

Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the re-
quirements for an advanced degree from Emory University, I hereby grant to
Emory University and its agents the non-exclusive license to archive, make
accessible, and display my thesis or dissertation in whole or in part in all forms
of media, now or hereafter known, including display on the world wide web. I
understand that I may select some access restrictions as part of the online
submission of this thesis or dissertation. I retain all ownership rights to the
copyright of the thesis or dissertation. I also retain the right to use in future
works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Yibo Wang Date

Generating Traces of Application Behavior Using Generative Adversarial Networks

By

Yibo Wang
Master of Science

Department of Computer Science

Arnold Dorian, Ph.D.
Advisor

Liang Zhao, Ph.D.
Committee Member

Vaidy Sunderam, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the Graduate School

Date

Generating Traces of Application Behavior Using Generative Adversarial Networks

by

Yibo Wang
B.S., Shandong University

Advisor : Arnold Dorian, Ph.D.

Abstract of
A Thesis submitted to the Faculty of the Graduate School

of Emory University in partial fulfillment
of the requirements of the degree of

Master of Science

Department of Mathematics and Computer Science

2021

Abstract

Generally, applications, benchmarks and proxy applications are used for
performance analysis of high-performance computing systems. These system
performance analysis methods can be challenging or difficult to use, and often
application traces are used as workload substitutes. But collecting these traces
can also be difficult or time consuming. Therefore, we study synthetic trace
generation to synthesize application trace that are indistinguishable from real
traces. We propose a machine learning based synthetic data generation method
that utilizes temporal graph generative adversarial networks (TG-GANs).
We consider communication traces as temporal directed graphs with edge
attributes and adjust TG-GAN to generate synthetic data. We use real traces
as inputs and generate synthetic ones in some selected representative time
windows and evaluate the quality of synthetic data using both quantitative
metrics and visualizations. Visualization and quantitative results show that
TG-GAN has the potential to generate high-quality synthetic traces but also
has some limitations.

Generating Traces of Application Behavior Using Generative Adversarial Networks

by

Yibo Wang
B.S., Shandong University, 2019

Advisor : Arnold Dorian, Ph.D.

A Thesis submitted to the Faculty of the Graduate School
of Emory University in partial fulfillment

