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Abstract 

 
Computational Construction of Gene Regulatory Network and Trajectory of Developing 

Midbrain Dopaminergic Neurons Perturbed by Insecticides 
 

By  
 

Yajun He 
 
 
Background:  Embryonic exposure to environmental chemicals, such as insecticides, can cause 
developmental defects that increase individuals’ susceptibility to neurological diseases in both 
childhood and adulthood. Abnormal development of the midbrain dopamine circuit appears to 
underlie several neurological disorders, including autism spectrum disorder and attention deficit 
hyperactivity disorder. Epidemiological evidence has identified associations between exposure to 
insecticides during critical periods of brain development and neurological deficits. However, how 
exactly midbrain neurodevelopment is disrupted by insecticides is poorly understood.  
 
Objective: As the development of dopaminergic (DA) neurons is underpinned by an elaborate 
network of transcription factors, we aim to characterize and construct the gene regulatory network 
(GRN) that orchestrates DA neural differentiation and migration to understand their developmental 
trajectories that may be perturbed by insecticides. 
 
Method: Integrated bioinformatics and machine-learning approaches were used to analyze 
existing single-cell RNA sequencing data of developing mouse midbrain (La Manno et al., 2016). 
We firstly used R package Seurat to conduct quality control, dimension reduction, clustering, and 
differential expression analysis to obtain DA neuron subtypes. Then, we used pyScenic to generate 
a co-expression matrix according to Spearman correlation, and motif enrichment analysis using 
RcisTarget to obtain pruned regulons and TFs-genes regulation network. Lastly, we used scVelo 
to calculate RNA velocity and latent time to derive the developmental trajectories. 
 
Results: 1901 cells were grouped into 15 cell types and visualized in 2D t-SNE and 3D UMAP 
map. Cell types were annotated according to the expression profile of marker genes. Immature DA 
neurons were sub-clustering into 4 types: NbDA, DA0, DA1 and DA2. pyScenic’s output from 9 
selected cell types gave us a complex network containing 603 transcription factors, 13691 target 
genes and 52538 edges. After cross referencing with literature, an organized, minimal network 
was obtained with 25 transcription factors. RNA velocity analysis produced trajectories of DA 
lineage from Prog to NbM, NbDA, DA0, DA1 and DA2. 
 
Conclusion: We characterized the variety of developing midbrain DA neurons and derived a 
minimal GRN that underpins the normal midbrain DA development. Such GRN can be used to 
model the aberrations of DA neuron developmental trajectory by insecticides in future. 
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Introduction 

1. Anatomical location, projection and function of midbrain DA neuron 

The majority of dopaminergic (DA) neuronal population of the mammalian brain is located in the 

ventral midbrain (VM) (Bjorklund et al., 2007). Dopaminergic neurons can release dopamine, a 

catecholaminergic neurotransmitter. These neurons are characterized by the presence of tyrosine 

hydroxylase (TH), which is the rate-limiting enzyme in the synthesis of catecholamines (Stern, 

1983).  Midbrain dopaminergic (mDA) neurons regulate several brain functions, such as motor 

control, reward behavior and cognition, and are associated with many brain diseases. mDA 

neurons are categorized into three groups located in three different nuclei: the substantia nigra pars 

compacta (SNc, known as the A9 group), the ventral tegmental area (VTA, A10 group) and the 

retrorubral field (RrF, A8 group) (Stern, 1986). The SNc neurons primarily project to the dorsal 

striatum via the nigrostriatal pathway, and functionally regulate voluntary movement. 

Degeneration of the SNc DA neurons is the main cause of the motor symptoms observed in 

Parkinson’s disease (PD) (Horowski et al., 1995). VTA and RrF neurons project to the limbic 

system and prefrontal cortex to form the mesolimbic and mesocortical pathway. These neurons 

regulate reward behavior and cognitive function.  Impairment of DA projection to the prefrontal 

cortex is related to schizophrenia and attention deficit hyperactivity disorder (ADHD) (Grace, 

2016; Hadley et al., 2014). 

2. Midbrain DA neurodevelopment process 

2.1 Morphological development  

The development of mDA neurons in mice starts around embryonic day 8 (E8) in the ventral 

midbrain followed by lineage specification, localization, phenotypic characterization, and synaptic 
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connections (Brignani & Pasterkamp, 2017; G. La Manno et al., 2016; Smidt, 2017; Smits, 

Burbach, & Smidt, 2006). On day E8, radial glial cells in the midbrain floor plate of the neural 

tube give rise to DA neural progenitor cells. Proliferating DA progenitor cells then differentiate 

into postmitotic DA neuroblasts. On E10.5 the DA neuroblasts migrate radially from the 

ventricular zone to the marginal zone, where they mature into DA neurons. Mature DA neurons 

then migrate laterally to their final destinations, where they populate into three distinct nuclei: 

SNc, VTA, and RrF. Thereafter these neurons undergo axonal growth and project rostrally to other 

areas of the developing brain. By E13 and E15, the first dopamine axons appear in the striatum 

and prefrontal cortex, respectively. 

