
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from
Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis in whole or in part in all
forms of media, now or hereafter now, including display on the World Wide Web. I
understand that I may select some access restrictions as part of the online submission
of this thesis. I retain all ownership rights to the copyright of the thesis. I also retain
the right to use in future works (such as articles or books) all or part of this thesis.

Shuxuan (Annie) Luo April 3, 2023



Detecting Training Data Biases: MLR And Graphical LASSO Based Methods

by

Shuxuan (Annie) Luo

Kevin McAlister, Ph.D.
Advisor

Quantitative Theory and Methods

Kevin McAlister, Ph.D.

Advisor

Lauren Klein, Ph.D.

Committee Member

Jessica Sun, Ph.D.

Committee Member

2023



Detecting Training Data Biases: MLR And Graphical LASSO Based Methods

By

Shuxuan (Annie) Luo

Kevin McAlister, Ph.D.

Advisor

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of
Bachelor of Science with Honors

Quantitative Theory and Methods

2023



Abstract

Detecting Training Data Biases: MLR And Graphical LASSO Based Methods
By Shuxuan (Annie) Luo

As the use of algorithms for automated decision-making became increasingly
prevalent, many have pointed out the discriminatory results produced. This paper
aims to extract and evaluate one source of such discrimination—the unintentional
biases captured in the training data through high correlations between the predictors
and the protected characteristics. To see if a predictor is systematically excluding
qualified members belonging to a protected group, we examine the “direct” correla-
tion between this predictor and the protected characteristic, controlling for all other
predictors in the training data. We first propose a Multivariable Linear Regression
test, adapted from the “Input Accountability Test.” We also propose using a Graphi-
cal LASSO based test. We applied all three tests on detecting biases in our simulated
datasets, and we found GLASSO to work the best. Finally, we discuss limitations of
GLASSO and where we can improve.
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Chapter 1

Introduction

Automated machine learning systems, powered by extensive data, have been used

prevalently to make decisions in all kinds of fields in our society, such as finance,

medicine, and criminal systems.[2, 17, 3] The application of algorithms can lead to mi-

nor decisions, such as fraud detection, targeted advertisements, and optimized routes

for delivery.[2] In the case of route optimization, one can easily see the positive effects

of an increased efficiency that mathematics and algorithms can bring to our lives.

However, machine learning is also applied to aid or directly make decisions that have

important, often life-long implications to individuals, such as determining the limit

of credit cards, deciding whether to loan mortgages, evaluating the level of sickness,

and predicting probabilities of recidivism.[17] Problematically, some algorithm-based

decisions have been found to involve racial biases. For example, the Optum algorithm

developed by UnitedHealth Group, initially designed to identify patients who need

extra care and to optimize medical resources, was found “less likely” to assign black

patients “than white patients to get extra medical help, despite [the black patients]

being sicker.”[10] As a result, the algorithm is letting “healthier white patients cut

in line ahead of sicker patients.”[10] Such algorithms that clearly involve racial biases

intuitively violate anti-discrimination initiatives. This paper aims to propose a statis-
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tical method to detect potential algorithmic biases, with the intention of contributing

to the overall evaluation and regulation of algorithms.

The classification models, which, by definition, are used to classify and thus to dis-

criminate among different classes, seem to contradict our intention of eliminating

discriminations. However, employing Bartlett et al.’s analysis regarding “antidis-

crimination principles of Title VII of the Civil Rights Act of 1964,” compounded

with their discussion on the “burden-shifting framework”,[3] we can see that the met-

rics against which the algorithms would be justified to discriminate are of “legitimate

‘business necessity’,” such as required job-related skills for employment, or actual

level of sickness in the UnitedHealth Group example.[3] The discriminations with re-

spect to other aspects, such as race and ethnicity, are of the kinds that we intend to

diminish. In other words, our definition of a non-discriminatory algorithm is one that

will not systematically misclassify qualified members (qualification as defined with

respect to legitimate business necessity) due to their genders, races, and/or other

protected characteristics. Applying the legal terms defined in Bartlett et al.’s es-

say, we allow “disparate treatment” based on qualifications, but our method aims to

identify “disparate impact” across racial, gender, and/or other protected groups that

certain algorithms can illegitimately lead to.[3]