of the requirements of the degree of
Master of Science

Department of Mathematics and Computer Science

2021

Contents

1 Introduction 1

1.1 Background and Motivation 1

1.2 Synthetic Trace Generation 3

1.3 Contribution and Structure 4

2 Background and Related Work 6

2.1 Data Generation . 6

2.2 Generative Adversarial Networks 8

2.3 Temporal Graph Generative Adversarial Network 9

3 Approach 11

3.1 Applications . 11

3.2 Application Trace . 12

3.3 Workflow . 13

3.3.1 Data Preprocessing . 13

i

3.3.2 Adjusted TG-GAN . 16

3.3.3 Evaluation Methods 17

4 Results and Analysis 20

4.1 Topology and Temporal Features 20

4.2 Communication Intensity . 25

4.3 Synthetic Generation Time . 27

5 Summary and Future Work 30

5.1 Summary . 30

5.2 Future Work . 31

Appendix A - The Complete Set of Visualization Results 32

List of Figures

3.1 The workflow of our work. 14

3.2 Visualizated figures from some randomly selected instances

from LAMMPS dataset, thickness are calculated using logrithm

methods . 16

3.3 The adjusted generator. The adjusted parts are labeled as red. 17

4.1 First row: real data in LAMMPS, from 2200000 to 2203000

instances; Second row: corresponding synthetic data, sampler

parameter is 0.5; Third row: corresponding synthetic data,

sampler parameter is 0.2; . 22

4.2 First row: real data in MILC, from 18000000 to 18003000

instances; Second row: corresponding synthetic data, sampler

parameter is 0.5; Third row: corresponding synthetic data,

sampler parameter is 0.2; . 23

iii

4.3 First row: real data in MINIFE, from 6000000 to 6003000

instances; Second row: corresponding synthetic data, sampler

parameter is 0.5; Third row: corresponding synthetic data,

sampler parameter is 0.2; . 24

4.4 First: heatmap of real data in LAMMPS, from 2200000 to

2203000 instances; Second: heatmap of the corresponding

synthetic data, sampler parameter is 0.5; Third: corresponding

synthetic data, sampler parameter is 0.2; 27

4.5 First: heatmap of real data in MILC, from 18000000 to 18003000

instances; Second: heatmap of the corresponding synthetic

data, sampler parameter is 0.5; Third: corresponding synthetic

data, sampler parameter is 0.2; 27

4.6 First: heatmap of real data in MINIFE, from 6000000 to

6003000 instances; Second: heatmap of the corresponding

synthetic data, sampler parameter is 0.5; Third: corresponding

synthetic data, sampler parameter is 0.2; 28

A.1 First row: real data in LAMMPS, from 300000 to 303000

instances; Second row: corresponding synthetic data, sampler

parameter is 0.5; Third row: corresponding synthetic data,

sampler parameter is 0.2; . 33

A.2 First: heatmap of real data in LAMMPS, from 300000 to

303000 instances; Second: heatmap of the corresponding syn-

thetic data, sampler parameter is 0.5; Third: corresponding

synthetic data, sampler parameter is 0.2; 33

A.3 First row: real data in LAMMPS, from 2200000 to 2203000

instances; Second row: corresponding synthetic data, sampler

parameter is 0.5; Third row: corresponding synthetic data,

sampler parameter is 0.2; . 34

A.4 First: heatmap of real data in LAMMPS, from 2200000 to

2203000 instances; Second: heatmap of the corresponding

synthetic data, sampler parameter is 0.5; Third: corresponding

synthetic data, sampler parameter is 0.2; 34

A.5 First row: real data in LAMMPS, from 4580000 to 4583000

instances; Second row: corresponding synthetic data, sampler

parameter is 0.5; Third row: corresponding synthetic data,

sampler parameter is 0.2; . 35

A.6 First: heatmap of real data in LAMMPS, from 4580000 to

4583000 instances; Second: heatmap of the corresponding

synthetic data, sampler parameter is 0.5; Third: corresponding

synthetic data, sampler parameter is 0.2; 35

A.7 First row: real data in MILC, from 300000 to 303000 instances;