2.2 Molecular network underlying the development  

Each of the major developmental processes is orchestrated by a number of morphogens and 

mitogens secreted by the surrounding tissues and the developing midbrain, such as sonic hedgehog 

(SHH), fibroblast growth factor 8 (FGF8) and wingless-related MMTV integration site 1 (WNT1) 

glycoprotein. SHH, FGF8 and WNT1 are the key secretory factors in the induction of midbrain 

floor plate and basal plate where the respective knockout mice have a severely reduced midbrain 

(Chi, Martinez, Wurst, & Martin, 2003; Chiang et al., 1996; Meyers, Lewandoski, & Martin, 

1998). In response to these morphogenesis clues, a set of transcription factors (TF) play a vital role 

in determining the cellular fate, driving DA lineage specification, proliferation, differentiation, and 

migration. These TFs include Foxa2, Otx2, Lmx1, Sox6, Nr4a2, Pitx3, En1, Pbx1, etc., which are 

dynamically expressed at various stages of mDA development (Brignani & Pasterkamp, 2017; G. 

La Manno et al., 2016). Some TFs, such as Foxa2, Otx2, and Lmx1a/b, are expressed in neural 

progenitor cells to first establish the mDA lineage, which then either persist or turn off in further 

differentiated cells (Deng et al., 2011; Joyner, Liu, & Millet, 2000; Kittappa, Chang, Awatramani, 
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& McKay, 2007; Stott et al., 2013; Vernay et al., 2005). Some TFs, such as Nr4a2 and Neurog2 

appear first in neuroblasts (Kele et al., 2006; Zetterstrom et al., 1997). Others, such as Pitx3 do not 

appear until in the late maturing mDA neurons (Nunes, Tovmasian, Silva, Burke, & Goff, 2003). 

In mature mDA neurons, Nr4a2 and Pitx3 drive the transcription of functional genes that encode 

DA-specific enzymes (TH, AADC), transporters (DAT, VMAT2), and receptors (DR2) required 

for DA neurotransmission (Martinat et al., 2006). 

3. Effects of insecticides on midbrain DA neurodevelopment 

3.1 Toxicity phenotype: sensitive time window 

Many DA-related neurological diseases have developmental origin, in which the neurogenesis of 

mDA neurons is disrupted in the prenatal or postnatal stages. Among the risk factors, in utero 

exposure to environmental insecticides is of major concern (Grandjean & Landrigan, 2014; J. R. 

Roberts & Karr, 2012). Insecticides consist of a wide range of chemicals that are developed to 

purposely disrupt neuronal targets in insects (Casida & Bryant, 2017). Three major chemical 

classes make up 85% of the insecticides used in the United States: organochlorines, 

organophosphates, and pyrethroids. Routinely applied in agricultural and residential settings, they 

can accumulate in human bodies and transfer to the developing fetus via the placenta. A wealth of 

epidemiological studies have indicated that pre- and postnatal exposure to these insecticides is 

associated with increased risk of mDA-related neurobehavioral disorders in childhood, such as 

autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD) (Wagner-

Schuman et al., 2015). Animal studies have suggested that exposure to insecticides during the 

critical periods of mDA neurodevelopment can result in similar neurological disorders (Jason R 

Richardson et al., 2015).  
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3.2 Molecular changes 

Over the last several years, studies have been extensively focused on determining the neurological 

targets of specific insecticides and their contribution to neurological disease (Caudle, Guillot, 

Lazo, & Miller, 2012; Caudle, Richardson, Wang, & Miller, 2005; Hatcher et al., 2007). 

Developmental exposure to insecticides, including dieldrin, heptachlor, endosulfan, and 

deltamethrin severely alter the development and function of the dopamine circuit in male and 

female offspring. These alterations also appear to underlie observed behavioral impairments, 

including deficits in social interaction, locomotor activity, and learning and memory (Caudle et 

al., 2005; Elwan, Richardson, Guillot, Caudle, & Miller, 2006; Richardson et al., 2006; Richardson 

et al., 2008; Wilson, Shapiro, Bradner, & Caudle, 2014). These findings are critical as alterations 

in the dopamine circuit have been identified in a variety of neurodevelopmental diseases (Di 

Martino et al., 2011; Greene et al., 2011; Kohls et al., 2013; Kohls, Yerys, & Schultz, 2014; Langen 

et al., 2009; Nakamura et al., 2010; Scott-Van Zeeland et al., 2010). 

