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Abstract

Rational Points on Curves

By Anastassia Etropolski

This thesis investigates three areas of arithmetic geometry, all of which fit under the

umbrella of “rational points on curves,” yet are distinct and require completely differ-

ent methods of proof. The first is a generalization of a theorem of Drew Sutherland

(which generalizes a theorem of Nicholas Katz) on a local-global question that arises

when studying Galois representations associated to elliptic curves. The second is a

recent joint result with David Zureick-Brown and Jackson Morrow on cubic torsion

on elliptic curves. In particular, we resolve an open problem in the field by classifying

the subgroups which can occur as the torsion subgroup for an elliptic curve over a

cubic number field. The final project is also the resolution of an open problem; in

particular, the full classification of algebraic function fields with class number 3.
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Chapter 1

A Local-Global principle for Galois

representations

1.1 Introduction

Let E be an elliptic curve defined over a number field K. For a prime `, the points of

order ` defined over K form a rank two Z/`-module, and it is natural to ask whether

E has a point of exact order ` defined over K. If this is the case, then the reduction

of E modulo a prime p coprime to `, denoted Ẽp, will automatically have a point of

order `. The converse to this is the following local-global problem: If Ẽp has a point

of order ` for almost all p, does E have a point of order ` defined over K? Katz

studied this problem in [Kat81] not only for elliptic curves but for higher dimension

abelian varieties as well. In the case of elliptic curves, he showed that this is not true

in general, but it is true that E must be isogenous (over K) to an elliptic curve with

a K-point of order `.

One may rephrase this question in terms of the image of the mod ` Galois repre-

sentation attached to E, denoted ρE,`. It turns out that E having an ` torsion point

over K is equivalent to the image of the mod ` Galois representation landing in a
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certain subgroup of GL2(F`) (up to a choice of basis). The condition that Ẽp have an

` torsion point is equivalent to the restriction of this representation to Gal(Kp/Kp)

also landing in this type of subgroup. This allows one to rephrase the local-global

problem entirely in the language of images of Galois representations.

One natural subgroup of GL2(F`) is the group of upper triangular matrices. Simi-

lar to the story for torsion points, the image of the mod ` Galois representation lands

in a group conjugate to the group of upper triangular matrices if and only if E admits

an isogeny of degree `, i.e. there exists an elliptic curve E ′/K and a degree ` isogeny

E → E ′ defined over K. Sutherland studied the local-global problem for degree `

isogenies in [Sut12] and showed that if E/Q admits a degree ` isogeny modulo p for

almost all p, then E admits a degree ` isogeny over Q, with exactly one exception:

if E has j-invariant 2268945/128 and ` = 7. This surprising counterexample comes

from the fact that a certain modular curve has exactly two noncuspidal, non CM ra-

tional points, both of which give rise to the same j-invariant. This type of argument

is laid out in section 1.4. Sutherland also proved results in this direction for more

general number fields, and his results have been generalized by others (see [BC13],

[Ann14], [Vog]).

This paper will generalize in a different direction by expanding the problem to

other subgroups of GL2(F`), namely Cartan subgroups and their normalizers. A well

known classification of the subgroups of GL2(F`) tells us that a subgroup of order

prime to ` is either contained in a Cartan subgroup, the normalizer of a Cartan

subgroup, or is one of the “exceptional subgroups,” which are small and well under-

stood. In Section 1.3, we determine when a local-global principle is allowed to hold

via group theoretic considerations in the case of a general number field. In Section

1.4 we take advantage of a calculation done by Banwait and Cremona in [BC13] of

some rational and quadratic points on the modular curve XS4(13) to confirm some

counterexamples to the local-global principle in the case where the image of the mod
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13 Galois representation is locally contained in the normalizer of a split Cartan. This

allows us to deduce a fairly complete theorem in the case of K = Q. Full knowledge

of XS4(13)(Q) is required to fully understand the failure of the local-global principle

when ` = 13.

Theorem 1.1.1. Let E/Q be an elliptic curve and let ` be a prime. Let G ⊆ GL2(F`)

be a fixed nonexceptional subgroup of order prime to `. If ` 6= 7, 13 and the image of

ρE,` restricted to Gal(Qp/Qp) is contained in G up to conjugacy for almost all primes

p, then im(ρE,`) is contained in G up to conjugacy.

If ` = 7, the only exception occurs when G is a split Cartan, and it only occurs if

j(E) = 2268945/128.

If ` = 13, the only exception occurs when G is the normalizer of a split Cartan,

and there are at least 3 j-invariants classifying the isomorphism class containing E:

j(E) =
24 · 5 · 134 · 173

313
,

j(E) = −212 · 53 · 11 · 134

313
, and

j(E) =
218 · 33 · 134 · 1273 · 1393 · 1573 · 2833 · 929

513 · 6131
.

1.2 Preliminaries

1.2.1 Galois representations and the Chebotarev density the-

orem

Fix a prime number `, a number field K, and an algebraic closure K of K. Then

GK := Gal(K/K) acts on the `-torsion points of E(K), denoted E[`], giving rise to

the mod ` Galois representation

ρE,` : GK → Aut(E[`]) ' GL2(F`).
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The Weil pairing on E tells us that the composition of ρE,` with the determinant

map GL2(F`) → F×` is exactly the mod ` cyclotomic character. Therefore, if E

is defined over K such that K ∩ Q(µ`) = Q, the determinant map is necessarily

surjective for all `. Furthermore, the image of the determinant map is contained

in
(
F×`
)2

if and only if K contains the unique quadratic subextension of Q(µ`)/Q,

namely Q(
√
`∗) := Q

(√(−1
`

)
`
)

.

If S is a finite set of primes of K containing the primes of bad reduction and

the primes above `, then ρE,` is unramified outside of S. Therefore for p /∈ S, the

restriction of ρE,` to GKp factors through Ẑ. Let ϕp denote a lift of the Frobenius

automorphism of the residue field of Kp. Then Ẑ is topologically generated by ϕp,

and we denote the image of ϕp in GL2(F`) as a conjugacy class ϕp,`.

Letting G ⊆ GL2(F`), the Chebotarev density theorem implies that the set of p

for which ϕp,` is contained in G has positive density. This allows us to set up the

local-global problem as a purely group theoretic one. First we have the following

definition.

Definition. We say that E satisfies the local condition for H if the image of the

restriction of ρE,` to GKp is contained in a subgroup conjugate to H for a set of

primes p of density one.

Let G = ρE,`(GK), and assume that E satisfies the local condition for H ⊆

GL2(F`). Then, by the Chebotarev Density Theorem, for every g ∈ G, the conjugacy

class of g is equal to ϕp,` for a set of primes of positive density. Thus we may choose p

such that E satisfies the local condition for H and the conjugacy class of g coincides

with ϕp,`, i.e. g is contained in a subgroup conjugate to H. The global condition is

that G be contained in a subgroup conjugate to H, so we can rephrase the problem

as follows:

“If every g ∈ G is contained in a group conjugate to H, is G conjugate to a

subgroup of H?”
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If the answer is “Yes”, then we say that E satisfies the local-global principle for

H.

Remark. If ` = 2, then E necessarily satisfies the local-global principle for every H

we will consider. This is because inside GL2(F`) the conjugacy class of both the split

and nonsplit Cartan subgroup contains only a single element. For simplicity, we will

assume in the proofs that ` > 2.

1.2.2 Subgroups of GL2(F`)

In this section we will define some classical subgroups of GL2(F`).

A Borel subgroup is any subgroup conjugate to the subgroup of upper triangular

matrices in GL2(F`), and therefore has order `(`− 1)2. A Cartan subgroup comes in

two varieties: split and nonsplit. A split Cartan is a group conjugate to the group of

diagonal matrices, which we denote by Csp, and is isomorphic to (F×` )2. A nonsplit

Cartan is a group conjugate to

Cns :=

{(
a δb

b a

)}
⊆ GL2(F`)

for some δ with
(
δ
`

)
= −1 and is isomorphic to F×`2 .

Any Cartan subgroup has index 2 in its normalizer, and we have the following

explicit constructions of their normalizers. Define the following subgroups of GL2(F`)

by

Nsp :=

{(
a 0

0 b

)
,

(
0 c

d 0

)}

Nns :=

{(
a δb

b a

)
,

(
a −δb
b −a

)}
,

where δ is any fixed quadratic nonresidue mod `. Then the normalizer of a split

Cartan will be conjugate to Nsp and the normalizer of a nonsplit Cartan will be

conjugate to Nns.
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Alternatively, Nsp can be defined by adjoining ( 0 1
1 0 ) to Csp, and Nns is the group

obtained by adjoining ( 0 1
−1 0 ) to Cns. It is worth noting that a Borel subgroup is

maximal, as is the normalizer of any Cartan subgroup.

