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Abstract

Low-Rank Exploiting Optimization Methods for Inverse Problems and Machine

Learning

By Kai Fung Kan

Due to rapid technological development, datasets of enormous size have emerged in

various domains, including inverse problems and machine learning. Many important

applications in these domains, e.g., PDE parameter estimation, data classification

and regression, are formulated as optimization problems. These problems are of-

ten of large-scale and can be computationally intractable to solve. Fortunately, it has

been empirically observed that large datasets can be accurately estimated by low-rank

approximation. Specifically, they can be approximately expressed using a relatively

compact representation whose computation is less demanding. Therefore, an effective

way to circumvent the computational obstacle is to exploit the low-rank approxima-

tion. In addition, low-rank approximation can serve as a regularization technique to

filter out irrelevant features (e.g., noise) from the data since it can capture essential

features while discarding less pertinent ones.

This dissertation presents three applications of low-rank exploiting optimization

methods for inverse problems and optimization. The first application is a projected

Newton-Krylov method which efficiently exploits the low-rank approximation to the

Hessian matrix to compute the projection for bound-constrained optimization prob-

lems. The second application is a modified Newton-Krylov method geared toward

log-sum-exp minimization for a linear model. It is scalable to large problem sizes

thanks to its utilization of the low-rank approximation to the Hessian. In the third

application, we apply hybrid regularization, which synergistically combines iterative

and Tikhonov regularization, to effectively and automatically avoid the double de-

scent phenomenon in machine learning.
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Chapter 1

Introduction

The unprecedentedly rapid advancement of technology in recent decades has given

rise to large-scale data generation and collection. Consequently, data of massive

size have emerged in a wide spectrum of domains, including inverse problems and

machine learning. This is often referred to as the era of big data. Many important

applications in these domains, e.g., image processing [132, 20, 18, 80, 81, 138], PDE

parameter estimation [13, 23, 42, 32, 152, 151], image classification [109, 63, 19, 153,

119, 120], and numerous others, can be performed by solving optimization problems.

However, solving optimization problems can be computationally prohibitive due to the

enormous data size. Fortunately, it has been commonly observed that big data have

intrinsically low-rank structure [159, 142]. To be precise, a data matrix A ∈ Rm×n

can be estimated effectively by a low-rank approximation A ≈ BC, where B ∈ Rm×r,

C ∈ Rr×n, and r < min{m,n}. Since the low-rank approximation stores only r(m+n)

entries compared to the original mn entries, it has a reduced complexity compared to

the original matrix. This motivates the use of low-rank approximation to overcome

the computational burden. Moreover, since low-rank approximation seeks to capture

essential features and discards less relevant information (e.g., noise), it can be applied

as a regularization scheme during optimization.
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1.1 Related Work and Contributions

In this dissertation, we introduce three applications of low-rank exploiting optimiza-

tion methods. These applications can be grouped into two categories. The first

category is Newton-type methods that exploit the low-rank approximation to the

Hessian matrix. The second category is hybrid regularization methods that exploit

the low-rank structures of data matrices.

1.1.1 A Projected Newton-Krylov Method

The first application is PNKH-B, a projected Newton-Krylov method designed for

large-scale bound-constrained optimization. Generally, in each iteration of projected

Newton-type methods, the Newton step is first computed and then projected onto

the constraints to render it feasible. Note that the Newton step (search direction) is

induced by the Hessian metric. Existing methods can be classified into two categories

by their choice of projection metrics: 1. two-metric schemes with a piecewise linear

arc [10, 47, 64, 73, 85, 95, 96, 97, 137], whose projection uses the Euclidean metric

which is inconsistent with the Hessian metric used in the search direction, and 2. one-

metric schemes with a linear arc [16, 113, 5, 6, 68, 100, 136], whose projection uses the

Hessian metric and the line search is linear. Unlike existing methods, PNKH-B is a

(generalized) one-metric scheme with a piecewise linear arc. To be precise, PNKH-B

projects the Newton step onto the bound constraints with respect to the Hessian met-

ric and performs an adaptive piecewise linear line search. This combination of Hessian

projection metric and piecewise linear line search allows PNKH-B to perform a more

natural and effective line search and achieve better convergence. However, in each

line search, it is required to solve a quadratic projection problem that has no analytic

solution and is computationally prohibitive, especially for large-scale problems.

To overcome the computational hurdle, we apply Lanczos tridiagonalization to
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construct a low-rank approximation for the Hessian metric. This renders the pro-

jection problem computationally tractable. More specifically, our main contribution

in this work is an interior point method implementation, tailored to effectively ex-

ploit the low-rank approximation to the Hessian matrix, for solving the projection

problem. The interior point method implementation only scales linearly with respect

to the number of variables; hence it only adds negligible computational cost to the

algorithm. We also prove the global convergence of PNKH-B to a stationary point

under standard assumptions. Three numerical experiments on parameter estimation,

machine learning, and image reconstruction show that PNKH-B has significantly bet-

ter convergence, especially in the first few iterations. This is due to the consistent

use of the Hessian metric, adaptive line search, and the low-rank approximation to

reduce the otherwise intractable computational cost significantly.

1.1.2 A Modified Newton-Krylov Method

The second approach is a modified Newton-Krylov method geared toward log-sum-exp

minimization for a linear model. This kind of problem arises commonly in multinomial

logistic regression [153, 119] and geometric programming [140, 154, 157] and is often

of large-scale.

Although the log-sum-exp function is smooth and convex, a standard implemen-

tation of line search Newton-type schemes can be problematic since the quadratic

approximation can be unbounded from below. On the one hand, this problem is

less significant in the presence of a Tikhonov regularization [41, 59, 70]. However,

the regularization introduces a bias and thus changes the optimal solution. On the

other hand, the log-sum-exp minimization problem can be formulated using disci-

plined convex programming (DCP) packages [61] and solved with several backend

solvers [2, 141, 139]. While the problem can be solved reliably even in large-scale

settings, it can be computationally intractable. Moreover, DCP packages generally
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do not support matrix-free settings where the linear model is not known, but routines

for performing matrix-vector products are provided.

Standard modified Newton-type methods are an effective class of schemes to solve

optimization problems with indefinite or positive semi-definite but rank-deficient Hes-

sian. The idea is to modify the Hessian to render it sufficiently positive definite. In

this case, the quadratic approximation is bounded from below, and the convergence

issues can be avoided. Typical choices of Hessian modification include amending its

eigenvalues [62, 122], adding a multiple of the identity [101, 106, 127], and altering

its factorization [54, 114, 117].

In this work, we propose a novel modified Newton-Krylov method tailored for log-

sum-exp minimization for a linear model. The main novelty is a Hessian shift defined

in the output space of the linear model. This is motivated by the fact that, in machine

learning the model input often does not have an intuitive meaning, but the model

output is interpretable. Although unlike standard modified Newton-type methods,

our Hessian modification can be rank deficient, we show that the shift renders the

quadratic approximation to be bounded from below and the update directions are in

the output space of the linear model. Consequently, the proposed scheme provably

converges to a global minimizer under standard assumptions. The proposed scheme

applies a Krylov subspace method to construct a low-rank approximation to the Hes-

sian matrix and compute the update direction, thus it only requires matrix-vector

products with the linear model and is scalable to large problem sizes. Two numeri-

cal experiments motivated by image classification and geometric programming show

that the proposed method is competitive in terms of accuracy, time-to-solution and

robustness with standard Newton-Krylov methods, disciplined convex programming

approaches, and natural gradient descent.
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1.1.3 Hybrid Regularization for Avoiding the Double De-

scent Phenomenon

In the third application, we apply hybrid regularization methods [27, 25, 26, 24] to

effectively and automatically avoid the double descent phenomenon [7, 1, 104, 8, 72,

108] arising in the training of random feature models (RFMs) [131, 79].

Hybrid regularization methods are a class of efficient regularization methods to

tackle ill-posed linear inverse problems. In particular, hybrid regularization meth-

ods combine the two most common and successful regularization schemes: iterative

regularization [104, 156, 27] and Tikhonov regularization [41, 69, 60]. Iterative reg-

ularization applies, e.g., Krylov subspace methods [135, 56, 125, 126], to construct

a low-rank approximation for the data matrix so as to project the problem onto a

reduced dimensional subspace in each iteration. This not only generates practical

regularization properties [24], but also is used to overcome computational bottlenecks

for large-scale problems. In Tikhonov regularization, a regularization term, which

incorporates prior knowledge of the true solution, is added to the objective func-

tion in order to promote certain properties. However, the parameter selection for

iterative and Tikhonov regularization is not trivial and often requires solving a high-

dimensional parameter searching or a grid search for which a dedicated validation

dataset is needed. Hybrid regularization methods combine these two regularization

schemes such that their respective strengths are fully utilized and synergized, and

their respective weaknesses are circumvented.

The distinguishing characteristic of the double descent phenomenon is a surge in

the generalization gap when the number of features in the RFM equals the number

of training samples. Our numerical experiments on image classification demonstrate

that this is due to the ill-posedness of the training problem. Hence, this motivates us

to apply hybrid regularization methods to tackle the ill-posed training problem effec-

tively. Our main contribution in this work is the first use case of hybrid regularization



6

in machine learning. In this application, generalized cross-validation (GCV) is used

to adaptively and automatically select the parameter for Tikhonov regularization and

determine the stopping iteration. This avoids the necessity of parameter tuning and

a dedicated validation dataset. In our numerical experiments, hybrid regularization

methods successfully avoid the double descent phenomenon, are robust with respect

to different stopping criteria, and yield RFMs whose generalization is comparable to

optimally tuned classical regularization methods while having comparable computa-

tional costs.

1.2 Overview of Dissertation

This dissertation is organized as follows. In Chapter 2, we present the mathemat-

ical background relevant to this dissertation. The review covers low-rank approx-

imation methods, line search Newton-type methods, and supervised classification

problems. In Chapter 3, we motivate the use of a one-metric scheme for solving

bound-constrained optimization problems. Based on this, we propose PNKH-B, which

is a projected Newton-Krylov method and can be seen as a generalized one-metric

scheme. We introduce an interior point method implementation that effectively ex-

ploits the low-rank approximation of the Hessian and solves the projection problem

in a tractable way even for large-scale problems. We prove that PNKH-B globally

converges to a stationary point. We compare PNKH-B with two-metric schemes in

three numerical experiments. In Chapter 4, we describe the convergence issues with

standard line search Newton-type methods for minimizing the log-sum-exp function

for a linear model. To overcome the issues, we introduce a novel modified Newton

scheme that adds a shift to the Hessian in the output space of the linear model. A

global convergence guarantee is provided for the scheme. We compare the proposed

scheme with common solvers for log-sum-exp minimization in two numerical exper-
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iments. We shift our focus in Chapter 5 and apply a hybrid regularization scheme

to avoid the double descent phenomenon arising in training random feature models.

Hybrid regularization combines iterative and Tikhonov regularization in a synergis-

tic way. We show that the hybrid regularization scheme has comparable performance

with optimally tuned gradient flow and Tikhonov regularization. We provide conclud-

ing remarks and motivate future work that can be extended from this dissertation

in Chapter 6.
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Chapter 2

Preliminaries

This chapter gives an overview of the mathematical background relevant to this dis-

sertation. We review low-rank approximation methods in Section 2.1. We then de-

scribe line search Newton-type methods in Section 2.2. We conclude the chapter by

presenting supervised classification problems in Section 2.3.

2.1 Low-Rank Approximation Methods

Low-rank approximation methods aim to represent a given matrix A ∈ Rm×n in a

more compact form while maintaining a limited information loss. A low-rank approx-

imation can generally be represented as A ≈ BC, where B ∈ Rm×r, C ∈ Rr×n and

r < min{m,n}. We see that the low-rank approximation stores only r(m+n) entries

compared to the original mn entries; thus it has a reduced complexity in terms of

computation and storage.

Low-rank approximation methods are applied extensively in areas like optimiza-

tion, machine learning, and inverse problems. For instance, low-rank approxima-

tion methods can be applied as a dimensionality reduction technique to circumvent

computational bottlenecks for large-scale optimization problems which would other-

wise be intractable to solve [12, 83, 105]. By constructing an accurate estimation
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with a more compact representation, low-rank approximation methods can capture

the essential features while discarding irrelevant information (e.g., noise) from the

data [159, 80, 81, 138]. Moreover, low-rank approximation methods can serve as a

regularization scheme for ill-posed inverse problems to filter out components in the

forward model that are sensitive to small perturbations in data [24, 112, 130].

In the following, we review two common types of low-rank approximation methods

pertinent to this dissertation: truncated singular value decomposition and Krylov

subspace methods.

2.1.1 Truncated Singular Value Decomposition

Perhaps one of the most common low-rank approximation techniques is truncated

singular value decomposition (TSVD). To begin our discussion, we first introduce the

singular value decomposition (SVD) of A ∈ Rm×n given by

A = UΣV⊤, (2.1)

where

U = [u1,u2, ...,um] ∈ Rm×m, V = [v1,v2, ...,vn] ∈ Rn×n,

and

Σ = diag(σ1, σ2, ..., σr, 0, ..., 0) ∈ Rm×n,

with r = rank(A) and σ1 ≥ σ2 ≥ ... ≥ σr > 0.

Here diag represents a diagonal matrix, and σi’s are called the singular values of A.

The vectors ui’s and vi’s are called the left and right singular vectors of A, respec-

tively. The SVD (2.1) of a matrix with real entries always exists [56, Theorem 2.4.1].
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By re-writing (2.1), we obtain a representation of A as a sum of rank-1 matrices

A =
r∑

i=1

σiuiv
⊤
i . (2.2)

Since the σi’s are non-decreasing, an intuitive way to construct a rank-k approxima-

tion with k < r is the TSVD defined as

Ak =
k∑

i=1

σiuiv
⊤
i . (2.3)

Indeed, this intuition is verified by the Eckhart-Young-Mirsky theorem [40, 110, 58]

stated in the following.

Theorem 1 (The Eckhart-Young-Mirsky Theorem). Let the SVD of A be given

by (2.1) and k < r = rank(A), then

min
rank(B)=k

∥A−B∥2 = ∥A−Ak∥2 = σk+1, (2.4)

and

min
rank(B)=k

∥A−B∥F = ∥A−Ak∥F =

(
p∑

i=k+1

σ2
i

) 1
2

. (2.5)

Here ∥ · ∥F denotes the Frobenius norm, and Ak is the TSVD defined in (2.2).

Essentially, the Eckhart-Young-Mirsky theorem says that the best rank-k approxi-

mation to A in terms of both l2-norm and Frobenius norm is the TSVD. It shows that

the TSVD is a very powerful low-rank approximation method because it maintains

minimum information loss with a given rank in terms of the two norms.

2.1.2 Krylov Subspace Methods

We discuss Krylov subspace methods, a class of iterative algorithms that constructs

a low-rank approximation to a given matrix A. For large-scale problems, Krylov
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subspace methods are generally preferred over TSVD. This is because they do not

require the matrixA to be built explicitly but only require routines to perform matrix-

vector products with A and A⊤. We review three Krylov subspace methods that are

applied in this dissertation.

Lanczos Tridiagonalization Lanczos tridiagonalization [94] seeks to solve

Ax = b, (2.6)

where A ∈ Rn×n is a symmetric matrix. At the kth iteration, it computes the iterate

xk ∈ Kk(A,b) under the assumption that the initial vector x0 = 0, the zero vector.

Here Kk(A,b) is the Krylov subspace defined as

Kk(A,b) := span{b,Ab,A2b, ...,Ak−1b}. (2.7)

In particular, at the kth iteration, Lanczos tridiagonalization first generates

A ≈ VkTkV
⊤
k , (2.8)

where the columns of Vk ∈ Rn×k form an orthonomal basis for the Krylov subspace

Kk(A,b), and Tk ∈ Rk×k is a tridiagonal matrix. The kth iterate is then computed

by

xk = VkT
−1
k V⊤

k b. (2.9)

We note that Lanczos tridiagonalization is particularly useful for situations where

multiple instances of (2.6) with the same A and different b’s are to be solved. This

is because the solutions can be obtained by (2.9) by re-using (2.8), which does not

require performing the algorithm again. An implementation of Lanczos tridiagonal-

ization is given in Algorithm 1.
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Algorithm 1: Lanczos Tridiagonalization

1: Initialize x0 = 0, r0 = b, η1 = ∥r0∥2, v0 = 0, and v1 = r0/η.
2: for j = 1, 2, . . . , k do
3: wj = Avj − ηjvj−1

4: γj = w⊤
j vj

5: wj = wj − γjvj

6: ηj+1 = ∥wj∥2
7: if ηj+1 = 0 then
8: set k = j and break
9: end if
10: vj+1 = wj/ηj+1

11: end for
12: Output: Tk = tridiag(ηi, γi, ηi), Vk = [v1,v2, ...,vk]
13: Output: xk = VkT

−1
k V⊤

k b

Conjugate Gradient Method The conjugate gradient (CG) method [74] is for

solving (2.6) with a symmetric positive definite (SPD) matrix A ∈ Rn×n. An outline

of CG is given in Algorithm 2. A hallmark property for CG is that it generates

update pi’s such that they are conjugate to each other with respect to A, that is

p⊤
i Apj = 0 for all i ̸= j. CG can be derived by reformulating the iteration of Lanczos

tridiagonalization [56, Chapter 11.3.4]. Therefore, it returns the same iterate xk as

Lanczos tridiagonalization in exact arithmetic and is regarded as a Krylov subspace

method. Compared to Lanczos tridiagonalization, CG is more memory efficient as it

only stores iterates in the previous iteration. However, when one needs to solve (2.6)

with a different right-hand side, CG must be performed again to obtain the new

solution.

With an initial vector x0 = 0, the CG iterate xk satisfies

xk = argmin
x∈Kk(A,b)

∥x− x∗∥A, where Ax∗ = b.

In other words, the CG iterate minimizes the error in the A-norm over the Krylov

subspace Kk(A,b). Since when k = n the Krylov subspace is Rn, CG converges in

at most n iterations in exact arithmetic. In fact, it can converge even faster than
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Algorithm 2: Conjugate Gradient Method

1: Initialize x0 = 0, r0 = b, p0 = r0.
2: for j = 0, 1, 2, . . . , k − 1 do
3: τj = (r⊤j rj)/(p

⊤
j Apj)

4: xj+1 = xj + τjpj

5: rj+1 = rj − τjApj

6: νj = (r⊤j+1rj+1)/(r
⊤
j rj)

7: pj+1 = rj+1 + νjpj

8: end for
9: Output: xk

that, as it is guaranteed to converge in p iterations [122, Theorem 5.4], where p is the

number of distinct eigenvalues of A. This renders CG a remarkable tool for solving

SPD linear systems.

