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Abstract 

Gestational Diabetes validation data study: an example of testing differences in sensitivity 

and specificity of two diagnostic methods using non-random sampling in a paired study 

design  

By Ganzhong Tian 

Background: Comparing the accuracy of two diagnostic methods is a common problem in public 

health. This is especially the case when using a third ‘gold standard’ to determine patients’ true 

disease status is either too expensive or time-consuming. For this kind of problem, it is highly 

desirable to have an efficient way of sampling and comparing the diagnostic properties of the two 

diagnostic methods. 

Methods: In this study, we used a CDC study of Gestational Diabetes data as an example and 

considered an efficient design for validation sampling, which gives us more useful information 

regarding the diagnostic properties of two diagnostic methods for Gestational Diabetes. Also, to 

match with this sampling design, we proposed a new Wald test based on a 12-level multinomial 

distribution to compare the difference of the two diagnostic methods, in terms of some commonly 

evaluated diagnostic properties (e.g., sensitivity and specificity).  

Computer simulation based on SAS/STAT and SAS/IML was used to implement the sampling 

process and assess the results of the hypothesis test, under different sampling designs and disease 

prevalence. We compared the results of the multinomial-based test against a more conventional 

McNemar’s test, assumptions for which might be partially violated under our study setting and 

proposed sampling design. 

Results: The results show that validation sampling only from the discordant pairs (those with 

disagreeing diagnostic results from the two diagnostic methods) will greatly boost the statistical 

power of testing the difference in sensitivity and specificity of the two diagnostic methods. Also, 

the Wald test we proposed performs well under different parameter settings and different 

sampling designs. In addition, our new test is superior to conventional McNemar’s test in terms 

of statistical power and type-I error under the null hypothesis.  
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Introduction 

Diabetes that is newly diagnosed during pregnancy is called Gestational Diabetes or 

Gestational Diabetes Mellitus (GDM). This is a condition that often occurs around 24th week of 

pregnancy [1]. It can be further medically defined as any degree of glucose intolerance with onset 

or first recognition during pregnancy [2]. Also, the definition applies to those who underwent 

insulin or diet modification treatment for hyperglycemia during pregnancy, and it depends on 

whether the condition remains after pregnancy [3].  Like type-II diabetes, recent studies suggest 

that GDM happens when insulin resistance (IR) occurs during the pregnancy. This therefore leads 

to hyperglycemia since insulin’s biological effect is to help the transfer of glucose from plasma 

into body cells, and insulin resistance prevents glucose from transferring into body cells [4-6]. 

Though GDM itself may be symptomless, pregnant women with the condition have increased risk 

of a series of pregnancy and delivery complications including pre-eclampsia, depression, 

hypertension and fetal macrosomia requiring a caesarean delivery. Newborns to mothers with 

poorly controlled gestational diabetes are at increased risk of being overweight and developing 

impaired glucose tolerance which may lead to type-II diabetes in the long term [1-7].  

In the United States, the real prevalence of GDM has been poorly known until recently. 

Some articles suggest that the prevalence of GDM in the United States ranges from 1% to 14% of 

all pregnancies annually [8-9], while other studies on different sources of data estimated the real 

prevalence of GDM ranges from 1% to 25% [10-12]. Another authoritative study published by 

researchers from CDC in 2014 estimated the prevalence of GDM in United States to be 9.2% 

annually from 2007 to 2010 [13]. These publications showed the estimated prevalence of GDM 

depends on the source of data, and the diagnostic methods used for screening. Therefore, a 

method to assess and compare the accuracy of the data sources or diagnostic methods is desirable. 

In this study, the motivating example is to compare the diagnostic accuracy of Hospital Discharge 

data (HD) and Birth Certificate data (BC) as assessments of GDM status. Hospital discharge data 

are derived from a database system maintained and collected by the states. The states collect 
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discharge records of all hospitalizations, which account for a very large fraction of births in the 

United States. The data collected include ICD-9 (or equivalent) codes, which give a standardized 

number for each condition or diagnosis. Hospitals usually compile these data for insurance and 

billing purposes, while the state gathers them as a surveillance system since they are useful to 

ascertain the health of the population [14]. 

In the United States, state laws require birth certificates to be completed for all births, and 

Federal law mandates national collection and publication of births and other vital statistics data. 

And each state has a registrar of vital records who oversees the upkeep of all vital records [15-16]. 

Based on these two sources of information, we can thus put patients into four separate ‘cells’ by 

looking at the diagnostic results of HD and BC. The four possible outcomes are: 

𝐵𝐶+⋂𝐻𝐷+(diagnosed positive both by HD and BC), 𝐵𝐶−⋂𝐻𝐷+(diagnosed positive by HD but 

negative by BC), 𝐵𝐶+⋂𝐻𝐷− (diagnosed negative by HD but positive by BC), 

𝐵𝐶−⋂𝐻𝐷−(diagnosed negative both by HD and BC).  

To investigate the accuracy of HD and BC, it is not enough to only know the diagnostic 

outcomes of the two data sources; we still need to know the true GDM status for at least some 

fraction of the patients. One often used ‘gold standard’ to determine whether a patient is truly 

GDM positive is called Medical Record Abstraction (MRA) [17-18]. Experienced medical 

abstractors are paid to go to the hospitals and look at a certain sample of the full hospital record 

of the women who were sampled into the study, to decide if the woman is truly GDM positive.  

Since we tell the abstractors which records to look at, we can specify which ‘cells’ we sample 

from. The ‘gold standard’ is very expensive and time-consuming to perform; thus, it is important 

to try to make the data obtained as informative as possible. One possible way to do this would be 

to control the sample size for patients from the four different ‘cells’, defined by BC and HD 

results, so that we can evaluate the accuracy of the two data sources using a relatively small 

sample size, or detect a smaller difference in accuracy. In particular, the cell 𝐵𝐶−⋂𝐻𝐷− is 
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usually the largest cell but has the lowest prevalence of GDM.  A random sample of pregnancies 

would include a large fraction of women from this potentially uninformative group. 

The primary objective of this study is to assess the performance of an efficient sampling 

allocations (conditional on BC and HD status) and to assess the performance of a statistical test 

for comparing accuracy (sensitivity and specificity) of two diagnostic tests, when we have 

complete results of these tests, and can select which study subjects receive the ‘gold standard’ test. 

We are most interested in the situation in which the ‘gold standard’ is either too expensive or 

time-consuming to be performed on all subjects. 
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Methods 

1. Data generation method 

For proprietary reasons, the actual Birth Certificate (BC) as well as Hospital Discharge 

(HD) data from the motivating CDC-sponsored study are not currently available for our use. Thus, 

the comparison of the diagnostic properties of BC and HD as methods of assessing gestational 

diabetes will be discussed under different simulation scenarios using different hypothetical 

parameter settings. 

Intuitively, regardless of the simulation approach and whether the data is real or simulated, 

we distinguish an overall sample size (𝑁) from a validation sample size (n). All patients who are 

part of the study are contained in the overall sample and have BC and HD based assessments of 

GDM status. The overall sample BC and HD data can be displayed as a 2×2 contingency table as 

is shown in Table 1. Moreover, if we knew the true GDM status for all the study participants, we 

could then stratify the overall sample based on whether the patients are truly GDM positive. Then 

the 2×2 contingency table for the overall sample could be split into two separate 2×2 contingency 

tables, as are shown in Table 2. This would make it simple to estimate and compare the 

diagnostic properties (e.g., the sensitivities and specificities of the BC and HD assessments). 

Considering a more realistic situation, because of limited resources, we simply cannot 

validate every patient in the overall sample. In this case, given a validation sample size 𝑛, where 

𝑛 ≤ 𝑁, we are selecting 𝑛 patients out of the overall sample of 𝑁 as our sample for further 

statistical analysis. Then, again, it is very intuitive that the relationship of the overall sample and 

our sample can be displayed as in Table 3. Those sampled can be further stratified into two 

separate 2×2 contingency tables, as are shown in Table 4.  

From Table 4, we can conclude any patient in the overall sample would eventually belong 

to one of the following twelve categories: (In A cell, but not sampled), (In A cell, sampled, with 

GDM+), (In A cell, sampled, with GDM-), (In B cell, but not sampled), (In B cell, sampled, with 
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GDM+), (In B cell, sampled, with GDM-), (In C cell, but not sampled), (In C cell, sampled, with 

GDM+), (In C cell, sampled, with GDM-), (In D cell, but not sampled), (In D cell, sampled, with 

GDM+), (In A cell, sampled, with GDM-). Therefore, as is shown in Table 4, each patient must 

belong to one of the twelve categories which can be listed as:  𝑎1, 𝑎0, 𝑎𝑢, 𝑏1, 𝑏0, 𝑏𝑢, 𝑐1, 𝑐0, 𝑐𝑢, 

𝑑1, 𝑑0, 𝑑𝑢. Also, when we determine whether a patient should be sampled, we do not know her 

GDM status yet, so the event of sampling is independent of her GDM status. Hence, we have: 

𝑃(𝑖𝑛 𝑎1) = 𝑃(𝐵𝐶+⋂𝐻𝐷+⋂𝐺𝐷𝑀+⋂𝑠𝑎𝑚𝑝𝑙𝑒𝑑)  

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷+)𝑃(𝐵𝐶+⋂𝐻𝐷+|𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷+)𝑃(𝐵𝐶+|𝐻𝐷+⋂𝐺𝐷𝑀+)𝑃(𝐻𝐷+|𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)      (1) 

 

𝑃(𝑖𝑛 𝑎0) = 𝑃(𝐵𝐶+⋂𝐻𝐷+⋂𝐺𝐷𝑀−⋂𝑠𝑎𝑚𝑝𝑙𝑒𝑑)

