3 Class Numbers of Function Fields 29
3.1 Introduction 29
3.2 Background 29
3.2.1 The Weil conjectures and divisors on curves 29
3.2.2 Previous Work 31
3.3 The class number 3 problem 33
3.3.1 The genus 3 case 35
3.3.2 The genus 4 case 37
A L-polynomial Equations 40
Bibliography 42

Chapter 1

A Local-Global principle for Galois representations

1.1 Introduction

Let E be an elliptic curve defined over a number field K. For a prime ℓ, the points of order ℓ defined over \bar{K} form a rank two \mathbf{Z} / ℓ-module, and it is natural to ask whether E has a point of exact order ℓ defined over K. If this is the case, then the reduction of E modulo a prime \mathfrak{p} coprime to ℓ, denoted $\widetilde{E}_{\mathfrak{p}}$, will automatically have a point of order ℓ. The converse to this is the following local-global problem: If $\widetilde{E}_{\mathfrak{p}}$ has a point of order ℓ for almost all \mathfrak{p}, does E have a point of order ℓ defined over K ? Katz studied this problem in Kat81 not only for elliptic curves but for higher dimension abelian varieties as well. In the case of elliptic curves, he showed that this is not true in general, but it is true that E must be isogenous (over K) to an elliptic curve with a K-point of order ℓ.

One may rephrase this question in terms of the image of the $\bmod \ell$ Galois representation attached to E, denoted $\bar{\rho}_{E, \ell}$. It turns out that E having an ℓ torsion point over K is equivalent to the image of the $\bmod \ell$ Galois representation landing in a
certain subgroup of $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ (up to a choice of basis). The condition that $\widetilde{E}_{\mathfrak{p}}$ have an ℓ torsion point is equivalent to the restriction of this representation to $\operatorname{Gal}\left(\overline{K_{\mathfrak{p}}} / K_{\mathfrak{p}}\right)$ also landing in this type of subgroup. This allows one to rephrase the local-global problem entirely in the language of images of Galois representations.

One natural subgroup of $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ is the group of upper triangular matrices. Similar to the story for torsion points, the image of the $\bmod \ell$ Galois representation lands in a group conjugate to the group of upper triangular matrices if and only if E admits an isogeny of degree ℓ, i.e. there exists an elliptic curve E^{\prime} / K and a degree ℓ isogeny $E \rightarrow E^{\prime}$ defined over K. Sutherland studied the local-global problem for degree ℓ isogenies in Sut12 and showed that if E / \mathbf{Q} admits a degree ℓ isogeny modulo p for almost all p, then E admits a degree ℓ isogeny over \mathbf{Q}, with exactly one exception: if E has j-invariant $2268945 / 128$ and $\ell=7$. This surprising counterexample comes from the fact that a certain modular curve has exactly two noncuspidal, non CM rational points, both of which give rise to the same j-invariant. This type of argument is laid out in section 1.4. Sutherland also proved results in this direction for more general number fields, and his results have been generalized by others (see BC13, Ann14, Vog).

This paper will generalize in a different direction by expanding the problem to other subgroups of $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$, namely Cartan subgroups and their normalizers. A well known classification of the subgroups of $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ tells us that a subgroup of order prime to ℓ is either contained in a Cartan subgroup, the normalizer of a Cartan subgroup, or is one of the "exceptional subgroups," which are small and well understood. In Section 1.3, we determine when a local-global principle is allowed to hold via group theoretic considerations in the case of a general number field. In Section 1.4 we take advantage of a calculation done by Banwait and Cremona in [BC13] of some rational and quadratic points on the modular curve $X_{S_{4}}(13)$ to confirm some counterexamples to the local-global principle in the case where the image of the mod

13 Galois representation is locally contained in the normalizer of a split Cartan. This allows us to deduce a fairly complete theorem in the case of $K=\mathbf{Q}$. Full knowledge of $X_{S_{4}}(13)(\mathbf{Q})$ is required to fully understand the failure of the local-global principle when $\ell=13$.

Theorem 1.1.1. Let E / \mathbf{Q} be an elliptic curve and let ℓ be a prime. Let $G \subseteq \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ be a fixed nonexceptional subgroup of order prime to ℓ. If $\ell \neq 7,13$ and the image of $\bar{\rho}_{E, \ell}$ restricted to $\operatorname{Gal}\left(\overline{\mathbf{Q}_{p}} / \mathbf{Q}_{p}\right)$ is contained in G up to conjugacy for almost all primes p, then $\operatorname{im}\left(\bar{\rho}_{E, \ell}\right)$ is contained in G up to conjugacy.

If $\ell=7$, the only exception occurs when G is a split Cartan, and it only occurs if $j(E)=2268945 / 128$.

If $\ell=13$, the only exception occurs when G is the normalizer of a split Cartan, and there are at least 3 j-invariants classifying the isomorphism class containing E :

$$
\begin{aligned}
& j(E)=\frac{2^{4} \cdot 5 \cdot 13^{4} \cdot 17^{3}}{3^{13}}, \\
& j(E)=-\frac{2^{12} \cdot 5^{3} \cdot 11 \cdot 13^{4}}{3^{13}}, \text { and } \\
& j(E)=\frac{2^{18} \cdot 3^{3} \cdot 13^{4} \cdot 127^{3} \cdot 139^{3} \cdot 157^{3} \cdot 283^{3} \cdot 929}{5^{13} \cdot 61^{31}} .
\end{aligned}
$$

1.2 Preliminaries

1.2.1 Galois representations and the Chebotarev density theorem

Fix a prime number ℓ, a number field K, and an algebraic closure \bar{K} of K. Then $\mathrm{G}_{K}:=\operatorname{Gal}(\bar{K} / K)$ acts on the ℓ-torsion points of $E(\bar{K})$, denoted $E[\ell]$, giving rise to the $\bmod \ell$ Galois representation

$$
\bar{\rho}_{E, \ell}: \mathrm{G}_{K} \rightarrow \operatorname{Aut}(E[\ell]) \simeq \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)
$$

The Weil pairing on E tells us that the composition of $\bar{\rho}_{E, \ell}$ with the determinant $\operatorname{map} \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right) \rightarrow \mathbf{F}_{\ell}^{\times}$is exactly the $\bmod \ell$ cyclotomic character. Therefore, if E is defined over K such that $K \cap \mathbf{Q}\left(\mu_{\ell}\right)=\mathbf{Q}$, the determinant map is necessarily surjective for all ℓ. Furthermore, the image of the determinant map is contained in $\left(\mathbf{F}_{\ell}^{\times}\right)^{2}$ if and only if K contains the unique quadratic subextension of $\mathbf{Q}\left(\mu_{\ell}\right) / \mathbf{Q}$, namely $\mathbf{Q}\left(\sqrt{\ell^{*}}\right):=\mathbf{Q}\left(\sqrt{\left(\frac{-1}{\ell}\right) \ell}\right)$.

If S is a finite set of primes of K containing the primes of bad reduction and the primes above ℓ, then $\bar{\rho}_{E, \ell}$ is unramified outside of S. Therefore for $\mathfrak{p} \notin S$, the restriction of $\bar{\rho}_{E, \ell}$ to $\mathrm{G}_{K_{\mathfrak{p}}}$ factors through $\widehat{\mathbf{Z}}$. Let $\varphi_{\mathfrak{p}}$ denote a lift of the Frobenius automorphism of the residue field of $K_{\mathfrak{p}}$. Then $\widehat{\mathbf{Z}}$ is topologically generated by $\varphi_{\mathfrak{p}}$, and we denote the image of $\varphi_{\mathfrak{p}}$ in $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ as a conjugacy class $\varphi_{\mathfrak{p}, \ell}$.

Letting $G \subseteq \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$, the Chebotarev density theorem implies that the set of \mathfrak{p} for which $\varphi_{\mathfrak{p}, \ell}$ is contained in G has positive density. This allows us to set up the local-global problem as a purely group theoretic one. First we have the following definition.

Definition. We say that E satisfies the local condition for H if the image of the restriction of $\bar{\rho}_{E, \ell}$ to $\mathrm{G}_{K_{\mathrm{p}}}$ is contained in a subgroup conjugate to H for a set of primes \mathfrak{p} of density one.

Let $G=\bar{\rho}_{E, \ell}\left(\mathrm{G}_{K}\right)$, and assume that E satisfies the local condition for $H \subseteq$ $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$. Then, by the Chebotarev Density Theorem, for every $g \in G$, the conjugacy class of g is equal to $\varphi_{\mathfrak{p}, \ell}$ for a set of primes of positive density. Thus we may choose \mathfrak{p} such that E satisfies the local condition for H and the conjugacy class of g coincides with $\varphi_{\mathfrak{p}, \ell}$, i.e. g is contained in a subgroup conjugate to H. The global condition is that G be contained in a subgroup conjugate to H, so we can rephrase the problem as follows:
"If every $g \in G$ is contained in a group conjugate to H, is G conjugate to a subgroup of H ?"

If the answer is "Yes", then we say that E satisfies the local-global principle for H.

Remark. If $\ell=2$, then E necessarily satisfies the local-global principle for every H we will consider. This is because inside $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ the conjugacy class of both the split and nonsplit Cartan subgroup contains only a single element. For simplicity, we will assume in the proofs that $\ell>2$.

1.2.2 Subgroups of $\mathrm{GL}_{2}\left(\mathrm{~F}_{\ell}\right)$

In this section we will define some classical subgroups of $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$.
A Borel subgroup is any subgroup conjugate to the subgroup of upper triangular matrices in $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$, and therefore has order $\ell(\ell-1)^{2}$. A Cartan subgroup comes in two varieties: split and nonsplit. A split Cartan is a group conjugate to the group of diagonal matrices, which we denote by $C_{s p}$, and is isomorphic to $\left(\mathbf{F}_{\ell}^{\times}\right)^{2}$. A nonsplit Cartan is a group conjugate to

$$
C_{n s}:=\left\{\left(\begin{array}{cc}
a & \delta b \\
b & a
\end{array}\right)\right\} \subseteq \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)
$$

for some δ with $\left(\frac{\delta}{\ell}\right)=-1$ and is isomorphic to $\mathbf{F}_{\ell^{2}}$.
Any Cartan subgroup has index 2 in its normalizer, and we have the following explicit constructions of their normalizers. Define the following subgroups of $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ by

$$
\begin{aligned}
N_{s p} & :=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right),\left(\begin{array}{ll}
0 & c \\
d & 0
\end{array}\right)\right\} \\
N_{n s} & :=\left\{\left(\begin{array}{ll}
a & \delta b \\
b & a
\end{array}\right),\left(\begin{array}{cc}
a & -\delta b \\
b & -a
\end{array}\right)\right\},
\end{aligned}
$$

where δ is any fixed quadratic nonresidue $\bmod \ell$. Then the normalizer of a split Cartan will be conjugate to $N_{s p}$ and the normalizer of a nonsplit Cartan will be conjugate to $N_{n s}$.

Alternatively, $N_{s p}$ can be defined by adjoining $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ to $C_{s p}$, and $N_{n s}$ is the group obtained by adjoining $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ to $C_{n s}$. It is worth noting that a Borel subgroup is maximal, as is the normalizer of any Cartan subgroup.

These constructions will be useful for simplifying computations when we are allowed to fix a basis. More generally, we can define these subgroups by considering the action of $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ on $\mathbf{P}^{1}\left(\mathbf{F}_{\ell}\right)$ and $\mathbf{P}^{1}\left(\mathbf{F}_{\ell^{2}}\right)$, which we will define on the left as follows:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)[x: y]:=[a x+b y: c x+d y] .
$$

If we restrict this action to the quotient $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$, then the action is faithful.
Let $g \in \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$. Then g belongs to a Borel subgroup if it fixes a line in $\mathbf{P}^{1}\left(\mathbf{F}_{\ell}\right)$, it belongs to a split Cartan subgroup (resp. its normalizer) if it fixes (resp. fixes or swaps) two lines in $\mathbf{P}^{1}\left(\mathbf{F}_{\ell}\right)$, and it belongs to a nonsplit Cartan (resp. its normalizer) if it fixes (resp. fixes or swaps) two conjugate lines in $\mathbf{P}^{1}\left(\mathbf{F}_{\ell^{2}}\right) \backslash \mathbf{P}^{1}\left(\mathbf{F}_{\ell}\right)$ for any fixed quadratic extension $\mathbf{F}_{\ell^{2}} / \mathbf{F}_{\ell}$.