Paige-Saunders Bidiagonalization Paige-Saunders bidiagonalization [55, 125]

targets to transform a generally rectangular shapedA ∈ Rm×n, wherem does not nec-

essarily equal to n, into a lower bidiagonal form. In particular, at the kth iteration

it generates Vk ∈ Rn×k and Uk ∈ Rm×(k+1), whose columns form an orthonormal

basis for Kk(A
⊤A,A⊤b) and Kk+1(AA⊤,b), respectively, and a lower bidiagonal

Bk ∈ R(k+1)×k such that the following relationships hold

AVk = UkBk, (2.10)

A⊤Uk = VkB
⊤
k + αk+1vk+1e

⊤
k+1. (2.11)

Here ek+1 ∈ Rk+1 is the (k+1)th standard basis vector, αk+1 and vk+1 will be the

(k+1)th diagonal entry of Bk+1 and the (k+1)th column of Vk+1, respectively. The

algorithm is presented in Algorithm 3. Applications of Paige-Saunders bidiagonal-

ization include that it is used as the backbone of the LSQR [125, 126] algorithm for

solving least-squares problems.
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Algorithm 3: Paige-Saunders Bidiagonalization

1: Initialize u1 = b/∥b∥2, v0 = 0, β0 = 0
2: for j = 1, 2, . . . , k do
3: rj = A⊤uj − βj−1vj−1

4: αj = ∥rj∥2
5: vj = rj/αj

6: pj = Avj − αjuj

7: βj = ∥pj∥2
8: if βj = 0 then
9: set k = j − 1 and break
10: end if
11: uj+1 = pj/βj

12: end for
13: Output: Vk = [v1,v2, ...,vk], Uk = [u1,u2, ...,uk+1]
14: Output: Bk = lower bidiag(βi, αi)

2.2 Line Search Newton-Type Methods

Line search Newton-type methods are an effective class of solvers for optimization

problems. They have been applied extensively thanks to their ability to incorporate

curvature information and their superior local convergence rate. In this section, we

review line search Newton-type methods related to this dissertation.

Newton’s Method We begin our discussion by deriving the standard line search

Newton’s method. The method is usually obtained by an iterative minimization

of a local quadratic approximation. Here we use an alternative derivation, which

argues that the Newton update is the steepest descent direction with respect to the

metric induced by the Hessian. This perspective inspires the design of our projected

Newton-Krylov method in Chapter 3 and is also presented in [14, Chapter 9.4].

We consider an optimization problem

min
x

f(x), (2.12)

where f is twice differentiable. We define an iterative scheme that at the ith iteration
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reads

xi+1 = xi + µi∆xi, (2.13)

where µi is an appropriately chosen step size, e.g., by backtracking Armijo line search,

and ∆xi is the search direction given by

∆xi = ∥∇f(xi)∥Mi,∗di, (2.14)

with di = argmin
d

∇f(xi)
⊤d s.t. ∥d∥Mi

= 1. (2.15)

Here Mi is a symmetric positive definite matrix, ∥ · ∥Mi,∗ is the dual norm to ∥ · ∥Mi
,

and di is the steepest descent direction over the unit ball induced by ∥ · ∥Mi
. Because

di has unit length, it is re-scaled using (2.14). Since the dual norm and di have

closed form representations ∥y∥Mi,∗ = ∥y∥M−1
i

and di = M−1
i ∇f(xi)/∥∇f(xi)∥M−1

i
,

respectively, the search direction is given by

∆xi = M−1
i ∇f(xi). (2.16)

We see from (2.15) that the search direction is induced by the metric defined by Mi.

For instance, the choice of the identity matrix corresponds to the Euclidean metric and

gives the gradient descent direction ∆xi = −∇f(xi). Although the gradient descent

method is very simple, it only uses first-order (gradient) information and has linear

convergence under standard assumptions [14, Chapter 9.3]. Newton’s method adap-

tively incorporates local second-order (curvature) information in each iteration and

has superior convergence. In particular, it usesMi = ∇2f(xi), which induces the Hes-

sian metric and generates the Newton search direction ∆xi = −(∇2f(xi))
−1∇f(xi).

An outline of the standard Newton’s method is given in Algorithm 4. The standard

Newton’s method with step size µi = 1 attains local quadratic convergence to a local

minimum x∗ under the following assumptions [84, Theorem 2.3.3]:
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Algorithm 4: A Standard Line Search Newton’s Method

1: initialize x0

2: for i = 1, 2, . . . do
3: evaluate f(xi), ∇f(xi), and ∇2f(xi)
4: compute the search direction ∆xi = −(∇2f(xi))

−1∇f(xi)
5: set xi+1 = xi + µi∆xi, where µi is determined by a line search scheme
6: if stopping criteria are satisfied then
7: break
8: end if
9: end for
10: Output: approximate solution xi+1

1. f is twice differentiable and ∇2f is Lipschitz continuous,

2. ∇f(x∗) = 0, and

3. ∇2f(x∗) is positive definite.

Newton-Krylov Methods We note that the standard Newton search direction

solves the Newton equation

∇2f(xi)∆xi = −∇f(xi). (2.17)

For large problem sizes, it is not economical to solve (2.17) exactly or even build the

Hessian matrix. In addition, an accurate solution to (2.17) might not be necessary

since the local approximation model (2.15) used to derive the Newton iterations might

not estimate f well, especially when the current iterate xi is far away from the op-

timal solution. It is therefore practical to solve the Newton equation approximately.

Newton-Krylov methods apply Krylov subspace methods to (2.17) and stop the it-

erations at some appropriate solution to the system. Commonly, the iterations are

terminated when the norm of the residue ri = ∇2f(xi)∆xi +∇f(xi) is small enough

or when a negative curvature is encountered (for the case of indefinite Hessian). Since

a Krylov subspace method is used, it does not require access to entries of the Hessian
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Algorithm 5: A General Newton-Krylov Method

1: initialize x0

2: for i = 1, 2, . . . do
3: evaluate f(xi), ∇f(xi), and build functions to compute y 7→ ∇2f(xi)y
4: approximately solve the Newton equation (2.17) using Krylov subspace

methods to obtain the search direction ∆xi

5: set xi+1 = xi + µi∆xi, where µi is determined by a line search scheme
6: if stopping criteria are satisfied then
7: break
8: end if
9: end for
10: Output: approximate solution xi+1

but routines to perform matrix-vector products with the Hessian and is thus applica-

ble to large-scale problems. An outline for a general Newton-Krylov method is given

in Algorithm 5. Examples of the scheme include the Newton-CG method, which ap-

plies conjugate gradient (CG) method to (2.17). Other Krylov subspace methods are

also applied, e.g., Lanczos tridiagonalization [83, 117] and Arnoldi method [15, 120].

Newton-Krylov methods with step size µi = 1 attains local superlinear convergence

to a local minimum x∗ under the following assumptions [84, Theorem 2.5.2]:

1. f is twice differentiable and ∇2f is Lipschitz continuous,

2. ∇f(x∗) = 0,

3. ∇2f(x∗) is positive definite, and

4. the iterations of the Krylov-subspace method are terminated when the norm of

the residue ∥ri∥2 ≤ ηi∥∇f(xi)∥2, where 0 ≤ ηi ≤ η < 1 and lim
i→∞

ηi = 0.

Modified Newton’s Methods In some applications, the Hessian matrix is not

positive definite or is rank-deficient. In the former case, the search direction might

not be a descent direction, and in the latter case, the Newton equation (2.17) can

be inconsistent. In modified Newton’s method, this is overcome by adding a shift
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Algorithm 6: A Modified Newton’s Method

1: initialize x0

2: for i = 1, 2, . . . do
3: evaluate f(xi), ∇f(xi), and ∇2f(xi)
4: compute τi such that Bi = ∇2f(xi) + τiI is sufficiently positive definite
5: solve Bi∆xi = ∇f(xi)
6: set xi+1 = xi + µi∆xi, where µi is determined by a line search scheme
7: if stopping criteria are satisfied then
8: break
9: end if
10: end for
11: Output: approximate solution xi+1

to the Hessian matrix so that it is sufficiently positive definite. The choice of the

shift is pivotal to determining the search direction of the scheme. An idea pertinent

to our numerical experiments and perhaps the simplest is to add a multiple of the

identity so that the smallest eigenvalue is bounded away from zero. An example of

the line search modified Newton’s method is presented in Algorithm 6. The global

convergence of Algorithm 6 to a stationary point is guaranteed under the following

assumptions [122, Theorem 3.8]:

1. f is twice continuously differentiable,

2. the level set {x : f(x) ≤ f(x0)} is compact, and

3. cond(Bi) ≤ c for some c > 0 and all for all i = 0, 1, 2, ...

2.3 Machine Learning

We conclude this chapter by describing supervised classification problems that will

be used in our numerical experiments. We begin by introducing the problem and

the random feature model. We then formulate the linear regression and multinomial

logistic regression problems. We finally describe two image classification datasets.
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Supervised Classification Problems Let nf be the number of features, nc be

the number of classes, and ∆nc be the nc-dimensional unit simplex. We denote the

set of data (not necessarily with finite cardinality) by D ⊂ Rnf × ∆nc , where each

element (y, c) ∈ D is a pair of input feature and target output label.

We partition D into a training set Dtrain, a validation set Dval, and a test set

Dtest. The goal of supervised classification is to obtain a classifier by utilizing the

information from the training and validation sets so that it can generalize well, i.e., it

accurately predicts the label for the test set. Specifically, the training set is directly

used in the optimization. The validation set is used to gauge the generalization of the

classifier and tune parameters through cross-validation, and the test set is not used

in training but only in performance evaluation.

Random Feature Models The input features y are often embedded into an-

other space which can better describe the input-output relationship. This mapping

y 7→ a(y) is known as feature extraction. Here we review a feature extraction tech-

nique called the random feature model (RFM) [131], also known as extreme learning

machines [79]. RFM propagates the features into a higher dimensional space Rm by

applying a random nonlinear transformation

aRFM(y) = σ(Zy + b), (2.18)

where σ is an element-wise nonlinear activation function, Z ∈ Rm×nf and b ∈ Rm

are randomly generated. For an appropriately chosen m, improved generalizability is

empirically obtained [104, 82].

Problem setup We target to obtain a classifier s(·;W) : Rm → Rnc such that

s(a(y);W) ≈ c, where W is the model parameters and a can be any feature ex-

tractors, e.g., RFM or hidden layers of a neural network [119, 120]. To this end, we
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consider the sample average approximation (SAA) [89, 118, 87] of a training problem

formulated as

min
W

1

|T |
∑

(y,c)∈T
L(s(a(y);W), c). (2.19)

Here, L is a loss function measuring the discrepancy between the classifier and the

target output, and T is a finite subset of the training set Dtrain. We consider two

major types of training problems. The first type is the linear regression problem which

uses a linear classifier sLR(a(y);W) = Wa(y) and squared loss LLR(s, c) =
1
2
∥s−c∥22.

It is expressed as

min
W

∑
(y,c)∈T

1

2|T |∥Wa(y)− c∥22. (2.20)

The second type is the multinomial logistic regression (MLR). It uses the softmax

function sMLR(·;W) : Rm → ∆nc as its classifier, which is given by

sMLR(a(y);W) =
exp(Wa(y))

1⊤
nc
exp(Wa(y))

. (2.21)

Here 1nc ∈ Rnc is the vector of all ones, ∆nc is the nc-dimensional unit simplex,

and the exponential function is applied element-wise. It uses the cross-entropy loss

function LMLR(s, c) = −c⊤ log s and is formulated as

min
W

− 1

|T |
∑

(y,c)∈T
c⊤ log

(
exp(Wa(y))

1⊤
nc
exp(Wa(y))

)
= min

W
− 1

|T |
∑

(y,c)∈T

[
(c⊤1nc) log

(
1⊤
nc
exp(Wa(y))

)
− c⊤Wa(y)

]
= min

W
− 1

|T |
∑

(y,c)∈T

[
log
(
1⊤
nc
exp(Wa(y))

)
− c⊤Wa(y)

]
.

(2.22)

Here we use the fact that c⊤1nc = 1 since c ∈ ∆nc . A derivation of the gradient and

Hessian for the MLR problem is provided in Appendix A.
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Figure 2.1: Example images from the MNIST dataset
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Figure 2.2: Example images from the CIFAR-10 dataset

Datasets In this dissertation, we perform numerical experiments on supervised clas-

sification using two datasets. The first is the MNIST dataset which consists of 60, 000

28× 28 hand-written images for digits from 0 to 9. The second one is the CIFAR-10

dataset which consists of 60, 000 32× 32 color images equally distributed for the fol-

lowing ten classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and

truck. Example images for the two datasets are shown in Figure 2.1 and Figure 2.2,

respectively.
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Chapter 3

A Projected Newton-Krylov

Method for Large-Scale

Bound-Constrained Optimization

The work in this chapter is based on [83] and was done in collaboration with Samy Wu

Fung and Lars Ruthotto. This chapter presents PNKH-B, a projected Newton-Krylov

method to efficiently solve large-scale bound-constrained optimization problems. In

particular, PNKH-B is designed to handle situations in which function and gradient

evaluations are expensive, and the (approximate) Hessian is only available through

matrix-vector products. In each iteration, PNKH-B constructs a low-rank approxi-

mation to the (approximate) Hessian to induce the search direction and projection.

The key contribution in this work is a projection metric defined using the low-rank

approximation and an interior point implementation which effectively exploits the

low-rank structure of the (approximate) Hessian to solve the projection problem.

This chapter is organized as follows. Firstly, we describe the general problem

setup. Secondly, we review related projected Newton methods to motivate our ap-

proach. Thirdly, we give an outline for our method PNKH-B. Fourthly, we present
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the derivation and implementation of the interior point method. Fifthly, we provide

a global convergence proof of our method. Lastly, we conclude the chapter with three

numerical experiments.

3.1 Problem Description

In this work, our goal is to approximately solve large-scale bound-constrained opti-

mization problems formulated as

min
x

f(x) subject to l ≤ x ≤ u. (3.1)

Here, f : Rn → R is twice differentiable, the inequalities are applied component-wise,

and the vectors l,u ∈ Rn ∪ {±∞} with l ≤ u define the bound constraints. To be

precise, we focus on solving large-scale problems in which evaluating the objective

function f , and its gradient ∇xf are computationally expensive, and its (approx-

imate) Hessian is only available through matrix-vector products. This is common

in problems like PDE parameter estimation [36, 46, 64, 107, 134, 149, 152], image

processing [19, 76, 77, 78, 145, 146, 150], neural networks [21, 153, 67, 65, 66, 133],

etc. PNKH-B targets to approximately solve these problems with as few objective

function and gradient evaluations and Hessian-vector products as possible, due to

their costly computations.

3.2 Related Work and Motivation

Projected inexact Newton and quasi-Newton methods are among the most effective

and popular solvers for problems of type (3.1). Generally, their kth iteration reads

xk+1 = Π∥·∥Pk
(yk+1) , with yk+1 = xk − µkH

−1
k ∇f(xk), (3.2)
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where Hk is a low-rank approximation to the (approximate) Hessian, µk is a step size,

and the projection matrix Pk induces Π∥·∥Pk
, the projection operator onto the bound

constraints. More specifically,

Π∥·∥Pk
(y) = argmin

z

1

2
∥z− y∥2Pk

, subject to l ≤ z ≤ u. (3.3)

We slightly abuse notation and denote the pseudoinverse of Hk by H−1
k in order to be

consistent with the conventional notation used in Newton’s method. The (semi-)norm

induced by the matrix Pk is defined by ∥v∥Pk
:=

√
v⊤Pkv for all v ∈ Rn. We also

refer to pseudometric as metric for simplicity of exposition in the following discussion.

One property that can be used to group existing schemes is the metric used to

determine the search direction and the projection. We refer to schemes that use

the same metric for both steps as one-metric schemes and schemes that use different

metrics for the two steps as two-metric schemes. Another distinguishing feature is

the order in which projections and line searches are performed. Schemes that project

each line search iterate in general lead to a piecewise linear arc, while applying the

projection only once before the line search yields a linear arc. In the following,

we review existing methods according to these choices and provide an example to

highlight their differences.

An extensively studied two-metric scheme [10, 47] uses a search direction induced

by an approximated Hessian norm and a projection with respect to the Euclidean

metric. That is, its expression in each iteration is given by (3.2) and (3.3) with

Pk = I, the identity matrix. In this setting, the projection (3.3) admits a simple

closed-form solution

Π∥·∥I(y) = Π∥·∥2(y) = max{min{y,u}, l}. (3.4)

Also, its line search induces a piecewise linear arc, see Figure 3.1. Despite the low
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computational cost of the projection problem, its convergence is not guaranteed in

general, see Example 1, [10] and [84, Chapter 5.5.1]. The global convergence of this

approach for convex problems with linear constraints was proven in [10, 47] when

a variable partitioning scheme is used. It partitions the components of the kth it-

erate into an active set in which the components are at or close to the boundary

of the feasible set and an inactive set in which the components are in the interior

of the feasible set. A search direction induced by the Euclidean norm is used for

the active components, and a search direction induced by ∥ · ∥Hk
is used for the

inactive components. They prove local superlinear convergence under certain condi-

tions. Since then, variable partitioning has become a recurring theme for two-metric

schemes [64, 73, 85, 95, 96, 97, 137]. Although the projection of the convergent two-

metric scheme (3.4) can be computed immediately, it requires appropriate scaling for

the Euclidean norm induced search direction before combining the two search direc-

tions. Moreover, when many constraints are active, two-metric schemes essentially

become projected gradient methods. A specific drawback in Newton-Krylov schemes

for large-scale problems is that the partitioning of the variables complicates the de-

sign of effective preconditioners. Given a preconditioner Mk for the Hessian ∇2f(xk)

and Qk the projection operator onto the inactive set at the kth step, the most natu-

ral choice is to precondition Q⊤
k ∇2f(xk)Qk by Q⊤

k M
−1
k Qk. Since it is intractable to

compute (Q⊤
k M

−1
k Qk)

−1, one might use the approximation Q⊤
k MkQk. However, note

that (Q⊤
k M

−1
k Qk)

−1 ̸= Q⊤
k MkQk in general.

Another well-studied approach is one-metric methods with a linear arc. Generally,

it is performed as follows. At the kth iteration, it (approximately) solves (3.2) with

µk = 1 and Pk = Hk to obtain a projection. Then it performs a line search along

the straight line connecting the current iterate xk and the projection; this linear line

search is done in order to limit the number of solving costly projections. This scheme

is studied with different approximations of the Hessian, solvers for the projection (3.2)



26

with µk = 1 or backtracking schemes to determine the next iterate xk+1. For instance,

the widely-applied L-BFGS-B [16, 113] uses a limited-memory BFGS matrix for Hk

and approximately solves the projection (3.2) with µk = 1 without any constraints,

then it truncates the path toward the solution in order to satisfy the constraints.

Finally, it backtracks along the straight line to obtain xk+1. Other variants of this

one-metric method with linear arc include [5, 6, 68, 100, 136]. Although the consistent

choice of metric could generate a better update direction than the two-metric scheme,

it results in a suboptimal iterate which does not lie in the boundary whenever a step

size of 1 is not used.

