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Tensors are a popular algebraic structure for a wide range of applications, due

to their exceptional capability to model multidimensional relationships of the data.

Among them, regular tensors with aligned dimensions for all modes have been ex-

tensively studied, for which various tensor factorization structures are proposed de-

pending on the applications. However, regular tensor decomposition is incapable of

handling many real-world cases involving time, due to its irregularity. Electronic

health records (EHRs) are often generated and collected across a large number of pa-

tients featuring distinctive medical conditions and clinical progress over a long period

of time, which results in unaligned records along the time dimension. PARAFAC2

has been re-popularized for successfully extracting meaningful medical concepts (phe-

notypes) from EHRs by irregular tensor factorization. However, efforts still need to

overcome the limitations of the current PARAFAC2 model, including lack of robust-

ness against missing values, lack of modeling of non-linear temporal dependencies,

and lack of consideration of the downstream tasks. We propose 1) robust temporal

PARAFAC2 for irregular tensor factorization and completion with potential missing

and erroneous values; 2) generalized, low-rank recurrent neural network (RNN) reg-

ularized robustly irregular tensor factorization for more accurate temporal modeling,

which is flexible enough to choose from a variate of losses to best suit different types

of data in practice; 3) supervised irregular tensor factorization framework with multi-

task learning for both phenotype extraction and predictive learning which enables

information sharing between different prediction tasks and further improve down-

stream prediction performance.
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Chapter 1

Introduction and Background

Recent years have witnessed a global interest in mining Electronic Health Records

(EHRs) to improve healthcare and advance medical research [76]. EHRs consist of

detailed information such as diagnoses, laboratory test results, and medication pre-

scriptions, for large patient populations. However, directly using raw EHR data

is challenging due to its multi-dimensional and complex structure, and massive data

amount. In addition, clinical scientists are interested in breaking apart heterogeneous

syndromes into subgroups, i.e. phenotypes, such as diseases and disease subtypes, for

better understandings of the differences in biological mechanisms and treatment re-

sponses, which could lead to more effective and precise treatment. Therefore, raw

EHR data are often mapped to concise and meaningful medical concepts (i.e., pheno-

types) [7], which can be used for cohort (patient subgroup) identification and health-

care quality measurement. The ideal phenotype should concisely represent complex

interactions between different aspects of the patients (e.g., diagnosis, medications,

and lab results). Thus, computational phenotyping, the transformation from EHRs

to phenotypes, can be viewed as a form of dimension reduction, where each phenotype

forms a latent space.

Due to tensor’s intrinsic capability to model multi-dimensional relationships of
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the data, tensor decomposition-based computational phenotyping models have been

proposed to automatically extract phenotypes [28, 27, 73, 32, 41]. Compared to

traditional clustering-based approaches, tensor analysis not only can cluster patients

into subgroups but also can capture the interactions between the multiple attributes

(e.g, specific procedures used to treat a disease) and extract concise and potentially

more interpretable patterns in the latent spaces. Tensors are a popular algebraic

structure for a wide range of applications beyond health data mining, e.g., social

network analysis [40, 66], recommender system [33] and signal processing [64]. Regular

tensors with aligned dimensions for all modes have been extensively studied. Many

regular tensor factorization structures have been proposed: Canonical Polyadic (CP)

[10, 22, 26], Tucker [65], and tensor singular value decomposition (SVD) [35, 34].

However, regular tensor decomposition is incapable of handling many real-world data

involving time due to the irregularity in the time dimension. A concrete example is

EHR data that different patients may have the different numbers of visits.

Table 1.1: Sample EHRs data (extracted from MIMIC-EXTRACT dataset, circles
means missing observations).

patient
1
visit
time

Albumin Blood
urea ni-
trogen

Chloride Glascow
coma
scale

Oxygen
satura-
tion

Sodium ......

0 1.8 O O O 97.5 O ......

1 O O O 11 O 135 ......

2 O O 109 O O O ......

3 O 24 O O 91.4 O ......

patient
2
visit
time

Albumin Blood
urea ni-
trogen

Chloride Glascow
coma
scale

Oxygen
satura-
tion

Sodium ......

0 O 22 O O O O ......

1 O 18 O O 95 O ......

Example 1. Consider an EHR database that captures K patients. Table 1.1 shows

two patients’ EHR records. The number of visits can be of different sizes across pa-

tients. Besides the irregularity, EHR records are also prone to missing observations

because of many practical reasons, for example, equipment failure, inaccurate infor-
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mation recording, and inexperienced medical staff. Circles in Table 1.1 means missing

observations.

Recently, PARAFAC2 [23] has been re-popularized for successfully extracting

meaningful medical concepts (phenotypes) from such temporal EHR by irregular

tensor factorization. Figure 1.1 illustrates the computational phenotyping process

using PARAFAC2 for the data. Each patient record can be captured using a binary,

numeric, or count matrix Xk, where each matrix value represents the measurement

associated with a particular feature for a particular visit. The entire data can be repre-

sented as an irregular tensor where each slice Xk represents the information of patient

k with Ik visits and J medical features. The irregular tensor Xk will be factorized

by PARAFAC2 to three-factor matrices. Uk ∈ RIk×R captures temporal evolution of

the R phenotypes for patient k. V ∈ RJ×R contains the phenotypes. Each row of V

matrix represents one latent and potentially interpretable phenotype. Each medical

feature is represented with a weight indicating its contribution to the phenotype in

each row. Sk ∈ RR×R is a diagonal matrix with the importance membership of patient

k in each one of the R phenotypes. The right side table in figure 1.1 shows three exam-

ple phenotypes represented in the V matrix with the top 4 highest weighted medical

features in each phenotype (the example is from the MIMIC-EXTRACT dataset and

weight is shown in parenthesis). Each phenotype represents a set of related medical

features which can suggest meaningful subgroups.

A scalable PARAFAC2 model was proposed in [51] to handle large and sparse data.

Afshar et al. further introduced various constraints to improve the interpretability

of the factor matrices for more meaningful phenotype extraction [2]. Despite these

improvements, existing PARAFAC2 methods suffered from three major limitations:

1) they are not robust to missing and erroneous elements in the data; 2) they fail

to model the non-linear temporal dependency of patients’ disease states, and are

designed only for a single data type – numeric or binary; 3) they are completely un-
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Patient slice (Xk)

Visits
(Ik)

Medical features (J)

Uk Sk

Rank (R)

Rank (R)

Visits
(Ik)

Normalities in vital signs (Phenotype 
1)

Oxygen saturation (1.52)
Systolic blood pressure  (0.91)
Heart rate (0.82)
Mean blood pressure (0.79)

Liver and kidney vital signs 
(Phenotype 2)

Alanine aminotransferase (11.51)
Blood urea nitrogen (9.64)
Alkaline phosphate (8.01)
Asparate aminotransferase (5.18)

Abnormalities in Blood Counts and 
Serum Electrolytes (Phenotype 3)

Mean corpuscular hemoglobin 
concentration (7.54)
Sodium (4.93)
Mean corpuscular hemoglobin (3.62)
Mean corpuscular volume (3.41)

Medical features (J)

Rank 
(R)

Figure 1.1: PARAFAC2 tensor factorization

supervised, i.e., they attempt to learn the latent factors to best recover the original

observations without considering downstream predictive tasks. While there are mod-

els that use extracted phenotypes for predictive tasks, they are trained separately

and only consider a single prediction task, which ignores auxiliary information from

other predictive tasks.

1.1 Research Contributions

This thesis proposes a framework extending PARAFAC2 for robust, better temporal

modeling, and supervised tensor factorization and prediction for health data analysis.

It includes several contributions:

1. We propose a robust PARAFAC2 tensor factorization method for irregular ten-

sors with a new low-rank regularization function to handle potentially missing

and erroneous entries in the input tensor (address the limitation 1).

2. We propose a generalized, low-rank Recurrent Neural Network (RNN) regular-

ized robust irregular tensor factorization for more accurate temporal modeling,

which is flexible enough to choose from a variate of losses to best suit different

types of data in practice (address the limitation 2).
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3. We propose a supervised irregular tensor factorization framework with multi-

task learning for both phenotype extraction and predictive learning, which can

yield not only more meaningful phenotypes but also better predictive accuracy

(address the limitation 3).

1.1.1 Robust Temporal PARAFAC2 for Irregular Tensor Fac-

torization and Completion (Chapter 2)

First, We study the unexplored robust irregular tensor factorization and completion

with potential missing and erroneous values. Existing PARAFAC2 methods are not

robust to missing and erroneous elements in the data, which severely limits its ap-

plicability to practical temporal EHR data analysis. For regular tensor factorization

frameworks, robust mechanisms are well developed to handle missing and erroneous

data, among which the robust low-rank tensor minimization (RLTM) is one of the

most successful approaches [1, 42, 46, 19, 62, 21, 49, 48]. Different low-rank regu-

larization functions are adopted by these methods, which vary according to different

types of tensor factorization. However, it is still unknown how to impose low-rank

regularization for PARAFAC2 and design an explicit RLTM mechanism to handle

missing entries and remove erroneous entries.

To fill this gap, we propose REPAIR, a Robust tEmporal PAFAFAC2 for

IRregular tensor factorization and completion method, which is the first robust ir-

regular tensor recovery method. Given each patient input data with erroneous and

missing entries, REPAIR performs RLTM to separate out the erroneous entries from

the underlying clean and completed components, and uses the clean tensor from a

common low-rank space for PARAFAC2 based candidate phenotype extraction. We

achieve this by addressing two main challenges: First, specific low-rank regulariza-

tions need to be designed for PARAFAC2 to suit its decomposition structure which

has not been explored in existing work. Second, the robust factorization needs to
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incorporate additional constraints such as temporal smoothness, non-negativity, and

sparsity [2] to obtain more meaningful and accurate phenotypes.

We evaluate REPAIR on two real-world temporal EHR datasets with a set of

experiments, which verify the improved recovery and factorization robustness against

missing and erroneous values. Through two case studies: identification of higher-

risk patient subgroups, and in-hospital mortality prediction, we further demonstrate

the superior utility of the factorization outputs of REPAIR to facilitate downstream

temporal EHR data analysis.

1.1.2 RNN Regularized Robust Irregular Tensor Factoriza-

tion and Completion (Chapter 3)

Next, inspired by the non-linear modeling capability of deep neural networks, we focus

on extending a generalized PARAFAC2 model to capture complex temporal relation-

ships for different patients. The existing PARAFAC2 tensor factorization methods

only impose linear and human-defined temporal regularization functions, which fail to

capture non-linear and complex temporal information in real-world scenarios. More-

over, current PARAFAC2 models are designed only for a single data type – numeric

or binary. Thus, there is a lack of flexibility of PARAFAC2 models for other data

types.

To address these limitations, we propose REBAR, a RNN REgularized RoBust

PARAFAC2 Irregular Tensor Factorization and Completion model. REBAR has a

new hybrid optimization framework using stochastic gradient descent and proximal

average that can handle multiple regularizations and generalized loss functions. More-

over, REBAR accommodates a wide selection of regularization, including statistical

learning-based, deep learning-based, and composite, to better capture the intrinsic

nature of the irregular temporal EHR data. We also introduce a new optimization

framework to fully exploit the parallel computing capability of modern GPUs to boost
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efficiency.

We evaluate REBAR on three real-world temporal EHR datasets with a set of

experiments, which verify the improved recovery and factorization robustness against

missing values. Through three case studies: interpretation of the dynamic subpheno-

types trajectory, downstream prediction analysis, and scalability analysis, we further

demonstrate that REBAR can robustly and scalably extract meaningful and high

predictability phenotypes with missing data.

1.1.3 Supervised Irregular Tensor Factorization Framework

with Multi-task Learning (Chapter 4)

Last but not least, we tackle the challenge of improving the predictability of the

current PARAFAC2 model in Chapter 4. Current PARAFAC2 models [51, 2] are

completely unsupervised and only attempt to learn the latent factors to best recover

the original observations. Some works have considered using the latent factors as

features for downstream prediction tasks (e.g., in-hospital mortality or hospital read-

mission prediction using extracted phenotypes), and achieved limited performance

gain than using the raw data as features. This is because the tensor factorization

does not take advantage of the downstream labels, the extracted factors, while in-

terpretable, may not be the most representative or discriminating for downstream

prediction tasks. In addition, current work [2, 51] using tensor factorization for pre-

dictive tasks only consider a single task (e.g., in-hospital mortality prediction) and

ignore useful information from other prediction tasks.

We propose MULTIPAR: a supervised irregular tensor factorization framework

with multi-task learning for both phenotype extraction and predictive learning. MUL-

TIPAR jointly optimizes the tensor factorization and downstream prediction together,

so that the factorization can be “supervised” or informed by the predictive tasks.

In addition, we use a multi-task framework to leverage information from multiple
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predictive tasks. It provides flexibility to incorporate both one-time or static (e.g.

in-hospital mortality prediction) and continuously changing or dynamic (e.g. the

need for ventilation) outcomes. To achieve this, the temporal features from U matrix

are used for dynamic prediction, and the features from S matrix are used for static

prediction.

Our main hypothesis is that such a supervised multi-task framework can yield

not only more meaningful phenotypes but also better predictive accuracy than per-

forming tensor factorization independently followed by predictive learning using the

phenotypes extracted from the tensor. Our empirical studies on two large publicly

available EHR datasets with representative predictive tasks (both static and dynamic)

and different models (e.g. logistic regression and recurrent neural networks) verified

this hypothesis.
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Chapter 2

REPAIR: Robust Temporal

PARAFAC2 for Irregular Tensor

Factorization and Completion

2.1 Overview

Existing PARAFAC2 methods are unable to robustly handle erroneousness and miss-

ing data which are prevalent in clinical practice. In this chapter, we propose RE-

PAIR, a Robust tEmporal PARAFAC2 for IRregular tensor factorization and com-

pletion method, to complete irregular tensor and extract phenotypes in the presence

of missing and erroneous values. As it is shown in Figure 2.1, given each patient input

data Ok with erroneous and missing entries, REPAIR performs RLTM to separate

out the erroneous entries Ek from the underlying clean and completed components

Xk, and uses the clean tensor from a common low-rank space for PARAFAC2 based

candidate phenotype extraction, i.e. Xk ≈ UkSkV
>. We achieve this by address-

ing two main challenges: First, specific low-rank regularizations need to be designed

for PARAFAC2 to suit its decomposition structure which has not been explored in
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existing work. Second, the robust factorization needs to incorporate additional con-

straints such as temporal smoothness, non-negativity and sparsity [2] to obtain more

meaningful and accurate phenotypes.

We summarize our contributions below:

1. We propose a robust PARAFAC2 tensor factorization method for irregular ten-

sors with a new low-rank regularization function to handle potentially missing

and erroneous entries in the input tensor. This is the first work that explicitly

handles missing and erroneous data for irregular tensor factorization.

2. We design an efficient two-phase optimization to simultaneously: 1) learn and

complete the clean underlying tensor by decomposing the original tensor into the

underlying low-rank tensor and the sparse error tensor; and 2) extract pheno-

types by factorizing the clean tensor. The phenotype extraction phase incorpo-

rates many practical constraints for improving interpretability of the extracted

phenotypes, including temporal smoothness, non-negativity and sparsity.

3. We evaluate REPAIR on two real-world temporal EHR datasets with a set of

experiments, which verify the improved recovery and factorization robustness

against missing and erroneous values. Through two case studies: identification

of higher-risk patient subgroups, and in-hospital mortality prediction, we further

demonstrate the superior utility of the factorization outputs of REPAIR to

facilitate downstream temporal EHR data analysis.