We will restrict our attention to the Cartan subgroups and their normalizers. By definition, g belongs to a split Cartan subgroup if and only if it is diagonalizable over \mathbf{F}_{ℓ}, and two elements belong to the same split Cartan if and only if they are diagonalizable with respect to the same basis.

To understand the nonsplit Cartan we need to fix a quadratic extension $\mathbf{F}_{\ell^{2}} / \mathbf{F}_{\ell}$. Up to scaling, we may fix a basis of the form $\{1, \alpha\}$ for this extension. Then g is in the nonsplit Cartan corresponding to this basis if it fixes the line $[1: \alpha]$ (it will necessarily also fix its conjugate since g is defined over $\left.\mathbf{F}_{\ell}\right)$. If we write $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, this occurs if and only if $b \neq 0, \operatorname{Tr}(\alpha)=(d-a) / b$, and $\operatorname{Ns}(\alpha)=-c / b$. Now we may determine whether two elements belong to the same nonsplit Cartan by determining whether there exits an $\alpha \in \mathbf{F}_{\ell^{2}} \backslash \mathbf{F}_{\ell}$ that satisfies the corresponding norm and trace conditions for each element.

For g to be in the normalizer of the nonsplit Cartan, but not necessarily in the

Cartan itself, we need g to swap $[1: \alpha]$ and its conjugate. This occurs if and only if $a \operatorname{Tr}(\alpha)+b \mathrm{Ns}(\alpha)-c=0$ (note that g must have trace 0 for this to occur, so $d=-a$).

Using these descriptions, the following observations can be easily deduced. We combine them into one proposition for convenience.

Proposition 1.2.1. Let $G \subseteq \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$. Denote by H the image of G in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$, and for any $g \in \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$, h will denote a representative for its image in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$. Then the following are true:

1. If g is diagonalizable, then g is in a split Cartan.
2. If g has irreducible characteristic polynomial, then g is in a nonsplit Cartan.
3. Let C be any Cartan subgroup and let N denote its normalizer. Then for any $g \in N \backslash C, h$ has order two.
4. If g is in the normalizer of a Cartan subgroup, then g is diagonalizable over \mathbf{F}_{ℓ} if and only if its characteristic polynomial is reducible.
5. If g has trace 0 , then g is in the normalizer of a nonsplit Cartan.

Now we can state the following classification of subgroups of $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$.

Proposition 1.2.2 ([Swi73, Lemma 2]). Let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$. If $\ell||G|$, then either G is contained in a Borel or G contains $\mathrm{SL}_{2}\left(\mathbf{F}_{\ell}\right)$. If $\ell \nmid|G|$, let H be the image of G in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$. Then

1. H is cyclic and G is contained in a Cartan subgroup, or
2. H is dihedral and G is contained in the normalizer of a Cartan subgroup but not in the Cartan subgroup itself, or
3. H is isomorphic to A_{4}, S_{4}, or A_{5}.

Remark. The copies of A_{4} and A_{5} which appear in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$ will actually be contained in $\mathrm{PSL}_{2}\left(\mathbf{F}_{\ell}\right)$. Therefore, any lift to $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ of these groups will have determinant contained in $\left(\mathbf{F}_{\ell}^{\times}\right)^{2}$. If $\ell \equiv \pm 1(\bmod 8)$, then the copy of S_{4} will also be in $\operatorname{PSL}_{2}\left(\mathbf{F}_{\ell}\right)$. If $\ell \equiv \pm 3(\bmod 8)$, however, then $\operatorname{PSL}_{2}\left(\mathbf{F}_{\ell}\right)$ does not contain a subgroup isomorphic to S_{4}, and so the determinant map will be nontrivial. In particular, there is a lift of S_{4} in $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ with surjective determinant.

Much of this paper will deal with the final category of subgroups in this list, which are called the exceptional subgroups. It is important to note that, for $\ell>5$, subgroups H which are isomorphic to one of these symmetric or alternating groups are all conjugate in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$ (see [Bea10, Thm. 4.2]).

The classification above is really a consequence of the fact that the action of $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$ on $\mathbf{P}^{1}\left(\mathbf{F}_{\ell}\right)$ is very restricted, as we see in the following proposition.

Proposition 1.2.3 ([Sut12, Prop. 2]). Let $g \in \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ have image $h \in \mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$ with order r, let k be the number of lines in $\mathbf{P}^{1}\left(\mathbf{F}_{\ell}\right)$ fixed by h, and let s be the number of h-orbits under this action. Then k is $0,1,2$, or $\ell+1$, and the $s-k$ nontrivial h orbits have size r. When $\ell>2$ we also have $\sigma(h)=(-1)^{s}$, where $\sigma(h)$ is the sign of h as a permutation of $\mathbf{P}^{1}\left(\mathbf{F}_{\ell}\right)$.

This proposition will be used extensively throughout, so we lay out the general argument here: Suppose that h is as above and we know that h swaps a pair of lines. Then, apart from the elements that h fixes, we know that h only swaps pairs of lines. Moreover, h must have order 2. The sign of h will still depend on ℓ and k : For example, if h fixes 2 lines and swaps the remaining $\ell-1$, then $\sigma(h)=(-1)^{s}$, where $s=\frac{\ell-1}{2}+2$. Thus $\sigma(h)=1$ if and only if $\ell \equiv 1(\bmod 4)$. What will generally occur is a sort of converse of this. When H is one of A_{4}, A_{5}, or $S_{4}, \sigma(h)$ will (in most cases) be determined by the order of h, and this will give a congruence condition that ℓ must satisfy.

Suppose that $H \simeq A_{4}$ or A_{5}. Since A_{4} and A_{5} have only the trivial homomorphism to $\{ \pm 1\}, \sigma$ must be trivial. This means that elements of the same order must fix the same number of lines in $\mathbf{P}^{1}\left(\mathbf{F}_{\ell}\right)$. On the other hand, S_{4} has two maps to $\{ \pm 1\}$, namely the trivial one and the usual sign map on S_{4}. If $\ell \equiv \pm 1(\bmod 8)$, then every element of $H \simeq S_{4}$ will have determinant 1 , and so σ will be the trivial map (since $\sigma(h)=1$ if and only if $\left.h \in \operatorname{PSL}_{2}\left(\mathbf{F}_{\ell}\right)\right)$. When $\ell \equiv \pm 3(\bmod 8)$, the determinant map will be nontrivial, so σ will be the usual sign map on S_{4}, i.e. $\sigma(g)=1$ if g has order $3, \sigma(g)=-1$ if g has order 4 , and $\sigma(g)$ can be either ± 1 when the order of g is 2 . Therefore elements of order r when $r=3$ or 4 must all fix the same number of lines, but elements of order 2 are forced to act differently.

1.2.3 Image of inertia

In (Ser72], Serre explicitly worked out the possible images of inertia under the $\bmod \ell$ Galois representation. Using this knowledge, we are able to better understand when we can rule out the exceptional subgroups. The results of this section are immediate from the work of Serre, but do not seem to be stated elsewhere in this generality, so we state them here. The following proposition, as reformulated by Mazur, captures the results that we need.

Proposition 1.2.4 (Maz77, §2, Remark 2]). Let K be a finite extension of \mathbf{Q}_{ℓ} of ramification index e. Let E be an elliptic curve over K with semistable Néron model over the ring of integers \mathcal{O}_{K}. Let $r: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$ denote the projective representation associated to the action of Galois on the ℓ-division points of E. Then, if $2 e<\ell-1$, the image of the inertia subgroup under r contains an element of order $\geq(\ell-1) / e$.

We may now state explicit bounds for when the image of $\bar{\rho}_{E, \ell}$ is one of the exceptional subgroups.

Proposition 1.2.5. Let K be a number field of degree d and let E / K be an elliptic curve. Fix a prime $\ell>3$, let G be the image of $\bar{\rho}_{E, \ell}$ in $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$, and let H be its image in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$. Then we have the following:

1. If $H \simeq A_{4}$, then $\ell \leq 9 d+1$.
2. If $H \simeq S_{4}$, then $\ell \leq 12 d+1$.
3. If $H \simeq A_{5}$, then $\ell \leq 15 d+1$.

Proof. Let K_{λ} be the completion of K at a prime λ above ℓ, and let M be the smallest extension of K_{λ} over which $E_{\lambda}:=E \otimes K_{\lambda}$, or a quadratic twist of E_{λ}, obtains semistable reduction. Since quadratic twisting preserves the projective image of Galois, we may replace E by a quadratic twist if necessary. Let v be the valuation corresponding to the unique place above λ in M. For $\ell>3$, we know that $\left[M: K_{\lambda}\right] \leq$ 3 (see for example Ann14, Section 4.2), so $e=v(\ell) \leq 3 d$. Then the base extension of E_{λ} to M has semistable reduction at ℓ.

Fix H to be either A_{4}, S_{4}, or A_{5}, and define $h_{H}:=\max \{|h|: h \in H\}$. Then the previous proposition tells us that if $2 e<\ell-1$ and H is the image of r, we must have that

$$
\frac{\ell-1}{e} \leq h_{H},
$$

and so we can conclude that $\ell \leq 3 d h_{H}+1$. Plugging in $h_{H}=3,4,5$ respectively gives the bounds above.

Note that if $2 e \geq \ell-1$, then we get the bound $\ell \leq 2 e+1 \leq 6 d+1$ which is automatically included in the bounds we produced.

Remark. These bounds are necessarily general and can be improved in certain cases. In particular, equality assumes that e is as large as possible and that $(\ell-1) / e$ is the order of the largest element of H.

Corollary 1.2.6. If E / \mathbf{Q} is an elliptic curve and the image of $\bar{\rho}_{E, \ell}$ is exceptional, then $\ell \leq 13$.

Proof. As remarked earlier, the only exceptional subgroup which can occurs as the image of $\bar{\rho}_{E, \ell}$ is the one corresponding to S_{4}. The corollary then follows directly from the proposition.

1.3 Local-Global principle for subgroups of $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$

1.3.1 Split and nonsplit Cartan

Let $G \subseteq \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ and suppose that every $g \in G$ is diagonalizable. This is equivalent to saying that every g is contained in some split Cartan group. The local-global question is whether G itself is contained in a split Cartan, i.e. whether the g are simultaneously diagonalizable.

The answer to this question follows from [Sut12] and BC13. In their case, every g is contained in a Borel (i.e. fixes one line). Since the split Cartan is contained in the Borel, we may apply their results to this case.

Corollary 1.3.1. Let K be a number field and let E / K be an elliptic curve. Let $G=\operatorname{im}\left(\bar{\rho}_{E, \ell}\right)$ and let H be its image in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$. Suppose that E satisfies the local condition for the split Cartan. Then either G is contained in a split Cartan or one of the following is true:

1. G is contained in the normalizer of a split Cartan but not the Cartan itself.
2. $H \simeq A_{4}$, with $\ell \equiv 1(\bmod 12)$.
3. $H \simeq S_{4}$, with $\ell \equiv 1(\bmod 24)$
4. $H \simeq A_{5}$, with $\ell \equiv 1(\bmod 60)$.

If $K \cap \mathbf{Q}\left(\mu_{\ell}\right)=\mathbf{Q}$, then (2) - (4) cannot occur, and (1) can occur only if $\ell \equiv 3$ $(\bmod 4)$. If $K \cap \mathbf{Q}\left(\mu_{\ell}\right) \neq \mathbf{Q}$ and one of (1) - (4) is true, we must have that $\ell \equiv 1$ $(\bmod 4)$ and K contains $\mathbf{Q}(\sqrt{\ell})$.