Inspired by projected variable metric methods, our PNKH-B takes the form (3.2)

and (3.3). It constructs Hk, a low-rank approximation to the (approximate) Hessian,

using Lanczos tridiagonalization to compute a basis to the Krylov subspace defined

by the (approximation) Hessian and gradient at the kth step. It uses Pk = H̃k,

where H̃k is a symmetric positive definite matrix that equals to Hk on the Krylov

subspace. This renders the projection problem well-defined. To be more specific, the

kth iteration of PNKH-B reads

xk+1 = Π∥·∥H̃k
(yk+1) , with yk+1 = xk − µkH

−1
k ∇f(xk), (3.5)

and Π∥·∥H̃k
(y) = argmin

z

1

2
∥z− y∥2

H̃k
, subject to l ≤ z ≤ u. (3.6)

PNKH-B is a generalized one-metric (or generalized variable metric) method because

the variable metric used to determine the search direction and the projection are

equivalent on the subspace spanned by Hk. In each line search, that is, for each

attempted value of µk, it is required to solve the quadratic projection problem Equa-

tion (3.6), which has no closed form solution. However, thanks to the low-rank

structure of Hk and an effective implementation of an interior point method, the

computational overhead for the projection is negligible; see Section 3.3.2. Due to the
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consistent choice of metrics for the search direction and projection and an adaptive

piecewise linear line search, PNKH-B can generate a better iterate when compared

to the existing approaches; see Figure 3.1.

Example 1. We illustrate the differences between one-metric and two-metric schemes

with linear and piecewise linear arcs, respectively, using a two-dimensional quadratic

program

min
x

1

2
x⊤Hx+ b⊤x subject to l ≤ x ≤ u. (3.7)

The first iteration before projection of the one-metric method with piecewise linear

arc reads

y1(µ) = x0 − µH−1∇f(x0) = (1− µ)x0 − µH−1b,

where µ is a step size determined by a backtracking line search scheme. The projection

with the Hessian metric is given by

Π∥·∥H(y1(µ)) = argmin
l≤z≤u

1

2
z⊤Hz− (1− µ)z⊤Hx0 + µb⊤z. (3.8)

When µ = 1, i.e., the first step of the backtracking line search, the projection problem

is equivalent to the original optimization problem. So the backtracking line search

stops at the first step, and the one-metric method with the piecewise linear line search

converges in one iteration. This is because the Hessian metric projection is consistent

with the steepest descent direction H−1∇f induced by the Hessian metric. If for a non-

quadratic objective function, the initial step size is not accepted, then the piecewise

linear and linear arc lead to different iterates; see Figure 3.1. Solving the projection

problem with the Euclidean metric leads to a suboptimal projection at which the scheme

stagnates in the absence of any of the remedies outlined above.
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Figure 3.1: Figure description: An illustration of the first iterations of different meth-
ods on the quadratic optimization problem (3.7), where H = [1, 1; 1, 2], b = [1; 1],
l = [−5; 3], u = [0; 8], x0 = [−3; 7], y1 = x0 − H−1∇f(x0) = −H−1b = [−1; 0] is
the updated variable before projection, Π∥·∥H(y1) = [−4; 3] is the projection with the
Hessian metric and is the optimal solution, and Π∥·∥2(y1) = [−1; 3] is the projection
with the Euclidean metric. The linear/piecewise linear line search arcs for one/two-
metric methods are shown. The one-metric piecewise linear arc, which is used in our
proposed PNKH-B, is the best one as it searches along the boundary and gives the
optimal solution. The one-metric linear arc is less natural, does not search along the
boundary, and gives suboptimal iterate whenever step size 1 is not used. Finally, the
two-metric piecewise linear arc searches for the opposite direction of the one-metric
piecewise linear arc. It gives a suboptimal iterate Π∥·∥2(y1) and it will be stuck at
Π∥·∥2(y1) even when the exact Hessian is used, i.e., it generates Π∥·∥2(yk) = Π∥·∥2(y1)
for all k ≥ 2.
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3.3 PNKH-B

We describe the proposed PNKH-B in this section. In Section 3.3.1, we present an

outline of the algorithm. At each iteration, each backtracking line search requires

computing a projection, which is a quadratic program. In Section 3.3.2, we present

the derivation and implementation of an interior point method to solve the quadratic

program effectively. In Section 3.3.3, we present two variants of our PNKH-B, which

incorporate the current estimates of the active set.

3.3.1 Outline of PNKH-B

PNKH-B is a projected Newton-Krylov method with a low-rank approximated Hes-

sian metric geared toward large-scale bound-constrained optimization problems. It is

a generalized one-metric scheme whose iteration is given by (3.5) and (3.6).

The global convergence of PNKH-B is guaranteed under standard assumptions;

see Section 3.4. We set Hk as a low-rank approximation of the (approximate) Hessian

at xk generated by Lanczos tridiagonalization [94]. Specifically, the Krylov subspace

is defined by the (approximate) Hessian and gradient at xk. Therefore, the search

direction obtained from the rank-l approximation is equal to that obtained using l

steps of the conjugate gradient method (CG) up to roundoff errors. However, storing

the low-rank Hessian approximation allows its re-use to compute the projection. The

low-rank approximation is given by Hk = VkTkV
⊤
k , where Vk ∈ Rn×l has orthonor-

mal columns, Tk ∈ Rl×l is tridiagonal and l is the rank of the low-rank approximation.

We slightly abuse notation and denote the pseudoinverse VkT
−1
k V⊤

k by H−1
k in or-

der to be consistent with the conventional notation used in Newton’s method. The

positive definite matrix H̃k used to define the projection norm is obtained by ap-

plying a shift in the orthogonal complement of the Krylov subspace to Hk. Lanczos

tridiagonalization is suitable for large-scale problems because it does not require the
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explicit (approximate) Hessian Gk, but only the function gk : y 7→ Gky. Using

the low-rank approximation, we effectively compute the pseudoinverse H−1
k and the

projection Π∥·∥H̃k
(·), which has to be done once for each line search. The projection

problem is solved using an interior point method, which exploits the low-rank ap-

proximation effectively and scales only linearly with the number of variables. The

interior-point method will be discussed in Section 3.3.2. The outline of our PNKH-B

is summarized in Algorithm 7.

Although not shown here, our method can be straightforwardly extended to other

low-rank representations, e.g., arising in L-BFGS [16, 33, 53]. However, we focus on

inexact Newton methods because we aim to solve large-scale problems using as few

evaluations as possible, and quasi-Newton methods generally require more iterations

to convergence than inexact Newton methods [64, Chapter 6].

3.3.2 Interior Point Method

In this section, we present the derivation and effective implementation of the interior

point method tailored to exploit the low-rank structure in (3.6).

Derivation We use a standard primal-dual interior point method to solve the pro-

jection problem (3.6), which we derive following the outline in [122, Chapter 16.6].

To obtain xk+1, we re-formulate (3.6) as

min
z,w

1

2
z⊤H̃kz− z⊤H̃kyk+1 subject to Kz− b = w and w ≥ 0,

where H̃k = VkTkV
⊤
k + cUkU

⊤
k is the low-rank approximation of the (approxi-

mate) Hessian plus a small shift c > 0 in the orthogonal complement spanned by
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Algorithm 7: Outline of PNKH-B for solving (3.1)

1: Inputs: Initial guess x0 ∈ C, tolerance xtol and gtol, line search parameter
α ∈ (0, 1), and the rank of the low-rank approximation l

2: for k = 0, 1, 2, . . . do
3: select estimate of active set, Ak ∈ {∅,Abound

k ,Aaug
k }, and build projection

matrices Qk and Rk.
4: compute f(xk), ∇f(xk) and (approximate) Hessian Gk ≈ ∇2f(xk)
5: compute the Lanczos tridiagonalization Fk = VkTkV

⊤
k ≈ QkGkQ

⊤
k with

initial vector −Qk∇f(xk) (using matrix-free implementation)
6: compute the Hessian approximation Hk in (3.16) and the search direction

−H−1
k ∇f(xk)

7: set µ = 1
8: for i = 0, 1, 2, . . . do
9: solve the projection xt = Π∥·∥H̃k

(xk − µH−1
k ∇f(xk)) (see Section 3.3.2)

10: if f(xt) < f(xk) + α∇f(xk)
⊤(xt − xk) then

11: set xk+1 = xt and break
12: else
13: set µ = µ/2
14: end if
15: end for
16: if ∥xk+1 − xk∥2/∥xk∥2 < xtol or norm of projected gradient < gtol then
17: break
18: end if
19: if µ = µold then
20: set µ = min(1.5 ∗ µ, 1)
21: end if
22: end for
23: Output: approximate solution xk+1 ∈ C.

Uk ∈ Rn×(n−l), w ∈ R2n is a slack vector and

K =

 I

−I

 and b =

 l

−u

 .
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From this, we obtain the KKT conditions

H̃kz− H̃kyk+1 −K⊤λ = 0, (3.9a)

Kz− b−w = 0, (3.9b)

wiλi = 0, for i = 1, ..., 2n, (3.9c)

w ≥ 0 , λ ≥ 0, (3.9d)

where λ ∈ R2n is a vector of Lagrange multipliers. Since the problem (3.6) is convex

and the interior of the feasible set is non-empty, Slater’s condition is satisfied, and

hence the KKT conditions are necessary and sufficient. As usual in interior point

methods, we consider the perturbed KKT conditions

F (z,w,λ;σ, ξ) =


H̃kz− H̃kyk+1 −K⊤λ

Kz− b−w

WΛe− σξe

 = 0, (3.10)

where W = diag(w), Λ = diag(λ), e ∈ R2n is a vector of ones, σ ∈ [0, 1] and

ξ = w⊤λ/(2n) is the duality measure. The solutions of (3.10) define the central path

and tend to the solution of (3.9) [122, Section 16.6]. We then apply Newton’s method

to find the root of the system (3.10). At the jth iteration of Newton’s method, the

step is obtained by solving


H̃k 0 −K⊤

K −I 0

0 Λj Wj



∆zj

∆wj

∆λj

 =


−rj

−vj

−WjΛje+ σξje

 , (3.11)
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which is obtained by differentiating F in (3.10) and setting

rj = H̃kzj − H̃kyk+1 −K⊤λj,

vj = Kzj − b−wj.

Here, rj and vj are the dual and primal residuals, respectively. After computing ∆zj,

∆wj and ∆λj, the update of the interior point method is

(zj+1,wj+1,λj+1) = (zj,wj,λj) + βj(∆zj,∆wj,∆λj),

where βj = min(βpri
j , βdual

j ) and

βpri
j = max{β ∈ (0, 1] : wj + β∆wj ≥ (1− τ)wj},

βdual
j = max{β ∈ (0, 1] : λj + β∆λj ≥ (1− τ)λj}.

The parameter τ ∈ (0, 1] controls the distance to the boundary of the feasible set.

While there are other schemes to determine the step size (see, e.g., [31]), this simple

choice has been effective in our experiments.

Efficient Implementation The most crucial step of the interior point method is

the computation of the solution of the step in (3.11). Our implementation exploits

the low-rank structure of Hk to directly solve the linear system with O(nl2) floating

point operations, where l is the rank of the low-rank approximation; see Algorithm 8

for an overview.

To compute the update, we first multiply the third equation of (3.11) by Λ−1
j and
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add it to the second equation of (3.11) and obtain

H̃k −K⊤

K Λ−1
j Wj


∆zj

∆λj

 =

 −rj

−vj −wj + σξjΛ
−1
j e

 . (3.12)

Multiplying the second equation of (3.12) by K⊤W−1
j Λj and adding it to the first

equation, we obtain

(H̃k +K⊤W−1
j ΛjK)∆zj = −rj +K⊤pj, (3.13)

where pj = W−1
j Λj(−vj − wj + σξjΛ

−1
j e). Recall that H̃k = VkTkV

⊤
k + cUkU

⊤
k

is the low-rank Hessian approximation plus a shift in the orthogonal complement of

the Krylov subspace, where c > 0. This shift is only applied to the projection matrix

but not the matrix of the search direction H−1
k ∇f(xk). This is because the inverse of

the shift c−1 is large and will dominate the search direction. The right-hand side of

(3.13) can be computed explicitly in O(n) operations. Since UkU
⊤
k = I−VkV

⊤
k , we

can compute H̃k as

H̃k = VkTkV
⊤
k + cUkU

⊤
k = Vk(Tk − cIl)V

⊤
k + cI

without explicitly computing Uk. Defining Ej = cI+K⊤W−1
j ΛjK and noticing that

Ej is diagonal and invertible, we can use the Woodbury matrix identity to invert the

left-hand side of (3.13). Specifically

(H̃k + Ej)
−1 = (Vk(Tk − cIl)V

⊤
k + Ej)

−1

= E−1
j − E−1

j Vk︸ ︷︷ ︸
∈Rn×l

((Tk − cIl)
−1 +V⊤

k E
−1
j Vk)

−1︸ ︷︷ ︸
∈Rl×l

V⊤
k E

−1
j︸ ︷︷ ︸

∈Rl×n

,
(3.14)

where l is the rank of the low-rank approximation. From (3.14), we see that it requires
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Algorithm 8: Interior Point Method for the Projection Problem (3.6)

1: Inputs: low-rank approximation VkTkV
⊤
k ≈ ∇2f(xk), point to be projected

yk+1, initial guess z0 ∈ Rn, λ0,w0 ∈ R2n, τ ∈ (0, 1], tol > 0
2: for j = 0, 1, 2, . . . do
3: compute rj = H̃kzj − H̃kyk+1 −K⊤λj

4: compute vj = Kzj − b−wj

5: compute pj = W−1
j Λj(−vj −wj +Λ−1

j σξje)

6: compute Ej = cI+K⊤W−1
j ΛjK

7: compute
∆zj =

(
E−1

j − E−1
j Vk((Tk − cIl)

−1 +V⊤
k E

−1
j Vk)

−1V⊤
k E

−1
j )(−rj +K⊤pj)

8: compute ∆λj = pj −W−1
j ΛjK∆zj

9: compute ∆wj = K∆zj + vj

10: compute βj = min(βpri
τ , βdual

τ ), where
βpri
τ = max{β ∈ (0, 1] : wj + β∆wj ≥ (1− τ)wj} and

βdual
τ = max{β ∈ (0, 1] : λj + β∆λj ≥ (1− τ)λj}

11: update the variables (zj+1,wj+1,λj+1) = (zj,wj,λj) + βj(∆zj,∆wj,∆λj)
12: if ∥rj∥2 < tol and ∥vj∥2 < tol then
13: break
14: end if
15: end for
16: Output: zj+1 approximate projection of yk+1 onto C

O(nl2) flops to compute the solution ∆zj of (3.13). After obtaining ∆zj, we substitute

∆zj into (3.11) and (3.12) and obtain

∆λj = pj −W−1
j ΛjK∆zj, and ∆wj = K∆zj + vj,

whose computation require O(n) flops.

Overall, exploiting the structure of H̃k, the interior point method requires O(nl2)

flops per iteration, where n is the number of variables.

3.3.3 Incorporating Estimates of the Active Set

We introduce two variants of PNKH-B that seek to accelerate the convergence by

using estimates of the active set. The intuitive idea is to ignore coordinate dimensions

associated with constraints that are currently active during the construction of the
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low-rank approximation Hk. To this end, we partition xk into active and inactive

components. To update the inactive coordinates, we exploit curvature information,

and to update the active coordinates, we use a scaled projected gradient descent

step. Our procedure and estimation of the active coordinates are essentially the

same as in the two-metric schemes [10, 64, 137], which crucially rely on this step to

ensure convergence. Being a generalized one-metric scheme, the convergence theory

of PNKH-B applies both with and without partitioning. However, in practice it can

be advantageous to use estimates of the active set because with variable partitioning,

the active/inactive set information is incorporated into the low-rank approximation.

Thus the search direction can capture more feasible directions.

At the kth iteration, let Ak ⊂ {1, 2, . . . , n} contain the indices of the components

that are estimated to be active and let m = |Ak|. We denote with Qk ∈ Rm×n and

Rk ∈ R(n−m)×n the projection operators onto the inactive and active set, respectively.

For example, Rk can be constructed by selecting the rows of an identity matrix

associated with Ak. We shall discuss two common choices for constructing Ak below.

Given Qk and Rk, the intermediate step in (3.5) is

yk+1 = xk − µk

(
Q⊤

k F
−1
k Qk∇f(xk) + ν−1

k R⊤
k Rk∇f(xk)

)
. (3.15)

Here, Fk is a rank-l approximation of the projected (approximate) Hessian QkGkQ
⊤
k

and the constant νk > 0 is used to balance the sizes of both steps. In practice, this

number is often chosen based on the norm of the step for the inactive components.

We set νk = ∥Rk∇f(xk)∥∞/∥F−1
k Qk∇f(xk)∥∞ in our experiments. One can verify

that this leads to the PNKH-B scheme with the Hessian approximation

Hk =

(
Q⊤

k R⊤
k

)Fk 0

0 νkIm


Qk

Rk

 . (3.16)
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We use the separability introduced by this construction in the projection, which

decouples into using (3.4) on the active components and using the interior point

method on the inactive components.

We obtain two variants of PNKH-B that differ only by the strategy to estimate

active and inactive variables.

PNKH-B (boundary index) Perhaps the most straightforward estimate of the

active set is to choose the components that are within an ϵ margin around the bound-

ary, where ϵ > 0, i.e.,

Abound
k = {i : (xk)i ≤ li + ϵ or (xk)i ≥ ui − ϵ}. (3.17)

This choice has been used successfully in [64].

PNKH-B (augmented index) As an alternative active set estimation scheme,

we use the one proposed in [10, 137]. The idea is that in addition to the ϵ margin, we

consider the sign of the partial derivative so that curvature information is used for

those constraints predicted to become inactive, i.e.,

Aaug
k = {i : [(xk)i ≤ li + ϵ ∧ ∂if(xk) > 0] or [(xk)i ≥ ui − ϵ ∧ ∂if(xk) < 0]} .

(3.18)

3.4 Proof of Global Convergence

In this section, we introduce and prove the theorem, which guarantees the global

convergence of PNKH-B under mild assumptions. We first state the main theorem.

Theorem 2 (Global Convergence). Suppose

1. f is twice differentiable, and ∇f is Lipschitz continuous.
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2. infx{f(x)|x ∈ C} is attained, and C is a box.

3. The norm of the projection in our method is induced by

H̃k = Hk + cUkU
⊤
k = VkTkV

⊤
k + cUkU

⊤
k ,

which is the low-rank approximation of the Hessian using Lanczos tridiagonal-

ization plus a positive shift in the orthogonal complement of the Krylov subspace.

Moreover, it is symmetric and uniformly positive definite, i.e., H̃k ⪰ sI for some

s > 0 and for all k ∈ N.

Then the sequence {xk}k generated by PNKH-B converges to a stationary point of

(3.1) regardless of the choice of the starting point x0 ∈ C.

The assumptions hold for PNKH-B with and without variable partitioning. Hence

unlike two-metric methods, the convergence of PNKH-B does not hinge upon ac-

tive/inactive variable partitioning. Also, the theorem can also be straightforwardly

extended to the preconditioned setting by repeating the same process in the proof.

Moreover, from the theorem, we obtain that our methods globally converge to the

optimal solution for convex problems. We now begin to prove the theorem. The proof

follows the approach in [100], which studies proximal Newton-type methods. We first

state and prove some lemmas, which will be used to prove the global convergence.

Lemma 1 (Descent Direction). If f is twice differentiable, Hk = VTV⊤ is gener-

ated by Lanczos tridiagonalization with initial vector ∇f(xk), the projection norm is

induced by H̃k = Hk + cUkU
⊤
k , where Uk contains orthonormal basis vectors of the

orthogonal complement of the Krylov subspace, and C is a box, then for any µk > 0,

the update step dk := xk+1 − xk generated by (3.5) and (3.6) satisfies

∇f(xk)
⊤dk ≤ − 1

µk

d⊤
k H̃kdk. (3.19)
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Hence the update step dk is a descent direction.

