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Abstract 

 

Computational Model of Selection by Consequences: 

Patterns of Preference Change on Concurrent Schedules 

By Saule Kulubekova 

 

The computational model of selection by consequences is an ontogenetic dynamic 

account of adaptive behavior based on the Darwinian principle of selection by 

consequences.  The model is a virtual organism based on a genetic algorithm, a class of 

computational algorithms that instantiate the principles of selection, fitness, reproduction 

and mutation.  The computational model has been thoroughly tested in experiments with 

a variety of single alternative and concurrent schedules.  A number of published reports 

demonstrated that the model generated patterns of behavior that were quantitatively 

equivalent to the findings from live organisms.  The experiments and analyses proposed 

here assess the behavior of the computational model for evidence of preference change 

phenomena identified and described by Davison, Baum and their collaborators in 

concurrent schedule experiments with pigeons.  Three types of preference change 

behavior observed in live organisms were tested in experiments with the virtual 

organism: molar and molecular effects of behavioral adjustment in rapidly changing 

environment and presence of preference pulses.  The results of this study provide strong 

evidence in support of the selectionist account of adaptive behavior. 
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Figures 

Figure 1.  The heavy diagonal in all three panels represents perfect matching. 37   

The three graphs on the left show effects of the bias parameter in three  

coordinate systems.  The three graphs on the right show effects of the  

sensitivity parameter (undermatching or overmatching) in three coordinate  

systems.  Indifferent responding is represented by the dashed horizontal line.   

[Figure reprinted with permission of author (McDowell, 1989, pp. 157, 162).] 

Figure 2.  Log response ratio as a function of successive reinforcers.  In   38 

components with unequal reinforcer ratios, the change in response ratios was  

greater when there was a greater contrast in reinforcement between the  

alternatives. 

Figure 3.  Log response ratio as a function of successive reinforcers.  In   39 

components with unequal reinforcer ratios, the change in response ratios  

was greater when there was a greater contrast in reinforcement between the  

alternatives.  The plots on the left are from Davison and Baum (2000; Figure  

7, p. 11). 

Figure 4.  Log response ratio as a function of successive reinforcers.  In   40 

components with unequal reinforcer ratios, the change in response ratios was  

greater when there was a greater contrast in reinforcement between the  

alternatives.  On the left side are plots for a single pigeon, Bird 91 from  

Davison and Baum (2000, Figure 1, p. 5). 

Figure 5. Sensitivity to reinforcement (a in Equation 2) as a function of  

successive reinforcers.  Sensitivity values increased faster and reached  



higher values for richer overall reinforcement rate.  The plot on the left is   41 

Figure 9 (p. 14) from Davison and Baum (2000), and is included for  

comparison.  The plot on the right is for the computational model. 

Figure 6.  Fits of Equation 2 for log response ratios prior to each successive  42 

reinforcer versus arranged log reinforcer ratios.  Values of sensitivity to  

reinforcement increased progressively from close to zero prior to the first  

reinforcer to 0.82 (RI 25 – filled circles) and 0.55 (RI 60 – unfilled circles)  

prior to tenth reinforcer.  Sensitivity to reinforcement was higher for the  

higher overall reinforcement rate. 

Figure 7. Log response ratios following each reinforcer delivery averaged   43 

across all components.  RI 25 and RI 60 are the two RI schedules.  The plots  

show all possible sequences up to the third reinforcer delivery.  Solid lines  

show left reinforcer deliveries and dotted lines show right reinforcer deliveries.   

The plot on the left is Figure 15 (p. 18) from Davison and Baum (2000). 

Figure 8. Log response ratios following selected sequences of left-right   44 

reinforcer deliveries for conditions with overall reinforcement rates of  

RI 25 and RI 60.  Solid lines show confirmations, in which a reinforcer is  

delivered for a response on the same alternative as for the previous reinforcer  

delivery. Dotted lines show disconfirmations, which are reinforcer deliveries  

for a response on an alternative different from the one previously reinforced.   

On the left are two of the plots from Davison and Baum’s (2000) paper (Figure  

16 on p. 19).   

Figure 9. Preference pulses for the seven reinforcer ratios.  Following   45 



reinforcement, preference was always for the alternative that delivered it.   

On the left are the plots from Davison and Baum (2003) paper (Figure 8  

on p. 107). 
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Computational Model of Selection by Consequences: 

Patterns of Preference Change on Concurrent Schedules 

The purpose of this study was to extend the evaluation of the computational model of 

selection by consequences, proposed by McDowell (2004), to a new domain of research 

on adaptive behavior.  To explain the rationale for this project, it is necessary to present 

McDowell’s computational model of selection by consequences, review extant research 

findings on his theory, and present the data from animal (pigeon) studies on preference 

change behavior patterns against which the behavior of the model will be evaluated in 

this study.   

Computational Model of Selection by Consequences 

The computational model of selection by consequences proposes an ontogenetic 

account of adaptive behavior.  The model is a causal account of how behavior evolves in 

an organism in response to environmental change.  In the past three decades 

mathematical description of behavior has become an important part of behavior analysis.  

A widely accepted and extensively validated mathematical account of operant behavior is 

matching theory (Baum, 1974, 1979; Davison & McCarthy, 1988; Herrnstein, 1970).  

Matching theory puts forth a set of equations describing the relationship between 

reinforcement and behavior.  For behavior on concurrent schedules of reinforcement, the 

matching theory stipulates that the ratio of responses or time allocated to concurrent 

schedule alternatives follows the ratio of reinforcers obtained from the alternatives.  

a

r

r
b

B

B

2

1

2

1  ,     (1) 

where B1, B2, r1, and r2 are, respectively, the numbers of responses emitted and 

reinforcers obtained from alternatives 1 and 2.  The parameters b and a represent 
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deviations from perfect matching.  The b parameter accounts for any bias for one 

alternative over the other.  The parameter a represents sensitivity to reinforcement.  In 

perfect matching situations, a = 1; undermatching is a tendency to respond in the 

direction of indifference toward consequences when a < 1; a tendency toward exclusive 

preference for a behavioral alternative is overmatching, a > 1.  In standard concurrent 

schedule experiments, a values typically range between 0.7 and 1.0, with the most 

common values around being around 0.8 (Baum, 1974, 1979; Myers & Myers, 1977; 

Wearden & Burgess, 1982).   

The relationship between reinforcement and behavior on concurrent schedules 

and the effects of bias and sensitivity parameters are shown in Figure 1 (McDowell, 

1989).  The three plots on the left show the effects of bias, as it appears in three 

coordinate systems.  In the top panel, response proportions are plotted against 

reinforcement proportions; biased responding appears in the form of curves that bow 

away from the matching diagonal.  In the middle panel, response rate ratios are plotted 

against reinforcement rate ratios; biased responding appears in the form of lines with 

varying slopes and constant intercepts equal to zero.  In the bottom panel, logarithms of 

response rate ratios are plotted against logarithms of reinforcement rate ratios; biased 

responding appears in the form of lines with varying intercepts and constant slopes equal 

to unity.  The heavy diagonal in all three panels represents perfect matching.  The three 

plots on the right of the figure show the effects of undermatching.  In the top panel, 

response proportions are plotted against reinforcement proportions; undermatching 

appears in the form of sigmoidal curves that deviate from the matching diagonal in the 

direction of indifference.  In the middle panel, response rate ratios are plotted against 
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reinforcement rate ratios; undermatching appears in the form of negatively accelerated 

curves that pass through the origin.  In the bottom panel, logarithms of response rate 

ratios are plotted against common logarithms of reinforcement rate ratios; undermatching 

appears in the form of lines with varying slopes less than unity, and constant intercepts 

equal to zero.     

Equation 1 provides a widely validated descriptive account of adaptive behavior 

on concurrent schedule of reinforcement.  It describes steady-state behavior, or 

responding that is in equilibrium with conditions in the environment.  The research on 

how behavior gets to the steady state has not yielded a generally accepted theory 

explaining why behavioral and environmental variables are related in the way described 

by the matching theory equations.  Various analytical accounts of operant behavior have 

been proposed, such as maximization and melioration theories (Herrnstein, 1982; 

Rachlin, Battalio, Kagel, & Green, 1981; Vaughan, 1981); however, none has been 

universally accepted.  Maximizing and melioration theories are broadly similar; an 

organism moves from decision point to a decision point, choosing the next step based on 

a prescribed algorithm.  In maximization theory, the organism selects the next point with 

the largest value; in melioration theory, the organism selects the point for which all 

existing opportunities have equal values.  