Proof. This result follows immediately from [Sut12, Lemma 1 and Theorem 1] and [BC13, Proposition 1.10]. The exceptional subgroups which arise in $\overline{\mathrm{BC} 13}$, Proposition 1.10] are the same as the ones above because the congruence conditions actually imply that each element is contained in a split Cartan, not just a Borel.

Corollary 1.3.2. If $\ell \neq 7$, then E / \mathbf{Q} satisfies the local-global principle for the split Cartan. If $\ell=7$, then E satisfies the local-global principle for the split Cartan if and only if $j(E) \neq 2268945 / 128$.

Proof. This is a direct consequence of the previous corollary in conjunction with Section 3 and Theorem 2 in [Sut12]. An elliptic curve over \mathbf{Q} with $j(E) \neq 2268945 / 128$ actually admits two 7 -isogenies modulo every prime of good reduction, so it does indeed satisfy our stronger local condition.

The following theorem explains what happens in the nonsplit Cartan case. We use the description in Section 1.2 .2 to analyze the local condition. First, we need to restrict our attention to number fields K which have no real embeddings. This is because if K is totally real, then complex conjugation acts with eigenvalues ± 1, and no element of a nonsplit Cartan has those eigenvalues. So the only way that E / K can satisfy the local condition for the nonsplit Cartan is if complex conjugation acts trivially on K.

Theorem 1.3.3. Let K be an imaginary number field and let E / K be an elliptic curve. Let $G=\operatorname{im}\left(\bar{\rho}_{E, \ell}\right)$ and let H be its image in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$. Suppose that E satisfies the local condition for the nonsplit Cartan. Then either G is contained in a nonsplit Cartan or one of the following is true:

1. G is contained in the normalizer of a nonsplit Cartan but not the Cartan itself.
2. $H \simeq A_{4}$ and $\ell \equiv-1(\bmod 12)$.
3. $H \simeq S_{4}$ and $\ell \equiv-1(\bmod 24)$.
4. $H \simeq A_{5}$ and $\ell \equiv-1(\bmod 60)$.

If $K \cap \mathbf{Q}\left(\mu_{\ell}\right)=\mathbf{Q}$, then (2) - (4) cannot occur, and (1) can occur only if $\ell \equiv 1$ $(\bmod 4)$. If $K \cap \mathbf{Q}\left(\mu_{\ell}\right) \neq \mathbf{Q}$ and one of $(1)-(4)$ is true, we must have that K contains $\mathbf{Q}\left(\sqrt{\ell^{*}}\right)$.

Proof. Suppose that every $g \in G$ is contained in some nonsplit Cartan. Equivalently, g is either scalar, or it has irreducible characteristic polynomial. As every g has order dividing $\ell^{2}-1$, we know that $\ell \nmid|G|$, and so G is either contained in a Cartan, in the normalizer of a Cartan, or is one of the exceptional subgroups.

Suppose that G is contained in a Cartan subgroup. Then H is cyclic, so G must be contained in a nonsplit Cartan since the action of the group is determined by the action of a generator.

Now suppose that G is contained in the normalizer of a Cartan subgroup. Recall that a matrix $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is in the nonsplit Cartan corresponding to the basis $\{1, \alpha\}$ if and only if $b \neq 0, \operatorname{Tr}(\alpha)=(d-a) / b$, and $\operatorname{Ns}(\alpha)=-c / b$. If G is contained in the normalizer of a split Cartan, then by fixing a basis we may assume that each matrix in G is either diagonal or antidiagonal. The only diagonal matrices which are contained in a nonsplit Cartan are those which are scalar, so we may assume that G contains antidiagonal matrices. Suppose that $\left(\begin{array}{ll}0 & a \\ b & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & c \\ d & 0\end{array}\right)$ are two elements of G. Then their product is $\left(\begin{array}{cc}a d & 0 \\ 0 & b c\end{array}\right)$, which must be scalar, so $a d=b c$. Under this condition, it is easy to check that both matrices are in a nonsplit Cartan corresponding to the same basis: in particular any basis $\{1, \alpha\}$ with $\operatorname{Tr}(\alpha)=0, \operatorname{Ns}(\alpha)=-b / a=-d / c$.

Now we examine the possibility that G is contained in the normalizer of a nonsplit Cartan. We will show that if this is the case, and G is not contained in a nonsplit

Cartan, then such a G will have surjective determinant only if $\ell \equiv 1(\bmod 4)$, and if $\ell \equiv 3(\bmod 4)$, then the determinant of each $g \in G$ will be a square.

Suppose that G is contained in the normalizer of a nonsplit Cartan but not in the nonsplit Cartan itself. We will fix a basis so that $G \subset N_{n s}$, as defined in Section 1.2.2. Recall that $C_{n s}$ is cyclic and of index two in its normalizer, so $C=C_{n s} \cap G$ is cyclic. Then $G / C \hookrightarrow \mathbf{Z} / 2 \mathbf{Z}$, so G is generated by at most two elements. If G is cyclic, then we are in the previous case, so we may assume that G has two generators, and in particular, we can choose one generator to be in $N_{n s} \backslash C_{n s}$ and the other to be in $C_{n s}$. Fix $\left(\frac{\delta}{\ell}\right)=-1$ and let $g=\left(\begin{array}{cc}a & \delta b \\ b & a\end{array}\right), b \neq 0$, and let $h=\left(\begin{array}{cc}x & -\delta y \\ y & -x\end{array}\right), y \neq 0$, so that $G=\langle g, h\rangle$. Since we are assuming that every element of G is in some nonsplit Cartan, we need h to have irreducible characteristic polynomial. This occurs precisely when $-\operatorname{det}(h)$ is not a square.

One may easily verify that g belongs to a nonsplit Cartan corresponding to any basis $\{1, \alpha\}$ with $\operatorname{Tr}(\alpha)=0, N(\alpha)=-1 / \delta$, and h belongs to a nonsplit Cartan corresponding to any basis $\{1, \beta\}$ with $\operatorname{Tr}(\beta)=2 x / \delta y, \operatorname{Ns}(\beta)=1 / \delta$. This shows that there is no nonsplit Cartan which contains both g and h. Furthermore, in order for G to have the property that every element is in some nonsplit Cartan, we need $g h$ to have irreducible characteristic polynomial, since it is an element of $N_{n s} \backslash C_{n s}$. Thus we need $-\operatorname{det}(g h)=-\operatorname{det}(g) \operatorname{det}(h)$ to not be a square, so $\operatorname{det}(g)$ is necessarily a square. In order for G to have surjective determinant, $\operatorname{det}(h)$ must not be a square. This occurs if and only if $\ell \equiv 1(\bmod 4)$.

All that remains is to analyze the possible exceptional subgroups that could arise. To do this we will use Proposition 1.2 .3 to determine the congruence conditions that ℓ must satisfy for each exceptional subgroup. First, suppose that $H \simeq A_{4}$. The nontrivial elements of A_{4} have order 2 and 3. Since are assuming that these elements do not fix any element of $\mathbf{P}^{1}\left(\mathbf{F}_{\ell}\right)$, we need $\frac{\ell+1}{r}$ to be even for $r=2,3$, so $\ell \equiv-1$ $(\bmod 12)$.

Now suppose that $H \simeq A_{5}$. The nontrivial elements of A_{5} have order 2,3 , and 5 and fix no elements of $\mathbf{P}^{1}\left(\mathbf{F}_{\ell}\right)$. Therefore we need $\frac{\ell+1}{r}$ to be even for $r=2,3,5$, so $\ell \equiv-1(\bmod 60)$.

Finally, suppose that $H \simeq S_{4}$. If $\ell \equiv \pm 3(\bmod 8)$, then the sign map on H will be nontrivial, so it must be exactly the sign homomorphism on S_{4}. This means that $(\ell+1) / 4$ must be odd, but this forces the elements of order 2 to have the same sign, so this cannot occur.

If $\ell \equiv \pm 1(\bmod 8)$, then $H \subseteq \operatorname{PSL}_{2}\left(\mathbf{F}_{\ell}\right)$. Therefore the sign of every element of H will be 1 , and we must have that $\frac{\ell+1}{r}$ is even for $r=2,3,4$. This gives the condition $\ell \equiv-1(\bmod 24)$.

1.3.2 Normalizer of a split Cartan

An element of the normalizer of a split Cartan has the property that it either fixes two lines in $\mathbf{P}^{1}\left(\mathbf{F}_{\ell}\right)$ or it swaps them. Recall from Proposition 1.2.1 that an element of the normalizer of a Cartan that is not in the Cartan itself will have order two in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$. Applying Proposition 1.2.3, this means that such an element acts in one of the following two ways: If it is diagonalizable, then it fixes a pair of lines and swaps the remaining pairs, and if it is not diagonalizable, then it only swaps pairs of lines. This immediately shows that if g is in the normalizer of a nonsplit Cartan but not in the Cartan itself, then it is automatically in the normalizer of a split Cartan as well, so there are many elements of the normalizer of a nonsplit Cartan which will satisfy the local condition.

The bulk of the following theorem is to understand when a group satisfying the local condition for the normalizer of a split Cartan is actually contained in the normalizer of a nonsplit Cartan instead. To avoid redundancy, we exclude the case where E actually satisfies the local condition for the split Cartan.

Theorem 1.3.4. Let K be a number field of degree d and let E / K be an elliptic curve. Let $G \subseteq \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ denote the image of $\bar{\rho}_{E, \ell}$ and let H denote the image of G in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$. Suppose that E satisfies the local condition for the normalizer of a split Cartan, but E does not satisfy the local condition for the split Cartan. Then either G is contained in the normalizer of a split Cartan or one of the following holds:

1. G is contained in the normalizer of a nonsplit Cartan and $\ell \equiv 3(\bmod 4)$, with $\ell \leq 6 d+1$.
2. $H \simeq A_{4}$ and $\ell \equiv 7(\bmod 12)$.
3. $H \simeq S_{4}$ and $\ell \equiv 13(\bmod 24)$.
4. $H \simeq A_{5}$ and $\ell \equiv 31(\bmod 60)$.

If $K \cap \mathbf{Q}\left(\mu_{\ell}\right)=\mathbf{Q}$, then only (3) can occur, and if one of (1), (2), or (4) holds, then K contains $\mathbf{Q}\left(\sqrt{\ell^{*}}\right)$.

Proof. Suppose that every $g \in G$ is contained in some nonsplit Cartan and at least one element of G is not contained in any nonsplit Cartan. Then g has order dividing $2\left(\ell^{2}-1\right)$, so $\ell \nmid|G|$. Thus G is either contained in a Cartan, the normalizer of a Cartan, or is one of the exceptional subgroups.

If G is contained in a Cartan, then G is cyclic. Since its generator is by assumption contained in the normalizer of a split Cartan, so is G and we are done.

Now suppose that G is contained in the normalizer of a Cartan but not in the Cartan itself. We will show that if G is contained in the normalizer of a nonsplit Cartan, then $\ell \equiv 3(\bmod 4)$ with $\ell \leq 6 d+1$, and the determinant map has image contained in $\left(\mathbf{F}_{\ell}^{\times}\right)^{2}$. Without loss of generality, assume that $G \subseteq N_{n s}$.

As we saw in the proof of Theorem 1.3.3, G is generated by at most two elements. We have already ruled out the cyclic case, so it remains to show the result when G has two generators, and as before, we can choose one generator to be in $N_{n s} \backslash C_{n s}$ and
the other to be in $C_{n s}$. Recall that every $g \in N_{n s} \backslash C_{n s}$ satisfies the local condition, and that if the element of $C_{n s}$ is diagonalizable, then it must be scalar, in which case the image in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$ is cyclic and we are done.

Let $G=\langle g, h\rangle$, where $g \in N_{n s} \backslash C_{n s}$, and $h \in C_{n s}$ is not scalar. Then we can write $g=\left(\begin{array}{cc}a & -\delta b \\ b & -a\end{array}\right)$ and $h=y\left(\begin{array}{ll}0 & \delta \\ 1 & 0\end{array}\right)$ for some $y \neq 0$. Notice that g is diagonalizable if and only if $-\operatorname{det} g$ is a square modulo ℓ.