Second row: corresponding synthetic data, sampler parame-

ter is 0.5; Third row: corresponding synthetic data, sampler

parameter is 0.2; . 36

A.8 First: heatmap of real data in MILC, from 300000 to 303000

instances; Second: heatmap of the corresponding synthetic

data, sampler parameter is 0.5; Third: corresponding synthetic

data, sampler parameter is 0.2; 36

A.9 First row: real data in MILC, from 18000000 to 18003000

instances; Second row: corresponding synthetic data, sampler

parameter is 0.5; Third row: corresponding synthetic data,

sampler parameter is 0.2; . 37

A.10 First: heatmap of real data in MILC, from 18000000 to 18003000

instances; Second: heatmap of the corresponding synthetic

data, sampler parameter is 0.5; Third: corresponding synthetic

data, sampler parameter is 0.2; 37

A.11 First row: real data in MILC, from 37000000 to 37003000

instances; Second row: corresponding synthetic data, sampler

parameter is 0.5; Third row: corresponding synthetic data,

sampler parameter is 0.2; . 38

A.12 First: heatmap of real data in MILC, from 37000000 to 37003000

instances; Second: heatmap of the corresponding synthetic

data, sampler parameter is 0.5; Third: corresponding synthetic

data, sampler parameter is 0.2; 38

A.13 First row: real data in MINIFE, from 300000 to 303000 in-

stances; Second row: corresponding synthetic data, sampler

parameter is 0.5; Third row: corresponding synthetic data,

sampler parameter is 0.2; Forth row: corresponding synthetic

data, sampler parameter is 0.05 39

A.14 First: heatmap of real data in MINIFE, from 300000 to 303000

instances; Second: heatmap of the corresponding synthetic

data, sampler parameter is 0.5; Third: corresponding synthetic

data, sampler parameter is 0.2; Forth: corresponding synthetic

data, sampler parameter is 0.05 40

A.15 First row: real data in MINIFE, from 6000000 to 6003000

instances; Second row: corresponding synthetic data, sampler

parameter is 0.5; Third row: corresponding synthetic data,

sampler parameter is 0.2; Forth row: corresponding synthetic

data, sampler parameter is 0.05 41

A.16 First: heatmap of real data in MINIFE, from 6000000 to

6003000 instances; Second: heatmap of the corresponding

synthetic data, sampler parameter is 0.5; Third: corresponding

synthetic data, sampler parameter is 0.2; Forth: corresponding

synthetic data, sampler parameter is 0.05 42

A.17 First row: real data in MINIFE, from 14000000 to 14003000

instances; Second row: corresponding synthetic data, sampler

parameter is 0.5; Third row: corresponding synthetic data,

sampler parameter is 0.2; Forth row: corresponding synthetic

data, sampler parameter is 0.05 43

A.18 First: heatmap of real data in MINIFE, from 14000000 to

14003000 instances; Second: heatmap of the corresponding

synthetic data, sampler parameter is 0.5; Third: corresponding

synthetic data, sampler parameter is 0.2; Forth: corresponding

synthetic data, sampler parameter is 0.05 44

List of Tables

3.1 Descriptions for each component of a communication event . . 12

3.2 Examples of some communication events 13

4.1 Quantitative evaluation for synthetic data 21

4.2 Running time comparison for obtaining real trace and generat-

ing synthetic trace . 29

x

1

Chapter 1

Introduction

1.1 Background and Motivation

Application workloads, including full applications, application proxies and

application traces or profiles, are usually utilized to assess the performance

of hardware and software systems. However, these traditional performance

assessment methods have various limitations. For example, full applications

may be inaccessible. For one thing, some applications are hard to build and

run from scratch. For the other thing, some applications are complex to

understand, classified or export controlled. Also, applications can require long

run time and resources at scale. Application proxies including benchmarks

are simpler to build, run and understand, but still require long run time and

resources. Similarly, collecting real traces or profiles from real application

instances also require long run time and resources. To address these challenges,

2

we propose to generate synthetic traces which are representative of those

collected from real application instances using machine learning methods.

Particularly, we use a machine learning model called generative adversarial

networks (GANs), which is proposed by [7], is a framework of machine learning

methods. Typically, GAN has a generative network to generate synthetic data

and a discriminative network to evaluate data. The training objective of the

generative network is to generate novel synthetic data which will be evaluated

as true data by the discriminative network, while the training objective of

the discriminative network is to distinguish synthetic data from true data.

The contest between the generative network and the discriminative network

helps both networks obtain better performance. GANs have been proven to

be a powerful method to generate high-quality synthetic data.

[16] is a robust approach to generate directed temporal graphs. TG-GAN

can generate time stamp, node, and edge information for random walks

and then assemble random walks to temporal graphs under the learned

topological and temporal dependencies. TG-GAN is well-suited for our

problem formulation, but requires some adaptations as described in Section

3.3.2.

3

1.2 Synthetic Trace Generation

Thesis Statement: We can use Machine Learning, especially GANs (Generative

Adversarial Networks), to generate traces that are representative of those

collected from real application runs.

We consider communication traces as temporal directed graphs with

edge attributes, and adjust temporal graph generative adversarial networks

(TG-GAN) [16] to generate synthetic data. To make TG-GAN more in

line with our problem, we adjust the model to generate [send time, receive

time, send node, receive node, data type, data count] instead of [time stamp,

send node, receive node] in TG-GAN. Generating synthetic communication

traces is a great way to reduce running time and resources consumed by

generating real traces. GANs have also been successfully applied to many

different domains to generate high-quality synthetic data. For example, [3]

proposed medical Generative Adversarial Network (medGAN) to generate

high-dimensional, multi-label discrete variables that represent events in EHRs.

TG-GAN is a strong approach for generating temporal graphs. TG-GAN is

almost perfectly suitable for our case, except for the following points. First,

TG-GAN assumes that there is no time interval between send and receive,

but in our case, the time interval is very important information. Second,

4

application communication profiles carry more information, like data type

and size, than TG-GAN can generate.

Also, we evaluate our approach by comparing the visualized synthetic

data and the corresponding real data in different time windows. And we use

the comparison of three continuous discrete-time graphs of both synthetic

and real data to verify the performance of generated temporal features in

synthetic data.

1.3 Contribution and Structure

Our contributions are:

• an adaptation of the TG-GAN model to generate [send time, receive

time, send node, receive node, data type, data count] instead of [time

stamp, send node, receive node] in TG-GAN.

• a method to generate synthetic application traces for system performance

analysis, which is something no one has been done before.

The rest of this paper is organized as follows. In chapter 2, we first intro-

duce previous research on data generation, generative adversarial networks

and temporal-graph generative adversarial networks. Chapter 3 illustrates

5

detailed methods and experiments, including data preprocessing, our genera-

tive model and evaluation methods. Then in the chapter 4, we present and

analyze the results of our experiments. In chapter 5 we summarize our work

and discuss potential improvements and future work.

6

Chapter 2

Background and Related Work

2.1 Data Generation

Many deep generative models have been proposed during the past years.