These constructions will be useful for simplifying computations when we are al-

lowed to fix a basis. More generally, we can define these subgroups by considering the

action of GL2(F`) on P1(F`) and P1(F`2), which we will define on the left as follows:(
a b

c d

)
[x : y] := [ax+ by : cx+ dy].

If we restrict this action to the quotient PGL2(F`), then the action is faithful.

Let g ∈ GL2(F`). Then g belongs to a Borel subgroup if it fixes a line in P1(F`),

it belongs to a split Cartan subgroup (resp. its normalizer) if it fixes (resp. fixes or

swaps) two lines in P1(F`), and it belongs to a nonsplit Cartan (resp. its normalizer)

if it fixes (resp. fixes or swaps) two conjugate lines in P1(F`2) \P1(F`) for any fixed

quadratic extension F`2/F`.

We will restrict our attention to the Cartan subgroups and their normalizers. By

definition, g belongs to a split Cartan subgroup if and only if it is diagonalizable

over F`, and two elements belong to the same split Cartan if and only if they are

diagonalizable with respect to the same basis.

To understand the nonsplit Cartan we need to fix a quadratic extension F`2/F`.

Up to scaling, we may fix a basis of the form {1, α} for this extension. Then g is

in the nonsplit Cartan corresponding to this basis if it fixes the line [1 : α] (it will

necessarily also fix its conjugate since g is defined over F`). If we write g = ( a bc d ),

this occurs if and only if b 6= 0, Tr(α) = (d− a)/b, and Ns(α) = −c/b. Now we may

determine whether two elements belong to the same nonsplit Cartan by determining

whether there exits an α ∈ F`2 \ F` that satisfies the corresponding norm and trace

conditions for each element.

For g to be in the normalizer of the nonsplit Cartan, but not necessarily in the
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Cartan itself, we need g to swap [1 : α] and its conjugate. This occurs if and only if

aTr(α)+ bNs(α)− c = 0 (note that g must have trace 0 for this to occur, so d = −a).

Using these descriptions, the following observations can be easily deduced. We

combine them into one proposition for convenience.

Proposition 1.2.1. Let G ⊆ GL2(F`). Denote by H the image of G in PGL2(F`),

and for any g ∈ GL2(F`), h will denote a representative for its image in PGL2(F`).

Then the following are true:

1. If g is diagonalizable, then g is in a split Cartan.

2. If g has irreducible characteristic polynomial, then g is in a nonsplit Cartan.

3. Let C be any Cartan subgroup and let N denote its normalizer. Then for any

g ∈ N \ C, h has order two.

4. If g is in the normalizer of a Cartan subgroup, then g is diagonalizable over F`

if and only if its characteristic polynomial is reducible.

5. If g has trace 0, then g is in the normalizer of a nonsplit Cartan.

Now we can state the following classification of subgroups of GL2(F`).

Proposition 1.2.2 ([Swi73, Lemma 2]). Let G be a subgroup of GL2(F`). If ` | |G|,

then either G is contained in a Borel or G contains SL2(F`). If ` - |G|, let H be the

image of G in PGL2(F`). Then

1. H is cyclic and G is contained in a Cartan subgroup, or

2. H is dihedral and G is contained in the normalizer of a Cartan subgroup but

not in the Cartan subgroup itself, or

3. H is isomorphic to A4, S4, orA5.
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Remark. The copies of A4 and A5 which appear in PGL2(F`) will actually be con-

tained in PSL2(F`). Therefore, any lift to GL2(F`) of these groups will have deter-

minant contained in
(
F×`
)2

. If ` ≡ ±1 (mod 8), then the copy of S4 will also be in

PSL2(F`). If ` ≡ ±3 (mod 8), however, then PSL2(F`) does not contain a subgroup

isomorphic to S4, and so the determinant map will be nontrivial. In particular, there

is a lift of S4 in GL2(F`) with surjective determinant.

Much of this paper will deal with the final category of subgroups in this list,

which are called the exceptional subgroups. It is important to note that, for ` > 5,

subgroups H which are isomorphic to one of these symmetric or alternating groups

are all conjugate in PGL2(F`) (see [Bea10, Thm. 4.2]).

The classification above is really a consequence of the fact that the action of

PGL2(F`) on P1(F`) is very restricted, as we see in the following proposition.

Proposition 1.2.3 ([Sut12, Prop. 2]). Let g ∈ GL2(F`) have image h ∈ PGL2(F`)

with order r, let k be the number of lines in P1(F`) fixed by h, and let s be the number

of h-orbits under this action. Then k is 0, 1, 2, or ` + 1, and the s − k nontrivial h-

orbits have size r. When ` > 2 we also have σ(h) = (−1)s, where σ(h) is the sign of

h as a permutation of P1(F`).

This proposition will be used extensively throughout, so we lay out the general

argument here: Suppose that h is as above and we know that h swaps a pair of lines.

Then, apart from the elements that h fixes, we know that h only swaps pairs of lines.

Moreover, h must have order 2. The sign of h will still depend on ` and k: For

example, if h fixes 2 lines and swaps the remaining ` − 1, then σ(h) = (−1)s, where

s = `−1
2

+2. Thus σ(h) = 1 if and only if ` ≡ 1 (mod 4). What will generally occur is

a sort of converse of this. When H is one of A4, A5, or S4, σ(h) will (in most cases) be

determined by the order of h, and this will give a congruence condition that ` must

satisfy.
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Suppose that H ' A4 or A5. Since A4 and A5 have only the trivial homomorphism

to {±1}, σ must be trivial. This means that elements of the same order must fix the

same number of lines in P1(F`). On the other hand, S4 has two maps to {±1},

namely the trivial one and the usual sign map on S4. If ` ≡ ±1 (mod 8), then every

element of H ' S4 will have determinant 1, and so σ will be the trivial map (since

σ(h) = 1 if and only if h ∈ PSL2(F`)). When ` ≡ ±3 (mod 8), the determinant map

will be nontrivial, so σ will be the usual sign map on S4, i.e. σ(g) = 1 if g has order

3, σ(g) = −1 if g has order 4, and σ(g) can be either ±1 when the order of g is 2.

Therefore elements of order r when r = 3 or 4 must all fix the same number of lines,

but elements of order 2 are forced to act differently.

1.2.3 Image of inertia

In [Ser72], Serre explicitly worked out the possible images of inertia under the mod `

Galois representation. Using this knowledge, we are able to better understand when

we can rule out the exceptional subgroups. The results of this section are immediate

from the work of Serre, but do not seem to be stated elsewhere in this generality, so

we state them here. The following proposition, as reformulated by Mazur, captures

the results that we need.

Proposition 1.2.4 ([Maz77, §2, Remark 2]). Let K be a finite extension of Q` of

ramification index e. Let E be an elliptic curve over K with semistable Néron model

over the ring of integers OK. Let r : Gal(K/K) → PGL2(F`) denote the projective

representation associated to the action of Galois on the `-division points of E. Then,

if 2e < `− 1, the image of the inertia subgroup under r contains an element of order

≥ (`− 1)/e.

We may now state explicit bounds for when the image of ρE,` is one of the excep-

tional subgroups.



10

Proposition 1.2.5. Let K be a number field of degree d and let E/K be an elliptic

curve. Fix a prime ` > 3, let G be the image of ρE,` in GL2(F`), and let H be its

image in PGL2(F`). Then we have the following:

1. If H ' A4, then ` ≤ 9d+ 1.

2. If H ' S4, then ` ≤ 12d+ 1.

3. If H ' A5, then ` ≤ 15d+ 1.

Proof. Let Kλ be the completion of K at a prime λ above `, and let M be the

smallest extension of Kλ over which Eλ := E ⊗ Kλ, or a quadratic twist of Eλ,

obtains semistable reduction. Since quadratic twisting preserves the projective image

of Galois, we may replace E by a quadratic twist if necessary. Let v be the valuation

corresponding to the unique place above λ in M . For ` > 3, we know that [M : Kλ] ≤

3 (see for example [Ann14], Section 4.2), so e = v(`) ≤ 3d. Then the base extension

of Eλ to M has semistable reduction at `.

Fix H to be either A4, S4, or A5, and define hH := max{|h| : h ∈ H}. Then the

previous proposition tells us that if 2e < `− 1 and H is the image of r, we must have

that

`− 1

e
≤ hH ,

and so we can conclude that ` ≤ 3dhH +1. Plugging in hH = 3, 4, 5 respectively gives

the bounds above.

Note that if 2e ≥ ` − 1, then we get the bound ` ≤ 2e + 1 ≤ 6d + 1 which is

automatically included in the bounds we produced.

Remark. These bounds are necessarily general and can be improved in certain cases.

In particular, equality assumes that e is as large as possible and that (`− 1)/e is the

order of the largest element of H.
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Corollary 1.2.6. If E/Q is an elliptic curve and the image of ρE,` is exceptional,

then ` ≤ 13.