An alternative to the analytical approach is the computational approach.  In a 

computational account, there is no prescribed outcome and no end state toward which 

behavior is directed.  Instead, a set of low-level selection rules governs the relationship 

between behavior and its consequences, but there is no high-level condition that a 

behavior must satisfy.   
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McDowell’s (2004) computational account of adaptive behavior is based 

conceptually on the principle of selection by consequences, which originates in 

evolutionary biology (Skinner, 1981).  The key implication is that the dynamics of 

selection by consequences drives the adaptation of organisms not only phylogenetically 

(evolution of species) but also ontogenetically (behavior adaptation during the life span 

of single organisms).   

To evaluate the computational model of selection by consequences, McDowell 

(2004) developed a software application in which a virtual organism continuously emits 

behavior in an experimental environment.  The model is based on a genetic algorithm, a 

class of computational algorithms used in artificial intelligence (AI) applications.  

Genetic algorithms are based on a set of principles originating in evolutionary biology, 

including selection, reproduction, fitness, and mutation.  Potential outcomes or solutions 

exist as individuals in a population.  The fitness function determines which individuals 

are “fit” to be selected for the next population.  The population evolves as a result of the 

repeated application of the rules that instantiate the evolutionary principles.  

The computational model also includes an experimental environment in which 

reinforcement schedules and other experimental parameters can be specified.  The 

components and implementation of the computational model are summarized in 

Appendix A.  The virtual organism behaves continuously in time, emitting one behavior 

from the population of potential behaviors each time tick.  The emitted behavior is 

recorded and can be studied as if it were the behavior of a live organism.  The steady-

state performance takes place when the opposing forces of variation and selection reach a 

dynamic equilibrium in a given experimental setting (McDowell, 2004).  Reinforcement 
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has the effect of increasing the proportion of fitter behaviors in the population.  Mutation 

and reproduction in the absence of reinforcement tend to have the opposite effect by 

introducing forces of variability and chance, which likely make the population of 

potential behaviors more diverse and less fit overall.  At the point of dynamic equilibrium 

these forces generate a roughly constant rate of responding.  The low-level rules of 

selection, reproduction, and mutation operate moment-to-moment and must be applied 

repeatedly to generate higher-level time-averaged equilibrium results.   

The computational model is in the process if being tested which involves 

conducting studies that compare behavior of the model to the findings from experimental 

studies with various live organisms.  A series of published studies that compared the 

behavior of the model to data from animal experiments are summarized in the next 

section.    

Testing the Model (2004 – present) 

The first series of experiments was conducted with single-alternative random 

interval (RI) schedules (McDowell, 2004).  The model generated equilibrium response 

rates that were accurately described by the Herrnstein hyperbola, which is  

,
err

kr
R       (2) 

where R represents response rate, r represents reinforcement rate, and k and re are 

parameters of the equation (Herrnstein, 1970; McDowell, 2004). 

The model consistently showed a hyperbolic relation between response and 

reinforcement rates even when parameters of the model, such as the mutation rate and the 

mean of the fitness function, were varied over wide ranges.  The hyperbolic fit was also 

consistently better than the fits provided by similar function forms (asymptotic 
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exponential, asymptotic power function, and ramp function).  McDowell (2004) 

concluded that repeated application of low-level rules of selection, reproduction, and 

mutation produced high-level quantitative order known to characterize the behavior of 

live organisms.  In other words, the Herrnstein hyperbola was an emergent property of 

the selectionist dynamics.  

The next major study investigated the behavior of the model on concurrent 

random interval (RI) schedules (McDowell, Caron, Kulubekova & Berg, 2008).   The 

study found that the virtual organisms’ steady-state behavior was well described by the 

power function matching (Equation 1).  In addition, the parameters of the equation 

behaved in ways that were consistent with findings from experiments with live 

organisms. For example, in symmetrical concurrent schedules the bias parameter b varied 

around a value of approximately 1, which indicates an absence of bias toward either of 

the alternatives.  In asymmetrical concurrent schedules, b tracked the magnitude of the 

asymmetry.  The average exponent a, also known as sensitivity to reinforcement, was 

close to 0.8, which is a degree of undermatching that is typically found in experiments 

with live organisms (Baum, 1979; Myers & Myers, 1977; Wearden & Burgess, 1982).  

The data from the single-alternative (McDowell, 2004) and concurrent schedules 

(McDowell et al., 2008) studies indicate that the equations of matching theory may in fact 

be emergent properties of the evolutionary dynamics of selection by consequences.   

The McDowell lab also pursued research that investigated whether the model 

produced behavior consistent with McDowell’s (2005) version of the matching equations, 

which resolve the constant k violation of the matching theory (McDowell & Caron, 2007; 
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McDowell & Popa, 2010).  The studies showed agreement with the power function 

versions of all the matching equations (McDowell, 1986).   

Several published and unpublished studies were completed to investigate the 

effects of varying different parameters of the model.  For example, Popa and McDowell 

(2009) reported that setting behavior class boundaries at points where adjacent behaviors 

are separated by large Hamming distances simulates effects of changeover delay (COD).  

The Hamming distance is the number of bits in the binary representation of two integers 

that do not match (explained further in Appendix B).  Larger Hamming distances 

produced effects consistent with longer CODs.   

The matching theory is a descriptive account of steady-state behavior. From this 

molar perspective, behavior is viewed as being shaped by the aggregation of experience.  

But the behavior of the model has also been evaluated from a more local perspective.  

Kulubekova and McDowell (2008) reported that the model’s log survivor plots, a form of 

frequency distribution of inter-response times (IRTs), were similar in shape to plots from 

experiments with rats and pigeons.  Log survivor plots did not show the “broken-stick” 

feature indicative of distinct bouts and pauses in responding that has been observed in 

some experiments with rats.  The shape of the virtual organism’s log survivor plots was 

more consistent with the data on reinforced responding in pigeons, in which the boundary 

between within-bout and between-bout responding is not as clear-cut.   

In summary, the computational model produces a range of quantitative molar and 

molecular steady-state behavior patterns known to characterize behavior in live 

organisms.  However, a number of key findings from animal experiments have not yet 
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been studied in the virtual environment.  To determine the limits of the model, tests must 

be extended to a broader domain of behavior.   

Preference Change: Molar and Molecular Patterns  

Over the past decade, Baum, Davison and their colleagues reported a number of 

related patterns in preference change for concurrent schedule alternatives.  Their data 

come from concurrent schedule experiments with pigeons responding during a switching 

procedure similar to the procedure first introduced by Belke and Heyman (1994).   

Davison and colleagues arranged several components per session with different 

reinforcer ratios associated with each.  An overall VI schedule was arranged for the 

whole experiment.  Within each component, two concurrent VI schedules were arranged 

dependently (Stubbs & Pliskoff, 1969), meaning that, whenever a reinforcer was arranged 

for one alternative, a reinforcer could not be arranged on the other alternative until the 

already arranged reinforcer was obtained.  The sequence of the seven components in each 

session was determined randomly without replacement.  The probabilities of reinforcers 

for each alternative were determined based on the reinforcer ratios chosen for the 

experiment. 

Each component was followed by a 10-second blackout.  The switching of 

concurrent schedules occurred rapidly, and without explicit discriminative stimuli.  The 

procedure was designed to study changes in choice following rapid unpredictable 

changes in reinforcer ratio.     

Davison and colleagues used the logarithmic version of Equation 1,  

                                      b
r

r
a

B

B
logloglog

2

1

2

1 ,       (2) 
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to investigate the degree of control that the change in reinforcer ratios has over preference 

in responding on one alternative versus the other.  The sensitivity parameter, a, reflects 

the degree of change in response ratios resulting from a change in the reinforcer ratios 

(Lobb & Davison, 1975), thus sensitivity values for different environmental variables 

reflect the degree of control that those variables exert over preference.  Preference change 

was assessed by plotting the logarithm of the ratio of responses on one key to responses 

on the other key as a function of successive reinforcers.  Thus, when preference for one 

alternative is the same as for the other, 
2

1log
B

B
 is zero.  This may happen when 

reinforcement rates are the same, such as in an RI 1 RI 1 schedule, and there is no 

inherent bias toward one of the alternatives.  It is not uncommon for pigeons to have a 

bias for (respond more on) the right key.   