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷+)𝑃(𝐵𝐶+⋂𝐻𝐷+|𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷+)𝑃(𝐵𝐶+|𝐻𝐷+⋂𝐺𝐷𝑀−)𝑃(𝐻𝐷+|𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)      (2) 

 

𝑃(𝑖𝑛 𝑎𝑢) = 𝑃(𝐵𝐶+⋂𝐻𝐷+⋂𝑛𝑜𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑑)

= [1 − 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷+)]{𝑃(𝐵𝐶+⋂𝐻𝐷+⋂𝐺𝐷𝑀−) + 𝑃(𝐵𝐶+⋂𝐻𝐷+⋂𝐺𝐷𝑀+)}

= [1 − 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷+)]{𝑃(𝐵𝐶+|𝐻𝐷+⋂𝐺𝐷𝑀+)𝑃(𝐻𝐷+|𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)

+ 𝑃(𝐵𝐶+|𝐻𝐷+⋂𝐺𝐷𝑀−)𝑃(𝐻𝐷+|𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)}                                                    (3) 

          

𝑃(𝑖𝑛 𝑏1) = 𝑃(𝐵𝐶+⋂𝐻𝐷−⋂𝐺𝐷𝑀+⋂𝑠𝑎𝑚𝑝𝑙𝑒𝑑)  

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷−)𝑃(𝐵𝐶+⋂𝐻𝐷−|𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷−)𝑃(𝐵𝐶+|𝐻𝐷−⋂𝐺𝐷𝑀+)𝑃(𝐻𝐷−|𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)       (4) 

 



P a g e  | 6 

 

𝑃(𝑖𝑛 𝑏0) = 𝑃(𝐵𝐶+⋂𝐻𝐷−⋂𝐺𝐷𝑀−⋂𝑠𝑎𝑚𝑝𝑙𝑒𝑑)

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷−)𝑃(𝐵𝐶+⋂𝐻𝐷−|𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷−)𝑃(𝐵𝐶+|𝐻𝐷−⋂𝐺𝐷𝑀−)𝑃(𝐻𝐷−|𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)       (5) 

 

𝑃(𝑖𝑛 𝑏𝑢) = 𝑃(𝐵𝐶+⋂𝐻𝐷−⋂𝑛𝑜𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑑)

= [1 − 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷−)]{𝑃(𝐵𝐶+⋂𝐻𝐷−⋂𝐺𝐷𝑀−) + 𝑃(𝐵𝐶+⋂𝐻𝐷−⋂𝐺𝐷𝑀+)}

= [1 − 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷−)]{𝑃(𝐵𝐶+|𝐻𝐷−⋂𝐺𝐷𝑀+)𝑃(𝐻𝐷−|𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)

+ 𝑃(𝐵𝐶+|𝐻𝐷−⋂𝐺𝐷𝑀−)𝑃(𝐻𝐷−|𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)}                                                    (6) 

 

𝑃(𝑖𝑛 𝑐1) = 𝑃(𝐵𝐶−⋂𝐻𝐷+⋂𝐺𝐷𝑀+⋂𝑠𝑎𝑚𝑝𝑙𝑒𝑑)  

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷+)𝑃(𝐵𝐶−⋂𝐻𝐷+|𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷+)𝑃(𝐵𝐶−|𝐻𝐷+⋂𝐺𝐷𝑀+)𝑃(𝐻𝐷+|𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)      (7) 

 

𝑃(𝑖𝑛 𝑐0) = 𝑃(𝐵𝐶−⋂𝐻𝐷+⋂𝐺𝐷𝑀−⋂𝑠𝑎𝑚𝑝𝑙𝑒𝑑)

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷+)𝑃(𝐵𝐶−⋂𝐻𝐷+|𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷+)𝑃(𝐵𝐶−|𝐻𝐷+⋂𝐺𝐷𝑀−)𝑃(𝐻𝐷+|𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)      (8) 

 

𝑃(𝑖𝑛 𝑐𝑢) = 𝑃(𝐵𝐶−⋂𝐻𝐷+⋂𝑛𝑜𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑑)

= [1 − 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷+)]{𝑃(𝐵𝐶−⋂𝐻𝐷+⋂𝐺𝐷𝑀−) + 𝑃(𝐵𝐶−⋂𝐻𝐷+⋂𝐺𝐷𝑀+)}

= [1 − 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷+)]{𝑃(𝐵𝐶−|𝐻𝐷+⋂𝐺𝐷𝑀+)𝑃(𝐻𝐷+|𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)

+ 𝑃(𝐵𝐶−|𝐻𝐷+⋂𝐺𝐷𝑀−)𝑃(𝐻𝐷+|𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)}                                                    (9) 
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𝑃(𝑖𝑛 𝑑1) = 𝑃(𝐵𝐶−⋂𝐻𝐷−⋂𝐺𝐷𝑀+⋂𝑠𝑎𝑚𝑝𝑙𝑒𝑑)  

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷−)𝑃(𝐵𝐶−⋂𝐻𝐷−|𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷−)𝑃(𝐵𝐶−|𝐻𝐷−⋂𝐺𝐷𝑀+)𝑃(𝐻𝐷−|𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)      (10) 

 

𝑃(𝑖𝑛 𝑑0) = 𝑃(𝐵𝐶−⋂𝐻𝐷−⋂𝐺𝐷𝑀−⋂𝑠𝑎𝑚𝑝𝑙𝑒𝑑)

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷−)𝑃(𝐵𝐶−⋂𝐻𝐷−|𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)

= 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷−)𝑃(𝐵𝐶−|𝐻𝐷−⋂𝐺𝐷𝑀−)𝑃(𝐻𝐷−|𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)      (11) 

 

𝑃(𝑖𝑛 𝑑𝑢) = 𝑃(𝐵𝐶−⋂𝐻𝐷−⋂𝑛𝑜𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑑)

= [1 − 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷−)]{𝑃(𝐵𝐶−⋂𝐻𝐷−⋂𝐺𝐷𝑀−) + 𝑃(𝐵𝐶−⋂𝐻𝐷−⋂𝐺𝐷𝑀+)}

= [1 − 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷−)]{𝑃(𝐵𝐶−|𝐻𝐷−⋂𝐺𝐷𝑀+)𝑃(𝐻𝐷−|𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)

+ 𝑃(𝐵𝐶−|𝐻𝐷−⋂𝐺𝐷𝑀−)𝑃(𝐻𝐷−|𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)}                                                    (12) 

 

If we define the sampling rates as the probability of a patient being sampled for validation from 

the A, B, C, and D cells, and make them conditional on the cell status as 𝜑𝐴, 𝜑𝐵, 𝜑𝐶, 𝜑𝐷 

respectively, then we must have: 

𝜑𝐴 = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝑖𝑛 𝐴 𝑐𝑒𝑙𝑙) = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷+) 

𝜑𝐵 = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝑖𝑛 𝐵 𝑐𝑒𝑙𝑙) = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷−) 

𝜑𝐶 = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝑖𝑛 𝐶 𝑐𝑒𝑙𝑙) = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷+) 

𝜑𝐷 = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝑖𝑛 𝐷 𝑐𝑒𝑙𝑙) = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷−) 

Also, we denote the diagnostic sensitivities and specificities of Birth Certificate data and Hospital 

Discharge data as: 
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𝑆𝐸𝐵𝐶 = 𝑃(𝐵𝐶+|𝐺𝐷𝑀+) 

𝑆𝑃𝐵𝐶 = 𝑃(𝐵𝐶−|𝐺𝐷𝑀−) 

𝑆𝐸𝐻𝐷 = 𝑃(𝐻𝐷+|𝐺𝐷𝑀+) 

𝑆𝑃𝐻𝐷 = 𝑃(𝐻𝐷−|𝐺𝐷𝑀−) 

Moreover, the sensitivities and specificities of Birth Certificate conditional on Hospital Discharge 

diagnostic status can be written as: 

𝑆𝐸𝐵𝐶|𝐻𝐷+ = 𝑃(𝐵𝐶+|𝐻𝐷+⋂𝐺𝐷𝑀+) 

𝑆𝐸𝐵𝐶|𝐻𝐷− = 𝑃(𝐵𝐶+|𝐻𝐷−⋂𝐺𝐷𝑀+) 

𝑆𝑃𝐵𝐶|𝐻𝐷+ = 𝑃(𝐵𝐶−|𝐻𝐷+⋂𝐺𝐷𝑀−) 

𝑆𝑃𝐵𝐶|𝐻𝐷− = 𝑃(𝐵𝐶−|𝐻𝐷−⋂𝐺𝐷𝑀−) 

Then, we denote the prevalence of GDM as: 

𝑃(𝐺𝐷𝑀+) = 𝜋𝐺𝐷𝑀 

Finally, we insert the above equations into equation (1) to equation (12), yielding equation (13) to 

equation (24): 

𝑃𝑎1
= 𝑃(𝑖𝑛 𝑎1) = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷+)𝑃(𝐻𝐷+|𝐺𝐷𝑀+)𝑃(𝐵𝐶+|𝐻𝐷+⋂𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)

= 𝜑𝐴×𝑆𝐸𝐵𝐶|𝐻𝐷+×𝑆𝐸𝐻𝐷×𝜋𝐺𝐷𝑀                                                          (13) 

 

𝑃𝑎0
= 𝑃(𝑖𝑛 𝑎0) = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷+)𝑃(𝐻𝐷+|𝐺𝐷𝑀−)𝑃(𝐵𝐶+|𝐻𝐷+⋂𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)

= 𝜑𝐴×(1 − 𝑆𝑃𝐵𝐶|𝐻𝐷+)×(1 − 𝑆𝑃𝐻𝐷)×(1 − 𝜋𝐺𝐷𝑀)                       (14) 
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𝑃𝑎𝑢
= 𝑃(𝑖𝑛 𝑎𝑢) = (1 − 𝜑𝐴)×{𝑆𝐸𝐵𝐶|𝐻𝐷+𝑆𝐸𝐻𝐷𝜋𝐺𝐷𝑀 + (1 − 𝑆𝑃𝐵𝐶|𝐻𝐷+)(1 − 𝑆𝑃𝐻𝐷)(1 − 𝜋𝐺𝐷𝑀)}                                                  