Organochlorine: Organochlorine insecticides, such as dieldrin, heptachlor, and endosulfan, affect 

sodium channels, as well as calcium signaling in the neuron. Although these insecticides target 

ubiquitous neuronal elements, each have been shown to significantly damage the dopamine 

system. Exposure to dieldrin or heptachlor throughout gestation and lactation elicited elevations 

in the expression of striatal DAT and VMAT2 in both male and female offspring at 3 months of 

age (Caudle et al., 2005; Richardson et al., 2006; Richardson et al., 2008). These elevations appear 

to be mediated by the transcription factors, Nurr1 and Pitx3, which are highly involved in 

conferring the dopaminergic phenotype to mature dopamine neurons. IMale offspring 

developmentally exposed to endosulfan demonstrated a significant reduction in striatal DAT and 

TH expression (Wilson et al., 2014). Damage to these circuits resulted in significant impairments 
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in social interactions in these mice. These findings are in line with the epidemiological data 

showing developmental exposure to endosulfan to be associated with an elevated incidence of 

ASD in children (E. M. Roberts et al., 2007). 

Pyrethroids: Pyrethroid insecticides are found in two different flavors: Type I pyrethroids, which 

include permethrin, resmethrin, and allethrin, primarily exert their neurotoxic effects by disrupting 

the function of sodium channels, leading to neuronal hyperexcitation. Type II pyrethroids, which 

include deltamethrin, cypermethrin, and cyhalothrin, also alter the function of sodium channels, 

but simultaneously serve as inhibitors of the GABA(A) receptor, resulting in elevated neuronal 

excitation. Exposure to pyrethroid insecticides appears to have similar effects on the striatal 

dopamine system as those seen with organochlorines. Developmental exposure to deltamethrin 

causes significant alterations to dopamine handling and transport in the striatum of offsprings 

exposed during gestation and lactation (J. R. Richardson et al., 2015). Specifically, while both 

male and female offsprings demonstrated a dose-dependent elevation in striatal DAT, only the 

male mice exhibited an alteration in concentrations of extracellular dopamine and behavioral 

impairments associated with the striatum and ADHD (J. R. Richardson et al., 2015). 

Organophosphates: Typical organophosphate compounds are chlorpyrifos and malathion. The 

specificity of organophosphates to the acetylcholine system through the targeted inhibition of the 

acetylcholine degradation enzyme, acetylcholinesterase, would suggest an exclusive effect on the 

cholinergic pathway. However, the dopamine circuit has also been shown to be a target following 

developmental exposure (Torres-Altoro et al., 2011). While these findings were generated 

following exposure to adult animals, exposure of animals during critical periods of 

neurodevelopment have also been shown to cause reductions in dopamine signaling (Slotkin et al., 

2009). Additionally, many of the effects on the dopamine system were observed below the 
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threshold concentration or dose for inhibition of acetylcholinesterase, suggesting that these 

findings were independent of the specific cholinergic target of organophosphate insecticides.  

Taken together, these findings highlight the dopamine circuit as a critical target of exposure to 

organochlorine, organophosphate, and pyrethroid insecticides. Moreover, alterations to this circuit, 

especially during critical periods of neurodevelopment, delineate an important neuronal pathway 

that may underlie the epidemiological findings of exposure to these compounds and 

neurodevelopmental deficits. While these findings provided undisputed evidence for involvement 

of molecular disruptions, how exactly the developing trajectories of mDA neurons are altered by 

insecticides and how the composition of the final populations of the mDA neurons in SNc, VTA, 

and RrF is affected are still largely unknown. 

4. Understanding the mechanism of normal mDA neuronal development that can be 

perturbed by insecticides 

4.1 Molecular network and developmental trajectory 

While many of the molecular details of the TF network in the developing midbrain are worked out 

over the decades, how these TFs work together as a whole that underpins the complex mDA 

developmental process is poorly understood. Neural development involves neural stem cells 

bifurcating into and transitioning through multiple intermediate and terminal cell fates in a 

physiologically irreversible fashion. A prevailing premise, based on nonlinear dynamical systems 

theory, purports that stable cell types or subtypes correspond to stable steady states (attractors) in 

a high-dimensional molecular state landscape underpinned by the TF network (Enver, Pera, 

Peterson, & Andrews, 2009; Huang, Eichler, Bar-Yam, & Ingber, 2005; Mojtahedi et al., 2016). 