Proof. As remarked earlier, the only exceptional subgroup which can occurs as the

image of ρE,` is the one corresponding to S4. The corollary then follows directly from

the proposition.

1.3 Local-Global principle for subgroups of GL2(F`)

1.3.1 Split and nonsplit Cartan

Let G ⊆ GL2(F`) and suppose that every g ∈ G is diagonalizable. This is equivalent

to saying that every g is contained in some split Cartan group. The local-global

question is whether G itself is contained in a split Cartan, i.e. whether the g are

simultaneously diagonalizable.

The answer to this question follows from [Sut12] and [BC13]. In their case, every

g is contained in a Borel (i.e. fixes one line). Since the split Cartan is contained in

the Borel, we may apply their results to this case.

Corollary 1.3.1. Let K be a number field and let E/K be an elliptic curve. Let

G = im(ρE,`) and let H be its image in PGL2(F`). Suppose that E satisfies the local

condition for the split Cartan. Then either G is contained in a split Cartan or one

of the following is true:

1. G is contained in the normalizer of a split Cartan but not the Cartan itself.

2. H ' A4, with ` ≡ 1 (mod 12).

3. H ' S4, with ` ≡ 1 (mod 24)

4. H ' A5, with ` ≡ 1 (mod 60).
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If K ∩ Q(µ`) = Q, then (2) − (4) cannot occur, and (1) can occur only if ` ≡ 3

(mod 4). If K ∩ Q(µ`) 6= Q and one of (1) - (4) is true, we must have that ` ≡ 1

(mod 4) and K contains Q(
√
`).

Proof. This result follows immediately from [Sut12, Lemma 1 and Theorem 1] and

[BC13, Proposition 1.10]. The exceptional subgroups which arise in [BC13, Proposi-

tion 1.10] are the same as the ones above because the congruence conditions actually

imply that each element is contained in a split Cartan, not just a Borel.

Corollary 1.3.2. If ` 6= 7, then E/Q satisfies the local-global principle for the split

Cartan. If ` = 7, then E satisfies the local-global principle for the split Cartan if and

only if j(E) 6= 2268945/128.

Proof. This is a direct consequence of the previous corollary in conjunction with Sec-

tion 3 and Theorem 2 in [Sut12]. An elliptic curve over Q with j(E) 6= 2268945/128

actually admits two 7-isogenies modulo every prime of good reduction, so it does

indeed satisfy our stronger local condition.

The following theorem explains what happens in the nonsplit Cartan case. We

use the description in Section 1.2.2 to analyze the local condition. First, we need to

restrict our attention to number fields K which have no real embeddings. This is

because if K is totally real, then complex conjugation acts with eigenvalues ±1, and

no element of a nonsplit Cartan has those eigenvalues. So the only way that E/K

can satisfy the local condition for the nonsplit Cartan is if complex conjugation acts

trivially on K.

Theorem 1.3.3. Let K be an imaginary number field and let E/K be an elliptic

curve. Let G = im(ρE,`) and let H be its image in PGL2(F`). Suppose that E

satisfies the local condition for the nonsplit Cartan. Then either G is contained in a

nonsplit Cartan or one of the following is true:
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1. G is contained in the normalizer of a nonsplit Cartan but not the Cartan itself.

2. H ' A4 and ` ≡ −1 (mod 12).

3. H ' S4 and ` ≡ −1 (mod 24).

4. H ' A5 and ` ≡ −1 (mod 60).

If K ∩ Q(µ`) = Q, then (2) − (4) cannot occur, and (1) can occur only if ` ≡ 1

(mod 4). If K ∩ Q(µ`) 6= Q and one of (1) − (4) is true, we must have that K

contains Q(
√
`∗).

Proof. Suppose that every g ∈ G is contained in some nonsplit Cartan. Equivalently,

g is either scalar, or it has irreducible characteristic polynomial. As every g has order

dividing `2− 1, we know that ` - |G|, and so G is either contained in a Cartan, in the

normalizer of a Cartan, or is one of the exceptional subgroups.

Suppose that G is contained in a Cartan subgroup. Then H is cyclic, so G must

be contained in a nonsplit Cartan since the action of the group is determined by the

action of a generator.

Now suppose that G is contained in the normalizer of a Cartan subgroup. Recall

that a matrix g = ( a bc d ) is in the nonsplit Cartan corresponding to the basis {1, α}

if and only if b 6= 0, Tr(α) = (d − a)/b, and Ns(α) = −c/b. If G is contained in

the normalizer of a split Cartan, then by fixing a basis we may assume that each

matrix in G is either diagonal or antidiagonal. The only diagonal matrices which are

contained in a nonsplit Cartan are those which are scalar, so we may assume that G

contains antidiagonal matrices. Suppose that ( 0 a
b 0 ) and ( 0 c

d 0 ) are two elements of G.

Then their product is ( ad 0
0 bc ), which must be scalar, so ad = bc. Under this condition,

it is easy to check that both matrices are in a nonsplit Cartan corresponding to the

same basis: in particular any basis {1, α} with Tr(α) = 0, Ns(α) = −b/a = −d/c.

Now we examine the possibility that G is contained in the normalizer of a nonsplit

Cartan. We will show that if this is the case, and G is not contained in a nonsplit
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Cartan, then such a G will have surjective determinant only if ` ≡ 1 (mod 4), and if

` ≡ 3 (mod 4), then the determinant of each g ∈ G will be a square.

Suppose that G is contained in the normalizer of a nonsplit Cartan but not in

the nonsplit Cartan itself. We will fix a basis so that G ⊂ Nns, as defined in Section

1.2.2. Recall that Cns is cyclic and of index two in its normalizer, so C = Cns ∩ G

is cyclic. Then G/C ↪→ Z/2Z, so G is generated by at most two elements. If G is

cyclic, then we are in the previous case, so we may assume that G has two generators,

and in particular, we can choose one generator to be in Nns \Cns and the other to be

in Cns. Fix
(
δ
`

)
= −1 and let g = ( a δbb a ), b 6= 0, and let h =

(
x −δy
y −x

)
, y 6= 0, so that

G = 〈g, h〉. Since we are assuming that every element of G is in some nonsplit Cartan,

we need h to have irreducible characteristic polynomial. This occurs precisely when

− det(h) is not a square.

One may easily verify that g belongs to a nonsplit Cartan corresponding to any

basis {1, α} with Tr(α) = 0, N(α) = −1/δ, and h belongs to a nonsplit Cartan

corresponding to any basis {1, β} with Tr(β) = 2x/δy, Ns(β) = 1/δ. This shows that

there is no nonsplit Cartan which contains both g and h. Furthermore, in order for

G to have the property that every element is in some nonsplit Cartan, we need gh to

have irreducible characteristic polynomial, since it is an element of Nns \ Cns. Thus

we need − det(gh) = − det(g) det(h) to not be a square, so det(g) is necessarily a

square. In order for G to have surjective determinant, det(h) must not be a square.

This occurs if and only if ` ≡ 1 (mod 4).

All that remains is to analyze the possible exceptional subgroups that could arise.

To do this we will use Proposition 1.2.3 to determine the congruence conditions that

` must satisfy for each exceptional subgroup. First, suppose that H ' A4. The

nontrivial elements of A4 have order 2 and 3. Since are assuming that these elements

do not fix any element of P1(F`), we need `+1
r

to be even for r = 2, 3, so ` ≡ −1

(mod 12).
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Now suppose that H ' A5. The nontrivial elements of A5 have order 2, 3, and 5

and fix no elements of P1(F`). Therefore we need `+1
r

to be even for r = 2, 3, 5, so

` ≡ −1 (mod 60).

Finally, suppose that H ' S4. If ` ≡ ±3 (mod 8), then the sign map on H will

be nontrivial, so it must be exactly the sign homomorphism on S4. This means that

(`+ 1)/4 must be odd, but this forces the elements of order 2 to have the same sign,

so this cannot occur.

If ` ≡ ±1 (mod 8), then H ⊆ PSL2(F`). Therefore the sign of every element of H

will be 1, and we must have that `+1
r

is even for r = 2, 3, 4. This gives the condition

` ≡ −1 (mod 24).

1.3.2 Normalizer of a split Cartan

An element of the normalizer of a split Cartan has the property that it either fixes

two lines in P1(F`) or it swaps them. Recall from Proposition 1.2.1 that an element

of the normalizer of a Cartan that is not in the Cartan itself will have order two in

PGL2(F`). Applying Proposition 1.2.3, this means that such an element acts in one

of the following two ways: If it is diagonalizable, then it fixes a pair of lines and swaps

the remaining pairs, and if it is not diagonalizable, then it only swaps pairs of lines.