Such unjustified disparate impact can come not only from the algorithms themselves

through the manual programming that gives “certain factors inappropriate weights,”

but also from the data-mining process[2] where the input data already involves un-

intentional biases. Continuing the UnitedHealth Group’s example, the reason why

the Optum algorithm assigned less Black patients than it should have to receive ex-

tra medical help is because the level of sickness in that algorithm was approximated

using an inappropriate proxy variable of “medical cost.” In this case, adjusting the

weight of cost, meaning to adjust how much medical cost factors into assessing the

level of sickness, is one way to alleviate the issue from a programmer’s perspective.
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However, we can also observe the social, systemic problem of “health-care spending

for black patients” being generally “less than for white patients with similar medical

conditions.”[10] This example illustrates that the wider social mechanisms at work

can also lead to biased “training data”—“the data that train the model to behave

in a certain way,” due to the high correlation between the protected groups and the

predictors used in the algorithms.[2] This correlation makes predictors to contain the

protected demographic information, and in turn leads to discriminatory models.

As mentioned in the guidelines protecting individuals against algorithmic discriminations,[13]

the White House specifically proposed avoiding the use of the predictors that signif-

icantly correlate with protected characteristics. We will use the help from statistics

to extract and examine such correlations and thus to detect those biased predictors.
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Chapter 2

Problem Statement

To aid the White House’s initiative of excluding biased predictors, this paper aims to

statistically determine if a contested predictor in the training data, hereon referred to

as a proxy, significantly correlates with a protected group. We will explore methods

to extract the relationships between the proxy of interest and the protected group,

and to evaluate the significance of such relationships. It’s important to note that,

because we allow disparate treatment while disallowing disparate impact, we need

to categorize the correlations between the proxy and the protected feature into di-

rect ones and indirect ones. An “indirect” relationship, corresponding to disparate

treatment, means that genders/ races correlate with the proxy of interest through a

pathway with target variable or some other proxies in between. The target refers to

the variable of business necessity. A “direct” relationship, corresponding to disparate

impact, refers to a change in genders/ races that directly leads to a change in the

proxy, given the target variable and other proxies controlled. See Figure 2.1. for

”direct” relationship. This categorization demonstrates the intricacies of the spirit of

antidiscrimination, where some specific correlations are allowed, while others, though

between the same pair of variables, are not.
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Figure 2.1: Correlation of interest
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Chapter 3

Methods

One source of algorithmic bias comes from using an inappropriate proxy variable to

train a predictive model. The “inappropriateness” is defined by a significant correla-

tion between the proxy and a protected group, controlling for the target variable and

other proxies. In short, a proxy is inappropriate when the protected group has a sig-

nificant “direct” relationship with that proxy. We therefore need to first address how

to tease out the ”direct” relationship. Then, with the aim of defining a “significant”

correlation, we turn to the methods for significance testing.

3.1 Input Accountability Test

The “Input Accountability Test (IAT),” proposed by Bartlett et al., is a two-step

process that each tackles a corresponding area we laid out above, namely, finding

the “direct” relationship and determining its significance. In the first step, the IAT

calculates the “residual”, the part in the proxy’s variation that does not perfectly

correlate with the variation of the target variable. By controlling for the target in

the first step, the IAT defines a ”direct” correlation as what correlations through the

target are not. It then determines if this residual has any statistically significant re-

lationship with the protected group.[3] In practice, the first step runs a simple linear
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Figure 3.1: Target pathway closed

regression, proxy = α0 ∗ target+ ε1, where the residual vector ε1 would capture any

variations of the proxy unrelated to that of the target. Notice here that the proxy is

the dependent variable, and the target is the independent variable. While counter-

intuitive since the unobserved target usually sits on the left-hand side waiting to be

determined by the predictive models, it’s important to remember that the objective

is not to see how well the proxy can predict the target. Rather, this first step is to

close off the pathway of gender/ race correlating with the proxy through the target.

See Figure 3.1.

In the second step, the IAT runs another simple linear regression, ε1 = α1 ∗

ProtectedGroup + ε2, to test if the residual has any statistically significant corre-

lations with the protected group. As the residual serves to control the target, the

second step quantifies and evaluates the left-over correlations denoted with a question

mark in Figure 3.2.