2.2 Preliminaries and Backgrounds

In this section, we define the notations, present background on robust low-rank tensor

minimization followed by PARAFAC2 and its application for temporal EHR pheno-

typing. Table 2.1 summarizes commonly used notations.



11
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J
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R

R
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J J

Robust Low-rank Tensor Minimization PARAFAC2 for Phenotype Extraction

Figure 2.1: Overview of REPAIR: robust irregular tensor PARAFAC2 factorization
for EHR phenotyping on input patients’ data O. Ok contains erroneous and miss-
ing entries, which can be decomposed into erroneous Ek and clean and completed
components denoted by Xk. PΩ(Ok) = PΩ(Ek + Xk). The underling clean tensor is
decomposed by PARAFAC2 into Xk ≈ UkSkV

>.

Table 2.1: Symbols and notations used in chapter 2

Symbol Definition
a,A,A Vector, Matrix, Tensor

Ak k-th frontal slice of A
A(n) Mode-n matricization of A
‖ · ‖1 `1-norm
‖ · ‖F Frobenius norm
‖ · ‖∗ Nuclear norm
∗ Hadamard (element-wise) multiplication
� Khatri Rao product
◦ Outer product
〈·, ·〉 Inner product

For temporal EHR, let the observed tensor be O = {Ok} ∈ {RIk×J} (c.f. leftmost

tensor in Figure 2.1) with 3 modes, where each frontal slice Ok represents patient

k’s record of J types of diagnosis, treatments or lab test results (along mode 2),

across Ik clinical encounters (along mode 1) varying from patient to patient. The

aim of temporal EHR phenotyping is to discover medical concepts by making use of

all K frontal slices, i.e. the information of all K patients, and discerning as much

inter-relationship across different patients (i.e. cross frontal slice) as possible.

2.2.1 Robust Low-rank Tensor Factorization and Completion

For regular tensors (i.e. assuming {Ok} are aligned in all dimensions), the robust

low-rank tensor minimization (RLTM) is one of the most successful approaches to
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handle incomplete and corrupted input tensors. For such a regular tensor O, RLTM

separates it into an underlying clean and completed tensor X and an error tensor E.

In practice, the clean part is often low-rank while the erroneous part is sparse. Thus,

RLTM imposes a low-rank regularization function ‖ · ‖lr and a sparsity regularization

function ‖ · ‖1 on X and E, correspondingly:

argmin
X,E

‖X‖lr + ρ0‖E‖1, s.t. PΩ(O) = PΩ(X + E), (2.1)

where Ω is the index set of non-missing entries and PΩ keeps entries in Ω and zeros out

others (i.e., missing entries), ρ0 is a balancing constant. RLTM is a multidimensional

extension to the robust low-rank matrix minimization [9], but it is intrinsically more

difficult. The main challenge lies in introducing a proper low-rank definition and

designing an effective and efficient low-rank regularization. Unlike a low-rank matrix,

the low-rank definition for tensor is not unique and should be adapted according to

each tensor decomposition model (e.g., CP, Tucker, tensor SVD).

For example, Tucker model defines the rank of X based on the matrix rank of its

matricization, i.e. the vector (rank(X(1)), rank(X(2)), rank(X(3))). CP decomposes

X ∈ RI1×I2×I3 into the sum of R rank-one tensors by X =
∑R

r=1 A(:, r) ◦B(:, r) ◦C(:

, r), where A,B,C are factorization matrices and the smallest R to achieve such

decomposition is defined to be the rank R∗ of X under CP model. It is difficult to

accurately estimating R∗ for CP (in fact, NP-hard to determine), as well as to deal

with matrix rank used by Tucker. More tractable relaxations are then proposed with

various low-rank regularization functions [19, 46, 62, 42].

Despite their varieties, the existing low-rank regularization functions are designed

for regular tensor factorization models and cannot be applied to an irregular tensor

factorization model like PARAFAC2. In fact, they are not even well-defined on ir-

regular tensors and PARAFAC2. Thus, there lacks tractable and effective low-rank
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regularization for PARAFAC2 applicable to large-scale irregular tensors.

2.2.2 PARAFAC2 for Temporal EHR

PARAFAC2 is the state-of-the-art tensor factorization structure for irregular tensors

that do not align naturally along one of its modes. The classic PARAFAC2 (c.f. Fig.

2.1 red box) for irregular tensor {Xk} is formalized below [38]:

Definition 1. (Classic PARAFAC2 model)

argmin
{Uk},{Sk},V

K∑
k=1

1

2
‖Xk −UkSkV

>‖2
F ,

s.t. Uk = QkH,Q>k Qk = I,Sk is diagonal, where Qk ∈ RIk×R is orthogonal, Ik ∈

RR×R is the identity matrix and R is the target rank of the PARAFAC2 decomposition.

For temporal EHR data, the factorization matrices have the following interpreta-

tion:

B Uk ∈ RIk×R contains temporal evolution for patient k: the r-th column of Uk

indicates the evolution of the r-th phenotype for all Ik clinical visits for patient

k.

B V ∈ RJ×R reflects the phenotypes. Each non-zero entry of V indicates the

membership of the corresponding j-th medical feature in the r-th phenotype.

B Sk ∈ RR×R is a diagonal matrix with the importance membership of patient

k in each one of the R phenotypes. It is often organized into W ∈ RR×K
+ with

each row of W composed by the diagonal of Sk, i.e. W(:, k) = diag(Sk).

SPARTan [51] scales PARAFAC2 to large temporal EHR phenotyping by intro-

ducing a sparse MTTKRP (abbreviated for Matricized-Tensor-Times-Khatri-Rao-

Product) module, which takes advantage of the high input sparsity to reduce the
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per-iteration cost. Following its efficiency improvement, COPA [2] further introduces

various constraints/regularizations to improve the interpretability of the factor ma-

trices for more meaningful pheonotype extraction. For example, COPA introduces

the M-spline constraint [58] to Uk to capture the temporal smoothness, non-negative

constraint to Sk to get positive weight, and sparsity (e.g., `1 norm regularization) to

V to induce sparse phenotype definitions.

In sum, despite their improvements on computational efficiency and output in-

terpretability, existing PARAFAC2 methods do not explicitly address the problem of

extracting meaningful phenotypes from EHR datasets with moderate ratio of missing

and error entries, which severely limits them from more robust clinical usage.

2.3 Proposed Method

2.3.1 Low-rank Regularization for PARAFAC2

As mentioned, effective low-rank regularization has not been studied for irregular

tensors. Recent work [75] proposes to recover each of {Xk}’s frontal slices matrix by

matrix by robust low-rank matrix completion techniques [8, 47]. The drawback of this

approach is that it cannot capture the internal structural correlations across frontal

slices, i.e. common information among patients, for temporal EHR phenotyping.

As can be seen from our experiments, this approach does not provide satisfactory

recovery performance. On the contrary, we propose to impose the low-rankness on

{Xk} through adding nuclear norm constraints on the internal factorization matrices

H,V,W, which are shared by all frontal slices thus capable of capturing cross-slice

information.

Definition 2. For irregular tensor

X = {Xk} ≈ PARAFAC2({Qk},H,V,W),
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the low-rank regularization function is defined as

‖X‖lr := ‖H‖∗ + ‖V‖∗ + ‖W‖∗. (2.2)

Our low-rank regularization function enjoys the following nice properties: 1) it is

natural to the decomposition structure of the PARAFAC2 model; 2) it can effectively

recover the underlying clean and completed tensor {Xk} by capturing cross frontal

slice information.

2.3.2 REPAIR: Model

Having defined the low-rank regularization function in Definition 2, we formalize

the objective function for the REPAIR model in Definition 3. It applies the RLTM

framework (i.e. eq.(2.1)) to PARAFAC2, which separates the underlying clean and

completed tensor X = {Xk} and the erroneous tensor E = {Ek} given the missing and

corrupted observation tensor O = {Ok}. Meanwhile, REPAIR decomposes {Xk} into

PARAFAC2 structure. The tensor recovery of X is enforced by the linear constraint

between O, X, E in eq (2.4), low-rank regularization for X = {Xk} and sparsity

constraint for E in the second row of eq (2.3). The tensor factorization of X is

enforced by the PARAFAC2 loss for X, the temporal smoothness, nonnegativity, and

sparsity constraints in the first row of eq (2.3) and additional constraints in eq (2.5).

For EHR phenotype discovery, various constraints should be imposed on the fac-

torization matrices to yield meaningful and high-interpretability phenotypes. The

REPAIR model accommodates such interpretability-purposed constraints in eq.(2.3)

including: temporal smoothness for c1(H), non-negativity for {c2(Sk)}, sparsity for

c3(V).
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Definition 3. (REPAIR objective function)

argmin
Qk,H,Sk,V

K∑
k=1

( PARAFAC2 loss for X︷ ︸︸ ︷
‖Xk −UkSkV

>‖2
F +

sparsity for E︷ ︸︸ ︷
ρ0‖PΩ(Ek)‖1)+

low-rankness for X︷ ︸︸ ︷
ρ1‖H‖∗ + ρ2‖V‖∗ + ρ3‖W‖∗+

smoothness︷ ︸︸ ︷
c1(H) +

nonnegativity︷ ︸︸ ︷
K∑
k=1

c2(Sk) +

sparsity︷ ︸︸ ︷
c3(V),

(2.3)

s.t. for k = 1, ..., K,

linear constraint between O,X,E︷ ︸︸ ︷
PΩ(Ok) = PΩ(Xk + Ek), (2.4)

, Uk = QkH, Q>k Qk = I︸ ︷︷ ︸
constraints for PARAFAC2 decomposition

(2.5)

where H, {Sk}, I ∈ RR×R, Qk ∈ RIk×R.

2.3.3 REPAIR: Optimization

To solve the REPAIR model, a straightforward approach is to introduce auxiliary

variables for the low-rank and interpretability regularizations, then solve the problem

by multi-block Alternating Direction Method of Multipliers (ADMM) [5]. Inspired by

the more flexible Alternating Optimization ADMM (AO-ADMM) [30], we design a

two-phase alternative optimization algorithm to accommodate more constraints. The

REPAIR optimization proceeds by iterating between the two phases: I) updating the

factorization matrices {Qk},H,V,W; II) separating the X and E from O. For I), we

factorize the intermediate (inaccurate) recovered tensor X by solving an approximated

PARAFAC2; for II), we follow standard ADMM to convert the linear constraint of

eq.(2.4) by introducing Lagrangian dual variable {ΓkO} to get rid of the constraint in

eq.(2.4) as shown in Definition 3. This way, REPAIR can accommodate a variety of

constraints for each factorization for better interpretability. Also, the optimizations

for each factor are more independent, which makes it easier to deal with.
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Definition 4. The augmented Lagrangian dual objective is,

K∑
k=1

(
‖Xk −QkHSkV

>‖2
F − 〈ΓkO,Ok −Xk − Ek〉

+
ηkO
2
‖Ok −Xk − Ek‖2

F + ρ0‖PΩ(Ek)‖1

)
+
(
ρ1‖H‖∗ + ρ2‖V‖∗ + ρ3‖W‖∗

)
+
(
c1(H) + c2(W) + c3(V)

)
s.t. Sk = diag(W(k, :)), Q>k Qk = I, for k = 1, ..., K.

Phase I: Approximated PARAFAC2

In the first phase, we update the factorization matrices {Qk},H,V,W with {Xk} and

{Ek} fixed, which can be intuitively seen as decomposing the latest recovered tensor

{Xk} into PARAFAC2. In practice, we observe that it is enough to run PARAFAC2

by one iteration in this phase to achieve the overall convergence, which avoids heavy

computation of solving precise PARAFAC2.

Update Qk: To update Qk, we need Lemma 1 below:

Lemma 1. The Orthogonal Procrustes problem is:

Q# = argmin
Q:Q>Q=I

‖QA−B‖2
F ,

which has the closed-form solution: Q# = PZ>, where [P,Σ,Z] = svd(BA>) and

svd(·) is singular value decomposition.

When applied to the update of Qk, with other factors fixed, we have

Qk = argmin
Qk:Q>k Qk=I

‖Xk −QkHSkV
>‖2

F . (2.6)
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Table 2.2: Additional symbols for REPAIR optimization

Symbol Definition
ρ0, ρ1, ρ2, ρ3 Balancing hyper-parameters
Hl,Vl,Wl Auxiliary variable for low-rank constr.
ΓlH ,Γ

l
W ,Γ

l
V Lagrangian dual for low-rank constr.

ηlH , η
l
W , η

l
V Lagrangian constant for low-rank constr.

Hc,Vc,Wc Auxiliary variable for interpretability constr.
ΓcH ,Γ

c
W ,Γ

c
V Lagrangian dual for interpretability constr.

ηcH , η
c
W , η

c
V Lagrangian constant for interpretability constr.

Let B = Xk and A = HSkV
> and by Lemma 1:

Qk = PkZ
>
k , where[Pk,Σ,Zk] = svd(XkVSkH

>). (2.7)

Update H: After obtaining {Qk}, we denote Yk = Q>k Xk, for k = 1, ..., K, and let

Y be the tensor with Yk being its frontal slice. We then update H,V,W alternatively

by solving three constrained least squares sub-problems. Due to the symmetry of the

three sub-problems, we elaborate the update for H as an example.

H = argmin
H
‖Y(1) −H(V �W)>‖2

F + ρ1‖H‖∗ + c1(H).

We introduce two auxiliary variables Hl and Hc to separate the low-rank and inter-

pretability constraints:

argmin
H,Hl,Hc

‖Y(1) −H(V �W)>‖2
F + ρ1‖Hl‖∗ + c1(Hc),

s.t. Hl = H, Hc = H.

The above can be solved by ADMM after introducing Lagrangian dual variable
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ΓlH ,Γ
c
H and constants ηlH , η

c
H , correspondingly:

argmin
H,Hl,Hc

‖Y(1) −H(V �W)>‖2
F + ρ1‖Hl‖∗ + c1(Hc)

− 〈ΓlH ,H−Hl〉+
ηlH
2
‖H−Hl‖2

F

− 〈ΓcH ,H−Hc〉+
ηcH
2
‖H−Hc‖2

F .

To solve it by ADMM, we have the following update sequence for H,Hl,Hc and

dual ΓlH ,Γ
c
H :

H =
(
Y(1)(V �W) + ΓlH + ΓcH + ηlHHl + ηcHHc

)
·
(

(V>V) ∗ (W>W) + (ηlH + ηcH)I
)†
,

(2.8)

where � is the Khatri Rao product, ∗ is the Hadamard product and † is the pseudo-

inverse.

Hl = argmin
Hl

ηlH
2
‖Hl −H‖2

F − 〈ΓlH ,Hl −H〉+ ρ1‖Hl‖∗,

which has the proximal operator [50] with respect to the nuclear norm ‖ · ‖∗, a.k.a.

singular value thresholding [8], as its closed-form solution:

Hl = prox ρ1
ηl
H

‖·‖∗(H +
ΓlH
ηlH

) = PDiag(max{0,σ − ρ1

ηlH
})Z>, (2.9)

where [P, Diag(σ),Z] = svd(H +
ΓlH
ηlH

).

Hc = argmin
Hc

ηcH
2
‖Hc −H‖2

F − 〈ΓcH ,Hc −H〉+ c1(Hc),

which has the proximal operator with respect to the constraint function c1(·) as its

closed-form solution:

Hc = prox 1
ηc
H
c1

(H +
ΓcH
ηcH

). (2.10)
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The Lagrangian dual variables are update as follows:

ΓcH = ΓcH − ηcH(H−Hc); (2.11)

ΓlH = ΓlH − ηlH(H−Hl). (2.12)

Update V,W: The update for V (along with Vl,Vc) and W (along with Wl,Wc)

are similar to H:

V =
(
Y(2)(H�W) + ΓlV + ΓcV + ηlV Vl + ηcV Vc

)
·
(
(H>H) ∗ (W>W) + (ηlV + ηcV )I

)†
;

Vl = prox ρ3
ηl
V

‖·‖∗(V +
ΓlV
ηlV

); Vc = prox 1
ηc
V
c3

(V +
ΓcV
ηcV

);

ΓcV = ΓcV − ηcV (V −Vc); ΓlV = ΓlV − ηlV (V −Vl).