This immediately shows that if g is in the normalizer of a nonsplit Cartan but not in

the Cartan itself, then it is automatically in the normalizer of a split Cartan as well,

so there are many elements of the normalizer of a nonsplit Cartan which will satisfy

the local condition.

The bulk of the following theorem is to understand when a group satisfying the

local condition for the normalizer of a split Cartan is actually contained in the nor-

malizer of a nonsplit Cartan instead. To avoid redundancy, we exclude the case where

E actually satisfies the local condition for the split Cartan.
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Theorem 1.3.4. Let K be a number field of degree d and let E/K be an elliptic

curve. Let G ⊆ GL2(F`) denote the image of ρE,` and let H denote the image of G in

PGL2(F`). Suppose that E satisfies the local condition for the normalizer of a split

Cartan, but E does not satisfy the local condition for the split Cartan. Then either

G is contained in the normalizer of a split Cartan or one of the following holds:

1. G is contained in the normalizer of a nonsplit Cartan and ` ≡ 3 (mod 4), with

` ≤ 6d+ 1.

2. H ' A4 and ` ≡ 7 (mod 12).

3. H ' S4 and ` ≡ 13 (mod 24).

4. H ' A5 and ` ≡ 31 (mod 60).

If K ∩Q(µ`) = Q, then only (3) can occur, and if one of (1), (2), or (4) holds, then

K contains Q(
√
`∗).

Proof. Suppose that every g ∈ G is contained in some nonsplit Cartan and at least

one element of G is not contained in any nonsplit Cartan. Then g has order dividing

2(`2 − 1), so ` - |G|. Thus G is either contained in a Cartan, the normalizer of a

Cartan, or is one of the exceptional subgroups.

If G is contained in a Cartan, then G is cyclic. Since its generator is by assumption

contained in the normalizer of a split Cartan, so is G and we are done.

Now suppose that G is contained in the normalizer of a Cartan but not in the

Cartan itself. We will show that if G is contained in the normalizer of a nonsplit

Cartan, then ` ≡ 3 (mod 4) with ` ≤ 6d + 1, and the determinant map has image

contained in
(
F×`
)2

. Without loss of generality, assume that G ⊆ Nns.

As we saw in the proof of Theorem 1.3.3, G is generated by at most two elements.

We have already ruled out the cyclic case, so it remains to show the result when G

has two generators, and as before, we can choose one generator to be in Nns \Cns and
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the other to be in Cns. Recall that every g ∈ Nns \ Cns satisfies the local condition,

and that if the element of Cns is diagonalizable, then it must be scalar, in which case

the image in PGL2(F`) is cyclic and we are done.

Let G = 〈g, h〉, where g ∈ Nns \Cns, and h ∈ Cns is not scalar. Then we can write

g =
(
a −δb
b −a

)
and h = y ( 0 δ

1 0 ) for some y 6= 0. Notice that g is diagonalizable if and

only if − det g is a square modulo `.

Suppose first that g is diagonalizable. Then it is easy to check that for any

L ∈ P1(F`), g fixes L if and only if it fixes hL. Therefore the pair of lines fixed by g

is swapped by h, so g and h, belong to normalizer of the same split Cartan, so G is

contained in the normalizer of a split Cartan.

Now suppose that g is not diagonalizable. If a = 0, then g and h both swap

the two axes, and so G is contained in the normalizer of a split Cartan. However,

when a = 0, det g = δb2, which is not a square. Since we are assuming that g is not

diagonalizable, i.e. that − det g is not a square, we conclude that ` ≡ 1 (mod 4) in

this case.

For a 6= 0 we proceed as follows. We have that g and h swap the same pair of

lines if and only if gL = hL for some L, or h−1gL = L. If we let L = [1: m], then

this will occur if and only if

aδm2 − 2bδm+ a = 0.

This polynomial has discriminant 4δ det g, which is a square if and only if ` ≡ 1

(mod 4), since g is not diagonalizable. We conclude that G is contained in the nor-

malizer of a split Cartan if and only if ` ≡ 1 (mod 4). Now let us examine what

happens when ` ≡ 3 (mod 4).

We know that, up to scaling the first generator, G is conjugate to a group of the

form 〈(
0 δ

1 0

)
,

(
a −δb
b −a

)〉
,
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where neither δ nor a2 − δb2 = − det
(
a −δb
b −a

)
is a square in F`. Thus every element

of this group has determinant a square. Moreover, the image of this subgroup in

PGL2(F`) is isomorphic to Z/2Z × Z/2Z. Using our knowledge of the image of

inertia as in the case of the exceptional subgroups, we conclude that in this case

` ≤ 6d+ 1.

All that remains is to examine what happens when G is one of the exceptional

subgroups. First suppose that H ' A4. Then H has nontrivial elements of order 2

and 3. Since every element of Nsp\Csp has order 2 in PGL2(F`), the elements of order

3 must belong to a split Cartan, and therefore fix a pair of lines. Since the sign map

is necessarily the trivial map, we need `−1
3

to be even. Therefore ` ≡ 1 (mod 6). The

elements of order 2 may entirely belong to either a split Cartan or its complement in

the normalizer, but since we are assuming that G contains at least one element which

is not in any split Cartan, the elements of order 2 are forced to be nondiagonalizable.

Therefore ` ≡ 7 (mod 12).

Similarly, if H ' A5, the elements of orders 3 and 5 must belong to the split

Cartan, whereas the elements of order 2 may belong to either. Excluding the case

where every element is contained in a split Cartan, this produces the condition ` ≡

31 (mod 60), where again, we must assume that the elements of order 2 are not

diagonalizable.

Finally, suppose that H ' S4. Then H has nontrivial elements of order 2, 3, and

4. Again, the elements of orders 3 and 4 are necessarily diagonalizable. If ` ≡ ±3

(mod 8), then the sign map on H is nontrivial and must correspond to the sign

homomorphism on S4. This leads to the condition that ` ≡ 13 (mod 24). Notice

that in this case, the elements of order 2 which are even are exactly the elements of

order 2 that belong to split Cartan, and the elements of order 2 which are odd are

exactly the ones that belong to its complement in the normalizer.

If ` ≡ ±1 (mod 8), then the sign map on H is trivial, and this forces ` ≡ 1
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(mod 24). In this case, however, every element of H is diagonalizable, and so every

element of G is actually contained in a split Cartan.

Corollary 1.3.5. Let E/Q be an elliptic curve. Then E satisfies the local-global

principle for the normalizer of a split Cartan for all ` 6= 13.

In fact, in Section 1.4 we will see that there are at least three counterexamples in

the case of ` = 13.

1.3.3 Normalizer of a nonsplit Cartan

If the image of ρE,` is locally in the normalizer of a nonsplit Cartan, then every element

of the image fixes or swaps a pair of conjugate lines of the form [1 : α] ∈ P1(F`2).

We will begin by classifying the groups G with the property that for all g ∈ G, g

is in the normalizer of a nonsplit Cartan, yet G is contained in the normalizer of a

split Cartan. For simplicity, we will fix our basis so that G ⊆ Nsp, i.e. G consists

only of diagonal and antidiagonal matrices. First we have the following lemma.

Lemma 1.3.6. Let G ⊆ Nsp and suppose that every g ∈ G is in the normalizer of

some nonsplit Cartan. Then there is a nonsplit Cartan subgroup whose normalizer

contains G.

Proof. Up to scalar multiplication, there are only two types of matrices in Nsp that

satisfy the assumption: ( 1 0
0 −1 ), which is in the normalizer of a nonsplit Cartan (but

not in the Cartan itself) corresponding to any basis {1, α} where α has trace 0, and

matrices of the form ( 0 1
a 0 ), which are in the normalizer of a nonsplit Cartan corre-

sponding to any basis {1, α} where Ns(α) = a, and in a nonsplit Cartan corresponding

to any basis {1, α} where Tr(α) = 0 and Ns(α) = −a.

If G contains two matrices ( 0 1
a 0 ) and ( 0 1

b 0 ), then the only way for their product

to be of one of the two allowable forms is if a = ±b, in which case there is a nonsplit

Cartan whose normalizer contains both matrices, as well as the matrix ( 1 0
0 −1 ).
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Theorem 1.3.7. Let K be a number field and let E/K be an elliptic curve. Let

G ⊆ GL2(F`) denote the image of ρE,` and let H denote the image of G in PGL2(F`).

Suppose that E satisfies the local condition for the normalizer of a nonsplit Cartan

but E does not satisfy the local condition for the nonsplit Cartan. Then either G is

contained in the normalizer of a nonsplit Cartan or one of the following holds:

1. H ' A4 and ` ≡ 5 (mod 12).

2. H ' S4 and ` ≡ 11 (mod 24).

3. H ' A5 and ` ≡ 29 (mod 60).

If K ∩ Q(µ`) = Q, then (1) and (3) cannot occur, and if (1) or (3) holds, then K

contains Q(
√
`∗).