                                                                                                                                                  (15)  

 

𝑃𝑏1
= 𝑃(𝑖𝑛 𝑏1) = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷−)𝑃(𝐻𝐷−|𝐺𝐷𝑀+)𝑃(𝐵𝐶+|𝐻𝐷−⋂𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)

= 𝜑𝐵×𝑆𝐸𝐵𝐶|𝐻𝐷−×(1 − 𝑆𝐸𝐻𝐷)×𝜋𝐺𝐷𝑀                                               (16) 

 

𝑃𝑏0
= 𝑃(𝑖𝑛 𝑏0) = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶+⋂𝐻𝐷−)𝑃(𝐻𝐷−|𝐺𝐷𝑀−)𝑃(𝐵𝐶+|𝐻𝐷−⋂𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)

= 𝜑𝐵×(1 − 𝑆𝑃𝐵𝐶|𝐻𝐷−)×𝑆𝑃𝐻𝐷×(1 − 𝜋𝐺𝐷𝑀)                                    (17) 

 

𝑃𝑏𝑢
= 𝑃(𝑖𝑛 𝑏𝑢) = (1 − 𝜑𝐵){𝑆𝐸𝐵𝐶|𝐻𝐷−(1 − 𝑆𝐸𝐻𝐷)𝜋𝐺𝐷𝑀 + (1 − 𝑆𝑃𝐵𝐶|𝐻𝐷−)𝑆𝑃𝐻𝐷(1 − 𝜋𝐺𝐷𝑀)} 

                                                                                                                            (18) 

 

𝑃𝑐1
= 𝑃(𝑖𝑛 𝑐1) = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷+)𝑃(𝐻𝐷+|𝐺𝐷𝑀+)𝑃(𝐵𝐶−|𝐻𝐷+⋂𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)

= 𝜑𝐶×(1 − 𝑆𝐸𝐵𝐶|𝐻𝐷+)×𝑆𝐸𝐻𝐷×𝜋𝐺𝐷𝑀                                               (19) 

 

𝑃𝑐0
= 𝑃(𝑖𝑛 𝑐0) = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷+)𝑃(𝐻𝐷+|𝐺𝐷𝑀−)𝑃(𝐵𝐶−|𝐻𝐷+⋂𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)

= 𝜑𝐶×𝑆𝑃𝐵𝐶|𝐻𝐷+×(1 − 𝑆𝑃𝐻𝐷)×(1 − 𝜋𝐺𝐷𝑀)                                    (20) 

 

𝑃𝑐𝑢
= 𝑃(𝑖𝑛 𝑐𝑢) = (1 − 𝜑𝐶)×{(1 − 𝑆𝐸𝐵𝐶|𝐻𝐷+)𝑆𝐸𝐻𝐷𝜋𝐺𝐷𝑀 + 𝑆𝑃𝐵𝐶|𝐻𝐷+(1 − 𝑆𝑃𝐻𝐷)(1 − 𝜋𝐺𝐷𝑀)} 

                                                                                                                             (21) 
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𝑃𝑑1
= 𝑃(𝑖𝑛 𝑑1) = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷−)𝑃(𝐻𝐷−|𝐺𝐷𝑀+)𝑃(𝐵𝐶−|𝐻𝐷−⋂𝐺𝐷𝑀+)𝑃(𝐺𝐷𝑀+)

= 𝜑𝐷×(1 − 𝑆𝐸𝐵𝐶|𝐻𝐷−)×(1 − 𝑆𝐸𝐻𝐷)×𝜋𝐺𝐷𝑀                                   (22) 

 

𝑃𝑑0
= 𝑃(𝑖𝑛 𝑑0) = 𝑃(𝑠𝑎𝑚𝑝𝑙𝑒𝑑|𝐵𝐶−⋂𝐻𝐷−)𝑃(𝐻𝐷−|𝐺𝐷𝑀−)𝑃(𝐵𝐶−|𝐻𝐷−⋂𝐺𝐷𝑀−)𝑃(𝐺𝐷𝑀−)

= 𝜑𝐷×𝑆𝑃𝐵𝐶|𝐻𝐷−×𝑆𝑃𝐻𝐷×(1 − 𝜋𝐺𝐷𝑀)                                               (23) 

 

𝑃𝑑𝑢
= 𝑃(𝑖𝑛 𝑑𝑢) = (1 − 𝜑𝐷)×{(1 − 𝑆𝐸𝐵𝐶|𝐻𝐷−)(1 − 𝑆𝐸𝐻𝐷)𝜋𝐺𝐷𝑀 + 𝑆𝑃𝐵𝐶|𝐻𝐷−𝑆𝑃𝐻𝐷(1 − 𝜋𝐺𝐷𝑀)} 

                                                                                                                          (24) 

Since each patient must inevitably fall into one of the 12 categories, we can further assume the 

random vector (𝑎1, 𝑎0, 𝑎𝑢, 𝑏1, 𝑏0, 𝑏𝑢, 𝑐1, 𝑐0, 𝑐𝑢, 𝑑1, 𝑑0, 𝑑𝑢) follows a 12-level multinomial 

distribution. Letting 𝒁 = (𝑎1, 𝑎0, 𝑎𝑢, 𝑏1, 𝑏0, 𝑏𝑢, 𝑐1, 𝑐0, 𝑐𝑢, 𝑑1, 𝑑0, 𝑑𝑢), it is then apparent that: 

𝒁~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙([𝑃𝑎1
, 𝑃𝑎0

, 𝑃𝑎𝑢
, 𝑃𝑏1

, 𝑃𝑏0
, 𝑃𝑏𝑢

, 𝑃𝑐1
, 𝑃𝑐0

, 𝑃𝑐𝑢
, 𝑃𝑑1

, 𝑃𝑑0
, 𝑃𝑑𝑢

], 𝑁).  So, the whole 

experiment of first sampling N patients and assessing their BC and HD status, then selecting 𝑛 

patients out of the overall sample of 𝑁 and measuring the true GDM status of the sampled 𝑛 

patients can be simulated by using a random vector generator based on the 12-level multinomial 

distribution defined above.  

 

2. Reparameterization and sampling schemes 

Note that when we do the simulation based on a 12-level multinomial distribution, we 

need to set parameters as input, and based on the notations above, we need 11 unique parameters 
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(overall sample size 𝑁 is not included) to sufficiently describe the multinomial distribution, and 

per equation (13) to equation (24), these 11 input parameters are: 

𝜑𝐴, 𝜑𝐵, 𝜑𝐶, 𝜑𝐷, 𝑆𝐸𝐵𝐶|𝐻𝐷+, 𝑆𝐸𝐵𝐶|𝐻𝐷−, 𝑆𝑃𝐵𝐶|𝐻𝐷+, 𝑆𝑃𝐵𝐶|𝐻𝐷−, 𝑆𝐸𝐻𝐷,  𝑆𝑃𝐻𝐷, 𝜋𝐺𝐷𝑀 

Among them, 𝜑𝐴~𝜑𝐷 are the sampling rates we plan to apply to patients from the A cell, B cell, 

C cell, and D cell defined in Table 1 respectively; 𝜋𝐺𝐷𝑀 is the prevalence of GDM in the overall 

sample; and the sensitivities and specificities are either defined on Hospital Discharge or defined 

on Birth Certificate conditional on the diagnostic result of Hospital Discharge. But since our 

purpose of this study is to compare the sensitivity and specificity of Hospital Discharge against 

those of Birth Certificate, it is much better if we can re-parameterize the sensitivity and 

specificity parameters, in terms of 𝑆𝐸𝐻𝐷,  𝑆𝑃𝐻𝐷, 𝑆𝐸𝐵𝐶,  𝑆𝑃𝐵𝐶. To do this, let us first stratify the 

overall sample per the true GDM status, as is shown in Table 2. Pretending for the sake of 

argument that 𝑁1 and 𝑁0 represent the total 𝐺𝐷𝑀+ and 𝐺𝐷𝑀− target populations, by the 

definition of sensitivities we have: 

𝑆𝐸𝐵𝐶 = 𝑃(𝐵𝐶+|𝐺𝐷𝑀+) = 𝑃(𝐵𝐶+⋂𝐻𝐷+|𝐺𝐷𝑀+) + 𝑃(𝐵𝐶+⋂𝐻𝐷−|𝐺𝐷𝑀+) =
𝐴1 + 𝐵1

𝑁1
 

𝑆𝐸𝐻𝐷 = 𝑃(𝐻𝐷+|𝐺𝐷𝑀+) =  𝑃(𝐵𝐶+⋂𝐻𝐷+|𝐺𝐷𝑀+) + 𝑃(𝐵𝐶−⋂𝐻𝐷+|𝐺𝐷𝑀+) =
𝐴1 + 𝐶1

𝑁1
 

The odds ratio associating Hospital Discharge with Birth Certificate among those who are 𝐺𝐷𝑀+ 

is defined in terms of conditional probabilities as below: 

𝜓1 =
𝑃(𝐵𝐶+⋂𝐻𝐷+|𝐺𝐷𝑀+)𝑃(𝐵𝐶−⋂𝐻𝐷−|𝐺𝐷𝑀+)

𝑃(𝐵𝐶+⋂𝐻𝐷−|𝐺𝐷𝑀+)𝑃(𝐵𝐶−⋂𝐻𝐷+|𝐺𝐷𝑀+)
=

𝐴1𝐷1

𝐵1𝐶1
 

Also, we have: 