(2.13)

W =
(
Y(3)(V �H) + ΓlW + ΓcW + ηlWWl + ηcWWc

)
·
(
(V>V) ∗ (H>H) + (ηlW + ηcW )I

)†
;

Wl = prox ρ2
ηl
W

‖·‖∗(W +
ΓlW
ηlW

); Wc = prox 1
ηc
W
c2

(W +
ΓcW
ηcW

);

ΓcW = ΓcW − ηcW (W −Wc); ΓlW = ΓlW − ηlW (W −Wl).

(2.14)

2.3.4 Phase II: robust underlying tensor recovery

In this second phase, we alternatively update the low-rank tensor {Xk} which is

the underlying clean and completed tensor, and the sparse tensor {Ek} which is the

corrupted tensor, as well as the Lagrangian dual variable {ΓkO}.
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Update {Xk}: It amounts to

Xk = argmin
Xk

‖Xk −QkHSkV
>‖2

F − 〈ΓkO,Ok −Xk − Ek〉

+
ηkO
2
‖Ok −Xk − Ek‖2

F ,

which has the solution

Xk = QkHSkV
> − ΓkO + ηkO(Ok − Ek). (2.15)

Update {Ek}: The update of Ek separates into PΩ(Ek) and PΩ⊥(Ek):

PΩ(Ek) = PΩ(prox ρ0
ηk
O

‖·‖1(Ok −Xk −
1

ηkO
ΓkO)), (2.16)

where prox ρ0
ηk
O

‖·‖1(·) is the proximal operator for the `1-norm, a.k.a. soft-thresholding.

PΩ⊥(Ek) = PΩ⊥(Ok −Xk). (2.17)

Update {ΓkO}: This is Lagriangian dual variable update:

ΓkO = ΓkO − ηkO(Ok −Xk − Ek). (2.18)

The complete REPAIR algorithm is summarized in Algorithm 1.
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Algorithm 1 Optimization framework for REPAIR

Input: Input tensor O; Model parameters ρ0-ρ3; Optimization parameters η’s; In-
terpretability constraint types c1, c2, c3; Initial rank estimation R.

1: while Not reach convergence criteria do
2: %% Phase I begins
3: while Not reach inner loop max do
4: Update {Qk} by eq.(2.7);
5: Update H,V,W-related variables sequantially;
6: end while
7: %% Phase II begins
8: Update {Xk} by eq.(2.15);
9: Update {Ek} by eq.(2.16)&(2.17);
10: Update {ΓkO} by eq.(2.18).
11: end while
Output: Phenotype factor matrices {Uk} = {QkH}, {Sk},V; Recovered tensor
{Xk}.

2.4 Experimental Evaluation

2.4.1 Experiment Setup

Datasets

We evaluate REPAIR on two real-world publicly-available temporal EHR datasets:

CMS1 and MIMIC-III2.

CMS: Centers for Medicare and Medicaid Services (CMS) contains synthesized data

of Medicare beneficiaries in 2008 and their claims from 2008 to 2010. We construct

a three-mode tensor with patients (along mode-3), diagnosis or ICD9 codes (along

mode-2), and clinical visits (along mode-1). Each tensor value Oijk indicates the

number of times a patient k has a diagnosis j during visit i. We keep records of

patients with at least 2 hospital visits. The resulting number of patients is 50,000

with 284 features (diagnosis categories) and the maximum number of observations

for a patient is 1500. The number of non-zero elements is 49 million. 89% of the

1https://www.cms.gov/Research-Statistics-Data-and-Systems/

Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF.html
2https://mimic.physionet.org/

https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF.html
https://mimic.physionet.org/
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non-zero elements are 1, and 11% are 2.

MIMIC-III: The intensive care unit (ICU) dataset is collected between 2001 and

2012. Similar to CMS, we construct the three-mode tensor and keep records of pa-

tients with at least 2 hospital visits. We select 202 ICD-9 codes that have the highest

frequency as in [36]. The resulting number of patients is 2323 with 202 features (di-

agnosis codes) and the maximum number of observations for a patient is 41. The

number of non-zero entries is 3 million. 96% of non-zero elements are 1, and 4% are

2.

Methods for Comparison

Since there are no existing robust methods for irregular tensor factorization with

missing and erroneous data, we compare with two groups of methods: 1) state-of-

the-art irregular tensor factorization methods, which however have no mechanisms to

handle missing and erroneous data; 2) we adapt existing robust methods for regular

tensor factorization to irregular tensors for comparison.

1) Irregular tensor factorization methods

• SPARTan [51]- scalable PARAFAC2: A recently-proposed methodology

for fitting PARAFAC2 on large and sparse data. It does not explicitly address

missing or erroneous data.

• COPA [2]- scalable PARAFAC2 with additional regularizations: A

state-of-the-art irregular tensor factorization method. It further introduces var-

ious constraints/regularizations to improve the interpretability of the factor

matrices for more meaningful pheonotype extraction.

2) Adapted robust regular tensor factorization methods

• CP-WOPT [1] - robust method for regular tensors: CP-WOPT is a

robust method for regular tensors which uses a weighted optimization method
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for CP tensor completion and factorization with incomplete data. To make it

work with irregular tensors, we first zero-pad the irregular tensors to aligned

ones and then apply CP-WOPT.

• lrmcR [47] + COPA - robust method for matrix completion: lrmcR [47]

is a robust low-rank matrix completion method. To make it work for irregular

tensors, we apply lrmcR to recover the frontal slices one by one and then apply

COPA for phenotype extraction.

Implementation details

REPAIR3 is implemented in Matlab R2019a and includes functionalities from the

Tensor Toolbox4. We utilize the Parallel Computing Toolbox of Matlab. For CMS

dataset, 30 workers are used; and for MIMIC-III, 4 workers are used. We report the

hyper-parameters of REPAIR in the experiment in Table 2.3. The code of COPA and

SPARTan are publicly available at: https://github.com/aafshar/COPA; https:

//github.com/kperros/SPARTan. For the COPA related methods, we use the same

regularizations c1, c2, c3 with REPAIR, as given in Defintion 3.

We evaluate recovery accuracy and robustness of the tensor factorization against

various conditions of missing and erroneous values. We empirical study the conver-

gence behaviour of all compared methods. In case studies, we evaluate the quality of

the factorization matrices (i.e. extracted phenotypes) for downstream analysis via:

1) identification of higher-risk patient sub-groups; 2) in-hospital mortality prediction.

2.4.2 Tensor Factorization Robustness

In order to test the robustness of REPAIR model against missing and error entries,

we randomly add missing values and error entries into the two datasets. We design

3https://github.com/Emory-AIMS/Repair
4https://www.tensortoolbox.org/

https://github.com/aafshar/COPA
https://github.com/kperros/SPARTan
https://github.com/kperros/SPARTan
https://github.com/Emory-AIMS/Repair
https://www.tensortoolbox.org/


25

Table 2.3: Parameters for CMS and MIMIC-III

Parameter CMS MIMIC-III

ρ0 1e-3 1e-3
ρ1 1e-3 1e-3
ρ2 1e-4 1e-4
ρ3 1e-4 1e-4
c1 253 270
c3 0.0000085 0.0000085
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Figure 2.2: Robustness against varying ratio of missing entries
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Figure 2.3: Robustness against varying ratio of erroneous entries
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Figure 2.4: Impact of varying rank estimation

two types of errors. The first is referred as pure outliers, where we randomly pick

tensor entries and set their values to be 4, which largely deviates from normal values

(1 and 2 in these datasets). The second is mixed error, where we randomly pick

certain entries and set their values to be 3 or 4 (outliers) with half probability, and

1 or 2 (normal values but flipped from the original value) with half probability. The
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original uncorrupted tensor denoted as {Gk} serves as the ground truth. We adopt

the FIT ∈ (−∞, 1] score [6] as the quality measure (the higher the better):

FIT = 1−
∑K

k=1 ‖Gk −UkSkV
T‖2∑K

k=1 ‖Gk‖2
. (2.19)

In the following experiment, we run each setting for 5 different random initialization

and report the average FIT . When the compared methods’ FIT drop below 0 (i.e.

fail to recover), we report the averaged highest FIT before the algorithm diverges.

Robustness against Varying Ratio of Missing Entries

We first evaluate the impact of varying missing ratios on the robustness of the methods

with fixed 30% error ratios as Figure 2.2 shows. If no error and missing entries are

added into data sets, REPAIR, COPA, SPARTAN and lrmcR + COPA methods can

achieve similar FIT scores around 0.42 (please note that it is a typical FIT range

for this task, e.g., [2]). However, the four baselines’ FIT scores quickly drop as

the missing ratio increases, in many cases below 0, which indicates baselines fail to

recover the tensor even with small missing ratios. Repair outperforms all methods

significantly. lrmcR+COPA performances slightly better than COPA thanks to its

completion of the slices. lrmcR + COPA and COPA perform better than SPARTan

thanks to its additional temporal constraints. CP-WOPT performs the worst, since

it does not address the irregularity of the tensors, even when it explicitly deals with

missing data, which indicates the importance of addressing the irregularity. We also

observe that pure outlier’s performances are often better than mixed error cases, as

pure outliers is easier for REPAIR model to separate the error entries.
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Table 2.4: Basis number for CMS and MIMIC-III

Rank R CMS MIMIC-III

10 102 140
20 190 200
30 215 220
40 253 270
50 270 320
60 320 360

Robustness against Varying Ratio of Erroneous Entries

We set the missing ratio to be 30%, and change the error ratio from 5% to 50%.

Figure 2.3 shows the FIT scores of different methods with respect to varying error

ratios for the two data sets under two error cases. With increasing error ratios, four

baselines’ recovery performance drop dramatically, while REPAIR enjoys a robust

performance with an average FIT around 0.32.

Impact of Varying Initial Target Rank Estimation

We set missing and error ratios both to 30% and vary the initial rank estimation

R. The detailed c1 (basis function number used by M-spline function for promoting

temporal smoothness) for different data sets and various ranks are shown in Table

2.4. With a higher rank R, the FIT of REPAIR slightly increases while always

outperforming all other methods as Figure 2.4 shows. This is because the low-rank

regularization function is able to iteratively decrease the target rank during the op-

timization (e.g. by soft-thresholding the singular values) and make it approach the

optimal one.

2.4.3 Convergence Comparison.

Figure 2.5 shows the convergence comparison of REPAIR, SPARTan, COPA, lrmcR

+ COPA, CP-WOPT on CMS with missing ratio 10% and mixed error ratio 20%

(under this setting all algorithms can recover the tensor without failure). By Figure
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Figure 2.5: Convergence comparison of REPAIR, SPARTan, COPA, lrmcR + COPA,
CP-WOPT

2.5, REPAIR flats around 9-10 iterations (with a higher FIT score than baselines),

while it takes baselines 14-15 iterations. This shows that REPAIR not only enjoys

more robust recovery, but also faster convergence.

2.4.4 Quality of the Extracted Phenotypes: Two Case Stud-

ies

The previous experiments show the robustness of REPAIR in terms of how well the

factorization matrices (i.e. the extracted phenotypes) recover the ground truth tensor

under the FIT metric. In this subsection, our goal is to evaluate how meaningful and

useful the extracted phenotypes are. We use MIMIC-III for this set of experiments

and set both missing and error ratios to 30%.

Identification of Higher-risk Patient Subgroups

The low-

dimensional patient representations of PARAFAC2 are effective in distinguishing be-

tween higher and lower mortality risk patients [52]. We attempt to test if REPAIR

can identify higher-risk patient subgroups if the data contains erroneous and miss-

ing entries. The k-th row of patient-by-phenotypes matrix W ∈ Rk×R contains the

diagonal of Sk, which indicates importance membership of patient k in each of the
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Figure 2.6: tSNE visualization of patient representations learned by REPAIR, SPAR-
Tan, COPA, CP-WOPT, and lrmcR+COPA. Each point represents a patient, the
color corresponding to the weight of the “oncological conditions” phenotype (lighter
means higher weight).

phenotypes. We select the largest-variance column among Sk, which is called the

“oncological conditions” phenotype. We set R = 4, and use the tSNE [71] software

to reduce 4-dimensional vectors to 2-dimensional space, and color each point cor-

responding to the weight of the “oncological conditions” phenotype (lighter means

higher weight). As Figure 2.6 shows, REPAIR can successfully split the patients into

two sub-groups while the baselines fail to distinguish the patients.

We perform clustering using K-means (with k = 2) on the tSNE result. For the

clusters learned by REPAIR, higher risk cluster (corresponding to the left light sub

group in Figure 2.6a) and the lower-risk cluster (corresponding to the right dark sub

group in Figure 2.6a) are 68.79%, 49.91% respectively. We summarize the average

mortality risk of the higher-risk cluster, lower-risk cluster, and their difference in Ta-

ble 2.5. REPAIR can achieve 18.88% difference, which has the best discriminative

capability among all compared methods. In addition, our 18.88%-difference is com-
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Method REPAIR SPARTan COPA CP-WOPT lrmcR + COPA
Higher-risk Mortality Rate 68.79% 59.86% 60.03% 59.60% 60.55%
Lower-risk Mortality Rate 49.91% 59.13% 58.92% 59.43% 58.45%

Difference 18.88% 0.83% 1.11% 0.5% 2.1%

Table 2.5: Summary of average mortality risk of the higher-risk cluster, lower-risk
cluster, and their difference. The two clusters are obtained by k-means clustering
(k = 2). REPAIR can achieve 18.88% difference, which has the best discriminative
capability among all compared methods, under the setting of adding 30% erroneous
and 30% missing entries.

parable to the 21%-difference reported in [52], which is the journal extension of the

SPARTan algorithm [51], and has a clinical expert’s endorsement. Because of the

extra error and missing entries, our setting is more challenging than [52]. In sum, it

shows our method is robust enough to achieve clinical meaningful result comparable

to [52].
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Figure 2.7: In-hospital mortality prediction in AUC. REPAIR outperforms 17% in
terms of prediction performance comparing to the best baseline method lrmcR +
COPA

.

In-hospital Mortality Prediction

We also measure REPAIR’s phenotype extraction quality under missing and error

entries by the predictive power of the discovered phenotypes. A logistic regression

model is trained using the patients’ membership indicator Sk as features, which is then

utilized for predicting in-hospital mortality. We use five 70-30 train-test splits and

evaluate the model using the area under the receiver operating characteristic curve
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(AUC). As Figure 2.7 shows, the average score of lrmcR + COPA is 0.605, which

performs best among four baselines. REPAIR’s average score is 0.703, and offers a

17% prediction performance improvement when compared to lrmcR + COPA, which

verifies the robustness and usefulness of the extracted phenotypes.
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Chapter 3

REBAR: RNN Regularized Robust

Irregular Tensor Factorization and

Completion

3.1 Overview

The existing PARAFAC2 tensor factorization methods only impose linear and human-

defined temporal regularization functions, which fail to capture non-linear and com-

plex temporal information in real-world scenarios. With the prevalence of deep neural

networks, a natural idea is to further enhance robustness, phenotype representations,

and predictability using these models. Besides irregularity, EHRs are also prone to

missing entries.