Proof of Lemma 1. By the second projection theorem [4, Chapter 9.3], the iterate

xk+1 = Π∥·∥H̃k
(yk+1) if and only if

(yk+1 − xk+1)
⊤H̃k(z− xk+1) ≤ 0 for all z ∈ C. (3.20)

Substituting yk+1 = xk − µkVkT
−1
k V⊤

k ∇f(xk) and z = xk in (3.20), we obtain

(xk − µkVkT
−1
k V⊤

k ∇f(xk)− xk+1)
⊤H̃k(xk − xk+1) ≤ 0. (3.21)

Substituting dk = xk+1 − xk and H̃k = VkTkV
⊤
k + cUkU

⊤
k into (3.21) and by the

fact that the columns of Vk are orthogonal to that of Uk, we get

d⊤
k H̃kdk + µk∇f(xk)

⊤ (VkV
⊤
k

)
dk ≤ 0. (3.22)

Noting that the Lanczos algorithm is initialized by the normalized gradient vector,

the first column of Vk is given by

v1 =
∇f(xk)

∥∇f(xk)∥2
=

∇f(xk)

γ
.

Consequently, we obtain

∇f(xk)
⊤ (VkV

⊤
k

)
dk = γv⊤

1

(
VkV

⊤
k

)
dk

= γ

[
1 0 . . . 0

]
V⊤

k dk

= γv⊤
1 dk

= ∇f(xk)
⊤dk.

(3.23)
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Plugging this into (3.22), we finally obtain

µk∇f(xk)
⊤dk ≤ −d⊤

k H̃kdk, (3.24)

which is equivalent to (3.19).

Lemma 2 (Armijo Line Search Condition). Suppose C is a box, ∇f is Lipschitz

continuous with constant L > 0, H̃k’s are symmetric, and H̃k ⪰ sI for all k ∈ N and

for some s > 0, i.e.

||z||2
H̃k

≥ s||z||22, for all z and for all k ∈ N.

For line search parameter α ∈ (0, 1), if step size µk satisfies

µk ≤ min

(
1,

2s

L
(1− α)

)
,

then the following sufficient descent condition is satisfied

f(xk+1) ≤ f(xk) + α∇f(xk)
⊤(xk+1 − xk). (3.25)

Proof of Lemma 2. Since xk,xk+1 ∈ C, by the Lipschitz continuity of ∇f , we have

f(xk+1) ≤ f(xk) +∇f(xk)
⊤(xk+1 − xk) +

L

2
∥xk+1 − xk∥22

= f(xk) +∇f(xk)
⊤(xk+1 − xk) +

Lµk

2

(
1

µk

∥xk+1 − xk∥22
)

≤ f(xk) +∇f(xk)
⊤(xk+1 − xk) + s(1− α)

(
1

µk

∥xk+1 − xk∥22
)

≤ f(xk) +∇f(xk)
⊤(xk+1 − xk) + (1− α)

(
1

µk

∥xk+1 − xk∥2H̃k

)
≤ f(xk) +∇f(xk)

⊤(xk+1 − xk)− (1− α)∇f(xk)
⊤(xk+1 − xk)

≤ f(xk) + α∇f(xk)
⊤(xk+1 − xk).
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Here, the third step uses µk ≤ 2s
L
(1 − α), the fourth step utilizes H̃k ⪰ sI, and

the fifth step applies (3.19). Note that Lemma 1 implies ∇f(xk)
⊤(xk+1 − xk) ≤ 0,

therefore (3.25) is a sufficient descent condition.

Lemma 3. Suppose the assumptions on f , C and H̃k’s are the same as those in

Lemma 2. Also, the backtracking Armijo line search scheme in Algorithm 7 is used.

Then x∗ is a stationary point of (3.1) if and only if x∗ is a fixed point of our method.

Proof of Lemma 3. The iterate x∗ is a fixed point of our method if and only if

x∗ = Π∥·∥H̃∗

(
x∗ − µ∗V∗T

−1
∗ V∗∇f(x∗)

)
, (3.26)

where H̃∗ is the shifted Hessian approximation, and µ∗ > 0 is the step size determined

by the line search scheme. By the second projection theorem again, it is equivalent

to

(x∗ − µ∗V∗T
−1
∗ V∗∇f(x∗)− x∗)

⊤H̃∗(z− x∗) ≤ 0 for all z ∈ C.

Using H̃∗ = V∗T−1
∗ V∗ + cU∗U⊤

∗ , and following the same approach as in (3.23), this

is simplified to ∇f(x∗)⊤(z− x∗) ≥ 0 for all z ∈ C, which is true if and only if x∗ is a

stationary point of the problem.

Now, we are ready to prove Theorem 2, the global convergence of our method.

Proof of Theorem 2. The sequence {f(xk)}k is decreasing because the update direc-

tions are descent directions (Lemma 1), and the backtracking Armijo line search

scheme guarantees sufficient descent at each step (Lemma 2). Since f is closed and

its infimum in C is attained, the decreasing sequence {f(xk)}k converges to a limit.

By the sufficient descent condition (3.25), the convergence of {f(xk)}k and α > 0,

∇f(xk)
⊤(xk+1 − xk)
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converges to zero. By Lemma 1, one has

(xk+1 − xk)
⊤H̃k(xk+1 − xk) ≤ −µk∇f(xk)

⊤(xk+1 − xk).

Hence (xk+1−xk)
⊤H̃k(xk+1−xk) converges to zero. Since H̃k’s are uniformly positive

definite, xk+1 − xk converges to the zero vector.

This implies that the sequence {xk}k converges to a fixed point of our method.

By Lemma 3, the sequence converges to a stationary point of the problem.

3.5 Experimental Results

We perform three numerical experiments motivated by different applications with

PNKH-B. We compare its performance with two state-of-the-art projected Newton-

CG (PNCG) methods, which are two-metric schemes; see Section 3.5.1. In Sec-

tion 3.5.2, we consider a PDE parameter estimation problem. In Section 3.5.3, we

apply our method to an image classification problem. In Section 3.5.4, we experi-

ment with an image reconstruction problem. All these applications require fitting a

computational model to data, which is typically noisy. Therefore, and since the com-

putational models are expensive, we seek to use the optimization scheme to obtain a

high-quality reconstruction within only a few iterations.

We use a fixed tolerance and the same maximum number of iterations for the CG

and Lanczos schemes that vary in each experiment. Using the low-rank approximated

Hessian metric during the projection renders PNKH-B competitive with respect to

the optimization performance and reconstruction quality to similar state-of-the-art

two-metric methods. We set the Hessian shift parameter c = 10−3.
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3.5.1 Benchmark Methods

We compare PNKH-B to an implementation of the two-metric scheme described in [64]

and a variant that includes the augmented indexing scheme from [10, 137]. We refer

to the scheme obtained using Abound
k as PNCG (boundary index) and the scheme

obtained using Aaug
k as PNCG (augmented index); see Section 3.3.3. Since the Lanc-

zos tridiagonalization has the same iterates as CG up to roundoff errors, the main

difference between these schemes and our proposed method is the projection. The

PNCG schemes use (3.4) to project all the components and are therefore considered

two-metric schemes. In contrast, our PNKH-B scheme uses a metric that, on the

Krylov subspace, is consistent with that implied by the low-rank approximation of

the Hessian and is therefore a generalized one-metric scheme.

As another benchmark, we use the implementation of a reflective Trust region

method provided by MATLAB’s fmincon [28, 29]. We provide this method with our

implementation of gradients and Hessian matrix-vector products. We used the same

number of iterations as in the PNKH-B and PNCG approaches and kept the other

settings at the default.

3.5.2 Experiment 1: Direct Current Resistivity

We use PNKH-B to solve the PDE parameter estimation problem motivated by the

Direct Current Resistivity (DCR) described in [64, 134]; see also [36, 107, 149, 152]

for background and different instances of this problem.

Model Description The goal of DCR in geophysical imaging is to estimate the

conductivity of the subsurface by means of indirect measurement obtained on the

earth’s surface. Specifically, it first uses electrical sources on the surface to generate

direct currents to create electric potential fields in the subsurface. Measurements of

these potential fields are then collected on the surface. The parameter estimation aims
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Figure 3.2: An illustration of the DCR experimental setup

at reconstructing a three-dimensional image of the conductivity in the subsurface that

is consistent with the measurements. An illustration of the DCR experimental setup

is shown in Figure 3.2. For more details and illustrations of the DCR experiment,

see, e.g., [36, 64, 107, 134].

Experimental Results To set up the test, we follow the same discretize-then-

optimize approach described in [64] that is also used in [134, 151]. Using a uniform

mesh with Nm cells and Nn nodes, we obtain the discrete forward problem

D = P⊤A(m)−1Q+ ϵ = P⊤U+ ϵ, (3.27)

where A(m) ∈ RNn×Nn is a finite-volume discretization of the Poisson operator for

the conductivity model m ∈ RNm , P ∈ RNn×Nr is the receiver matrix that maps

the fields to data, the columns of Q ∈ RNn×Ns are discretized sources, the columns

of U ∈ RNn×Ns are the potential fields, and ϵ ∈ RNr×Ns is Gaussian noise. Here

Nr and Ns are the number of receivers and sources, respectively. Note that with

suitable discretization and boundary conditions, A is non-singular, which means that

m 7→ U(m) is well-defined and differentiable.
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Given the measurement data D, sources Q, and receivers P, we estimate the

corresponding model parameter m by solving the optimization problem

min
m

1

2
∥P⊤A(m)−1Q−D∥2F +

γ

2
∥L(m−mref)∥22 subject to ml ≤ m ≤ mu.

Here, γ > 0 is a regularization parameter, mref is a given reference model, L is a

regularization operator, ml and mu are the upper and lower bounds, respectively,

which are used to enforce the physical constraints for the model parameters.

As common, we use the Gauss-Newton approximate Hessian G given by

G = J(m)⊤J(m) + γL⊤L,

where the Jacobian of the residual of (3.27) is

J(m) = −P⊤A(m)−1(∇m(A(m)U))⊤. (3.28)

Note that the dimensions of m are typically very large. Moreover, each evaluation of

the objective function or product with the Jacobian J or its transpose or computing

the approximate Hessian-vector multiplication y 7→ Gy require inverting the PDE

operator A (i.e., solving the PDE) min(Nr, Ns) times per source. Hence the compu-

tations in each outer (Newton-Krylov method) or inner (line search) iterations when

solving the DCR model problem are very expensive, especially when there are a lot

of sources.

In this experiment, we solve a 3-dimensional DCR problem on a mesh containing

36× 36× 12 cells discretizing the domain Ω = (0, 1)3. The test problem features 25

sources and 1,369 receivers located on the top surface. Following the finite volume

discretization presented in [64], we use a cell-centered discretization of the model m

and nodal discretizations of the sources, receivers, and fields. We add 1% noise to
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the data and enforce smoothness by using a diffusion regularizer with regularization

parameter α = 10−3. We also use symmetric successive over-relaxation (SSOR) as a

preconditioner.

In our setup, we exclude voxels close to the boundary, sources, and receivers from

the inversion. As a result, our model m is discretized over 30× 30× 10 cells instead;

in particular, m has size n = 9900. The bounds ml and mu are set as vectors of all

-4.6’s and -1’s, respectively. The upper bound is purposely set as smaller than some

pixel values of the ground truth to test the ability of the methods to identify the

active variables. The main cost of the parameter estimation is the large number of

discrete PDE solves to evaluate the objective function, its gradient, and matrix-vector

products with J and J⊤. Therefore, we limit the number of CG/Lanczos iterations

to five in all instances.

The experimental results for the DCR problem are shown in Figures 3.3 to 3.5. In

the experiments, we perform 20 Newton steps. We stop the CG method and Lanczos

scheme when the norm of the relative residual drops below 10−2 or after five iterations.

Using only a small number of CG/Lanczos iterations and preconditioning with the

regularization operator is important to obtain smooth image reconstructions [64, 134].

The tolerance in the interior point method is set to be 10−10. As can be seen in

Figure 3.3(a)-(b), PNCG and PNKH-B outperform the fmincon scheme by some

margin. In the plot, we only show the first 120 out of 251 Hessian-vector products

for fmincon. At the last iteration, fmincon reached a comparable objective function

value as the PNKH-B and PNCG schemes. Moreover, the proposed methods have

a significant boost in the initial convergence on the objective function value and the

norm of the projected gradient. This is particularly evident in the early iterations as

can be seen, e.g., by a one-order reduction of the objective function and projected

gradient in the second iteration and the visual quality of the parameter estimate

at the third iteration; see Figure 3.4. At this iteration, we see that the results of
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Figure 3.3: Comparison of the convergence of two PNCG methods and three variants
of PNKH-B for the direct current resistivity experiment in Section 3.5.2. (a): Relative
reduction of objective function. (b): Norm of the projected gradient. (c): Percentage
of variables in Aaug

k defined in (3.18). (d): Relative residual error of CG/Lanczos.
The x-axis represents the number of Hessian-vector products.
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PNCG (boundary index)
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Figure 3.4: Results after the third iteration on DCR generated by the five methods.
The upper bound is purposely set to be mu = −1, which is smaller than some
pixel values in the ground truth to test the ability of the methods to identify active
variables.
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Figure 3.5: First slice of the final results on DCR generated by the five methods.
There are noticeable artifacts in the final results of PNCG.

the proposed PNKH-B and PNKH-B (augmented index) are closer to the ground

truth and appear smoother. While the results obtained using all methods are similar

at the final iteration, we note that PNCG (boundary index) leads to a non-smooth

reconstruction; see Figure 3.5. Since PNCG is a two-metric scheme, the loss of the

smoothness might be due to suboptimal scaling of the gradient step in (3.15) or the

inconsistency of the preconditioner caused by the indexing.

The proposed methods also have slightly smaller objective values after 20 iter-

ations. Table 3.1 shows that all five methods require a comparable runtime. We

highlight that the added costs of the interior point method used to compute the pro-

jection are only between 0.5% and 2.5% and took on average between 0.04 and 0.2

seconds. While the Lanczos tridiagonalization in PNKH-B takes longer on average

than the conjugate gradient method in PNCG, the overall runtime of PNKH-B is

reduced. A key reason for the computational savings is the smaller number of back-

tracking line search iterations, which consequently reduces the number of projections

and also PDE solves.

3.5.3 Experiment 2: Image Classification

We compare the performance of PNKH-B and PNCG for a multinomial logistic re-

gression (MLR) arising in the supervised classification of hand-written digits in the

MNIST dataset [99]. Some example images of the MNIST dataset are shown in Fig-
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ure 2.1.

Model Description Let nc be the number of classes, and ∆nc be the unit simplex

in Rnc . Denote the training data by {(bj, cj)}Nj=1 ⊂ Rnf ×∆nc , where bj is the input

feature and cj is its corresponding class label. First, given training data bj, we apply

a random feature model to propagate the original features into a higher-dimensional

space Rmf , i.e.,

dj = tanh(Kbj) ∈ Rmf ,

where the entries of K ∈ Rmf×nf are randomly drawn from a standard normal distri-

bution. We then solve the multinomial logistic regression (MLR) problem

min
Xl≤X≤Xu

1

N

N∑
j=1

−c⊤j log
(
hX(dj)

)
to obtain the classifier

hX(dj) =
exp (Xdj)

1⊤
nc
exp (Xdj)

.

For a detailed derivation of the MLR problem, see Section 2.3. Here we use Xl,Xu ∈

Rnc×mf to model lower and upper bounds on the entries of X, respectively, with the

goal to regularize the problem and improve generalization, which means improving

the performance on the test data set. Since the MLR problem is a smooth convex

optimization problem, we use G = ∇2f(X).

In our experiment, we use the MNIST dataset [99], which consists of 60, 000

28 × 28 grey-scale hand-written images of digits ranging from 0 to 9 that are split

into N = 50, 000 training images and M = 10, 000 validation images. Here the

transformed feature vectors are in a mf = 4, 000-dimensional space.

Experimental Results We use a fixed number of 20 inexact Newton steps. We

stop the CG method and Lanczos scheme when the norm of the relative residual drops
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Figure 3.6: Comparison of the convergence of two PNCG methods and three vari-
ants of PNKH-B for the image classification problem in Section 3.5.3. (a): Relative
reduction of objective function. (b): Norm of the projected gradient. (c): Training
errors. (d): Validation errors. (e): Percentage of variables in Aaug

k defined in (3.18).
(f): Relative residual error of CG/Lanczos. The x-axis represents the number of
Hessian-vector products.
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below 10−2 or after 50 iterations. We tuned the bounds on X so that the trained hy-

pothesis function performs well on the validation data. We set the tolerance in the

interior point method to be 10−12. In our case, we choose the entries of Xl and Xu

to be -0.05 and 0.05, respectively. The performance of the optimization schemes and

the accuracy of the hypothesis function can be seen in Figure 3.6. In this example, all

PNCG and PNKH-B variants outperform the blackbox MATLAB fmincon method

in objective value, training error and testing error. Moreover, in Figure 3.6(a)-(c),

the three PNKH-B methods boost the initial convergence and outperform the PNCG

methods with respect to the objective function value, norm of the projected gradient,

and training error by some margin. The comparison for the validation data is over-

all comparable; see Figure 3.6(d). Despite the more expensive projection step, the

PNKH-B variants require a similar runtime in this experiment; see Table 3.1.

3.5.4 Experiment 3: Spectral Computed Tomography

We consider an image reconstruction problem arising in energy-windowed spectral

computed tomography (CT). The goal is to identify the material composition of an

object from measurements taken with x-rays at different energy levels and from dif-

ferent projection angles. Our experimental setup follows [76, 77] which also provide

an excellent description and derivation of the problem. An illustration of the experi-

mental setup is given in Figure 3.7.

Model Description As a forward model, we consider the discretized energy-windowed

spectral CT model

y = (S⊤ ⊗ I)exp{−(C⊗A)w}+ ϵ, (3.29)

where I ∈ R(Nd·Np)×(Nd·Np) is the identity matrix, S ∈ RNe×Nb contains the spectrum

energy of each energy window, C ∈ RNe×Nm contains the attenuation coefficients of

each material at each energy level, A ∈ R(Nd·Np)×Nv contains the lengths of the x-ray
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Figure 3.7: An illustration of the energy-windowed spectral CT experimental setup

beams through the pixels of the image, y ∈ RNd·Np·Nb is the observed data containing

the x-ray photons of each energy window, w ∈ RNv ·Nm represents the weights of

the materials of each pixel (and is the unknown variable), and ϵ ∈ RNd·Np·Nb is the

measurement noise. Here, Np is the number of angles of the x-ray beams, Nb is the

number of detectors, and each of them detects a specific energy window, Nm is the

number of materials, Ne is the number of energy levels of the emitted x-ray beams,

Nd and Nv are related to the number of pixels of the image. In particular, for an

image of size n× n, Nd = n and Nv = n2.

The goal of the energy-windowed spectral CT model is to estimate the weights of

materials w given the other variables except the noise in (3.29). Hence we formulate

the following optimization problem

min
0≤w≤wu

1

2
∥y − (S⊤ ⊗ I)exp{−(C⊗A)w}∥22 +

γ1
2
∥Dw1:Nv∥22 + γ2

2Nv∑
i=Nv+1

wi.