Albeit with caveats, the Waddington epigenetic landscape is a useful visual aid for such attractor 
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landscape during development (Waddington, 1957). Cell state transitions through a developmental 

trajectory can be directed by transient warping of the landscape by local morphogens. While 

morphogens provide instructive signals, the cellular fates that ensue are also modulated by 

stochastic factors resulting from gene expression noise (Kaern, Elston, Blake, & Collins, 2005; 

Raj & van Oudenaarden, 2008). The stochastic fluctuation of mRNA and protein levels has been 

well documented for its crucial role in determining the timing and probability of the fate of 

individual cells, and consequently, the proportion of cell types and subtypes at a given time point 

during development (Balazsi, van Oudenaarden, & Collins, 2011; Symmons & Raj, 2016; Zhang, 

Bhattacharya, Kline, et al., 2010). A number of studies have modelled and experimentally 

investigated developmental TF networks as multi-stable dynamical systems, including those 

operating in embryonic stem cells, hematopoietic stem cells, and B cells (Bhattacharya et al., 2010; 

Chickarmane, Troein, Nuber, Sauro, & Peterson, 2006; Duff, Smith-Miles, Lopes, & Tian, 2012; 

Harris, Pargett, Sutcliffe, Umulis, & Ashe, 2011; Zhang, Bhattacharya, & Andersen, 2010; Zhang 

et al., 2013). 

4.2 How insecticides may perturb the network and trajectory 

So it is highly likely that the mDA developmental process, starting from radial glial cells, 

traversing through DA neural progenitor cells, DA neuroblasts, and finally to mature, terminally 

differentiated DA neurons and their subtypes, is an orchestrated event occurring along the mDA 

attractor landscape that is underpinned by the specific TF network (Blaess & Ang, 2015; S. V. 

Hegarty, A. M. Sullivan, & G. W. O'Keeffe, 2013). Environmental toxicants like insecticides may 

directly or indirectly perturb this TF network, resulting in transiently or permanently altered 

landscapes. The landscape may change in such a way that the movement of DA lineage cells is 

either accelerated or decelerated at some steps of the developmental trajectories, resulting in an 
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aberrant number of mature DA neurons or disproportional populations of DA neuron subtypes. It 

is also possible that the alteration of the landscape results in new, aberrant trajectories that lead 

cells to alternative attractor states that are never or rarely visited in normal developmental 

conditions. Therefore, we hypothesize that developmental exposure to insecticides can alter the 

transcriptional network that underpins midbrain dopamine neurodevelopment such that (1) the 

developing neurons follow an abnormal developmental trajectory leading to aberrant DA neuron 

subtypes, and/or (2) the probability of developing DA neurons moving along the normal 

trajectories is altered resulting in aberrant proportions of DA neurons in each subtype. 

4.3 A computational modeling approach is necessary to map and simulate the TF 

network and trajectory 

To test the hypothesis efficiently, it requires integrated multidisciplinary systems biology 

approaches – a combination of data-driven, top-down approach examining the TF network globally 

and hypothesis-driven, bottom-up approach constructing dynamical models of the network piece 

by piece. Assessing the molecular profile or state of the TF network in individual cells demands a 

data-intensive, high-coverage method where all the TFs in the network, known and unknown, can 

be measured at once at single-cell levels. 

4.4 Utilizing scRNA-seq to map the TF network and facilitate modeling  

In the past few years, the emerging single-cell RNA sequencing (scRNA-seq) technology has made 

it possible to distinguish and classify cells based on their global transcriptomic signatures including 

neural cells (G. La Manno et al., 2016; Sagner et al., 2018). More recently, the NIH’s Brain 

Research through Advancing Innovative Neurotechnologies (BRAIN) has started the BRAIN 

Initiative Cell Census Network (BICCN) aiming to map all neural cells in the brain (Ecker et al., 
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2017). ScRNA-seq studies of the developing midbrain can produce data from which several pieces 

of information can be extracted and fed into the bottom-up dynamical modeling approach. 

• scRNA-seq could inform neuron subtypes during DA development 

ScRNA-seq studies will allow high-resolution profiling of the mDA neurons, thus facilitating the 

counting of different cell subtypes and evaluating their proportions that can be potentially altered 

by insecticide exposure. A couple of recent single-cell studies have identified several mDA neuron 

subtypes in the developing and postnatal midbrain tissues in mice, which were concealed in 

traditional methods based on neuron location, morphology, function, and specific markers (Hook 

et al., 2018; G. La Manno et al., 2016; Poulin et al., 2014). The scRNA-seq approach will also 

allow us to discover whether new DA neuron subtypes can emerge from insecticide exposure. The 

number of identified mDA neuron subtypes will provide information on the number of possible 

attractor states of the TF network model. 