The components in the rapid switching procedure lasted until a fixed number of 

reinforcers was obtained.  The components were separated by short blackout periods.  

The next schedule was chosen randomly from a set of schedules selected for the 

experiment.  The schedules were specified as the ratios of probabilities of reinforcement 

in the two components.  For example, Davison and Baum (2000) used the seven 

concurrent schedule ratios (27:1, 9:1, 3:1, 1:1, 1:3, 1:9 or 1:27) in components that lasted 

until ten reinforcers were obtained.  There was no discriminative stimulus to indicate 

which schedule was going to be presented next, although the rate of reinforcement 

possibly served as an implicit discriminative stimulus.   

Davison and Baum’s experiments were designed to reveal molar and local 

processes that govern the transition between steady states.  Their procedure and analyses 

allowed the study of a large number of transitions among different reinforcer ratios and 
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the extraction of the essential features of these repeated transitions. The analyses also 

allowed them to magnify and study the effects of individual reinforcers and reinforcer 

sequences.   

The experimental findings that were selected for evaluation in the virtual 

environment are summarized below in three groups: (1) molar features, (2) local effects 

of single reinforcers and different sequences of reinforcers, and (3) preference pulses.   

 Molar features of shifts in preference.  Davison and Baum (2000) found that, after 

pigeons have been trained in the switching procedure, with each new component, their 

preference for a particular key shifted rapidly and leveled off after only six to eight 

reinforcers, which is significantly faster than what had been observed in other 

experimental procedures.  Equation 2 can be fitted to response and reinforcer ratios to 

estimate the exponent a, also referred to as sensitivity to reinforcement, for each inter-

reinforcer interval.  Davison and Baum found that a reached relatively high values, about 

0.6, quickly.  Davison and Baum also found that sensitivity was higher when the overall 

rate of reinforcement for the session was higher, i.e. sensitivity values increased faster 

and reached higher values for the higher overall reinforcement rate.  Davison and Baum 

concluded that acquisition of preference occurs much more rapidly than previously 

reported when the experimental procedure arranges rapid changes in environmental 

contingencies.  It would be interesting to determine experimentally whether the virtual 

organism produces similar pattern of preference change and sensitivity values, and 

whether adaptation happens more quickly at higher overall rates of reinforcement. 

Local Effects of Reinforcers.  Davison and Baum (2000) examined the effects of 

different sequences of reinforcers on preference change by calculating response ratios in 
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the inter-reinforcer intervals. At the beginning of a component, the average log response 

ratio is close to zero – no preference for either key. Each successive reinforcer produces a 

shift in preference toward the alternative from which it came.  This can be represented as 

tree-like plots of average log response ratios for all possible reinforcer sequences. The 

greater “spread” of the trees reflects a wider range of preference changes.  Preference 

shifts appear to be larger at higher overall reinforcement rates.   

Another local effects analysis investigated effects of confirmations and 

disconfirmations.  In Davison and Baum (2000), a confirmation was defined as reinforcer 

delivery on the same key that produced the previous reinforcer.  A disconfirmation was 

defined as reinforcer delivery on the other key.  Following each reinforcer delivery, 

preference shifts toward the just reinforced alternative, but effects of each successive 

reinforcer decrease when the source of reinforcement remains the same.  In a plot of log 

response ratios as a function of delivered reinforcers, a series of confirmations appear as 

a curve (“branch”) starting at close to zero prior to the first reinforcer, with the value of 

log response ratio initially increasing with each confirmation.  After a number of 

reinforcers delivered on the same alternative, the effect of each successive confirmation 

decreases which is reflected in decreasing curvature of the two outermost branches (one 

for each alternative).  In comparison, effects of disconfirmations continue to be 

substantial even after successive confirming reinforcers.  This is reflected in a significant 

shift in the value of the log response ratio.  A single disconfirming reinforcer still 

produces a large shift in preference even if it follows a long series of confirmations.  

The influence of the overall reinforcement rate was also apparent.  Higher overall 

reinforcement rates were associated with greater sensitivity values.  This was also 
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apparent in the plots of confirmations and disconfirmations.   Higher log response ratios 

were reflected graphically in the greater spread of the plots at higher overall 

reinforcement rate.  

Preference Pulses. Davison and Baum (2000) defined a preference pulse as a 

period of heightened preference for the concurrent schedule alternative that just produced 

a reinforcer.  Preference pulse features are essentially local effects.  A preference pulse 

can be plotted as preference change as a function of successive responses.  The x-axis 

shows responses since the last reinforcer delivery. As in the earlier graphs, the y-axis 

shows changes in preference as log response ratio.  A preference pulse appears as a large 

shift in preference toward just reinforced alternative immediately after reinforcer 

delivery.  During the inter-reinforcer period preference for the last reinforced alternative 

tends to decline gradually in the direction of indifference. 

In summary, the scope of this study samples a subset of preference change results 

from experiments with pigeons, starting with all experiments described in the first paper 

in this domain of research (Davison & Baum, 2000).  These specific patterns were chosen 

because they comprise a diverse and representative set of molar, local, and intermediate 

molar-local patterns in preference change.  These findings were also reproduced in 

several subsequent published studies, thus they are robust.  The preference change 

patterns include Davison and Baum’s (2000) finding that, in rapidly changing 

environment, behavioral adjustment occurs very rapidly.  The values of sensitivity to 

reinforcement (a in Equation 2) increase progressively and quickly from close to zero 

prior to the first reinforcer to the 0.5 – 0.7 range after only eight or nine reinforcers.  

Another pattern is that values of sensitivity to reinforcement increase faster at richer 
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overall reinforcement rates.  Part I will examine whether the virtual organism shows a 

similar rate of behavioral adjustment.  Part II will test the effects of confirmations and 

disconfirmations.  Part III will look for evidence of preference pulses, brief periods of 

extreme post-reinforcer preference, in the virtual organism’s responding.  The primary 

question for this study is whether these preference change patterns emerge as a property 

of selectionist principles in evolutionary dynamics.   

Method 

Subjects 

 The experiments were conducted using the virtual organism with a population of 

100 potential behaviors at each moment, or tick, of time.  The computational algorithm is 

described in detail in Appendix B. 

Apparatus and Materials 

Experiments were conducted on a Lenovo ThinkPad T400 with Intel Core™2 

Duo CPU processor, running Windows
 
Vista™ Ultimate.  The software implementation 

of the model was developed by J. J McDowell in VB .NET, a programming language.   

Procedure 

Table 1 lists all the parameters of the model that can be manipulated 

experimentally.  The parameter settings used in the current experiments were the same as 

in earlier concurrent schedule experiments (McDowell et al., 2008).  This is a default set 

of settings used across several published studies.  The same settings were used in order to 

show that no special fine tuning of the model’s parameters was necessary to produce 

behavior patterns in this study.  The following parameter specifications were selected: 

circular fitness landscape; midpoint fitness method; continuous selection method; linear 
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selection function form; search matchmaking method; bitwise recombination method; bit 

flip by individual mutation method; 1024 possible behaviors (integers from 0 to 1023); 

100 possible behaviors in the population at each time tick.  The population was fully 

repopulated (100% replacement) at each time tick.  The mean of the parental fitness 

function was 25.  The mutation rate used was 10 %.  This same set of parameter settings 

was used across all experiments for simplicity and consistency.   

The study replicated the rapid switching procedure used by Davison and Baum 

(2000).  Sessions were divided into seven components with a different concurrent 

schedule in each.  The reinforcer ratios for the alternatives were 27:1, 9:1, 3:1, 1:1, 1:3, 

1:9, 1:27, the same ratios used by Davison and Baum (2000).  The order of the 

components was random without replacement.  Each component was in effect until ten 

reinforcers were obtained.   

An initial set of computational experiments was conducted in order to generate a 

representative sampling of the virtual organism’s behavior during the switching 

procedure.  These initial results were used to select the overall RI schedules.   