𝑃(𝐵𝐶+⋂𝐻𝐷+|𝐺𝐷𝑀+) + 𝑃(𝐵𝐶+⋂𝐻𝐷−|𝐺𝐷𝑀+) + 𝑃(𝐵𝐶−⋂𝐻𝐷+|𝐺𝐷𝑀+) + 𝑃(𝐵𝐶−⋂𝐻𝐷−|𝐺𝐷𝑀+)

=
𝐴1 + 𝐵1 + 𝐶1 + 𝐷1

𝑁1

= 1 



P a g e  | 12 

 

To connect with our conditional sensitivities of Birth Certificate, we have: 

𝑆𝐸𝐵𝐶|𝐻𝐷− =  𝑃(𝐵𝐶+|𝐻𝐷−⋂𝐺𝐷𝑀+) =
𝑃(𝐵𝐶+⋂𝐻𝐷−|𝐺𝐷𝑀+)

𝑃(𝐵𝐶+⋂𝐻𝐷−|𝐺𝐷𝑀+) + 𝑃(𝐵𝐶−⋂𝐻𝐷−|𝐺𝐷𝑀+)
=

𝐵1

𝐵1 + 𝐷1

 

And: 

𝑆𝐸𝐵𝐶|𝐻𝐷+ =  𝑃(𝐵𝐶+|𝐻𝐷+⋂𝐺𝐷𝑀+) =
𝑃(𝐵𝐶+⋂𝐻𝐷+|𝐺𝐷𝑀+)

𝑃(𝐵𝐶+⋂𝐻𝐷+|𝐺𝐷𝑀+) + 𝑃(𝐵𝐶−⋂𝐻𝐷+|𝐺𝐷𝑀+)
=

𝐴1

𝐴1 + 𝐶1

 

So, if we put together the above equations, we have: 

𝑆𝐸𝐵𝐶|𝐻𝐷− + 𝑆𝐸𝐻𝐷(𝑆𝐸𝐵𝐶|𝐻𝐷+ − 𝑆𝐸𝐵𝐶|𝐻𝐷−) =
𝐵1

𝐵1 + 𝐷1
+

𝐴1 + 𝐶1

𝑁1
(

𝐴1

𝐴1 + 𝐶1
−

𝐵1

𝐵1 + 𝐷1
)

=
𝐴1 + 𝐵1

𝑁1
= 𝑆𝐸𝐵𝐶                                                                                      (25) 

And: 

𝑆𝐸𝐵𝐶|𝐻𝐷+(1 − 𝑆𝐸𝐵𝐶|𝐻𝐷−)

(1 − 𝑆𝐸𝐵𝐶|𝐻𝐷+)𝑆𝐸𝐵𝐶|𝐻𝐷−

=

𝐴1
𝐴1 + 𝐶1

(1 −
𝐵1

𝐵1 + 𝐷1
)

(1 −
𝐴1

𝐴1 + 𝐶1
)

𝐵1
𝐵1 + 𝐷1

=
𝐴1𝐷1

𝐵1𝐶1
= 𝜓1                         (26) 

Using equation (25) and equation (26), we can use the quadratic formula to solve for the 

conditional sensitivities. The solutions are as follows: 

𝑆𝐸𝐵𝐶|𝐻𝐷− =
1 + (𝑆𝐸𝐻𝐷 − 𝑆𝐸𝐵𝐶)(𝜓1 − 1) ± √4(1 − 𝑆𝐸𝐻𝐷)𝑆𝐸𝐵𝐶(𝜓1 − 1) + [1 + (𝑆𝐸𝐻𝐷 − 𝑆𝐸𝐵𝐶)((𝜓1 − 1))]

2

2(𝑆𝐸𝐻𝐷 − 1)(𝜓1 − 1)
 

With 𝑆𝐸𝐵𝐶|𝐻𝐷− ∈ (0, 1). 

And: 

𝑆𝐸𝐵𝐶|𝐻𝐷+ =
1 + (𝑆𝐸𝐻𝐷 + 𝑆𝐸𝐵𝐶)(𝜓1 − 1) ∓ √4(1 − 𝑆𝐸𝐻𝐷)𝑆𝐸𝐵𝐶(𝜓1 − 1) + [1 + (𝑆𝐸𝐻𝐷 − 𝑆𝐸𝐵𝐶)((𝜓1 − 1))]

2

2𝑆𝐸𝐻𝐷(𝜓1 − 1)
 

With 𝑆𝐸𝐵𝐶|𝐻𝐷+ ∈ (0, 1). 
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Thus, given 𝑆𝐸𝐻𝐷, 𝑆𝐸𝐵𝐶 and 𝜓1, we can use these solutions to find 𝑆𝐸𝐵𝐶|𝐻𝐷− and 𝑆𝐸𝐵𝐶|𝐻𝐷+. 

Similarly, we can find two equivalent expressions for the specificities, by looking at the other 2×2 

contingency table in Table 2, conditioning on 𝐺𝐷𝑀−: 

𝑆𝑃𝐵𝐶 = 𝑃(𝐵𝐶−|𝐺𝐷𝑀−) = 𝑃(𝐵𝐶−⋂𝐻𝐷+|𝐺𝐷𝑀−) + 𝑃(𝐵𝐶−⋂𝐻𝐷−|𝐺𝐷𝑀−) =
𝐶0 + 𝐷0

𝑁0
 

𝑆𝑃𝐻𝐷 = 𝑃(𝐻𝐷−|𝐺𝐷𝑀−) = 𝑃(𝐵𝐶+⋂𝐻𝐷−|𝐺𝐷𝑀−) + 𝑃(𝐵𝐶−⋂𝐻𝐷−|𝐺𝐷𝑀−) =
𝐵0 + 𝐷0

𝑁0
 

The odds ratio associating Hospital Discharge with Birth Certificate among those who are 𝐺𝐷𝑀− 

is defined in terms of the conditional probabilities as: 

𝜓0 =
𝑃(𝐵𝐶+⋂𝐻𝐷+|𝐺𝐷𝑀−)𝑃(𝐵𝐶−⋂𝐻𝐷−|𝐺𝐷𝑀−)

𝑃(𝐵𝐶+⋂𝐻𝐷−|𝐺𝐷𝑀−)𝑃(𝐵𝐶−⋂𝐻𝐷+|𝐺𝐷𝑀−)
=

𝐴0𝐷0

𝐵0𝐶0
 

Similarly, we have: 

𝑃(𝐵𝐶+⋂𝐻𝐷+|𝐺𝐷𝑀−) + 𝑃(𝐵𝐶+⋂𝐻𝐷−|𝐺𝐷𝑀−) + 𝑃(𝐵𝐶−⋂𝐻𝐷+|𝐺𝐷𝑀−) + 𝑃(𝐵𝐶−⋂𝐻𝐷−|𝐺𝐷𝑀−)

=
𝐴0 + 𝐵0 + 𝐶0 + 𝐷0

𝑁0

= 1 

To connect with our conditional specificities of Birth Certificate, we have: 

𝑆𝑃𝐵𝐶|𝐻𝐷− =  𝑃(𝐵𝐶−|𝐻𝐷−⋂𝐺𝐷𝑀−) =
𝑃(𝐵𝐶−⋂𝐻𝐷−|𝐺𝐷𝑀−)

𝑃(𝐵𝐶+⋂𝐻𝐷−|𝐺𝐷𝑀−) + 𝑃(𝐵𝐶−⋂𝐻𝐷−|𝐺𝐷𝑀−)
=

𝐷0

𝐵0 + 𝐷0

 

And: 

𝑆𝑃𝐵𝐶|𝐻𝐷+ =  𝑃(𝐵𝐶−|𝐻𝐷+⋂𝐺𝐷𝑀−) =
𝑃(𝐵𝐶−⋂𝐻𝐷+|𝐺𝐷𝑀−)

𝑃(𝐵𝐶+⋂𝐻𝐷+|𝐺𝐷𝑀−) + 𝑃(𝐵𝐶−⋂𝐻𝐷+|𝐺𝐷𝑀−)
=

𝐶0

𝐴0 + 𝐶0

 

So, if we put together the above equations, we have: 
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𝑆𝑃𝐵𝐶|𝐻𝐷+ + 𝑆𝑃𝐻𝐷(𝑆𝑃𝐵𝐶|𝐻𝐷− − 𝑆𝑃𝐵𝐶|𝐻𝐷+) =
𝐶0

𝐴0 + 𝐶0
+

𝐵0 + 𝐷0

𝑁0
(

𝐷0

𝐵0 + 𝐷0
−

𝐶0

𝐴0 + 𝐶0
)

=
𝐶0 + 𝐷0

𝑁0
= 𝑆𝑃𝐵𝐶                                                                                      (27) 

And: 

𝑆𝑃𝐵𝐶|𝐻𝐷−(1 − 𝑆𝑃𝐵𝐶|𝐻𝐷+)

(1 − 𝑆𝑃𝐵𝐶|𝐻𝐷−)𝑆𝑃𝐵𝐶|𝐻𝐷+

=

𝐷0
𝐵0 + 𝐷0

(1 −
𝐶0

𝐴0 + 𝐶0
)

(1 −
𝐷0

𝐵0 + 𝐷0
)

𝐶0
𝐴0 + 𝐶0

=
𝐴0𝐷0

𝐵0𝐶0
= 𝜓0                         (28) 

Using equation (27) and equation (28), we can further have the solutions: 

𝑆𝑃𝐵𝐶|𝐻𝐷− =
1 + (𝑆𝑃𝐻𝐷 + 𝑆𝑃𝐵𝐶)(𝜓0 − 1) ∓ √4(1 − 𝑆𝑃𝐻𝐷)𝑆𝑃𝐵𝐶(𝜓0 − 1) + [1 + (𝑆𝑃𝐻𝐷 − 𝑆𝑃𝐵𝐶)(𝜓0 − 1)]2

2𝑆𝑃𝐻𝐷(𝜓0 − 1)
 

With 𝑆𝑃𝐵𝐶|𝐻𝐷− ∈ (0, 1). 

