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Abstract

Quantitative analysis of adaptive evolution

By Mahan Ghafari

In this work, we first perform a quantitative analysis on the original data from the
Luria-Delbrück fluctuation experiment. We compare the performance of the Dar-
winian model of evolution to the Lamarckian model and a combined model that
allows both Darwinian and Lamarckian mechanisms. We also consider the possi-
bility of neither model fitting the experiment. Using a Bayesian model selection
approach, we show that although the experiment does, indeed, favor the Darwinian
over pure Lamarckian evolution, it does not rule out the combined model and, hence,
cannot completely rule out Lamarckian contributions to evolution. Next, we mainly
focus on complex adaptations involving three neutral mutations. We show that large
populations can cross them rapidly via lineages that acquire multiple mutations while
remaining at low frequency. Plateau-crossing is fastest for very large populations.
At intermediate population sizes, recombination can greatly accelerate adaptation by
combining independent mutant lineages to form triple-mutants. For more frequent
recombination, such that the population is kept near linkage equilibrium, we extend
our analysis to find simple expressions for the expected time to cross plateaus of
arbitrary width.
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1 Introduction

Evolution is inherently a random process and, therefore, any quantitative prediction

is inevitably a statistical statement. One of the key roles that physicists can play

is in framing and developing such quantitative models [Fisher et al., 2013]. In this

work, we discuss two fundamental, classic problems in evolution, namely the origins

of variation and complexity, and re-examine them quantitatively. Having a stronger

computational power and new statistical methods at our disposal, we go back and

reconsider some of the neglected or dismissed processes of Lamarckian evolution and

irreducible complexity. In the first chapter of this thesis, we perform the quantitative

analysis missing in the Luria-Delbrück paper and put three models of adaptation to

test by finding out how well they fit the data. Traditionally, it has been assumed

that adaptations requiring a fitness valley or plateau crossing are extremely unlikely

because it would be much slower for populations to cross them rather than accumu-

late beneficial mutations. Therefore, quantitative analyses on complex adaptations

has largely been dismissed. In the second chapter, we analyze how sexual popula-

tions can acquire complex adaptations requiring three individually neutral mutations.

This thesis is based on the work done in collaboration with Daniel Weissman, Ilya

Nemenman, Caroline Holmes, Varun Saravanan, and Anzar Abbas. Chapter 2 was

published in Holmes et al. [2017], and Chapter 3 was originally disseminated in Gha-

fari and Weissman [2018].
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2 Luria-Delbrück, revisited: The classic experiment does

not rule out Lamarckian evolution

2.1 Introduction

From the dawn of evolutionary biology, two general mechanisms, Darwinian and

Lamarckian, have been routinely considered as alternative models of evolutionary

processes. The Darwinian hypothesis posits that adaptive traits arise continuously

over time through spontaneous mutation, and that evolution proceeds through natu-

ral selection on this already existing variation. In contrast, the Lamarckian hypothesis

proposes that adaptive mutations arise in response to environmental pressures. The

Nobel Prize winning fluctuation test by Luria and Delbrück [1943] is credited with

settling this debate, at least in the context of evolution of phage-resistant bacterial

cells.

Luria and Delbrück realized that the two hypotheses would lead to different vari-

ances (even with the same means) of the number of bacteria with any single adaptive

mutation. Specific to the case of bacteria exposed to a bacteriophage, this would

result in different distributions of the number of surviving bacteria, cf. Fig. 2.1. In

the Darwinian scenario, there is a possibility of a phage-resistance mutation arising

in generations prior to that subjected to the phage. If this mutation happens many

generations earlier, there will be a large number of resistant progeny who will sur-

vive (a “jackpot” event). However, there will be no survivors if the mutation does

not exist in the population at the moment the phage is introduced. If the same ex-
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periment were repeated many times, the variance of the number of survivors would

be large. In contrast, in the Lamarckian scenario, the distribution of the number

of survivors is Poisson. Indeed, each occurring mutation (and hence each survivor)

happens with a small probability, independent of the others. This would result in

the usual square-root scaling of the standard deviation of the number of survivors, a

much smaller spread than in the Darwinian case.

To test this experimentally, Luria and Delbrück let the cells grow for a few gen-

erations, exposed them to a phage, plated the culture, and then counted the number

of emergent colonies, each started by a single resistant, surviving bacterium. They

found that the distribution of the number of survivors, as measured by the number of

colonies grown after plating, was too heavy-tailed to be consistent with the Poisson

distribution. They concluded then that the bacteria must evolve using the Darwinian

mechanism. They could not derive an analytical form of the distribution of survivors

in the Darwinian model, so that their data analysis was semi-quantitative at best. In

particular, they could only establish that the Darwinian model fits the data better

than the Lamarckian/Poissonian one, but they could not quantify how good the fit

is.

Potentially even more importantly, the original paper contrasted only two scenar-

ios: pure Lamarckian and pure Darwinian ones. However, it is possible that both

processes have a role in bacterial evolution, as is abundantly clear now in the epoch

of epigenetics and, especially, CRISPR-Cas bacterial immunity, which is essentially

Lamarckian [Koonin and Wolf, 2009, Jablonka and Lamb, 2002, Jablonka and Raz,

2009, Barrangou et al., 2007, Koonin and Wolf, 2016]. In addition, stress can increase
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the (undirected) mutation rates, so that more mutations arise at the time of the

challenge and then get selected, which will also appear Lamarckian: Luria-Delbrück

experiments cannot distinguish between induced directed and undirected mutations.

Thus ruling out a significant Lamarckian contribution to evolution through either of

these or any other mechanism would require us to show not only that the Darwinian

model explains the data better than the Lamarckian one, but also that the Darwin-

inan model is more likely than the Combination model, which allows for both types

of evolutionary processes. Evolution could also proceed through an entirely different

mechanism, so that neither of the proposed models explain the data. Distinguishing

between these possibilities requires evaluating whether a specific model fits the data

well, rather than which of the models fits the data better.

Unlike Luria and Delbrück in 1943, we have powerful computers and new statisti-

cal methods at our disposal. Distributions that cannot be derived analytically can be

estimated numerically, and model comparisons can be done for models with different

numbers of parameters. In this paper, we perform the quantitative analysis missing

in the Luria-Delbrück paper and use their original data to evaluate and compare

the performance of three models: Darwinian (D), Lamarckian (L), and Combination

(C) models. The comparison is somewhat complicated by the fact that both the L

and D models are special cases of the C model, so that C is guaranteed to fit not

worse than either L or D. We use Bayesian Model Selection [MacKay, 1992, Mackay,

2003], which automatically penalizes for more complex models (such as C) to solve

the problem. We conclude that, while the L model is certainly inconsistent with the

data, D and C explain the data about equally well when this penalty for complexity

is accounted for. Thus the Lamarckian contribution to evolution cannot be ruled
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out by the 1943 Luria and Delbrück data. Further, while D and C fit equally well,

neither provide a quantitatively good fit to one of the two primary experimental data

sets of Luria and Delbrück’s paper, suggesting that the classic experiment may have

been influenced by factors or processes not considered.

Even though we will show that our analysis of the Luria-Delbrück data does

not rule out Lamarckian contributions to evolution, our goal is not to challenge the

well-established knowledge that this particular system (T1 phage interacting with

E. coli) is largely purely Darwinian [Lederberg and Lederberg, 1952, Newcombe,

1949, Taylor, 1963, Hayes, 1964, Hantke and Braun, 1978]. Instead our goal is to

limit ourselves to the original 1943 data, even though additional experiments have

been performed many times since then, and to ask: Does this data actually tell

us what every textbook says, and namely that the 1943 experiment has ruled out

Lamarckian evolution in favor of Darwinian?

2.2 Methods

2.2.1 Models and Notational preliminaries

There have been many theoretical attempts, with varying degrees of success, to

find closed-form analytical expressions of the distribution of mutants under the

Darwinian—but not the combined—scenario (the Luria-Delbrück distribution). These

have followed several different modeling assumptions [Lea and Coulson, 1949, Ar-

mitage, 1952, Mandelbrot, 1974, Bartlett, 1978, Sarkar, 1991, Zheng, 2007, Angerer,

2001], with good reviews by Zheng [1999] and Ycart [2013]. For example, models
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Figure 2.1: Schematics of the two theories tested by the Luria-Delbrück experiment. Here
black dots denote bacteria susceptible to the bacteriophage, and green dots resistant bac-
teria. Each tree represents one realization of the experiment, which starts with a single
bacterium (top). The bacterium then divides for several generations, and the phage is
introduced into the culture at the last generation (bottom row of each tree). Darwinian
theory (left column) of evolution predicts that mutations happen spontaneously through-
out the experiment. Thus different repeats of the experiment (different trees) will produce
very broadly distributed numbers of survivors (from 0 to 4 in this example). In contrast, in
the Lamarckian case (right column), mutations only occur when the phage is introduced,
so that the standard deviation of the number of survivors in different repeats (from 1 to 3
in this example) scales as the square root of their mean, which is much smaller than in the
Darwinian case.

with constant and synchronous division times [Sarkar, 1991, Zheng, 2007] or many

different distributions of generation times, in some cases allowing for different growth



7

rates for the wild-type and the mutant populations [Koch, 1982, Jones et al., 1994,

Jaeger and Sarkar, 1995], have been proposed to find the distribution of survivors. In

this work, we do not advance these analytical treatments. However, we present one

such analysis, mainly to introduce notation and to illustrate complications of using

analytical expressions for our statistical analysis.

We follow Haldane’s modeling hypotheses [Sarkar, 1991] and assume that (i) nor-

mal cells and mutants have the same fitness until the phage is introduced, (ii) all

cells undergo synchronous divisions, (iii) no cell dies before the introduction of the

phage, (iv) mutations occur only during divisions, with each daughter becoming a

mutant independently (D case), or only when the phage is introduced (L case), and

(v) backwards mutations are negligible. With these assumptions, the D and the C

models are able to produce very good fits to the experimental data (see below), which

suggests that relaxation of these assumptions and design of more biologically realistic

models is unnecessary in the context of these experiments.