Suppose first that g is diagonalizable. Then it is easy to check that for any $L \in \mathbf{P}^{1}\left(\mathbf{F}_{\ell}\right), g$ fixes L if and only if it fixes $h L$. Therefore the pair of lines fixed by g is swapped by h, so g and h, belong to normalizer of the same split Cartan, so G is contained in the normalizer of a split Cartan.

Now suppose that g is not diagonalizable. If $a=0$, then g and h both swap the two axes, and so G is contained in the normalizer of a split Cartan. However, when $a=0$, $\operatorname{det} g=\delta b^{2}$, which is not a square. Since we are assuming that g is not diagonalizable, i.e. that $-\operatorname{det} g$ is not a square, we conclude that $\ell \equiv 1(\bmod 4)$ in this case.

For $a \neq 0$ we proceed as follows. We have that g and h swap the same pair of lines if and only if $g L=h L$ for some L, or $h^{-1} g L=L$. If we let $L=[1: m]$, then this will occur if and only if

$$
a \delta m^{2}-2 b \delta m+a=0
$$

This polynomial has discriminant $4 \delta \operatorname{det} g$, which is a square if and only if $\ell \equiv 1$ $(\bmod 4)$, since g is not diagonalizable. We conclude that G is contained in the normalizer of a split Cartan if and only if $\ell \equiv 1(\bmod 4)$. Now let us examine what happens when $\ell \equiv 3(\bmod 4)$.

We know that, up to scaling the first generator, G is conjugate to a group of the form

$$
\left\langle\left(\begin{array}{cc}
0 & \delta \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
a & -\delta b \\
b & -a
\end{array}\right)\right\rangle
$$

where neither δ nor $a^{2}-\delta b^{2}=-\operatorname{det}\left(\begin{array}{cc}a-\delta b \\ b & -a\end{array}\right)$ is a square in \mathbf{F}_{ℓ}. Thus every element of this group has determinant a square. Moreover, the image of this subgroup in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$ is isomorphic to $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$. Using our knowledge of the image of inertia as in the case of the exceptional subgroups, we conclude that in this case $\ell \leq 6 d+1$.

All that remains is to examine what happens when G is one of the exceptional subgroups. First suppose that $H \simeq A_{4}$. Then H has nontrivial elements of order 2 and 3. Since every element of $N_{s p} \backslash C_{s p}$ has order 2 in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$, the elements of order 3 must belong to a split Cartan, and therefore fix a pair of lines. Since the sign map is necessarily the trivial map, we need $\frac{\ell-1}{3}$ to be even. Therefore $\ell \equiv 1(\bmod 6)$. The elements of order 2 may entirely belong to either a split Cartan or its complement in the normalizer, but since we are assuming that G contains at least one element which is not in any split Cartan, the elements of order 2 are forced to be nondiagonalizable. Therefore $\ell \equiv 7(\bmod 12)$.

Similarly, if $H \simeq A_{5}$, the elements of orders 3 and 5 must belong to the split Cartan, whereas the elements of order 2 may belong to either. Excluding the case where every element is contained in a split Cartan, this produces the condition $\ell \equiv$ $31(\bmod 60)$, where again, we must assume that the elements of order 2 are not diagonalizable.

Finally, suppose that $H \simeq S_{4}$. Then H has nontrivial elements of order 2, 3, and 4. Again, the elements of orders 3 and 4 are necessarily diagonalizable. If $\ell \equiv \pm 3$ $(\bmod 8)$, then the sign map on H is nontrivial and must correspond to the sign homomorphism on S_{4}. This leads to the condition that $\ell \equiv 13(\bmod 24)$. Notice that in this case, the elements of order 2 which are even are exactly the elements of order 2 that belong to split Cartan, and the elements of order 2 which are odd are exactly the ones that belong to its complement in the normalizer.

If $\ell \equiv \pm 1(\bmod 8)$, then the sign map on H is trivial, and this forces $\ell \equiv 1$
(mod 24). In this case, however, every element of H is diagonalizable, and so every element of G is actually contained in a split Cartan.

Corollary 1.3.5. Let E / \mathbf{Q} be an elliptic curve. Then E satisfies the local-global principle for the normalizer of a split Cartan for all $\ell \neq 13$.

In fact, in Section 1.4 we will see that there are at least three counterexamples in the case of $\ell=13$.

1.3.3 Normalizer of a nonsplit Cartan

If the image of $\bar{\rho}_{E, \ell}$ is locally in the normalizer of a nonsplit Cartan, then every element of the image fixes or swaps a pair of conjugate lines of the form $[1: \alpha] \in \mathbf{P}^{1}\left(\mathbf{F}_{\ell^{2}}\right)$.

We will begin by classifying the groups G with the property that for all $g \in G, g$ is in the normalizer of a nonsplit Cartan, yet G is contained in the normalizer of a split Cartan. For simplicity, we will fix our basis so that $G \subseteq N_{s p}$, i.e. G consists only of diagonal and antidiagonal matrices. First we have the following lemma.

Lemma 1.3.6. Let $G \subseteq N_{s p}$ and suppose that every $g \in G$ is in the normalizer of some nonsplit Cartan. Then there is a nonsplit Cartan subgroup whose normalizer contains G.

Proof. Up to scalar multiplication, there are only two types of matrices in $N_{s p}$ that satisfy the assumption: $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, which is in the normalizer of a nonsplit Cartan (but not in the Cartan itself) corresponding to any basis $\{1, \alpha\}$ where α has trace 0 , and matrices of the form $\left(\begin{array}{ll}0 & 1 \\ a & 0\end{array}\right)$, which are in the normalizer of a nonsplit Cartan corresponding to any basis $\{1, \alpha\}$ where $\mathrm{Ns}(\alpha)=a$, and in a nonsplit Cartan corresponding to any basis $\{1, \alpha\}$ where $\operatorname{Tr}(\alpha)=0$ and $\operatorname{Ns}(\alpha)=-a$.

If G contains two matrices $\left(\begin{array}{ll}0 & 1 \\ a & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ b & 0\end{array}\right)$, then the only way for their product to be of one of the two allowable forms is if $a= \pm b$, in which case there is a nonsplit Cartan whose normalizer contains both matrices, as well as the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right)$.

Theorem 1.3.7. Let K be a number field and let E / K be an elliptic curve. Let $G \subseteq \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ denote the image of $\bar{\rho}_{E, \ell}$ and let H denote the image of G in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$. Suppose that Esatisfies the local condition for the normalizer of a nonsplit Cartan but E does not satisfy the local condition for the nonsplit Cartan. Then either G is contained in the normalizer of a nonsplit Cartan or one of the following holds:

1. $H \simeq A_{4}$ and $\ell \equiv 5(\bmod 12)$.
2. $H \simeq S_{4}$ and $\ell \equiv 11(\bmod 24)$.
3. $H \simeq A_{5}$ and $\ell \equiv 29(\bmod 60)$.

If $K \cap \mathbf{Q}\left(\mu_{\ell}\right)=\mathbf{Q}$, then (1) and (3) cannot occur, and if (1) or (3) holds, then K contains $\mathbf{Q}\left(\sqrt{\ell^{*}}\right)$.

Proof. As in the proof of Theorem 1.3.4, we go through the possibilities for H as enumerated in Proposition 1.2.2. Suppose that E satisfies the local condition for the normalizer of a nonsplit Cartan, i.e. every $g \in G$ is in the normalizer of some nonsplit Cartan. Then the order of G is prime to ℓ since the order of $N_{n s}$ is $2\left(\ell^{2}-1\right)$. Therefore G is either contained in a Cartan subgroup, the normalizer of a Cartan subgroup, or is one of the exceptional subgroups. If G is contained in a Cartan subgroup, then H is cyclic, and so every element of G is in fact in the normalizer of the same nonsplit Cartan subgroup and the global condition is satisfied. Furthermore, if G is contained in the normalizer of a split Cartan, then Lemma 1.3 .6 shows that G is also contained in the normalizer of a nonsplit Cartan, thereby satisfying the global condition.

Finally, we examine the exceptional subgroups. Observe that the only diagonalizable elements of the normalizer of a nonsplit Cartan are those which arise in the normalizer, rather than coming from the Cartan subgroup itself. These all have order 2 in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$, so the elements of order 3, 4, and 5 which occur in the various exceptional subgroups must all be nondiagonalizable. The calculation proceeds as in
the the proof of Theorem 1.3.4, and we throw out the cases where every element is actually contained in a nonsplit Cartan.

Corollary 1.3.8. Let E / Q be an elliptic curve. Then E satisfies the local-global principle for the normalizer of a nonsplit Cartan.

Proof. By the previous theorem, the only way in which the local-global principle could fail to hold is if there exists an elliptic curve over \mathbf{Q} whose mod 11 image of Galois is contained in the exceptional subgroup corresponding to S_{4}. It has been shown in [Lig77, II.4.4] that there is no such elliptic curve.

1.4 Modular curves and specific counterexamples

Given an integer N and a subgroup $H \subseteq \mathrm{GL}_{2}(\mathbf{Z} / N \mathbf{Z})$, there exists an algebraic curve $Y_{H}(N)$ and a map $j: Y_{H}(N) \rightarrow \mathbf{A}^{1}$ with the following property: If $P \in Y_{H}(N)(K)$, then there exists an elliptic curve E / K with image of Galois contained in a subgroup conjugate to H and $j(E)=j(P)$, where $j(E)$ is the j-invariant of E. Conversely, if E / K is an elliptic curve whose image of Galois is contained in a subgroup conjugate to H, then there exists a point $P \in Y_{H}(N)(K)$ with $j(E)=j(P)$. There is a smooth compactification $X_{H}(N)$ of $Y_{H}(N)$, and we call $X_{H}(N)$ the modular curve of level N associated to H. The K-rational points of $X_{H}(N)$ coming from the compactification are called cusps and correspond to generalized elliptic curves in the sense of Deligne and Rapoport (see DR73|). We are interested in studying the noncuspidal points in $X_{H}(N)(K)$, in particular in the case when $N=\ell$ is prime.

Theorem 1.3.4 tells us that for $\ell=13$, if there exists a counterexample over \mathbf{Q} to the local-global principle for the normalizer of a split Cartan, then the image of the mod 13 Galois representation for that elliptic curve is contained in a subgroup $H_{S_{4}} \subseteq \mathrm{GL}_{2}\left(\mathbf{F}_{13}\right)$ with image in $\mathrm{PGL}_{2}\left(\mathbf{F}_{13}\right)$ isomorphic to S_{4}. To find out if such a curve exists, we consider the rational points of $X_{S_{4}}(13)$, which is the modular
curve associated to $H_{S_{4}}$. It is worth noting that a rational point on $X_{S_{4}}(\ell)$ does not necessarily satisfy the local condition for the normalizer of a split Cartan, but our congruence conditions on ℓ guarantee that this is the case, so it will hold for $\ell=13$. Furthermore, a rational point on $X_{S_{4}}(\ell)$ could correspond to an elliptic curve whose image of Galois is strictly contained in $H_{S_{4}}$, so care must be taken to make sure that the image is the entire group.

This calculation was done by Banwait and Cremona in [BC13, Corollary 1.5]. They also found quadratic points on this curve, in which case the image of the Galois representation may be contained in A_{4}, by Theorem 1.3.4. The conclusions of their calculations are laid out in the following table.