Reinforcers were arranged dependently (Stubbs & Pliskoff, 1969), according to a 

single RI schedule.  Once a reinforcer became available, it was allocated to one of the 

alternatives according to probabilities based on the seven reinforcer ratios listed earlier.  

No further reinforcers were allocated until the arranged reinforcer had been obtained.    

Intervals for RI schedule were drawn randomly with replacement from an 

exponential distribution of intervals with a specified mean value.  Hence the RI schedules 

were idealized Flesher-Hoffman (Fleshler & Hoffman, 1962) variable-interval (VI) 

schedules.  A preliminary set of steady state experiments using RI schedules that ranged 
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from RI 1 to RI 160 was conducted to select a rich and a lean overall reinforcement 

schedule, in order to assess the effect of the overall reinforcement rate on preference.  

Two representative RI schedules were selected, RI 25 and RI 60.   In preliminary steady-

state experiments, the largest values of the exponent a (Equation 3) were obtained for 

overall reinforcement rates delivered by schedules in the RI 25 – RI 30 range.  RI 25 

arranged a relatively rich overall schedule of reinforcement.  RI 60 was selected as a 

relatively lean schedule of reinforcement.   

Part I of the experiments focused on whether the virtual organism’s behavior 

showed molar patterns described by Davison and Baum (2000).  Each component ran 

until 10 reinforcers were obtained.  Responses were categorized with respect to their 

occurrence in sequences of responses and reinforcers.  These analyses required large 

pools of data to ensure that each category had a sufficient number of responses to 

generate reliable molar effects.  To replicate their analyses, numbers of responses at each 

key were counted for the period from start of the component to the first reinforcer, then 

from the first reinforcer to the second and so on.  Thus, the data were organized 

reinforcer by reinforcer, with responding measured prior to each reinforcer and after the 

previous reinforcer. These response counts were averaged across 50 presentations of each 

component.  Equation 2 was then fitted to the averaged data to estimate sensitivity values 

(a).  The estimates were used to assess whether a values fell in the expected range and 

whether (and after how many reinforcers) a reached the range of values reported by 

Davison and Baum.     

Part II assessed more local effects of sequences of reinforcers for the virtual 

organism. In order to obtain enough occurrences of various sequences of reinforcers, each 
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component ran until 40 reinforcers had been delivered.  Davison and Baum’s (2000) 

analyses were replicated as follows.  Response ratios were calculated for each inter-

reinforcer interval up to the fourth reinforcer.  If L (left) and R (right) are concurrent 

schedule alternatives, there would be one response ratio from the beginning of a 

component until the first reinforcer (x = 0), two response ratios for the period between the 

first and second reinforcers (L and R), four response ratios after the second and before the 

third (LL, LR, RR, RL), and eight after the third and before the fourth (LLL, LLR, LRL, 

LRR, RLL, RLR, RRL, RRR).  The features of virtual organism’s preference change 

plots were qualitatively compared to Davison and Baum’s findings with pigeons.   

For Part III, mean log response ratios were plotted as a function of responses after 

reinforcer delivery in order to qualitatively test for the presence of preference pulses.  

Each component lasted until 10 reinforcers had been delivered.  Log response ratios were 

plotted for each response following reinforcement on each of the two alternatives for 

each of the seven components.  Two hundred sessions were run to try to ensure sufficient 

number of responses to calculate the log response ratio at each ordinal position following 

a reinforcer.  Response ratios were calculated by summing the number of responses at 

each ordinal position after a reinforcer delivery across all presentations of a component.   

Results 

Part I 

The first analysis investigated how preference, as reflected in log response ratios, 

changed as a function of successive reinforcers.  Following Davison and Baum’s (2000) 

analysis, the responses were counted from reinforcer to reinforcer, that is, this 

organization was not cumulative.  Figure 2 shows the relationship between log response 
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ratio and successive reinforcers in each of the seven components.  To create these plots, 

all responses from the start of the component to the first reinforcer were pooled across all 

50 presentations of the component, and then all responses were pooled from the first 

reinforcer to the second, from the second to the third, and so on.   

The average response ratio was close to zero before the first reinforcer (0 on the x 

axis), reflecting no preference for either alternative at the start of sessions.  For L:R ratio 

of reinforcers, log response ratio, log(L/R), values were positive when responding favored 

the L alternative; log response ratio values were negative when responding favored the R 

alternative; neither alternative was favored when L = R, for 1:1 ratio of reinforcers.  

Absolute values of log response ratios increased rapidly during the initial two to four 

reinforcer deliveries.  The log response ratio appeared to asymptote as more reinforcers 

were delivered.   

Figure 2 also shows the impact of reinforcer ratio.  Response ratios changed with 

increasing number of reinforcers in a pattern fitting the arranged reinforcer ratio.  Log 

response ratios increased faster and reached higher values in components with greater 

discrepancy between alternatives.  For example, during the first few reinforcer deliveries, 

preference changed more rapidly in components with 1:27 and 27:1 reinforcer ratios, in 

comparison to responding in components with smaller ratios, such as 1:3 or 9:1 reinforcer 

ratios.  This was consistent with Davison and Baum’s (2000) findings.   The curvature of 

the plots also reflected greater preference shifts following reinforcers from the richer 

alternatives.   

Figure 3 includes an analogous plot from Davison and Baum (2000), for 

comparison.  The plot on the right was constructed based on the data produced by the 
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computational model (same as Figure 2).  The plot on the left is Figure 7 from Davison 

and Baum (2000, p. 11).  The two plots are remarkably similar, both qualitatively and 

quantitatively.  The seven curves in their figure show preference change as a function of 

delivered reinforcers for experiments with different numbers of reinforcers per 

component, ranging from 4 to 12, and for two overall reinforcement rates, 2.22 

reinforcers per minute and 6 reinforcers per minute.  Davison and Baum reported that the 

number of reinforcers per component had no apparent impact on changes in preference.  

The computational model experiments therefore used the same setting of 10 reinforcers 

per component for all experiments in Part I.  The curves in Davison and Baum’s figure 

appear smoother than the plots for the computational model.  However, these plots 

presented group data aggregated across six pigeons, with 35 sessions of data for each.  

The computational model’s plots show data for 50 sessions with one virtual organism.  

The left side of Figure 4 shows data for a single pigeon, Bird 91 in Davison and Baum 

(their Figure 1 on p. 5).  On the right is the plot for the computational model.  Note the 

similarity in log response ratio values as well as the similarly more jagged nature of the 

plots. 

Figure 2 also shows changes in preference for two overall reinforcement rates, RI 

25 (filled circles) and RI 60 (unfilled circles).  Numbers of responses at each key were 

counted for each inter-reinforcer interval.  Thus, the data were organized reinforcer by 

reinforcer, with responding measured prior to each reinforcer and after the previous 

reinforcer, and averaged across 50 presentations of each component.  Preference changed 

more rapidly and reached higher values for the richer overall reinforcement rate.  This 

finding was also consistent with Davison and Baum’s (2000) results.  Figure 5 illustrates 
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the influence of overall reinforcement rate more distinctly.  Equation 2 was fitted to log 

response ratios prior to each successive reinforcer versus arranged log reinforcer ratios.  

The plot shows that sensitivity to reinforcement was higher for the higher overall 

reinforcement rate, RI 25.  Values of sensitivity to reinforcement increased quickly from 

close to zero prior to the first reinforcer to relatively high values.  After the fourth 

reinforcer, sensitivity reached 0.78 for RI 25 and 0.60 for RI 60.  The plot on the left is 

Figure 9 (p. 14) from Davison and Baum (2000), included for comparison.  The two 

curves for 12 R/C and 12 R/C Hi show the same pattern as the curves for RI 25 and RI 

60.  Hi indicates the condition with higher reinforcement rate and 12 R/C means 12 

reinforcers per component.   