For the subsequent analyses, let N0 be the initial number of wild-type, phage-

sensitive bacteria, and g be the number of generations before the phage is introduced,

so that the total number of bacteria after the final round of divisions is N = 2gN0,

and the total that have ever lived is 2N−N0. We use θD to denote the probability of

an adaptive (Darwinian) mutation during a division, and θL to denote the probability

of an adaptive Lamarckian mutation when the phage is introduced. With this, and

discounting the probability of another mutation in the already resistant progeny, the

mean number of adaptive Darwinian mutations at generation g is mD = θD(2N−N0),

and the mean number of adaptive Lamarckian mutations is mL = θLN . The number



8

of survivors in the L model is Poisson-distributed with the parameter mL:

PL(k|θL, N0) =
e−mLmk

L

k!
(2.1)

For the D model, there are multiple ways to have a certain number of resistant

bacteria, k, in the population of size N before introducing the phage. For instance,

there are four ways to have 5 resistant bacteria (i. e., k = 5): (i) One mutation

occurs 2 generations before the phage introduction (where the total living population

is N/4 at that generation), resulting in 4 resistant progenies in the last generation,

and one more mutation at the last generation, making a total of 5 resistant cells

before the phage introduction. This is the most likely scenario with probability

P
(i)
5 = (1− θD)(2N−N0)−8θ2

D

(
N/4

1

)(
N−4

1

)
, where (2N −N0) is the total number of cells

that have ever lived in the entire experiment, so that (2N − N0) − 8 is the total

number that have ever lived without mutating. The θ2
D factor indicates that a total

of two mutations have occurred in the population. The first choose factor denotes

the number of independent mutational opportunities 2 generations before the phage

introduction, and the second one denotes the number of mutational opportunities

in the last generation. (ii) Two mutations occur 1 generation before the phage

introduction and one more mutation in the last generation. This is less likely than

(i) with probability P
(ii)
5 = (1− θD)(2N−N0)−7θ3

D

(
N/2

2

)(
N−4

1

)
, where, there are a total

of 7 mutant that have ever lived in the history of the experiment and 3 mutational

events before the introduction of the phage. (iii) One mutation occurs 1 generation

before the phage introduction and 3 more mutations in the last generation. This

is less likely than (ii) with probability P
(iii)
5 = (1 − θD)(2N−N0)−6θ4

D

(
N/2

1

)(
N−2

3

)
. (iv)
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Five mutations occur in the last generation before introducing the phage. This is

the least likely scenario with probability P
(iv)
5 = (1− θD)(2N−N0)−5θ5

D

(
N
5

)
. In general,

for an arbitrary number of resistant cells, k, let Πk denote the set of sequences

(a0, a1, ...) that satisfy k =
∑∞

0 as2
s, such that as ∈ Z≥0. This condition captures all

the possible sequences of
{
as
}
∈ ΠK that produce k number of resistant cells. For

instance, in case (i) the corresponding sequence is
{
a2 = 1, a1 = 0, a0 = 1

}
, and in

case (ii) it is
{
a1 = 2, a0 = 1

}
. Then, following Haldane’s approach [Sarkar, 1991],

we can write PD(k), the probability of finding k resistant cells given the Darwinian

model of evolution, as

PD(k|θD, N0) =
∑{
as

}
∈ΠK

(1− θD)(2N−N0)−
∑∞

s=0 as(2s+1−1) θxD ×

×
∞∏
s=0

(
N
2s
−
∑∞

n=s+1 as(2
n−s)

as

)
, (2.2)

where x ≡
∑{

as

} as and the probability PD(k|θD, N0) is summed over all the possible

sequences
{
as
}
∈ ΠK that produce the number k; in the case of Pk=5 mentioned

earlier, PD(5|θD, N0) = P
(i)
5 + P

(ii)
5 + P

(iii)
5 + P

(iv)
5 .

For the Combination model, both the L and the D processes contribute to gen-

erating survivors. Thus we write the distribution of the number of survivors in this

case as a convolution

PC(k|θL, θD, N0) =
k∑

k′=0

PD(k′|θD, N0)PL(k − k′|θL, N0). (2.3)

Further analytical progress on the problem is hindered by additional complica-
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tions. First, in actual experiments, the initial number of bacteria in the culture N0

is random and unknown. We view it as Poisson-distributed around the mean that

one expects to have, denoted as Π(N0|N̄0). This gives:

PD/L/C(k|θD, θL, N̄0) =
∞∑

N0=0

PD/L/C(k|N0)Π(N0|N̄0). (2.4)

Finally, in some of the Luria-Delbrück experiments, they plated only a fraction r

the entire culture subjected to the phage. This introduced additional randomness in

counting the number of survivors after the plating, kp, which we again model as a

Poisson distribution with the mean rk, Π(kp|rk) [Stewart et al., 1990, Stewart, 1991,

Montgomery-Smith et al., 2016], resulting in the overall distribution of survivors:

PD/L/C(kp|θD, θL, N̄0) =
∞∑
k

Π(kp|rk)PD/L/C(k). (2.5)

Equation (2.5) illustrates the main complication of using analytical results for sta-

tistical inference studies: it is not computationally efficient, involving multiple nested

(and infinite) sums. Alternative approaches (e. g., [Lea and Coulson, 1949]) repre-

sent the distribution as recursive expressions, through the inverse Fourier transform

of the characteristic functional, or through low-order moments. These expressions

are also not easy to calculate, or are hard to compare to the experimental probability

distribution in the inference step due to additional complications, such as dilution

or the Lamarckian contribution in the C model. One can try to develop an efficient

algorithm for evaluating the probability of the number of survivors for the C model,

similar to the ones that have already been developed for the D case [Ma et al., 1992,

Sarkar et al., 1992], but this is not a trivial task. Instead, since our focus is on
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the inference and not on the analytics, we chose a simpler approach: sampling the

distribution using Monte-Carlo techniques.

2.2.2 Computational models

Our simulations assume that each culture begins with a Poisson-distributed number

of bacteria, with a mean number of 135, as in the original paper. The bacteria were

modeled as dividing in discrete generations for a total of g = 21 generations. Both

of the numbers are easily inferable from the original paper using the known growth

rate and the final cell density numbers. Cells divide synchronously, and each of the

daughters can gain a resistance mutation at division with the probability θD, which is

nonzero in C and D models. Daughters of resistant bacteria are themselves resistant.

Non-resistant cells in the final generation are subjected to a bacteriophage, which

induces Lamarckian mutations with probability θL, nonzero in C and L models. We

note again that this total number of Lamarckian-mutated cells is Poisson-distributed

with the mean θL times the number of the remaining wild type bacteria.

To speed up simulations of the Darwinian process, we note that the total number

of cells that have ever lived is Nt = 2N02g−N0. Thus the total number of Darwinian

mutation attempts is Poisson distributed, with mean NtθD. We generate the number

of these mutations with a single Poisson draw and then distribute them randomly

over the multi-generational tree of cells, marking every offspring of a mutated cell

as mutated. We then correct for overestimating the probability of mutations due to

the fact that the number of mutation attempts in each generation decreases if there

are already mutated cells there. For this, we remove original mutations (and unmark
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their progenies) at random with the probability equal to the ratio of mutated cells

in the generation when the mutation appeared to the total number of cells in this

generation. Note that since mutations are rare, such unmarking is not very common

in practice, making this approach substantially faster than simulating mutations one

generation at a time.

To estimate PC(kp|θD, θL), we estimate this probability on a 41x41 grid of values

of θD and θL. For each pair of values of these parameters, we perform n = 30, 000, 000

simulation runs (see below for the explanation of this choice) starting with a Poisson-

distributed number of initial bacteria, then perform simulations as described above,

and finally perform a simulated Poisson plating of a fraction of the culture if the ac-

tual experiment we analyze had such plating. We measure the number of surviving

bacterial cultures kp in each simulation run and estimate PC(kp|θD, θL) as a normal-

ized frequency of occurrence of this kp across runs, fC(kp|θD, θL). The Darwinian case

is evaluated as PC(kp|θD, θL = 0), and the Lamarckian case as PC(kp|θD = 0, θL).

2.2.3 Quality of fit

In the original Luria and Delbrück publication [Luria and Delbrück, 1943], no defini-

tive quantitative tests were done to determine the quality of fit of either of the

model to the data. We can use the estimated values of PC(kp|θD, θL) for this

task. Namely, Luria and Delbrück have provided us not with frequencies of indi-

vidual values of kp, but with frequencies of occurrence of kp within bins of x ∈

(0, 1, 2, 3, 4, 5, 6 − 10, 11 − 20, 21 − 50, 51 − 100, 101 − 200, 201 − 500, 501 − 1000).

By summing fC(kp|θD, θL) over kp ∈ x, we evaluate fC(x|θD, θL), which allows us to
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write the probability that each experimental set of measurements, {nx}, came from

the model:

P ({nx}|θD, θL) = C
∏
x

(
nx∑
x nx

)fC(x|θD,θL)

, (2.6)

where C is the usual multinomial normalization coefficient. This probability can also

be viewed as the likelihood of each parameter combination, and the peak of the prob-

ability gives the usual Maximum Likelihood estimation of the parameters [Nelson,

2015]. To guarantee that the estimated value of the likelihood has small statistical

errors, we ensured that each of the (θD, θL) combinations has 30,000,000 simulated

cultures. Then, at parameter combinations close to the maximum likelihood, each

bin x has at least 10,000 samples. Correspondingly, at these parameter values, the

sampling error in each bin is smaller than 1%.

Finally, to evaluate the quality of fit of a model, rather than to find the maximum

likelihood parameter values, we calculate empirically the values of log10 P ({n∗x}|θD, θL)

for each parameter combination, where {n∗x} are synthetic data generated from the

model with θD, θL. Mean and variance of log10 P gives us the expected range of the

likelihood if the model in question fits the data perfectly.

2.2.4 Comparing models

In comparing the L, the D, and the C models, we run into the problem that C

is guaranteed to have at least as good of a fit as either D or L since it includes

both of them as special cases. Thus in order to compare the models quantitatively,

we need to penalize C for the larger number of parameters (two mutation rates)



14

compared to the two simpler models. To perform this comparison, we use Bayesian

model selection [MacKay, 1992, Mackay, 2003], which automatically penalizes for

such model complexity.