Confirmed Counterexamples to Local-Global for the Normalizer of the split Cartan			
ℓ	K	j-invariant	H
13	\mathbf{Q}	$\frac{2^{4} \cdot 5 \cdot 13^{4} \cdot 17^{3}}{3^{13}}$	S_{4}
13	\mathbf{Q}	$-\frac{2^{12} \cdot 5^{3} \cdot 11 \cdot 13^{4}}{3^{13}}$	S_{4}
13	\mathbf{Q}	$\frac{2^{18} \cdot 3^{3} \cdot 13^{4} \cdot 127^{3} \cdot 139^{3} \cdot 157^{3} \cdot 283^{3} \cdot 929}{5^{13} \cdot 61^{31}}$	S_{4}
13	$\mathbf{Q}(\sqrt{13})$	$\frac{2^{4} \cdot 5 \cdot 13^{4} \cdot 17^{3}}{3^{13}}$	A_{4}
13	$\mathbf{Q}(\sqrt{13})$	$-\frac{2^{12} \cdot 5^{3} \cdot 11 \cdot 13^{4}}{3^{13}}$	A_{4}
13	$\mathbf{Q}(\sqrt{13})$	$\frac{2^{18} \cdot 3^{3} \cdot 13^{4} \cdot 127^{3} \cdot 139^{3} \cdot 157^{3} \cdot 283^{3} \cdot 929}{5^{13} \cdot 61^{31}}$	A_{4}
13	$\mathbf{Q}(\sqrt{13})$	$\frac{2^{14} \cdot 5^{2}}{3^{13}}\left(2 \cdot 5 \cdot 251 \cdot 6373 \pm 13^{2} \cdot 26251 \sqrt{13}\right)$	A_{4}

Unfortunately, we cannot confirm that there do not exist other counterexamples over \mathbf{Q} in the case of $\ell=13$. To do so, we would need to confirm that there are indeed only three noncuspidal rational points on $X_{S_{4}}(13)$. The genus of this curve
is 3 , so we know that it has only finitely many rational points, but its Jacobian has rank 3 (assuming the Birch and Swinnerton-Dyer conjecture), so the method of Chabauty-Coleman to bound its rational points does not necessarily apply.

The following table lists the genera for the modular curves corresponding to the exceptional subgroups for $\ell \leq 37$ which arise in Sections 1.3.2 and 1.3.3.

H	A_{4}	A_{4}	A_{4}	S_{4}	A_{4}	S_{4}	A_{4}	A_{4}	A_{5}	A_{5}	S_{4}
ℓ	5	7	11	11	13	13	17	19	29	31	37
$g\left(X_{H}(\ell)\right)$	0	0	1	1	3	3	9	14	11	14	142

Remark. Genus formulas can be found in CH05, Table 2.1] or Lig77, II.2.1]. If $\ell \equiv \pm 3 \bmod 8$, then $\mathrm{PSL}_{2}\left(\mathbf{F}_{\ell}\right)$ does not contain a subgroup isomorphic to S_{4}, but it contains a subgroup isomorphic to A_{4}, and there is a lift of it in $\mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$ whose image in $\mathrm{PGL}_{2}\left(\mathbf{F}_{\ell}\right)$ is isomorphic to S_{4}. In this case we use the A_{4} genus formula for S_{4}, as the associated modular curves are twists of each other.

The curve $X_{S_{4}}(11)$ has genus 1, and Ligozat showed that it is an elliptic curve with trivial Mordell-Weil group over Q. This elliptic curve has Cremona label 121.a2. A rational point on this curve which is not cuspidal would give us a counterexample over \mathbf{Q} to the local-global principle for the normalizer of a nonsplit Cartan. The one rational point is however a cusp, as Ligozat shows in Lig77, II.4.4.1], so there are no counterexamples over \mathbf{Q} for $\ell=11$. The Mordell-Weil group is also trivial if we base change to $K=\mathbf{Q}(\sqrt{-11})$, so there are no counterexamples over that field either.

Chapter 2

Torsion on Elliptic Curves

2.1 Introduction and Background

2.1.1 Modular curves

For positive integers $M \mid N$ we denote by $Y_{1}(M, N)$ the moduli space whose K-points parameterize elliptic curves E / K together with a subgroup isomorphic to $\mathbf{Z} / M \mathbf{Z} \oplus$ $\mathbf{Z} / N \mathbf{Z}$ of $E(K)_{\text {tors }}$. This moduli space has the structure of an algebraic curve over $\mathbf{Q}\left(\zeta_{M}\right)$, and we let $X_{1}(M, N)$ denote its smooth compactification. The cusps, i.e. the points of $X_{1}(M, N) \backslash Y_{1}(M, N)$, can be thought of as parameterizing generalized elliptic curves, in the sense of Deligne-Rapoport [DR73].

We may more classically view this modular curve as the quotient of the extended upper half plane $\mathscr{H}^{*}=\{z \in \mathbf{C} \mid \operatorname{Im}(z)>0\} \cup \mathbf{Q} \cup\{i \infty\}$ by the congruence subgroup

$$
\Gamma_{1}(M, N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})\left|\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \bmod N, M\right| b\right\}
$$

in which case the cusps are exactly the equivalence classes of $\mathbf{Q} \cup\{i \infty\}$ under the action of $\Gamma_{1}(M, N)$.

By setting $M=1$ we get the well-studied curves $X_{1}(N):=X_{1}(1, N)$ whose noncuspidal K-points parameterize elliptic curves over K which have a torsion point of
exact order N defined over K.
It was shown in Mazur's seminal paper that $X_{1}(M, N)(\mathbf{Q})$ has no non-cuspidal rational points for (M, N) outside of the set

$$
\{(1, N) \mid 1 \leq N \leq 10 \text { or } N=12\} \cup\{(2,2 N) \mid 1 \leq N \leq 4\}
$$

In other words, the only groups which can appear as torsion subgroups of an elliptic curve over \mathbf{Q} are the fifteen groups

$$
\begin{array}{ll}
\mathbf{Z} / N \mathbf{Z}, & \text { where } 1 \leq N \leq 10, \text { or } N=12, \text { and } \\
\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 N \mathbf{Z}, & \text { where } 1 \leq N \leq 4
\end{array}
$$

Moreover, there exist infinitely many elliptic curves over \mathbf{Q} which exhibit any one of these torsion structures.

A decade later, a full classification for all quadratic number fields was presented by Kenku and Momose, and many partial results had been obtained for other generalizations. Finally, in 1996, it was proven by Merel that for a fixed positive integer d, as we range over number fields K / \mathbf{Q} of degree d, there are only finitely many possibilities for $E(K)_{\text {tors }}$, up to isomorphism.

While some explicit computations exist for an upper bound on $\# E(K)_{\text {tors }}$ due to Merel and others, these bounds are quite far off from what is expected.

2.1.2 Torsion points on modular curves

Let X / \mathbf{Q} be a curve and suppose there exists a rational point $P \in X(\mathbf{Q})$. Then we denote by ι_{P} the embedding

$$
\begin{aligned}
\iota_{P}: X(\mathbf{Q}) & \rightarrow J_{X}(\mathbf{Q}) \\
Q & \mapsto(Q)-(P)
\end{aligned}
$$

of X into its Jacobian. For ease of notation, we will suppress the subscript and let $J=J_{X}$ when the underlying curve is clear.

By the Mordell-Weil theorem for abelian varieties, we know that $J(\mathbf{Q})$ is a finitelygenerated abelian group, so $J(\mathbf{Q}) \simeq \mathbf{Z}^{r} \oplus J(\mathbf{Q})_{\text {tors }}$. We say that $Q \in X(\mathbf{Q})$ is a torsion point on X if $\iota_{P}(Q) \in J(\mathbf{Q})_{\text {tors }}$.

Torsion points on modular curves are particularly interesting and play a central role in the theory. For one thing, we can obtain torsion points easily when the modular curve has \mathbf{Q}-rational cusps (a priori the cusps are only defined over $\mathbf{Q}\left(\zeta_{N}\right)$, where N is the level).

2.1.3 Cubic torsion

Theorem 2.1.1 (JKS04, Theorem 3.4]). Let E be an elliptic curve over a cubic field. Then the groups which occur infinitely often, up to isomorphism, as $E(K)_{\text {tors }}$ are exactly the following.

$$
\begin{array}{cc}
\mathbf{Z} / N \mathbf{Z} & 1 \leq N \leq 16, \text { or } N=18,20 \\
\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 N \mathbf{Z} & 1 \leq N \leq 7
\end{array}
$$

2.1.4 Sporadic torsion

Theorem 2.1.2 (Naj14). There is an elliptic curve E / \mathbf{Q} such that $E(K)_{\text {tors }} \simeq$ $\mathbf{Z} / 21 \mathbf{Z}$, where $K=\mathbf{Q}\left(\zeta_{9}\right)^{+}$, the maximal real subfield of $\mathbf{Q}\left(\zeta_{9}\right)$.

2.1.5 The Mordell-Weil sieve

We begin by explaining the basic setup of the Mordell-Weil sieve in the special case where the Jacobian has rank 0 . Let X / \mathbf{Q} be a curve, let J be its Jacobian, and let $p>2$ be a prime of good reduction for X. Since the rank is $0, J(\mathbf{Q})=J(\mathbf{Q})_{\text {tors }}$, and for $p>2$ the reduction modulo p map red: $J(\mathbf{Q}) \rightarrow J\left(\mathbf{F}_{p}\right)$ is an injection Kat81, Appendix]. Let

$$
J(\mathbf{Q})=\left\langle D_{1}\right\rangle \times \cdots \times\left\langle D_{n}\right\rangle \simeq \mathbf{Z} / M_{1} \mathbf{Z} \times \cdots \times \mathbf{Z} / M_{n} \mathbf{Z}
$$

and define φ to be the isomorphism

$$
\begin{aligned}
& \varphi: \bigoplus_{i} \mathbf{Z} / M_{i} \mathbf{Z} \\
& \rightarrow J(\mathbf{Q}) \\
& \quad\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} D_{1}+\cdots+a_{n} D_{n} .
\end{aligned}
$$

Then $\varphi_{p}=$ redo φ gives an injection from $\bigoplus \mathbf{Z} / M_{i} \mathbf{Z}$ into $J\left(\mathbf{F}_{p}\right)$. Now we are ready to describe the Mordell-Weil sieve.

Fix a degree d divisor D on X and let ι_{D} be the map $X(\mathbf{Q}) \rightarrow J(\mathbf{Q})$ defined by $P \mapsto d P-D$. Then we get a commutative diagram

We want to show that $X(\mathbf{Q})=\varnothing$. If there were a point $P \in X(\mathbf{Q})$, then by following it around the diagram, we see that its image under $\varphi^{-1} \circ \iota_{D}$ would inject into $J\left(\mathbf{F}_{p}\right)$. In other words, if P exists and $d P-D=a_{1} D_{1}+\cdots+a_{n} D_{n}$ in $J(\mathbf{Q})$, then its reduction \bar{P} would map to $d \bar{P}-\bar{D}=a_{1} \overline{D_{1}}+\cdots+a_{n} \overline{D_{n}}$. Since we can explicitly compute $X\left(\mathbf{F}_{p}\right)$, we can find all such $\left(a_{1}, \ldots, a_{n}\right)$.

To be precise, we can compute the set

$$
W_{p}:=\operatorname{im} \varphi_{p} \cap \operatorname{im} \bar{\iota}_{D},
$$

and if this set is empty, then there are no rational points. If this set is not empty, then we can proceed to pick another prime q of good reduction, and consider the intersection $W_{p} \cap W_{q}$. We proceed in this manner choosing as many primes as necessary to show that $\bigcap W_{p_{i}}=\varnothing$.

We will generalize this algorithm in several directions.

1. $X(\mathbf{Q})$ will not be empty.
2. We want to find cubic points, not rational points.
3. We do not necessarily know all of $J(\mathbf{Q})$.
4. We sometimes need to sieve using other maps.

2.2 Classification of cubic torsion

Theorem 2.2.1. Let E be an elliptic curve over a cubic field K. Then $E(K)_{\text {tors }}$ is one of the following groups.

$$
\begin{array}{cc}
\mathbf{Z} / N \mathbf{Z} & 1 \leq N \leq 21, \text { or } N \neq 17,19 \\
\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 N \mathbf{Z} & 1 \leq N \leq 7
\end{array}
$$

The strategies used for the curves we needed to tackle are listed below. The remaining curves have been handled by Jian Wang and Maarten Derickx and is in preparation.