Figure 6 shows sensitivity to reinforcement as a function of successive reinforcers 

in all conditions of the experiment.  For this plot, as in Davison and Baum (2000), the 

responses were pooled for inter-reinforcer intervals across all components.  Each plot of 

the figure shows log response ratio as a function of log reinforcer ratio for each of the ten 

inter-reinforcer intervals, pooled across all components and sessions.  Between the start 

of a component and the first reinforcer delivery, sensitivity (exponent a) was close to 

zero.  Sensitivity to reinforcement increased rapidly with each reinforcer delivery.  The 

two patterns of preference change described earlier are also apparent in this analysis: a 

faster increase in sensitivity values for the higher overall reinforcement rate, and quick 

progression (after only 4-5 reinforcer deliveries) of sensitivity to reinforcement to values 

comparable to those obtained in steady-state experiments.  Both patterns are consistent 

with Davison and Baum’s findings.  
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Part II  

Part II focused on more local effects of reinforcers by examining response ratios 

in the inter-reinforcer intervals after various sequences of reinforcers.  For this analysis, 

as in Davison and Baum (2000), the sequences of reinforcers were aggregated across 

various component reinforcer ratios.  The frequency of each sequence therefore varied 

depending on the component reinforcer ratios.  For example, for the 1:27 ratio, a 

sequence of reinforcers on the left would be very unlikely.  Responses were also pooled 

across all 50 presentations of each component.  To determine the impact of overall 

reinforcement rate, these analyses were done separately for the two RI schedules.   

Response ratios were calculated for all possible sequences up to the third 

reinforcer. Thus, the response ratio was calculated at the beginning of a component, up to 

the first reinforcer delivery.  For the second inter-reinforcer interval, two response ratios 

were calculated: one following a reinforcer on the left (L) and the other following a 

reinforcer on the right (R).  For the third inter-reinforcer interval, four response ratios 

were calculated, one for each of the four sequences of two reinforcers: LL, LR, RR, and 

RL.  Finally, for the fourth inter-reinforcer interval, there were eight possible sequences 

of three reinforcers for the two alternatives. 

Figure 7 shows the plot of all possible response ratios up to the third reinforcer.  

On the left is a portion of an analogous plot from Davison and Baum (2000, two bottom 

graphs from Figure 15, p. 18).  The right side of the figure shows the plots for the 

computational model, for RI 25 and RI 60.  The plots have the shape of a tree, starting at 

0 on the x axis and branching wider and outward with each reinforcer delivery.  Before 

the first reinforcer, the average response ratio was close to zero, reflecting no preference 
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at the beginning of a session.  Preference, as reflected in the value of the log response 

ratio, shifted with each successive reinforcer toward the alternative that delivered it.  

Solid lines show shifts in preference after reinforcer deliveries on the left; dotted lines 

show shifts in preference after reinforcer deliveries on the right.   

When each successive reinforcer was delivered on the same alternative, that is, a 

confirmation, preference continued to shift toward that alternative.  The effects of such 

successive same-alternative reinforcers decreased, which is reflected in the falling 

curvature of the outermost branches of the plot.  In contrast, the effect of 

disconfirmations was dramatic, resulting in significant shifts in preference toward the 

alternative that delivered the disconfirming reinforcer.   

The effect of the overall reinforcement rate can be seen in the spread of the trees.  

For the higher overall reinforcement rate, RI 25, the spread of the tree plot was greater, 

indicating that preference shifted more with successive reinforcers in that condition. 

Figure 8 highlights the effects of confirmations and disconfirmations showing 

them up to the eighth reinforcer.  The plots show sequences of right only and left only 

reinforcers obtained in succession and the effects of a single disconfirmation at each 

sequential position.  The left side of Figure 8 includes the plots from Davison and 

Baum’s (2000) paper (their Figure 16 on p. 19).  In a sequence of confirmations, the 

effects of successive confirming reinforcers decreased.  Disconfirmations dramatically 

shifted preference toward the reinforced alternative.  Unlike confirmations, the effects of 

disconfirmations did not appear to decrease even when a disconfirmation followed a 

sequence of successive confirmations.  The plots for pigeons and the computational 

model are very similar. Both have tree-like shape, with outer branches reflecting 
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preference shifts after successive confirmations; both also reflect large preference shifts 

after disconfirming reinforcers.  The plots are also quantitatively similar.  Log response 

ratios for both pigeons and the model fell in the same range of values.   

The two plots for RI 25 and RI 60 in Figure 8 also show the effect of overall 

reinforcement rate.  The two plots in the lower half of the figure are wider reflecting 

greater shifts in preference in experiments with richer overall reinforcement rate (12 R/C 

Hi for pigeons and RI 25 for the model).   

Part III 

Following the progression from a molar to a more molecular perspective, Part III 

focused on preference pulses, examining response-level effects of reinforcers.  The right 

side of Figure 9 shows these patterns for the computational model.  Similar plots from 

Davison and Baum (2003; their Figure 8 on p. 107) are included on the left side of Figure 

9, for comparison.  For the computational model, log response ratio was plotted up to the 

fiftieth response following a reinforcer, prior to another reinforcer delivery.  To make the 

plots, data were aggregated across two hundred sessions in order to collect enough 

across-session responses at each ordinal position following a reinforcer.  At one on the x 

axis is the log response ratio at the first response after a reinforcer.  The largest number of 

responses was aggregated across sessions at earlier ordinal positions, i.e. at lower x.  

Moving to the right on the x axis, fewer and fewer responses could be included in the 

calculation.  This is because few inter-reinforcement intervals were that long.  As a result, 

estimates of log response ratio at higher ordinal positions are less precise than 

immediately after a reinforcer.  Very few to no responses occurred on the leaner 

alternative at higher ordinal response positions.  This was also dependent on the 
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reinforcer ratio arranged.  For example, in 27:1 components, there were no responses on 

the lean alternative after 16 ordinal response positions; thus, log response ratio could not 

be calculated from that position on.  Graphically, this resulted in truncated plots of log 

response ratio. 

Comparison of the left and right sides of Figure 9 reveals both similarities and 

differences in responding of the computational model and pigeons.  Consistent with live 

organisms, preference shifted toward the alternative that delivered a reinforcer, resulting 

in a spike in log response ratio toward the reinforcing alternative immediately after the 

reinforcer.  Also consistent with Davison and Baum’s (2003) findings, the plots show that 

preference shifts were greater when reinforcers were delivered on the richer alternative.  

For example, for the 1:27 and 27:1 ratios, immediately after a reinforcer on the leaner 

alternative, responding favored that alternative about 4-fold over the non-reinforced 

richer alternative.  When a reinforcer was delivered on the richer alternative, responding 

favored that alternative 12 to 13-fold over the non-reinforced leaner alternative in these 

components.  The plot for components with 1:1 ratio of reinforcers is nearly symmetrical, 

suggesting that responding favored reinforced alternatives equally in these components. 

A number of differences are quite apparent, however.  Preference eventually and 

gradually moved toward indifference in all components in experiments with pigeons.  For 

the computational model, this appears to happen only for the richer alternatives in 1:27, 

27:1, 1:9, and 9:1 components.  For the computational model, preference appeared to 

remain on the just reinforced alternative in components in which the arranged 

reinforcement rates were more similar, such as in components with 1:1, 1:3, and 3:1 

ratios.  Another difference is that for leaner alternatives, there were fewer occurrences 



 

 

 

24 

when preference was maintained on the just reinforced alternative. This is probably due 

to another reinforcer occurring, likely on the other (richer) alternative, which began 

another inter-reinforcer interval.  

Discussion 

 

Investigations of choice behavior in highly variable environments have shown 

that preference can change very quickly.  This study examined whether the computational 

model of selection by consequences produced preference change patterns observed in live 

organisms using Davison and Baum’s (2000) procedure which arranged rapidly changing 

concurrent schedules.  The first series of experiments examined preference changes 

within components depending on the number of reinforcers delivered.  Davison and 

Baum found that sensitivity values reached about 0.6 after only six to eight reinforcers.  

In the computational model experiments the results were very similar.  Sensitivity 

reached the same range of values rapidly and appeared to stabilize after only four to five 

reinforcers (Figure 5).   