Specifically, Bayesian model selection involves calculation of probability of an

entire model family M = {L,D,C} rather than of its maximum likelihood parameter

values:

P (M |{nx}) ∝
∫
d~θMP (~θM |{nx},M)P (M) (2.7)

where the posterior distribution of ~θ is given by the Bayes formula,

P (~θM |{nx},M) ∝ P ({nx}|~θM ,M)P (~θM |M), (2.8)

and P ({nx}|~θM ,M) comes from Eq. (2.6). Finally, P (M) and P (~θM |M) are the a

priori probabilities of the model and the parameter values within the model, which

we specify below.

The integral in Eq. (2.7) is over as many dimensions as there are parameters in a

given model. Thus while more complex models may fit the data better at the maxi-

mum likelihood parameter values, a smaller fraction of the volume of the parameter

space would provide a good fit to the data, resulting in an overall penalty on the

posterior probability of the model. Thus posterior probabilities P (M |{nx}) can be

compared on equal footing for models with different number of parameters to say

which specific model is a posteriori more likely given the observed data. Often the

integral in Eq. (2.7) is hard to compute, requiring analytical or numerical approxi-

mations. However, here we already have evaluated the likelihood of combinations of
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(θL, θD) over a large grid, so that the integral can be computed by direct summation

of the integrand at different grid points.

To finalize computation of posterior likelihoods, we must now define the a priori

distributions P (M) and P (~θM |M). We choose P (C) = P (M) = P (L) = 1/3, indi-

cating our ignorance about the actual process underlying biological evolution. The

choice of P (~θM |M) is tricky, as is often the case in applications of Bayesian statis-

tics. We point out that the experiment was designed so that the number of surviving

mutants is almost always 1 or less, for a population with ≈ 0.25 × 108 individuals,

which indicated that a priori both θL and θD are less than 4 × 10−9. Further, we

assume that, for the combined model, P (~θC) = P (θL)P (θD). Beyond this, we do not

choose one specific form of P (~θC), but explore multiple possibilities to ensure that

our conclusions are largely independent of the choice of the prior.

2.2.5 Statistical power of the tests

Before analyzing the original Luria-Delbrück data, it is important to understand the

statistical power of our approach in discriminating among the models. Anticipating

that the L model will be easy to rule out (see Results), we focus on disambiguating

just the D and the C models by investigating the relationship between N , the number

of cultures, and the expected ratio P (D)/P (C) for synthetic data that resembles that

of the Luria-Delbrc̈k Experiment 22 (see Results), which is fitted well either with the

D model with θD = 2.0 × 10−9, or with the C model with θD = 1.8 × 10−9, and

θL = 0.4× 10−9.
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First, we note that “ruling out” the Lamarckian contribution would require having

P (D)/P (C)� 1. Thus we created synthetic data with a fixed Darwinian mutation

rate (θD = 2.0×109) and zero Lamarckian contribution and explored how strong the

evidence in favor of purely Darwinian model would be at different N . For this, we

variedN and investigated the ratio P (D)/P (C), using a prior P (θL/D) that is uniform

between 0 and 4 × 10−9, as we later use for the analysis of the actual experiments.

Figure 2.2(a) illustrates the dependence. Notice that P (D)/P (C) ∼ 20, which would

correspond to rejection of the Combined model at about 95% confidence, only for

N > 103. This suggests that the Luria-Delbrück experiment was not designed well

to achieve this demarcation.

Next we analyzed the number of cultures that would be needed to demonstrate

existence of the Lamarckian influence as a function of θL. We defined the demonstra-

tion as P (D)/P (C) < 1/20, and then explored the number of cultures required to

reach this threshold for different Lamarckian rates, while keeping θD = 1.8× 10−9),

cf. Fig. 2.2(b). As expected, when the Lamarckian contribution is higher, the num-

ber of cultures decreases. However, crucially, even at θL = θD, one would require

N > 200 cultures to demonstrate the Lamarckian contribution conclusively. This is

because at θL = θD, the expected number of Lamarckian mutations in a culture (half

that of the Darwinian ones) is < 1. This again suggests that the Luria-Delbrück

experiment should have had larger numbers of cells to be designed optimally for

discriminating among these different models.
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Figure 2.2: (a) For data with a known Darwinian mutation rate θD = 2.0 × 10−9 and
no Lamarckian mutations, we explore the power of the analysis to rule out the combined
model. We see that the Combined model becomes improbable only at significantly higher
values of N than those in the Luria-Delbrück experiment. (b) For data with a known
Darwinian mutation rate θD = 1.8 × 10−9 and a varying nonzero Lamarckian mutation
rate, we found the minimum number of cultures N necessary to establish that there is a
Lamarckian contribution (this is defined as P (C)/P (D) > 20).

2.3 Results

Luria and Delbrück’s paper provided data from multiple experiments, where in each

experiment they grew a number of cultures, subjected them to the phage, and counted

survivors. Most of the experiments have O(10) cultures, which means that their

statistical power for distinguishing different models is very low. We exclude these

experiments from our analysis and focus only on experiments No. 22 and 23, which

have N = 100 and N = 87 cultures, respectively. Our previous analysis suggests

that even this is likely to be too few cultures for conclusive results, but these are the
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numbers we have to work with. The experimental protocols differ in that Experiment

23 plated the entire culture subjected to the phage, while Experiment 22 plated only

1/4 of the culture. We analyze these experiments separately from each other.

2.3.1 Experiment 22

We evaluated the posterior probability of different parameter combinations,

P (~θM |{nx},M), numerically, as described in Methods. The likelihood (posterior

probability without the prior term) is illustrated in Fig. 2.3. Note that the peak

of the likelihood is at θ22
L ≈ 4.0 × 10−10 6= 0, θ22

D ≈ 1.8 × 10−9, illustrating that the

data suggests that the Combination model is better than either of the pure models

in explaining the data, though the pure Darwinian model comes close. The fit of the

maximum likelihood Combination model is shown in Fig. 2.4. The quality of the best

fit log10 P ({nx}|θ22
D , θ

22
L ) ≈ 63.7. This matches surprisingly well with the likelihood

expected if the data was indeed generated by the model, log(P ({n22
x }|θ22

D , θ
22
L )) =

62.1 ± 5.1. Thus the model fits the data perfectly despite numerous simplifying as-

sumptions, suggesting no need to explore more complex physiological scenarios, such

as asynchronous divisions, or different growth rates for mutated and non-mutated

bacteria.

Next we evaluate the posterior probabilities of all three models by performing the

Bayesian integral, Eq. (2.7). We use two different priors for θL and θD to verify if

our conclusions are prior-independent: uniform between 0 and 4× 10−9 and uniform
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in the logarithmic space between 1× 10−10 and 4× 10−9. For the uniform prior,

P (D)

P (C)
≈ 2.8

1
,

P (L)

P (C)
≈ 10−106 . (2.9)

In other words, the purely Lamarckian model is ruled out by an enormous margin, as

suggested in the original publication. However, in agreement with our estimate of the

statistical power of the analysis, the ratio of posterior probabilities of the Darwinian

and the Combination models is only 2.8, and this ratio is 2.0 for the logarithmic prior,

which is way over the usual 5% significance threshold for ruling out a hypothesis. In

other words,

The Darwinian and the Combination models of evolution have nearly the

same posterior probabilities after controlling for different number of pa-

rameters in the models. Thus contribution of Lamarckian mechanisms to

evolution in the Luria-Delbrück Experiment 22 cannot be ruled out.

2.3.2 Experiment 23

We performed similar analysis for Experiment 23 and evaluated the posterior like-

lihood, Fig. 2.5, for each combination of parameters. Here, however, the posterior

is several orders of magnitude smaller than for Experiment 22. This is because the

experimental data has a tail that is heavier than typical realizations of even the

Darwinian model would predict. Indeed, Luria and Delbrück themselves noted this

excessively heavy tail. However, as they were only choosing whether the Darwinian

or the Lamarckian model fits better, this led further credence to the claim that the
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Figure 2.3: Posterior likelihood of the Darwinian, θD, and the Lamarckian, θL, mutation
parameters evaluated for the Luria-Delbrück Experiment 22. Notice that the likelihood
peaks away from θL = 0.

Lamarckian model could not describe the data. Now we are able to quantify this: for

Experiment 23, at the maximum likelihood parameters (θ23
L = 0, θ23

D = 4.4 × 10−9),

the quality of fit is log10 P ({nx}|θ23
D , θ

23
L ) ≈ −90.0. In contrast, for data generated

from the model, we get log10 P (data|θD, θL) = −76.9 ± 3.1. In fact, by generating

105 data sets using these parameter combination, we estimate that the probability

of generating data from this model that is as unlikely as the experimental data is

p < 10−4. Thus the tail of the distribution of the number of mutants in Experiment

23 is so heavy that it cannot be fit well by either of the hypotheses considered. In-
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Figure 2.4: Luria-Delbrück experimental data (red) for Experiment 22 and the maximum
likelihood fit of the Combination model with θ22

L = 4.0× 10−10 and θ22
D = 1.8× 10−9.

stead, it is likely that some other dynamics are at play here, such as some form of

contamination, or additional non-Darwinian processes. In other words,

Luria-Delbrück Experiment 23 cannot be explained by any of the proposed

hypotheses (the Lamarckian, the Darwinian, or the Combination one), and

thus cannot be used to rule out one hypothesis over another.

2.4 Discussion

The classic 1943 experiment by Luria and Delbrück [1943] is credited with ruling

out the Lamarckian model in favor of Darwinism for explaining acquisition of phage

resistance in bacteria. However, while heralded as a textbook example of quantita-

tive approaches to biology, the data in the paper was analyzed semi-quantitatively

at best. We performed a quantitative analysis of the fits of three models of evolu-

tion (Lamarckian, Darwinian, and Combination) to these classic data, Experiments
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Figure 2.5: Posterior likelihood of the mutation parameters for Experiment 23. The max-
imum likelihood is at θL = 0. However, neither of the three considered models is capable
of fitting the data well (see text).

22 and 23. Our analysis was based on a very simplified model of the process: we

started each colony with a Poisson-distributed (mean 135) wild-type bacteria and

allowed them to replicate synchronously for exactly 21 times, with mutations occur-

ring continuously (Darwinian model) or at the last generation (Lamarckian model).