And: 

𝑆𝑃𝐵𝐶|𝐻𝐷+ =
1 + (𝑆𝑃𝐻𝐷 − 𝑆𝑃𝐵𝐶)(𝜓0 − 1) ± √4(1 − 𝑆𝑃𝐻𝐷)𝑆𝑃𝐵𝐶(𝜓0 − 1) + [1 + (𝑆𝑃𝐻𝐷 − 𝑆𝑃𝐵𝐶)(𝜓0 − 1)]2

2(𝑆𝑃𝐻𝐷 − 1)(𝜓0 − 1)
 

With 𝑆𝑃𝐵𝐶|𝐻𝐷+ ∈ (0, 1). 

Thus, given 𝑆𝑃𝐻𝐷, 𝑆𝑃𝐵𝐶 and 𝜓0, we can use these solutions to find 𝑆𝑃𝐵𝐶|𝐻𝐷− and 𝑆𝑃𝐵𝐶|𝐻𝐷+. 

Based on the above results, the former 11 input parameters are reparametrized in terms of the 

following: 

 𝜑𝐴, 𝜑𝐵, 𝜑𝐶, 𝜑𝐷, 𝜓0, 𝜓
1
, 𝑆𝐸𝐵𝐶, 𝑆𝑃𝐵𝐶, 𝑆𝐸𝐻𝐷,  𝑆𝑃𝐻𝐷, 𝜋𝐺𝐷𝑀. 

In this way, we can specify simulation scenarios in terms of the desired unconditional sensitivities 

and specificities, while generating multinomial samples based upon the probabilities defined in 

equations (13) through (24). 
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As was noted in the Introduction, the statistical power of the hypothesis tests for the difference in 

sensitivity and specificity between HD and BC may largely depend on the sampled discordant 

pairs. In other words, it should be the discordant pairs in the 2×2 contingency tables (e.g., Table 2) 

that contain useful information for the hypothesis testing. This observation suggests that a 

targeted sampling scheme focusing more validation effort in the B and C cells may be beneficial 

from the standpoint of statistical power. 

To evaluate this assertion, in this study, we also wanted to examine the statistical power 

and behavior of the hypothesis tests under three major different sampling schemes. The three 

different sampling schemes are: Equally sampling from A, B, C, D cells (i.e., simple random 

sampling from the overall table); Equally sampling from A, B, C cells (i.e., simple random 

sampling from A, B, C cells only); and Equally sampling from B, C cells (i.e., simple random 

sampling from B, C cells only). The rationale here is to set the overall sample size as a fixed 

constant number, or as a random number but with a very small variance across all the simulations, 

under all these three sampling schemes. Thus, by switching from equally sampling from A, B, C, 

D cell to equally sampling from B and C cell only, with a fixed total sample size, we are 

increasing the numbers of discordant pairs. Because these contain the useful information for 

hypothesis testing, we thus can theoretically increase the power of the tests. By the same token, 

we should be able to detect a smaller difference of sensitivity or specificity with the same given 

resources. Alternatively, we could sample fewer patients for validation to achieve the same 

statistical goal. 

3. Hypothesis testing for difference in sensitivity and specificity 

To test the difference in sensitivity and specificity between the Hospital Discharge data 

and the Birth Certificate data, we used the data generation method described above and then 

applied statistical tests to the generated data, under different sampling schemes. 
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First, we considered the applicability of McNemar’s test. As is shown in Table 4, 

eventually the simulated sample can be further stratified into two separate 2×2 contingency tables, 

by checking whether the true GDM status of the patients is positive. Then, we could apply a 

paired McNemar’s test to the  𝐺𝐷𝑀+ stratum to test the difference in sensitivity between HD and 

BC; and we could then apply a similar paired McNemar’s test to the  𝐺𝐷𝑀− stratum to test the 

difference in specificity between HD and BC [19].  

For the test to compare sensitivity, we define the following null and alternative 

hypotheses: 

𝐻0: 𝑆𝐸𝐵𝐶 = 𝑆𝐸𝐻𝐷 𝑣𝑠. 𝐻0: 𝑆𝐸𝐵𝐶 ≠ 𝑆𝐸𝐻𝐷 

The test statistic for the difference in sensitivity (with continuity correction) was computed as 

[19]: 

𝑋2 = (|
𝑏1 − 𝑐1

2
| −

1

2
)
2

(
𝑏1 + 𝑐1

4
)⁄  

For a two-sided level-α test, if 𝑋2 > 𝜒1,1−𝛼
2  then we reject 𝐻0; otherwise, if 𝑋2 ≤ 𝜒1,1−𝛼

2  then we 

accept 𝐻0. 

For the test of specificity, we define: 

𝐻0: 𝑆𝑃𝐵𝐶 = 𝑆𝑃𝐻𝐷 𝑣𝑠. 𝐻0: 𝑆𝑃𝐵𝐶 ≠ 𝑆𝑃𝐻𝐷 

The test statistic for the difference in specificity (with continuity correction) was computed as: 

𝑋2 = (|
𝑏0 − 𝑐0

2
| −

1

2
)
2

(
𝑏0 + 𝑐0

4
)⁄  

For a two-sided level-α test, if 𝑋2 > 𝜒1,1−𝛼
2  we reject 𝐻0; otherwise, if 𝑋2 ≤ 𝜒1,1−𝛼

2  we accept 𝐻0. 

A straightforward application of McNemar’s test here would typically occur under the condition 

that the true conditions of the patients are known before applying the other two diagnostic tests to 
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those with true positive condition (testing difference in sensitivity using McNemar’s test) or those 

with true negative condition (testing difference in specificity using McNemar’s test). In this sense, 

the McNemar’s test can be viewed as conditional on the true conditions of the patients. But in our 

study, since the results of the two diagnostic tests to be compared (BC vs HD) would be known 

already and the true GDM status would only be determined after the sampling, the conditions are 

somewhat different from those under which McNemar’s test might offer the best option. Thus, 

even though we had a paired result in the form of a 2×2 contingency table which could then be 

stratified by the true GDM status, the assumptions of McNemar’s test may be ‘partially violated’. 

Thus, McNemar’s test may lose power and/or validity relative to the more conventional pair-

matched data case. 

To clarify the above notion of ‘partially violated’, note that when we consider equal 

sampling from the cells (e.g., equally sampling from A, B, C, D cells, equally sampling from A, 

B, C cells, or equally sampling from B, C cells), the sampling rates in the B and C cells are 

always the same: 

𝜑𝐵 = 𝜑𝐶 

Take the test of the difference in sensitivity as an example. Per the equations of 𝑆𝐸𝐵𝐶 and 𝑆𝐸𝐻𝐷 

we described in previous section and again pretending that 𝑁1 and 𝑁0 represent the entire target 

population, we have: 

𝑆𝐸𝐵𝐶 = 𝑃(𝐵𝐶+|𝐺𝐷𝑀+) = 𝑃(𝐵𝐶+⋂𝐻𝐷+|𝐺𝐷𝑀+) + 𝑃(𝐵𝐶+⋂𝐻𝐷−|𝐺𝐷𝑀+) =
𝐴1 + 𝐵1

𝑁1
 

𝑆𝐸𝐻𝐷 = 𝑃(𝐻𝐷+|𝐺𝐷𝑀+) = 𝑃(𝐵𝐶+⋂𝐻𝐷+|𝐺𝐷𝑀+) + 𝑃(𝐵𝐶−⋂𝐻𝐷+|𝐺𝐷𝑀+) =
𝐴1 + 𝐶1

𝑁1
 

Hence under the null hypothesis: 𝐻0: 𝑆𝐸𝐵𝐶 = 𝑆𝐸𝐻𝐷, the null hypothesis can be re-stated as: 

𝐻0: 𝐵1 = 𝐶1 
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Then, per equation (16) and equation (19), we have: 

𝑃𝑏1
= 𝜑𝐵×𝑆𝐸𝐵𝐶|𝐻𝐷−×(1 − 𝑆𝐸𝐻𝐷)×𝜋𝐺𝐷𝑀 = 𝜑𝐵×

𝐵1

𝐵1 + 𝐷1

×(1 −
𝐴1 + 𝐶1

𝑁1
)×𝜋𝐺𝐷𝑀

= 𝜑𝐵×
𝐵1

𝐵1 + 𝐷1

×
𝐵1 + 𝐷1

𝑁1
×𝜋𝐺𝐷𝑀 = 𝜑𝐵×

𝐵1

𝑁1
×𝜋𝐺𝐷𝑀 

And: 

𝑃𝑐1
= 𝜑𝐶×(1 − 𝑆𝐸𝐵𝐶|𝐻𝐷+)×𝑆𝐸𝐻𝐷×𝜋𝐺𝐷𝑀 = 𝜑𝐶×(1 −

𝐴1

𝐴1 + 𝐶1

)× (
𝐴1 + 𝐶1

𝑁1
)×𝜋𝐺𝐷𝑀

= 𝜑𝐶×
𝐶1

𝐴1 + 𝐶1

×
𝐴1 + 𝐶1

𝑁1
×𝜋𝐺𝐷𝑀 = 𝜑𝐶×

𝐶1

𝑁1
×𝜋𝐺𝐷𝑀   

Then, it becomes apparent that when we are generating the data under the null hypothesis with  

𝜑𝐵 = 𝜑𝐶 , we will always have 𝑃𝑏1
= 𝑃𝑐1

. This means that the chances to observe a patient falling 

into 𝑏1 or  𝑐1 is identical. In this case, if the data were generated under the null with 𝑆𝐸𝐵𝐶 =

𝑆𝐸𝐻𝐷, the McNemar’s test approach would still be valid, with an actual type-I error close to the 

chosen Alpha-level. The same conclusion holds for the McNemar’s test of the difference in 

specificity.  