• scRNA-seq could infer network structure 

scRNA-seq technology has made it possible to infer the gene regulatory networks (GRN) that 

control cellular differentiation and drive the transitions from one cell type to another. 

Bioinformatics methods such as SCENIC and GRISLI can be applied to identify the coregulated 

modules of genes and GRN using gene-to-gene expression correlations (Aibar et al., 2017; Aubin-

Frankowski & Vert, 2020).  

• scRNA-seq can infer pseudo-time and latent time 

Novel, emerging machine-learning tools such as Monocle and RNA velocity have enabled the 

identification of developmental pseudotime and latent time of each cell assayed with scRNA-seq 
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and are able to order the heterogeneous cells in tissue samples along a developmental trajectory 

(Hook et al., 2018; G. La Manno et al., 2016). This derived information will not only provide 

visualization of the potentially altered trajectory induced by insecticide exposure but also provide 

secondary data to guide dynamical modeling of the TF network. RNA velocity could also infer 

parameters such as transcription rate and degradation rate constant that can be used in dynamic 

modeling of the TF network. 
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Method 

1. Mouse developing midbrain scRNA-seq Data source 

E11.5 - E18.5 mouse midbrain scRNA-seq data was downloaded from Gene Expression Omnibus 

(GEO) under the series number GSE76381 from a recently published paper (G. La Manno et al., 

2016). A total of 2486 raw sequencing FASTQ files and a molecule count matrix with 1901 cells 

X 24378 genes were obtained. 

2. Analysis using Seurat  

We used Seurat (v3.2.2) in R (v3.6.2) to distinguish different cell types (Butler, Hoffman, Smibert, 

Papalexi, & Satija, 2018). Since the expression matrix we downloaded from GEO was already 

quality controlled by the original authors, the data was first normalized using the LogNormalize 

method. Feature counts for each cell are divided by the total counts for that cell and multiplied by 

the scale.factor set as 10000, then a natural-log was performed. After calculating the cell-to-cell 

variation of genes, a subset of 3000 genes that exhibit high variation in the dataset were used in 

downstream analysis. After scaling, PCA was performed for linear dimension reduction. Cell 

clustering was performed with the “resolution” parameter set to 1.7. Non-linear dimensional 

reduction tools tSNE (Kobak & Berens, 2019) and UMAP (Becht et al., 2019) were then used to 

visualize the dataset. After gene expression analysis, we annotated cell types to each cluster 

according to the expression profile of marker genes listed in Table 1.  

3. Network inference using Scenic  

We used pySCENIC (v0.10.4) through the command line interface to derive the gene regulatory 

network (Aibar et al., 2017). Firstly, a co-expression matrix or regulons were generated after the 
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calculation of gene-to-gene Spearman correlation using GENIE3. Then, we performed motif 

enrichment analysis by searching the promoter of 10k bp upstream and downstream of the 

transcription start site (TSS) to obtain pruned regulons and the TFs-genes networks using 

RcisTarget. TFs-genes network was visualized in Cytoscape. 

4. RNA velocity analysis  

a. bioinformatics pipeline to obtain loom file 

2486 original sequencing FASTQ files were converted into one loom file before the RNA velocity 

analysis. We firstly performed quality control on 2486 FASTQ files as follows using UMI-tools 

and Cutadapt: (1) removed reads whose UMI bases had a Phred score < 17; (2) removed Gs from 

5’, low quality 3’ end bases and poly A tail; (3) removed reads whose bases are less than 25. After 

quality control, reads were aligned to mm10 genome using Bowtie 2 aligner. Then we converted 

2486 SAM files to 2486 position-sorted BAM files and generated a loom file containing unspliced 

RNA by using reference genome mm10 through VeloCyto (Gioele La Manno et al., 2018). 

b. scVelo for RNA velocity, latent time and parameter calculation 

We used scVelo (v0.2.4) through python (v3.8) to calculate RNA velocity and latent time to derive 

the developmental trajectories (Bergen, Lange, Peidli, Wolf, & Theis, 2020). After obtaining the 

loom file which stores both spliced and unspliced counts. We firstly filtered the data by only 

retaining mouse embryo cells with 2000 - 26000 molecules per cell and eliminating genes that 

were detected at less than 4 molecules in the whole datasets. After normalization, RNA velocity 

and latent-time were estimated using a dynamical model and projected to a 2D UMAP map. Then 

the rate constants of RNA transcription, splicing and degradation were calculated. 
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5. Integrating scenic network with literature 