The significance testing employed by Bartlett et al. is a two-sided p-value test, where

the null hypothesis states that α1 = 0. The decision rule for statistical significance is

if p < 0.05.[3]

While having the merit of running the significance testing against only the conception

of a “direct” relationship between the protected characteristic and the proxy of inter-

est, thus trying to investigate the correlations disallowed under antidiscrimination’s

definitions,[3] a close read of the IAT leaves us yet two major kinds of issues. We will
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Figure 3.2: Leftover correlation

first question how IAT’s loosely defined method of eliminating “indirect” relationships

between the proxy and the target can be employed in bad faith. We then criticize

its use of p-tests for significance testing. We will then address a wider difficulty of

carving out all possible “indirect” relationships with the intention of obtaining the

exact “direct” relationship. As the IAT disregards situations where a protected group

can correlate with the contested proxy through the pathways of other proxies in be-

tween, this method bears the risk of falsely claiming the proxy to be inappropriate

even when it in fact does not directly discriminate against the protected character-

istic. We can easily imagine this risk manifesting in real-world cases, due to the

complexities introduced by correlations among different proxies.

3.1.1 ”Indirect” Relationships

Defined as the correlations between the target and the proxy, the variations in the

proxy due to those “indirect” relationships are allowed in Bartlett et al.s’ conception

of the antidiscrimination laws. This is the reason why they picked out the resid-

ual using the first step. However, as already acknowledged, their spelled-out way

of excluding “indirect” correlations “focused on linear settings, but the IAT could

in principle be amended to handle nonlinear models.”[3] Without specifying how to

find such an “indirect” relationship other than applying simple linear regressions,
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we worry that a test, while fulfilling the ill-defined “spirit” of the IAT as it tries to

quantify the relationship between the proxy and the target, may extract a residual

using an overfitted model that could involve target2, target3, etc.. The overfit can

reduce the residual to a bare minimum. Such practices can lead to a statistically in-

significant correlation between the residual and protected group, resulting in a strong

justification for using virtually all proxies. Therefore, the loosely defined first-step of

the IAT can defeat its own purposes.

3.1.2 Significance Testing

The opposite result of deeming all proxies biased and thus inappropriate, which would

also defeat the IAT’s purposes, can happen in the second step of the IAT when the

sample size of the training data is large enough. As already pointed out by Bartlett

et al., their reliance on the p-value test renders the IAT’s claims of any statistically

significant correlations questionable.[3] There are two main critiques on the p-test’s

ability of determining the significance of the relationship between the residual and

the protected group. When the sample size is large enough, the p-value would quickly

diminish to a value smaller than the 0.05 threshold.[8] The formula calculating the

p-value for a two-sided test is p = 2 ∗ Φ( α̂1−0
sd/

√
n
), where Φ is the normal cumulative

distribution function (normal CDF) and α̂1−0
sd/

√
n
calculates the t-statistic. The bigger

the sample size n is, the bigger the t-statistic will be, and the less probable that we

would observe our samples under the null hypothesis. A direct implication of this

sample size critique is that “a company that brings a large dataset to bear on an IAT

test might be disadvantaged relative to firms with less data.”[3]

Another critique against p-test is that, even when the null hypothesis failed to be

rejected, we cannot directly translate this situation as claiming that the “direct”

relationship we tested for is insignificant. This is because there’s a gap between

failure to reject the null vs acceptance of the null.[14]
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3.1.3 The ”Direct” Relationship

Defined using a negative approach, where the “direct” relationship is what the “in-

direct” ones are not, the “direct” correlation depends on an exact exclusion of the

“indirect” relationships. Under Bartlett’s construction, we should only exclude cor-

relations through the pathway of the target, i.e., the business necessity variable. This

is because, with the spirit of antidiscrimination laws, the only legitimate base to offer

disparate treatment is the difference in values of the target variable.[3] However, a lit-

eral read of specific antidiscrimination laws, such as employment antidiscrimination

statements,[9] defines “direct” relationships using a positive approach. Under this

statement, we can see that disparate treatment against, say, family income seems

to be implicitly allowed as family income was not positively listed. As the protected

characteristics have been positively defined in the statement, the “direct” correlations

that statistical methods are looking for should control for all variables not listed. This

expands our previous conception of allowed “indirect” relationships from business ne-

cessity only to include pathways of all proxies. See Figure 3.3. By having the need

to control for different pathways, we propose to use a multivariable linear regression

(MLR) method to control for all background variables. Here, background variables

refer to all other proxies. Another benefit of running a MLR is that, by reducing

omitted-variable bias, we can obtain more accurate estimates of the coefficients for

the protected group.