Additionally, we did not consider the possibility that multiple mutations might be

needed to acquire resistance, or that growth rates of bacteria may be inhomogeneous.

Nonetheless, the simple model fits Experiment 22 data perfectly, suggesting no need

for more complex modeling scenarios.
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Figure 2.6: Luria-Delbrück experimental data (red) for Experiment 23 and the maximum
likelihood fit of the Darwinian model (also the best fit Combination model) with θ23

D =
4.4 × 10−9. Here we can see that the tail in the experimental data is too heavy to be
reproduced even by the Darwinian model.

For Experiment 22, by a ratio of ≈ 10−106 , the Lamarckian model is a posteri-

ori less likely than the Darwinian one, agreeing with the original Luria and Delbrück

conclusion that the pure Darwinian evolution is a better explanation of the data than

the pure Lamarckian evolution. However, the posterior odds of the pure Darwinian

model are only 2 − 3 times higher than those for the Combination model (suitably

penalized for model complexity), which has nonzero Darwinian and Lamarckian mu-

tation rates. Even by liberal standards of modern day hypothesis testing, there is

insufficient evidence to rule out the Combination model, and, therefore, contribu-

tion of Lamarckian processes to bacterial evolution in this experiment. This was

in agreement with our analysis of the statistical power of the data: the number of

cultures and the mean number of mutations per culture were too small to effectively

discriminate between the D and the C model with a small Lamarckian rate. In con-

trast, for Experiment 23, neither of the three considered models could quantitatively

explain the data, suggesting that additional processes must be in play beyond simple
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Lamarckian and Darwinian mutations.

In summary, while subsequent experiments have certainly established the Dar-

winian nature of mutations in the T1-E. coli system, our analysis shows that the

classic Luria-Delbrück 1943 data cannot be used to rule out Lamarckian contribu-

tions to bacterial evolution in favor of Darwinism, potentially necessitating changes

to the exposition in many biology textbooks.
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3 The expected time to cross extended fitness plateaus

3.1 Introduction

Most mutations in most natural populations are effectively neutral. Considered in

isolation, these are irrelevant for adaptation. But the fitness effect of a mutation gen-

erally depends on the genetic background on which it occurs, a phenomenon known

as epistasis. Thus, there are likely to be combinations of these neutral mutations

that interact epistatically to have an effect on fitness. If this effect is positive for

a given combination, then that combination forms a complex adaptation, separated

from the wild type by a fitness plateau. How frequently do we expect populations

to acquire such adaptations? On one hand, a given complex adaptation should typ-

ically be harder for a population to find than a simple adaptation requiring only a

single beneficial mutation. On the other hand, if a genome of length L has O(L)

possible neutral mutations, then there are O(LK) genotypes that could potentially

be a complex adaptation involving K mutations. So if even a modest fraction of

these genotypes are indeed adaptive, the number of possible complex adaptations

could far exceed the number of available beneficial mutations, and it could be that

they are collectively a frequent form of adaptation [Fisher, 2007, Weissman et al.,

2009, Trotter et al., 2014]. To evaluate their importance, we must know more about

how rapidly populations explore fitness plateaus.

Populations can cross fitness plateaus via a sequence of neutral mutations fixing

by drift until only one more mutation is needed for the (formerly complex) adapta-
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tion. But this process is slow and inefficient; in a high-dimensional fitness plateau,

the population will be much more likely to drift away from a complex adaptation

than towards it. Large, asexual populations can cross plateaus and even fitness val-

leys much more rapidly (e.g., [van Nimwegen and Crutchfield, 2000, Komarova et al.,

2003, Iwasa et al., 2004, Weinreich and Chao, 2005, Durrett and Schmidt, 2008,

Weissman et al., 2009]). They can do this because many mutations will be present

in the population at low frequency. If the population is sufficiently large, even these

low-frequency mutations will be present in a large absolute number of individuals,

some of which will happen to also carry additional mutations. Thus, genotypes that

are multiple mutations away from the consensus genotype will already be present in

the population and exposed to natural selection, allowing the population to effec-

tively “see” several steps away in the fitness landscape, and “tunnel” directly to the

adaptive genotypes [Jain and Krug, 2006].

Recombination changes these dynamics in two ways. First, by combining muta-

tions that occur in different lineages, it accelerates the population’s exploration of

the plateau [Christiansen et al., 1998]. On the other hand, recombination breaks

up the beneficial combination once it is formed [Eshel and Feldman, 1970, Feldman,

1971, Karlin and McGregor, 1971], slowing adaptation [Takahata, 1982, Michalakis

and Slatkin, 1996]. While the latter effect is fairly easy to understand quantitatively,

the former depends on the spectrum of mutant lineages that coexist in the population

and has only been fully understood in the simplest case of two-locus plateaus [Weiss-

man et al., 2010]. Here we extend this analysis to the three-locus case, considering

the full spectrum of possible population sizes, recombination rates, mutation rates,

and selective advantages of the adaptive genotype. We also analyze the dynamics for
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arbitrary-width plateaus when recombination is frequent relative to selection.

3.2 Model

We consider a haploid Wright-Fisher population of size N . The genome consists of

K loci each of which has two possible alleles, 0 and 1; for much of the analysis,

we will focus on the case K = 3. Initially, all individuals have the all-0 genotype.

All genotypes have the same fitness except the all-1 genotype, which has a strong

selective advantage s� 1/N ; see Figure 3.1. Individuals mutate (in both directions)

at a rate µ per locus per generation. Each generation, each offspring is produced

clonally (with possible mutations) with probability 1− r; with probability r, it is the

product of recombination between two parents. Recombinant offspring sample each

locus independently with equal probability from their parents (again, with possible

mutation). We will focus on finding the expected time T until the all-1 genotype

first makes up the majority of the population. For simplicity, we will also refer to

the “rate” of crossing the plateau, defined as T −1, even though it is not a true rate,

as the distribution of time to cross the plateau is not exponential in general. The

definitions of the most important symbols are collected in Table 1. Exact simulations

were done in Python (Figs. 3.3 and 3.4) and Mathematica (Figs. 3.5 and 3.6).

3.3 Results

There are two fundamentally different plateau-crossing dynamics, depending on the

relative rates of selection and recombination [Eshel and Feldman, 1970, Feldman,
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Figure 3.1: A visualization of the fitness landscape in the case of K = 3. The nodes
represent the fitness of wild type, single-, double-, and triple-mutant genotypes. Wild-type
alleles are denoted by 0 and mutants by 1. The {1, 1, 1} genotype has a fitness 1 + s > 1
and the rest have fitness 1.

Table 1: Symbol definitions
Symbol Definition

N Haploid population size
µ Mutation rate per locus per generation
r Recombination rate per generation
s Selective advantage of the all-mutant geno-

type
T Expected time until the all-mutant genotype

makes up the majority of the population
Ri(t) The rate at which i-mutant individuals arise

in the population at time t
pi(t) The probability that an i-mutant lineage aris-

ing at time t will be successful
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Table 2: Rate of plateau-crossing (inverse of expected crossing time T ) for asymptotic
regimes shown in Figure 3.2, organized by main divisions of parameter space.

Divisions Name T −1 scaling

r < s Nµ� 1 Triple-mutants deterministic s/ ln(s/µ)

Double-mutants deterministic (asexual)
(
Nµ3s

)1/3
Double-mutants deterministic (sexual)

(
Nµ3rs

)1/4
Single-mutants deterministic (asexual)

(
N2µ5s

)1/4
Single-mutants deterministic (sexual)

(
N2µ5r3s

)1/7
Nµ� 1 Stochastic tunneling (asexual) Nµ2 (s/µ)1/4

Stochastic tunneling (sexual) ∼ N1.4µ1.9r0.4s0.1

Semi-linkage-equilibrium tunneling Nµ2
(
N3µrs

)1/4
Tunneling after 1 mutation fixes (asexual) µ
Tunneling after 1 mutation fixes (sexual) µ

r � s Nµ� 1 Alleles deterministic
(
µ2s
)1/3

Nµ� 1 Linkage equilibrium (LE) tunneling Nµ2(Ns)1/3

LE tunneling after 1 mutation fixes µ

N � 1/
√
µs Sequential fixation µ

1971, Suzuki, 1997, Jain, 2009]. If recombination is weak relative to selection (r � s),

the adaptive genotype is rarely broken up by recombination and can spread rapidly

once formed even if the individual mutant alleles are very rare in the population.

If, on the other hand, recombination is strong (r � s), the population is kept in

quasi-linkage equilibrium, with the dynamics determined by the allele frequencies.

Because the dynamics are so different, we consider these two regimes separately.

Figure 3.2 and Table 2 summarize the different possible scaling behaviors of T over

all of parameter space.
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Figure 3.2: Schematic diagram of the asymptotic dynamics by which a population crosses
a three-mutation (K = 3) fitness plateau to acquire a complex adaptation providing ad-
vantage s, as a function of recombination rate r and population size N . Color qualitatively
represents the expected time T for the population to cross; for quantitative expressions,
see Table 2. For r � s, selection can drive the triple-mutant genotype to fixation while the
other mutant genotypes remain rare, while for r � s the population always remains close
to linkage equilibrium; plateau crossing is fastest for intermediate recombination rates. The
time to cross the plateau decreases as population size increases from the “sequential fixa-
tion” regime to the “deterministic” regimes. The “stochastic tunneling (sexual)” regime is
a combination of several different regimes that can be practically indistinguishable, with
boundaries that depend on the value of µ/s – see Appendix 3.5.
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3.3.1 Rare recombination, r � s

For r � s, we must track genotype frequencies rather than just allele frequencies,

so the complexity of the dynamics increases rapidly with the width of the plateau;

we therefore focus on the simplest case that has not yet been fully characterized,

K = 3. Even for this simplest case, there are many possible dynamical regimes (left

half of Figure 3.2, Figure 3.3), depending on how difficult it is for the population

to generate the adaptive genotype. For all but the largest population sizes, plateau-

crossing becomes faster with increasing recombination rates, so the optimal rate is

r . s. The equations in this section all apply to this regime as well, with s replaced

by the average rate of increase of triple-mutants when rare, s̃ = s− r.