In this chapter, we propose REBAR, an RNN REgularized RoBust PARAFAC2

Irregular Tensor Factorization and Completion, to complete an irregular tensor and

extract phenotypes in the presence of missing values. As shown in Figure 3.1, given

an irregular tensor containing missing entries, Ok, we add a low-rankness constraint

and RNN regularization together to reconstruct Ok, and then extract factor matrices
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Uk, Sk, V
> for further downstream analysis and phenotype interpretation.

REBAR has the following appealing features that distinguish it from previous

PARAFAC2 methods. (1) It generalizes the loss functions from the sole choice of the

least square norm to any smooth loss function, which better suits input tensors with

various data types. (2) It accommodates a wide selection of regularization, including

statistical learning-based e.g., l1 norm and nuclear norm, deep learning-based e.g.,

RNN regularization, and composite, to better capture the intrinsic nature of the

irregular temporal EHR data. (3) It introduces new optimization geared to fully

exploit the parallel computing capability of modern GPUs to boost efficiency.

In summary, we list our main contributions below:

1. We propose a robust RNN and low-rank regularized PARAFAC2 tensor factor-

ization method for irregular tensors to handle potentially missing entries in the

input tensor.

2. We introduce a new generalized PARACA2 model with generic loss functions

that enable the user to adapt REBAR to suit the data type.

3. We propose a new hybrid optimization framework for PARAFAC2 using stochas-

tic gradient descent and proximal average that can handle multiple regulariza-

tions and supports a generalized loss function.

4. We evaluate REBAR on three real-world temporal EHR datasets with a set

of experiments, which verify the improved recovery and factorization robust-

ness against missing values. Through three case studies: interpretation of the

dynamic subphenotypes trajectory, downstream prediction analysis and scala-

bility analysis, we further demonstrate that REBAR can robustly and scalably

extract meaningful and high predictability phenotypes with missing data.
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Figure 3.1: REBAR overview

3.2 Preliminaries and Backgrounds

3.2.1 PARAFAC2

First, we introduce the necessary tensor operations relating to PARAFAC2. Table

3.1 summarizes the notations used throughout the chapter.

A tensor’s order, also known as ways or modes, is defined as the number of its

dimensions (e.g., vectors are 1-order tensors and matrices are 2-order tensors). Ex-

tracting a fiber means fixes all modes but one. For example, a matrix column is a

mode-1 fiber. Extracting a slice means fixing all modes but two. In particular, the

X(:, :, k) slices of a third-order tensor X are called the frontal ones and we denote

them as Xk. Tensor unfolding, or matricization, is a fundamental operation and a

building block for most tensor methods. It logically reorganizes tensors into other

forms without changing the values themselves. The mode-n matricization of an N-

order tensor X ∈ RI1×I2×...×IN is denoted by X(n) ∈ RIn×I1I2...In−1In+1...IN and arranges

the mode-n fibers of the tensor as columns of the resulting matrix.

CP decomposition [10, 22, 26], also known as PARAFAC, is one of the most

popular tensor factorization methods. It approximates a tensor into a sum of R

rank-one tensors. R is the rank of tensor X ∈ Rk×I×J , which can be expressed as:
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Table 3.1: Symbols and notations used in chapter 3

Symbol Definition
x,X,X Vector, Matrix, Tensor

Xk k-th frontal slice of X
X(n) Mode-n matricization of X
‖ · ‖1 `1-norm
‖ · ‖F Frobenius norm
‖ · ‖∗ Nuclear norm
Uk The temporal factor matrix for the kth subject
Sk The weighting vector for the kth subject
V The latent factor matrix for the features
Ik The temporal length of the kth subject
R Number of target Rank
∗ Hadamard (element-wise) multiplication
� Khatri Rao product
◦ Outer product
〈·, ·〉 Inner product

X ≈
R∑
r=1

ur ◦ vr ◦ wr (3.1)

ur ∈ Rk, vr ∈ RI , and wr ∈ RJ are column vectors. Stacking the column vec-

tors ur, vr, wr into their respective matrices, U = [u1, ...uR], V = [v1, ...vR], W =

[w1, ...wR], will yield factor matrices. The basic intuition of CP is to find R latent

concepts to represent the original tensor. Yet CP decomposition can not deal with

any irregular or incomparable mode.

PARAFAC2 is the state-of-the-art tensor factorization framework for effective

handling the irregular tensor, i.e., tensors that do not align along one of its mode,

and is formally defined as follows:

Definition 5. (Classic PARAFAC2 model)

argmin
{Uk},{Sk},V

K∑
k=1

1

2
‖Xk −UkSkV

>‖2
F ,

s.t. Uk = QkH,Q>k Qk = I,Sk is diagonal, where Qk ∈ RIk×R is orthogonal, Ik ∈

RR×R is the identity matrix and R is the target rank of the PARAFAC2 decomposition.

where k = 1, ..., K,Uk ∈ RIk×R,Sk ∈ RR×R is diagonal and V ∈ RJ×R. In order

to enforce uniqueness, Harshman [22] imposed the constraint UTUk = Φ,∀k. This
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is equivalent to each Uk being decomposed as Uk = QKH, where Qk ∈ RIk×R,

Q>k Qk = I, and H ∈ RR×R Note that Qk has orthonormal columns and H is invariant

regardless of k.

For temporal EHR data, the factorization matrices have the following medical

interpretations:

• Uk ∈ RIk×R captures temporal evolution for patient k: the r-th column of Uk

indicates the evolution of the r-th phenotype for all Ik clinical visits for patient

k.

• V ∈ RJ×R contains the phenotypes. Each non-zero entry of V indicates the

membership of the corresponding j-th medical feature in the r-th phenotype.

• Sk ∈ RR×R is a diagonal matrix with the importance membership of patient k

in each one of the R phenotypes. It is often organized into W ∈ RR×K
+ with

each row of W composed by the diagonal of Sk, i.e. W(:, k) = diag(Sk).

The current PARAFAC2 models are designed for a single data type. For example,

COPA [2] and REPAIR [60] are specifically designed for numeric data (e.g., loss

function of mean squared error). Yin et al. [80] proposed a non-negative positive-

unlabeled loss (PULoss) specific for binary data. However, in practice, data storage

can differ across different EHR systems. What is stored as a numeric in one location

might be a binary representation somewhere else. Thus, there is a lack of generalized

PARAFAC2 model.

3.2.2 RNN

Deep Neural Networks have recently been successfully applied to many fields, e.g.

character recognition [53], image classification or labeling [63], location prediction

[43, 78], and text classification [55], etc. Recurrent Neural Networks (RNNs) are



37

feedforward neural networks, which include edges between different timestamps. Such

connectivity allows RNNs to capture the notion of time. RNN has the intrinsic

capability to succinctly represent the non-linear temporal information in sequential

data and time series. Here we briefly introduce the basic idea of RNN. Given a

sequence x = {x1, x2, . . . xc}, the target can be another sequence {y1, y2, . . . yc} or

a single variable y. To capture the temporal dynamics of the sequence, RNNs use

hidden variables h = {h1, h2, . . . hc} to encode the information of the input x and

memorize the information of previous steps. Specifically, at each timestamp t, RNNs

update the hidden variable ht based on previous state ht−1 and current value xt,

as in Equation (3.2). Here σ is an activation function, and fW , fU are recurrent

neural layers weighted by W,U . The prediction y is usually calculated from the last

hidden states hc (c is the length of the sequence) through another neural layer, e.g.,

y = σ(W · hc + b).

ht = σ(fW (ht−1), fU(xt)) (3.2)

As summarized in [56], deep learning models, including RNN, outperforms all

other models for mortality and length-of-stay, especially when the raw clinical time

series is utilized. Che et al. [11] introduce an RNN model to analyze multivariate

clinical time series, and Choi et al. [14] applied an RNN model to predict clinical

events. Our intuition is to leverage the modeling benefits of RNN by introducing RNN

regularization along with the temporal evolution of PARAFAC2, which can ease of

interpretability in the form of identifying useful subgroup characteristics and further

increase predictability.

3.2.3 Proximal Mapping and Proximal Averaging

Proximal map [50] is a key building block for optimizing nonsmooth regularized ob-

jective functions, e.g., the ‖ · ‖1 `1-norm regularization function for inducing sparsity
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and ‖ · ‖∗ nuclear norm regularization for inducing low-rankness.

Definition 6. (Proximal Map [50]) The proximal map for a close convex nonsmooth

regularizer h is defined as follows,

Prox
η
h(x) := arg min

y

1

2η
‖y − x‖2

2 + h(y), (3.3)

where η is a constant parameter.

The following presents two examples of the proximal map, which are utilized in

our algorithm.

Example 1. (Soft Thresholding) Let h = ‖x‖1, then the proximal mapping has the

closed-form solution, as follows

Prox
η
‖·‖1(xj) = sign(xj) ·max(0, |xj| − η), (3.4)

for j = 1, ..., d.

Example 2. (Singular Value Thresholding [8]) Let h = ‖X‖∗, then the proximal

mapping has the closed-form solution, as follows

Prox
η
‖·‖∗(X) = UDiag(s1, ..., sd)V

>, (3.5)

where [U, Diag(σ),V] = svd(X) and s = Prox
η
‖·‖1(σ).

The proximal averaging technique is introduced by [3] to optimize in the presence

of a composite regularizer that is in the form of the average of J simpler nonsmooth

regularizers, e.g., ρ1‖ · ‖1 + ρ2‖ · ‖∗ with ρ1 + ρ2 = 1.

Definition 7. (Proximal Average) Let h be a composite regularizer in the form of

h(x) :=
∑J

i=1 ωi · hi(x), where
∑
ωJi=1 = 1 and hi(x) are simple nonsmooth convex
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regularizers admitting the proximal map Prox
η
hi

(x). The proximal average of h is the

unique semi-continuous convex function ĥ(x) such that the proximal map of ĥ(x) is

Prox
η

ĥ
=

J∑
i=1

ωiProx
η
hi

(x), (3.6)

where each Prox
η
hi

(x) admits closed-from computation.

3.3 Related Work

SPARTan [51] scaled PARAFAC2 to large and sparse irregular tensors by introducing

a sparse MTTKRP (abbreviated for Matricized-Tensor-Times-Khatri-Rao-Product)

module to reduce the per-iteration cost. Following its efficiency improvement, COPA

[2] introduced various constraints/regularizations to improve the interpretability of

the factor matrices. For example, COPA proposed the M-spline constraint [57] to Uk

to capture the temporal smoothness, non-negative constraint to Sk to avoid negative

weights, and `1-norm regularization of V to induce sparse phenotype definitions.

Despite their improvements in computational efficiency and output interpretability,

COPA and SPARTan did not explicitly address the problem of missing entries in the

input tensor, which severely limits them from more robust clinical usage.

REPAIR [60] and LogPar [80] address missing entries in PARAFAC2. REPAIR

[60] added low-rank regularization to PARAFAC2 to address missing entries. Inspired

by the robust low-rank tensor minimization (RLTM), the state-of-the-art mechanism

for dealing with missing and error entries, REPAIR separated the corrupted input

tensor into a clean, completed tensor and an error tensor. Since the clean tensor is

often low-rank, REPAIR added low-rank regularization (i.e., nuclear norm) on the

clean tensor and sparsity regularization (`1-norm regularization) on the error ten-

sor. It then proposed a novel two-phase optimization alternative direction method of

multipliers (ADMM) approach to solve the low-rank regularized PARAFAC2 model.
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LogPar considered binary data with a one-class missing value scenario. LogPar mod-

eled the binary irregular tensor with the Bernoulli distribution parameterized by an

underlying real-valued tensor. Then they approximated the underlying tensor with

a positive-unlabeled learning loss function to account for the missing values. How-

ever, both models are suitable for one type of data and cannot be easily adapted for

composite regularization of the factor matrices.

CNTF treated each patient’s data as an individual tensor, used CP decomposition

to find the factor matrices, and used RNN to regularize the latent factor evolution

[79]. The RNN model was used to model the non-linear temporal dependency in pa-

tient progressions and can also integrate higher-order information. However, CNTF

assumes interactions among modalities which may not be always the case as demon-

strated by the empirical results in[2] and [56].

3.4 Proposed Method

In this section, we present the REBAR model and its optimization, which has the

following appealing features that distinguish it from previous PARAFAC2 methods.

(1) It generalizes the loss functions from the sole choice of the least square norm to

any smooth loss function, which better suits input tensors with various data types.

(2) It accommodates a wide selection of regularization, including statistical learning-

based e.g., l1 norm and nuclear norm, deep learning-based e.g., RNN regularization,

and composite, to better capture the intrinsic nature of the irregular temporal EHR

data. (3) It introduces new optimization geared to fully exploit the parallel computing

capability of modern GPUs to boost efficiency.
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3.4.1 Problem Formulation

We formalize the objective function for the REBAR model in Definition 8. The

PARAFAC2 loss for X ensures the reconstructed tensor closely approximates the

original tensor, the low-rankness for X enforces the underlying complete tensor is

separated from missing values, the RNN loss can better capture the temporal patterns

in the data, and an approximate uniqueness constraint ensures tensor factorization

uniqueness. For EHR phenotype discovery, various constraints can be imposed on the

factorization matrices to yield meaningful and high-interpretability phenotypes. The

REBAR model accommodates such interpretability-purposed constraints in eq.(3.7)

including: non-negativity for c1(Sk), sparsity for c2(V). We explain each of the loss

components and constraints in details below.

Definition 8. (REBAR objective function)

argmin
Qk,H,Sk,V

K∑
k=1

∑
(i,j)∈Ω

PARAFAC2 loss for X︷ ︸︸ ︷
L(Xijk, {UkSkV

>}ijk) +

RNN loss︷ ︸︸ ︷
K∑
k=1

RNN(Uk)

+

low-rankness for X︷ ︸︸ ︷
ρ1‖H‖∗ + ρ2‖V‖∗ + ρ3‖W‖∗

+

approximate uniqueness constraint︷ ︸︸ ︷
%1

K∑
k=1

(
‖Uk −QkH‖2

F + %2‖Q>k Qk − I‖2
F

)

+
K∑
k=1

c1(Sk) + c2‖V‖1 +

auxiliary W for disentangling constraints︷ ︸︸ ︷
%3‖W −W‖2

F ,

(3.7)

s.t. for k = 1, ..., K,

relation between S,W︷ ︸︸ ︷
Sk = diag(W (k, :)),Sk is diagonal (3.8)

where H, {Sk}, I ∈ RR×R, Qk ∈ RIk×R, Ω denotes the index of the non-missing

entries, c1 is the nonnegativity constraint, and c2‖V‖1 is the sparsity penalty.

Generalized PARAFAC2. To accommodate different data types, we extend PARAFAC2
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Table 3.2: Examples of tensor data types and loss functions

Data Type Loss Function

Binary Positive Unlabeled loss [80]
Count Poisson Loss [29]
Numerical Least Square Loss
Strictly positive data Rayleigh Loss [29]

to a more generalized form by introducing a general loss function∑K
k=1

∑
(i,j)∈Ω L(Xijk, {UkSkV

>}ijk) with any smooth loss function L, rather than

limiting it to be the least squared loss in Definition 5. By being capable of switching

between various loss functions, our generalized PARAFAC2 can better suit different

input data types. Table 3.2 lists several example data types and their corresponding

loss function.

RNN regularization. In order to model the temporal dependency in phenotype

progression, we regard each patient’s temporal evolution matrix Uk ∈ RIk×R as a

multivariate time series with each variable describing the progression of the corre-

sponding phenotype for patient k. For each timestamp, we use the RNN model

to predict Ut
k given the previous stage Ut−1

k , and minimize the Mean Square Error

(MSE) between the real and predicted value. The RNN regularization term is written

as:

RNN(Uk) =
1

Ik

Ik∑
t=2

‖g(Ut−1
k )−Ut

k‖2
2, (3.9)

where g(Ut−1
k ) is the prediction output given by the RNN model.