3.2 Multiple Linear Regression

The two-step IAT process for one proxy with the aim of excluding “indirect” re-

lationships through controlling the target variable can be simplified in a one-step

multivariable linear regression model. In MLR, we also have additional proxies con-

trolled to investigate the direct pathway noted in Figure 3.3. The function of the
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model is

Proxy = β0∗Target+β1∗ProtectedGroup+β2∗OtherProxy+β3∗OtherProxy+ε0

, where β1 has a clear interpretation that the change in value in ProtectedGroup

would lead to a β1 unit of change in Proxy, when Target and other proxies are con-

trolled. In other words, β1 characterizes the “direct” relationship we are looking for,

as the “indirect” relationships through Target and other proxies are always controlled.

Note that this is not a mathematical simplification of the IAT, meaning that the value

of β0 is expected to be different from that of α0, and β1 different from α1. By the

Frisch-Waugh-Lovell Theorem, obtaining the same coefficients would require regress-

ing a second error term on the first one,[15] where the second error term comes from

regressing between ProtectedGroup and Target. IAT’s regression of the residual on

a protected group is different from this process, thus the MLR would return different

coefficients, as noted by the betas. The advantage of using the betas retrieved from

the MLR is that the betas account for the correlations both between ProtectedGroup

and Target and between other pairs of explanatory variables. Therefore, the betas

are better estimates of the coefficients by alleviating the omitted-variable bias. These

better estimates can then influence the significance testing, as each beta is a compo-

nent of the formula calculating the p-value.

The MLR, however, like the IAT relies on a good method of significance testing. As

we discussed above, the most prevalent p-test is not an ideal method. We therefore

proceed to our second proposal of using the Graphical LASSO method, which not

only calculates partial correlations, and thus the “direct” relationships, between each

pair of variables, but also provides a new way of testing the significance through its

relationship-selection feature provided by the L1 regularization term. GLASSO is a

graphical model designed for network analysis, which we think is better equipped to
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Figure 3.3: More precise ”direct” correlation

tackle the network of proxies, a protected group, and the target.

3.3 Graphical LASSO

The Graphical LASSO is a method of selecting the strongest relationships between

pairs of variables, conditional on all rest of the variables. By applying “a lasso

penalty. . . to the inverse covariance matrix,”[11] GLASSO mainly does two things.

First, we calculate a covariance matrix for the training dataset, invert it, and obtain

a precision matrix. As the entries in the precision matrix have a specific meaning

of conditional correlation, the entries are measuring “direct” relationships. Thus,

GLASSO is also measuring the correlation shown in Figure 3.3. Second, we make our

precision matrix sparser, meaning to reduce more entries to zero, based on a lasso

penalty. This second step is to test the significance of non-zero entries in the precision

matrix.

3.3.1 Precision Matrix and Conditional Independence

After transforming the training data to a matrix, we first scale all columns so that

the variables won’t show high correlations due to the difference in magnitude of each
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variable’s values. Denote X to be the vector of all variables. The covariance matrix

calculates the covariance between each pair of scaled variables, one coming from XT

and the other coming from X. As a result, the covariance matrix has a diagonal of

variances of each variable, and the non-diagonal entries are calculated by

cov(Xi, Xj) = E[(Xi − E[Xi])(Xj − E[Xj])
T ]

, thus always returning a symmetric matrix. As the formula does not involve the rest

of variables in X for specific pairs, we cannot differentiate “direct” relationships from

“indirect” ones. Using Schur complement of a block matrix,[6] it has been proved

that inverting the covariance matrix calculates partial correlations. Under a multi-

variate normal distribution (MND), such partial correlations are equal to conditional

correlations,[1] which are the “direct” relationships we’re looking for.

For a symmetric matrix to be invertible, it needs to be positive definite, which can

be checked by seeing if both its trace and its determinant are positive.[16] Since we

know the variances must be positive, the covariance matrix would be invertible if its

determinant is positive.

under the MND assumption, we can infer conditional independence between two vari-

ables, given a precision matrix whose entries are zero,[1] for reasons explained above.