If mutation and recombination are so frequent and the population is big enough

that the triple-mutant genotype is generated effectively instantaneously, then the

expected plateau-crossing time T is just the time for a selective sweep, and depends

primarily on s. For smaller µ, r, and N , most of T is waiting for the successful

triple-mutant to be produced and the strongest dependence is on µ. N and r are

most important at intermediate levels of diversity, where producing triple-mutants is

difficult but there are opportunities for simultaneous polymorphisms at multiple loci

to recombine. Quantitatively, when the mutation supply is large (Nµ� 1), then the



32

expected plateau-crossing time is approximately:

T ≈


ln(s/µ)/s if (Nrµ3/s3)

1/4 � 1 or Nµ (Ns)−2/3 � 1

(Nµ3rs)
−1/4

if r � (Nµ3s)1/3, (N3µ5/(rs))
1/4 � 1, (Nrµ3/s3)

1/4 � 1

(N2µ5r3s)
−1/7

if r � (N2µ5s)1/4 and (N3µ4r/s2)
1/7 � 1.

(3.1)

The first line of Equation 3.1 corresponds to the approximately deterministic dynam-

ics of very large populations, which are insensitive to rare recombination (because

the only substantial linkage disequilibrium is that generated by selection on the triple

mutants after they are already on their way to fixation). In the second line, fluctua-

tions in the number of triple-mutants are important, but single- and double-mutants

can be treated deterministically (the “doubles deterministic (sexual)” regime). In

the third line, fluctuations in the numbers of both triple- and double-mutants are

important, but single-mutants can still be treated deterministically (the “single de-

terministic (sexual)” regime). If the recombination rate is lower than the thresholds

in the second and third lines of Equation 3.1, the population is effectively asexual

and T follows the scaling behavior described in Weissman et al. [2009] and Equations

3.6 and 3.9 below.

If the mutation supply is low (Nµ � 1), then T is approximately the expected

waiting time for the first successful mutation. Since exploration of genotype space

is more of a challenge for populations when mutations are rare, recombination has

the potential to make more of a difference. When the recombination is very rare,

the population is effectively asexual, with plateau-crossing rate T −1
asex ≈ Nµ2(s/µ)1/4

(Equation 3.10, see also Weissman et al. [2009]). As the recombination rate increases,
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it becomes easier mutations to be successful, and plateau-crossing speeds up. There

are eight different asymptotic scaling regimes for rare recombination as N → ∞,

depending on exactly how µ, r, s → 0, but for reasonable parameter values they are

generally fairly similar (see Appendix 3.5), with the expected rate of plateau-crossing

roughly given by T −1 ≈ N1.4µ1.9r0.4s0.1. As recombination becomes more frequent

(but still r � s), pairs of large single-mutant lineages are able to succeed by reaching

linkage equilibrium with each other and then recombining with a smaller third lineage

(“semi-linkage-equilibrium tunneling”), and the rate of crossing increases further to

T −1 ≈ (Nµ)2(µrs/N)1/4 (Equation 3.11). This is the regime where recombination

speeds plateau-crossing the most; comparing Equations 3.10 and 3.11, we see that it

increases the rate by a factor∼ (N3µ2r)
1/4

, which could exceed an order of magnitude

if Nr > 106.

3.3.2 Frequent recombination, r � s

For frequently recombining populations (r � s), we find the expected time for

plateau crossing across the full spectrum of possible plateau widths K, mutation rates

µ, population sizes N , and selective coefficients s (Figure 3.4). These population will

be in quasi-linkage equilibrium and selection will therefore act on alleles rather than

genotypes. In this regime, the plateau-crossing time depends primarily on the mu-

tation rate and is typically ∼ O(1/µ). When mutations are frequent (Nµ� 1), the

population crosses the plateau nearly deterministically and solving the deterministic

mutation-selection dynamics gives plateau-crossing time: T ≈ (s/µ)1/K/µ.

When mutations are rare (Nµ� 1), stochasticity is important and the dynamics
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Figure 3.3: Expected time T for a rarely recombining population to cross a three-mutation
fitness plateau, as a function of the mutation rate µ. Points show simulation results, curves
show analytical predictions. Note that in some regions, several analytical expressions give
almost the same exact expected time. Typical plateau-crossing dynamics of the different
asymptotic regimes are illustrated in Figures 3.5 and 3.6. The analytical solution for
the double-mutants deterministic asexual and sexual paths (red and green), semi-linkage-
equilibrium tunneling (solid blue) and single-mutant stochastic tunneling (blue dashed line)
regimes is given by Equations 3.6, 3.11, and A.9, respectively. Parameter values: N = 1011,
r = 10−3, s = 1. Error bars are smaller than the size of the points.
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typically proceed in two stages: first, K −m of the necessary mutations sequentially

drift to fixation by chance; then, once the population is sufficiently close to the

adaptive genotype, it relatively rapidly acquires the last m mutations together via

stochastic tunneling. The typical value of m is the largest integer such that the

probability of a new mutation triggering a tunneling event of m mutations is higher

than the probability 1/N of fixation by drift:

m ≈

⌊
1

2
+

√
1

4
− 2 ln(Ns)

ln(Nµ)

⌋
, (3.2)

where b.c represents the floor function. Therefore, the plateau-crossing time is typi-

cally dominated by the time for K−m mutations to drift to fixation, unless m ≥ K,

in which case the population tunnels directly. Summarizing these regimes, the ex-

pected time for a frequently recombining population to cross a fitness plateau is:

T ≈


1
µ

(
µ
s

)1/K
if Nµ� 1

N(Ns)−
1
K (Nµ)−

K+1
2 CK if Nµ� 1 and m ≥ K

ln(K/m)
µ

if Nµ� 1 and m < K,

(3.3)

where CK in the second line (pure tunneling) is a combinatorial factor that depends

only on K (see Equation 3.16).

Comparing the Equation 3.3 to the expected time for an asexual population to

cross the plateau (T ≈ 1
Nµ2

(s/µ)−21−K

for N � 1/µ, T ≈ K
s

ln(s/µ) for N �

sK−1/µK , with additional asymptotic regimes for intermediate population sizes [Weiss-

man et al., 2009]), we see that frequent recombination tends to speed up adaptation

in small populations (relative to asexuality), where the primary challenge is produc-
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Figure 3.4: Expected time T for a frequently recombining population to cross a three-
mutation fitness plateau, as a function of the population size N . Points show simulation
results, curves show analytical predictions Equation 3.13 (blue) and Equation 3.18 (green,
brown, and red). Parameter values: r = 0.5, µ = 10−6, s = 0.05. The time to cross
the plateau depends strongly on N for N . 1/µ, and levels off for large or very small
populations. Error bars are smaller than the size of the points.

ing the beneficial genotype, while slowing it down in large populations, where most

of the time is spent fixing the genotype after it has been produced.
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3.4 Analysis

3.4.1 Rare recombination (r � s)

In this section we will consider the plateau-crossing process in populations with rare

recombination, starting with very large populations and progressively decreasing in

size. As N decreases, the population’s ability to efficiently explore genotype space

(measured by N , µ, and r) becomes more important, and its ability to exploit its

discoveries (s) less so. At the largest population sizes, T is essentially determined

by s. For all the lower population size regimes, there will be at least some genotypes

that are only rarely produced, and T will be approximately the waiting time for the

production of the first successful lineage of a rare genotype.

3.4.1.1 Very large populations: deterministic dynamics

For extremely large population sizes, the number of single-, double-, and triple-

mutant individuals are well approximated by their expected values after only a few

generations. Triple mutants are produced almost instantaneously, and the plateau-

crossing time is dominated by the time it takes them to sweep to fixation. This

can easily be found by solving the deterministic equations for the dynamics of the

genotype frequencies under mutation and selection, with recombination only reducing

the effective selective advantage of the triple mutants:

T ≈ 3

s
ln

(
s

µ

)
, (3.4)
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It is straightforward to generalize Equation 3.4 to arbitrary plateau widths K:

T ≈ K

s
ln

(
s

µ

)
.

For this deterministic approximation to be accurate, the production rate of triple

mutants, R3(t), must be large at the time t ∼ 1/s when the first triple-mutant

lineage reaches number 1/s and becomes established. Triple mutants are produced

by double-mutant individuals that either acquire another mutation or recombine with

single mutants, so R3 is:

R3(t) = µn2(t) +
r

24N
n1(t)n2(t), (3.5)

where ni is the total number of i-mutant individuals, so n1(t) ≈ 3Nµt and n2(t) ≈

3Nµ2t2. (The factor of 1/24 in Equation 3.5 is because to make a triple mutant,

each double mutant can only successfully recombine with 1/3 of the single mutants,

and only 1/8 of the offspring will inherit the correct alleles.) At t ∼ 1/s, Equation

3.5 gives R3 ≈ 3Nµ3/s2. (The recombination term is smaller by a factor ∼ O (r/s).)

So to be in this regime, the population must have size N � s2/µ3. Note that

recombination is almost irrelevant in this regime: mutants are produced so frequently

that there is no need for recombination to generate new combinations. (It does

slightly slow down adaptation, as technically s should be replaced in the equations

by s̃ = s− r.)



39

3.4.1.2 Large populations: single- and double-mutants common, triple-mutants

rare

Slightly smaller populations (with N � s2/µ3) will still only occasionally be pro-

ducing triple-mutants at the time they cross the plateau, so while the single- and

double-mutant populations will have nearly deterministic dynamics, fluctuations in

the number of triple-mutants will be important. Because triple-mutant lineages are

rare, we can consider them in isolation, and T will be the waiting time for the first

successful triple-mutant. The probability that a successful triple-mutant lineage will

have been produced by time t is P3(t) = 1 − exp
[
−
∫ t

0
dt′sR3(t′)

]
, using that the

probability that a triple-mutant lineage is successful once it has been produced is

∼ s [Ewens, 2004]. Therefore, the expected waiting time T is given by:

T =

∫ ∞
0

dt exp

[
−s
∫ t

0

dt′R3(t′)

]

≈


(Nµ3s)

−1/3
, r � (Nµ3s)1/3 (asexual path)

(Nµ3rs)
−1/4

, r � (Nµ3s)1/3 (sexual path),

(3.6)

where we are ignoring constants of O(1). In the first line, the population is effectively

asexual, i.e., the successful triple-mutant is likely to arise via mutation from a double-

mutant. In the second line, it is more likely to arise via recombination between

a double-mutant and a single-mutant. The two expressions in Equation 3.6 are

generally close, differing by a factor of only ∼ (r3/(Nµ3s))
1
12 : recombination can

provide a mild increase in speed, but as in the previous section, the population is

so large that the triple-mutant genotype will rapidly be produced by mutation alone
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anyway.