Autoregressive model, which is one of the fully observed likelihood-based

deep generative models, is easy to train and evaluate likelihoods; however, it

cannot learn features in an unsupervised way. Latent variable models, like

variational autoencoder[12], are natural for unsupervised learning tasks and

easy to define a complex model using simple building blocks; however, they

are hard to evaluate likelihood and the posterior inference is hard. Generative

adversarial networks, an implicit generative model, are unsupervised and easy

to train. Generative adversarial networks are the state-of-the-art generative

models and have been proven to be effective and powerful in various problems

and domains, such as medical, biology and social science.

7

Many deep graph generation methods have been proposed based on the

above generative models. For example, GraphVAE [14] is one kind of variatinal

autoencoders suitable for generating small graphs; NetGAN [2] is based on

GANs framework and generates synthetic random walks; GraphRNN [15] is

a deep autoregressive model and learns to generate graphs by training on

a representative set of graphs and generates a sequence of node and edge.

All these approaches are used to generate static graphs, while for generating

dynamic graphs, very few methods have been raised. TagGen [17] generates

graphs preserving both the structural and temporal characteristics of the

real data; however, it does not handle continuous-time temporal graphs and

time validity constraints, while TG-GAN [16] has the ability to generate

continuous-time temporal graph with temporal validity. Considering our

problem formulation, we choose TG-GAN as the most appropriate deep graph

generative approach.

8

2.2 Generative Adversarial Networks

Generative adversarial networks are very powerful generation frameworks.

GANs, which is defined by

minGmaxDLGAN(D,G) = EX∼Pdata(x)[logD(x)+EZ∼PZ(Z)[log(1−D(G(z))]],

(2.1)

simultaneously train two models, a discriminator model D and a generative

model G. X is real data while Z is synthetic data. The discriminator is used

to determine whether the input example is from real data or not, while the

generator is used to generate synthetic data that will not be detected by the

discriminator. In other words, the generator is to maximize the probability

of the discriminator making a mistake. This framework is equivalent to a

minmax two-player game.

In particular, the generator generates new instances from scratch, rather

than sample from real data. This feature allows GANs to generate brand

new samples instead of simply sampling from real data, making the generated

date more complex and avoiding duplications. Then the contest between

the generative model and the discriminative model helps both models obtain

better performance. Finally, the generator is gradually corrected until has

9

the ability to generate high-quality data similar as real data.

2.3 Temporal Graph Generative Adversarial

Network

Temporal graph generative adversarial network, also known as TG-GAN, is

a GAN framework for continuous-time graph generation with time-validity

constraints.

In TG-GAN, the generator G utilizes LSTM [10] structure, which is

an artificial recurrent neural network (RNN) architecture using feedback

connections, as basic model, and its output is a sequence of special temporal

walks. The discriminator D has a similar LSTM classifications. And TG-GAN

also uses samplers to extract time budget temporal walk from all the graphs.

We can make use of the sampler parameter to fine-tune the density of the

generated graphs.

Temporal graphs have many different features from static graphs. For

example, temporal graphs have varying length random walks because walks

in temporal graphs have a starting point and an end point. Thus, [16]

split a temporal walk into smaller fixed-length truncated walks and connect

these walks using time budget, which is defined as the time left before the

10

end time of the temporal walk. So in TG-GAN, the generator generates

truncated temporal walks during the training phase and assemble time-

budgeted temporal walks in the inference phase. This technique helps to

ensure the time validity of temporal graphs.

11

Chapter 3

Approach

3.1 Applications

The applications we are using are MiniFE, MILC and LAMMPS. MiniFE

is an implicit finite element mini-application from Mantevo Project [9].

MILC (the MIMD Lattice Computation [4]) and LAMMPS (the Large-scale

Atomic/Molecular Massively Parallel Simulator [13]) are two full applications.

MILC is is a Quantum Chromodynamics (QCD) code for SU(3) lattice gauge

theory. LAMMPS, which is a crucial simulation workload for the U.S. De-

partment of Energy, is a classical and representative molecular dynamics code

provided by Sandia National Laboratories.

http://lammps.sandia.gov

12

3.2 Application Trace

The datasets we are using are MPI (message passing interface) application

communication traces of MILC, MiniFE and LAMMPS collected by Log-

GOPSim [11], which an application simulator based on the popular LogP

model [5]. All MILC, MiniFE and LAMMPS, provided by Sandia National

Laboratories, are collected from execution runs of 128 parallel processes. All

the communication events that took place during an execution instance are

recorded, including send, receive, sendreceive, isend, ireceive, allgather, broad-

cast and allreduce. The first five events are one-to-one communications, while

the others are one-to-all or all-to-one communications. A communication

event can be represented by a tuple {etype, stime, etime, src, dst, msgsize,

type} as described in Table 3.1. Examples are shown in Table 3.2.