In order to validate and complement SCENIC-derived TF network, we cross referenced with the 

reported connections reported in the literature (Arenas, Denham, & Villaescusa, 2015; Blaess & 

Ang, 2015; Shane V Hegarty, Aideen M Sullivan, & Gerard W O'keeffe, 2013), to obtain an 

organized and minimally sufficient network that can be computed in future. 
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Result 

1. Identification of neural cell types in developing mouse midbrain  

Through dimension reduction and gene expression clustering, we grouped 1901 cells into 15 

clusters: GABAergic neurons (GABA1-2); mediolateral neuroblasts (NbML1-5); red nucleus 

(RN); lateral neuroblasts (NbL1-2); neuronal progenitor (NProg); neuroblast dopaminergic 

(NbDA); dopaminergic neurons (DA0-2); ependymal (Epend); radial glia-like cells (Rgl1-3); 

endothelial cells (Endo); medial neuroblast (NbM); pericytes (Peric); oculomotor and trochlear 

nucleus (OMTN);  serotonergic (Sert); microglia (Mgl). These clusters of cells are largely 

concordant with those reported by La Manno 2016. We visualized them in 2D t-SNE (Figure 1A) 

and 3D UMAP (Figure 2) maps. Immature DA neurons were sub-clustered into 4 types: NbDA, 

DA0, DA1 and DA2 (Figure 1B). Cell types were annotated according to the expression profile of 

marker genes.   

2. Inference of TF network in developing mouse midbrain  

Since only cell types Rgl1, Rgl2, Rgl3, NProg, NbM, mNbDA, DA0, DA1, and DA2 are 

immediately relevant to the mDA lineage development, we only applied the SCENIC algorithm to 

these cells. pyScenic’s output from these nine selected cell types produced a complex network 

containing 603 transcription factors, 13691 target genes and 52538 edges. After cross referencing 

with literature, an organized, minimal network was obtained with 25 transcription factors: Otx2, 

Foxa2, Lmx1a, Lmx1b, Gbx2, Wnt1, Ctnnb, Shh, Gli2, Gli1, Neurog2, Msx1, Pbx1, Onecut2, 

Nr4a2, Pitx3, En1, En2, Wnt5a, Nkx2-2, Nkx6-1, Hes1, Ascl1, Pou2f2, Gata4. Network was 

visualized in Cytoscape (Figure 3). From upstream to downstream, the network follows the 

direction of DA neuron differentiation and maturation.  
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3. mDA developmental trajectories 

The relative abundance of unspliced over spliced RNA in the dataset is presented in Figure 4, the 

ratio of unspliced over spliced RNA for each gene determines its RNA velocity. Projection of 

velocity onto a 2D UMAP map inferred the trajectories and latent time of midbrain neural 

development (Figure 5), which describes the direction in which each cell moves in developmental 

time. Neural cells appear to diverge into two cellular outcomes: one is GABAergic neurons and 

the other is dopaminergic neurons. DA lineage-relevant cell types, including mNProg, mNbM, 

mNbDA, mDA0, mDA1 and mDA2, were further analyzed which produced a linear trajectory 

projection, in which mDA0 diverged from mDA1/2 (Figure 6). The expression of major marker 

genes for DA neurons over the predicted latent time is shown in Figure 7, including Otx2, Foxa2, 

Lmx1a, Neurog2, Nr4a2, Pitx3, En1, Th, and Slc6a3.  
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Discussion 

Midbrain DA neural development follows a specific sequence of events involving dynamic 

expression of multiple TF genes and execution genes. Some of these genes and interactions are 

obligatory because their deletion of disruption will lead to developmental defects. Some of them 

are redundant to increase biological robustness. For the purpose of understanding and predicting 

the effects of herbicides on DA development, it is likely that all these relevant genes and 

interactions need to be considered. The existing literature only covers a part of the TF network, 

which needs to be complemented by information from new dataset. scRNA-seq data contains a 

multitude of information that can be extracted, some which can inform the network structure of 

the TF networks.  

The minimal TF network we obtained using the SCENIC algorithm is shown in Figure 3, 

which captures the major TFs and regulations involved in midbrain DA development. The complex 

TF network comprises a variety of interconnected network motifs, including positive feedback, 

double-negative feedback, negative feedback, and feedforward loops. The regulation of VM 

patterning involves key TFs Otx2, Gbx2, Lmx1a, Lmx1b and Wnt1/b-catenin. Otx2 and Gbx2 

mutually inhibit each other and form a double negative feedback loop, which determines the 

boundary between the midbrain and hindbrain cell fates. Feedforward loop of Otx2, Lmx1a, 

Lmx1b and Wnt1/b-catenin mediate the specification of midbrain floor plate. The positive 

feedback loop between Foxa2, Gli2 and SHH establishes the initial mDA lineage identity 

(Mavromatakis et al., 2011). First, SHH coming from the notochord underneath the neural tube 

activates Gli2 to induce Foxa2 in the neuroepithelial or radial glial cells in the floor plate 

(Chamberlain, Jeong, Guo, Allen, & McMahon, 2008); Foxa2 in turn induces SHH itself in these 

cells, which is secreted and acts in an autocrine and paracrine manner to further induce Foxa2. 