A key feature of our model is that the RNN regularization is jointly optimized

with the PARAFAC2 tensor factorization to enforce the patient temporal evolution

matrix is consistent with the regularity captured by RNN as well as recovering the

temporal tensor.

Sparsity on V. V matrix indicates the importance membership of each of the
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medical features in the corresponding phenotypes. Introducing sparsity constraint

on factor matrix V will provide coherent and sparse EHR phenotypes, which can

improve interpretability and increase robustness. l0 and l1 norms are two popular

regularization techniques. The l0 regularization norm, also known as hard thresh-

olding, will cap the number of non-zero values in a matrix. The l1 regularization

norm, also known as soft thresholding, will shrink matrix values towards zero. Hard

thresholding is a non-convex optimization problem, and soft thresholding is a convex

relaxation of the l0 norm. We choose l1 norm to migrate it into SGD optimization

framework.

Non-negativity on S. The diagonal matrix values in S indicate the importance

membership of patient k in each one of the R phenotypes (how much a patient k

is associated with or exhibit a particular phenotype). Since we only care about

non-negative memberships, we zero out the negative values in S, which significantly

improves the interpretability.

Low-rankness for X. The robust low-rank tensor minimization (RLTM) can suc-

cessfully recover the original tensor with missing values by imposing a low-rank reg-

ularization function on the original tensor. It seperate underlying completed tensor

from the corrupted tensor. In practice, the completed part is often low-rank. As

studied in REPAIR [60], adding low-rankness on X via nuclear norm constraints on

the factor matrices H,V,W can improve robustness to missing entries.

Approximate uniqueness constraint. Similar to [80], we relax the uniqueness

constraint of Q>k Qk = I and introduce the regularization of ‖Q>k Qk − I‖2
F , which

enables us to use stochastic gradient descent to optimize Qk. The relaxation and the

SGD optimization facilitate the adoption of mainstream deep learning platforms like

Pytorch, thus making full use of the parallel computation feature of modern GPUs.

Disentangling constraint. Each row of W is composed by the diagonal of Sk. Since

we already have low-rankness constraint on W and non-negativity constraint on S,
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we add a auxiliary parameter W, where for different patient k, Sk = diag(W (k, :))

to separate S and W.

3.4.2 Optimization

To solve the optimization problem in Eq. (3.7), REBAR follows an alternative opti-

mization strategy where we optimize one variable individually with all other variables

fixed. The variables to be optimized can be categorized into three groups according

to whether the subproblem is purely smooth, or proximal mapping-based smooth, or

multiple nonsmooth subproblems. In particular, when dealing with multiple nons-

mooth functions regularized subproblems, we introduce the proximal average-based

technique as a replacement for the AO-ADMM approach adopted in the previous

PARAFAC2 works [2, 60]. As a result, REBAR can take advantage of the paral-

lel computing feature of GPU to boost efficiency. Moreover, the implementation is

significantly simpler. In the following, we omit the iteration number for brevity in

notation.

Pure Smooth Subproblems Updates

For the pure smooth subproblems, we use stochastic gradient descent to update the

variables, which include the following three parts:

Update of Uk. The subproblem of Uk takes the form as follows

arg min
Uk

∑
(i,j)∈Ω

L(Xijk, {UkSkV
>}ijk)

+ %1‖Uk −QkH‖2
F + RNN(Uk)

(3.10)

Update of Qk. The subproblem of Qk takes the form as follows

arg min
Qk

%1‖Uk −QkH‖2
F + %2‖Q>k Qk − I‖2

F (3.11)
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Algorithm 2 Optimization Framework for REBAR

Input: Input tensor X; Model parameters ρ1-ρ3, %1-%3; Interpretability constraint
types c1, c2 and RNN sub-model; Initial rank estimation R.

1: while Not reach convergence criteria do
2: Update {Uk} using eq.(3.10) by SGD;
3: Update {Qk} using eq.(3.11) by SGD;
4: Update RNN using eq.(3.12) by SGD;
5: Update W using eq.(3.13) by Proximal/Projected SGD;
6: Update Sk using eq.(3.15) by Proximal/Projected SGD;
7: Update H using eq.(3.17) by Proximal/Projected SGD;
8: Update V using eq.(3.19) by Proximal averaging SGD;
9: end while

Output: Phenotype factor matrices {Uk} = {QkH}, {Sk},V.

Update of RNN. The subproblem of RNN model parameters takes the form as follows

arg min
RNN

K∑
k=1

RNN(Uk). (3.12)

Proximal Mapping-base Smooth Subproblems Updates

For the nonsmooth subproblems, we propose a proximal mapping-based update, which

include the following three parts.

Update of W. The subproblem of W takes the form as follows

arg min
W

K∑
k=1

‖W −W}‖2
F + ρ3‖W‖∗. (3.13)

We use the following closed-form update

W = Prox
ρ3
‖·‖∗(W]). (3.14)

Update of Sk and W. The subproblem of Sk takes the form as follows

arg min
Sk

∑
(i,j)∈Ω

L(Xijk, {UkSkV
>}ijk) + c1(Sk). (3.15)
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We use projected stochastic gradient descent to update Sk, where each step takes the

following form

Sk = max(0,V − λG[Sk]), (3.16)

whereG[V] denotes the stochastic gradient of the smooth part
∑

(i,j)∈Ω L(Xijk, {UkSkV
>}ijk)

with respect to Sk. Finally, we let diag(W (k, :)) = Sk.

Update of H. The subproblem of H takes the form as follows

arg min
H

K∑
k=1

‖Uk −QkH}‖2
F + ρ1‖H‖∗. (3.17)

We use proximal stochastic gradient descent to update H, where each step takes the

following form

H = Prox
ρ1
λ

‖·‖∗(V − λG[H]), (3.18)

where G[H] denotes the stochastic gradient of the smooth part
∑K

k=1 ‖Uk−QkH}‖2
F

with respect to H.

Multiple Nonsmooth Subproblems Updates

For multiple nonsmooth functions regularized subproblem, We propose a proximal

averaging-based update.

Update of V. The subproblem of V takes the form as follows

arg min
V

K∑
k=1

∑
(i,j)∈Ω

L(Xijk, {UkSkV
>}ijk) + ρ2‖V‖∗ + c2‖V‖1. (3.19)

We use proximal average stochastic gradient descent [81] to update V, where each
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step takes the following form

V =
ρ2

ρ2 + c2

Prox
ρ2
λ

‖·‖∗(V − λG[V])

+
c2

ρ2 + c2

Prox
c2
λ

‖·‖1(V − λG[V]),

(3.20)

where G[V] denotes the stochastic gradient of the smooth part∑K
k=1

∑
(i,j)∈Ω L(Xijk, {UkSkV

>}ijk) with respect to V.

The complete algorithm. The optimization procedure is summarized in Algorithm

2.

3.5 Experimental Evaluation

3.5.1 Dataset

We use three datasets to test REBAR.

MIMIC-III 1 [31]: The intensive care unit (ICU) dataset is collected between 2001

and 2012. We keep records of patients with at least 10 hospital visits and construct

a three-mode tensor. We select 405 medical NDC codes and 202 diagnosis codes

that have the highest frequency as in [36]. The resulting number of patients is 5133

with 607 features (medication codes) and the maximum number of observations for

a patient is 172. 21% patient mortality flag is positive.

MIMIC-EXTRACT 2 [72]: MIMIC-Extract, an open-source pipeline for trans-

forming raw electronic health record (EHR) data in MIMIC-III into data frames that

are directly usable in common machine learning pipelines. We use the vitals labs

mean table, which contains 34,472 patients with 104 features (Vital lab codes). The

maximum number of observations for a patient is 240. We further normalize the data

to [0,1]. 10% patient mortality flag is positive.

1https://mimic.physionet.org/
2https://github.com/MLforHealth/MIMIC_Extract/

https://mimic.physionet.org/
https://github.com/MLforHealth/MIMIC_Extract/
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Table 3.3: Feature discretion ranges for the 6 features in PhysioNet sepsis dataset

Feature Low Value Normal Value High Value

Heart rate (HR) HR< 60 beats/minute 60 beats/minute < HR < 90 beats/minute HR > 90 beats/ minute
Temperature (Temp) Temp< 36.0◦C 36.0C <Temp< 38.0◦C Temp> 38.0◦C
Respiratory rate (Resp) Resp < 6× 109/I 6× 109/I < Resp < 20× 109/I Resp > 20× 109/I
Mean arterial pressure (MAP) MAP < 65 mmHg 65 mmHg <MAP < 100 mmHg MAP > 100 mmHg
Oxygen saturation (O2Sat) O2Sat < 95% O2Sat > 95 % -
Systolic blood pressure (SBP) SBP < 120 mmHg 120 mmHg <SBP < 140 mmHg SBP > 140 mmHg
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Figure 3.2: Fit on the different datasets with the missing ratio in parenthesis (missing
percentage %).

PhysioNet Sepsis Dataset 3[61]: PhysioNet 2019 Early Prediction of Sepsis from

Clinical Data Challenge is an open-access dataset. It contains 20,336 patients with 40

time-dependent variables such as HR, O2Sat, Temp, etc. Since most of the features

are extremely sparse, we select 6 dense features and then discretize the variables using

criteria in [17]. The detailed values can be found in table 3.3. The maximum number

of observations for a patient is 336. 17% patient sepsis flag is positive.

3https://archive.physionet.org/users/shared/challenge-2019/

https://archive.physionet.org/users/shared/challenge-2019/
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Methods for Comparison

We compare REBAR with four baseline methods: SPARTan and COPA are two

state-of-the-art irregular tensor factorization methods with different temporal reg-

ularizations, REPAIR and LogPar are two state-of-the-art robust irregular tensor

factorization methods to handle missing entries.

• SPARTan [51] - scalable PARAFAC2: A method for fitting PARAFAC2

on large and sparse data. It does not include temporal regularization, and it

also does not address missing data.

• COPA [2] - scalable PARAFAC2 with additional regularizations: An

irregular tensor factorization method that introduces various constraints/regularizations

to improve the interpretability of the factor matrices. Temporal smoothness is

enforced by modeling Uk to be the linear combination of a set of temporal basis

functions generated by the M-spline. This method requires a pre-computation

of the spline functions.

• REPAIR[60] - robust method for irregular tensors: A recently-proposed

robust method adding effective low-rank regularization to address missing and

error entries. It uses the same temporal regularization as COPA.

• LogPar [80] - robust method for matrix completion: A method address-

ing missing data in binary irregular tensors. LogPar uses a positive-unlabeled

learning loss function to account for the missing values. It uses an exponential

term to adaptively weigh the regularization based on the time gap between two

visits with the intuition that steps closer in time generally should be closer in

the latent space.
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Figure 3.3: PR-AUC for downstream prediction tasks on the different datasets with
the missing ratio in parenthesis (missing percentage %). For MIMIC-III and MIMIC-
Extract, the classification task is mortality prediction while Sepsis is sepsis prediction.

3.5.2 Implementation Details

MIMIC-III contains count data, so we use Poisson loss [29], and MIMIC-EXTRACT

contains numerical data, so we select mean squared error loss. PhysioNet Sepsis data

is binary after the discretization, so we use the non-negative positive-unlabeled loss

[80]. To determine the best RNN models, we tested LSTM, GRU, and vanilla RNN,

and found a single-layer GRU network [13] with 100 hidden units gives the best result.

Vanilla RNN failed to capture long-term temporal dependencies and suffers from the

gradient vanishing problem. Although LSTM is the most complex RNN model, it

tends to over-fit on small datasets.
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3.5.3 Experiment Result

Tensor Factorization Robustness

In order to test the robustness of REBAR model against missing entries, we randomly

add missing values into the two datasets. The original uncorrupted tensor, denoted

as {Gk}, serves as the ground truth. We adopt the FIT ∈ (−∞, 1] score [6] as the

quality measure (the higher the better):

FIT = 1−
∑K

k=1 ‖Gk −UkSkV
T‖2∑K

k=1 ‖Gk‖2
. (3.21)

In the following experiment, we run each set for 5 different random initializations

and report the average FIT . We set the missing ratio to 30% and 50%, then test

model completion performance under different target ranks, R, from 10 to 60.

As Figure 3.2 shows, REBAR outperforms all the other baseline methods on

all datasets under both missing ratio settings. In particular, REBAR achieves a

FIT score of 0.574 and 0.524 on MIMIC-III when the missing ratio equals 30% and

50% respectively, a 10% relative improvement when compared to the best baseline

model REPAIR. REBAR shows the same outstanding performance with 7% and 10%

improvement to the best baseline model for the MIMIC-EXTRACT (REPAIR) and

Sepsis (LogPar) datasets respectively. LogPar and REPAIR perform better than

COPA and SPARTan, because COPA and SPARTan has no regularizations (e.g. by

soft-thresholding the singular values) to handle missing entries. COPA performs

slightly better than SPARTan, because of the linear temporal smooth regularization

imposed in COPA. LogPar outperforms REPAIR on Sepsis dataset, but is left behind

REPAIR on MIMIC-III and MIMIC-EXTRACT. This demonstrates the importance

of appropriately tuning the loss function as Sepsis is a binary dataset, and the non-

negative positive-unlabeled loss in LogPar is more suitable for such data.

It is also noteworthy to discuss the FIT score trend as the rank varies. REBAR,
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REPAIR, and LogPar show increasing FIT score as rank increases, however, COPA

and SPARTan shows decreasing or flat FIT score as rank increases. This demonstrates

the benefit of the low-rank regularization that can be less reliance on the user speci-

fication rank in REBAR, REPAIR, and LogPar. As the rank increases, the low-rank

regularization function can iteratively decrease the target rank, and find the optimal

one in the latent space. COPA and SPARTan do not have low-rank regularization,

so a lower target rank is better for these methods to recover from missing values.

Comparing different missing ratios, REBAR demonstrates superior robustness

when the missing ratio increases to 50% from 30%. It only has 6%, 2% and 4%

FIT score decreases on MIMIC-III, MIMIC-EXTRACT, and Sepsis datasets, respec-

tively. In contrast, the best baseline model, i.e., REPAIR for MIMIC-III, REPAIR

for MIMIC-EXTRACT, and LogPar on Sepsis dataset, suffer 12%, 7% and 8% com-

pletion performance drop, respectively. Though REPAIR and LogPar have low-rank

regularization, they fail to handle non-linear temporal information, which is the main

reason for these large performance drops.
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Figure 3.4: Dynamic subphenotype trajectories using different PARAFAC2 models



53

Table 3.4: Temperature measurements of temperature trajectory groups

All Patients Hyperthermic,
Slow Re-
solvers

Hyperthermic,
Fast Re-
solvers

Normothermic Hypothermic

Number of Patients 298 46 71 101 80
Mean temperature,◦C 36.6 37.4 36.8 36.6 36.0
Min temperature,◦C 35.1 36.1 35.8 35.9 35.1
Max temperature,◦C 39 39 38.5 37.4 36.7

Downstream Prediction Analysis

We further evaluate the derived phenotypes’ predictability power via a downstream

prediction task. We predict in-hospital mortality on MIMIC-III and MIMIC-EXTRACT

datasets using the in-hospital death flag, and predict if a patient will have sepsis on

PhysioNet Sepsis dataset. We split the data with a proportion of 8:2 as training and

test sets and use PR-AUC (Area Under the Precision-Recall Curve) score to evaluate

the predictive power. A logistic regression model is trained on the patient impor-

tance membership matrix, Sk. Besides tensor models, we also include a non-tensor

prediction model. We directly train a long short-term memory (LSTM) model using

irregular tensor. LSTM is a variant of RNN that mitigate the gradient vanishing

problem in traditional RNNs. Its memory cells contain three types of non-linear

gates, namely input gate, output gate and forget gate, which can regulate the flow of

signals into and out of the cell and learn long-term dependencies. The input is a the

irregular tensor which contains k different patient, and each patient information Xk

consists with IK visits and J medical features. The output is the prediction label for

different patient.