In deriving Equation 3.6, we ignored fluctuations in the number of double-mutants

(as well as of single-mutants), so these must be negligible on time scales similar to

T for the expressions to be valid. There are two ways that this approximation can

hold. First, if the number of double-mutants is in fact close to its expectation with

high probability. This will be true if the production rate R2(t) of double-mutants is

high, i.e., R2(T ) � 1, so that the double-mutant population is composed of many

lineages and fluctuations in the individual lineage sizes average out. R2 is given by:

R2(t) = 2µn1(t) +
r

12N
n1(t)2 (3.7)

Plugging in the first line of Equation 3.6 for t gives the requirement R2(T ) ∼

µ (N2/s)
1/3 � 1

In the recombination-dominated regime in the second line of Equation 3.6, there

is an additional way for the fluctuations to be negligible: recombination can cap their

size by preventing them from greatly exceeding linkage equilibrium with the much

larger and approximately deterministic wild-type and single-mutant populations. In

this case, if R2 � 1 the number of double-mutants will be fluctuating as lineages

are sporadically produced and die out, but no one lineage will drift for a time much

exceeding ∼ 1/r before being broken up by recombination. We will see what con-

dition this puts on the parameters in the following section, but for now, note that

this mechanism requires the single-mutants to be approximately deterministic, so at

a minimum we require R1 ∼ Nµ� 1.



41

Figure 3.5: Typical simulation results of plateau-crossing dynamics for very large popula-
tion sizes where T is dominated by the waiting time for the arrival of the first successful
triple-mutant individual that has been produced following a mutation event in the growing
population of double-mutants. The inset is a magnified view of the last 50 generations
before the adaptive genotype fixes in the population which demonstrates the establishment
time and sweep time of the triple-mutants. The model parameters for this simulation are
N = 1011, µ = 10−6, r = 10−3, and s = 1.

Finally, we must also check the conditions for our assumption that the triple-

mutant lineages are rare enough to be considered in isolation. This is equivalent to

R3(T )� 1 – the flip side to the parameter condition in the preceding section requir-

ing that triple-mutants be approximately deterministic. Plugging in our expressions

for R3 and T , we get µ(N/s2)1/3 � 1, which is indeed the reverse of the previous

condition.
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3.4.1.3 Moderately large populations: single-mutants common, double-mutants

rare

For populations slightly smaller than those in the previous section, the mutation

supply will still be high (Nµ � 1), so single-mutants will still be approximately

deterministic, but double-mutant lineages will be rare (R2(T ) � 1) and we must

consider their fluctuations. Since they are rare, we can consider each lineage in

isolation, and T will be the waiting time for the first successful double-mutant to

arise.

A double-mutant lineage can be successful by either mutating or recombining

with single-mutants to produce a successful triple-mutant. Since the single-mutants

are deterministic (n1(t) ≈ 3Nµt), we can lump these two processes into a single

time-dependent effective mutation rate, µ̃ ≡ µ + r
24N

n1(t) ≈ µ
(
1 + 1

8
rt
)
. Since in

this regime we expect the waiting time for the first successful double-mutant lineage

to be long compared to the time for which that lineage must drift before producing

the successful triple-mutant, we can further treat this effective mutation rate as being

approximately constant over each lineage’s lifetime. With this approximation, the

problem is reduced to that considered in Weissman et al. [2009]: a lineage mutates at

rate µ̃ to a genotype with advantage s; additionally, the double-mutant lineage has

an effective selective disadvantage r due to being broken up by recombination with

the wild type. The probability p2(t) that a double-mutant lineage arising at time t
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will be successful is therefore Weissman et al. [2009]:

p2(t) ≈


√
µs
(
1 + 1

8
rt
)

if µs
(
1 + 1

8
rt
)
� r2

µs
r

(
1 + 1

8
rt
)

if µs
(
1 + 1

8
rt
)
� r2.

(3.8)

In the first line of Equation 3.8, a lineage is most likely to succeed by drifting

for long enough to produce many (∼ 1/s) triple-mutants. In the second line, re-

combination is too frequent and lineages are broken up before they can drift for

that long. We therefore see that the condition for being able to ignore fluctuations

in the double-mutant numbers as in the previous section is µs
(
1 + 1

8
rT
)
� r2.

Since this case is covered by that section’s analysis, we will now focus on the case

p2(t) ≈
√
µs
(
1 + 1

8
rt
)

where fluctuations are key. Combining the success probabil-

ity p2(t) with the production rate R2(t) ≈ Nµ2t
(
2 + 3

4
rt
)
, we can find the expected

waiting time T for the first successful double-mutant (ignoring O(1) constants):

T ≈
∫ ∞

0

exp

[
−
∫ t

0

dt′R2(t′)p2(t′)

]

≈


(N2µ5s)

−1/4
r � (N2µ5s)1/4 (asexual path)

(N2µ5r3s)
−1/7

r � (N2µ5s)1/4 (sexual path).

(3.9)

Both R2 and p2 switch from being mutation-dominated to recombination-dominated

at time t ∼ 1/r. In the first line of Equation 3.9, T � 1/r so the population is

effectively asexual. In the second line, T � 1/r so the successful double-mutant is

likely both to be produced by recombination and to produce the successful triple via

recombination.
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3.4.1.4 Moderately small populations: occasional triple polymorphisms

If the mutation supply is low (Nµ � 1), then the population will typically be

monomorphic. The plateau-crossing time is dominated by the waiting time for a lucky

single-mutant lineage that drifts long enough to either fix or encounter additional

mutations that allow it to tunnel across the plateau. We will consider the latter

process in this section. Call this mutation A, and let TA be the time for which this

mutation’s lineage must drift to be likely to be successful; over this time, the lineage

will typically reach a size nA ∼ TA. The mutation will manage to drift this long with

probability p1 ∼ 1/TA, so the expected plateau-crossing time is T = 1
3Nµp1

= TA
3Nµ

.

Note that if TA > N (or, equivalently, T > 1/µ), the lineage is more likely to fix

than tunnel. We now find expressions for the necessary drift time TA.

First, we will review the asexual process. Weissman et al. [2009] showed that

TA ∼ (µ3s)
−1/4

(ignoring combinatoric factors) is long enough for the lineage to

be likely to acquire two additional mutations (which we will call B and C) and be

successful. The expected time to cross the plateau is thus:

T ∼ 1

Nµ2

(µ
s

)1/4

. (3.10)

Comparing TA to N , we see that the population will only tunnel if N (µ3s)
−1/4

> 1.

This result therefore applies only to populations within a fairly narrow band of sizes,

with the lower limit of validity only a factor of (µs)1/4 smaller than the upper limit

– less than three orders of magnitude for realistic parameters.

Recombination can speed up tunneling (i.e., reduce the necessary TA) by allowing
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the original A lineage to acquire B and C from the ∼ NµTA independent mutant

lineages that arise while it is drifting. Let B be the mutation carried by the largest

such lineage; it will typically drift for TB ∼ NµTA generations, reaching a size nB ∼

NµTA. If TB � 1/r, recombination will effectively reduce the linkage disequilibrium

between A and B, i.e., there will be an average of nAB ∼ nAnB/N ≈ µT 2
A AB

individuals over most of the TB generations for which both mutations are drifting.

During this time, there will be ∼ NµTB C lineages produced by mutation, the largest

of which will therefore typically drift for TC ∼ NµTB ≈ (Nµ)2TA generations to size

nC ∼ TC . AB and C individuals will therefore coexist for ∼ TC generations, during

which they will generate ∼ r
N
nABnCTC ≈ N3µ5rT 4

A triple-mutant recombinants.

Each of these has a probability ≈ s of being successful, so we see that for our original

A lineage to be likely to be successful, its drift time TA must satisfy N3µ5rT 4
A ∼ 1/s.

Solving for TA gives TA ∼ (N3µ5rs)
−1/4

, corresponding to an expected plateau-

crossing time of:

T ∼ 1

(Nµ)2

(
N

µrs

)1/4

. (3.11)

We refer to this as “semi-linkage-equilibrium tunneling”, since the two most frequent

mutations are in linkage equilibrium with each other while drifting, but the third

mutation may not be, and the triple-mutant will produce large linkage disequilibria

once it starts to sweep.

The derivation of Equation 3.11 assumed that A and B were close to being in

linkage equilibrium with each other, i.e., rTB � 1. Substituting in TB ∼ NµTA, this

is equivalent to a condition that TA � 1/(Nµr). However, it may be the case that

the A and B lineages can produce enough recombinants to be successful before they
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Figure 3.6: Typical simulation results of plateau-crossing dynamics for moderately large
population sizes where T2 is dominated by the waiting time for the arrival of the first suc-
cessful double-mutant lineage t2 (indicated on the inset) that has been produced following a
recombination event between two single-mutants. The inset is a magnified view of the last
few thousands of generations before the adaptive genotype fixes in the population which
demonstrates that while the successful double-mutant lineage is drifting for t∗ generations,
the population of single-mutants has, to a very good approximation, remained constant.
The model parameters for this simulation are N = 1011, µ = 5 × 10−10, r = 10−3, and
s = 1.

approach linkage equilibrium. This is true for small values of r, where the time to

approach linkage equilibrium becomes very long. In this situation, the analysis here

overestimates how large TA must be, and therefore overestimates the time required

to cross the plateau. The correct analysis of this regime is even more involved, and

we leave it for Appendix 3.5. We also ignored the possibility that the AB individuals

might produce a triple mutant directly via mutation, but it is straightforward to

check that this is rare in the relevant parameter range: as long as N � 1/
√
µr,

acquiring the third mutation via recombination is more likely.
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3.4.1.5 Small populations: single-mutants drift to fixation

For smaller populations, the most likely way for a single-mutant to be successful is

for it to drift to fixation, which occurs with probability 1/N . The expected waiting

time is therefore T = 1/(3µ). Once the single-mutant has fixed, the population

only needs two additional mutations, so Weissman et al. [2010]’s two-locus analysis

applies. The average time to tunnel will necessarily be small compared to the time

for the first mutant to drift to fixation, so it can be neglected in T . The exception

is for very small populations, N � 1/
√
µs, where the second mutation is also more

likely to drift to fixation than to tunnel [Weissman et al., 2010]. In this case, the

total waiting time is T ≈ 1
3µ

+ 1
2µ

= 5
6µ

. (The final fixation of the third mutation is

relatively rapid as long as Ns� 1.)