Here, the bound constraints are used to enforce physical bounds, where the weights

cannot be negative and cannot exceed the upper bound wh. The second and third

terms are the regularization terms also used in [77]. The second term involves the
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Figure 3.8: Comparison of the convergence of two PNCG methods and three variants
of PNKH-B for the energy-windowed spectral CT problem in Section 3.5.4. (a):
Relative reduction of objective function. (b): Norm of the projected gradient. (c):
Percentage of variables in Aaug

k defined in (3.18). (d): Relative residual error of
CG/Lanczos. The x-axis represents the number of Hessian-vector products.

discrete gradient operator D and enforces the smoothness of the first material, and

the last term promotes sparsity of the second material. As common in nonlinear

least-squares problems, we use the Gauss-Newton approximation of the Hessian, i.e.,

G = J(w)⊤J(w) + γ1D
⊤D,

where D is a discrete differential operator acting on the first Nv entries.
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Figure 3.9: Reconstructed images after the second iteration generated by the five
methods on CT. The top and bottom images are the estimated composition of the
two materials. The upper bound is purposely set to be wu = 1.5, which is smaller
than some pixel values in the ground truth, to test the ability of the methods to
identify active variables. The final image quality is comparable for all schemes.

Experimental Results The number of variables in this problem is n = 8, 192. We

set the regularization parameters as γ1 = 109 and γ2 = 103. Since the Kronecker prod-

ucts are implemented effectively, the CT model problem is the least intense among

the three testing problems in terms of computational cost. Therefore, we use a higher

tolerance of 10−3 for the relative residual norm and allow for up to 100 iterations in

the CG/Lanczos method. In this experiment, we show that our methods can con-

verge to the optimal solution with very small gradient norm by choosing a very small

tolerance of 10−16 in the interior point method, so that the projection is solved very

accurately. Moreover, we purposely choose a tight bound wu = [1.5, 1.5, ..., 1.5]⊤ to

test the ability of the methods to compute a solution with many active entries, specif-

ically some entries in the ground truth are outside of this bound. The experimental

results of the CT model problem are shown in Figures 3.8 and 3.9. In this problem

instance, the PNKH-B methods outperform the blackbox MATLAB fmincon method

objective value and norm of projected gradients. The performances of PNCG meth-

ods are similar to fmincon in objective value but outperforms it in norm of projected

gradient. The proposed methods converge faster initially, and all schemes achieve

comparable results. In the second iteration of Figure 3.8(a), the iterate of the three
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proposed methods achieve 60 times smaller objective function values than the com-

paring methods. This also leads to a considerable improvement in the reconstruction

quality; see Figure 3.9. In Figure 3.8(b), PNKH-B with boundary index and aug-

mented index give competitive performance in terms of the norm of the projected

gradient. Specifically, they achieve gradient norm with magnitudes 10−7 and 10−11,

respectively. In this example, the norm of the projected gradient decays very slowly

in the last iterations of the PNKH-B scheme. From Table 3.1, the runtime of PNKH-

B with variable partitioning is roughly double that of PNCG’s because of the very

low tolerance (10−16) in the interior point method, which we use to reduce the norm

of the projected gradient. We note that this increased accuracy does not necessar-

ily improve the quality of the image reconstruction and in our experiments runtimes

similar to that of PNCG can be obtained with a less accurate projection. Moreover,

the runtime of PNKH-B without variable partitioning is roughly three times that of

PNCG’s because it performs ten backtracking line searches before running into a line

search break at iteration 18; the reason is the insufficient decrease in objective func-

tion value. Finally, we note that further improvements of the optimality conditions

can be obtained by adaptively choosing the rank of Hk, e.g., by choosing the relative

residual tolerance in PCG using a forcing sequence that tightens the tolerance as the

solution becomes more accurate and increasing or removing the limit on the number

of inner iterations.

3.6 Summary

In this chapter, we present PNKH-B, a projected Newton-Krylov method for bound-

constrained minimization whose search direction and projection rely on a low-rank

approximation of the (approximate) Hessian. Our method can be seen as an extension

of Newton-CG methods to bound-constrained problems since we compute the low-
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Table 3.1: Comparison of runtime in seconds of our prototype implementation, the
number of projections, average number of iterations of the interior point method
(IPM) and final step length on the three experiments. The numbers of variables in
experiment 1, 2 and 3 are 9900, 40010 and 8192, respectively. The total number of
iterations is 20. The tests are run on a Microway system that has four Intel Xeon
E5-4627 CPUs with 40 cores and 1 TB of memory and the software plateform is
MATLAB R2020b.

PNCG
(b. index)

PNCG
(a. index)

PNKH-B
PNKH-B
(b. index)

PNKH-B
(a. index)

Exp. 1

Runtime 192.4 195.9 195.1 184.0 185.3
IPM time(avg) 4.8(0.2) 0.9(0.04) 0.9(0.05)
No. of proj. 31 27 24 20 20
Avg IPM iter. 79 46 49
Final step len. 8.0e-1 8.2e-1 1.9e-1 1 1
# of func. evals 51 47 44 40 40
# of grad evals 20 20 20 20 20

# of HessMatvecs 120 120 120 120 120

Exp. 2

Runtime 55.96 56.83 65.73 62.95 67.07
IPM time(avg) 2.13 (0.07) 0.78 (0.03) 0.80 (0.04)
No. of proj. 31 32 29 30 30
Avg IPM iter. 25.67 25.67 23.20
Final step len. 3.17e-02 1.41e-2 8.45e-2 1 1
# of func. evals 52 52 50 45 40
# of grad evals 20 20 20 20 20

# of HessMatvecs 960 955 963 959 978

Exp. 3

Runtime 31.77 31.37 90.51 52.75 38.53
IPM time(avg) 25.89(1.04) 14.65(0.70) 13.33(0.89)
No. of proj. 24 25 34 22 18
Avg IPM iter. 201 201 187.6
Final step len. 1 1 1.96e-4 1 1
# of func. evals 43 44 45 40 29
# of grad evals 20 20 20 19 14

# of HessMatvecs 1374 1561 1621 1641 1271

rank approximation of the Hessian using a few steps of Lanczos tridiagonalization.

The novelty of our method is the use of the metric induced by this approximation

in the projection step. We contribute an interior point method that effectively ex-

ploits the low-rank approximation to achieve a complexity that is linear with respect

to the number of variables. As compared to two-metric schemes that require parti-

tioning variables into active and inactive sets to ensure convergence, the consistent

choice of the metric in PNKH-B leads to a simpler algorithm whose convergence

is guaranteed even without variable partitioning. We also propose two variants of
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the framework, which incorporate the current knowledge of the active/inactive vari-

ables; this improved the convergence in some cases. The experimental results on

PDE parameter estimation, machine learning, and image reconstruction show that

the proposed methods lead to faster initial convergence with moderate runtime over-

head compared to the existing state-of-the-art projected Newton-CG methods. Our

methods are also competitive in the final objective value, norm of the projected

gradient, and reconstruction quality. We provide our prototype MATLAB code at

https://github.com/EmoryMLIP/PNKH-B.

One direction for future work is to improve the efficiency of the quadratic program

solved in the projection stage (e.g., using alternative interior point methods [44, 45,

158] or constrained conjugate gradient methods [115, 155]). In addition, PNKH-B

can be generalized to a proximal Newton-Krylov scheme for minimizing large-scale

composite functions. We can also extend the idea to trust-region Newton methods,

where the region of trust is induced by the Hessian metric.

https://github.com/EmoryMLIP/PNKH-B
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Chapter 4

A Modified Newton-Krylov

Method for Log-Sum-Exp

Minimization

The content and results in this chapter are based on a joint work with James Nagy and

Lars Ruthotto. In this chapter, we present a simple yet effective modified Newton-

Krylov algorithm geared toward the minimization of the log-sum-exp function for

a linear model. Problems of this kind arise commonly in geometric programming

and machine learning and are typically of large-scale. Since the search direction

is computed by a Krylov subspace method, the proposed algorithm only requires

matrix-vector products with the linear model and is thus scalable to large problem

sizes. Although the log-sum-exp function is smooth and convex, standard line search

Newton-type methods can fail to converge because the quadratic approximation is

unbounded from below. The key contribution in this work is a novel Hessian modi-

fication that shifts the Hessian in the output space of the linear model. This can be

motivated by the fact that, in machine learning, model inputs often do not have an

intuitive meaning, while model outputs are interpretable. Unlike standard modified
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Newton-type schemes, the modified Hessian can be rank-deficient. Still, we prove

that the shift renders the quadratic approximation to be bounded from below and

that the overall scheme converges to a global minimizer under mild assumptions.

This chapter is organized as follows. We first describe the problem setup and

review related work. We then introduce the proposed scheme and provide a proof of

global convergence. We finally demonstrate the effectiveness of the proposed scheme

with two numerical experiments.

4.1 Problem Description

We consider minimization problems of the form

min
w

f(w) = g(w)− c⊤Jw, (4.1)

where

g(w) := log
(
1⊤
m exp(Jw)

)
is the log-sum-exp function for a linear model J ∈ Rm×n, w ∈ Rn, c ∈ Rm, and

1m ∈ Rm is a vector of all ones. The problem (4.1) arises commonly in machine

learning and optimization. For example, multinomial logistic regression (MLR) in

classification problems [153, 119] is formulated as (4.1). In geometric program-

ming [140, 154, 157], a non-convex problem can be convexified through a reformu-

lation to the form (4.1). The log-sum-exp function itself also has extensive appli-

cations in machine learning. For instance, it can serve as a smooth approximation

to the element-wise maximum function [52, 121], where the smoothness is desirable

in model design since gradient-based optimizers are commonly used. Moreover, the

log-sum-exp function is closely related to widely used softmax and entropy functions.

For instance, the dual to an entropy maximization problem is a log-sum-exp mini-
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mization problem [14, Example 5.5], and the gradient of the log-sum-exp function is

the softmax function [48].

Despite the smoothness and convexity of the log-sum-exp function, a standard

implementation of line search Newton-type methods can be problematic. To realize

this, note that the gradient and Hessian of the log-sum-exp function are given by

∇f(w) = J⊤(p− c), and ∇2f(w) = J⊤HJ,

with p =
exp(Jw)

1⊤
m exp(Jw)

, and H = diag(p)− pp⊤.

The Hessian is positive semi-definite but rank-deficient because the null space of H

contains 1m. Even more problematic is that when p is close to a standard basis vector

(commonly in MLR), the Hessian is close to the zero matrix even when the gradient

is non-zero. In Newton’s method, this means that the local quadratic approximation

can be unbounded from below. To be precise, it is unbounded from below if and only

if the gradient is not in the column space of the Hessian [4, Exercise 2.19].

4.2 Related Work

Disciplined convex programming (DCP) packages (e.g., CVX [61]) can reliably solve

the log-sum-exp minimization problem through a reformulation. For instance, CVX

first formulates the problem using exponential cones [3, Section 5.2.6] and applies

backend solvers to solve it either directly (e.g., MOSEK [2]) or through successive

polynomial approximation (e.g., SPDT3 [141] and SeDuMi [139]). However, it can

be computationally demanding as the number of conic constraints scales with the

product of the dimension of the output space and the number of data. For instance,

our computational equipment cannot perform the image classification experiments for

the whole dataset in Section 4.5.2. Furthermore, the formulation relies on access to

the elements of J; i.e., this approach is not applicable in a matrix-free setting where
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J is not built explicitly, and only routines for performing matrix-vector products are

provided.

Tikhonov regularization [41, 59, 70] avoids the cost of reformulation and alleviates

the convergence issues with Newton-type methods. It adds α
2
∥w∥22 with α > 0 to the

objective function. The regularization shifts the Hessian by αI and renders it positive

definite, where I is the identity matrix. Nonetheless, the Tikhonov regularization

introduces a bias and consequently changes the optimal solution. The regularization

parameter α has to be chosen judiciously – a large α renders the problem easier to

solve and produces a more regular solution but introduces more bias. In addition,

one cannot use effective parameter selection algorithms [57, 27, 17, 144] for linear

problems due to the nonlinearity of the log-sum-exp function. On the other hand,

first-order methods like gradient descent [14, 122] or AdaGrad [38], which do not use

the Hessian matrix can avoid the problem. However, their convergence is inferior to

methods that utilize curvature information [39].

Modified Newton-type methods effectively tackle problems with rank-deficient or

indefinite Hessians and meanwhile do not introduce any bias. The idea is to add a

shift to the Hessian so that at the ith iteration, the scheme solves

min
w

1

2
(w −wi)

⊤(∇2f(wi) + βiMi)(w −wi) +∇f(wi)
⊤(w −wi), (4.2)

where βi is a parameter and the shift Mi renders the Hessian to be sufficiently posi-

tive definite. The quadratic approximation is bounded from below since the modified

Hessian is positive definite. Hence the convergence issues are avoided. The effect of

the Hessian shift is reminiscent of the Tikhonov regularization. Indeed, the scheme

is sometimes called a Tikhonov-regularized Newton update [127, Chapter 3.3]. How-

ever, the key conceptual difference between (4.2) and Tikhonov regularization is that

the former does not introduce any bias to the problem [143], i.e., the optimal solution
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to the problem is independent of βi’s. There are different ways of defining Mi. For

instance, Mi is spanned by some of the eigenvectors of the Hessian [62, 122], or is a

modification to the factorization of the Hessian [54, 114, 117]. However, the computa-

tions needed for these approaches are intractable for large-scale problems commonly

arising in machine learning. A simple and computationally feasible approach is to set

Mi as the identity matrix [101, 106, 127], which will be used as a comparing method

in our numerical experiments. There is some existing work that studies the conver-

gence properties of modified Newton-type methods. In [122], conditions for the global

convergence of general modified Newton-type methods are given. In [102, 43, 129],

the local quadratic convergence of modified Newton-type methods with an identity

matrix shift for convex problems is proven under certain assumptions. A globally

convergent modified Newton-type method whose Hessian shift is determined by a

line search is proposed in [111]. A globally convergent modified Newton-type scheme

for composite functions is also proposed [37]. In [147, 148, 75], modified Newton-type

methods for specific applications are presented.

4.3 Proposed Method

We propose a modified Newton-Krylov method geared toward log-sum-exp minimiza-

tion problems of the form (4.1). At the ith iteration, we first consider the quadratic

approximation (4.2) with Mi = J⊤J. That is,

min
w

qi(w) =
1

2
(w −wi)

⊤(∇2f(wi) + βiJ
⊤J)(w −wi) +∇f(wi)

⊤(w −wi)

=
1

2
(w −wi)

⊤J⊤(Hi + βiI)J(w −wi) +∇f(wi)
⊤(w −wi),

(4.3)

whose minimizer is given by wi + x, where x solves the Newton equation

∇2qi(wi)x = −∇qi(wi), (4.4)
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and Hi is H evaluated at wi. It is important to note that the Hessian shift in (4.3)

is different from the existing modified Newton approaches discussed earlier, which

seek to obtain a positive definite Hessian and lead to an update in the input space

of the linear model (i.e., the w space). Instead, it generates an update direction in

the output space of the linear model (i.e., the row space of J). This is preferable

especially in machine learning applications because the model inputs often do not

have intuitive meaning while the model outputs are explicable. Although the Hessian

of (4.3) can be rank-deficient especially when the linear model is over-parametrized

(i.e., J has more columns than rows), it is positive definite in the output space of

the linear model. Consequently, the quadratic approximation is bounded from below,

and the overall scheme provably converges to a global minimum; see Section 4.4 for

a detailed derivation.

An alternative formulation for (4.3) is

min
w

1

2
(w −wi)

⊤∇2f(wi)(w −wi) +∇f(wi)
⊤(w −wi) +

βi

2
∥J(w −wi)∥22,

which can be interpreted as a Newton scheme with a proximal term acting on the

row space of J. This formulation shows that βi controls the step size in a nonlinear

line search arc. To be precise, βi = 0 and ∞ correspond to a Newton update with

step size 1 and 0, respectively, and the update is given nonlinearly for 0 < βi <

∞. The formulation also shows that our proposed scheme bears similarity to L2

natural gradient descent (NGD) methods [128, 123], which use the same proximal

term. Nonetheless, unlike our approach, L2 NGD methods do not directly incorporate

Hessian information into its search direction and approximate curvature information

using only the linear model.

The crucial difference between the proximal term and Tikhonov regularization is

that the former does not introduce any bias [127, 143]; i.e., the optimal solution is
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independent of βi. Another advantage is that Tikhonov regularization requires pa-

rameter tuning, which is commonly done using a grid search for nonlinear problems

like (4.1), while in our proposed method, βi’s are automatically selected by a back-

tracking Armijo line search scheme. The proposed scheme can also be perceived as a

proximal point algorithm acting on the second-order approximation [127].

We compute the update direction ∆wi by approximately solving the Newton

equation (4.4) using a Krylov subspace method (e.g., conjugate gradient method [122,

14]) and obtain the next iterate wi+1 = wi+∆wi. In particular, the Krylov subspace

is given by

Kr(∇2qi(wi),∇qi(wi)) = Kr(J
⊤(Hi + βiI)J,∇f(wi)), (4.5)

where r is the dimension of the Krylov subspace. Since the Krylov subspace method

only requires routines to perform Hessian-vector multiplications, our method is ap-

plicable to large-scale problems commonly arising in machine learning applications

where the linear model is only available through matrix-vector products. We note

that an update direction has to be re-computed for each attempted value of βi dur-

ing line search. In other words, unlike standard Newton-CG schemes, the update

direction computation cannot be re-used. However, our experimental results show

that the proposed method is still efficient in terms of computational cost thanks to

the effectiveness of the modified Hessian. An outline of the implementation of the

proposed method is presented in Algorithm 9.

The proposed method is simple because it has a straightforward implementation

similar to standard line search Newton-Krylov methods. In the meantime, it is still

effective in solving the log-sum-exp minimization problems (4.1) and achieves compa-

rable performance compared to commonly used solvers while avoiding their respective

drawbacks as outlined in Section 4.2. Moreover, it is robust in the sense that it suc-

cessfully computes the solutions to challenging problems while other methods fail to

converge; see Section 4.5 for numerical experiments.
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Algorithm 9: Outline of the proposed algorithm for solving (4.1)

1: Inputs: Linear model w 7→ Jw, initial guess w0, initial β0, tolerances wtol and
gtol, line search parameter γ ∈ (0, 1).

2: for i = 0, 1, 2, . . . do
3: compute f(wi), ∇f(wi) and build routines for performing v 7→ ∇2f(wi)v
4: for j = 0, 1, 2, . . . do
5: compute ∆wi by applying Krylov-subspace methods to approximately solve

∇2qi(wi)x = −∇qi(wi) with the current βi and Krylov subspace
Kr(∇2qi(wi),∇qi(wi))

6: if f(wi +∆wi) < f(wi) + γ∇f(wi)
⊤∆wi then

7: set wi+1 = wi +∆wi and break
8: else
9: set βi = 2βi

10: end if
11: end for
12: if ∥wi+1 −wi∥2/∥wi∥2 < wtol or ∥∇f(wi+1)∥2 < gtol then
13: break
14: end if
15: if j = 0 then
16: set βi+1 = 0.5 ∗ βi

17: else
18: set βi+1 = βi

19: end if
20: end for
21: Output: approximate solution wi+1.