In the real-world scenario, predicting in-hospital mortality or if the patient will

have a certain kind of disease using early-stage data is a crucial problem. It makes no

sense to predict in-hospital mortality using full in-hospital data, as it can not give any

useful information to help health care workers provide accurate and precise treatment

for patients to avoid death. We vary the visit length percentage to mimic this real-



54

20% 40% 60% 80% 100%

The Percentage of Patients

4

5

6

7

8

9

10

11

12

T
ra

in
in

g
 T

im
e
 (

m
in

)

REBAR

LogPar

(a) MIMIC-III

20% 40% 60% 80% 100%

The Percentage of Patients

10

20

30

40

50

60

70

80

90

T
ra

in
in

g
 T

im
e
 (

m
in

)

REBAR

LogPar

(b) MIMIC-EXTRACT

20% 40% 60% 80% 100%

The Percentage of Patients

0

10

20

30

40

50

T
ra

in
in

g
 T

im
e
 (

m
in

)

REBAR

LogPar

(c) Sepsis

Figure 3.5: Training time on the different datasets varying patients size with the
missing ratio equal to 30 %.

world setting. As shown in Figure 3.3, REBAR outperforms the other methods.

When the visit length ratio is 60%, REBAR outperforms the best baseline methods

by 8%, 9% and 16% in Figure 3.3b, 3.3d, and 3.3f respectively. This demonstrates

strong predictability even with missing values. Because of the RNN regularization,

REBAR can learn the non-linear temporal dependence and also use the whole time

trajectory to improve missing value recovery. COPA and SPARTan are left behind

REBAR, REPAIR, and LogPar because of the lack of low-rank regularization to

handle missing values. Since COPA has an additional temporal smoothness constraint

compared to SPARTan, it performs slightly better than SPARTan. Non-tensor based

LSTM model performs worst on three datasets because it lacks tensor factorization

to filter out noises.

We also vary the missing ratio on the different datasets. As the missing ratio

increases from 30% to 50%, REBAR’s PR-AUC drops 6%, 3%, and 4% on MIMIC-

III, MIMIC-EXTRACT, and Sepsis dataset, respectively. This is because the average

visit length Ik is the smallest in MIMIC-III, so GRU’s expressive power is limited.

Interpretation of the Dynamic Subphenotypes Trajectory

We demonstrate the effectiveness of REBAR to find dynamic phenotype trajectories

with the missing ratio of 30% using MIMIC-EXTRACT. We select the patients with

the number of observations equal to 36 for visualization purposes. The rank is set to
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Figure 3.6: Training time on the different datasets varying feature size with the
missing ratio equal to 30 %.

50. The factor matrix V reflects the membership of the corresponding j-th medical

feature in r-th phenotype. We select the top 4 largest weighted phenotypes for the

temperature feature and plot the temporal trajectory of selected phenotypes using

the U matrix by taking the average of the selected patients’ phenotype magnitude

value in Figure 3.4. As shown in Figure 3.4a, the high temperature phenotypes (Hy-

perthermic phenotype slow resolvers and Hyperthermic phenotype fast resolvers) are

higher than the normal temperature phenotype (Normothermic phenotype) and low

temperature phenotype (Hypothermic phenotype), and exhibit a decreasing trend as

time increases. However, there is no clear trend for Hyperthermic, Normothermic,

and Hypothermic phenotypes in COPA and SPARTan because they overfit to the zero

entries. Although REPAIR and LogPar also display similar decreasing trends, there

are sudden spikes in the temporal pattern which can hinder the interpretability and

clinical meaningfulness. This is because REPAIR and LogPar’s temporal smoothness

fail to capture long-term temporal information. We compare the four phenotypes’

weight in the U matrix for each patient and find corresponding patient groups of RE-

BAR. The temperature measurements for the patient groups are calculated. REBAR

can correctly find temperature subgroups using extracted phenotypes as shown in

Table 3.4. As verified by a critical care clinician, our model provides better and accu-

rate treatment for different patient groups. The other methods fail to find meaningful

subgroups, so they are not presented in this paper. As time increases in Figure 3.4,
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temporal trajectory shows non-linear dependency, REBAR can successfully capture

the non-linear information, filter out the noise, and shows a more clinical meaningful

temporal trajectory.

Scalability Analysis

Adding deep learning based methods on PARAFAC2 framework can raise some con-

cerns on computational time and scalability issues on large datasets. We measure the

training time of REBAR on different data size and different feature size and compare

to the state-of-the-art robust PARAFAC2 method LogPar. We use two Titan RTX

GPUs, each GPU has 24 GB of RAM, and rain 50 epochs of both methods with a

missing ratio of 30%

In Figure 3.5 and 3.6, we show the total training time. LogPar shows linear

scalability as the number of patients and features grows. Although REBAR adds

deep learning based constraint, it still has linear scalability as LogPar. Although

deep learning regularization adds some additional training time, but not significantly

more, maximum of the added time is 10 minutes.

MIMIC-III, MIMIC-EXTRACT and Sepsis has increased 57%, 154% and 150% in

training time as patients size grows from 40% to 100%, whereas, MIMIC-III, MIMIC-

EXTRACT and Sepsis has increased 20%, 11% and 9.7% in training time as feature

size grows from 40% to 100%, which shows patients size is the key factor for scaling

up REBAR.

Phenotype Presentation

Finally, we present the phenotype discovered by REBAR on MIMIC-EXTRACT and

MIMIC-III in Table 3.5 and 3.6 with the missing ratio set to 30%. We set rank to be

3, and sort each column of V matrix to get the top weighted phenotype features. It

is important to note there is no post-processing in these extracted phenotypes. The
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Table 3.5: MIMIC-EXTRACT phenotypes discovered by REBAR.

Abnormalities in Vital Signs
Glascow Coma Scale Total Oxygen Saturation
Temperature Systolic Blood Pressure
Metabolic Syndrome
Glucose Systolic Blood Pressure
Weight Mean Blood Pressure
Abnormalities in Blood Counts
Sodium Mean Corpuscular Hemoglobin Concentration
Mean Corpuscular Volume Mean Corpuscular Hemoglobin

presented phenotypes have been endorsed by the critical care expert. Moreover, the

expert provided the labels to reflect the associated medical concept.

Table 3.6: MIMIC-III phenotypes discovered by REBAR. The red color corresponds
to diagnosis and blue color corresponds to medications.

Cardiovascular Disturbances
Cardiovascular syph NEC Coronary atherosclerosis of autologous vein bypass graft
Atrial fibrillation Coronary atherosclerosis of native coronary artery
Metoprolol Metoprolol Tartrate
Labetalol Acetaminophen
Propofol Furosemide
Electrolyte Disturbances
Functional diarrhea Electrolyte and fluid disorders not elsewhere classified
Vomiting alone Iron deficiency anemia secondary to blood loss (chronic)
Potassium Chloride Magnesium Sulfate
Neutra-Phos Hydromorphone
Aspirin EC Atorvastatin
Gastrointestinal Disturbances
Gastrointestinal vessel anomaly Hemorrhage of gastrointestinal tract, unspecified
Vomiting alone Malignant neoplasm of body of stomach
Ipratropium Bromide Neb Fentanyl Citrate
Ranitidine Lactulose
Metronidazole Milk of Magnesia
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Chapter 4

MULTIPAR: Supervised Irregular

Tensor Factorization Framework

with Multi-task Learning

4.1 Overview

Current PARAFAC2 model’s predictability and interpretability are not satisfactory,

which limits its utility for downstream analysis. In this chapter, we propose MULTI-

PAR: a supervised irregular tensor factorization framework with multi-task learning.

MULTIPAR is flexible to incorporate both static (e.g. in-hospital mortality predic-

tion) and continuous or dynamic (e.g. the need for ventilation) tasks. By supervising

the tensor factorization with downstream prediction tasks and leveraging information

from multiple related predictive tasks, MULTIPAR can yield not only more mean-

ingful phenotypes but also better predictive performance for downstream tasks.

As shown in figure 4.1. MULTIPAR jointly optimizes the tensor factorization

and downstream prediction together, so that the factorization can be “supervised”

or informed by the predictive tasks. In addition, we use a multi-task framework to
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leverage information from multiple predictive tasks. It provides flexibility to incorpo-

rate both static and dynamic outcomes. To achieve this, the temporal features from

U matrix is used for dynamic prediction and the features from S matrix are used for

static prediction, as shown in the figure 4.1.

In summary, we list our main contributions below:

1. We propose a supervised framework for PARAFAC2 tensor factorization and

downstream prediction tasks such that the factorization can be “supervised” or

informed by the predictive tasks.

2. We use a multi-task framework to leverage information from multiple predictive

tasks and provide flexibility to incorporate both static and dynamic tasks and

different models (e.g. logistic regression and recurrent neural networks).

3. We introduce a novel unified and dynamic weight selection method for weighing

the tensor factorization and predictive tasks during the optimization process,

where the tensor factorization is considered as one task, to achieve overall op-

timized result.

4. We evaluate MULTIPAR’s tensor reconstruction quality, predictability, scala-

bility, and interpretability on two real-world temporal EHR datasets through

a set of experiments, which verify MULTIPAR can identify more meaning-

ful subgroups and yield stronger predictive performance compared to existing

state-of-the-art approaches.

4.2 Preliminaries and Backgrounds

In this section, we first introduce the necessary background of tensor operations.

Table 4.1 summarizes the notations used throughout the chapter.



60

XkIk

Medical features (J)

Patient slice  (Xk)

Uk

Sk

Rank (R)

Rank (R)

Visits IkVisits Ik

ICU Mortality      
Prediction using 
Logistic Regression

Readmission      
Prediction using 
Logistic Regression

Ventilation      
Prediction 
using LSTM

In-hospital Mortality      
Prediction using 
Logistic Regression

Prediction Loss

Prediction Loss

Medical features (J)

Rank 
(R)

Dynamic tasks
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Figure 4.1: Overview of MULTIPAR on MIMIC-EXTRACT dataset

The mode or order of an tensor is the number of dimensions of a tensor (e.g.,

vectors are 1-order tensors and matrices are 2-order tensors). Extracting a fiber refers

to a vector derived from the tensor by fixing all modes but one. For example, a matrix

column is a mode-1 fiber. Extracting a slice refers to fixing all modes but two. In

particular, the X(:, :, k) slices of a third order tensor X are called the frontal ones, and

we denote them as Xk. Tensor unfolding, or matricization, is a fundamental operation

and a building block for most tensor methods. It logically reorganizes tensors into

other forms without changing the values themselves. The mode-n matricization of

an N-order tensor X ∈ RI1×I2×...×IN is denoted by X(n) ∈ RIn×I1I2...In−1In+1...IN and

arranges the mode-n fibers of the tensor as columns of the resulting matrix.

In tensor operations, scalar multiplication means the scalar is multiplied to every

element in the tensor. The inner product of two tensors means to multiply each

element of the first tensor by the corresponding element of the second tensor, and

adding the results. The outer product of two coordinate vectors is a matrix, which is

obtained by multiplying each element of the first vector by each element of the second

vector. The Frobenius norm, sometimes also called the Euclidean norm, is defined as

the square root of the inner product of the tensor, which is the sum of the absolute



61

Table 4.1: Symbols and notations used in chapter 4

Symbol Definition
x,X,X Vector, Matrix, Tensor

Xk k-th frontal slice of X
X(n) Mode-n matricization of X
‖ · ‖1 `1-norm
‖ · ‖F Frobenius norm
Uk The temporal factor matrix for the kth subject
Sk The weighting vector for the kth subject
V The latent factor matrix for the features
Ik The temporal length of the kth subject
R Number of target Rank
∗ Hadamard (element-wise) multiplication
� Khatri Rao product
◦ Outer product
〈·, ·〉 Inner product

squares of its elements.

4.2.1 PARAFAC2

The most popular tensor factorization method is CP decomposition [10, 22, 26], also

known as PARAFAC. It approximates a tensor into a sum of R rank-one tensors. R

is the rank of tensor X ∈ Rk×I×J , which can be expressed as:

X ≈
R∑
r=1

ur ◦ vr ◦ wr (4.1)

where ur ∈ Rk, vr ∈ RI , and wr ∈ RJ are column vectors, and ◦ denotes the outer

product. U = [u1, ...uR], V = [v1, ...vR], W = [w1, ...wR] are factor matrices. The

basic idea of CP decomposition is to find R latent concepts to approximate the original

tensor. However, since each mode of CP decomposition is fixed size, it can not handle

irregular tensor factorization, where one mode in the irregular tensor has unfixed size.

PARAFAC2 model is the state-of-the-art tensor factorization framework for irreg-

ular tensor, i.e., tensors that do not align along one of its modes. The PARAFAC2

model decomposes each frontal slice of the irregular tensor Xk as UkSkV
>, where

Uk ∈ RIk×R, Sk ∈ RR×R is diagonal and V ∈ RJ×R. R is the target rank. Uniqueness

is an important property in tensor factorization models that ensures the solution is
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not an arbitrarily rotated version of the actual latent factors. In order to enforce

uniqueness, Harshman [22] imposed the constraint UTUk = Φ,∀k. This is equivalent

to each Uk being decomposed as Uk = QKH, where Qk ∈ RIk×R, Q>k Qk = I, and

H ∈ RR×R. Note that Qk has orthonormal columns and H is invariant regardless of

k.

Given the above modeling, the standard algorithm to fit PARAFAC2 solves the

following optimization problem:

Definition 9. (Original PARAFAC2 model)

argmin
{Uk},{Sk},V

K∑
k=1

1

2
‖Xk −UkSkV

>‖2
F ,

subject to: Uk = QkH,Q>k Qk = I,Sk is diagonal.

Given a tensor representing the EHRs data as in figure 4.1 where each slice Xk rep-

resents the information of patient k with Ik visits and J medical features, PARAFAC2

decomposes the irregular tensor X into the factorization matrices which have the fol-

lowing interpretations:

• Uk ∈ RIk×R represents the temporal trajectory of Ik clinical visits in each one

of the R phenotypes.

• V ∈ RJ×R represents the relationship between medical features and phenotypes.

• Sk ∈ RR×R represents the relationship between patients and phenotypes. Each

column in S represents one phenotype, and if a patient has the highest weight in

a specific phenotype, it means the patient is mostly associated with or exhibits

a particular phenotype.

SPARTan [51] was developed to decompose large-scale sparse datasets, and COPA

[2] extended SPARTan to further enhance the interpretability by adding more con-

straints, e.g., smoothness on Uk and sparsity on V. REPAIR [60] and LogPar [80]
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Table 4.2: Comparison of existing PARAFAC2-based models

PARAFAC2 model Scalability Predictability Robustness Interpretability

Original PARAFAC2 x x x x
SPARTan [51] X x x x
COPA [2] X x x X
REPAIR [60] X x X X
LogPar [80] X x X x
MULTIPAR X X x X

add low-rankness constraints to improve the robustness of PARAFAC2 model to han-

dle missing values. However, no current work has considered using downstream tasks

to supervise and improve the predictability of PARAFAC2 model as table 4.2 shows.