Communication Event Description
Symbol Description
etype the type of event
stime the time the event was initiated
etime the time the event was completed

src the set of ids of the sender process
dst the set of ids of the receiver processes

msgsize the size of the message
type the data type of the message

Table 3.1: Descriptions for each component of a communication event

http://lammps.sandia.gov
http://lammps.sandia.gov

13

Communication Event Description
etype stime etime src dst msgsize type
send 1504215489121785 1504215489121789 send process 1 296 1

allgather 1501354915099265 1501354915099289 all processes all processes 1 4

Table 3.2: Examples of some communication events

3.3 Workflow

Figure 3.1 shows the workflow of our work. We first preprocess data by

unifying data format, combining all trace files and splitting and sampling

datasets. Then we use adjusted TG-GAN to generate responding synthetic

data. Finally we evaluate the performance of our model in three perspectives.

All the experiments are executed on a 16G Tesla P100 GPU standard

machine. TG-GAN is publicly available on TG-GAN GitHub repository.

Other packages and libraries used are networkx [8] and tensorflow 1.14.0 [1].

3.3.1 Data Preprocessing

In order to unify the data format, we convert one-to-all and all-to-one com-

munications to one-to-one communications. For example, since on LAMMPS

https://github.com/tongjiyiming/TGGAN
https://github.com/networkx/networkx
https://github.com/tensorflow/tensorflow

14

Figure 3.1: The workflow of our work.

15

dataset allgather event means gathering data from all 128 processes and

distributing the combined data to all 128 processes, we convert allgather to

128 receive event from all processes and 128 send event to all processes.

Besides, for each dataset, originally they have separate trace files for every

process. However, these trace files have some overlapped events. For example,

send event from process one to process two can also be receive event from

process two to process one. Therefore, we combine all trace files as one for

better representing dataset.

Now, we can consider our trace dataset as a directed graph with edge

attributes. Figure 3.2 is visualized from some randomly selected instances

from LAMMPS dataset. Each node represents one process, and each edge

represents the communicate between two processes. The thickness of the edges

represents the communication frequency between two processes. However, the

thickness is hard to tell from the graphs because we use logarithm to make

our graphs clear since the full graphs have 128 nodes and will be very complex.

Therefore, we also utilize heatmaps to illustrate communication frequency

between processes clearly. Our purpose is now converted to generate similar

synthetic graphs as real graphs.

In order to generate synthetic data that can better represent real data,

16

Figure 3.2: Visualizated figures from some randomly selected instances from
LAMMPS dataset, thickness are calculated using logrithm methods

we split real data into different time windows because we assume in different

communication phases, the application trace will have different patterns. For

example, LAMMPS has approximately 5,000,000 instances. So we select three

time windows, which are 300,000 to 303,000 instances, 2,200,000 to 2,203,000

instances and 4,580,000 to 4,583,000 instances. After generation, we compare

synthetic graphs with real graphs in different time windows.

3.3.2 Adjusted TG-GAN

TG-GAN has a generator using LSTM [10] structure to generate truncated

temporal random walks with time stamps, send nodes and receive nodes, a

discriminator to detect whether a random walk is real or not, and samplers

to extract generated random walks. In order to make TG-GAN more in line

with our problem, we adjust the generator as shown in Figure 3.3, where

17

instead of generating [time stamp, send node, receive node] as in TG-GAN,

we generate [send time, receive time, send node, receive node, data type, data

count].

Figure 3.3: The adjusted generator. The adjusted parts are labeled as red.

3.3.3 Evaluation Methods

We evaluate the performance of our method in three perspectives: whether

the synthetic data reflect the topology features of the real data, whether the

synthetic data reflect the intensity of the real data, and how long does it take

to generate synthetic data.

First, we want to evaluate whether the generated traces reflect the com-

munication topology and temporal features of real traces. For one thing, we

evaluate the performance using quantitative methods. We calculate closeness

centrality, betweenness centrality[6], out degree centrality and in degree cen-

18

trality using maximum mean discrepancy. Centrality and degree both identify

the most important vertices in a graph. So we believe these quantitative

methods can describe the topology features of graphs well.

Closeness centrality, defined as

C(x) =
1∑

y d(x, y)
, (3.1)

where d(x, y) is the distance between node x and y, is a measure of centrality.