Proof. As in the proof of Theorem 1.3.4, we go through the possibilities for H as

enumerated in Proposition 1.2.2. Suppose that E satisfies the local condition for the

normalizer of a nonsplit Cartan, i.e. every g ∈ G is in the normalizer of some nonsplit

Cartan. Then the order of G is prime to ` since the order of Nns is 2(`2−1). Therefore

G is either contained in a Cartan subgroup, the normalizer of a Cartan subgroup, or

is one of the exceptional subgroups. If G is contained in a Cartan subgroup, then H

is cyclic, and so every element of G is in fact in the normalizer of the same nonsplit

Cartan subgroup and the global condition is satisfied. Furthermore, if G is contained

in the normalizer of a split Cartan, then Lemma 1.3.6 shows that G is also contained

in the normalizer of a nonsplit Cartan, thereby satisfying the global condition.

Finally, we examine the exceptional subgroups. Observe that the only diagonal-

izable elements of the normalizer of a nonsplit Cartan are those which arise in the

normalizer, rather than coming from the Cartan subgroup itself. These all have or-

der 2 in PGL2(F`), so the elements of order 3, 4, and 5 which occur in the various

exceptional subgroups must all be nondiagonalizable. The calculation proceeds as in
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the the proof of Theorem 1.3.4, and we throw out the cases where every element is

actually contained in a nonsplit Cartan.

Corollary 1.3.8. Let E/Q be an elliptic curve. Then E satisfies the local-global

principle for the normalizer of a nonsplit Cartan.

Proof. By the previous theorem, the only way in which the local-global principle could

fail to hold is if there exists an elliptic curve over Q whose mod 11 image of Galois

is contained in the exceptional subgroup corresponding to S4. It has been shown in

[Lig77, II.4.4] that there is no such elliptic curve.

1.4 Modular curves and specific counterexamples

Given an integer N and a subgroup H ⊆ GL2(Z/NZ), there exists an algebraic curve

YH(N) and a map j : YH(N) → A1 with the following property: If P ∈ YH(N)(K),

then there exists an elliptic curve E/K with image of Galois contained in a subgroup

conjugate to H and j(E) = j(P ), where j(E) is the j-invariant of E. Conversely, if

E/K is an elliptic curve whose image of Galois is contained in a subgroup conjugate

to H, then there exists a point P ∈ YH(N)(K) with j(E) = j(P ). There is a smooth

compactification XH(N) of YH(N), and we call XH(N) the modular curve of level N

associated to H. The K-rational points of XH(N) coming from the compactification

are called cusps and correspond to generalized elliptic curves in the sense of Deligne

and Rapoport (see [DR73]). We are interested in studying the noncuspidal points in

XH(N)(K), in particular in the case when N = ` is prime.

Theorem 1.3.4 tells us that for ` = 13, if there exists a counterexample over Q

to the local-global principle for the normalizer of a split Cartan, then the image of

the mod 13 Galois representation for that elliptic curve is contained in a subgroup

HS4 ⊆ GL2(F13) with image in PGL2(F13) isomorphic to S4. To find out if such

a curve exists, we consider the rational points of XS4(13), which is the modular
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curve associated to HS4 . It is worth noting that a rational point on XS4(`) does not

necessarily satisfy the local condition for the normalizer of a split Cartan, but our

congruence conditions on ` guarantee that this is the case, so it will hold for ` = 13.

Furthermore, a rational point on XS4(`) could correspond to an elliptic curve whose

image of Galois is strictly contained in HS4 , so care must be taken to make sure that

the image is the entire group.

This calculation was done by Banwait and Cremona in [BC13, Corollary 1.5].

They also found quadratic points on this curve, in which case the image of the Galois

representation may be contained in A4, by Theorem 1.3.4. The conclusions of their

calculations are laid out in the following table.

Confirmed Counterexamples to Local-Global for

the Normalizer of the split Cartan

` K j-invariant H

13 Q
24 · 5 · 134 · 173

313
S4

13 Q −212 · 53 · 11 · 134

313
S4

13 Q
218 · 33 · 134 · 1273 · 1393 · 1573 · 2833 · 929

513 · 6131
S4

13 Q
(√

13
) 24 · 5 · 134 · 173

313
A4

13 Q
(√

13
)
−212 · 53 · 11 · 134

313
A4

13 Q
(√

13
) 218 · 33 · 134 · 1273 · 1393 · 1573 · 2833 · 929

513 · 6131
A4

13 Q(
√

13)
214 · 52

313

(
2 · 5 · 251 · 6373± 132 · 26251

√
13
)

A4

Unfortunately, we cannot confirm that there do not exist other counterexamples

over Q in the case of ` = 13. To do so, we would need to confirm that there are

indeed only three noncuspidal rational points on XS4(13). The genus of this curve
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is 3, so we know that it has only finitely many rational points, but its Jacobian

has rank 3 (assuming the Birch and Swinnerton-Dyer conjecture), so the method of

Chabauty-Coleman to bound its rational points does not necessarily apply.

The following table lists the genera for the modular curves corresponding to the

exceptional subgroups for ` ≤ 37 which arise in Sections 1.3.2 and 1.3.3.

H A4 A4 A4 S4 A4 S4 A4 A4 A5 A5 S4

` 5 7 11 11 13 13 17 19 29 31 37

g(XH(`)) 0 0 1 1 3 3 9 14 11 14 142

Remark. Genus formulas can be found in [CH05, Table 2.1] or [Lig77, II.2.1]. If

` ≡ ±3 mod 8, then PSL2(F`) does not contain a subgroup isomorphic to S4, but

it contains a subgroup isomorphic to A4, and there is a lift of it in GL2(F`) whose

image in PGL2(F`) is isomorphic to S4. In this case we use the A4 genus formula for

S4, as the associated modular curves are twists of each other.

The curve XS4(11) has genus 1, and Ligozat showed that it is an elliptic curve

with trivial Mordell-Weil group over Q. This elliptic curve has Cremona label 121.a2.

A rational point on this curve which is not cuspidal would give us a counterexample

over Q to the local-global principle for the normalizer of a nonsplit Cartan. The one

rational point is however a cusp, as Ligozat shows in [Lig77, II.4.4.1], so there are no

counterexamples over Q for ` = 11. The Mordell-Weil group is also trivial if we base

change to K = Q(
√
−11), so there are no counterexamples over that field either.
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Chapter 2

Torsion on Elliptic Curves

2.1 Introduction and Background

2.1.1 Modular curves

For positive integers M | N we denote by Y1(M,N) the moduli space whose K-points

parameterize elliptic curves E/K together with a subgroup isomorphic to Z/MZ ⊕

Z/NZ of E(K)tors. This moduli space has the structure of an algebraic curve over

Q(ζM), and we let X1(M,N) denote its smooth compactification. The cusps, i.e.

the points of X1(M,N) \ Y1(M,N), can be thought of as parameterizing generalized

elliptic curves, in the sense of Deligne-Rapoport [DR73].

We may more classically view this modular curve as the quotient of the extended

upper half plane H ∗ = {z ∈ C | Im(z) > 0}∪Q∪{i∞} by the congruence subgroup

Γ1(M,N) :=

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣
(
a b

c d

)
≡

(
1 ∗
0 1

)
mod N,M | b

}
,

in which case the cusps are exactly the equivalence classes of Q ∪ {i∞} under the

action of Γ1(M,N).

By setting M = 1 we get the well-studied curves X1(N) := X1(1, N) whose non-

cuspidal K-points parameterize elliptic curves over K which have a torsion point of
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exact order N defined over K.

It was shown in Mazur’s seminal paper that X1(M,N)(Q) has no non-cuspidal

rational points for (M,N) outside of the set

{(1, N) | 1 ≤ N ≤ 10 or N = 12} ∪ {(2, 2N) | 1 ≤ N ≤ 4}.

In other words, the only groups which can appear as torsion subgroups of an elliptic

curve over Q are the fifteen groups

Z/NZ, where 1 ≤ N ≤ 10, or N = 12, and

Z/2Z⊕ Z/2NZ, where 1 ≤ N ≤ 4.

Moreover, there exist infinitely many elliptic curves over Q which exhibit any one

of these torsion structures.

A decade later, a full classification for all quadratic number fields was presented

by Kenku and Momose, and many partial results had been obtained for other gener-

alizations. Finally, in 1996, it was proven by Merel that for a fixed positive integer

d, as we range over number fields K/Q of degree d, there are only finitely many

possibilities for E(K)tors, up to isomorphism.

While some explicit computations exist for an upper bound on #E(K)tors due to

Merel and others, these bounds are quite far off from what is expected.