Curve	Sieve curves	Primes used
$X_{1}(26)$	$X_{0}(26), J_{0}(26) \simeq \mathbf{Z} / 21 \mathbf{Z}$	$\{3,7\}$
$X_{1}(28)$	$X_{1}(14), J_{1}(14) \simeq \mathbf{Z} / 6 \mathbf{Z}$	$\{3\}$
$X_{1}(30)$	$X_{0}(30), J_{0}(30) \simeq \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 24 \mathbf{Z}$	$\{7,11\}$
$X_{1}(33)$	$X_{0}(33), J_{0}(33) \simeq \mathbf{Z} / 10 \mathbf{Z} \times \mathbf{Z} / 10 \mathbf{Z}$	$\{7,13\}$
$X_{1}(35)$	$X_{0}(35), J_{0}(35) \simeq \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 24 \mathbf{Z}$	$\{3,11\}$
$X_{1}(36)$	$X_{1}(18), J_{1}(18) \simeq \mathbf{Z} / 21 \mathbf{Z}$, and $X_{0}(36), J_{0}(36) \simeq \mathbf{Z} / 6 \mathbf{Z}$	$\{5,7,13\}$
$X_{1}(39)$	$X_{0}(39), J_{0}(39) \simeq \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 28 \mathbf{Z}$	$\{7\}$
$X_{1}(45)$	$X_{0}(45), J_{0}(45) \simeq \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$	$\{7\}$
$X_{1}(2,16)$	$X_{1}(16), J_{1}(16) \simeq \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 10 \mathbf{Z}$	$\{5\}$
$X_{1}(2,18)$	$X_{1}(2,18), J_{1}(2,18) \simeq \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 42 \mathbf{Z} \times \mathbf{Z} / 126 \mathbf{Z}$	$\{17\}$

Chapter 3

Class Numbers of Function Fields

3.1 Introduction

Let X be a smooth curve over a finite field \mathbf{F}_{q}. We define the class number of X to be $h=\# \operatorname{Jac} X\left(\mathbf{F}_{q}\right)$, where Jac X is the Jacobian of X. Much of the literature will define the terminology in terms of places of the function field of X, however we will use a more geometric formulation. Through an abuse of notation, we will refer to X and its projective closure interchangeably, as they have the same function field.

3.2 Background

3.2.1 The Weil conjectures and divisors on curves

For convenience, we recall some basic results about divisors on curves. For definitions and other results, see for example [Sti09] or [Sil09, II.3].

Let X be a smooth curve over a finite field \mathbf{F}_{q} and define

$$
A_{n}=\#\{D \in \operatorname{Div} X \mid \operatorname{deg} D=n\} .
$$

We define the Zeta-function, $Z_{X}(t)$, of X to be the generating function for the A_{n}, so
we have

$$
Z_{X}(t):=\sum_{n=0}^{\infty} A_{n} t^{n}
$$

It is an easy to see that $Z_{X}(t)$ has an Euler product expansion of the form

$$
Z(t)=\prod_{P \in X}\left(1-t^{\operatorname{deg} P}\right)^{-1}
$$

and through some manipulation it can be shown that

$$
Z(t)=\exp \left(\sum_{n=1}^{\infty} X\left(\mathbf{F}_{q^{n}}\right) \frac{t^{n}}{n}\right)
$$

Lemma 3.2.1 ([Sti09, Lemma 5.1.4]). Let g be the genus of X and let h be its class number. Let $\partial:=\min \{\operatorname{deg} A \mid A \in \operatorname{Div} X$ and $\operatorname{deg} A>0\}$.

1. $A_{n}=0$ if $\partial \nmid n$.
2. For a fixed divisor class $[C] \in \operatorname{Jac} X$, let $|C|$ be its linear system. Then

$$
\#|C|=|\{A \in[C] \mid A \geq 0\}|=\frac{q^{\operatorname{dim}|C|}-1}{q-1} .
$$

3. For each integer $n>2 g-2$ with $\partial \mid n$ we have

$$
A_{n}=\frac{h}{q-1}\left(q^{n+1-g}-1\right) .
$$

The result of the Weil conjectures for curves is summarized in the following theorem.

Theorem 3.2.2. Let X be a smooth curve over \mathbf{F}_{q} of genus g. Then there exists a polynomial $L(t) \in \mathbf{Z}[t]$ such that

$$
Z_{X}(t)=\frac{L(t)}{(1-t)(1-q t)},
$$

and $L(t)$ is of the form

$$
L(t)=1+a_{1} t+a_{2} t^{2}+\cdots+a_{g} t^{g}+q a_{g-1} t^{g+1}+\cdots+q^{g} t^{2 g} .
$$

Moreover, if we write $L(t)=\prod_{i=1}^{2 g}\left(1-\alpha_{i} T\right)$, then $\left|\alpha_{i}\right|=\sqrt{q}$, and we can rearrange the roots so that α_{i} and $\alpha_{2 g-i}$ are conjugates.

We call $L(t)$ the L-polynomial of X.

3.2.2 Previous Work

Let $N_{i}:=\#\{$ closed points P on $X \mid \operatorname{deg} P=i\}$.

$$
L(t)=1+a_{1} t+a_{2} t^{2}+\cdots+q^{g} t^{2 g}=\prod_{i=1}^{2 g}\left(1-\alpha_{i} t\right)
$$

Let $S_{j}=\sum_{i=1}^{2 g} \alpha_{i}^{j}$. Then

$$
-S_{j}=\sum_{d \mid j} d\left(N_{d}-n_{d}\right),
$$

where n_{d} is the number of closed points of degree d on $\mathbf{P}_{\mathbf{F}_{q}}^{1}$. Then we have the following recursive formula for the coefficients a_{n} for $1<n \leq g$ in terms of the S_{j} :

$$
a_{n}:=\frac{-1}{n} \sum_{j=1}^{n} a_{n-j+1} S_{j} .
$$

Using this in conjunction with Dedekind's formulae

$$
n_{d}= \begin{cases}q+1 & \text { if } d=1 \\ \frac{1}{d} \sum_{f \mid d} q^{f} \mu\left(\frac{d}{f}\right) & \text { if } d>1,\end{cases}
$$

where μ is the Möbius function, we can obtain $L(t)$ in terms of only the N_{i}.
The advantage to rewriting the L polynomial in this way is that, by classifying the possible $\left\{\left(N_{1}, \ldots, N_{g}\right)\right\}$ for a fixed h, we can put restrictions on the divisor classes. For $h=3$, we will only need formulae for $L(t)$ when g is 3,4 , or 6 and $q=2$. These can be found in the appendix, and the code which produced them can be found on my website.

Lemma 3.2.3 ($\overline{\text { Pic12, }}$ Lem 2.1]). Let F / \mathbf{F}_{q} be a function field of genus g and class number h. If $h=3$ then q and g are as follows.

q	2	2	2	2	2	2	3	3	3	4	4	5	7
g	1	2	3	4	5	6	1	2	3	1	2	1	1

The classification above comes from two standard facts which allow us to obtain upper bounds on g and q in terms of h, which we recall now.

If we write

$$
L(t)=\prod_{j=1}^{g}\left(1-q^{1 / 2} e^{i \theta_{j}}\right)\left(1-q^{1 / 2} e^{-i \theta_{j}} t\right)=\prod_{j=1}^{g}\left(1-2 q^{1 / 2} \cos \theta_{j} t+q t^{2}\right)
$$

we see that $h=L(1)=\prod_{j=1}^{g}\left(1-2 q^{1 / 2} \cos \theta_{j}+q\right)$. Since $\left|\cos \theta_{j}\right| \leq 1$, we obtain the inequalities

$$
\left(1-q^{1 / 2}\right)^{2 g} \leq h \leq\left(1+q^{1 / 2}\right)^{2} g
$$

Since, for fixed q, the left hand side decreases as g increases, it obtains its largest value when $g=1$, so we obtain the bound $\left(1-q^{1 / 2}\right)^{2} \leq h$. Therefore, explicitly, we have the bound

$$
q \leq(\sqrt{h}+1)^{2}
$$

When $h=3$, this means that $q \leq 7$. We will see, however, that this bound is not sharp.

To complete the classification above, we consider the degree $2 g-1$ points on X. The Hasse-Weil bound gives us $\left|X\left(\mathbf{F}_{q^{2 g-1}}\right)-\left(q^{2 g-1}+1\right)\right| \leq 2 g q^{(2 g-1) / 2}$, so

$$
X\left(\mathbf{F}_{q^{2 g-1}}\right) \geq q^{2 g-1}+1-2 g q^{(2 g-1) / 2}
$$

Recall that A_{n} is the number of effective degree n divisors on X. Accounting for the fact that points over $\mathbf{F}_{q^{2 g-1}}$ of smaller degree can combine to give effective divisors of degree $2 g-1$ on X, we see that

$$
A_{2 g-1} \geq \frac{q^{2 g-1}+1-2 g q^{\frac{2 g-1}{2}}}{2 g-1}
$$

On the other hand, by 3.2.1, the number of effective divisors of degree $2 g-1$ is either 0 or $h \frac{q^{g}-1}{q-1}$. So we arise at the inequality

$$
\begin{equation*}
h \frac{q^{g}-1}{q-1} \geq \frac{q^{2 g-1}+1-2 g q^{\frac{2 g-1}{2}}}{2 g-1} \tag{3.1}
\end{equation*}
$$

Since we already know that q is bounded in terms of h, this allows us to check which g can arise for a particular q. Moreover, there is an upper bound on g in terms of h without taking into consideration q. In $[\mathbf{L M}]$, the authors show that

$$
h \geq q^{g-1}(g-1)^{2} /(q+1)(g+1)
$$

This gives us a finite set of pairs we have to check 3.1 against.

Theorem 3.2.4 ([|Pic12]). Let \mathbf{F}_{q} be a finite field with $q>2$ elements. Up to $\mathbf{F}_{q^{-}}$ isomorphism, there are 8 function fields over \mathbf{F}_{q} of genus $g \geq 1$ with class number $h=3$. Up to \mathbf{F}_{2}-isomorphism, there are 3 function fields over \mathbf{F}_{2} of genus $1 \leq g \leq 2$ and 3 quadratic function fields over \mathbf{F}_{2} of genus 3 or 4 which have class number $h=3$. There are no function fields over \mathbf{F}_{2} of genus 6 with class number $h=3$.

Remark. All of the function fields over \mathbf{F}_{q} with $q>2$ with class number 3 are quadratic.

3.3 The class number 3 problem

The first step is to classify the set of $\left(N_{1}, \ldots, N_{g}\right)$ such that the associated L polynomial with those coefficients has $L(1)=3$.

We will restrict ourselves to the case where X is a non-hyperelliptic genus $g>0$ curve. This means we can assume that $A_{i}<4$ for $i=1,2$, where A_{i} is the number of effective degree i divisors, since otherwise we would have an equivalence of effective divisors $D \sim D^{\prime}$ where D and D^{\prime} are of degree 1 or 2 .

In order to implement this in Magma, we need upper bounds for the N_{i}. These upper bounds come from the Hasse-Weil bound

$$
\# X\left(\mathbf{F}_{q^{n}}\right)=q^{n}+1+E_{n},
$$

where $\left|E_{n}\right| \leq 2 g q^{n / 2}$, in combination with the equality

$$
\# X\left(\mathbf{F}_{q^{n}}\right)=\sum_{d \mid n} d N_{d}
$$

Now we are ready to prove the following theorem.