If the two variables happen to be the contested proxy and the protected characteris-

tic, then we decide that there is no “direct” relationship between them, therefore not

constituting any discriminations. However, there is an important caveat that, due

to the categorical nature of a protected characteristic variable, the MND assumption

can rarely be satisfied.
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3.3.2 LASSO

Applying a lasso penalty to our precision matrix Θ serves as a form of significance

testing for the case where the entry in Θ between the proxy and the protected group

is not zero. The objective function that GLASSO maximizes is “the penalized log-

likelihood” log det Θ̂ − tr
(
SΘ̂

)
− ρ||Θ̂||1, where Θ̂ is the estimated sparse precision

matrix, tr denoting the trace, and ||Θ̂||1 being the L1 norm that calculates the sum

of the absolute values of the entries in matrix Θ̂.[11] The log-likelihood function is

calculated based on the assumed Wishart distribution of Θ̂, which in turn depends

on assuming the variables in the original training dataset to have MND.[5] ρ, the

coefficient of the penalty term, is a hyperparameter that determines to what degree

the entries in the precision matrix will be shrunk to maximize the above objective

function. ρ ranges from 0 to infinity. When ρ = 0, the log-likelihood function would

not be penalized and thus will return the same precision matrix. When ρ is infinite,

the objective function would be infinitely penalized, forcing all entries in Θ̂ to be

reduced to zero.

The stronger the conditional correlation a pair of variables have, the bigger the value

of ρ required for this entry to be eliminated. Considering the effect that a change of

ρ would have on the elimination process, our method creates plots for increasing ρ

values to demonstrate how relationships are shrunk to zero. In our plots, the edges

represent nonzero entries in the estimated precision matrix, and the nodes represent

the variables. As ρ grows, we expect our estimated precision matrix to be sparser,

thus having less edges in the graphs.

Employing GLASSO as a significance test of “direct” relationships between the proxy

of interest and a protected characteristic, we observe the relative position of the graph

in which the edge between the node of a contested proxy and the node of the protected

group first got eliminated. The later this elimination first happens, the stronger the

conditional correlation between two variables is. For future works, we need to create
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an index to standardize this “relative position” and to determine a sensible threshold

as a decision rule for significant conditional correlation.
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Chapter 4

Data

To demonstrate and assess the methods listed above, we simulated two main datasets

with a sample size of 800. One dataset is biased and the other is unbiased. Both

datasets have one contested proxy and one protected group of interest. To illustrate

the p-test issue, we also created a separate unbiased dataset with a sample size of

450, 000. To put into context, we replicated a scenario of employing bodyguards,

where the target is strength, the contested proxy is height, and the protected group

of interest is gender.[3] All biasedness and unbiasedness we refer to are in terms of

the “direct” relationship between gender and height. We also created some back-

ground variables: householdIncome, age, edu, and race, all of which contributed to

variations in height, either by appearing in the formula for constructing height, or

through the correlations with the terms that appeared in the formula.

Recognizing that the advanced predictive models used in the real world rarely renders

a clean decision-making criterion, the height cutoff, we will not incorporate any height

cutoffs determined by specific algorithms trained on our simulated data. Instead, we

will treat height as a continuous variable.

The replication material for simulating the datasets and for applying the three meth-

ods are available.
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4.1 Variables

We start with simulating two strength distributions, one for males and the other for

females. The mean strength for males is higher, and males are more represented in the

dataset by having more observations labeled as males. While gender, named as the

gbinary variable, was not explicitly created, we coded all other variables separately

for the male group and the female group, thereby obtaining gbinary through combin-

ing the rows of the two datasets. With a different strength between two genders, we

create correlations between the target variable and the protected characteristic.

For background variables, we created householdIncome and age to be two random

variables with a normal distribution and a Poisson distribution, respectively. To ac-

knowledge the strong relationships between householdIncome and edu and between

householdIncome and race due to social mechanisms at work as well as for histori-

cal reasons, we created edu and race using formulas containing the random variable

householdIncome, thereby having our background variables correlated to each other.

To create some correlations between gbinary and all background variables, the func-

tions of those background variables for males and females are slightly different. As

our definition of unbiasedness has nothing to do with “indirect” relationships, gbinary

is constructed to be correlating with all non-height variables to better mimic the real

world and to add difficulty in extracting “direct” relationships. The functions also

always include random noise to avoid perfect correlations and to make our simula-

tions more realistic. We will explain below how we constructed height, our contested

proxy variable, differently under our definitions of biased and unbiased datasets.