However, note in contrast what happens when we are doing unbalanced sampling from 

the A, B, C, D cells, such that we are sampling from B and C cells with different sampling rates:  

𝜑𝐵 ≠ 𝜑𝐶 

In this situation, even under the null hypothesis: 𝐻0: 𝑆𝐸𝐵𝐶 = 𝑆𝐸𝐻𝐷, we no longer have equal 

chances of observing a patient falling into 𝑏1 or  𝑐1. Thus, the McNemar’s test statistic 𝑋2 =

(|
𝑏1−𝑐1

2
| −

1

2
)
2

(
𝑏1+𝑐1

4
)⁄  will have an expectation other than 0 (𝐸(𝑋2) ≠ 0), and the actual type-I 

error is either too small or too large compared with the chosen Alpha level. The same situation 

holds for the McNemar’s test of the difference in specificity. 
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To fix this problem, we need to find another hypothesis testing method which can be used when 

𝜑𝐵 ≠ 𝜑𝐶 . So, we propose another test based on the 12-level multinomial distribution, and the 

rationale is developed as follows: 

Per the equations mentioned above, the difference in sensitivity: 

𝐷𝑆𝐸 = 𝑆𝐸𝐻𝐷 − 𝑆𝐸𝐵𝐶 =
𝐴1 + 𝐶1

𝑁1
−

𝐴1 + 𝐵1

𝑁1
=

𝐶1 − 𝐵1

𝑁1
=

𝐶1

𝑁1
−

𝐵1

𝑁1
 

Because we can only observe the sampled data instead of the population, we do not know the true 

value of 𝐷𝑆𝐸. But we can easily construct a natural estimator of 𝐶1 − 𝐵1, which is proportional to 

𝐷𝑆𝐸: 

�̂�𝑆𝐸 = 𝑆�̂�𝐻𝐷 − 𝑆�̂�𝐵𝐶 ∝ 𝐶
𝑐1

𝑐
− 𝐵

𝑏1

𝑏
= (𝑐1 + 𝑐0 + 𝑐𝑢)

𝑐1

𝑐1 + 𝑐0
− (𝑏1 + 𝑏0 + 𝑏𝑢)

𝑏1

𝑏1 + 𝑏0

= 𝑐1 (1 +
𝑐𝑢

𝑐1 + 𝑐0
) − 𝑏1 (1 +

𝑏𝑢

𝑏1 + 𝑏0
) 

To obtain the estimator of its variance, we use the multivariate Delta method. The estimated form 

of the gradient vector  ∇𝐷𝑆𝐸 containing the 12 derivatives of �̂�𝑆𝐸 is shown as:  

∇𝐷𝑆�̂�
𝑇

= (0, 0, 0,
−𝑏𝑢

𝑏1 + 𝑏0

+ 
𝑏1𝑏𝑢

(𝑏1 + 𝑏0)
2
− 1,

𝑏1𝑏𝑢

(𝑏1 + 𝑏0)
2
,

−𝑏1

𝑏1 + 𝑏0

,
𝑐𝑢

𝑐1 + 𝑐0

− 
𝑐1𝑐𝑢

(𝑐1 + 𝑐0)
2
+ 1,

−𝑐1𝑐𝑢

(𝑐1 + 𝑐0)
2
,

𝑐1

𝑐1 + 𝑐0

, 0, 0, 0) 

We then have: 

𝑉𝑎�̂�(�̂�𝑆𝐸) = ∇𝐷𝑆�̂��̂�∇𝐷𝑆�̂�
𝑇
 , 

where �̂� is the 1212 variance-covariance matrix with multinomial structure, after replacing (𝑃𝑎1
, 

𝑃𝑎0
, 𝑃𝑎𝑢

,… 𝑃𝑑𝑢
) by their natural estimates. These estimates are simply the number of observations 

in each cell divided by the overall sample size (𝑁), for example, �̂�𝑎1
= 𝑎1/𝑁: 

 

�̂�
𝟏𝟐×𝟏𝟐

=

[
 
 
 
 
𝑁�̂�𝑎1

(1 − �̂�𝑎1
) −𝑁�̂�𝑎0

�̂�𝑎1
⋯ −𝑁�̂�𝑑𝑢

�̂�𝑎1

−𝑁�̂�𝑎1
�̂�𝑎0

𝑁�̂�𝑎0
(1 − �̂�𝑎0

) ⋯ −𝑁�̂�𝑑𝑢
�̂�𝑎0

⋮ ⋮ ⋱ ⋮
−𝑁�̂�𝑎1

�̂�𝑑𝑢
−𝑁�̂�𝑎0

�̂�𝑑𝑢
⋯ 𝑁�̂�𝑑𝑢

(1 − �̂�𝑑𝑢
)]
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Then a large sample-based Wald test based on this estimator of difference in sensitivity can be 

constructed as: 

T𝑆𝐸 =
(�̂�𝑆𝐸 − 0)

2

𝑉𝑎�̂�(�̂�𝑆𝐸)
~𝜒1

2 

Similarly, for the test of difference in specificity, another Wald test based on the estimator of a 

quantity that is proportional to the difference in specificity can be constructed as: 

T𝑆𝑃 =
(�̂�𝑆𝑃 − 0)

2

𝑉𝑎�̂�(�̂�𝑆𝑃)
~𝜒1

2 , 

with the corresponding components, as follows: 

�̂�𝑆𝑃 = 𝑐0 (1 +
𝑐𝑢

𝑐1 + 𝑐0
) − 𝑏0 (1 +

𝑏𝑢

𝑏1 + 𝑏0
) 

𝑉𝑎�̂�(�̂�𝑆𝑃) = ∇𝐷𝑆�̂��̂�∇𝐷𝑆�̂�
𝑇

 

∇𝐷𝑆�̂�
𝑇

= (0, 0, 0,
𝑏0𝑏𝑢

(𝑏1 + 𝑏0)
2
,

−𝑏𝑢

𝑏1 + 𝑏0

+ 
𝑏0𝑏𝑢

(𝑏1 + 𝑏0)
2
− 1,

−𝑏0

𝑏1 + 𝑏0

,
−𝑐0𝑐𝑢

(𝑐1 + 𝑐0)
2
,

𝑐𝑢

𝑐1 + 𝑐0

− 
𝑐0𝑐𝑢

(𝑐1 + 𝑐0)
2
+ 1,

𝑐0

𝑐1 + 𝑐0

, 0, 0, 0) 

We can conclude from the above equations, that no matter whether we are using McNemar’s test 

or the Wald test based on the 12-level multinomial distribution, the test statistics only use 

information in the B cell and C cell. It supports our previous assertion that given the same total 

sample size, if we only sample from the B and C cells (i.e., we only sample those with 

disagreeing diagnostic results from HD and BC), we will have higher statistical power for 

hypothesis testing.  

To further support our assertions, we first generated the data using SAS/STAT and 

SAS/IML [20] and computed the test statistics under the null, with huge number of replicates, to 

see if the probability of rejecting the null hypothesis is near the previously specified Alpha-level 

(type-I error). If the probability of rejecting the null for a given testing strategy is near the 
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previously specified Alpha-level, the validity of that test is supported; otherwise, is not. The 

overall sample parameter settings for this experiment (parameters only describe the overall 

sample and do not affect the sampling) are listed as below: 

𝜋𝐺𝐷𝑀 = 0.10, 𝑆𝐸𝐻𝐷 = 0.80, 𝑆𝐸𝐵𝐶 = 0.80, 𝑆𝑃𝐻𝐷 = 0.90, 𝑆𝑃𝐵𝐶 = 0.90, 𝜓0 = 2.111,  𝜓1 =

2.667, 𝑁 = 10000 

Given the overall sample parameters, for equally sampling from A, B, C, D cell, the sampling 

rates were set as: 

𝜑𝐴 = 𝜑𝐵 = 𝜑𝐶 = 𝜑𝐷 = 0.1500 

Given the overall sample parameters, for equally sampling from A, B, C cell, the sampling rates 

were set as: 

𝜑𝐴 = 𝜑𝐵 = 𝜑𝐶 = 0.5719 

Given the overall sample parameters, for equally sampling from B, C cell, the sampling rates 

were set as: 

𝜑𝐵 = 𝜑𝐶 = 0.8847 

For all these sampling schemes, the total number of simulated replicates were set at 100,000 

times. The selected sampling rates were chosen in order to make sure that the total sample sizes 

across different sampling schemes are very close (the expected sample size is 1500 in each case), 

so that results are more comparable across different schemes. 

After the large sample exercise, we also wanted to investigate the performance of 

McNemar’s test and our Wald test under different prevalence levels. To do this, we simulated the 

data under similar parameter settings: 

𝑆𝐸𝐻𝐷 = 0.80, 𝑆𝐸𝐵𝐶 = 0.80, 𝑆𝑃𝐻𝐷 = 0.90, 𝑆𝑃𝐵𝐶 = 0.90, 𝜓0 = 2.111,  𝜓1 = 2.667, 𝑁 = 10000 
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But instead of keeping the 𝑆𝐸𝐻𝐷 and 𝑆𝑃𝐵𝐶  at a fixed level, in this series of simulations we 

increased 𝑆𝐸𝐻𝐷or decreased 𝑆𝑃𝐵𝐶  by very small amounts each time, then performed 

100,000 replicated simulations respectively under the varying conditions. For example, we 

first performed a simulation of 100,000 replicates under the null: 

𝑆𝐸𝐻𝐷 = 0.80, 𝑆𝐸𝐵𝐶 = 0.80, 𝑆𝑃𝐻𝐷 = 0.90, 𝑆𝑃𝐵𝐶 = 0.90, 𝜓0 = 2.111,  𝜓1 = 2.667, 𝑁 = 10000 

Then, after that, we increased 𝑆𝐸𝐻𝐷 by 0.005, so the parameters were under the alternative 

hypothesis: 

𝑆𝐸𝐻𝐷 = 0.805, 𝑆𝐸𝐵𝐶 = 0.80, 𝑆𝑃𝐻𝐷 = 0.90, 𝑆𝑃𝐵𝐶 = 0.90, 𝜓0 = 2.111,  𝜓1 = 2.667, 𝑁 =

10000. 