However, comparison with Davison and Baum’s (2000) results, which are 

included on the left side of Figure 5, indicates that there were differences as well.  The 

model appeared to demonstrate higher sensitivity to reinforcement, as reflected in higher 

values of exponent a after fewer reinforcers.  Sensitivity to reinforcement can be 

manipulated by experimental parameters, such as characteristics of the experimental 

apparatus and the magnitude of the reinforcer.  In the computational model experiments, 

this can also be a consequence of experimental settings, such as the mean of the parental 

fitness function and mutation rate.  Some of these setting may be analogous to parameters 

of real-life experiments.  For example, McDowell (2004) showed that the mean of the 
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parental fitness function can represent the magnitude of reinforcement.  In the 

experiments that produced data for Figure 5, the mean of the parental fitness function was 

set to 25.  A higher mean produces a less strict selection rule, and has an effect similar to 

a lower magnitude of reinforcement.  This, in turn, would likely produce lower values of 

exponent a and a slower rate of adaptation.   

Another parameter that may influence sensitivity to reinforcement is mutation 

rate.  A higher mutation rate introduces a greater amount of noise or randomness in the 

populations of potential behaviors, which leads to lower sensitivity to reinforcement 

(McDowell, 2004; McDowell et al., 2008).  A more thorough investigation of how 

parameters of the model influence adaptation in the rapid switching procedure is an 

interesting topic for future study. 

Figure 5 suggested another difference between the responding of pigeons and the 

computational model.  The model’s sensitivity to reinforcement reached high values and 

began to asymptote after about four reinforcers, which is when the exponent, a, began 

approaching 0.8.  Moving toward an asymptote was not apparent in Davison and Baum’s 

(2000) plots, reproduced on the left side of Figure 5.  In their experiments, the values of 

sensitivity to reinforcement began to approach 0.8 only around tenth reinforcer.  In all 

likelihood, an asymptotic trend would have become apparent after more reinforcer 

deliveries for Davison and Baum's pigeons. 

The impact of overall reinforcement rate was found to be consistent with Davison 

and Baum’s (2000) findings.  Sensitivity to reinforcement reached higher values for the 

richer overall reinforcement rate.  This pattern can be seen in Figure 5.  The plot shows 
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that values of sensitivity to reinforcement increased quicker when overall reinforcement 

schedule was RI 25, compared to RI 60. 

The extent of preference change was also affected by the extent of the difference 

in reinforcement between alternatives.  Consistent with Davison and Baum’s (2000) 

results, preference changed more rapidly and sensitivity reached higher values when the 

difference in reinforcement rate between the alternatives was greater.  It is interesting that 

this feature was an emergent property of selection by consequences, that is, the feature 

was not explicitly implemented.  In experiments with live organisms, especially humans, 

this would more likely be given a cognitive (as opposed to a behaviorist) attribution.  For 

example, the discrepancy in ratio of reinforcers implicitly signals change in component 

schedules, which is more detectable when the discrepancy is greater.   

To summarize, the experiments in Part I showed directional and quantitative 

effects of reinforcers on behavior. The directional effects of each reinforcer could be 

predicted based on the alternative at which it was delivered.  Quantitatively, sensitivity to 

reinforcement (a in Equation 2) increased progressively and quickly from close to zero 

prior to the first reinforcer to the range of values comparable to those obtained in steady-

state experiments.  Sensitivity to reinforcement increased faster at richer overall 

reinforcement rates.  These effects were consistent with reported findings from 

experiments with pigeons (Davison & Baum, 2000). 

Part II shifted focus toward more local effects, specifically the effects of 

individual reinforcers as a function of their position in a sequence of reinforcers.  The 

computational model produced tree-like plots (Figures 7 and 8) similar to the plots in 

Davison and Baum’s (2000) paper.  Successive confirmations at an alternative continued 
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to shift preference toward that alternative.  The effect of confirming reinforcers appeared 

to decline with each reinforcer.  Disconfirmations, on the other hand, produced dramatic 

shifts in preference.  Effects of disconfirming reinforcers did not appear to decline even 

when the disconfirming reinforcer followed a series of confirmations.   

Also consistent with Davison and Baum’s (2000) findings were the effects of 

overall reinforcement rate.  Higher overall reinforcement rate produced wider tree plots, 

indicating stronger preference shifts on the richer schedules. 

There were also a few differences in the features of the plots for the 

computational model when compared to plots for Davison & Baum's (2000) pigeons.  For 

the pigeons, if disconfirmation occurred after about the fourth reinforcer, it moved 

preference to approximate indifference (plots on the left of Figure 8).  For the 

computational model, disconfirmations continued to shift preference past indifference 

and strongly toward the alternative that delivered the reinforcer, as reflected in the 

reversal of the sign of the logarithm of the response ratio (plots on the right side of Figure 

8).  This was more apparent for the leaner overall reinforcement schedule where 

disconfirmations shifted preference to the level consistent with a series of confirming 

reinforcers at that alternative, as reflected in disconfirmation preference shifts that nearly 

reached the outermost branches of the tree plots.  The plots of the model also appear less 

“orderly” and symmetric compared to the results from pigeons.  These features may be 

due to the model’s parameter settings in these experiments, such as mutation rate and 

percent of possible behaviors replaced in the population at each time step.  These features 

may also be a result of experimental parameters, such as the number of reinforcers 

delivered in each component and the set of reinforcer ratios used in the experiments.  
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Nonetheless, there is potential for at least several future studies to explore how 

parameters of the model and environment influence characteristics of adaptive behavior.  

In summary, in the experiments with the computational model, reinforcer effects 

varied depending on reinforcer position in a series of reinforcers and whether a reinforcer 

was a confirmation or a disconfirmation.  If several successive reinforcers were obtained 

from the same alternative, each reinforcer had diminishing effects on behavior in all 

experiments.  In contrast, disconfirming reinforcers in such sequences of same-alternative 

reinforcers had a comparatively large impact on preference.  These preference change 

patterns were consistent with the findings from experiments with pigeons (Davison & 

Baum, 2000). 

Examination of preference pulse patterns for the computational model in Part III 

revealed both similarities and differences when compared to the behavior of live 

organisms.  In the computational model experiments, immediately after reinforcer 

delivery, log response ratio spiked toward the reinforcing alternative.  Preference shifts 

after reinforcers were stronger for alternatives with higher reinforcement rates, and 

weaker for alternatives with lower reinforcement rates.  Both patterns were consistent 

with Davison and Baum’s (2003) findings.   

Preference for the just reinforced alternative was expected to decline with time 

between reinforcers, as was shown in Davison and Baum’s (2003) plots.  Their plots, 

included on the left side of Figure 9, suggest that this happened for all components and 

reinforced alternatives.  For the computational model, this decline in preference was 

apparent only for rich schedule alternatives, i.e. after reinforcers on the left side for 27:1 

and 9:1, and on the right side for 1:27 and 1:9 components.  Preference appeared to 
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change little (or even increased toward the just reinforced alternative) with successive 

responses.   Some of the plots for the computational model also were truncated.  This 

happened when no responses occurred on the non-reinforced alternative and/or on the 

leaner reinforced alternative, even across two hundred sessions, for ordinal response 

positions after a certain number of responses. One reason for this may be a very long 

COD that made switching alternatives too prohibitive.  A future study can examine how 

Hamming distance at the boundary between target classes, which may be the 

computational model’s equivalent of a COD (Popa & McDowell, 2010), influences 

characteristics of preference pulses.  A possible solution may be aggregation of responses 

at each ordinal position across many more sessions, until log response ratios can be 

calculated at each response position. 

In conclusion, this study provided an initial look at whether preference change 

patterns observed in experiments with pigeons emerge as a property of selectionist 

principles in evolutionary dynamics.  The study fully reproduced experiments in Davison 

and Baum’s (2000) study and examined one of the preference pulse patterns, similar to 

the analysis in Davison and Baum’s (2003) paper.  A number of intriguing questions 

remain for future research.  Some of the topics for future investigation are how 

parameters of the model, such as the mean of the parental fitness function, mutation rate, 

target class boundaries (which would affect the COD analog), influence the impact of 

individual reinforcers. 

Davison and Baum (2000) noted that, given the regularities evident at a molar 

level of analysis, it has been assumed, often implicitly, that behavior is controlled by 

relatively large aggregations of reinforcers. They proposed using the switching procedure 
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to study behavior change in rapidly changing environments in order to investigate the 

effects of individual reinforcers, subtitling their paper “Every reinforcer counts.”  Their 

findings showed that the effects of individual reinforcers differed in a number of ways 

depending on the context in which they were obtained.  This context included factors that 

had effects on both the molar and the local level, such as the alternative from which the 

previous reinforcer was obtained and the number and sequence of successive reinforcers 

obtained from that alternative.  The studies by Davison, Baum and their colleagues 

showed that each reinforcer had reliable directional and quantitative effects on behavior.  