4.4 Proof of Global Convergence

In this section, we prove the global convergence of the proposed method. It is note-

worthy that existing convergence results cannot be directly applied due to the rank-

deficiency of our modified Hessian. For instance, it is assumed in [122, Chapter 6.2]

that the modified Hessian is positive definite and has a bounded condition number.

Our proof is modified from the approach in [100], which studies proximal Newton-type

methods for composite functions.

We first state the main theorem.

Theorem 3. Assume that f is defined in (4.1), and inf
w

f(w) is attained in R, then

the iterative scheme (4.7) converges to a global minimum regardless of the choice of
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initial guess w0.

We note that Theorem 3 also applies to the case where the Newton equation (4.4)

is solved exactly. In the following, we will first discuss some properties of the pro-

posed method. We will then state and prove some lemmas which will aid the proof

of Theorem 3.

Recall that the Krylov subspace Kr(∇2qi(wi),∇qi(wi)) is constructed to approx-

imately solve the Newton equation and obtain the update direction ∆wi. This is

equivalent to building a rank-r approximation ∇2qi(wi) ≈ ViTiV
⊤
i and computing

the next iterate by

wi+1 = argmin
w

1

2
(w −wi)

⊤ViTiV
⊤
i (w −wi) +∇f(wi)

⊤(w −wi). (4.6)

Here, the columns of Vi ∈ Rn×r form an orthonormal basis for the Krylov subspace

and Ti ∈ Rr×r. Since ∇f(wi) ∈ row(J) = col(J⊤(Hi + βiI)J) for βi > 0 and that

the Krylov subspace always contains ∇f(wi), the column space of ViTiV
⊤
i always

contains ∇f(wi). This means that the quadratic function (4.6) is bounded from

below [4, Exercise 2.19] and admits a minimum. The iterate wi+1 is the minimum

norm solution to (4.6) given by

wi+1 = wi +∆wi, where ∆wi = −ViT
−1
i V⊤

i ∇f(wi). (4.7)

Next, we state and prove some lemmas which will be used to prove the main

theorem.

Lemma 4 (Update Direction). The update ∆wi generated by the iterative scheme (4.7)
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satisfies

∆wi ∈ row(J), (4.8)

∆w⊤
i ∇2qi(wi)∆wi = ∆w⊤

i ViTiV
⊤
i ∆wi. (4.9)

Here, (4.8) means that the update direction is in the output space of the linear model.

Proof of Lemma 4. By construction, the Krylov subspace (4.5) is a subspace of row(J),

and by (4.7) we have ∆wi ∈ col(Vi). Thus we have ∆wi ∈ col(Vi) ⊆ row(J), which

proves (4.8).

Consider the full representation of the Hessian of (4.3) generated by the Krylov

subspace method

∇2qi(wi) = J⊤(Hi + βiI)J =

[
Vi Ui

]Ti D1

D2 D3


V⊤

i

U⊤
i

 ,

where col(Vi) ⊥ col(Ui). We have

∆w⊤
i ∇2qi(wi)∆wi = ∆w⊤

i

[
Vi Ui

]Ti D1

D2 D3


V⊤

i

U⊤
i

∆wi

=

[
∆w⊤

i Vi 0

]Ti D1

D2 D3


V⊤

i ∆wi

0

 , as ∆wi ∈ col(Vi),

= ∆w⊤
i ViTiV

⊤
i ∆wi,

which proves (4.9).

Lemma 5 (Descent Direction). The update ∆wi generated by (4.7) satisfies the de-

scent condition

∇f(wi)
⊤∆wi ≤ −∆w⊤

i J
⊤(Hi + βiI)J∆wi. (4.10)
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Proof of Lemma 5. Since wi+1 is a solution to (4.6), for any t ∈ (0, 1), we have

1

2
∆w⊤

i ViTiV
⊤
i ∆wi +∇f(wi)

⊤∆wi ≤
1

2
(t∆wi)

⊤ViTiV
⊤
i (t∆wi) +∇f(wi)

⊤(t∆wi).

This implies

(1− t2)

2
∆w⊤

i ViTiV
⊤
i ∆wi + (1− t)∇f(wi)

⊤∆wi ≤ 0

(1 + t)

2
∆w⊤

i ViTiV
⊤
i ∆wi +∇f(wi)

⊤∆wi ≤ 0

∇f(wi)
⊤∆wi ≤ −(1 + t)

2
∆w⊤

i ViTiV
⊤
i ∆wi.

Letting t → 1−, we obtain

∇f(wi)
⊤∆wi ≤ −∆w⊤

i ViTiV
⊤
i ∆wi. (4.11)

Combining (4.9) and (4.11), we obtain (4.10).

In the following lemma, we will make use of the fact that ∇f is Lipschitz continu-

ous. This is because the gradient of the log-sum-exp function is the softmax function,

which is Lipschitz continuous [48, 91].

Lemma 6 (Armijo Line Search Condition). Let λmin be the smallest nonzero eigen-

value of J⊤J, and L be the Lipschitz constant for ∇f . For line search parameter

γ ∈ (0, 1) and

βi ≥
L

2λmin(1− γ)
, (4.12)

the following Armijo line search condition holds

f(wi+1) ≤ f(wi) + γ∇f(wi)
⊤(wi+1 −wi). (4.13)
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Proof of Lemma 6. First, note that

∥J(wi+1 −wi)∥2Hi+βiI
≥ βi∥J(wi+1 −wi)∥22 ≥ βiλmin∥(wi+1 −wi)∥22. (4.14)

Here, in the second step we used that (wi+1 −wi) ∈ row(J) = row(J⊤J) (Lemma 4),

row(J⊤J)⊥ = null(J⊤J), and λmin is the smallest nonzero eigenvalue of J⊤J. Next,

we have

f(wi+1) ≤ f(wi) +∇f(wi)
⊤(wi+1 −wi) +

L

2
∥wi+1 −wi∥22,

≤ f(wi) +∇f(wi)
⊤(wi+1 −wi) + βiλmin(1− γ)∥wi+1 −wi∥22,

≤ f(wi) +∇f(wi)
⊤(wi+1 −wi) + (1− γ)∥J(wi+1 −wi)∥2Hi+βiI

,

≤ f(wi) +∇f(wi)
⊤(wi+1 −wi)− (1− γ)∇f(wi)

⊤(wi+1 −wi),

= f(wi) + γ∇f(wi)
⊤(wi+1 −wi).

Here, we used the Lipschitz continuity of ∇f in the first step, (4.12) in the second

step, (4.14) in the third step, and Lemma 5 in the fourth step.

Lemma 7 (Stationary Point). The iterative scheme (4.7) generates a fixed point w∗

if and only if w∗ is a stationary point.

Proof of Lemma 7. ”⇐”: Substituting ∇f(w∗) = 0 into (4.7), we obtain ∆w∗ = 0.

Hence w∗ is a fixed point.

”⇒”: Let v = w−w∗ for any w. Since w∗ is a fixed point to (4.6), we have, for any

t ∈ R,

1

2
(tv)⊤V∗T∗V

⊤
∗ (tv)+∇f(w∗)

⊤(tv) ≥ 1

2
(w∗−w∗)

⊤V∗T∗V
⊤
∗ (w∗−w∗)+∇f(w∗)

⊤(w∗−w∗).
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This implies

t2

2
v⊤V∗T∗V

⊤
∗ v + t∇f(w∗)

⊤v ≥ 0

t∇f(w∗)
⊤v ≥ −t2

2
v⊤V∗T∗V

⊤
∗ v. (4.15)

Consider the directional derivative of g at w∗ for any direction v

Dvf(w∗) = lim
t→0

f(w∗ + tv)− f(w∗)

t

= lim
t→0

t∇f(w∗)⊤v +O(t2)

t

≥ lim
t→0

− t2

2
v⊤V∗T∗V⊤

∗ v +O(t2)

t
, by (4.15),

= 0.

This implies ∇f(w∗) = 0, that is, w∗ is a stationary point.

Now, we are ready to prove the main theorem.

Proof of Theorem 3. The sequence {f(wi)}i is decreasing because the update direc-

tions are descent directions (Lemma 5) and the Armijo line search scheme guarantees

sufficient descent at each step (Lemma 6). By the continuity of f , it is closed [9,

Proposition 1.1.2]. Since f is closed and attains its infimum in R, the decreasing

sequence {f(wi)}i converges to a limit.

By the sufficient descent condition (4.13), the convergence of {f(wi)}i and α > 0,

∇f(wi)
⊤(wi+1 −wi)

converges to zero. Hence, by (4.10),

∆w⊤
i J

⊤(Hi + βiI)J∆wi
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converges to zero. Since (Hi+βiI) is positive definite and ∆wi ∈ row(J) (Lemma 4),

∆wi converges to the zero vector.

This implies thatwi converges to a fixed point of (4.7). By Lemma 7, wi converges

to a stationary point. By the convexity of f , wi converges to a global minimum.

4.5 Numerical Experiments

We perform two numerical experiments for minimizing the log-sum-exp function for

a linear model. We compare the performance of the proposed method with three

commonly applied line search iterative methods and three disciplined convex pro-

gramming (DCP) solvers; see Section 4.5.1. In Section 4.5.2, we consider multinomial

logistic regression (MLR) arising in image classification. In Section 4.5.3, we ex-

periment with a log-sum-exp minimization problem. The experimental results show

that the proposed method is competitive in terms of accuracy, time-to-solution, and

robustness with the comparing methods.

4.5.1 Benchmark Methods

We compare the proposed scheme with three common line search iterative schemes

and three DCP solvers for machine learning and geometric programming applications.

Firstly, we implement a standard Newton-CG (NCG) algorithm with a backtracking

Armijo line search. Secondly, we compare with an L2 natural gradient descent (NGD)

method [123, 128] that approximately solves

min
w

1

2
∇f(wi)

⊤(w −wi) +
λi

2
∥J(w −wi)∥22,

using CG to obtain the next iterate, where λi controls the step size and is determined

by a backtracking Armijo line search scheme, and the last term is a proximal term

acting on the output space of the linear model. This scheme bears similarity to the
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proposed method as the proximal term has the same effect as the shift in Hessian of

the proposed method. However, it does not make use of the Hessian and only ap-

proximates curvature information using the linear model. Thirdly, to demonstrate the

effectiveness of the Hessian modification in the proposed method, we compare with a

standard modified Newton-Krylov (SMNK) scheme, which approximately solves (4.2)

with Mi = I using Lanczos tridiagonalization, which has the same iterates as CG up

to rounding errors but allows computations for the update direction to be re-used

during line search. For the proposed method, the Newton equation (4.4) is approx-

imately solved by CG. In each experiment, we use the same maximum number of

iterations and tolerance for the CG and Lanczos schemes across different line search

iterative methods.

In addition, we apply CVX [61], a DCP package, paired with three different back-

end solvers (SPDT3 [141], SeDuMi [139], and MOSEK [2]). The best precision for

CVX is used in the experiments; see [61] for detailed information.

Cost Measurement We measure the computational costs for different line search

iterative methods in terms of work units. In particular, a work unit represents a

matrix-vector product with the linear model or its transpose. This is because these

computations are usually the most expensive steps during optimization. For instance,

in the MLR experiments of Section 4.5.2, the linear model J contains the propagated

high dimensional features of all the training data. Note that the number of work

units in one iteration can differ across different line search iterative methods since

a different number of CG/Lanczos iterations or line search can be performed. In

addition to work unit, we also compare computational costs for all methods in total

runtime.
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4.5.2 Experiment 1: Image Classification

Perhaps the most prominent example of log-sum-exp minimization is multinomial

logistic regression (MLR) arising in supervised classification. Here, we experiment

on an MLR problem for the classification of MNIST [99] and CIFAR-10 [92] image

datasets. The MNIST dataset consists of 60, 000 28 × 28 hand-written images for

digits from 0 to 9. The CIFAR-10 consists of 60, 000 32×32 color images equally dis-

tributed for the following ten classes: airplane, automobile, bird, cat, deer, dog, frog,

horse, ship, and truck. Example images for the two datasets are shown in Figure 2.1

and Figure 2.2, respectively.

Problem Description Let nf be the number of features, nc be the number of

classes, and ∆nc be the nc-dimensional unit simplex. Denote a set of data by

{yk, ck}k ⊂ Rnf × ∆nc , where yk and ck are the input feature and target output

label, respectively. In our experiments, we consider two feature extractors that en-

hance the features yk by propagating it into a higher dimensional space Rm. The first

feature extractor is a random feature model (RFM) [79, 131]. It applies a nonlinear

transformation given by

aRFM(yk) = σ(Zyk + b),

where σ is the element-wise ReLU activation function, Z ∈ Rm×nf and b ∈ Rm

are randomly generated. The second feature extractor is performed by propagating

the features through the hidden layers of a pre-trained AlexNet [93]. In particular,

the AlexNet was pre-trained on the ImageNet dataset [34], which is similar to the

CIFAR-10 dataset, using MATLAB’s deep neural networks toolbox. This procedure

is also known as transfer learning. These feature extractors can empirically enhance

the generalization of the model, i.e., the ability to classify unseen data correctly.
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The goal of the supervised classification problem is to train a softmax classifier

s(W, a(yk)) =
exp(Wa(yk))

1⊤
nc
exp(Wa(yk))

(4.16)

such that s(W, a(yk)) ≈ ck. Here W are model parameters, the exp and division are

applied element-wise, 1nc is an nc-dimensional vector of all ones, and a : Rnf → Rm

is a feature extractor. To this end, we consider the sample average approximation

(SAA) [89, 118, 87] of an MLR problem given by

min
W∈Rnc×m

f(W) =
1

n

n∑
k=1

[
log
(
1⊤
nc
exp(Wa(yk))

)
− c⊤k Wa(yk)

]
,

where n is the number of training data, the log operation is applied element-wise.

For a detailed derivation of the MLR problem, see Section 2.3. The feature extractor

is assumed to be fixed since the focus is on the log-sum-exp minimization problem.

Experimental Results In the MLR experiments, the line search iterative solvers

stop when the norm of gradient is below 10−14 or after 3,000 work units. We stop the

CG and Lanczos scheme when the norm of the relative residual drops below 10−3 or

after 20 iterations.

We first perform a small-scale experiment in which only n = 100 training data

is used, and a random feature model with dimension m = 1, 000 is applied. Since

under this setup the data can be fit perfectly to achieve a zero training error, the

model predictions (4.16) are close to standard basis vectors near an optimum. In

this situation, the Hessian is close to a zero matrix, and the robustness of the solvers

can be tested. The results are reported in Table 4.1 and Figure 4.1. In Table 4.1,

the results for the standard Newton-CG scheme are not shown, as it fails to converge

near the end. This is because the Hessian vanishes and consequently the second-order

approximation is unbounded from below. The natural gradient descent method has



76

MNIST CIFAR-10

T
ra
in
in
g
E
rr
or

N
or
m

of
G
ra
d
ie
nt

0 1,000 2,000 3,000

101

10−3

10−7

10−11

10−15

NCG
NGD
SMNK
Ours

0 1,000 2,000 3,000

101

10−3

10−7

10−11

10−15

Work Units

0 1,000 2,000 3,000

101

10−3

10−7

10−11

10−15

0 1,000 2,000 3,000

101

10−3

10−7

10−11

10−15

Work Units

Figure 4.1: Experimental results on small-scale MLR experiments in which the prop-
agated random features have dimension m = 1, 000 and n = 100 training data are
used.

the slowest convergence and has yet to converge at the end. Both the standard mod-

ified Newton-Krylov method and the proposed scheme achieve the stopping criteria

under the specified work units. In particular, the proposed scheme has superior con-

vergence where the objective function value is up to five orders of magnitude smaller

than the second-best method. The proposed scheme also has the fastest runtime to

obtain solutions. This demonstrates the effectiveness of the proposed method and

the efficacy of its modified Hessian over the standard one. SeDuMi, and particularly

SDPT3, can achieve very accurate results, but their runtime is about 15 times more

than the proposed method. MOSEK fails to obtain a solution.

We then experiment with n = 50, 000 training data and 10, 000 validation data.
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Table 4.1: Results on small-scale MLR experiments in which the propagated random
features have dimension m = 1, 000 and n = 100 training data are used. The final
objective function value, norm of gradient, and total runtime are reported. Some
results are not shown because the corresponding scheme fails to return a solution.
The tests are run on an Apple Macbook Pro with a 10-core M1 Max CPU and 32
GBs of memory, and the software platform is MATLAB R2022a.

Dataset NCG NGD SMNK Ours SeDuMi SDPT3 MOSEK

MNIST
f – 1.69e-02 1.11e-14 8.35e-16 6.65e-15 0.00e+00 –

∥∇f∥2 – 1.42e-01 9.87e-15 5.24e-15 1.15e-14 5.14e-140 –
Time – 3.01s 3.14s 2.00s 37.95s 29.65s –

CIFAR-10
f – 2.08e-02 8.27e-15 7.97e-16 2.32e-15 0.00e+00 –

∥∇f∥2 – 1.40e-01 5.51e-15 9.47e-15 4.87e-15 2.26e-26 –
Time – 3.24s 3.38s 2.08s 35.78s 31.33s –

For the MNIST dataset, we use an RFM to propagate the features to an m = 1, 000-

dimensional space. For the CIFAR-10 dataset, features with dimension m = 9, 216

are extracted from the pool5 layer of a pre-trained AlexNet. Here different feature

extractors are used for the two datasets because a better validation accuracy can be

achieved. In Figure 4.2, the results for an MLR problem are illustrated. In Figure 4.3,

we report the performance for an MLR problem with a Tikhonov regularization term

α
2
∥W∥2F, where α = 10−3. Since the CVX solvers have subpar performance in terms of

time in the small-scale experiment, we focus on the linear search methods in this test.

From the figures, we see that L2 natural gradient descent method is the slowest. The

standard Newton-CG and standard modified Newton-Krylov have good convergence

results on one dataset but not the other. In contrast, the proposed scheme is very

competitive on both datasets. Specifically, it has good initial convergence where the

objective function value is up to an order of magnitude smaller than the second-best

scheme in the first few iterations. Moreover, its results are comparable with the other

methods in terms of final training error, training accuracy, validation accuracy, and

norm of gradient.
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Figure 4.2: Experimental results on MLR without regularization. The x-axes report
the number of work units. Here n = 50, 000 training data and 10, 000 validation data
are used.
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Figure 4.3: Experimental results on MLR with a Tikhonov regularization α
2
∥w∥22,

with α = 10−3. The x-axes report the number of work units. Here n = 50, 000
training data and 10, 000 validation data are used.
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Table 4.2: Results on geometric programming. The final objective function value,
norm of gradient, and total runtime are reported. Some results are not shown because
the corresponding scheme fails to return a solution. The tests are run on an Apple
Macbook Pro with a 10-core M1 Max CPU and 32 GBs of memory, and the software
platform is MATLAB R2022a.