2.1.2 Torsion points on modular curves

Let X/Q be a curve and suppose there exists a rational point P ∈ X(Q). Then we

denote by ιP the embedding

ιP : X(Q)→ JX(Q)

Q 7→ (Q)− (P )

of X into its Jacobian. For ease of notation, we will suppress the subscript and let

J = JX when the underlying curve is clear.
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By the Mordell-Weil theorem for abelian varieties, we know that J(Q) is a finitely-

generated abelian group, so J(Q) ' Zr⊕J(Q)tors. We say that Q ∈ X(Q) is a torsion

point on X if ιP (Q) ∈ J(Q)tors.

Torsion points on modular curves are particularly interesting and play a central

role in the theory. For one thing, we can obtain torsion points easily when the modular

curve has Q-rational cusps (a priori the cusps are only defined over Q(ζN), where N

is the level).

2.1.3 Cubic torsion

Theorem 2.1.1 ([JKS04, Theorem 3.4]). Let E be an elliptic curve over a cubic

field. Then the groups which occur infinitely often, up to isomorphism, as E(K)tors

are exactly the following.

Z/NZ 1 ≤ N ≤ 16, or N = 18, 20

Z/2Z⊕ Z/2NZ 1 ≤ N ≤ 7.

2.1.4 Sporadic torsion

Theorem 2.1.2 ([Naj14]). There is an elliptic curve E/Q such that E(K)tors '

Z/21Z, where K = Q(ζ9)
+, the maximal real subfield of Q(ζ9).

2.1.5 The Mordell-Weil sieve

We begin by explaining the basic setup of the Mordell-Weil sieve in the special case

where the Jacobian has rank 0. Let X/Q be a curve, let J be its Jacobian, and let

p > 2 be a prime of good reduction for X. Since the rank is 0, J(Q) = J(Q)tors, and

for p > 2 the reduction modulo p map red: J(Q) → J(Fp) is an injection [Kat81,

Appendix]. Let

J(Q) = 〈D1〉 × · · · × 〈Dn〉 ' Z/M1Z× · · · × Z/MnZ
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and define ϕ to be the isomorphism

ϕ :
⊕
i

Z/MiZ→ J(Q)

(a1, . . . , an) 7→ a1D1 + · · ·+ anDn.

Then ϕp = red ◦ϕ gives an injection from
⊕

Z/MiZ into J(Fp). Now we are ready

to describe the Mordell-Weil sieve.

Fix a degree d divisor D on X and let ιD be the map X(Q) → J(Q) defined by

P 7→ dP −D. Then we get a commutative diagram

X(Q) J(Q) Z/M1Z× · · · × Z/MnZ

X(Fp) J(Fp)

ιD

red red

∼
ϕ

ϕp

ιD

We want to show that X(Q) = ∅. If there were a point P ∈ X(Q), then by

following it around the diagram, we see that its image under ϕ−1 ◦ ιD would inject

into J(Fp). In other words, if P exists and dP −D = a1D1+ · · ·+anDn in J(Q), then

its reduction P would map to dP −D = a1D1 + · · ·+ anDn. Since we can explicitly

compute X(Fp), we can find all such (a1, . . . , an).

To be precise, we can compute the set

Wp := imϕp ∩ im ιD,

and if this set is empty, then there are no rational points. If this set is not empty,

then we can proceed to pick another prime q of good reduction, and consider the

intersection Wp ∩ Wq. We proceed in this manner choosing as many primes as

necessary to show that
⋂
Wpi = ∅.

We will generalize this algorithm in several directions.

1. X(Q) will not be empty.



28

2. We want to find cubic points, not rational points.

3. We do not necessarily know all of J(Q).

4. We sometimes need to sieve using other maps.

2.2 Classification of cubic torsion

Theorem 2.2.1. Let E be an elliptic curve over a cubic field K. Then E(K)tors is

one of the following groups.

Z/NZ 1 ≤ N ≤ 21, or N 6= 17, 19

Z/2Z⊕ Z/2NZ 1 ≤ N ≤ 7.

The strategies used for the curves we needed to tackle are listed below. The

remaining curves have been handled by Jian Wang and Maarten Derickx and is in

preparation.

Curve Sieve curves Primes used

X1(26) X0(26), J0(26) ' Z/21Z {3, 7}
X1(28) X1(14), J1(14) ' Z/6Z {3}
X1(30) X0(30), J0(30) ' Z/2Z× Z/24Z {7, 11}
X1(33) X0(33), J0(33) ' Z/10Z× Z/10Z {7, 13}
X1(35) X0(35), J0(35) ' Z/2Z× Z/24Z {3, 11}
X1(36) X1(18), J1(18) ' Z/21Z, and X0(36), J0(36) ' Z/6Z {5, 7, 13}
X1(39) X0(39), J0(39) ' Z/2Z× Z/28Z {7}
X1(45) X0(45), J0(45) ' Z/2Z× Z/2Z {7}
X1(2, 16) X1(16), J1(16) ' Z/2Z× Z/10Z {5}
X1(2, 18) X1(2, 18), J1(2, 18) ' Z/2Z× Z/42Z× Z/126Z {17}
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Chapter 3

Class Numbers of Function Fields

3.1 Introduction

Let X be a smooth curve over a finite field Fq. We define the class number of X to

be h = # JacX(Fq), where JacX is the Jacobian of X. Much of the literature will

define the terminology in terms of places of the function field of X, however we will

use a more geometric formulation. Through an abuse of notation, we will refer to X

and its projective closure interchangeably, as they have the same function field.

3.2 Background

3.2.1 The Weil conjectures and divisors on curves

For convenience, we recall some basic results about divisors on curves. For definitions

and other results, see for example [Sti09] or [Sil09, II.3].

Let X be a smooth curve over a finite field Fq and define

An = #{D ∈ DivX | degD = n}.

We define the Zeta-function, ZX(t), of X to be the generating function for the An, so
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we have

ZX(t) :=
∞∑
n=0

Ant
n.

It is an easy to see that ZX(t) has an Euler product expansion of the form

Z(t) =
∏
P∈X

(
1− tdegP

)−1
,

and through some manipulation it can be shown that

Z(t) = exp

(
∞∑
n=1

X(Fqn)
tn

n

)
.

Lemma 3.2.1 ([Sti09, Lemma 5.1.4]). Let g be the genus of X and let h be its class

number. Let ∂ := min{degA | A ∈ DivX and degA > 0}.

1. An = 0 if ∂ - n.

2. For a fixed divisor class [C] ∈ JacX, let |C| be its linear system. Then

#|C| = |{A ∈ [C] | A ≥ 0}| = qdim |C| − 1

q − 1
.

3. For each integer n > 2g − 2 with ∂ | n we have

An =
h

q − 1
(qn+1−g − 1).

The result of the Weil conjectures for curves is summarized in the following the-

orem.

Theorem 3.2.2. Let X be a smooth curve over Fq of genus g. Then there exists a

polynomial L(t) ∈ Z[t] such that

ZX(t) =
L(t)

(1− t)(1− qt)
,

and L(t) is of the form

L(t) = 1 + a1t+ a2t
2 + · · ·+ agt

g + qag−1t
g+1 + · · ·+ qgt2g.
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Moreover, if we write L(t) =
∏2g

i=1(1 − αiT ), then |αi| =
√
q, and we can rearrange

the roots so that αi and α2g−i are conjugates.

We call L(t) the L-polynomial of X.

3.2.2 Previous Work

Let Ni := #{closed points P on X | degP = i}.

L(t) = 1 + a1t+ a2t
2 + · · ·+ qgt2g =

2g∏
i=1

(1− αit)

Let Sj =
∑2g

i=1 α
j
i . Then

−Sj =
∑
d|j

d(Nd − nd),

where nd is the number of closed points of degree d on P1
Fq

. Then we have the

following recursive formula for the coefficients an for 1 < n ≤ g in terms of the Sj:

an :=
−1

n

n∑
j=1

an−j+1Sj.

Using this in conjunction with Dedekind’s formulae

nd =


q + 1 if d = 1,

1

d

∑
f |d

qfµ

(
d

f

)
if d > 1,

where µ is the Möbius function, we can obtain L(t) in terms of only the Ni.

The advantage to rewriting the L polynomial in this way is that, by classifying the

possible {(N1, . . . , Ng)} for a fixed h, we can put restrictions on the divisor classes.

For h = 3, we will only need formulae for L(t) when g is 3, 4, or 6 and q = 2. These

can be found in the appendix, and the code which produced them can be found on

my website.
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Lemma 3.2.3 ([Pic12, Lem 2.1]). Let F/Fq be a function field of genus g and class

number h. If h = 3 then q and g are as follows.

q 2 2 2 2 2 2 3 3 3 4 4 5 7

g 1 2 3 4 5 6 1 2 3 1 2 1 1

The classification above comes from two standard facts which allow us to obtain

upper bounds on g and q in terms of h, which we recall now.