3.4.2 Frequent recombination (r � s)

If recombination is frequent (r � s), selection will be too weak to generate linkage

disequilibrium, and the population will stay close to linkage equilibrium (LE). We

can therefore simply track allele frequencies, rather than genotype frequencies. For

this much easier problem, we can consider plateaus of arbitrary width K.

3.4.2.1 Large populations (Nµ� 1): deterministic dynamics

When the mutation supply is large, Nµ� 1, the mutant allele frequency trajectories

are nearly deterministic, and therefore almost the same as each other, i.e., a single
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variable x(t) can describe the frequency of all the mutant alleles. When the mutations

are rare (x� 1), their increase according to:

ẋ ≈ µ+ sxK , (3.12)

where xK is the frequency of the beneficial genotype. Solving Equation 3.12 for t

such that x(t) ≈ 1 gives the time to cross the plateau:

T ≈ 1

µ

(µ
s

)1/K

. (3.13)

We can understand this as the time it takes for mutation to drive the mutations

to the frequency x ∼ (µ/s)1/K at which selection takes over, after which fixation is

rapid.

3.4.2.2 Small populations (Nµ� 1): sequential fixation + stochastic tunneling

of mutant alleles

When the mutational supply of the population is small (Nµ � 1), most loci will

usually be monomorphic, with occasional drifting mutant lineages. To cross the

plateau, the population needs some combination of mutations drifting to fixation,

and others producing the beneficial genotype and tunneling together. We can think

of the tunneling dynamics as allowing the population to “see” the adaptive genotype

once the dominant genotype is within m mutations of it, for some m.

We must first find how the maximum tunneling range m depends on N , µ, and

s. A population can cross the plateau via a rare mutant lineage that grows to a
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large size over an extend period of time. Suppose that such a lineage persists for

∼ T1 generations, typically growing to size ∼ T1. There will be ∼ (m − 1)NµT1

mutations at other loci during this time, the largest of which will typically persist for

T2 ∼ (m − 1)NµT1 while the original allele is still drifting. During T2, the longest-

drifting mutation at a third locus will typically persist for T3 ∼ (m − 2)NµT2 =

(m − 1)(m − 2)(Nµ)2T1, and so on, with the the mth mutation persisting for Tm ∼

(K − 1)!(Nµ)m−1T1. The frequency xm of the m-mutant genotype will peak at:

xm ∼
m∏
k=1

(Tk/N)

∼
(

(Nµ)
m−1

2
T1

N

)m
(m− 1)!m−1

G(m+ 1)
,

where G is the double gamma function. For the mutations to establish, this peak

frequency must exceed ∼ 1/Ns. Solving this condition for T1 gives the time scale

over which the first mutation must drift to be likely to be successful:

T1 ∼ N(Ns)−
1
m (Nµ)−

m−1
2 e−

m
4 (m− 1)

m−4
2 , (3.14)

where the final combinatorial factors are approximations valid for large m, and negli-

gible for small m. For the initial mutation to be more likely to tunnel than to fix, T1

must be small compared to N . Solving T1 ∼ N for m therefore gives the maximum

tunneling range:

m ≈

⌊
1

2

(
1 +

√
1 +

8 ln(Ns)

| ln(Nµ)|

)⌋
, (3.15)

where b.c is the floor function.
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If m ≥ K, then a wild-type population can tunnel directly to the beneficial

genotype. The probability that a mutation successfully tunnels is ∼ 1/T1, so the

expected waiting time is:

T ≈ T1

KNµ

≈ N(Ns)−
1
K (Nµ)−

K+1
2 e−

K
4 (K − 1)

K−6
2 , (3.16)

where we have substituted Equation 3.14 with m = K for T1. If 1 < m < K, the

total plateau-crossing time is dominated by the time it takes for the population to fix

K −m mutations via drift so that it can get close enough to the adaptive genotype

to tunnel the rest of the way. (If m = 1, then the population cannot tunnel and must

fix K − 1 mutations by drift, at which point the Kth mutation becomes beneficial.)

The kth mutation fixes after an expected waiting time of 1/(K−k+ 1)µ, so the total

expected waiting time for K −m mutations to fix is

T ≈
K−m∑
k=1

1

(K − k + 1)µ

≈ ln(K/m)

µ
for K −m� 1. (3.17)
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3.4.2.3 Three-mutation plateaus

Plugging in K = 3 to the above analysis, the expected time to cross the plateau is

(with O(1) combinatorial factors included for clarity):

T ≈



1
µ
(µ/s)1/3 for Nµ� 1 (deterministic)

(3Nµ2)
−1

(2Ns)−1/3 for (µ3s)−1/4 � N � 1/µ (pure tunneling)

1/(3µ) + 1
N

(µ3s)−1/4 for (µs)−1/2 � N � (µ3s)−1/4 (tun. after 1 mut. fixes)

5/(6µ) for N � (µs)−1/2 (sequential fixation).

(3.18)

The second term in the third line is the K = 2 tunneling time [Weissman et al.,

2010].

3.5 Discussion

We have shown that even moderately large populations can acquire complex adapta-

tions requiring three individually-useless mutations substantially faster than would

be expected if mutations had to fix sequentially by drift. In other words, natural

selection can at least somewhat effectively promote mutations that not only pro-

vide no direct selective benefit, but also do not directly increase evolvability, i.e.,

do not change the distribution of mutational effects. Recombination helps most at

intermediate population sizes, where there can be simultaneous polymorphisms at

multiple loci but triple mutants are rare. In this range, the rate of plateau-crossing

is maximized when recombination is just somewhat rarer than selection.



52

Across regimes, the rate of crossing the three-mutant fitness plateau scales sub-

cubically in the mutation rate, i.e., complexity is not strongly suppressing the rate

of adaptation, suggesting that even more complex adaptations could also potentially

be acquired. However, analyzing even the three-mutation case for r . s involved

a proliferation of different dynamical regimes, so simply extending our analysis to

wider plateaus is likely to be impractical. The asexual case [Weissman et al., 2009]

and the case r � s analyzed above are simpler but plateau-crossing is fastest for

r . s, meaning that these easier limiting cases may be missing essential dynamics.

How practically important could adaptive paths across three-mutation plateaus

be? Could we hope to observe experimental populations following them? Viruses

often have large populations and high mutation rates; if we consider an RNA virus

with a mutation rate of ∼ 10−4 per base per replication and a potential adaptation

providing a ∼ 10% fitness advantage, a population size of N > 109 – fewer than

might be present in a single infected host – would be enough for the population

to deterministically acquire the triple-mutant genotype. On the other hand, if we

consider a yeast population in which the relevant mutations have target sizes of ∼ 300

base pairs, for a mutation rate of ∼ 10−7 [Lynch et al., 2008], it would be difficult to

maintain a large enough experimental population for long enough to reliably acquire

the adaptation via any of the paths we have described here.

The major limitation in seriously applying any of our analysis to real populations

is that we have considered the necessary loci in isolation. As mentioned in the In-

troduction, a major part of our motivation in considering the possibility of complex

adaptation is that a combinatorial argument suggests that there are potentially very
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many of them available. But if there are in fact very many possible complex adapta-

tions, then the first one that actually fixes in the population is likely to be one that

happened unusually quickly, potentially by different dynamics than those considered

here [Weissman et al., 2010]. Thus at a minimum, we would need to consider the en-

tire distribution of plateau-crossing times rather than just its mean. More precisely,

we would need to describe the left tail of the distribution. This may in fact simplify

the analysis – there may be only a few ways for a lineage to get a lot of mutations

quickly, regardless of the population parameters [Weissman et al., 2010] – and thus

provide a way forward to analyzing wider plateaus.

The fact that the population is likely to be adapting at more than just K loci does

not only mean that we need to think about the left tail of crossing-time distribution;

it also means that we need to think about how adaptation elsewhere in the genome

may affect evolution at the focal loci. If there is substantial fitness variance due

to the rest of the genome and limited recombination, the dynamics of the mutant

lineages will be completely different due to hitchhiking [Neher and Shraiman, 2011].

In addition, the complex adaptation may be lost due to clonal interference once it

is produced, reducing its fixation probability. The fixation probability in this case is

likely to require a careful calculation in its own right, as the background fitness is

likely to systematically differ from the mean because of the required conditioning on

long-lasting lineages carrying the intermediate mutations.

Perhaps even more importantly than clonal interference is the potential epistatic

interference. When we consider just the K focal loci, substitutions at other loci

should turn the fitness landscape into a constantly shifting metaphoric “seascape”
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[Mustonen and Lässig, 2009]. In the most extreme case, other mutations may fix that

permanently disrupt the potential complex adaptation, forcing the population onto

another path. We have no understanding of how this should affect the probability of

complex adaptation in anything beyond the simplest possible case of a single benefi-

cial mutation blocking a two-mutation complex adaptation in an asexual population

[Ochs and Desai, 2015]. We can already see that is likely to substantially change the

interpretation of our results by looking at Table 2 and our results for generic K with

r � s and Nµ� 1. The regimes in which the population only tunnels through the

last mutations while initially fixing the others via drift appear to have roughly the

same rate of plateau-crossing as the sequential fixation regime in which all mutations

but the very last must drift to fixation. But this is because our model assumes that

all populations reach the adaptive genotype eventually. In a more realistic model

in which populations can get diverted and miss potential adaptations entirely, be-

ing able to tunnel through m mutations greatly increases the zones of attraction of

adaptive genotypes in the fitness landscape, and could make a large difference in the

probability of finding them.