 The sample of experiments in this study demonstrated analogous forces shaping 

behavior generated by the computational model.  The results also showed that variables 

controlling choice operated at both molar and local levels. Successive continuing 

reinforcers had cumulative effects on choice. Various sequences of continuations and 

discontinuations had effects both at and within inter-reinforcer intervals.  Individual 

reinforcers directly shaped subsequent behavior.  Importantly, the model did not 

implement any of these behavior patterns explicitly.  Instead, these features of adaptive 

behavior were emergent properties of selection by consequences.  The low-level selection 

rules produced both the local effects of individual reinforcers, the molar effects of 

aggregations of reinforcers that were reported in previous studies (McDowell, 2004; 

McDowell, Caron, Kulubekova & Berg, 2008), as well as the patterns at various 

intermediate molar/local levels of analyses.  These results provide strong evidence in 

support of the selectionist account of adaptive behavior.   
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Table 1 

Parameters of McDowell’s Computational Model of Selection by Consequences
1
 

 

Feature Variants Standard  

 

Number of generations to be run Infinite 20,000 

 

Number of generations discarded Limited by generations run 500 

     for shaping purposes 

 

Size of behavioral set Infinite 1,024 

 

Size of behavioral repertoire Limited by set size 100 

 

Repertoire topography Circular, flat Circular 

 

Percentage of repertoire to replace 0-100% 100% 

 

Number of behavioral classes Limited by repertoire size 4 

 

Number of target classes Limited by number of classes 0 (no reinforcement) 

  1 (single-alternative) 

  2 (concurrent schedule) 

 

Selection schedule Constant probability, random Random interval 

 ratio, random interval  

  

 

Number of schedules Infinite 11 

 

Probability, mean ratios, 0-100, or infinite 1, 2, 3, 5, 10, 18, 25, 

     or mean intervals  68, 112, 200 time ticks 

 

Base probabilities Must total to 1.00 0.46, 0.04, 0.04, 0.46 

 

Fitness method Midpoint, individual, class Midpoint 

 specific individual 

 

                                                 
1
 The table was created by Marcia L. Caron, who gave the author permission to include it in this 

paper. 
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Parental fitness function (PFF) Linear, uniform, reciprocal, Linear 

 exponential 

 

Mean of the PFF Limited by set size 10, 20, 40, 100, 200 

 

Reproduction method Bitwise, slicewise, average, Bitwise 

 Gaussian (must specify SD) 

 

Mutation method Gaussian (must specify SD), Bitflip by individual 

 bitflip by individual, bitflip by 

 bit, random individual 

 

Mutation boundary Wrap, discard Wrap 

 

Mutation rate 0-100% 1, 3, 5, 10, 20, 50 

 

Changeover delay Infinite 0 

 

Selection method Continuous, crop (must specify Continuous 

 percentage), tournament (must 

 specify number of competitors) 

 

Selection properties Echo, persistence without None 

  mutation, persistence with 

  mutation 

 

Echo or persistence duration Infinite 0 ticks 

 

Echo or persistence function form Linear, exponential, parabolic None 

  rectangular, sigmoid (must 

  specify a parameter) 
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Figure 1.  The heavy diagonal in all three panels represents perfect matching.  The three graphs 

on the left show effects of the bias parameter in three coordinate systems.  The three graphs on 

the right show effects of the sensitivity parameter (undermatching or overmatching) in three 

coordinate systems.  Indifferent responding is represented by the dashed horizontal line.  [Figure 

reprinted with permission of author (McDowell, 1989, pp. 157, 162).] 
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Figure 2.  Log response ratio as a function of successive reinforcers.  In components with 

unequal reinforcer ratios, the change in response ratios was greater when there was a greater 

contrast in reinforcement between the alternatives.   

 



 

 

 

Figure 3.  Log response ratio as a function of successive reinforcers.  In components with unequal reinforcer ratios, the change in 

response ratios was greater when there was a greater contrast in reinforcement between the alternatives.  The plots on the left are from 

Davison and Baum (2000; Figure 7, p. 11). 
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Figure 4.  Log response ratio as a function of successive reinforcers.  In components with unequal reinforcer ratios, the change in 

response ratios was greater when there was a greater contrast in reinforcement between the alternatives.  On the left side are plots for a 

single pigeon, Bird 91 from Davison and Baum (2000, Figure 1, p. 5).  



 

 

 

Figure 5. Sensitivity to reinforcement (a in Equation 2) as a function of successive reinforcers.  

Sensitivity values increased faster and reached higher values for richer overall reinforcement 

rate.  The plot on the left is Figure 9 (p. 14) from Davison and Baum (2000), and is included for 

comparison.  The plot on the right is for the computational model. 
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Figure 6.  Fits of Equation 2 for log response ratios prior to each successive reinforcer versus 

arranged log reinforcer ratios.  Values of sensitivity to reinforcement increased progressively 

from close to zero prior to the first reinforcer to 0.82 (RI 25 – filled circles) and 0.55 (RI 60 – 

unfilled circles) prior to tenth reinforcer.  Sensitivity to reinforcement was higher for the higher 

overall reinforcement rate. 



 

 

Figure 7. Log response ratios following each reinforcer delivery averaged across all components.  

RI 25 and RI 60 are the two RI schedules.  The plots show all possible sequences up to the third 

reinforcer delivery.  Solid lines show left reinforcer deliveries and dotted lines show right 

reinforcer deliveries.  The plot on the left is Figure 15 (p. 18) from Davison and Baum (2000). 
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Figure 8. Log response ratios following selected sequences of left-right reinforcer deliveries for 

conditions with overall reinforcement rates of RI 25 and RI 60.  Solid lines show confirmations, 

in which a reinforcer is delivered for a response on the same alternative as for the previous 

reinforcer delivery. Dotted lines show disconfirmations, which are reinforcer deliveries for a 

response on an alternative different from the one previously reinforced.  On the left are two of 

the plots from Davison and Baum’s (2000) paper (Figure 16 on p. 19).   



 

      

Figure 9. Preference pulses for the seven reinforcer ratios.  Following reinforcement, preference was always for the alternative that 

delivered it.  On the left are the plots from Davison and Baum (2003) paper (Figure 8 on p. 107).



 

Appendix A 

Components of the Computational Model 

Virtual Organism.  The organism has a population of 100 possible behaviors.  Each of the 

100 behaviors is defined by an integer from 0 through 1023, thus there are 1024 behaviors that 

can appear in the repertoire, yet only 100 are present at any one moment.  The 1024 possible 

behaviors are divided into four behavioral classes.  The size of the repertoire, the range of 

behaviors, and the number of classes are arbitrary.  All possible parameters of the model that can 

vary and are preset in a particular experimental configuration are listed in Table 1.  From now 

on, a particular configuration commonly used in McDowell’s lab is described.    

 To permit reproduction and mutation processes, individual behaviors in the organism’s 

repertoire were also described by genotypes.  The integer value of each behavior can be 

considered a phenotypic expression, which in turn can be written in binary form as a ten-digit 

string of 0s and 1s.  This binary representation is denoted as that behavior’s genotype.  Ten-digit 

binary numbers range from 0000000000 to 1111111111, corresponding to the base-10 integers 0 

to 1023.  As noted by McDowell (2004), “one can view a behavior’s genotype as consisting of a 

single digital chromosome that is made up of 10 genes (the ten characters in the string of 0s and 

1s), each of which has two alleles (0 and 1)” (p. 300). 

The possible range of integers was set to be circular, which means that it wrapped back 

upon itself from 1023 to 0.  For this circular segment of integers, the distance between two 

integer phenotypes, x and y, is | x – y | when going one way around the circle, and 1024 – | x – y | 

when going in the other direction.  The difference between two integer phenotypes is defined as 

the smaller of these two distances.  For example, the distance between 0 and 1023 is 1023 in the 
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ascending direction, and is 1 in the descending direction.  Thus, the difference between 0 and 1 is 

the same as the difference between 0 and 1023. 