Betweenness centrality of a node v is defined as

g(v) =
∑

s 6=v 6=t

σst(v)

σst
, (3.2)

where σst is the total number of shortest paths from node s to node t and

σst(v) is the number of those paths that pass through v. These two centrality

metrics are all based on shortest paths. For the other thing, we compare the

visualized network graphs between real data and synthetic data. Through

the visualized graphs, we compare the synthetic graphs with the real graphs

in same time window to ensure that the generated static features are similar

with real data. Also, we evaluate time constraints by comparing the trends of

consecutive discrete-time graphs between synthetic graphs and real graphs.

Second, in order to tell whether the synthesized traces reflect the com-

19

munication intensity of the real traces, we also utilize heatmaps to illustrate

communication frequency between processes.

Third, we also compare running time between obtaining real trace and

generating synthetic trace of the same number of communication events using

our adjusted TG-GAN model.

20

Chapter 4

Results and Analysis

4.1 Topology and Temporal Features

To compare the topology features of real data and synthetic data, we evaluate

model performance using quantitative methods as shown in Table 4.1.

For the synthetic trace generation experiments, we do with nine traces

mapping to different phases from three applications. The closeness centrality

ranges from 0.0037 to 0.2000, with 0.0975 mean and 0.0846 std. The betwee-

ness centrality ranges from 0.0000 to 0.1387, with 0.0335 mean and 0.0433

std. The out degree ranges from 0.0003 to 0.1989, with 0.0810 mean and

0.0858 std. The in degree ranges from 0.0002 to 0.1992, with 0.0798 mean

and 0.0850 std.

All these four evaluation metrics describe graphs in node level and are

all standardized. These evaluation metrics have good results in most of the

21

datasets. Therefore, the quantitative results in Table 4.1 show the topology

similarity between synthetic graphs and real graphs.

Distances Between Real And Synthetic Graphs Using MMD
dataset closeness centrality betweenness centrality out degree in degree

LAMMPS phase 1 0.0792 0.0000 0.0792 0.0792
LAMMPS phase 2 0.0054 0.0000 0.0003 0.0002
LAMMPS phase 3 0.1546 0.0271 0.0256 0.0245
MINIFE phase 1 0.1979 0.0651 0.1989 0.1992
MINIFE phase 2 0.2000 0.0491 0.1985 0.1990
MINIFE phase 3 0.0170 0.0020 0.0032 0.0033
MILC phase 1 0.2000 0.1387 0.1967 0.1891
MILC phase 2 0.0201 0.0197 0.0245 0.0221
MILC phase 3 0.0037 0.0000 0.0019 0.0020

Table 4.1: Quantitative evaluation for synthetic data

Also, we visualize network graphs of both real data and synthetic data

to illustrate the topology features and temporal features. Figure 4.1 is the

visualization of middle phase of LAMMPS dataset. The upper left graph is

the first 1000 instances, the upper middle is the first 2000 instances and the

upper right is all 3000 instances of the selected time window in real data.

And graphs in the second and third row are corresponding synthetic graphs

with different sampler parameters. Figure 4.2 is the visualization of middle

phase of MILC dataset. Figure 4.3 is the visualization of middle phase of

22

Figure 4.1: First row: real data in LAMMPS, from 2200000 to 2203000
instances; Second row: corresponding synthetic data, sampler parameter is
0.5; Third row: corresponding synthetic data, sampler parameter is 0.2;

23

Figure 4.2: First row: real data in MILC, from 18000000 to 18003000 instances;
Second row: corresponding synthetic data, sampler parameter is 0.5; Third
row: corresponding synthetic data, sampler parameter is 0.2;

24

Figure 4.3: First row: real data in MINIFE, from 6000000 to 6003000 instances;
Second row: corresponding synthetic data, sampler parameter is 0.5; Third
row: corresponding synthetic data, sampler parameter is 0.2;

25

MINIFE dataset. The complete results are in the appendix A.

From the visualized network graphs, we find that the synthetic graph have

very similar concentrated nodes as the real graph, especially for middle and

ending phase. For example, in Figure 4.3, the nodes with a greater out degree

are concentrated on the upper right and right below for both synthetic graphs

and real graphs.

Besides, the trends of consecutive discrete-time graphs between synthetic

graphs and real graphs are similar. For example, in Figure 4.1, the degree of

nodes in up right increases for both synthetic graphs and real graphs, showing

that the temporal validity has been maintained in synthetic graphs.

The visualized network graphs show that TG-GAN has the potential

ability to generate synthetic data with similar topology features and temporal

features converging to real data, but more research needs to be done to yield

further refined results.