And we then performed another simulation of 100,000 replicates under this condition. It 

allows us to see how the rejection rate (statistical power) of the hypothesis tests change 

and compare as the difference in sensitivity or specificity increases. Also, the whole 

simulation procedure was repeated under different levels of 𝜋𝐺𝐷𝑀 so that we can also 

evaluate the impact of disease prevalence on the statistical tests’ power. 
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Table 1. 2×2 contingency table of overall sample data. 

 

 

Where 𝑁 stands for the size of the overall sample; 𝐴 stands for number of patients diagnosed 

positive both in Hospital discharge data and Birth Certificate data; 𝐵 stands for number of 

patients diagnosed positive in Birth Certificate data and diagnosed negative in Hospital discharge 

data; 𝐶 stands for number of patients diagnosed positive in Hospital discharge data and diagnosed 

negative in Birth Certificate data; 𝐷 stands for number of patients diagnosed negative both in 

Hospital discharge data Birth Certificate data. Thus, have: 𝐴 + 𝐵 + 𝐶 + 𝐷 = 𝑁.  

  

Yes No

Yes A B

No C D

N

Birth Certificate

Hospital Discharge
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Table 2. 2×2 contingency tables of overall sample data, stratified by GDM status. 

 

 

Where  𝐴1 + 𝐵1 + 𝐶1 + 𝐷1 = 𝑁1 and 𝐴0 + 𝐵0 + 𝐶0 + 𝐷0 = 𝑁0 

  

GDM +

Yes No

Yes A1 B1

No C1 D1

N1

GDM - Yes No

Yes A0 B0

No C0 D0

N0

Hospital Discharge

Birth Certificate

Hospital Discharge

Birth Certificate
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Table 3. 2×2 contingency tables of overall sample data, stratified by whether 

selected as validation sample. 

 

Where 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑛 

  

Sampled=Yes

Yes No

Yes a b

No c d

n

Sampled=No Yes No

Yes A-a B-b

No C-c D-d

N-n

Hospital Discharge

Birth Certificate

Hospital Discharge

Birth Certificate
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Table 4. 2×2 contingency tables of overall sample data, stratified by GDM status 

and whether selected as validation sample. 

 

 

Where 𝑎 = 𝑎0 + 𝑎1, 𝑏 = 𝑏0 + 𝑏1, 𝑐 = 𝑐0 + 𝑐1, 𝑑 = 𝑑0 + 𝑑1, 𝑛 = 𝑛0 + 𝑛1 

 

 

 

Sampled=No Yes No

Yes au=A-a bu=B-b

No cu=C-c du=D-d

N-n

Sampled=Yes, GDM+

Yes No

Yes a1 b1

No c1 d1

n1

Sampled=Yes, GDM- Yes No

Yes a0 b0

No c0 d0

n0

Hospital Discharge

Birth Certificate

Hospital Discharge

Birth Certificate

Hospital Discharge

Birth Certificate
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Results 

 

As is described in Methods, 100,000 simulations were first performed with respect to 

each different sampling scheme, while keeping the population parameters and expected number 

of sample size fixed. These results were used to check the type-I errors of the statistical tests. 

Table 5 summarizes 100,000 simulations for equally sampling from the A, B, C, D cells, with an 

expected sample size at 1,500. From the type-I error we can see the McNemar’s test has a smaller 

type-I error than 0.05. This can be explained by the relatively small number of 𝑏1 and 𝑐1 patients 

(the mean numbers of patients in 𝑏1 and 𝑐1 are less than 20), so the continuity corrected version 

of McNemar’s test is not very satisfying. Instead, an exact binomial test would likely have better 

type-I error. Or, this situation may disappear if we have a much bigger overall sample size 𝑁 or 

sample size 𝑛. Nevertheless, the Wald test maintains its type-I error near 0.05, which supports the 

validity of this statistical test.  

Similar conclusions can be drawn from Table 6 and Table 7, which respectively 

summarize 100,000 simulations for equally sampling from the A, B, C cells and the B, C cells. 

The Wald test still performs well in both cases, and thanks to a much larger number of 𝑏1 and 𝑐1 

patients observed, the continuity corrected version of McNemar’s test is much better. This 

supports our assertion that the assumptions of the paired McNemar’s test is ‘partially violated’, 

but that it can still be used in scenarios with equal B, C cells sampling. However, it still suggests 

our Wald test is superior in terms of type-I error. 

As is shown in Figure 1 to Figure 4, we changed the difference in sensitivity from 0 to 

0.150, by 0.005 each time, with prevalence of GDM equal to 0.05, 0.10, 0.20, 0.40, respectively, 

and then performed 100,000 simulations for each unique parameter setting under each one of the 

three equally sampling schemes. Because the simulations were performed under the alternative 
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hypothesis, the rejection probabilities of the statistical tests are their statistical powers. From each 

of these 4 plots, we can easily conclude the following: 

 First, our Wald test based on the 12-level multinomial distribution is always more 

powerful than the paired McNemar’s test. 

 Second, given the same overall and validation sample size, sampling only from B, C cells 

greatly improves the power of the test, compared with sampling from A, B, C cells or 

sampling from A, B, C, D cells. 

 Third, as the prevalence of the disease increases, the power of the sensitivity tests also 

increases. And the lower the prevalence, the greater the benefit in power when sampling 

only from B/C cells. 

Similarly, as is shown in Figure 5 to Figure 8, we changed the difference in specificity from 0 to 

0.030, by 0.001 each time, with prevalence of GDM equals to 0.05, 0.10, 0.20, 0.40, respectively, 

and then performed 100,000 simulations for each unique parameter setting under each one of the 

three equally sampling schemes. The reason we chose to change the difference in specificity by 

0.001 each time was because the prevalence of the disease is relatively low (less than 0.40), so the 

observed GDM condition negative stratum would be large, thus, the tests become more sensitive 

to the difference in specificity. Similarly, we can conclude the following based on these plots: 

 First, our Wald test of difference in specificity based on 12-level multinomial distribution 

is always more powerful than the paired McNemar’s test of the difference in specificity. 

 Second, given the same sample sizes, sampling only from B/C cells improves the power 

of the test, compared with sampling from A/B/C cells or sampling from A/B/C/D cells.  

 Third, as the prevalence of the disease increases, the power of the specificity tests 

decrease slightly. And the higher the prevalence, the greater the benefit in power when 

sampling only from B/C cells. 
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Table 5. Results of computer simulation comparing the type-I error of McNemar’s 

test and Wald test, under the null hypothesis 𝑯𝟎: 𝑺𝑬𝑩𝑪 = 𝑺𝑬𝑯𝑫 and  𝑯𝟎: 𝑺𝑷𝑩𝑪 =

𝑺𝑷𝑯𝑫, with equal sampling from A, B, C, D cells. 

 

 

 

  

Simulated result
Number of 

Simulations
Mean Std Dev Min Max

A 100000 826.75 27.57 703 947

a1 100000 100.33 9.95 63 148

a0 100000 23.71 4.87 7 49

a 100000 124.04 11.04 79 173

B 100000 873.31 28.22 746 1001

b1 100000 19.71 4.45 4 41

b0 100000 111.27 10.49 69 157

b 100000 130.98 11.39 84 178

C 100000 873.29 28.18 748 1006

c1 100000 19.70 4.44 5 41

c0 100000 111.32 10.48 69 160

c 100000 131.02 11.37 84 185

D 100000 7426.65 43.66 7235 7630

d1 100000 10.29 3.20 1 25

d0 100000 1103.76 31.38 956 1237

d 100000 1114.05 31.51 966 1254

Sample size 100000 1500.09 35.70 1318 1644

Test Statistics
Number of 

Simulations
Mean Std Dev Min Max Type-I error

Test of difference in SE (McNemar) 100000 0.77 1.22 0 15.63 3.39%

Test of difference in SP (McNemar) 100000 0.90 1.34 0 17.72 4.23%

Test of difference in SE (Wald test) 100000 1.02 1.45 0 19.18 5.31%

Test of difference in SP (Wald test) 100000 1.00 1.43 0 18.83 5.04%
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Table 6. Results of computer simulation comparing the type-I error of McNemar’s 

test and Wald test, under the null hypothesis 𝑯𝟎: 𝑺𝑬𝑩𝑪 = 𝑺𝑬𝑯𝑫 and  𝑯𝟎: 𝑺𝑷𝑩𝑪 =

𝑺𝑷𝑯𝑫, with equal sampling from A, B, C cells. 

 

Simulated result
Number of 

Simulations
Mean Std Dev Min Max

A 100000 826.72 27.53 712 961

a1 100000 382.57 19.18 297 463

a0 100000 90.37 9.50 54 131

a 100000 472.94 21.21 387 564

B 100000 873.38 28.26 752 990

b1 100000 75.07 8.66 40 119

b0 100000 424.36 20.21 341 514

b 100000 499.43 21.86 414 595

C 100000 873.20 28.34 756 997

c1 100000 75.07 8.62 42 116

c0 100000 424.29 20.20 334 512

c 100000 499.35 21.81 410 591

D 100000 7426.70 43.78 7251 7618

d1 100000 0.00 0.00 0 0

d0 100000 0.00 0.00 0 0

d 100000 0.00 0.00 1E-10 1E-10

Sample size 100000 1471.73 35.56 1306 1621

Test Statistics
Number of 

Simulations
Mean Std Dev Min Max Type-I error

Test of difference in SE (McNemar) 100000 0.87 1.31 0 19.57 4.11%

Test of difference in SP (McNemar) 100000 0.95 1.38 0 18.82 4.68%

Test of difference in SE (Wald test) 100000 1.00 1.41 8E-11 20.49 4.94%

Test of difference in SP (Wald test) 100000 1.00 1.42 0 24.65 5.01%
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Table 7. Results of computer simulation comparing the type-I error of McNemar’s 

test and Wald test, under the null hypothesis 𝑯𝟎: 𝑺𝑬𝑩𝑪 = 𝑺𝑬𝑯𝑫 and  𝑯𝟎: 𝑺𝑷𝑩𝑪 =

𝑺𝑷𝑯𝑫, with equal sampling from B, C cells. 