Theorem 3.3.1. Let C be a smooth, non-hyperelliptic curve over \mathbf{F}_{2} with class number 3. Then $g(C)$ is either 3 or 4 and $\left(N_{1}, \ldots, N_{g}\right)$ is one of the following.

$$
\begin{array}{l|l}
g=3 & (0,3,3),(1,0,4),(1,1,3),(1,2,2),(2,0,3),(2,1,1) \\
\hline & (0,0,6,3),(0,1,3,4),(0,1,4,4),(0,1,5,4),(0,1,6,4),(0,2,1,4),(0,2,2,4), \\
g=4 & (0,2,3,4),(0,2,4,4),(0,3,0,3),(0,3,1,3),(0,3,2,3),(0,3,3,3),(1,0,0,4), \\
& (1,0,1,3),(1,0,2,2),(1,0,3,1),(1,0,4,0),(1,1,0,4)
\end{array}
$$

Proof. Following the argument above, we use Magma to check which $\left(N_{1}, \ldots, N_{g}\right)$ up to the bound coming from the Weil conjectures satisfy $L(1)=3$. This gives a much larger range of values, but not each $\left(N_{1}, \ldots, N_{g}\right)$ gives rise to an actual Zeta function. To narrow it down, we check which of the associated L-polynomials have roots with absolute value $1 / \sqrt{2}$. Throwing out those which are hyperelliptic, we are left with the ones listed above. It turns out that when $g=6$, there are no possibilities. It was shown in Pic12, Thm 4.6] that there are none when $g=5$ either.

Remark. There is another trick used by several authors for $h=1$ and $h=2$ which rules out certain values, but it did not eliminate any values in either of the cases considered above. Nevertheless, it has been implemented in Magma in case it proves to be useful for higher class numbers.

From here we do a case by case analysis to see which of these give rise to an actual curve. We follow the strategy laid out in Bri96.

3.3.1 The genus 3 case

We break into the following two cases:

1. X has a degree one point P such that $\ell(3 P)=2$ and $\ell(4 P)=3$.
2. X has two degree four points which are canonical divisors.

In the first case, let $\{1, x\}$ be a basis for $\mathcal{L}(3 P)$ and let $\{1, x, y\}$ be a basis for $\mathcal{L}(4 P)$. Then, by the Riemann-Roch theorem, we know that $\ell(12 P)=\operatorname{deg}(12 P)+$ $1-g=10$, but we can write down the 11 functions $\left\{x^{a} y^{b} \mid 0 \leq 3 a+4 b \leq 12\right\}$ in $\mathcal{L}(12 P)$. This allows us to write down an affine equation for X of the form

$$
\begin{equation*}
a y^{3}+\varphi_{1}(x) y^{2}+\varphi_{2}(x) y+\varphi_{4}(x)=0, \tag{3.2}
\end{equation*}
$$

where $a \in \mathbf{F}_{2}$ and $\varphi_{i}(x)$ is a degree $\leq i$ polynomial in $\mathbf{F}_{2}[x]$.
For the second case, let A denote one of the degree four points. Since it is canonical, $\ell(A)=g=3$, and we let $\{1, x, y\}$ denote a basis for $\mathcal{L}(A)$. By the RiemannRoch theorem, $\ell(4 A)=16+1-g=14$, but we can write down the 15 functions $\left\{x^{a} y^{b} \mid 0 \leq a+b \leq 4\right\}$. Therefore we can write down an affine equation for X of the form

$$
\begin{equation*}
a y^{4}+\varphi_{1}(x) y^{3}+\varphi_{2}(x) y^{2}+\varphi_{3}(x) y+\varphi_{4}(x)=0 \tag{3.3}
\end{equation*}
$$

where $a \in \mathbf{F}_{2}$ and $\varphi_{i}(x)$ is a degree $\leq i$ polynomial in $\mathbf{F}_{2}[x]$.
From there we do a case-by-case analysis to determine the irreducibility properties of the $\varphi_{i}(x)$ and run the possibilities through Magma to return a list of curves up to isomorphism.

Below we summarize the choices we make for x and y in each case. Let K denote any canonical divisor on X.

$(0,3,3)$	$K \sim A_{1} \sim A_{2} \sim D$, where D is either $2 P$ or $P+Q$, and where $\operatorname{deg} A_{i}=4$, and $\operatorname{deg} P=\operatorname{deg} Q=2$. $\mathcal{L}\left(A_{1}\right)=\{1, x, y\}, \operatorname{div} x=A_{2}-A_{1}, \operatorname{div} y=D-A_{1}$
$(1,0,4)$	$K \sim 4 P \sim P+Q \sim A$ where $\operatorname{deg} P=1, \operatorname{deg} Q=3$, and $\operatorname{deg} A=4$. $\mathcal{L}(3 P)=\{1, x\}, \mathcal{L}(4 P)=\{1, x, y\}, \operatorname{div} x=Q-3 P, \operatorname{div} y=A-4 P$
$(1,1,3)$	$K \sim 2 P+Q \sim A_{1} \sim A_{2}$ where $\operatorname{deg} P=1, \operatorname{deg} Q=2$, and $\operatorname{deg} A_{i}=4$. $\mathcal{L}\left(A_{1}\right)=\{1, x, y\}, \operatorname{div} x=A_{2}-A_{1}, \operatorname{div} y=A_{2}-(2 P+Q)$
$(1,2,2)$	$K \sim P+S \sim A_{1} \sim A_{2} \sim D$, where D is either $4 P$ or $2 P+Q$, and where $\operatorname{deg} P=1, \operatorname{deg} Q=2, \operatorname{deg} A_{i}=4$, and $\operatorname{deg} S=3$. If $K \sim 4 P: \mathcal{L}(3 P)=\{1, x\}, \mathcal{L}(4 P)=\{1, x, y\}, \operatorname{div} x=S-3 P, \operatorname{div} y=A_{1}-4 P$ If $K \sim 2 P+Q: \mathcal{L}\left(A_{1}\right)=\{1, x, y\}, \operatorname{div} x=A_{2}-A_{1}, \operatorname{div} y=2 P+Q-A_{1}$
$(2,0,3)$	$\begin{gathered} K \sim 4 P \sim P+3 Q \sim A, \\ \text { where } \operatorname{deg} P=\operatorname{deg} Q=1 . \\ \mathcal{L}(3 P)=\{1, x\}, \mathcal{L}(4 P)=\{1, x, y\}, \operatorname{div} x=3 Q-3 P, \operatorname{div} y=A-4 P \end{gathered}$
$(2,1,1)$	$\begin{gathered} K \sim 4 P \sim P+3 Q \sim A, \\ \text { where } \operatorname{deg} P=\operatorname{deg} Q=1 . \\ \mathcal{L}(3 P)=\{1, x\}, \mathcal{L}(4 P)=\{1, x, y\}, \operatorname{div} x=3 Q-3 P, \operatorname{div} y=A-4 P \end{gathered}$

Theorem 3.3.2. Let X be a smooth, irreducible, non-hyperelliptic genus 3 curve over \mathbf{F}_{2} with class number 3. Then, up to isomorphism, X is defined by one of the following affine equations.

$$
\begin{align*}
& y^{3}+x^{2} y+x^{4}+x^{3}+x=0 \tag{2,0,3}\\
& y^{3}+y+x^{4}+x+1=0 \tag{1,0,4}\\
& y^{4}+x y^{3}+y+x^{4}+x^{3}+x+1=0 \tag{1,1,3}\\
& y^{4}+x^{2} y^{2}+y+x^{4}+x^{3}+1=0 \tag{1,2,2}
\end{align*}
$$

3.3.2 The genus 4 case

One advantage we have in the genus 3 case is that every smooth genus 3 curve can be written as a smooth quartic in \mathbf{P}^{2}. For genus 4 curves, it is no longer true that only one equation is required. We can, however, make use of the arguments in the previous section for some of the cases.

Let X be a genus 4 curve over \mathbf{F}_{q}. Then the canonical embedding of $X \subseteq \mathbf{P}^{3}$ is the complete intersection of a cubic surface and a quadric surface \mathcal{D}. We can actually describe the quadric surface more precisely. Recall that a g_{3}^{1} is a linear system of degree 3 and dimension 1. Then X falls into one of the following cases (see Bri96, Lemma 5.1]):

1. X has no $g_{3}^{1}: \mathcal{D}: x y+z^{2}+z t+t^{2}=0$ is an elliptic quadric.
2. X has exactly one $g_{3}^{1}: \mathcal{D}: x^{2}+x y=0$ is a singular cone.
3. X has two g_{3}^{1} 's: $\mathcal{D}: x y+z t=0$ is a hyperbolic quadric.

If we are in the second case, then we can proceed as we did for the genus 3 case, but in the first and third case, we will need to rely heavily on Magma.

Theorem 3.3.3. Let X be a smooth, irreducible, non-hyperelliptic genus 4 curve over \mathbf{F}_{2} with class number 3. Then, up to isomorphism, X falls into one of the cases below.
$X \subseteq \mathbf{P}_{\mathbf{F}_{2}}^{3}$ is given by the intersection of the quadric surface $x y+z^{2}+z t+t^{2}=0$ and one of the following cubic surfaces:

$$
\begin{align*}
& x^{3}+x^{2} y+y^{3}+x^{2} z+x z^{2}=0 \tag{0,3,1,3}\\
& x^{3}+x^{2} y+y^{3}+x^{2} z+x z^{2}+x^{2} t+x y t=0 \tag{0,2,2,4}\\
& x^{3}+x^{2} y+y^{3}+y^{2} z+x z^{2}=0 \tag{0,3,1,3}\\
& x^{3}+x y^{2}+y^{3}+y^{2} z+x z^{2}+x^{2} t+x y t=0 \tag{0,2,3,4}\\
& x^{3}+x^{2} y+x y^{2}+y^{3}+y^{2} z+x^{2} t+x z t=0 \tag{0,2,1,4}\\
& x^{3}+y^{3}+x^{2} z+x y z+y z^{2}+y^{2} t+x z t=0 \tag{0,1,3,4}\\
& x^{3}+x^{2} y+y^{3}+x^{2} z+x y z+y z^{2}+x y t+y^{2} t+x z t=0 \tag{1,1,0,4}
\end{align*}
$$

$X \subseteq \mathbf{P}_{\mathbf{F}_{2}}^{2}$ is the projective closure of one of the following:

$$
\begin{array}{l|l}
y^{3}+x^{2} y^{2}+y+x^{6}+x^{5}+x^{4}+x^{2}+1=0 & (1,0,2,2) \\
y^{3}+y+x^{2} y^{2}+x^{6}+x^{3}+x^{2} y+1=0 & (0,1,5,4)
\end{array}
$$

$X \subseteq \mathbf{P}_{\mathbf{F}_{2}}^{3}$ is the intersection of the quadric surface $x y+z t=0$ and one of the following cubic surfaces:

$$
\begin{align*}
& x^{3}+x y^{2}+y^{3}+y^{2} z+x z^{2}+z^{3}+x^{2} t+y^{2} t+t^{3}=0 \tag{0,1,6,4}\\
& x^{3}+x^{2} y+x y^{2}+y^{3}+y^{2} z+x z^{2}+z^{3}+x^{2} t+x y t+y^{2} t+t^{3}=0 \tag{0,0,6,3}
\end{align*}
$$

Proof. For the first and third case, we use Magma to run through all possible cubic surfaces over \mathbf{F}_{2} and check whether the intersection has the appropriate genus and class number. For the second case, we consult the list in Theorem 3.3.1 and see that the only tuples $\left(N_{1}, \ldots, N_{4}\right)$ that correspond to a curve which could have exactly one g_{3}^{1} are

$$
(0,1,4,4),(0,1,5,4),(0,2,4,4),(1,0,2,2),(1,0,3,1), \text { and }(1,0,4,0)
$$

In these cases, there exists a degree 3 point T such that $\ell(T)=2$ and $2 T$ is canonical. Let $\{1, x\}$ be a basis for $\mathcal{L}(T)$. Since $2 T$ is canonical, $\ell(2 T)=4$, and we can choose $\left\{1, x, x^{2}, y\right\}$ to be a basis for $\mathcal{L}(2 T)$. Then $\ell(6 T)=15$ by the Riemann-Roch theorem and contains the 16 functions

$$
\left\{x^{a} y^{b} \mid a+2 b \leq 6\right\}=\left\{1, x, x^{2}, \ldots, x^{6}, y, x y, \ldots, x^{4} y, y^{2}, x y^{2}, x^{2} y^{2}, y^{3}\right\}
$$

Therefore we obtain the relation

$$
y^{3}+\varphi_{2}(x) y^{2}+\varphi_{4}(x) y+\varphi_{6}(x)=0
$$

where $\varphi_{i}(x) \in \mathbf{F}_{2}[x]$ has degree i.
From here the proof follows as in the genus 3 case.