If we write

L(t) =

g∏
j=1

(1− q1/2eiθj)(1− q1/2e−iθj t) =

g∏
j=1

(1− 2q1/2 cos θjt+ qt2),

we see that h = L(1) =
∏g

j=1(1 − 2q1/2 cos θj + q). Since | cos θj| ≤ 1, we obtain the

inequalities

(1− q1/2)2g ≤ h ≤ (1 + q1/2)2g.

Since, for fixed q, the left hand side decreases as g increases, it obtains its largest

value when g = 1, so we obtain the bound (1 − q1/2)2 ≤ h. Therefore, explicitly, we

have the bound

q ≤ (
√
h+ 1)2

When h = 3, this means that q ≤ 7. We will see, however, that this bound is not

sharp.

To complete the classification above, we consider the degree 2g − 1 points on X.

The Hasse-Weil bound gives us |X(Fq2g−1)− (q2g−1 + 1)| ≤ 2gq(2g−1)/2, so

X(Fq2g−1) ≥ q2g−1 + 1− 2gq(2g−1)/2.

Recall that An is the number of effective degree n divisors on X. Accounting for the

fact that points over Fq2g−1 of smaller degree can combine to give effective divisors of

degree 2g − 1 on X, we see that

A2g−1 ≥
q2g−1 + 1− 2gq

2g−1
2

2g − 1
.
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On the other hand, by 3.2.1, the number of effective divisors of degree 2g−1 is either

0 or h q
g−1
q−1 . So we arise at the inequality

h
qg − 1

q − 1
≥ q2g−1 + 1− 2gq

2g−1
2

2g − 1
. (3.1)

Since we already know that q is bounded in terms of h, this allows us to check

which g can arise for a particular q. Moreover, there is an upper bound on g in terms

of h without taking into consideration q. In [LM], the authors show that

h ≥ qg−1(g − 1)2/(q + 1)(g + 1)

This gives us a finite set of pairs we have to check 3.1 against.

Theorem 3.2.4 ([Pic12]). Let Fq be a finite field with q > 2 elements. Up to Fq-

isomorphism, there are 8 function fields over Fq of genus g ≥ 1 with class number

h = 3. Up to F2-isomorphism, there are 3 function fields over F2 of genus 1 ≤ g ≤ 2

and 3 quadratic function fields over F2 of genus 3 or 4 which have class number h = 3.

There are no function fields over F2 of genus 6 with class number h = 3.

Remark. All of the function fields over Fq with q > 2 with class number 3 are

quadratic.

3.3 The class number 3 problem

The first step is to classify the set of (N1, . . . , Ng) such that the associated L-

polynomial with those coefficients has L(1) = 3.

We will restrict ourselves to the case where X is a non-hyperelliptic genus g > 0

curve. This means we can assume that Ai < 4 for i = 1, 2, where Ai is the number of

effective degree i divisors, since otherwise we would have an equivalence of effective

divisors D ∼ D′ where D and D′ are of degree 1 or 2.
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In order to implement this in Magma, we need upper bounds for the Ni. These

upper bounds come from the Hasse-Weil bound

#X(Fqn) = qn + 1 + En,

where |En| ≤ 2gqn/2, in combination with the equality

#X(Fqn) =
∑
d|n

dNd.

Now we are ready to prove the following theorem.

Theorem 3.3.1. Let C be a smooth, non-hyperelliptic curve over F2 with class num-

ber 3. Then g(C) is either 3 or 4 and (N1, . . . , Ng) is one of the following.

g = 3 (0, 3, 3), (1, 0, 4), (1, 1, 3), (1, 2, 2), (2, 0, 3), (2, 1, 1)

g = 4

(0, 0, 6, 3), (0, 1, 3, 4), (0, 1, 4, 4), (0, 1, 5, 4), (0, 1, 6, 4), (0, 2, 1, 4), (0, 2, 2, 4),

(0, 2, 3, 4), (0, 2, 4, 4), (0, 3, 0, 3), (0, 3, 1, 3), (0, 3, 2, 3), (0, 3, 3, 3), (1, 0, 0, 4),

(1, 0, 1, 3), (1, 0, 2, 2), (1, 0, 3, 1), (1, 0, 4, 0), (1, 1, 0, 4)

Proof. Following the argument above, we use Magma to check which (N1, . . . , Ng) up

to the bound coming from the Weil conjectures satisfy L(1) = 3. This gives a much

larger range of values, but not each (N1, . . . , Ng) gives rise to an actual Zeta function.

To narrow it down, we check which of the associated L-polynomials have roots with

absolute value 1/
√

2. Throwing out those which are hyperelliptic, we are left with

the ones listed above. It turns out that when g = 6, there are no possibilities. It was

shown in [Pic12, Thm 4.6] that there are none when g = 5 either.

Remark. There is another trick used by several authors for h = 1 and h = 2 which

rules out certain values, but it did not eliminate any values in either of the cases

considered above. Nevertheless, it has been implemented in Magma in case it proves

to be useful for higher class numbers.
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From here we do a case by case analysis to see which of these give rise to an actual

curve. We follow the strategy laid out in [Bri96].

3.3.1 The genus 3 case

We break into the following two cases:

1. X has a degree one point P such that `(3P ) = 2 and `(4P ) = 3.

2. X has two degree four points which are canonical divisors.

In the first case, let {1, x} be a basis for L(3P ) and let {1, x, y} be a basis for

L(4P ). Then, by the Riemann-Roch theorem, we know that `(12P ) = deg(12P ) +

1 − g = 10, but we can write down the 11 functions {xayb | 0 ≤ 3a + 4b ≤ 12} in

L(12P ). This allows us to write down an affine equation for X of the form

ay3 + ϕ1(x)y2 + ϕ2(x)y + ϕ4(x) = 0, (3.2)

where a ∈ F2 and ϕi(x) is a degree ≤ i polynomial in F2[x].

For the second case, let A denote one of the degree four points. Since it is canon-

ical, `(A) = g = 3, and we let {1, x, y} denote a basis for L(A). By the Riemann-

Roch theorem, `(4A) = 16 + 1 − g = 14, but we can write down the 15 functions

{xayb | 0 ≤ a+ b ≤ 4}. Therefore we can write down an affine equation for X of the

form

ay4 + ϕ1(x)y3 + ϕ2(x)y2 + ϕ3(x)y + ϕ4(x) = 0, (3.3)

where a ∈ F2 and ϕi(x) is a degree ≤ i polynomial in F2[x].

From there we do a case-by-case analysis to determine the irreducibility properties

of the ϕi(x) and run the possibilities through Magma to return a list of curves up to

isomorphism.

Below we summarize the choices we make for x and y in each case. Let K denote

any canonical divisor on X.
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(0, 3, 3)

K ∼ A1 ∼ A2 ∼ D, where D is either 2P or P +Q,

and where degAi = 4, and degP = degQ = 2.

L(A1) = {1, x, y}, div x = A2 − A1, div y = D − A1

(1, 0, 4)

K ∼ 4P ∼ P +Q ∼ A,

where degP = 1, degQ = 3, and degA = 4.

L(3P ) = {1, x}, L(4P ) = {1, x, y}, div x = Q− 3P , div y = A− 4P

(1, 1, 3)

K ∼ 2P +Q ∼ A1 ∼ A2,

where degP = 1, degQ = 2, and degAi = 4.

L(A1) = {1, x, y}, div x = A2 − A1, div y = A2 − (2P +Q)

(1, 2, 2)

K ∼ P + S ∼ A1 ∼ A2 ∼ D, where D is either 4P or 2P +Q,

and where degP = 1, degQ = 2, degAi = 4, and degS = 3.

If K ∼ 4P : L(3P ) = {1, x}, L(4P ) = {1, x, y}, div x = S − 3P , div y = A1 − 4P

If K ∼ 2P +Q: L(A1) = {1, x, y}, div x = A2 − A1, div y = 2P +Q− A1

(2, 0, 3)

K ∼ 4P ∼ P + 3Q ∼ A,

where degP = degQ = 1.

L(3P ) = {1, x}, L(4P ) = {1, x, y}, div x = 3Q− 3P , div y = A− 4P

(2, 1, 1)

K ∼ 4P ∼ P + 3Q ∼ A,

where degP = degQ = 1.

L(3P ) = {1, x}, L(4P ) = {1, x, y}, div x = 3Q− 3P , div y = A− 4P

Theorem 3.3.2. Let X be a smooth, irreducible, non-hyperelliptic genus 3 curve

over F2 with class number 3. Then, up to isomorphism, X is defined by one of the

following affine equations.
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y3 + x2y + x4 + x3 + x = 0 (2, 0, 3)

y3 + y + x4 + x+ 1 = 0 (1, 0, 4)

y4 + xy3 + y + x4 + x3 + x+ 1 = 0 (1, 1, 3)

y4 + x2y2 + y + x4 + x3 + 1 = 0 (1, 2, 2)

3.3.2 The genus 4 case

One advantage we have in the genus 3 case is that every smooth genus 3 curve can

be written as a smooth quartic in P2. For genus 4 curves, it is no longer true that

only one equation is required. We can, however, make use of the arguments in the

previous section for some of the cases.