4.2 Biased Data Simulation

The conception of being biased or not against gender is purely based on the construc-

tion of height, which is our proxy to strength. Again, the disparate treatment allows
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Figure 4.1: ”Direct” relationship exists

us to end up employing more males than females if more males indeed have qualified

level of strength. However, the disparate impact, which we will call bias, refers to

the case where height systematically disqualifies the otherwise qualified females more

than qualified males, because a female can be shorter than a male even when they

have the same strengths. Since our definition of bias is to have significant “direct”

relationships between gbinaryand height, we instilled such “direct” correlations by

encoding heights differently for different gender groups. More specifically, height is

created with formulas containing strength, age, and race, and female heights and

male heights have different formulas due to different coefficients. The difference in

height formulas is the “direct” correlation between gender and height, thus bias, that

we are trying to detect. See Figure 4.1.

4.3 Unbiased Data Simulation

Unbiasedness does not mean hiring the same number of males and females, or that

those two groups have the same level of strength. Rather, it simply refers to a lack

of “direct” relationship between gbinary and height. gbinary and height can still

be correlated, even significantly correlated, through the pathway of strength or the

background variables. The pathways have been set up in both biased and unbiased
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Figure 4.2: Lack of ”direct” relationship

datasets when we have gbinary to be correlating with all non-height variables. A lack

of “direct” relationship means that, two individuals, when having the same strengths

and same background variables, wouldn’t significantly differ in height when their

genders are different. With this conception in mind, we constructed height using the

same function across genders. Even though height still has strength, age, and race

in its formulas, thus allowing gbinary to correlate with height indirectly through the

pathways, we know that height is an unbiased proxy against gender because they are

not “directly” correlated as male heights and female heights were constructed in the

exact same way. See Figure 4.2.
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Chapter 5

Results

5.1 IAT

5.1.1 Biased Dataset

Since we constructed our height in different ways for different genders, we expect a

significant α1, the coefficient of gender in the second step of the IAT.

First step: See Table 5.1.

Second step: See Table 5.2.

Table 5.1: Summary statistics for first step of IAT in biased dataset

Variable Estimate P-value Significance

strength 0.91522 < 2e− 16 yes

We see that, in our replication of the IAT, we get our expected result of a significant

Table 5.2: Summary statistics for second step of IAT in biased dataset

Variable Estimate P-value Significance

gbinary -5.75418 < 2e− 16 yes

α1. We record the result of α0 = 0.91522 and α1 = −5.75418 for future comparison
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with the betas calculated using the MLR, where the background variables will be

controlled.

5.1.2 Unbiased Dataset

To see the issue of a large sample size, we created an unbiased dataset with a total of

450000 observations. With such a large sample, we expect the coefficient for gbinary

will be significant, even though we exactly replicated the IAT.

As shown in Table 5.3, we indeed obtained a significant coefficient, whose p values is

extremely small, even though there aren’t any “direct” relationships between gender

and height by construction.

We now turn to another unbiased dataset with a sample size of 800. While we know

Table 5.3: Summary statistics for second step of IAT with large sample size in unbi-
ased dataset

Variable P-value Significance

gbinary < 2e− 16 yes

that the true α1 equals zero, we expect the coefficient of gbinary to be significant, due

to a failure to control for other proxies through which gender correlates with height.

First step: see Table 5.4

Second step: see Table 5.5

Table 5.4: Summary statistics for first step of IAT in unbiased dataset

Variable Estimate P-value Significance

strength 0.662335 < 2e− 16 yes

Indeed, the coefficient between gender and height is deemed as significant by the IAT,

even though there aren’t any “direct” correlations. Having witnessed the problems

with the IAT, we now turn to our first proposed method of using the MLR.
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Table 5.5: Summary statistics for second step of IAT in unbiased dataset

Variable Estimate P-value Significance

gbinary 2.04320 < 2e− 16 yes

5.2 MLR

5.2.1 Biased Dataset

Using the same biased dataset as the IAT but controlling for more variables at the

same time thus obtaining more accurate estimates of the coefficients, we expect the

non-zero β1 to be statistically significant. In addition, as explained before with the

Frisch-Waugh-Lovell Theorem, we also expect α0 ̸= β0, and α1 ̸= β1. The summary

statistics of MLR is in Table 5.6.

We indeed obtained a significant β1. In addition, α0 = 0.91522 ̸= 0.8124, and

Table 5.6: Summary statistics for MLR in biased dataset

Variable Estimate P-value Significance

strength 0.8124 < 2e− 16 yes

gbinary -6.188 < 2e− 16 yes

α1 = −5.75418 ̸= −6.188.

5.2.2 Unbiased Dataset

We use the unbiased dataset with a sample size of 800. We expect β1 to be insignifi-

cant. See Table 5.7.