Appendix A

L-polynomial Equations

$$
g=3
$$

$$
\begin{aligned}
L(t) & =\frac{1}{6}\left(N_{1}^{3} t^{3}+6 N_{1}^{2} t^{4}-6 N_{1}^{2} t^{3}+3 N_{1}^{2} t^{2}+6 N_{1} N_{2} t^{3}+24 N_{1} t^{5}-30 N_{1} t^{4}+5 N_{1} t^{3}-15 N_{1} t^{2}\right. \\
& \left.+6 N_{1} t+12 N_{2} t^{4}-18 N_{2} t^{3}+6 N_{2} t^{2}+6 N_{3} t^{3}+48 t^{6}-72 t^{5}+24 t^{4}+12 t^{2}-18 t+6\right) \\
g= & 4
\end{aligned}
$$

$$
\begin{aligned}
L(t) & =\frac{1}{24}\left(N_{1}^{4} t^{4}+8 N_{1}^{3} t^{5}-6 N_{1}^{3} t^{4}+4 N_{1}^{3} t^{3}+12 N_{1}^{2} N_{2} t^{4}+48 N_{1}^{2} t^{6}-48 N_{1}^{2} t^{5}-N_{1}^{2} t^{4}-24 N_{1}^{2} t^{3}\right. \\
& +12 N_{1}^{2} t^{2}+48 N_{1} N_{2} t^{5}-60 N_{1} N_{2} t^{4}+24 N_{1} N_{2} t^{3}+24 N_{1} N_{3} t^{4}+192 N_{1} t^{7}-240 N_{1} t^{6}+40 N_{1} t^{5} \\
& +6 N_{1} t^{4}+20 N_{1} t^{3}-60 N_{1} t^{2}+24 N_{1} t+12 N_{2}^{2} t^{4}+96 N_{2} t^{6}-144 N_{2} t^{5}+60 N_{2} t^{4}-72 N_{2} t^{3} \\
& \left.+24 N_{2} t^{2}+48 N_{3} t^{5}-72 N_{3} t^{4}+24 N_{3} t^{3}+24 N_{4} t^{4}+384 t^{8}-576 t^{7}+192 t^{6}+48 t^{2}-72 t+24\right)
\end{aligned}
$$

$$
g=6
$$

$$
\begin{aligned}
L(t) & =\frac{1}{720}\left(N_{1}^{6} t^{6}+12 N_{1}^{5} t^{7}-3 N_{1}^{5} t^{6}+6 N_{1}^{5} t^{5}+30 N_{1}^{4} N_{2} t^{6}+120 N_{1}^{4} t^{8}-60 N_{1}^{4} t^{7}-35 N_{1}^{4} t^{6}\right. \\
& -30 N_{1}^{4} t^{5}+30 N_{1}^{4} t^{4}+240 N_{1}^{3} N_{2} t^{7}-180 N_{1}^{3} N_{2} t^{6}+120 N_{1}^{3} N_{2} t^{5}+120 N_{1}^{3} N_{3} t^{6}+960 N_{1}^{3} t^{9} \\
& -720 N_{1}^{3} t^{8}-180 N_{1}^{3} t^{7}-45 N_{1}^{3} t^{6}-90 N_{1}^{3} t^{5}-180 N_{1}^{3} t^{4}+120 N_{1}^{3} t^{3}+180 N_{1}^{2} N_{2}^{2} t^{6}+1440 N_{1}^{2} N_{2} t^{8} \\
& -1440 N_{1}^{2} N_{2} t^{7}+150 N_{1}^{2} N_{2} t^{6}-720 N_{1}^{2} N_{2} t^{5}+360 N_{1}^{2} N_{2} t^{4}+720 N_{1}^{2} N_{3} t^{7}-720 N_{1}^{2} N_{3} t^{6} \\
& +360 N_{1}^{2} N_{3} t^{5}+360 N_{1}^{2} N_{4} t^{6}+5760 N_{1}^{2} t^{1} 0-5760 N_{1}^{2} t^{9}-120 N_{1}^{2} t^{8}+60 N_{1}^{2} t^{7}+34 N_{1}^{2} t^{6} \\
& +30 N_{1}^{2} t^{5}-30 N_{1}^{2} t^{4}-720 N_{1}^{2} t^{3}+360 N_{1}^{2} t^{2}+720 N_{1} N_{2}^{2} t^{7}-900 N_{1} N_{2}^{2} t^{6}+360 N_{1} N_{2}^{2} t^{5} \\
& +720 N_{1} N_{2} N_{3} t^{6}+5760 N_{1} N_{2} t^{9}-7200 N_{1} N_{2} t^{8}+1920 N_{1} N_{2} t^{7}-720 N_{1} N_{2} t^{6}+960 N_{1} N_{2} t^{5} \\
& -1800 N_{1} N_{2} t^{4}+720 N_{1} N_{2} t^{3}+2880 N_{1} N_{3} t^{8}-3600 N_{1} N_{3} t^{7}+600 N_{1} N_{3} t^{6}-1800 N_{1} N_{3} t^{5} \\
& +720 N_{1} N_{3} t^{4}+1440 N_{1} N_{4} t^{7}-1800 N_{1} N_{4} t^{6}+720 N_{1} N_{4} t^{5}+720 N_{1} N_{5} t^{6}+23040 N_{1} t^{1} 1 \\
& -28800 N_{1} t^{1} 0+4800 N_{1} t^{9}+720 N_{1} t^{8}+168 N_{1} t^{7}+48 N_{1} t^{6}+84 N_{1} t^{5}+180 N_{1} t^{4}+600 N_{1} t^{3} \\
& -1800 N_{1} t^{2}+720 N_{1} t+120 N_{2}^{3} t^{6}+1440 N_{2}^{2} t^{8}-2160 N_{2}^{2} t^{7}+1080 N_{2}^{2} t^{6}-1080 N_{2}^{2} t^{5} \\
& +360 N_{2}^{2} t^{4}+1440 N_{2} N_{3} t^{7}-2160 N_{2} N_{3} t^{6}+720 N_{2} N_{3} t^{5}+720 N_{2} N_{4} t^{6}+11520 N_{2} t^{1} 0 \\
& -17280 N_{2} t^{9}+7200 N_{2} t^{8}-2160 N_{2} t^{7}+960 N_{2} t^{6}-1080 N_{2} t^{5}+1800 N_{2} t^{4}-2160 N_{2} t^{3} \\
& +720 N_{2} t^{2}+360 N_{3}^{2} t^{6}+5760 N_{3} t^{9}-8640 N_{3} t^{8}+2880 N_{3} t^{7}+360 N_{3} t^{6}+1440 N_{3} t^{5}-2160 N_{3} t^{4} \\
& +720 N_{3} t^{3}+2880 N_{4} t^{8}-4320 N_{4} t^{7}+1440 N_{4} t^{6}-2160 N_{4} t^{5}+720 N_{4} t^{4}+1440 N_{5} t^{7}-2160 N_{5} t^{6} \\
& \left.+720 N_{5} t^{5}+720 N_{6} t^{6}+46080 t^{1} 2-69120 t^{1} 1+23040 t^{1} 0+1440 t^{2}-2160 t+720\right)
\end{aligned}
$$

Bibliography

[Ann14] Samuele Anni. "A local-global principle for isogenies of prime degree over number fields". In: (2014). Available at arXiv:1303.3809v2.
[BC13] Barinder Singh Banwait and John Cremona. "Tethrahedral elliptic curves and the local-global principle for isogenies". In: (2013). Available at arXiv:1306.6818.
[Bea10] Arnaud Beauville. "Finite subgroups of $\mathrm{PGL}_{2}(K)$ ". In: Vector bundles and complex geometry. Vol. 522. Contemp. Math. Amer. Math. Soc., Providence, RI, 2010, pp. 23-29. DOI: $10.1090 /$ conm/522/10289, URL: http: //dx.doi.org/10.1090/conm/522/10289.
[Bri96] Dominique le Brigand. "Classification of algebraic function fields with divisor class number two". In: Finite Fields Appl. 2.2 (1996), pp. 153-172. ISSN: 1071-5797. DOI: $10.1006 / f f t a .1996 .0010$. URL: http://dx.doi. org/10.1006/ffta.1996.0010.
[CH05] Alina Carmen Cojocaru and Chris Hall. "Uniform results for Serre's theorem for elliptic curves". In: Int. Math. Res. Not. 50 (2005), pp. 3065-3080.

ISSN: 1073-7928. DOI: $10.1155 /$ IMRN . 2005.3065, URL: http://dx.doi. org/10.1155/IMRN. 2005.3065.
[DR73] Pierre Deligne and Michael Rapoport. "Les schémas de modules de courbes elliptiques". In: Modular functions of one variable, II (Proc. Internat. Sum-
mer School, Univ. Antwerp, Antwerp, 1972). Springer, Berlin, 1973, 143316. Lecture Notes in Math., Vol. 349.
[JKS04] Daeyeol Jeon, Chang Heon Kim, and Andreas Schweizer. "On the torsion of elliptic curves over cubic number fields". In: Acta Arith. 113.3 (2004), pp. 291-301. ISSN: 0065-1036. DOI: 10. 4064/aa113-3-6. URL: http : //dx.doi.org/10.4064/aa113-3-6.
[Kat81] Nicholas M. Katz. "Galois properties of torsion points on abelian varieties". In: Invent. Math. 62.3 (1981), pp. 481-502. ISSN: 0020-9910. DOI: $10.1007 /$ BF01394256. URL: http://dx.doi.org/10.1007/BF01394256.
[Lig77] Gérard Ligozat. "Courbes modulaires de niveau 11". In: Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976). Springer, Berlin, 1977, 149-237. Lecture Notes in Math., Vol. 601.
[Maz77] B. Mazur. "Rational points on modular curves". In: Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976). Springer, Berlin, 1977, 107-148. Lecture Notes in Math., Vol. 601.
[Naj14] Filip Najman. "Torsion of rational elliptic curves over cubic fields and sporadic points on $X_{1}(n) "$. In: (2014). Available at arXiv:1211.2188.
[Pic12] Alberto Picone. "On the classification of algebraic function fields of class number three". In: Discrete Math. 312.3 (2012), pp. 637-646. ISSN: 0012365X. DOI: 10.1016/j.disc.2011.05.014. URL: http://dx.doi.org/ 10.1016/j.disc.2011.05.014.
[Ser72] Jean-Pierre Serre. "Propriétés galoisiennes des points d'ordre fini des courbes elliptiques". In: Invent. Math. 15.4 (1972), pp. 259-331. ISSN: 0020-9910.
[Sil09] Joseph H. Silverman. The arithmetic of elliptic curves. Second. Vol. 106. Graduate Texts in Mathematics. Springer, Dordrecht, 2009, pp. xx +513 .

ISBN: 978-0-387-09493-9. DOI: 10.1007/978-0-387-09494-6. URL: http: //dx.doi.org/10.1007/978-0-387-09494-6.
[Sti09] Henning Stichtenoth. Algebraic function fields and codes. Second. Vol. 254. Graduate Texts in Mathematics. Springer-Verlag, Berlin, 2009, pp. xiv+355. ISBN: 978-3-540-76877-7.
[Sut12] Andrew V. Sutherland. "A local-global principle for rational isogenies of prime degree". In: J. Théor. Nombres Bordeaux 24.2 (2012), pp. 475-485. ISSN: 1246-7405. URL: http://jtnb.cedram.org/item?id=JTNB_2012_ _24_2_475_0.
[Swi73] H. P. F. Swinnerton-Dyer. "On l-adic representations and congruences for coefficients of modular forms". In: Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972). Berlin: Springer, 1973, 1-55. Lecture Notes in Math., Vol. 350.
[Vog] Isabel Vogt. "A local-to-global principle for N-isogenies of elliptic curves over number fields". In: (). In preparation.