η NCG NGD SM Ours SeDuMi SDPT3 MOSEK

1e-6
f – 2.03e+00 2.65e+00 1.77e+00 1.16e+00 – –

∥∇f∥2 – 3.67e+00 3.40e+00 3.41e+00 7.13e-01 – –
Time – 0.84s 1.16s 0.71s 1.54s – –

1e-4
f – 1.94e+00 1.16e+00 1.16e+00 1.16e+00 1.16e+00 –

∥∇f∥2 – 1.90e+00 9.38e-13 2.72e-12 1.66e-04 3.94e-07 –
Time – 0.71s 0.77s 0.56s 1.47s 8.18s –

1e-2
f – 1.20e+00 1.18e+00 1.18e+00 – 1.18e+00 –

∥∇f∥2 – 1.10e-01 3.34e-14 7.31e-13 – 1.03e-10 –
Time – 0.65s 0.04s 0.06s – 18.86s –

4.5.3 Experiment 2: Geometric Programming

We consider a log-sum-exp minimization problem which commonly arises in geometric

programming [140, 154, 157] and is used to test optimization algorithms [86, 124]. In

particular, it is formulated as

min
w

η log
(
1⊤
m exp((Jw − b)/η)

)
,

where w ∈ Rn, J ∈ Rm×n, and η controls the smoothness of the problem. In particu-

lar, when η → 0 the objective function converges to the point-wise maximum function

max(Jw − b) and its Hessian vanishes.

We follow the experimental setups in [86, 124], which use m = 100, n = 20, and

generate the entries of J and b randomly. We perform the experiments with small

values of η to test the robustness of the methods. In particular, we test with η = 10−6,

10−4, and 10−2, respectively. We stop the line search iterative schemes after 25, 000

work units. The CG and Lanczos schemes stop when the relative residual drops below

10−3 or after 20 iterations.

The experimental results are shown in Table 4.2 and Figure 4.4. We see that the
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experiments are very challenging as the standard Newton-CG and all the CVX solvers

cannot return a solution in some or all the experiments. In particular, the standard

Newton-CG breaks in the first iteration in all the experiments. This is because the

quadratic approximation is unbounded from below. Both SeDuMi and SDPT3 fail

in one of the experiments. MOSEK fails in all the experiments. When the CVX

solvers succeed in returning a solution, they have significantly longer runtime (up

to 300 times slower) compared to the line search methods. Similar to the previous

experiments, L2 natural gradient descent method has the slowest convergence and

has yet to converge after the specified work units. The standard modified Newton-

Krylov and proposed methods are robust in the experiments and can return accurate

solutions for η = 10−4 and 10−2, where the final norm of gradient is at most with

magnitude 10−12. This indicates the effectiveness of Hessian modification in handling

challenging optimization problems. Moreover, the proposed method converges faster

than the comparing standard modified Newton-Krylov method in the early stage.

This indicates the effectiveness of the proposed Hessian modification over the standard

one.

4.6 Summary

We present a modified Newton-Krylov algorithm tailored for optimizing the log-sum-

exp function for a linear model. It has a simple implementation similar to that of

a standard Newton-Krylov method and meanwhile is very effective. The novelty of

our approach is incorporating a Hessian shift in the output space of the linear model.

This does not change the optimal solutions, and renders the quadratic approximation

to be bounded from below and the overall scheme to provably converge to a global

minimum under standard assumptions. Since the update direction is computed using

Krylov subspace methods which only require matrix-vector products with the linear
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model, the proposed method is applicable to large-scale problems. The numerical

results show that our method is competitive in terms of accuracy, time-to-solution,

and robustness with commonly-used solvers.

An interesting future direction is to extend the proposed scheme to log-sum-exp

minimization for a nonlinear model. In each iteration, one can linearize the nonlinear

model similarly to generalized Gauss-Newton methods, and thus the proposed scheme

is applicable. Moreover, the proposed scheme can be interpreted as a trust-region

Newton method where the trust region is defined by a semi-norm induced by the

linear model. We can use schemes for determining the trust-region radius to select

the parameter βk.
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Figure 4.4: Experimental results on geometric programming. The x-axes report the
number of work units (in thousands). The results for the standard Newton-CG scheme
are not shown because it fails in the first iteration.
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Chapter 5

Avoiding the Double Descent

Phenomenon Using Hybrid

Regularization

In this chapter, we present a work based on [82]. It was done in collaboration with

James Nagy and Lars Ruthotto. This work concerns the double descent phenomenon

arising in the least-squares fitting for the random feature model (RFM). The hall-

mark feature of the double descent phenomenon is a spike in the regularization gap

at the interpolation threshold where the number of features of the RFM equals to the

number of training samples. We adopt an inverse problems perspective and show that

the double descent phenomenon can be explained by the ill-posedness of the learn-

ing problem. The ill-posedness can be addressed with effective techniques in inverse

problems, such as iterative or Tikhonov regularization. However, they require param-

eter tuning, which typically requires solving the problem multiple times during a grid

search and a dedicated validation dataset. In this work, we apply a hybrid scheme,

which combines iterative and Tikhonov regularization methods in a synergized man-

ner. Since in each iteration an increasingly accurate low-rank approximation to the
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data is built, the parameters are automatically and efficiently chosen by solving a

low-dimensional parameter searching problem. While the benefits of hybrid methods

have been well-documented for ill-posed inverse problems, to the best of our knowl-

edge, this work presents the first use case in machine learning. We perform extensive

experiments using the MNIST and CIFAR datasets and compare the effectiveness

of iterative, Tikhonov, and hybrid regularization for small, medium, and large RFM

models. In those examples, the hybrid scheme successfully avoids the double descent

phenomenon. Also, it yields RFMs whose generalization error is comparable with

that of classical regularization approaches even when their parameters are tuned to

minimize the test loss, a procedure that is to be avoided in realistic applications.

This chapter is organized as follows. Firstly, we review related work and outline

our main contributions. Secondly, we set up the training problem in RFMs, describe

the double descent phenomenon, and relate it to the ill-posedness of the training

problem. Thirdly, we demonstrate that - with a proper choice of parameters - it-

erative and Tikhonov regularization can effectively regularize the RFM training and

avoid the double descent phenomenon. Fourthly, we present the hybrid regularization

scheme and show its ability to avoid the double descent phenomenon without requir-

ing parameter tuning. We then conclude the chapter by discussing and comparing

the numerical results of the different schemes.

5.1 Related Work

The double descent phenomenon relates the generalization error of the random feature

models (RFM) [131] to the number of random features. It is observed experimen-

tally for least-squares fitting problems [7, 1]. In short, it manifests as a decreasing

generalization error as the number of random features grows, a sharp spike when it

reaches the number of training samples, followed by a decaying generalization error
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as the number of features is increased further.

The theoretical understanding of the double descent phenomenon has matured

considerably in the last few years. In particular, [7] studies the phenomenon with

a data-fitting perspective. In [1, 104], the generalization dynamics were analyzed

for gradient flows, and iterative regularization was identified as a practical remedy;

however, the success of this regularization requires a judicious choice of the stopping

time by the user. Statistical analyses of the double descent phenomenon are provided

in [8, 72]. A rigorous analysis of the asymptotic behavior of the test errors is performed

in [108]. Bounds on the condition number of RFM matrices are derived in [22]. The

phenomenon also arises in more general settings. For instance, the double descent

pheonemon in neural network models training is studied in [51, 116]. The phenomenon

for binary linear classification with different losses is analyzed in [35, 88]. A theoretical

analysis of the double descent phenomenon in high dimensional kernel ridge regression

problems is given in [103]. In [30], the double descent phenomenon is utilized in

distillation to train teacher and student models that avoid overfitting.

As a new remedy to tackle the double descent phenomenon, we apply a compu-

tationally efficient hybrid method [27] that automatically tunes its parameters and

avoids the double descent phenomenon. The development of hybrid methods has been

a fruitful and important direction in inverse problems recently [25, 49, 26, 24]. We use

the hybrid method implemented in [50], which combines the respective strengths of it-

erative regularization and Tikhonov regularization. Specifically, the method performs

a few iterations of the numerically stable Krylov subspace method LSQR [125, 126]

and adaptively selects the parameter for Tikhonov regularization at each iteration

using generalized cross-validation (GCV) [57]. Notably, the scheme does not require

a dedicated validation set. The effectiveness and the scalability of the method have

been documented for various large-scale imaging problems [27, 25, 26].
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5.2 Double Descent Phenomenon

In this section, we describe the problem setup for RFM, introduce the data used

in our experiments, explain the double descent phenomenon, and relate the double

descent phenomenon to ill-posed inverse problems.

Random Feature Model We consider a supervised learning problem where we

are given the matrix of input features Y ∈ Rn×nf and the matrix of corresponding

outputs C ∈ Rn×nc . Here, nf is the number of input features and nc is the number of

output features (e.g., the number of classes), and the n examples are stored row-wise.

The idea in RFM is to transform the input features by applying a random nonlinear

transformation f : Rnf → Rm to each row in Y and then train a linear model to

approximate the relationship between f(Y) and C. Here, the transformation f(Y)

is applied row-wise and yields a new representation of the features in Rn×m. The

dimension m controls the expressiveness of the RFM and can be chosen arbitrarily;

generally, larger values of m increase the expressiveness of the RFM.

Similar to [104] we define our RFM using a randomly generated matrix K ∈

Rnf×(m−1), a bias vector b ∈ Rm−1, and an activation function a : R → R, as

Z = f(Y) =

[
a(YK+ 1nb

⊤) 1n

]
, (5.1)

where the activation function is applied element-wise, and 1n ∈ Rn is a vector of all

ones used to model a bias term.

The RFM training consists of finding the linear transformation W ∈ Rm×nc such

that ZW ≈ C. As in [104], we measure the quality of the model using the least

squares loss function. The double descent phenomenon arises when the weights are
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obtained by solving the unregularized regression problem, i.e.,

W∗
LS ∈ argmin

W∈Rm×nc

1

2n
∥ZW −C∥2F, (5.2)

where ∥ · ∥F is the Frobenius norm. Problem (5.2) is separable, which means that it

can be decoupled into nc least-squares problems each of which determines one column

of W∗
LS. Therefore, without loss of generality, we focus our discussion on the case

nc = 1 and consider the problem

w∗
LS ∈ argmin

w∈Rm

1

2n
∥Zw − c∥22. (5.3)

Here, c ∈ Rn are the output labels. For example, when choosing c as the ith column

C the solution of (5.3) is the ith column of W∗
LS.

The actual goal in learning is not necessarily to optimally solve (5.3) but to obtain

an RFM model that generalizes beyond the training data. To gauge the generalization

of the model defined by w∗
LS, consider the test data set given by Ytest ∈ Rntest×nf and

Ctest ∈ Rntest×nc . Then, the model defined by w∗
LS, K, and b generalizes well if the

generalization gap

1

2ntest

∥f(Ytest)w
∗
LS − ctest∥22 −

1

2n
∥f(Y)w∗

LS − c∥22 (5.4)

is sufficiently small. The main goal of our paper is to understand why solutions

to (5.3) may fail to generalize and how to regularize (5.3) such that its solution

reliably approximates the input-output relation for unseen data.

Examples from Image Classification Throughout the paper, we will use two

common image classification benchmarks to illustrate the techniques. Specifically,

we use the MNIST dataset consisting of 28 × 28 grayscale images of hand-written
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Figure 5.1: (a)-(b): The double descent phenomenon observed in random feature
model on MNIST and CIFAR10 data. (c)-(e): The Picard plot for Z and c on
CIFAR10 data with n = 1024 and m = 512 (overdetermined), 1024 (unique) and
2048 (underdetermined). All the values are averaged over 5 random trials. The top,
middle and bottom curves are σj, |u⊤

j c| and |u⊤
j c|/σj defined in (5.5), respectively.

When m = n, there is a plummet in σj at the end, and it renders |u⊤
j c|/σj large.

These large values dominate the optimal solution W. Thus, there is a spike in the
norm of W and hence the testing loss.

(a) Double Descent for MNIST Data, n=210
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(b) Double Descent for CIFAR10 Data, n=210
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(e) Picard Plot for m = 2048

0 200 400 600 800 1,000

10−4

10−2

100

102

104 Test error: 0.90

(d) Picard Plot for m = 1024

0 200 400 600 800 1,000

10−4

10−2

100

102

104 Test error: 2.11× 104

(c) Picard Plot for m = 512

0 100 200 300 400 500

10−4

10−2

100

102

104
σi
|u>j c|
|u>j c|/σj

Test error: 0.77

digits [98] and the CIFAR 10 dataset [92] consisting of 32×32 RGB images of objects

divided into one of ten categories. From each dataset, we randomly sample n = 1, 024

training images and their labels.

Each dataset also contains ntest = 10, 000 labeled test images, which we use to

compute the generalization gap of the trained model. To obtain competitive baseline

results for our method we also use the test images to optimize the parameters of

state-of-the-art methods. It is important to emphasize that our hybrid method selects

parameters for regularization and stopping criteria automatically and hence does not
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use the test data.

In our experiments, we use the ReLU activation function a(x) = max(x, 0) and

generate K and b using a uniformly random distribution drawn from a unit sphere;

see also [104].

The Double Descent Phenomenon The key parameter of an RFM is the di-

mensionality of the feature space, m. The double descent phenomenon [7, 104, 51]

is observed in the generalization gap for different choices m. This behavior can be

described in three stages: when m < n, m = n and m > n, see Figure 5.1(a)-(b). In

the following, we explain these three stages using a data fitting viewpoint.

• When m < n, the learning problem (5.3) is overdetermined. That is, there are

more equations than variables in Zw = c. There is no solution to perfectly

describe the input-output relation in general. Hence as m increases, we are

able to fit both the training and test data better, and the generalization gap

decreases.

• When m = n, Z is square and, in our experience, invertible. Thus the optimal

solution to (5.3) is unique and satisfies Zw = c. In order words, the training

data can be fitted perfectly, and the training loss is essentially zero. However,

the uniqueness of the optimal w also implies that we have no choice but to

perfectly fit to the weakly present features in Z, which are not relevant to the

classification. The perfect loss on the training data combined with an increase

in test loss then causes a spike in the generalization gap.

• When we further increase m such that m > n, the problem is underdetermined,

and there are infinitely many optimal w to achieve an objective function value

of zero. It has been observed that selecting the solution with the minimal norm

reduces the risk of fitting weakly present features; see, e.g., [7]. Therefore,

generally, the generalization gap decreases as m grows.
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Double Descent and Ill-Posedness To better understand and avoid the dou-

ble descent phenomenon, we use its connections to ill-posed inverse problems [41,

69, 71]. Consider the singular value decomposition (SVD) Z = UΣV⊤. Here,

U = [u1,u2, ...,un] and V = [v1,v2, ...,vm] are orthogonal matrices, and Σ ∈ Rn×m

contains the singular values {σj}min(m,n)
j=1 in descending order on its diagonal and is

zero otherwise. Let r be the rank of Z, that is, the last index such that σr > 0.

When the singular values decay to zero smoothly and without a significant gap, it

is common to call problem (5.3) ill-posed, and a large generalization error has to be

expected for some labels c.

Using the SVD, the minimum norm solution of (5.3), can be written explicitly as

w∗
LS =

r∑
j=1

u⊤
j c

σj

vj. (5.5)

This formulation shows that the contribution of vj to w∗
LS is scaled by the ratio

between u⊤
j c and σj. If this ratio is large in magnitude, then the solution is highly

sensitive to perturbations of the data c along the direction uj, and the corresponding

singular vector vj gets amplified in the solution. Also, σj quantifies the importance of

the feature uj in the data matrix Z. Therefore, intuitively one wishes |u⊤
j c| to decay

as j grows. In other words, this observation also suggests that for ill-posed problems,

the generalization gap depends on the decay of |u⊤
j c|.

We illustrate the quantities in (5.5) for the three stages of the double descent in

Figures 5.1(c)-(e) using the CIFAR10 example. Here, we plot σj, |u⊤
j c| and |u⊤

j c|/σj

in Figures 5.1(c)-(e); the resulting plot is known as a Picard plot [71]. From the

decay of the singular values (see the blue line), we see that m = n leads to an ill-

posed problem as the σj decay to zero with no significant gap. Also, for m = n, the

magnitude of u⊤
j c (see red line) remains approximately constant. This combination

causes a surge of |u⊤
j c/σj| (see yellow line), which causes an increase of the norm
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of w; see the red dashed line in Figure 5.1(a)-(b). When m ̸= n, the problem is

not ill-posed as the decay of the singular values is less pronounced. This correlation

between the ill-posedness and the observed double descent phenomenon motivates

us to employ state-of-the-art techniques for regularizing ill-posed inverse problems to

improve the generalization of random feature models.

5.3 Iterative and Tikhonov Regularization

Regularization techniques are commonly used to improve the generalization of ma-

chine learning models (see, e.g., [60, Chapter 7]) and to enhance the solution of

ill-posed inverse problems (see, e.g., [41, 69, 71]). Despite differences in notation and

naming, the basic ideas in both domains are similar. This section aims to provide the

background of the two most common forms of regularization: iterative regularization

and Tikhonov regularization, respectively, which, in the machine learning literature,

are better known as early stopping and weight decay, respectively. While the tech-

niques in this section are standard, using hybrid approaches to train random feature

models, as we discuss in the next section, is a novelty of our work.

Using the SVD of the feature matrix Z = UΣV⊤, we can write and analyze most

regularization schemes for (5.3) using their corresponding filter factors ϕj that control

the influence of the jth term in (5.5). To be precise, the regularized solutions can be

written as

wreg =
r∑

j=1

ϕj

u⊤
j c

σj

vj. (5.6)

A simple example is the truncated SVD, in which terms associated with small singular

values are ignored by using the filter factors

ϕTSVD,j(τ) =


1, σj > τ

0, σj ≤ τ

, (5.7)
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where the choice of τ ≥ 0 is crucial to trade off the reduction of the training loss and

the regularity of the solution, which is needed to generalize. In the remainder of the

section, we briefly review iterative regularization and Tikhonov regularization.

Iterative Regularization A common observation during the training of random

feature models with iterative methods is an initially sharp decay of both the training

and test losses, followed by a widening generalization gap in later iterations. For

least-squares problems such as (5.3) this behavior, also known as semiconvergence,

typically arises when the iterative method converges quicker on the subspace spanned

by the singular vectors associated with large singular values than on those associated

with small singular values. A straightforward and popular way to regularize the

problem then is iterative regularization which stops the iteration early; see, e.g., [104]

for RFMs, [156] for neural networks, and [27] for image recovery.

As a simple example to show the effect of iterative regularization, we consider the

gradient flow (GF) applied to (5.3), which reads

∂twGF(t) = − 1

n
Z⊤(ZwGF(t)− c), wGF(0) = 0. (5.8)

As also shown in [104], when the SVD of the feature matrix is available, wGF(t) can

be computed via (5.6) using the filter factors

ϕGF,j(t) = 1− e−σ2
j t/(mn). (5.9)

From this observation, we can see that as t grows, the filter factors converge to one,

andwGF(t) converges to the solution of the unregularized problem (5.3). Furthermore,

we see that for any fixed time, the filter factors decay as j grows, which reduces the

sensitivity to perturbations of the data c along the directions associated with small

singular values. In the top row of Figure 5.2, we show numerical results for the
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Figure 5.2: (a)-(b): The results of applying gradient flow (GF) to (5.2) when m =
n = 1024 at different time t. (c)-(d): The results obtained from Tikhonov regular-
ization (5.10) with different parameter α. The optimal stopping time/regularization
parameter is highlighted. We can see that both methods exhibit a semiconvergence
behavior. In particular, their generalizability depends on the choice of parameters,
which varies from problem to problem and has to be made judiciously. Determining
the optimal parameters requires access to the test data. Yet, in practice, test data
are not allowed to use for training.
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(b) Test Error for Gradient Flow on CIFAR10 Data
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(d) Test Error for Tikhonov Regularization on CIFAR10 Data

10−5 10−4 10−3 10−2 10−1 100 101 102
10−8

10−6

10−4

10−2

100

102

104

α

iterative regularization applied to our two test problems. The qualitative behavior is

comparable for both datasets: Initially, both training and test losses decay with no

noticeable gap but at later times, the test losses increase dramatically. A difference

between the two datasets is that the optimal stopping time (i.e., the time with the

smallest test loss) differs by about two orders of magnitude. Hence, the stopping time

is the key parameter that needs to be chosen judiciously and depends on the problem.