 17 

This positive feedback loop leads to a potential self-sustained, stable steady state, Foxa2high and 

SHHhigh, to establish the mDA lineage (Kittappa et al., 2007; Stott et al., 2013). Msx1 and Neurog2 

are downstream targets of Lmx1a/b which play an essential role in DA neurogenesis. They are 

mainly expressed in NbM from their expression profile over the predicted latent time shown in 

Figure 7. After neurogenesis, postmitotic DA neuroblasts migrate radially from ventricular zone 

to the marginal zone, and there they mature into DA neurons. Nr4a2, Pitx3 and En1/2 are crucial 

regulators of the differentiation of mDA neurons. In mature mDA, Nr4a2 and Pitx3 form a 

predominant positive feedback loop maintaining the mature DA identity and driving a suite of DA-

specific enzymes (Martinat et al., 2006; Yi et al., 2014; Zetterstrom et al., 1997). 

SCENIC identified many interactions which have not been reported in the literature. For 

example, SCENIC’s output shows over 600 interactions between Pbx1 and other upstream TFs 

which are rarely reported in literature. Villaescusa’s study shows Pbx1’s role in inhibiting lateral 

fates during embryogenesis by repressing Onecut2 and promoting mDA development by activating 

Pitx3 which is consistent with our results (Villaescusa et al., 2016). In addition to Pbx1, many 

other interactions remain to be validated. 

The initial network inferred from SCENIC is large: containing 603 transcription factors, 

13691 target genes and 52538 edges. Unlike many other network inference algorithms which relies 

purely on gene-gene expression correlation, the SCENIC algorithm utilizes the known TF binding 

sites and search the enrichment of the binding motifs in the upstream promoter of the initially 

identified “target” genes in the regulon based on correlation score by using the RcisTraget 

database. This extra step screens out those correlated genes that may not be a physical target of the 

TFs (false positive), thus narrowing down the set of genes that are the true target of the TF. 

However, because scRNA-seq data are highly variable, many lowly-expressed genes may only 
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have a couple of copies or even lower mRNA molecules of a particular gene in a small subset of 

cells specifically expressing the gene, so the initial expression correlation based  identification of 

target genes may not have those genes and interactions included (false negative). A typical 

example in the current study is Nr4a2, which has no associated regulon identified at all although 

it is a well-known TF that is responsible for the terminal phenotype of DA neurons.  

Alternative GRN inference algorithms include those based on dynamical systems that are 

described by ordinary differential equations (ODE) such as SCODE and GRISLI ((Aubin-

Frankowski & Vert, 2020; Matsumoto et al., 2017). However, these complementary approaches 

are not necessarily immune to the false negative problem. This is because the inferred Jacobian 

matrix still replies on the data of gene expression. However, the newly developed GRISLI utilizes 

the RNA velocity concept and is expected to perform better than those algorithms previously 

developed based on bulk microarray assays and transcriptomic assays. It is worth comparing 

SCENIC derived network with that predicted by GRISLI in future for DA neural development.  

Using the RNA velocity concept and scVelo we have derived the trajectories of the DA 

neuron development in the mouse midbrain (Figures 5 and 6). Conceptually, the RNA velocity in 

the reduced 2D space is analogous to the vector field in dynamical systems, which predict the rate 

and direction at which the system is moving toward in the next moment. The trajectory depicted 

here is surprisingly consistent with the known sequence of DA neuronal development, therefore 

providing confidence to its validity.  While the samples of the scRNA-seq data were from several 

developmental stages of the mouse midbrain, the latent time predicted provides information on 

continuous changes of gene expression during development time (Figure 7). The latent time 

information can be used to validate if the TF network inferred makes any sense and point out the 

missing links in the network that can be explored in future studies. 
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One of the ultimate purposes of the above bioinformatic results is to guide the development 

of a network model to recapitulate the transcriptional events during midbrain DA neural 

development and predict the consequence of insecticide perturbation. An immediate task will be 

to convert the network structure into a Boolean network model to assess the possible attractor state 

of the network that represents the different DA neuron subtypes such as NProg, NbM, NbDA, 

DA0, DA1 and DA2. Subsequently the network should be coded up to generate an ODE-based 

dynamical model that can be simulated both deterministically and stochastically. The stochastic 

simulation is particularly important as it can recapitulate the decision-making process during 

development that is often random. Lastly, such dynamic models can be incorporated into the 

spatial modeling platform such as CompuCell3D to simulate the DA neuronal migration during 

development in the midbrain. 