Unexpectedly, gbinary is still deemed with a significant correlation with height.

Table 5.7: Summary statistics for MLR in unbiased dataset

Variable P-value Significance

strength < 2e− 16 yes

gbinary < 2e− 16 yes
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Figure 5.1: Partial correlations in unbiased dataset

Since the construction of each variable is either random or based on other variables

within the dataset, there cannot be any omitted-variable bias. To better understand

the ”direct” relationship between gbinary and height, we plotted the partial correla-

tion scatter plots for the unbiased dataset.

Unlike what we expected, the fitted line does seem to fit the gbinary and height

graph well. We expect the source of error to be coming from the use of p values for

significance testing.

5.3 GLASSO

5.3.1 Biased Dataset

Using the same biased dataset in the MLR, we know that there is a significant condi-

tional correlation between gender and height, since there is a true “direct” relation-

ship. Therefore, we expect the line between gbinary and height to be eliminated in

a relatively late stage.

To demonstrate the weakest and the strongest penalties, our ρ values range from 0.001

to 1000. We expect that all edges would remain when ρ = 0.001, and all edges would

be eliminated when ρ = 1000. In between the two extremes, we have ρ values from

0.05 to 0.325, increasing for 0.025 at a time. See Figure 5.2 after applying GLASSO

onto our biased dataset. As we see from the graphs, the second to last graph still
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Figure 5.2: GLASSO for biased dataset
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has an edge between height and gbinary, showing us that the conditional correlation

between those two variables indeed seems to be significant.

5.3.2 Unbiased Dataset

We used the unbiased dataset with 800 observations. We also used the same ρ values.

Since there is no true “direct” relationship between gender and height, we expect the

edge in between to be eliminated in a relatively early stage. This is because the con-

ditional correlation between gender and height should be less significant, compared

to correlations between other pairs. See Figure 5.3 for our application of GLASSO

onto our unbiased dataset. Indeed, we see that the edge between height and gbinary

got eliminated starting from the third graph, pointing us to the conclusion that the

“direct” relationships between height and gender, if any, is not significant.
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Figure 5.3: GLASSO for unbiased dataset



27

Chapter 6

Conclusion

While accepting Bartlett et al.’s framework of approaching the test of discrimination

as differentiating the correlations between a contested proxy and a protected charac-

teristic into allowed ones and disallowed ones, our paper had a different conception

of what part of the correlation seems to be allowed by a literal read of existing poli-

cies. More specifically, we propose that all “indirect” relationships, including but not

limited to the pathway through the business necessity variable (target), should all

be excluded for us to find the exact “direct” correlation. This is not only because

a real-world system of non-target variables usually have strong interrelationships,

leading the IAT to deem all proxies inappropriate, but also because it seems wrong

to agree with the propositions specifically accusing the use of height to be discrimi-

natory against females when, say, height in fact only discriminates against the poor,

given this example’s imagined high correlation between gender and household income.

Based on our conception of ”direct” correlations, we require all rest of variables to be

controlled. We proposed to use MLR and GLASSO to allow us to control for more

than one variable.

We simulated datasets, one biased and the other unbiased, where bias is defined as

having “direct” correlations between height and gender. Based on our results an-
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alyzing those data, we see that both IAT and MLR tend to categorize height as

discriminatory against gender, whether or not height being actually biased. The re-

sult obtained using the GLASSO method is completely congruent to our expectations,

and thus seems to be a more desired method compared to the IAT and MLR. How-

ever, GLASSO also has a drawback of being dependent on ρ values.

See Table 6.1 for a summary of how the three methods worked.

Table 6.1: Summary of how well the three methods worked

IAT MLR GLASSO

expectedly accused an also not correctly seems to work well,
unbiased proxy to be biased classifying unbiased proxy though heavily

dependent on rho
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Chapter 7

Future Works

While the GLASSO based method works better compared to IAT and MLR, we still

need to create a standardized index for this method and determine a threshold of

the index number as our decision-making rule of the significance test. One way is

to extract the absolute value of the entry of interest in the penalized precision ma-

trix and plot them against incrementally increasing values of ρ. This will give us a

monotonically decreasing function because the absolute value of the entry of interest

in the estimated precision matrix is always decreasing. The index can come from the

integration of this function, meaning to calculate the area under the function, whose

x− axis is the ρ values and y− axis is the absolute values of the entry of interest in

the estimated precision matrix. Yet, to standardize this index, we need to investigate

more closely how this index differs across different datasets. For example, it’s possible

to have an entry of interest to start relatively small in magnitude compared to other

precision matrices calculated based on other training datasets, and yet stays non-zero

even with a big ρ value. Such a case would result into a relatively small area after

integration, compared to other datasets, making it difficult to set a threshold of the

area under the curve.