Let X be a genus 4 curve over Fq. Then the canonical embedding of X ⊆ P3 is

the complete intersection of a cubic surface and a quadric surface D. We can actually

describe the quadric surface more precisely. Recall that a g13 is a linear system of

degree 3 and dimension 1. Then X falls into one of the following cases (see [Bri96,

Lemma 5.1]):

1. X has no g13: D : xy + z2 + zt+ t2 = 0 is an elliptic quadric.

2. X has exactly one g13: D : x2 + xy = 0 is a singular cone.

3. X has two g13’s: D : xy + zt = 0 is a hyperbolic quadric.

If we are in the second case, then we can proceed as we did for the genus 3 case,

but in the first and third case, we will need to rely heavily on Magma.

Theorem 3.3.3. Let X be a smooth, irreducible, non-hyperelliptic genus 4 curve over

F2 with class number 3. Then, up to isomorphism, X falls into one of the cases below.

X ⊆ P3
F2

is given by the intersection of the quadric surface xy + z2 + zt+ t2 = 0

and one of the following cubic surfaces:
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x3 + x2y + y3 + x2z + xz2 = 0 (0, 3, 1, 3)

x3 + x2y + y3 + x2z + xz2 + x2t+ xyt = 0 (0, 2, 2, 4)

x3 + x2y + y3 + y2z + xz2 = 0 (0, 3, 1, 3)

x3 + xy2 + y3 + y2z + xz2 + x2t+ xyt = 0 (0, 2, 3, 4)

x3 + x2y + xy2 + y3 + y2z + x2t+ xzt = 0 (0, 2, 1, 4)

x3 + y3 + x2z + xyz + yz2 + y2t+ xzt = 0 (0, 1, 3, 4)

x3 + x2y + y3 + x2z + xyz + yz2 + xyt+ y2t+ xzt = 0 (1, 1, 0, 4)

X ⊆ P2
F2

is the projective closure of one of the following:

y3 + x2y2 + y + x6 + x5 + x4 + x2 + 1 = 0 (1, 0, 2, 2)

y3 + y + x2y2 + x6 + x3 + x2y + 1 = 0 (0, 1, 5, 4)

X ⊆ P3
F2

is the intersection of the quadric surface xy + zt = 0 and one of the

following cubic surfaces:

x3 + xy2 + y3 + y2z + xz2 + z3 + x2t+ y2t+ t3 = 0 (0, 1, 6, 4)

x3 + x2y + xy2 + y3 + y2z + xz2 + z3 + x2t+ xyt+ y2t+ t3 = 0 (0, 0, 6, 3)

Proof. For the first and third case, we use Magma to run through all possible cubic

surfaces over F2 and check whether the intersection has the appropriate genus and

class number. For the second case, we consult the list in Theorem 3.3.1 and see that

the only tuples (N1, . . . , N4) that correspond to a curve which could have exactly one

g13 are

(0, 1, 4, 4), (0, 1, 5, 4), (0, 2, 4, 4), (1, 0, 2, 2), (1, 0, 3, 1), and (1, 0, 4, 0).

In these cases, there exists a degree 3 point T such that `(T ) = 2 and 2T is canonical.

Let {1, x} be a basis for L(T ). Since 2T is canonical, `(2T ) = 4, and we can choose

{1, x, x2, y} to be a basis for L(2T ). Then `(6T ) = 15 by the Riemann-Roch theorem

and contains the 16 functions

{xayb | a+ 2b ≤ 6} = {1, x, x2, . . . , x6, y, xy, . . . , x4y, y2, xy2, x2y2, y3}.

Therefore we obtain the relation

y3 + ϕ2(x)y2 + ϕ4(x)y + ϕ6(x) = 0,
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where ϕi(x) ∈ F2[x] has degree i.

From here the proof follows as in the genus 3 case.
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Appendix A

L-polynomial Equations

g = 3

L(t) =
1

6
(N3

1 t
3 + 6N2

1 t
4 − 6N2

1 t
3 + 3N2

1 t
2 + 6N1N2t

3 + 24N1t
5 − 30N1t

4 + 5N1t
3 − 15N1t

2

+ 6N1t+ 12N2t
4 − 18N2t

3 + 6N2t
2 + 6N3t

3 + 48t6 − 72t5 + 24t4 + 12t2 − 18t+ 6)

g = 4

L(t) =
1

24
(N4

1 t
4 + 8N3

1 t
5 − 6N3

1 t
4 + 4N3

1 t
3 + 12N2

1N2t
4 + 48N2

1 t
6 − 48N2

1 t
5 −N2

1 t
4 − 24N2

1 t
3

+ 12N2
1 t

2 + 48N1N2t
5 − 60N1N2t

4 + 24N1N2t
3 + 24N1N3t

4 + 192N1t
7 − 240N1t

6 + 40N1t
5

+ 6N1t
4 + 20N1t

3 − 60N1t
2 + 24N1t+ 12N2

2 t
4 + 96N2t

6 − 144N2t
5 + 60N2t

4 − 72N2t
3

+ 24N2t
2 + 48N3t

5 − 72N3t
4 + 24N3t

3 + 24N4t
4 + 384t8 − 576t7 + 192t6 + 48t2 − 72t+ 24)

g = 6
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L(t) =
1

720
(N6

1 t
6 + 12N5

1 t
7 − 3N5

1 t
6 + 6N5

1 t
5 + 30N4

1N2t
6 + 120N4

1 t
8 − 60N4

1 t
7 − 35N4

1 t
6

− 30N4
1 t

5 + 30N4
1 t

4 + 240N3
1N2t

7 − 180N3
1N2t

6 + 120N3
1N2t

5 + 120N3
1N3t

6 + 960N3
1 t

9

− 720N3
1 t

8 − 180N3
1 t

7 − 45N3
1 t

6 − 90N3
1 t

5 − 180N3
1 t

4 + 120N3
1 t

3 + 180N2
1N

2
2 t

6 + 1440N2
1N2t

8

− 1440N2
1N2t

7 + 150N2
1N2t

6 − 720N2
1N2t

5 + 360N2
1N2t

4 + 720N2
1N3t

7 − 720N2
1N3t

6

+ 360N2
1N3t

5 + 360N2
1N4t

6 + 5760N2
1 t

10− 5760N2
1 t

9 − 120N2
1 t

8 + 60N2
1 t

7 + 34N2
1 t

6

+ 30N2
1 t

5 − 30N2
1 t

4 − 720N2
1 t

3 + 360N2
1 t

2 + 720N1N
2
2 t

7 − 900N1N
2
2 t

6 + 360N1N
2
2 t

5

+ 720N1N2N3t
6 + 5760N1N2t

9 − 7200N1N2t
8 + 1920N1N2t

7 − 720N1N2t
6 + 960N1N2t

5

− 1800N1N2t
4 + 720N1N2t

3 + 2880N1N3t
8 − 3600N1N3t

7 + 600N1N3t
6 − 1800N1N3t

5

+ 720N1N3t
4 + 1440N1N4t

7 − 1800N1N4t
6 + 720N1N4t

5 + 720N1N5t
6 + 23040N1t

11

− 28800N1t
10 + 4800N1t

9 + 720N1t
8 + 168N1t

7 + 48N1t
6 + 84N1t

5 + 180N1t
4 + 600N1t

3

− 1800N1t
2 + 720N1t+ 120N3

2 t
6 + 1440N2

2 t
8 − 2160N2

2 t
7 + 1080N2

2 t
6 − 1080N2

2 t
5

+ 360N2
2 t

4 + 1440N2N3t
7 − 2160N2N3t

6 + 720N2N3t
5 + 720N2N4t

6 + 11520N2t
10

− 17280N2t
9 + 7200N2t

8 − 2160N2t
7 + 960N2t

6 − 1080N2t
5 + 1800N2t

4 − 2160N2t
3

+ 720N2t
2 + 360N2

3 t
6 + 5760N3t

9 − 8640N3t
8 + 2880N3t

7 + 360N3t
6 + 1440N3t

5 − 2160N3t
4

+ 720N3t
3 + 2880N4t

8 − 4320N4t
7 + 1440N4t

6 − 2160N4t
5 + 720N4t

4 + 1440N5t
7 − 2160N5t

6

+ 720N5t
5 + 720N6t

6 + 46080t12− 69120t11 + 23040t10 + 1440t2 − 2160t+ 720)
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