In addition to epistatic interactions with other loci, the plateau could shift be-

cause of environmental changes [Masel, 2006, Kim, 2007]. It is difficult to say which

process is likely to be more important. We currently do not even know whether

changes in the selective coefficient of single mutations are driven more often by en-

vironmental changes or changes in the rest of the genome, let alone what drives

changes in selection on the rest of the genome. More generally, the basic difficulty

in analyzing more complex, realistic fitness landscapes is that we have no idea what

they should look like. Even mapping out the local fitness landscape of a single gene
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requires a heroic experimental effort (e.g., [Bank et al., 2016]) – and then we only

know it in a limited number of artificial environments. Our best hope may be to try

to develop a theory that can reduce the full complexity of landscapes to a reasonable

number of parameters describing their features that are most relevant for adaptation,

but it is an open question whether such a theory exists.

3.A. Appendix

3.A.1 Small populations with rare recombination

Here we focus on populations with low mutation supply, Nµ � 1, and rare re-

combination, r � s. In particular, we focus on those that fall in between the

asexual and semi-linkage equilibrium cases discussed above, for which recombination

is frequent enough to speed plateau-crossing but too rare to bring even the largest

mutant lineages into linkage equilibrium with each other. As above, the expected

plateau-crossing time is dominated by the waiting time for the production of the first

successful single-mutant lineage A which drifts for time TA, with the other possible

mutations labeled B and C. All genotypes that drift for a time TX reach a typical

size nX ∼ TX , so we will not need to distinguish between drift times and lineage sizes

in the following. We will exploit our freedom in labeling the B and C mutations to

always label the double mutant AB if it has the A allele, so the AC genotype will not

appear in our analysis. Throughout, we will ignore O(1) numerical factors arising

from combinatorics and integration, none of which change the results significantly.

We can identify eight possible asymptotic scenarios, depending on the relative sizes
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of the different relevant lineages (Figure A.1):

(i) TA � TB � TC � TAB: While three independent mutant lineages are drift-

ing, the larger two recombine, and then that recombinant recombines with the third

lineage to produce the successful triple-mutant. Typical sizes are TB ∼ NµTA,

TC ∼ NµTB, and TAB ∼ r
N
TATBTC (because we only consider the largest AB lin-

eage that arises while C is drifting). The number of ABC individuals produced by

recombination between C and AB during the ∼ TAB generations that they coexist

is ≈ r
N
TCT

2
AB; we need this quantity to be ∼ 1/s for success to be likely:

1 ∼ rs

N
TCT

2
AB

∼ rs

N

(
(Nµ)2TA

) ( r
N

(NµTA)3
)2

≈ N5µ8r3sT 7
A.

Solving for TA and the other drift times gives:

TA ∼ (N5µ8r3s)
−1/7

TB ∼ (µr3s/N2)
−1/7

TC ∼ (r3s/(N9µ6))
−1/7

TAB ∼ (Nµ3r2s3)
−1/7

.

(A.1)

(ii) TA � TC � TB � TAB: While three independent mutant lineages are drifting,

the largest recombines with the smallest, and then that recombinant recombines

with the middle lineage to produce the successful triple-mutant. Typical sizes are
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Figure A.1: A schematic plot of 8 different ways in which the plateau-crossing can occur
given that all the mutant alleles are not frequently produced in the population. In case (i),
the two bigger lineages, A and B, recombine with each other to produce the AB lineage
which in turns recombines with the C lineage to produce the first successful ABC lineage
after TA generations. Cases (ii) and (iii) also correspond to the same dynamics as case (i)
except for that the second and third biggest mutant lineages could be different. Case (iv)
occurs when lineages A and B recombine to produce an AB lineage which later mutates to
produce the beneficial mutant. In both cases (v) and (vi), the A lineage mutates to produce
the AB lineage which then recombines with the C lineage to produce the successful ABC
lineage. In case (vii), the B lineage mutates to produce a BC lineage which later recombines
with A. Case (viii) occurs when the B and C lineages recombine to produce a BC lineage
which then recombines with the A lineage.
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TC ∼ NµTA, TB ∼ NµTC , and TAB ∼ r
N
TAT

2
B. To get ∼ 1/s triple-mutants, we

need:

1 ∼ rs

N
TCT

2
AB

∼ rs

N
(NµTA)

( r
N

(Nµ)4T 3
A

)2

≈ N6µ9r3sT 7
A.

Solving for TA and the other drift times gives:

TA ∼ (N6µ9r3s)
−1/7

TC ∼ (µ2r3s/N)
−1/7

TB ∼ (r3s/(N8µ5))
−1/7

TAB ∼ (N2µ4r2s3)
−1/7

.

(A.2)

(iii) TA � TB � TAB � TC : Two single-mutant lineages recombine. While

that recombinant double-mutant is drifting, a third single-mutant lineages arises

and recombines with it to produce a successful triple-mutant. Typical sizes are

TB ∼ NµTA, TAB ∼ r
N
TAT

2
B, and TC ∼ NµTAB. To get ∼ 1/s triple-mutants, we

need:

1 ∼ rs

N
TABT

2
C

∼ rs

N
(Nµ)2

( r
N

(Nµ)2T 3
A

)3

∼ N4µ8r4sT 9
A.
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Solving for TA and the other drift times gives:

TA ∼ (N4µ8r4s)
−1/9

TB ∼ (r4s/(N5µ))
−1/9

TAB ∼ (Nµ2rs)
−1/3

TC ∼ (rs/(N2µ))
−1/3

.

(A.3)

(iv) TA � TB � TAB: Two single-mutant lineages recombine, and that re-

combinant lineage then mutates and succeeds. Typical sizes are TB ∼ NµTA and

TAB ∼ r
N
TAT

2
B. The AB lineage will produces ∼ µT 2

AB mutants while it is drifting;

setting this equal to ∼ 1/s gives:

1 ∼ µsT 2
AB

∼ µs
( r
N

(Nµ)2T 3
A

)2

∼ N2µ5r2sT 6
A.

Solving for TA and the other drift times gives:
TA ∼ (N2µ5r2s)

−1/6

TB ∼ (r2s/(N4µ))
−1/6

TAB ∼ (µs)−1/2 .

(A.4)

(v) TA � TC � TAB: While two single-mutant lineages are drifting, the mutates
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at the third locus. This double-mutant then recombines with the other single-mutant

lineage. Typical sizes are TC ∼ NµTA and TAB ∼ µTATC (because we only consider

the largest-double mutant lineage that arises while C is drifting). To get ∼ 1/s

triple-mutants, we need:

1 ∼ rs

N
TCT

2
AB

∼ rs

N
NµTA

(
Nµ2T 2

A

)2

∼ N2µ5rsT 5
A.

Solving for TA and the other drift times gives:
TA ∼ 1

µ
(N2rs)

−1/5

TC ∼ (N3/(rs))
1/5

TAB ∼ (N/(rs)2)
1/5
.

(A.5)

(vi) TA � TAB � TC : A single-mutant lineage mutates. While the resulting

double-mutant lineage drifts, a new lineage with a mutation at the third locus arises

and successfully recombines with it. Typical sizes are TAB ∼ µT 2
A and TC ∼ NµTAB.

To get ∼ 1/s triple-mutants, we need:

1 ∼ rs

N
TABT

2
C

∼ rs

N
µT 2

A

(
Nµ2T 2

A

)2

∼ Nµ5rsT 6
A.
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Solving for TA and the other drift times gives:
TA ∼ (Nµ5rs)

−1/6

TAB ∼ (Nµ2rs)
−1/3

TC ∼ (N2µ/(rs))
1/3
.

(A.6)

(vii) TA � TB � TBC : While two single-mutant lineages are drifting, the smaller

one acquires an additional mutation at the third locus. This double-mutant lineage

then successfully recombines with the larger single-mutant lineage. Typical sizes are

TB ∼ NµTA and TBC ∼ µT 2
B. To get ∼ 1/s triple-mutants, we need:

1 ∼ rs

N
TAT

2
BC

∼ rs

N
N4µ6T 5

A

Solving for TA and the other drift times gives:
TA ∼ (N3µ6rs)

−1/5

TB ∼ (N2/(µrs))
1/5

TBC ∼ (N4µ3/(rs)2)
1/5
.

(A.7)

(viii) TA � TB � TC � TBC : While three single-mutant lineages are drifting,

the smaller two recombine. The recombinant then successfully recombines with the
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largest single-mutant lineage. Typical sizes are TB ∼ NµTA, TC ∼ NµTB, and

TBC ∼ r
N
TBT

2
C . To get ∼ 1/s triple-mutants, we need:

1 ∼ rs

N
TAT

2
BC

∼ rs

N
TA
(
N4µ5rT 3

A

)2

∼ N7µ10r3sT 7
A.

Solving for TA and the other drift times gives:

TA ∼ 1
Nµ

(µ3r3s)
−1/7

TB ∼ (µ3r3s)
−1/7

TC ∼ Nµ (µ3r3s)
−1/7

TBC ∼ N (µ5/(r2s3))
1/7
.

(A.8)

For all of these cases, the expected plateau-crossing time is T ∼ TA/(Nµ). All

require that the double-mutant drift times TAB or TBC be small compared to 1/r, so

that the lineage is not broken up by recombination. We collect the predicted rates



63

and conditions here:

T −1 ∼



Nµ (N5µ8r3s)
1/7
, N � r5/(µs)3 (i)

Nµ (N6µ9r3s)
1/7
, N �

√
r5/(µ4s3) (ii)

Nµ (N4µ8r4s)
1/9
, N � r2/(µ2s) (iii)

Nµ (N2µ5r2s)
1/6
, r � √µs (iv)

Nµ2 (N2rs)
1/5
, N � s2/r3 (v)

Nµ (Nµ5rs)
1/6
, N � r2/(µ2s) (vi)

Nµ (N3µ6rs)
1/5
, N � (s2/(µr)3)

1/4
(vii)

(Nµ)2 (µ3r3s)
1/7
, N � (s3/(µr)5)

1/7
(viii).

(A.9)

For parameter values where multiple cases apply, the predicted T value is the

one corresponding to the case with the smallest TA – the rates for the different cases

do not add, since all are dependent on the same initial dynamic of an unusually

long-lived single-mutant. If even the smallest TA is greater than N , single-mutants

are more likely to fix than tunnel. For most reasonable parameter values, multiple

different cases give similar values in Equation A.9, i.e., populations are not in the

true asymptotic regimes corresponding to one case or another. However, since they

all roughly agree, the predicted value for T is still accurate.
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