While much effort was spent to characterize the TF network and trajectory of midbrain 

mDA neural development in normal conditions, we didn’t get a chance to examine the situations 

when the network is perturbed by chemicals including insecticides. A search in the Comparative 

Toxicogenomic Database returned a couple of early microarray studies examining the 

organophosphates on mouse midbrain development (Cole et al., 2011; Moreira et al., 2010). Future 

work will compare the gene expression changes with the scRNA-seq data and predict the genes 

that are perturbed by the insecticides.   
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Figures 

 

 

 

 

Figure 1.  A: 2D t-SNE dimension reduction of mouse midbrain scRNA-seq data from La Manno 

et al (G. La Manno et al., 2016), showing separation of major cell types and clustering of similar 

cell types by using Seurat package in R. B: 2D t-SNE dimension reduction of sub-clustering 

immature DA neurons. Each dot is one cell.  
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Figure 2.  2D and 3D UMAP dimension reduction of mouse midbrain scRNA-seq data from La 

Manno et al (G. La Manno et al., 2016), showing separation of major cell types and clustering of 

similar cell types by using Seurat package in R. Each dot is one cell. 
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Figure 3. Gene Regulatory Network obtained from pySCENIC and visualized in Cytoscape. Each 

node is a transcription factor. Each edge is pointing from regulator (transcription factor) to target 

(genes). Edge with solid target arrow in red: activation. Edge with blunted target arrow in blue: 

inhibition. Edge in orange means the regulatory direction from pySCENIC’s output conflicts with 

the literature. 
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Figure 4. Relative abundance of unspliced over spliced RNA of mouse midbrain scRNA-seq data 

from La Manno et al (G. La Manno et al., 2016). 
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Figure 5. RNA velocity and latent time analysis of mouse midbrain scRNA-seq data from La 

Manno et al (G. La Manno et al., 2016) projected to 2D UMAP map. 
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Figure 6. RNA velocity and latent time analysis of DA lineage neurons projected to 2D UMAP 

map. 
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Figure 7. The expression of major marker genes for DA neurons over the predicted latent time. 
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Tables 

Table 1. Marker genes for midbrain neural cells. 

Cell Type Marker Genes 

Endo Cldn5, Kdr 

Peric Cd248, Rgs5, Lama4, Gng11 

Mgl Ccl4, Cd53 

Epend 

Ccdc153, Ttc29, Spag17, Enkur, Ccdc135, Wdr52, Ccdc114, Rfx4, Vit, 

Ednrb, Celsr1 

NbDA Ebf2, Pitx3, En1, Bnc2 

NbM Neurod1, Igfbpl1, Neurod2, Nhlh1 

NProg Msx2, Atf7ip2, Wnt8b, Neurog1, Hmgn2, Gpsm2, Cenpf, Pbk 

Rgl1 Stbd1, Insl6, Hmgn2, Gpsm2, Cenpf, Pbk 

Rgl2 Slc6a11, Aldoc, Tnc, Pbk 

Rgl3 

Cd36, Myh8, Dcn, Vgll3, Sulf1, Cp, Ntn1,  

Enkur, Ccdc135, Wdr52, Ccdc114 

DA2 Aldh1a1 

mDA0/1/2 Th, Ajap1, Slc6a3, Syt17, Lmo3 

NbML1 Cartpt, Nkx6-2 

NbML2 Tal2, Lhx1 

NbML3 2610037D02Rik, Calb2, Ldb2 

NbML4 Meis2, Grb14, Pnoc 

NbL1 Shox2, Crabp1, Lhx9, Lhx2, Tcf7l2, Onecut2, Onecut3 

NbL2 Tcp10b, Six4, Cd226, Tcf7l2, Onecut2, Onecut3 
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RN D130009I18Rik, Krt20, Pou4f1, Cnih3 

OMTN Isl1, Ecel1, Nefm, Phox2b, Phox2a, Chat, Slc18a3, Lhx4, Tbx20 

Sert Tph2, Fev, Calcr, Hs6st2 

Gaba1a Sst, Gad1, Pnoc 

Gaba1b 3110079O15Rik, Gad1, Pnoc 

Gaba2 Vsx2, Cdhr1, Npy 

 

 