 

 

 

Simulated result
Number of 

Simulations
Mean Std Dev Min Max

A 100000 826.63 27.53 709 953

a1 100000 0.00 0.00 0 0

a0 100000 0.00 0.00 0 0

a 100000 0.00 0.00 1E-10 1E-10

B 100000 873.28 28.16 742 1008

b1 100000 116.15 10.68 69 164

b0 100000 656.40 24.69 543 778

b 100000 772.55 26.65 657 913

C 100000 873.36 28.09 757 996

c1 100000 116.11 10.72 72 160

c0 100000 656.57 24.70 546 761

c 100000 772.68 26.61 654 888

D 100000 7426.73 43.76 7223 7622

d1 100000 0.00 0.00 0 0

d0 100000 0.00 0.00 0 0

d 100000 0.00 0.00 1E-10 1E-10

Sample size 100000 1545.23 36.19 1394 1708

Test Statistics
Number of 

Simulations
Mean Std Dev Min Max Type-I error

Test of difference in SE (McNemar) 100000 0.90 1.33 0 15.68 4.29%

Test of difference in SP (McNemar) 100000 0.95 1.37 0 20.01 4.54%

Test of difference in SE (Wald test) 100000 1.00 1.41 8E-12 16.32 5.00%

Test of difference in SP (Wald test) 100000 1.02 1.44 2E-11 23.33 5.25%
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Figure 1. Power vs. Difference in Sensitivity for McNemar’s test and Wald Test (bigV) under different sampling schemes 

(Equally sampling from A, B, C, D cells; Equally sampling from A, B, C cells; Equally sampling from B, C cells) with 

Prevalence of GDM=0.05. 
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Figure 2. Power vs. Difference in Sensitivity for McNemar’s test and Wald Test (bigV) under different sampling schemes 

(Equally sampling from A, B, C, D cells; Equally sampling from A, B, C cells; Equally sampling from B, C cells) with 

Prevalence of GDM=0.10. 

 



P a g e  | 34 

 

Figure 3. Power vs. Difference in Sensitivity for McNemar’s test and Wald Test (bigV) under different sampling schemes 

(Equally sampling from A, B, C, D cells; Equally sampling from A, B, C cells; Equally sampling from B, C cells) with 

Prevalence of GDM=0.20. 
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Figure 4. Power vs. Difference in Sensitivity for McNemar’s test and Wald Test (bigV) under different sampling schemes 

(Equally sampling from A, B, C, D cells; Equally sampling from A, B, C cells; Equally sampling from B, C cells) with 

Prevalence of GDM=0.40. 
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Figure 5. Power vs. Difference in Specificity for McNemar’s test and Wald Test (bigV) under different sampling schemes 

(Equally sampling from A, B, C, D cells; Equally sampling from A, B, C cells; Equally sampling from B, C cells) with 

Prevalence of GDM=0.05. 
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Figure 6. Power vs. Difference in Specificity for McNemar’s test and Wald Test (bigV) under different sampling schemes 

(Equally sampling from A, B, C, D cells; Equally sampling from A, B, C cells; Equally sampling from B, C cells) with 

Prevalence of GDM=0.10. 
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Figure 7. Power vs. Difference in Specificity for McNemar’s test and Wald Test (bigV) under different sampling schemes 

(Equally sampling from A, B, C, D cells; Equally sampling from A, B, C cells; Equally sampling from B, C cells) with 

Prevalence of GDM=0.20. 
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Figure 8. Power vs. Difference in Specificity for McNemar’s test and Wald Test (bigV) under different sampling schemes 

(Equally sampling from A, B, C, D cells; Equally sampling from A, B, C cells; Equally sampling from B, C cells) with 

Prevalence of GDM=0.40. 
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Discussion 

 

This study concerns efficient sampling allocations and proposes a statistical method for 

testing differences in accuracy for two diagnostic methods of a disease. As noted in Results, 

instead of using random A, B, C, D cells sampling or A, B, C cells sampling along with a 

conventional McNemar’s test, we recommend to use only B, C cells sampling to get validation 

sample and to use the Wald test we proposed to test the difference in both sensitivity and 

specificity of two diagnostic tests (BC and HD). This is because the main difference between a 

conventional McNemar’s test for paired-match data and our proposed Wald test based on a 12-

level multinomial distribution is the assumption behind these two tests. The McNemar’s test 

requires random sampling among subjects with known true condition status and subsequent 

determination of the outcomes of the two diagnostic tests. In contrast, our proposed Wald test is 

based on knowing the outcomes of the two tests before sampling subject (potentially non-

randomly, for efficiency reasons) for whom the ‘gold standard’ test will be applied. Also, by 

using only B, C cells sampling, we are getting more ‘useful’ information to do the hypothesis test, 

and therefore benefit from higher statistical power, given the same or very similar validation 

sample size 𝑛. Another advantage of using the proposed test is that it does not require the 

sampling rate of B cell and C cell to be equal (i.e., if we want, we can sample 20% of patients in 

the B cell and 10% in the C cell, and the test still functions well). However, the McNemar’s test 

approach requires equal sampling of B cell and C cell. 

One limitation of only sampling from the B and C cells is while we can construct valid 

test statistics to compare them, we cannot directly estimate diagnostic test properties such as 

sensitivity and specificity for BC and HD. Further, for other diagnostic properties such as 

negative predictive value (NPV) or positive predictive value (PPV) for BC and HD, a restriction 

to B and C cell sampling allows neither estimation nor a statistical test for comparison. Referring 
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to Table 2, this is because: 𝑃𝑃𝑉𝐻𝐷 =
𝐴1+𝐶1

𝐴+𝐶
, 𝑃𝑃𝑉𝐵𝐶 =

𝐴1+𝐵1

𝐴+𝐵
, 𝑁𝑃𝑉𝐻𝐷 =

𝐷0+𝐵0

𝐷+𝐵
, 𝑁𝑃𝑉𝐵𝐶 =

𝐷0+𝐶0

𝐷+𝐶
. 

From these equations, we know we cannot estimate the difference of 𝑃𝑃𝑉s without observing 

patients from the A cell, and likewise, we cannot estimate the difference of 𝑁𝑃𝑉s without 

observing patients from the D cell. Thus, to estimate the differences of 𝑁𝑃𝑉 and 𝑃𝑃𝑉, we would 

need to do A cell and D cell sampling as well. So one of the ‘costs’ of this B cell and C cell 

validation sampling is that we give up doing any test regarding the difference of 𝑁𝑃𝑉s and 𝑃𝑃𝑉s.  

Another aspect of this study to be aware of is that 𝑁 is not the size of the true population. 

As noted in Introduction and Methods, we did not consider the finite population setting by which 

all members of a population have BC and HD data; rather we consider that to be a large overall 

sample of size 𝑁. Because not all members of the population have both BC and HD data, we 

hereby only focus on a subset of the population whose BC and HD data are both accessible. If the 

whole population were assessed for BC and HD, finite population corrections may need to be 

applied. 

Besides the Wald test, there exist two classic alternative tests, namely the Score test and 

the Likelihood-Ratio test. We can also construct a Score test or a Likelihood-Ratio test based on 

the maximum likelihood estimator �̂�𝑆𝐸 and �̂�𝑆𝑃 noted in the Methods section and their 

corresponding likelihood functions. The three tests would be asymptotically equivalent, but there 

may be advantages to the Wald test in terms of performance and/or ease of use for, when we have 

a very large overall sample of size 𝑁 and validation sample of size 𝑛 (which means we used an 

underlying assumption: 𝑁 → ∞ and 𝑛 → ∞) [21-22]. But in moderate or small-sized samples, the 

Wald test can be extremely conservative when truth is far from the null hypothesis. In this case, 

an exact test is more desirable (with very small sample size), or the Likelihood-Ratio test (with 

moderate sample size) may be a better option. 
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Also, in this study, we set the sampling rates from A, B, C, D cells as 𝜑𝐴~𝜑𝐷 so that the 

expected validation sample size 𝐸(𝑛) is very close to 1500, to make different validation sampling 

allocations comparable. The real-world sampling scheme that applies directly to this 12-level 

multinomial mechanism would be to apply Bernoulli sampling for each subject in the A-D cells, 

according to the specified sampling rate. However, another intuitive way to envision the sampling 

is to specify the actual sampling fractions to be used, so that repeated replications of the 

experiment would yield the same observed fraction 𝑎/𝐴, 𝑏/𝐵, etc. Another possible way would 

be to set the exact numbers of patients to be sampled from A, B, C, D cells upon replications of 

the experiment, instead of the sampling rates or fractions in each cell. This latter approach would 

yield a fixed number for the total sample size 𝑛, with 𝑉𝑎𝑟(𝑛) = 0. But this method of 

envisioning the sampling could lead to another issue of ‘oversampling’, where the generated total 

number of patients in the A, B, C, D cells (𝐴, 𝐵, 𝐶, 𝐷) are smaller than the number of patients (𝑎, 

𝑏, 𝑐, 𝑑) specified to be sampled from each cell. Fortunately, our empirical studies show that the 

proposed testing approach based on the 12-level multinomial model is valid for use under any of 

the three ways of envisioning the real-world sampling. This should be a comfort to those seeking 

to apply these methods in practice for comparing the diagnostic properties of two tests.
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