Determining an effective stopping time is even more difficult in realistic applications,
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when this decision must not be based on the test data set.

In addition to gradient descent and its stochastic versions, many other first-order

optimization methods enjoy similar regularizing properties. In particular, Krylov

subspace methods have been commonly used in ill-posed inverse problems due to

their superior convergence properties; see, e.g., [69, 71].

The cross-validation of iterative regularization is easy to perform; for example, one

can use a part of the training data for validation and stop the training process when

the validation error is minimized. However, such an approach reduces the number of

training data. The regularization properties and their analysis also depend heavily on

the underlying iterative method. Moreover, iterative regularization generally prefers

slowly converging schemes to have a broader range of optimal stopping points.

Tikhonov Regularization The idea in the direct regularization methods, known

as Tikhonov regularization [41, 69] in inverse problems and weight decay in machine

learning [60, Chapter 7], is to add an extra term to the objective in (5.3) such that the

solution to the obtained regularized problem generalizes well. There are many options

for choosing regularization terms. In our work, we consider the squared Euclidean

norm of w and define the regularized solution as

wWD(α) = argmin
w

1

2n
∥Zw − c∥22 +

α2

2
∥w∥22. (5.10)

Here, the regularization parameter α ≥ 0 trades off minimization of the loss and the

norm of wWD. An advantage compared to iterative regularization is that any iterative

or direct method used to solve (5.10) will ultimately provide the same solution.

Using the SVD of Z we can see that wWD(α) can be computed using (5.6) and

the filter factors

ϕWD,j(α) =
σ2
j

σ2
j + nα2

, (5.11)
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which are also called the Tikhonov filter factors [69]. We can see that when α is

chosen relatively small, the filter factors associated with large singular values remain

almost unaffected, while those corresponding to small singular values may be close

to zero. Thus, similar to TSVD and iterative regularization, Tikhonov regularization

can reduce the sensitivity of wWD to perturbations of the data along the directions

associated with small singular values.

We investigate the impact of choosing α on the generalization in a numerical exper-

iment for the MNIST and CIFAR10 example; see Figure 5.2(c)-(d). The qualitative

behavior is comparable for both datasets: as α increases, the training error increases

monotonically, while the test error first decays and then finally grows. Due to this

semiconvergence, a careful choice of α can improve generalization; we visualize the

parameter α that yields the lowest test loss with red dots. A key difference between

the examples is that the optimal values of α differ by about one order of magnitude,

which highlights its problem-dependence. As in iterative regularization, we re-iterate

that the test data must not be used to select the optimal value of α.

The solution of Tikhonov regularization has a simple representation (5.11). This

renders its analysis simple. Moreover, the same solution is obtained regardless of

the choice of solvers. Thus, in contrast to iterative regularization, the most effi-

cient scheme can be used. Yet the optimal choice of the parameter α requires cross-

validation [90] in which the problem has to be solved many times.

5.4 Hybrid Regularization: The Best of BothWorlds

Hybrid methods belong to the most effective solvers for ill-posed inverse problems

and have been widely used, for example, in large-scale image recovery [27, 25, 26].

The key idea in hybrid methods is to combine the respective advantages of iterative

and Tikhonov regularization while avoiding their disadvantages. In this section, we
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briefly review the technique IRhybrid lsqr from the open source MATLAB pack-

age [50], and for the first time apply the scheme in the machine learning domain

for training random feature models. This hybrid method employs LSQR [125, 126]

that at each iteration projects the regularized least-squares problem (5.10) onto a

small-dimensional subspace and adaptively selects the parameter for Tikhonov regu-

larization using generalized cross-validation (GCV) [57]. The resulting hybrid method

does not involve any parameter tuning and, in our experiments, successfully avoids

the semiconvergence, hence, the double descent phenomenon.

LSQR Algorithm LSQR [125, 126] is an iterative method for solving (regularized)

least-squares problems. With comparable computational costs per iteration, the nu-

merical stability and convergence of LSQR generally are superior to gradient descent,

particularly for ill-posed problems. The kth iteration of LSQR solves the projection

of (5.10) onto the k-dimensional Krylov subspace

Kk = span{Z⊤c, (Z⊤Z)Z⊤c, . . . , (Z⊤Z)k−1Z⊤c}.

This projection is obtained using Golub-Kahan bidiagonalization [55] of the feature

matrix Z with the initial vector c, which reads

Z⊤Qk = PkB
⊤
k + γk+1pk+1e

⊤
k+1, (5.12)

ZPk = QkBk, (5.13)

where Qk ∈ Rn×(k+1) and Pk ∈ Rm×k have orthonormal columns, Bk ∈ R(k+1)×k is a

lower bidiagonal matrix, ek+1 ∈ Rk+1 is the (k+1)th standard basis vector, and γk+1

and pk+1 will be the (k + 1)th diagonal entry of Bk+1 and the (k + 1)th column of

Pk+1, respectively.
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Using the bidiagonalization, we derive the projection of (5.10) as follows

min
x∈Kk

1

2n
∥Zx− c∥22 +

α2

2
∥x∥2 = min

f∈Rk

1

2n
∥ZPkf − c∥22 +

α2

2
∥f∥2 (5.14)

where we used that the columns of Pk form an orthonormal basis of Kk, which also

implies that ∥Pkf∥ = ∥f∥. Next, using (5.13) gives

= min
f∈Rk

1

2n
∥QkBkf − c∥22 +

α2

2
∥f∥2 (5.15)

Using the orthonormality of the columns of Qk and the fact that Qk contains c
∥c∥2 in

its first column, we obtain the projected problem

= min
f∈Rk

1

2n
∥Bkf − βe1∥22 +

α2

2
∥f∥2, (5.16)

where β = ∥c∥2 and e1 ∈ Rk+1 is the first standard basis vector. Here, the k-

dimensional projected problem (5.16) is greatly reduced in size compared to the orig-

inal m-dimensional problem (5.10). The kth iteration of LSQR is the solution to the

projected problem and can be computed using the regularized pseudoinverse B†
k,α via

Pkfα = βPkB
†
k,αe1 with B†

k,α =
1

n

(
1

n
B⊤

k Bk + α2I

)−1

B⊤
k . (5.17)

Automatic Tikhonov Regularization In Tikhonov regularization, the choice of

the parameter α is crucial in order to successfully filter the small singular values.

One straightforward way to choose it is to perform cross-validation. Having the

small-dimensional projected problem (5.16) allows us to test multiple candidate α’s

for cross-validation efficiently. Here, the parameter selection can be done even more

effectively by using statistical criteria such as generalized cross-validation (GCV) [57,

41, 69, 144], weighted GCV [27], L-Curve [17] and discrepancy principle [144]. In this
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paper, we use GCV for simplicity.

The idea of GCV is to pick a parameter for Tikhonov regularization that gives

good generalization power. Specifically, it performs n-fold (leave-one-out) cross-

validation [90] without solving the problem n times by minimizing a loss function

on the training data. Thus, it does not require validation data and is done highly

efficiently using the low-rank projected solution (5.17).

In particular, in each iteration of the hybrid scheme, we minimize the GCV func-

tion for the projected problem (5.16) given by

GBk,βe1(α) =
k∥(I−BkB

†
k,α)βe1∥22

(trace(I−BkB
†
k,α))

2
. (5.18)

Here, the SVD of Bk is performed quickly because it is small in size ((k + 1)-by-

k). We can then plug the SVD into (5.18). The minimization will become a simple

one-dimensional problem and can be done by standard algorithms. This renders the

GCV minimization effective, which needs to be done in each iteration. In principle,

we can compute the GCV also for the full problem (5.10). However, this would be

computationally very expensive because the full SVD of Z is required. For more

details, see [27].

Advantages of the Hybrid Method The regularization imposed by the hybrid

method provides important distinct advantages over previously discussed approaches.

First, in (5.18), the hybrid method performs an adaptive Tikhonov regularization by

dynamically selecting the parameter using information from the small (but increasing)

dimension Krylov subspace. Specifically, the hybrid method chooses the Tikhonov

filter factors in (5.6) based on the singular values of the projected problem (5.18),

and these singular values are increasingly better approximations of the full dimension

problem (5.10). Secondly, one can also use the GCV function value as criteria for

iterative regularization, see [27, 11]. This effectively employs a safeguard regulariza-
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Figure 5.3: The results obtained by the hybrid method with different numbers of
iterations on MNIST and CIFAR10 data. The results when the iteration number is
greater than m are not shown as the algorithm converges after m iterations. This is
because the Krylov subspace is Rm, and the projected problem becomes the original
problem.
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tion. However, the Tikhonov filter factors computed in the hybrid method ensure

that the computed solutions are much less sensitive to the precise stopping iteration.

This combination of safeguarded regularization, automatic tuning of parameters for

Tikhonov regularization, and automatic iteration stopping criteria is very powerful.

Numerical Results We apply the hybrid method to the image classification prob-

lems. To demonstrate that the hybrid method avoids semi-convergence, we show the

test error for an increasing number of iterations in Figure 5.3. For all m and for both

datasets, we see that increasing the number of iterations reduces the test errors until

the number of iterations reaches m when the bidiagonalization is exact. In particular,

the hybrid scheme avoids the double descent phenomenon whenm = n. In contrast to

iterative and Tikhonov regularization, the parameter α of the hybrid method is auto-

matically chosen in each iteration. We recommend choosing the number of iterations

to match the computational budget.



101

5.5 Comparison and Discussion

In this section, we compare and discuss the numerical results achieved with the dif-

ferent regularization schemes.

Baseline We optimize the parameters for the iterative and Tikhonov regularization

presented in Section 5.3 using the test data. It is important to emphasize that this is

neither practical nor advised in realistic applications. However, our goal is to obtain

competitive baselines to compare with the hybrid scheme in which neither the test

data nor some validation data is used.

We optimize the weights for each of the datasets and different widths of the RFM.

To this end, we compute the (economic) SVD of the feature matrix Z and use the filter

factors in (5.9) and (5.11), respectively, to efficiently compute the optimal weights for

different choices of t and α. Then, we minimize the test error over the parameters

using the one-dimensional optimization method fminsearch in MATLAB. To reduce

the risk of being trapped in a suboptimal local minimum, we first evaluate the test

loss at 100 points spaced equally on the logarithmic axes shown in Figure 5.2 and

initialize the optimization method at the parameter with the lowest test loss.

Comparison We report the results for the different datasets, different m, and reg-

ularization schemes in Figure 5.4. For the hybrid method, we set the number of iter-

ations to min(m, 1024); see also Figure 5.3. We see that the hybrid method achieves

competitive test errors even though it does not use the test data set. Remarkably,

the hybrid method’s solution is on par with the other schemes at the interpolation

threshold.

Discussion These numerical experiments demonstrate the potential of hybrid meth-

ods to reliably train random feature models of various sizes with automatic parameter

tuning.
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Figure 5.4: The results obtained by gradient flow, Tikhonov regularization and the
hybrid method. For gradient flow and Tikhonov regularization, the optimal testing
losses over time and α, respectively, are reported. Specifically, we minimize the
testing losses with respect to the parameters. For the hybrid method, we determine
the Tikhonov parameters using the training data only and report the test loss with
min(m, 1024) iterations.
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Most practical implementations of iterative regularization and Tikhonov regular-

ization use parts of the training samples to tune parameters using (one-fold) cross-

validation. This has the disadvantage of reducing the number of samples available

during training, which generally leads to larger test errors. By contrast, the hybrid

scheme implicitly performs an n-fold (leave-one-out) cross-validation.

As shown in Figure 5.3, the test error of the hybrid scheme decreases with the

number of iterations. This is in stark contrast to the gradient flow scheme (see Fig-

ure 5.2) for which semiconvergence is observed, and an adequate stopping rule is

needed to avoid large generalization errors.

In classical Tikhonov regularization, the learning problem has to be solved re-

peatedly until a regularization parameter α with a low validation error is found. The

hybrid scheme saves this computational overhead and automatically selects α in one

single pass. This is achieved by using the Golub-Kahan bidiagionalization to evaluate

the GCV function efficiently for different values of α.
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5.6 Summary

In this chapter, we present hybrid methods and show in numerical experiments that

they avoid the double descent phenomenon arising in the training of random fea-

ture models. We demonstrate that the double descent phenomenon is related to

the ill-posedness of the training problem. As such, it can be overcome with itera-

tive regularization and Tikhonov regularization; however, these techniques typically

require cumbersome parameter tuning, solutions of multiple instances of the learn-

ing problem, and a dedicated validation set. Hybrid methods overcome these dis-

advantages. They are computationally efficient thanks to stopping early and per-

forming parameter searching on a low-dimensional subspace. Further, they auto-

matically select parameters using statistical criteria. While these properties have

made hybrid methods increasingly popular for solving large-scale inverse problems,

our paper presents the first use case in machine learning. In our experiments, the

hybrid method performs competitively to classical regularization methods with op-

timally chosen weights. In future works, we plan to extend hybrid methods to

more general learning problems, particularly with other loss functions and machine

learning models. We provide our MATLAB codes for the numerical experiments at

https://github.com/EmoryMLIP/HybridRFM.

https://github.com/EmoryMLIP/HybridRFM
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Chapter 6

Conclusion and Future Work

In this dissertation, we present three low-rank exploiting optimization methods for

inverse problems and machine learning. These methods fall under two categories:

Newton-type algorithms that exploit the low-rank approximation to the Hessian ma-

trix and hybrid regularization methods that exploit the low-rank structures of data

matrices.

In Chapter 3, we present PNKH-B for solving large-scale bound-constrained op-

timization. PNKH-B is a generalized one-metric scheme that effectively exploits

the low-rank approximation to the Hessian matrix to compute the projection in a

tractable way. A global convergence proof of PNKH-B is provided. Three numerical

experiments on PDE parameter estimation, image classification, and image recon-

struction demonstrate the effectiveness of PNKH-B.

In Chapter 4, we present a modified Newton-Krylov scheme geared toward log-

sum-exp minimization for a linear model. The proposed scheme is applicable to large

problem sizes since a Krylov subspace method is used to construct a low-rank ap-

proximation to the modified Hessian. The main novelty in the proposed scheme is

a Hessian modification in the output space of the linear model. We prove that the

proposed scheme globally converges to an optimal solution. Two numerical experi-
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ments on multinomial logistic regression and geometric programming illustrate that

the proposed scheme has competitive performance.

In Chapter 5, we shift our focus and apply a hybrid regularization method to

avoid the double descent phenomenon arising in the training of random feature mod-

els. Hybrid regularization methods synergistically combine iterative and Tikhonov

regularization so that their respective strengths are utilized, and their respective

drawbacks are avoided. Our analyses show that the double descent phenomenon is

caused by the ill-posedness of the training problem. This motivates the use of hybrid

regularization methods. Extensive numerical experiments show the effectiveness of

the hybrid regularization method.

The work in this dissertation paves the way for future research directions. In

addition to the future directions of each individual method discussed at the end of

their respective chapters, we could also combine these applications. For instance,

we could incorporate the Hessian shift in Chapter 4 into PNKH-B and investigate

the performance on PDE-constrained optimization problems [123] and the log-sum-

exp minimization problem in Chapter 4. We could explore using bound constraints to

avoid the double descent phenomenon since they can serve as a regularization method.

In this setting, PNKH-B could be applied to effectively solve the bound-constrained

optimization problem.
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Appendix A

Derivation of Gradient and Hessian

of MLR Problem

Here we provide a derivation of the gradient and Hessian of the multinomial logistic

regression (MLR) problem. We recall that for given input features and target outputs

{ak, ck}nk=1 ⊂ Rm ×∆nc , the MLR problem is formulated as

min
W∈Rnc×m

F (W) = − 1

n

n∑
k=1

c⊤k log

(
exp(Wak)

1⊤
nc
exp(Wak)

)
=

1

n

n∑
k=1

[
(c⊤k 1nc) log

(
1⊤
nc
exp(Wak)

)
− c⊤k Wak

]
=

1

n

n∑
k=1

[
log
(
1⊤
nc
exp(Wak)

)
− c⊤k Wak

]
.

(A.1)

Here ∆nc is the nc-dimensional unit simplex, 1nc ∈ Rnc is the vector of all ones,

the log operation is applied element-wise, and we use the fact that c⊤k 1nc = 1 since

ck ∈ ∆nc .

By concatenating the data, the MLR problem (A.1) can be re-written as

min
W∈Rnc×m

F (W) =
1

n

[
log
(
1⊤
nc
exp(WA)

)
− 1⊤

nc
(C⊙WA)

]
1n, (A.2)
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where ⊙ denotes the Hadamard (element-wise) product, and

A = [a1, a2, ..., an] ∈ Rm×n,C = [c1, c2, ..., cn] ∈ Rnc×n.

We then vectorize the the parameters w = vec(W) so that (A.2) becomes

min
w∈Rmnc

f(w) =
1

n

[
1⊤
n log

(
(In ⊗ 1⊤

nc
) exp(Jw)

)
− c⊤Jw

]
,

where

c = vec(C) ∈ Rnnc , and J = A⊤ ⊗ Inc ∈ Rnnc×mnc ,

where Inc Rnn×nc is the identity matrix.

Letting K = In ⊗ 1nc1
⊤
nc
, the gradient and Hessian are given by

∇f(wi) =
1

n

[
J⊤diag(exp(Jwi))(In ⊗ 1nc)diag

(
1

(In ⊗ 1⊤
nc
) exp(Jwi)

)
1n − J⊤c

]
=

1

n
J⊤
[
diag(exp(Jwi))(In ⊗ 1nc)

1

(In ⊗ 1⊤
nc
) exp(Jwi)

− c

]
=

1

n
J⊤
[
diag(exp(Jwi))

1

(In ⊗ 1nc1
⊤
nc
) exp(Jwi)

− c

]
=

1

n
J⊤
[

exp(Jwi)

K exp(Jwi)
− c

]
=

1

n
J⊤ (pi − c) ,

and

∇2f(wi) =
1

n
J⊤
[
diag

(
1

K exp(Jwi)

)
diag(exp(Jwi))

− diag(exp(Jwi))diag

(
1

(K exp(Jwi))2

)
Kdiag(exp(Jwi))

]
J

=
1

n
J⊤
[
diag

(
exp(Jwi)

K exp(Jwi)

)
− diag

(
exp(Jwi)

(K exp(Jwi))2

)
K diag(exp(Jwi))

]
J

=
1

n
J⊤HiJ,
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with

pi =
exp(Jwi)

K exp(Jwi)
, Hi = diag(pi)− diag

(
exp(Jwi)

(K exp(Jwi))2

)
K diag(exp(Jwi)).
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