4.2.2 Supervised and Multi-task learning Framework

The supervised machine learning model has shown great performance compared to the

non-supervised one for a wide range of applications, e.g., graph learning [74], pattern

classification [45], and tensor factorization [37]. In graph learning paper [74], they

propose a supervised feature extraction framework using discriminative clustering to

improve model’s clustering accuracy. In patter classification paper [45], they propose

a supervised minimum similarity projection framework using lowest correlation rep-

resentation to improve model’s classification accuracy. In tensor factorization paper

[37], they introduce a novel supervised tensor factorization using diagnosis cluster

structure, which can significantly improve model’s discriminative power.

Over past years, multi-task learning (MTL) [84, 83] has attracted much attention

in the artificial intelligence and machine learning communities. Traditional machine

learning frameworks solve a single learning task each time, which ignores commonal-

ities and differences across different tasks. MTL aims to learn multiple related tasks

jointly so that the knowledge contained in one task can be leveraged by other tasks,

with the hope of improving generalization performance by learning a shared represen-

tation [4, 68]. MTL has been used successfully across all applications, from natural

language processing [16, 70] and speech recognition [18, 12] to computer vision [20]
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and drug discovery [59, 24]. However, no current work has considered improving

predictability of tensor factorization using MTL.

There are other machine learning paradigms that are related to MTL, e.g., transfer

learning [77, 69, 67], and multi-label learning [82, 70], but these have significant

differences compared to MTL. In MTL, there is no distinction among different tasks

and the aim is to improve the performance of all the tasks. However, transfer learning

separate the tasks into two different groups: target task and source tasks. The aim

of transfer learning is to improve the performance of a target task with the help

of source tasks. In our case, we adopt MTL because our goal is to improve both

tensor factorization quality (to extract meaningful and representative latent factors)

and prediction task accuracy. In multi-label learning, there are multiple static labels

associated with each data point. In our case, we have both static and dynamic

outcomes, which fits in MTL.

MTL models’ performance is strongly dependent on the relative weighting be-

tween each task’s loss. There are several weighting strategies available in the MTL

framework. The most naive way is to uniformly combine the losses from the different

tasks, which is called vanilla MTL. Dynamic weight average [44] will dynamically

calculate the loss ratio of different epochs, and assign the weight accordingly. Uncer-

tainty weighting methods [15, 39] use homoscedastic (task) uncertainty to calculate

the weight for each task. We introduce a unified and dynamic weight selection method

for weighing the tensor factorization and predictive tasks, where the tensor factoriza-

tion is considered as one task, we calculate the average summation of the loss over

several epochs, and dynamically calculate the weight for each task by considering the

loss change rate over several epochs, which can minimize the noise caused by the noisy

nature of Stochastic Gradient Descent (SGD), and improve the convergence speed.
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4.3 Proposed Method

In this section, we present the MULTIPAR model in the context of EHR pheynotyping

and its optimization. The general framework is applicable to any irregular tensor

factorization and predictive learning tasks.

4.3.1 Problem Formulation

We formalize the objective function for the MULTIPAR model in Definition 10. The

PARAFAC2 loss for X ensures the reconstructed tensor closely approximates the

original tensor. The static outcomes loss and dynamic outcomes loss are separate

prediction tasks. Static outcome prediction tasks have a one-time or static labels, and

dynamic outcome prediction tasks have a continuously changing or temporal dynamic

labels for each time stamp. An approximate uniqueness constraint ensures tensor

factorization uniqueness. For EHRs phenotype discovery, various constraints can be

imposed on the factorization matrices to yield meaningful and high-interpretability

phenotypes. The MULTIPAR model accommodates such interpretability-purposed

constraints in eq. (4.2) including: non-negativity for c1(Sk), sparsity for c2(V). We

explain each of the loss components and constraints in detail below.

Definition 10. (MULTIPAR objective function)

argmin
Qk,H,Sk,V

K∑
k=1

∑
(i,j)∈Ω

PARAFAC2 loss for X︷ ︸︸ ︷
ρ1L1(Xijk, {UkSkV

>}ijk)

+

static outcomes loss︷ ︸︸ ︷
ρ2L2(Sk) +

dynamic outcomes loss︷ ︸︸ ︷
ρ3L3(Uk)

+

approximate uniqueness constraint︷ ︸︸ ︷
%1‖U>k Uk − Φ‖2

F

)

+

non-negativity constraint︷ ︸︸ ︷
K∑
k=1

c1(Sk) +

sparsity constraint︷ ︸︸ ︷
c2‖V‖1

(4.2)
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s.t. for k = 1, ..., K, (4.3)

where H, {Sk}, I ∈ RR×R. c1 is the nonnegativity constraint, and c2‖V‖1 is the

sparsity penalty.

PARAFAC2 loss

The PARAFAC2 tensor factorization loss can ensure the reconstructed tensor closely

approximate the original tensor. To accommodate different data types, the PARAFAC2

loss can be any smooth loss function, e.g., Least square loss, Poisson loss [29] and

Rayleigh Loss [29].

Static outcomes loss

Previous PARAFAC2 models separate the PARAFAC2 training process and down-

stream prediction process. For example, in-hospital mortality prediction accuracy

may be used as the metric to measure the predictability of the phenotypes extracted

by the model. In the MULTIPAR model, we optimize the downstream prediction

tasks and tensor factorization together by adding the prediction losses of the predic-

tion tasks to the objective function. If the prediction task has one label per patient,

we denoted it as a static outcome prediction task. For illustrative purposes, we use a

logistic regression model on the S matrix to predict static outcome tasks, and add the

cross-entropy loss to the objective function. In fact, any differentiable loss function

(e.g., square loss, exponential loss) can be incorporated in the objective function.

Dynamic outcomes loss

Different from static outcomes, dynamic outcomes have labels at each timestamp. For

example, predicting whether a patient will be on a ventilator can also be used to mea-

sure the model’s predictability. For illustrative purposes, we use the long short-term

memory (LSTM) model on the U matrix to predict each patient’s dynamic outcome
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labels, and add the loss of the LSTM model to the objective function. Similar to the

static outcome loss, other models (e.g., gated recurrent units, vanilla recurrent neural

networks) and their associated loss functions can be incorporated in the objective

function.

Approximate uniqueness constraint

The optimization of the original PARAFAC2 model adopts the AO-ADMM frame-

work, which can not make full use of the parallel computation feature of GPUs. To

adopt mainstream deep learning frameworks like Pytorch and Tensorflow, we use a

stochastic gradient descent (SGD) based optimization approach. The uniqueness con-

straint in the original PARAFAC2 model is U>k Uk = Φ. Similar to LogPar [80], to

optimize Uk we relax the uniqueness constraint to ‖U>k Uk − Φ‖2
F .

Sparsity on V

The V matrix captures the association between a medical feature and a particular

phenotype. In order to improve interpretability, we introduce a sparsity constraint

on the V matrix. l0 and l1 norms are two popular sparsity regularization techniques.

The l0 regularization norm, also relaxed by hard thresholding, will cap the number

of non-zero values in a matrix. The l1 regularization norm, also relaxed by soft

thresholding, will shrink matrix values towards zero. As hard thresholding is a non-

convex optimization problem which can not be optimized by the SGD framework,

we adopt the soft thresholding, which is convex and can be migrated into the SGD

optimization framework.

Non-negativity on S

The diagonal matrix S indicates the importance membership of patient k in each one

of the R phenotypes. Since only non-negative membership values makes sense, we
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zero out the negative values in S, which significantly improves the interpretability.

SDW: Smooth dynamic weight selection

Numerous deep learning applications benefit from MTL with multiple regression and

classification objectives. Yet the performance of MTL is strongly dependent on the

relative weighting between each task’s loss. Our objective function consists of sev-

eral losses from the tensor factorization and the predictive tasks. Each of this loss is

associated with a weight. Tensor factorization is considered as a special task. Defini-

tion 10 shows ρ1 as the weight for tensor loss, ρ2 and ρ3 as the accumulative weights

for static and dynamic tasks respectively, here we use ρn(t) to denote the weight for

each individual task n in epoch t. A key challenge is how to tune these weights for

different tasks. While the DWA weight selection [44] was proposed to dynamically

change the task weights at each epoch by considering the rate of change of the loss

over the epoch, the noisy nature of SGD weights can cause drastic fluctuations in the

task weights between epochs. This can cause oscillating behavior between the vari-

ous tasks and impedes convergence of the algorithm. Therefore, we propose a novel

smooth dynamic weight selection method to choose the weight for each task. We first

calculate the relative descending rate of each task loss and denote it as ωn(t − 1). t

here represents an epoch index:

ωn(t− 1) =
Lossn(t− 1)

Lossn(t− 2)
(4.4)

We then calculate the weight for each task using the following equation:

ρn(t) :=
exp(

∑m
j=1(ωn(t− j)/C)/m)∑N

i=1 exp(
∑m

j=1(ωi(t− j)/C)/m)/N
(4.5)

Similar to [25], we use C to control the softness distribution between different

tasks. If C is large enough, the weight for each task will be uniformly weighted.
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Different from [25], we introduce m, the weight update window size. The task weights

are updated as an average over several epochs from iteration t to t + m (instead of

using one iteration) to reduce the SGD update uncertainty and training data selection

randomness. Finally, a softmax operator, which is multiplied by the number of tasks

N , ensures the sum of the weight equals N . For t = 1, we initialize all the weights to

1.

4.3.2 Optimization

To solve the optimization problem in Eq. (4.2), MULTIPAR follows an alternative

optimization strategy where we optimize one variable individually with all other vari-

ables fixed. According to the subproblem smoothness, we group the variables into two

groups: pure smooth subproblems and proximal mapping-base smooth subproblems.

In the following, we omit the iteration number for brevity in notation.

Pure Smooth Subproblems Updates.

For the pure smooth subproblems, we use SGD to update the variables, which include

the following three parts:

Update of Uk. The subproblem of Uk takes the form as follows

arg min
Uk

∑
(i,j)∈Ω

ρ1L(Xijk, {UkSkV
>}ijk) + ρ3L3(Uk) (4.6)

Proximal Mapping-base Smooth Subproblems Updates

For the nonsmooth subproblems, we propose a proximal mapping-based update, which

include the following two parts.
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Algorithm 3 Optimization Framework for MULTIPAR

Input: Input tensor X; Model parameters ρ1-ρ3, %1; Interpretability constraint types
c1, c2; Initial rank estimation R.

1: while Not reach convergence criteria do
2: Update {Uk} using eq.(4.6) by SGD;
3: Update Sk using eq.(4.7) by Proximal/Projected SGD;
4: Update V using eq.(4.9) by Proximal/Projected SGD;
5: Calculate weight for each prediction task using eq.(4.4) and eq.(4.5) by SDW;
6: end while

Output: Phenotype factor matrices Uk,Sk,V.

Update of Sk. The subproblem of Sk takes the form as follows

arg min
Sk

∑
(i,j)∈Ω

ρ1L(Xijk, {UkSkV
>}ijk) + ρ2L2(Sk) + c1(Sk). (4.7)

We use projected SGD to update Sk, where each step takes the following form

Sk = max(0,S− λG[Sk]), (4.8)

where G[Sk] denotes the stochastic gradient of the smooth part∑
(i,j)∈Ω ρ1L(Xijk, {UkSkV

>}ijk) + ρ1L2(Sk) with respect to Sk.

Update of V. The subproblem of V takes the form as follows

arg min
V

K∑
k=1

∑
(i,j)∈Ω

ρ1L(Xijk, {UkSkV
>}ijk) + c2‖V‖1. (4.9)

We use soft-thresholding operator to update V, where each step takes the following

form: soft− thresholding(V − λG[V]). G[V] denotes the stochastic gradient of

the smooth part
∑K

k=1

∑
(i,j)∈Ω ρ1L(Xijk, {UkSkV

>}ijk) with respect to V.

The complete algorithm. The optimization procedure is summarized in Algorithm

3.
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4.4 Experimental Evaluation

4.4.1 Dataset

We use two real-world datasets to evaluate MULTIPAR in terms of its reconstruction

quality, predictive performance, interpretability, and scalability.

eICU 1 [54]: The eICU Collaborative Research Database is a freely available multi-

center database for critical care research. It contains variables used to calculate the

Acute Physiology Score (APS) III for patients. APS-III is an established method

of summarizing patient severity of illness on admission to the ICU. We select 202

diagnosis codes that have the highest frequency, as in [36]. The resulting number of

unique ICU visits is 145426. The maximum number of observations for a patient is

215. We select three static outcome prediction tasks, including intubated prediction,

ventilation prediction, and dialysis prediction. The ventilation prediction here is a

static prediction tasks indicated whether a patient need to be ventilated at the time

of the worst respiratory rate, we will use ”vent-res” as the name for this task.

MIMIC-EXTRACT 2 [72]: MIMIC-Extract is an open-source pipeline for trans-

forming raw EHR data in MIMIC-III into data frames that are directly usable in

common machine learning pipelines. We use the vitals labs mean table, which con-

tains 34,472 patients with 104 features (Vital lab codes). The maximum number of

observations for a patient is 240. We further normalize the data to [0,1]. We select

three static outcome prediction tasks, including in-hospital mortality prediction, read-

mission prediction, ICU mortality prediction, and one dynamic outcome prediction

task, which is ventilation prediction.

1https://eicu-crd.mit.edu
2https://github.com/MLforHealth/MIMIC_Extract/

https://eicu-crd.mit.edu
https://github.com/MLforHealth/MIMIC_Extract/
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4.4.2 Evaluation Metrics

In order to test the tensor reconstruction quality of MULTIPAR model, we adopt the

FIT ∈ (−∞, 1] score [6] as the quality measure (the higher the better):

FIT = 1−
∑K

k=1 ‖Gk −UkSkV
T‖2∑K

k=1 ‖Gk‖2
. (4.10)

The original tensor, denoted as {Gk}, serves as the ground truth. Uk,S,V are factor

matrices after the MULTIPAR tensor factorization.

We evaluate the derived phenotypes’ predictability power using the PR-AUC score

of the prediction tasks. We split the data with a proportion of 8:2 as training and

test sets and use PR-AUC score to evaluate the predictive power.

4.4.3 Methods for Comparison

We compare MULTIPAR with three baseline methods: SPARTan, COPA, and sin-

glePAR. SPARTan and COPA are two state-of-the-art irregular tensor factorization

methods. We also compare against a supervised single task PARAFAC2, which is a

single-task version of MULTIPAR.

• SPARTan [51] - scalable PARAFAC2: A tensor factorization method for

fitting large and sparse irregular tensor data. It only considers the tensor re-

construction loss.

• COPA [2] - scalable PARAFAC2 with additional regularizations: An

irregular tensor factorization method that introduces various constraints/regularizations

to improve the interpretability of the factor matrices. It only considers the ten-

sor reconstruction loss. For both SPARTan and COPA, the extracted pheno-

types are used for training the models for the downstream predictive tasks.

• SinglePAR - supervised single task PARAFAC2: The supervised irregu-
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lar tensor factorization with single prediction task (single task version of MUL-

TIPAR).
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Figure 4.2: PR-AUC score using different C

4.4.4 Implementation Details

The performance of MTL is strongly dependent on the relative weighting between

each task’s loss. In order to present the best performance of MULTIPAR, SDW has

two hyper-parameters that need to be tuned. C controls the softness distribution

between different tasks, and m is the weight update window size. In order to find the

best C, we vary C from 0.2 to 2, and compare the prediction tasks’ PR-AUC scores

on different data set under different ranks. Figure 4.2 shows the MIMIC-EXTRACT

dataset result when rank = 50 and m is fixed to 5. In our empirical experiments,

when C = 1√
N

, MULTIPAR shows the best performance.