The behaviors in a population were sorted into one of four classes based on their 

phenotypes.  Two target classes were defined by the 41 integers from 471 through 511, and the 

41 integers from 512 through 552.  The two target classes represented behaviors that produce 

reinforcement on the two alternatives of a concurrent schedule.  Two extraneous classes of 

behavior were defined by the remaining 942 integers.  At each time tick, the digital organism’s 

population of 100 behaviors is repopulated in the process driven by the baseline probabilities of 

emissions for each of the four classes and the selection rules.  Thus, each population of potential 

behaviors exists for one time tick, or generation, during which a behavior from one of the 4 

classes is emitted.  The probability of emission from each class is equal to the relative frequency 

of the behaviors in that class.  For example, if a population consisted of 5 behaviors in the first 

target class, 10 in the second target class, and 85 in the extraneous class, then the probabilities of 

emission from the three classes are 0.05, 0.10, and 0.85.  The fixed class structure of the 

population determines operant levels, or baseline probabilities of responding, for the classes.  For 

experiments in this study, the probabilities were 0.04 (= 41/1024) for each of the target classes, 

and 0.46 (= 471/1024) for each of the extraneous class. 

Fitness method.  The concept of fitness is used for the definition of selection rules.  A 

behavior that is selected by reinforcement is identified as “fit” with respect to environmental 

conditions.  The other behaviors in the repertoire are considered more or less fit depending on 

how similar they are to the selected behavior.  For example, if a target class contains 41 

behaviors from 0 through 40, when an instance of that class is selected, a fitness criterion can be 

defined as the middle value of the class, which in this example is 20.  The fitness of each 



 

 

 

48 

behavior can be calculated as the absolute value of the difference between this criterion value 

and the integer that defines the behavior.  Thus, smaller differences correspond to fitter 

individuals.  

Parent Selection.  According to the evolutionary principle, fitter behaviors should be 

more likely to be chosen for reproduction than less fit behaviors.  A parental fitness function 

defines the relation between a behavior’s fitness and its probability of being chosen as parent.  

The types of fitness functions that have been implemented in the model are listed in Table 1.   

Reproduction.  At each time tick, the repertoire is repopulated with a new set of child 

behaviors produced as the result of “mating” parent behaviors.  The reproduction methods 

implemented in the model are listed in Table 1.  For example, in slicewise reproduction the child 

genotype is created by combining a part of the mother’s genotype and a part of the father’s 

genotype.   

Mutation Method.  A subset of behaviors from the new population undergoes mutation, 

that is, their integer values change.  Both rate and type of mutation can be varied.  Various 

mutation methods that have been implemented in the model are shown in Table 1.  For example, 

in Gaussian mutation, the original integer value of a “mutant” is designated as the mean of a 

Gaussian distribution of integer values with a specific standard deviation.  The mutated value is 

then randomly selected from this distribution.   
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Appendix B 

 

Computational Algorithm
2
 

 

The following describes the genetic algorithm of the model using only the parameter 

settings that will be used in the proposed study.  All other available parameter options and values 

are listed in Table 1, and in McDowell (2004).   

If a behavior was emitted from one of the target classes and it was reinforced, then a 

midpoint fitness method (McDowell, 2004) was used to assign fitness values to each behavior in 

the population of potential behaviors.  According to the midpoint fitness method, the fitness of a 

behavior is the difference between the behavior’s phenotype and the phenotype at the midpoint
 
of 

the target class.  For example, if the just-reinforced behavior was emitted from the first target 

class, then the midpoint used to assign fitness values was 491.  A behavior in the population with 

a phenotype of 400 would therefore have a fitness value of | 400 – 491 | = 91, and a behavior 

with a phenotype of 512 would have a fitness value of | 512 – 491 | = 21.  Because the latter 

behavior is less different than the criterion midpoint, it is the fitter behavior.  Thus, smaller 

fitness values represent fitter behaviors.   

 Once fitness values were assigned to the behaviors in the population, a linear parental 

selection function was used to select parents for mating on the basis of their fitness.  This 

function expresses the probability density, p(x), associated with a behavior of fitness, x, 

becoming a parent as 

3

2

9

2
)(

2
xxp ,                                                        (1) 

                                                 
2
 This description of the computational model’s algorithm is reproduced from McDowell (2008) , with the author’s 

permission. 
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for 0  x  3 where  is the mean of the density function.  Notice that probability density 

decreases as fitness decreases (i.e., as the fitness value, x, increases) until it reaches a value of 

3 .  Behaviors with fitness values of 3 and greater have no chance of becoming parents.  This 

same parental selection function was used in previous research (McDowell, 2004; McDowell & 

Caron, 2007; McDowell, Soto, Dallery & Kulubekova, 2006) and is the simplest linear density 

function that depends only on its mean.  A father behavior was chosen from the population by 

drawing a fitness value at random from the distribution specified by Equation 1, and then 

searching the population for a behavior with that fitness.  If none was found, then another fitness 

value was drawn from the distribution, and so on, until a father behavior was obtained.  A mother 

behavior was chosen in the same way, but with the requirement that it be distinct from the father 

behavior.  One hundred pairs of parents were obtained in this way.  All parents were selected 

with replacement, which means that a behavior could be a parent more than once, and could have 

multiple partners.  A detailed discussion of parental selection functions, including methods of 

drawing random values from them, can be found in McDowell (2004). 

 The process of assigning fitness values and selecting parents using Equation 1 occurred 

only if the emitted behavior was reinforced.  If the emitted behavior came from one of the target 

classes but was not reinforced, or if it came from the extraneous class, then 100 pairs of parents 

were randomly selected with replacement from the population, with the requirement that the 

father and mother behaviors in a pair be distinct.  Again, a given behavior could be a parent more 

than once and could have multiple partners. 

 A child behavior was created from each pair of parents by building a new 10-character bit 

string based on the parents’ genotypes.  Each bit in the child’s string had a 0.5 probability of 

being identical to the bit in the same location of the father’s bit string, and a 0.5 probability of 
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being identical to the bit in the same location of the mother’s bit string.  This method of 

reproduction was used in previous research (McDowell, 2004; McDowell & Caron, 2007), where 

it was referred to as bitwise reproduction.  It generates children that resemble their parents to 

varying degrees, where resemblance refers to the difference, as defined earlier, between the 

phenotypes of parents and offspring.  The 100 child behaviors created in this way constituted the 

new population of potential behaviors. 

 A small amount of mutation was added to the new population by flipping one randomly 

selected bit in a percentage of behaviors chosen at random from the population.  This method of 

mutation was referred to as bitflip mutation in previous research (McDowell, 2004; McDowell & 

Caron, 2007).  The mutation rate specifies the probability that a behavior will mutate.  For 

example, if the mutation rate is 1%, then each behavior in a population has a 0.01 probability of 

mutating.  If a behavior does mutate, a location in the ten-character bit string is chosen at random 

and the bit at that location is changed from 0 to 1 or from 1 to 0.  Using this method, a population 

of potential behaviors may have any number of mutants from 0 to 100, but across generations the 

mutation rate converges on the specified percentage. 

 Following mutation, the behaviors were sorted into classes and a behavior from one of 

the classes was emitted based on the relative frequencies of the behaviors in each class and then 

the process of selection, reproduction and mutation was repeated for the duration of the 

experiment.  Each population constituted a generation, and lasted one time tick. 

 The target classes of behavior were defined so as to have maximum Hamming distances 

(Russell & Norvig, 2003) at their boundaries, which produced an effect similar to changeover 

delay (COD).  The Hamming distance between two bit strings of equal length is the number of 

bits that must be changed to convert one string into the other.  The Hamming distance between 
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the upper boundary of the first target class (511 = “0111111111”) and the lower boundary of the 

second target class (512 = “1000000000”) was ten, which is the maximum Hamming distance for 

a ten-character string.  The Hamming distance between the upper boundary of the second target 

class (552 = “1000101000”) and the lower boundary of the first target class (471 = 

“0111010111”) was also ten.  This means that it was relatively difficult for recombination or 

mutation to cause a potential behavior to switch from one target class to the other.  The result 

was responding that tended to be concentrated in bouts in a target class.  Target classes with 

small Hamming distances at their boundaries tend to produce frequent switching between 

classes, just as often occurs in the absence of a COD in experiments with live organisms.   

 