4.2 Communication Intensity

Since it is hard to directly see communication network intensity from visualized

network graphs, we also utilize the comparison of heatmaps between real and

synthetic graphs. Figure 4.4 is the heatmaps of middle phase of LAMMPS

26

dataset. The left one is the heatmap of real data and the middle and right

ones are the heatmaps of synthetic data with different sampler parameters.

Figure 4.5 is the heatmaps of middle phase of MILC dataset, and Figure 4.6

is the heatmaps of middle phase of MINIFE dataset. The complete results

are in the appendix A.

From the heatmaps, we can see that the synthetic graphs are sparser

and have less communication intensity than the real graphs. Although the

sampler parameter can help fine-tune the density of the generated graphs,

the generated graphs are still very different from real graphs and there is a

need for improvement in this area.

It is a limitation when we want to evaluate system performance through

entire application traces, because full application traces as the real traces

are required for system performance assessment. However, in some cases,

a small window of trace is enough for evaluating specific aspects of system

performance.

We can also see some similar patterns between synthetic and real data

from heatmaps. For example, in Figure 4.4, the middle figure shows the

similar concentration in upper left as in the left figure, which means the

corresponding synthetic data has similar patterns as the real data.

27

Therefore, the heatmaps show that TG-GAN may have the ability to

generate high-quality synthetic graphs with similar communication intensity

as real graphs, and further exploration is needed.

Figure 4.4: First: heatmap of real data in LAMMPS, from 2200000 to 2203000
instances; Second: heatmap of the corresponding synthetic data, sampler
parameter is 0.5; Third: corresponding synthetic data, sampler parameter is
0.2;

Figure 4.5: First: heatmap of real data in MILC, from 18000000 to 18003000
instances; Second: heatmap of the corresponding synthetic data, sampler
parameter is 0.5; Third: corresponding synthetic data, sampler parameter is
0.2;

4.3 Synthetic Generation Time

Besides, we compare the running time for obtaining real trace and synthetic

trace as shown in Table 4.2. The running time is represented by CPU

28

Figure 4.6: First: heatmap of real data in MINIFE, from 6000000 to 6003000
instances; Second: heatmap of the corresponding synthetic data, sampler
parameter is 0.5; Third: corresponding synthetic data, sampler parameter is
0.2;

time, which means wallclock ∗ number of processors. The running time for

generating synthetic trace is calculated by

time =
1

3

∑
i=1,2,3

timei ∗ ni

mi

, (4.1)

where i represents three different time window, timei is running time for each

time window, ni is the number of communication events in real trace and mi

is the number of generated synthetic communication events.

The running time for generating synthetic trace is significantly more than

collecting real trace as shown in Table 4.2. However, for one thing, these

results were generated on a computer with very basic computational power.

An avenue of exploration is to see if TG-GAN can be optimized for better

concurrency to speed up processing times. For another thing, according to

[16], TG-GAN has a constant running time in terms of number of nodes, which

29

means generating synthetic trace using TG-GAN will have an advantage over

collecting real trace when the number of processes increases.

Thence, using TG-GAN to generate synthetic trace will help save time

and resources when the number of processes is large.

Running Time Comparison
dataset real trace (s) syntetic trace (s)

LAMMPS 13,322 71,246
MINIFE 22,189 33,863
MILC 3,940 18,565

Table 4.2: Running time comparison for obtaining real trace and generating
synthetic trace

30

Chapter 5

Summary and Future Work

5.1 Summary

In summary, we studied a machine learning based synthetic data generation

method that adjusts TG-GAN to generate synthetic application trace, which

can be represented by temporal directed graphs with edge attributes. We

evaluated the performance of synthetic data using quantitative metrics, vi-

sualized network graphs, heatmaps and running time. Our quantitative and

visualization results show that while our current approach has the potential to

generate synthetic traces that maintain the topological and temporal features

of the real traces, it does not do a good job for maintaining communication

intensity features. Besides, generating synthetic data has an advantage over

collecting real data when the number of processes increase. In general, the

model is efficient and able to generate synthetic data with similar patterns as

31

the real data. We believe the adjusted TG-GAN has very good potential for

generating high-quality synthetic application trace and help save time and

resources.

5.2 Future Work

While our TG-GAN approach shows a lot of promise, we can take more

aspects into account to improve model performance and further enrich the

experiments.

First, we can do more experiments to tune parameters. Second, we can

utilize more methods for evaluation. For example, we can run synthetic data

through simulator like LogGOPSim [11] to see the performance compared with

real data to evaluate performance from HPC perspective. Third, to further

enrich our experiments, we can also compare TG-GAN with other graph

generation methods, like NetGAN, GraphVAE, GraphRNN and TagGen.