Another concern is that, due to the nature of protected groups usually being cate-
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gorical variables, and due to the skewed distribution with a long tail commonly seen

in background variables, the multivariate-normal-distribution assumption can almost

never be fulfilled. However, this MND assumption is vital for GLASSO to work since

it is required both for the conditional independence inference and for the calculation

of the loss function (negative of log likelihood function) under the Wishart distri-

bution assumption. We need to investigate statistical methods that don’t require an

MND distribution in inferring conditional independence, as well as to find generalized

log likelihood functions that lifts the MND assumption.

The third technical concern is that there may be omitted variables in the training

data when we apply our methods to real-world datasets. Omitting important vari-

ables, thus not controlling for the significant “indirect” correlations, is harmful to

the subsequent analysis on “direct” relationships, as they would include correlations

through the omitted pathways. Unbiased predictors may be excluded in subsequent

training process as a result.

Finally, we also need to acknowledge the conceptual difficulties with protected char-

acteristics. Our paper only limits its analysis on one specific group, gender. However,

not only are there many other protected groups, such as race and ethnicity, nation-

ality, sexual orientation, etc., but there are also combinations of those protected

features. By controlling for all other variables to extract conditional correlations,

both MLR and GLASSO are unable to account for the social/ legal problem of “in-

tersectionality,” meaning the potential discriminations or other difficulties faced by,

say, an African American woman. In a scenario where enough African American

males and Caucasian females are hired while none of the qualified African American

females were, MLR and GLASSO are bound to fail to detect this more complicated

discrimination.
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Chapter 8

Discussion

Our method is based on allowing “disparate treatment,” which can be ethically and

socially controversial due to the practical issue of “different legally protected groups”

having “different base rates” regarding qualifications.[4] In reality, this difference leads

to the incompatibility between unbiasedness/ accuracy and fairness of the outcome.[4]

To achieve statistical fairness, the algorithm must be made biased to compensate for

differences across groups.[4] The tradeoff between accuracy and fairness makes an un-

biased algorithmic decision that this essay intends to promote to disproportionately

filter out minorities, even though the selection process was based solely on qualifica-

tions. The unfair outcome can be deemed unethical especially after taking systemic

racism/ sexism, etc. into consideration, where the protected groups are de facto lack

of opportunities to develop such qualifications.[12] The result of not being selected,

though by employing the algorithmic tools appropriately, will in turn strip more

opportunities away from the minorities and thus exacerbate the existing structural

racism/ sexism, etc..

Potential solutions include the notion of “algorithmic reparation” that intends for a

fair algorithm, whether through adjusting weights in favor of minorities or “omitting

and eradicating machine learning systems” for certain areas of application.[7] How-



32

ever, by aiming for a fair outcome (broadly defined), the purpose of using machine

learning to eliminate human biases seems to be defeated since the bias for minorities

would be manually instilled.

We propose to apply T.M. Scanlon’s “justification for inequality”[18] that defends the

use of unbiased algorithms in the selection stage that discriminate by qualifications.

Scanlon’s arguments involve both an accurate selection test, referred to as “proce-

dural fairness,” where “the process through which. . . others [being selected]. . . was

procedurally fair,” and the development opportunities, called “substantive opportu-

nity,” where everyone have the “means to do better” at developing their qualifications

before the selection stage.[18] This framework defines the notion of equal opportu-

nities into two separate parts, namely, the selection and the development of merits,

and thus transforms the unbiasedness-and-fairness-tradeoff problem to be no longer

a zero-sum game. An unbiased algorithm would ensure “procedural fairness,” while

social/ political interventions would cover the wider, background-related concern of

“substantive opportunity.”
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Appendix A

IAT Regression Results

Figure A.1: Summary for first step IAT, biased
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Figure A.2: Summary for second step IAT, biased

Figure A.3: Summary for second step IAT, unbiased, large sample size

Figure A.4: Summary for first step IAT, unbiased



35

Figure A.5: Summary for second step IAT, unbiased
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Appendix B

MLR Results
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Figure B.1: Summary for MLR, biased

Figure B.2: Summary for MLR, biased
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