We vary the weight update window size m from 1 to 10, and compare the con-

vergence speed and PR-AUC score. We fix C = 1√
N

, and plot the tensor loss in each

epoch and set the maximum number of epochs to be 200. When m = 1, it does

not converge after 200 epochs. When m = 5, it requires the least number of epochs

to converge (when the total loss plateaus). Although when m = 3, some prediction

tasks’ PR-AUC scores are slightly better than m = 5, it requires too many epochs to

converge. Thus, in our experiments below, we adopt m = 5.
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Table 4.3: Experiment result of PR-AUC and convergence epochs when m varies

m=1 m=3 m=5 m=8 m=10

In-hospital mortality prediction task 0.740 0.789 0.854 0.783 0.768
Readmission prediction task 0.872 0.893 0.902 0.892 0.853
ICU mortality prediction task 0.626 0.638 0.635 0.583 0.571
Ventilation prediction task 0.600 0.605 0.603 0.591 0.587
Convergence epoch 200 187 98 110 150
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Figure 4.3: FIT on MIMIC-EXTRACT and eICU dataset.

4.4.5 Experiment Result

Tensor reconstruction quality analysis

For the following experiments on tensor reconstruction quality, we run each method

for 5 different random initializations and report the average FIT . In addition, we

evaluate model completion performance under different target ranks, R, from 10 to

60, and run 200 epochs.

First, we compare MULTIPAR model’s FIT with the baseline models on two

datasets shown in figure 4.3. MULTIPAR model optimizes all prediction tasks and

tensor factorization together. SPARTan and COPA first finish the tensor factoriza-

tion, and then predict the downstream prediction tasks. As figure 4.3a and 4.3b

shows, MULTIPAR outperforms all the other baseline methods on all datasets. In

particular, MULTIPAR achieves a FIT score of 0.97 and 0.71 on MIMIC-EXTRACT

and eICU respectively, a 13% and 40% relative improvement when compared to the

best baseline model SinglePAR, which shows the strong tensor reconstruction ability
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Figure 4.4: PR-AUC for prediction tasks on MIMIC-EXTRACT

of MULTIPAR, thanks to the “supervision” of the multiple predictive tasks. COPA

performs better than SPARTan because it introduces various regularizations on the

factor matrices, which can slightly improve the tensor reconstruction ability.

SinglePAR is a single task version of MULTIPAR. In sub-figure 4.3a, SinglePAR

adopts the in-hospital mortality perdition, readmission prediction, ICU mortality

prediction, and ventilation prediction tasks respectively. SinglePAR performs better

than SPARTan and COPA on most of the ranks but is left behind COPA on large

ranks. SinglePAR jointly optimizes prediction task and tensor factorization together.

We can see that certain tasks benefit the tensor FIT while others may guide the

tensor factorization into a suboptimal direction and degrade the tensor reconstruction

quality. Although MULTIPAR model is supervised, thanks to the MTL, it can use all

of the available outcomes across the different tasks to learn generalized representations

of the data that are useful in the tensor reconstruction context.
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Figure 4.5: PR-AUC for prediction tasks on eICU dataset

It is also noteworthy to discuss the FIT score trend as a function of the rank.

All of the methods show better FIT score as rank increases because a large rank can

preserve more information in the hidden space when doing the tensor factorization,

thus having better reconstruction quality.

Predictability analysis

A logistic regression model is trained on the patient importance membership matrix

Sk for static outcome prediction tasks and an LSTM model is trained on the temporal

evolution matrix Uk for dynamic outcome prediction task. LSTM is a variant of the

recurrent neural network (RNN) that mitigates the gradient vanishing problem in

traditional RNNs. Its memory cells contain three types of non-linear gates, namely

input gate, output gate and forget gate, which can regulate the flow of signals into

and out of the cell and learn long-term dependencies. Moreover, LSTM can process

varying-length input data.

In the MIMIC-EXTRACT dataset, only the ventilation prediction task is a dy-

namic outcome prediction task, and all the tasks in the eICU dataset are static

outcome prediction tasks. In order to illustrate the benefit of using the latent factors

as features for a downstream prediction model, we also include a LSTM model trained

using the original EHR data. The reason why we choose LSTM model is because the

original EHR data contains different length patients’ visit data, and LSTM model
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can handle the varying size input temporal data. The input to the LSTM model is

an irregular tensor which contains k different patient, and each patient information

Xk consists of IK visits and J medical features. The output is the prediction label

for the different patients or different time stamps.

We evaluate the prediction accuracy as a function of the tensor factorization rank.

As shown in figure 4.4 and 4.5, MULTIPAR outperforms the other methods. In figure

4.4, when the rank is 10, MULTIPAR outperforms the best baseline methods Sin-

glePAR by 17%, 18%, 20% and 22% in figure 4.4a, 4.4b, 4.4c and 4.4d for each of

the tasks respectively. This demonstrates MULTIPAR’s strong generalization abil-

ity across multiple prediction tasks by leveraging the shared information between

different tasks as well as the strong predictive power by the extracted phenotypes.

Moreover, SinglePAR always outperforms COPA, SPARTan, and LSTM, which shows

that the supervised learning framework can improve predictability. The figure also

illustrates the important role PARAFAC2 plays as the non-tensor based LSTM model

performs the worst because it lacks the ability to filter out noise in the raw EHR.

Scalability analysis

Adding MTL on the PARAFAC2 framework can raise some concerns related to po-

tential scalability issues on large datasets. Therefore, we evaluated the computational

time of MULTIPAR compared with the other baseline methods using different data

sizes and different feature sizes. We use two Titan RTX GPUs, each GPU has 24 GB

of RAM, and rain 50 epochs of both methods.

In Figure 4.6, we show the total training time. COPA, SPARTan, and SinglePAR

shows linear scalability as the number of patients and features grows. Although MUL-

TIPAR adds MTL, it still exhibits linear scalability similar to SinglePAR. Although

MTL adds some additional training time, it is not significantly more as the maximum

added time is 8 minutes.
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Figure 4.6: Training time on MIMIC-EXTRACT and eICU varying patient size and
feature size

1 2 3 4 5 6 7 8 9 10111213141516171819202122

Time from presentation (hours)

35

35.5

36

36.5

37

37.5

38

38.5

39

T
e

m
p

e
ra

tu
re

Hyperthermic slow resolvers

Hyperthermic fast resolvers

Normothermic

Hypothermic

(a) Temperature

1 2 3 4 5 6 7 8 9 10111213141516171819202122

Time from presentation (hours)

100

110

120

130

140

150

160

170

180

S
y
s
to

lic
 b

lo
o

d
 p

re
s
s
u

re

High, increasing blood pressure

High, decreasing blood pressure

Normal

Low-Normal

(b) Systolic blood pressure

Figure 4.7: Temporal Trajectory



79

Table 4.4: MIMIC-EXTRACT phenotypes discovered by MULTIPAR.

Phenotype 1 (Normal vital signs) Weight Average Value Weighted Average Value

Oxygen saturation 1.52 98.5 149.72
Systolic blood pressure 0.91 112.7 101.92
Heart rate 0.82 82.5 67.24
Mean blood pressure 0.79 81.2 63.99
Diastolic blood pressure 0.65 76.3 49.6
Respiratory rate 0.57 18.6 10.602
Co2 (etco2, pco2, etc.) 0.43 24.2 10.4
Phenotype 2 (Abnormal renal and liver function) Weight Average Value Weighted Average Value

Alanine aminotransferase 11.51 83.1 956.481
Blood urea nitrogen 9.64 42.3 407.77
Alkaline phosphate 8.01 153.2 1224
Asparate aminotransferase 5.18 90.1 466.718
Albumin 3.90 3.2 12.48
Bicarbonate 2.76 17 46.92
Mean blood pressure 1.59 85 135.15
Phenotype 3 (Normal Blood Counts and Serum Electrolytes) Weight Average Value Weighted Average Value

Mean corpuscular hemoglobin concentration 7.54 32.1 242.0
Sodium 4.93 135.2 666.53
Mean corpuscular hemoglobin 3.62 30.8 111.49
Mean corpuscular volume 3.41 93.2 317.8
Chloride 2.73 103 281.19
Hemoglobin 1.04 12.8 13.3
Hematocrit 0.62 33.2 20.58
Phenotype 4 (Abnormal vital signs) Weight Average Value Weighted Average Value

Glascow coma scale total 2.13 6.7 14.271
Oxygen saturation 1.41 85 119.85
Systolic blood pressure 1.30 153.1 199.03
Temperature 1.29 37.5 48.37
Heart rate 1.03 115 118.45
Mean blood pressure 0.93 95 88.35
Diastolic blood pressure 0.84 82 68.88

Interpretability analysis

Finally, we did an interpretability analysis of MULTIPAR on the MIMIC-EXTRACT

dataset. We first illustrate the phenotypes discovered by MULTIPAR in table 4.4.

We set rank to 4, and use the V matrix to select the most important vital signs in

each phenotype based on the weight. V matrix represent the membership of medical

features in each one of the phenotype, and the “weight” column in table 4.4 is the

weight in the V matrix. We then use the S matrix to find the patient subgroup of

each phenotype, and calculate the average value of the vital signs shown in the “Av-

erage value” column, and the “Weight average value” column is calculated by weight

multiplying average value. It is important to note that there is no post-processing

in these extracted phenotypes. A critical care expert reviewed and endorsed the pre-

sented phenotypes which suggest collective characteristics such as normal vital signs,
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Table 4.5: MIMIC-EXTRACT phenotypes discovered by SinglePAR incorporating
in-hospital mortality prediction.

Phenotype 1
Oxygen saturation Systolic blood pressure
Heart rate PH
Mean blood pressure Diastolic blood pressure
Phenotype 2
Oxygen saturation Systolic blood pressure
PH Mean blood pressure
Heart rate Diastolic blood pressure
Phenotype 3
Temperature Glascow coma scale total
Oxygen saturation Systolic blood pressure
Heart rate Mean blood pressure
Phenotype 4
Glascow coma scale total Heart rate
Temperature Systolic blood pressure
Mean blood pressure PH

Table 4.6: MIMIC-EXTRACT phenotypes discovered by incorporating icu mortality
prediction.

Phenotype 1
Oxygen saturation Systolic blood pressure
Heart rate respiratory rate
Mean blood pressure Diastolic blood pressure
Phenotype 2
Hemoglobin PH
Sodium chloride
Mean corpuscular volume Co2 (etco2, pco2, etc.)
Phenotype 3
Oxygen saturation Systolic blood pressure
Heart rate Respiratory rate
Mean blood pressure Diastolic blood pressure
Phenotype 4
Temperature Glascow coma scale total
Oxygen saturation Systolic blood pressure
Heart rate Mean blood pressure

abnormal renal and liver function, normal blood counts and serum electroytes, and

abnormal vital signs.

The phenotypes discovered by the supervised single task model SinglePAR strongly

overlap with each other shown in table 4.5, 4.6, 4.7, and 4.8. Since we are incorporat-

ing in-hospital mortality prediction task in table 4.5, most of the phenotypes discov-

ered by SinglePAR are abnormal in vital signs. COPA discovered phenotypes shown

in table 4.9 contain more information compared to SinglePAR, which makes sense

because a supervised model may guide the tensor factorization to a specific direction

geared toward the task and cause information loss. However, MULTIPAR does not
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Table 4.7: MIMIC-EXTRACT phenotypes discovered by SinglePAR incorporating
readmission prediction.

Phenotype 1
Temperature Glascow coma scale total
Oxygen saturation Systolic blood pressure
Heart rate Mean blood pressure
Phenotype 2
Oxygen saturation Systolic blood pressure
Heart rate Mean blood pressure
Diastolic blood pressure Respiratory rate
Phenotype 3
Sodium Chloride
Oxygen saturation PH
Hemoglobin Hear rate
Phenotype 4
Oxygen saturation Systolic blood pressure
Heart rate Mean blood pressure
Diastolic blood pressure PH

Table 4.8: MIMIC-EXTRACT phenotypes discovered by SinglePAR incorporating
ventilation prediction

Phenotype 1
Oxygen saturation Systolic blood pressure
Heart rate Respiratory rate
Mean blood pressure Diastolic blood pressure
Phenotype 2
Respiratory rate Sodium
Temperature Mean corpuscular volume
Chloride PH
Phenotype 3
Oxygen saturation Systolic blood pressure
Heart rate Mean blood pressure
Diastolic blood pressure Respiratory rate
Phenotype 4
Temperature Glascow coma scale total
Oxygen saturation Diastolic blood pressure
Heart rate Mean blood pressure

have information loss compared to COPA, it even provides a new phenotype (phe-

notype 2: abnormal in renal and liver function) which is not discovered by COPA.

This verifies the benefit of MTL in MULTIPAR, which can leverage information from

multiple tasks to avoid local optimum.

We then test MULTIPAR’s ability to find meaningful subgroup temporal trajec-

tories, which can help clinical care experts make precise prescriptions and treatments

for specific subgroup of patients. We select the patients with the number of observa-

tions equal to 22 for visualization purposes. The rank is set to 4. We select the four

phenotypes for the temperature feature and systolic blood pressure feature, then use
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Table 4.9: MIMIC-EXTRACT phenotypes discovered by COPA.

Phenotype 1
Sodium Mean corpuscular volume
Mean corpuscular hemoglobin Oxygen saturation
Mean corpuscular volume Chloride
Phenotype 2
Temperature Oxygen saturation
Systolic blood pressure Heart rate
Mean blood pressure Diastolic blood pressure
Phenotype 3
Glascow coma scale total Temperature
Oxygen saturation Systolic blood pressure
Heart rate Mean blood pressure
Phenotype 4
Oxygen saturation Systolic blood pressure
Mean blood pressure Diastolic blood pressure
Heart rate Respiratory rate

the S matrix to find the patient subgroup for each phenotype, and print the average

value trajectory.

From figure 4.7a, we can see that the four patient subgroups (clusters) exhibit very

different temporal trajectories in the temperature. Our clinical expert interpreted

that the green line suggests a hyperthermic slow resolver patient subgroup which

exhibits a slow decreasing trend as time increases, the red line suggests a hyperthermic

fast resolver patient subgroup, which exhibits a fast decreasing trend as time increases,

the dark blue line suggests a normothermic patient subgroup and the light blue line is

a hypothermic patient subgroup. For the systolic blood pressure trajectory shown in

figure 4.7b, the green subgroup has high, increasing blood pressure, the red subgroup

has high, decreasing blood pressure, the dark blue and light blue subgroups have

consistently normal and low-normal blood pressure, respectively.
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Chapter 5

Conclusion

In this dissertation, we demonstrate three PARAFAC2 irregular tensor factorization

methods for health data analysis that address the major limitations in current mod-

els. In chapter 2, we developed a robust unsupervised PARAFAC2 method to handle

missing and erroneous EHR data. In chapter 3, we proposed an RNN regularized

robust PARAFAC2 method for more accurate temporal modeling. In chapter 4, we

built a supervised PARAFAC2 framework with multi-task learning for more mean-

ingful phenotypes and better predictive accuracy. In the following of this Chapter, we

specify future work directions focusing on EHR-based phenotyping, which is a central

topic of this dissertation.

Robust supervised multi-task learning. The first future work direction could be

to further enhance the robustness of the supervised multi-task learning framework.

A possible approach is adding the low-rankness constraint on the factor matrices.

Incorporating additional EHR data domains. Our work has been mostly focus-

ing on utilizing EHR structured code information. Incorporating clinical text using

the (NLP) natural language processing technique is an additional target for our fu-

ture work. Choosing an appropriate NLP model and scalability issue is the main

challenge.
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