Last, in our evaluation phase, we consider continuous-time graphs as several

snapshots to evaluate the temporal constraint features of the synthetic data.

However, we can also directly evaluate continuous-time graphs by reporting

the mean of specific graph measures, such as mean degree, based on a set of

graph samples.

32

Appendix A

The Complete Set of Visualization

Results

Here we present all of the network graph and heatmap visualizations for

LAMMPS, MILC and MINIFE synthetic data generated as a part of this

study.

33

Figure A.1: First row: real data in LAMMPS, from 300000 to 303000 instances;
Second row: corresponding synthetic data, sampler parameter is 0.5; Third
row: corresponding synthetic data, sampler parameter is 0.2;

Figure A.2: First: heatmap of real data in LAMMPS, from 300000 to 303000
instances; Second: heatmap of the corresponding synthetic data, sampler
parameter is 0.5; Third: corresponding synthetic data, sampler parameter is
0.2;

34

Figure A.3: First row: real data in LAMMPS, from 2200000 to 2203000
instances; Second row: corresponding synthetic data, sampler parameter is
0.5; Third row: corresponding synthetic data, sampler parameter is 0.2;

Figure A.4: First: heatmap of real data in LAMMPS, from 2200000 to 2203000
instances; Second: heatmap of the corresponding synthetic data, sampler
parameter is 0.5; Third: corresponding synthetic data, sampler parameter is
0.2;

35

Figure A.5: First row: real data in LAMMPS, from 4580000 to 4583000
instances; Second row: corresponding synthetic data, sampler parameter is
0.5; Third row: corresponding synthetic data, sampler parameter is 0.2;

Figure A.6: First: heatmap of real data in LAMMPS, from 4580000 to 4583000
instances; Second: heatmap of the corresponding synthetic data, sampler
parameter is 0.5; Third: corresponding synthetic data, sampler parameter is
0.2;

36

Figure A.7: First row: real data in MILC, from 300000 to 303000 instances;
Second row: corresponding synthetic data, sampler parameter is 0.5; Third
row: corresponding synthetic data, sampler parameter is 0.2;

Figure A.8: First: heatmap of real data in MILC, from 300000 to 303000
instances; Second: heatmap of the corresponding synthetic data, sampler
parameter is 0.5; Third: corresponding synthetic data, sampler parameter is
0.2;

37

Figure A.9: First row: real data in MILC, from 18000000 to 18003000
instances; Second row: corresponding synthetic data, sampler parameter is
0.5; Third row: corresponding synthetic data, sampler parameter is 0.2;

Figure A.10: First: heatmap of real data in MILC, from 18000000 to 18003000
instances; Second: heatmap of the corresponding synthetic data, sampler
parameter is 0.5; Third: corresponding synthetic data, sampler parameter is
0.2;

38

Figure A.11: First row: real data in MILC, from 37000000 to 37003000
instances; Second row: corresponding synthetic data, sampler parameter is
0.5; Third row: corresponding synthetic data, sampler parameter is 0.2;

Figure A.12: First: heatmap of real data in MILC, from 37000000 to 37003000
instances; Second: heatmap of the corresponding synthetic data, sampler
parameter is 0.5; Third: corresponding synthetic data, sampler parameter is
0.2;

39

Figure A.13: First row: real data in MINIFE, from 300000 to 303000 instances;
Second row: corresponding synthetic data, sampler parameter is 0.5; Third
row: corresponding synthetic data, sampler parameter is 0.2; Forth row:
corresponding synthetic data, sampler parameter is 0.05

40

Figure A.14: First: heatmap of real data in MINIFE, from 300000 to 303000
instances; Second: heatmap of the corresponding synthetic data, sampler
parameter is 0.5; Third: corresponding synthetic data, sampler parameter is
0.2; Forth: corresponding synthetic data, sampler parameter is 0.05

41

Figure A.15: First row: real data in MINIFE, from 6000000 to 6003000
instances; Second row: corresponding synthetic data, sampler parameter is
0.5; Third row: corresponding synthetic data, sampler parameter is 0.2; Forth
row: corresponding synthetic data, sampler parameter is 0.05

42

Figure A.16: First: heatmap of real data in MINIFE, from 6000000 to 6003000
instances; Second: heatmap of the corresponding synthetic data, sampler
parameter is 0.5; Third: corresponding synthetic data, sampler parameter is
0.2; Forth: corresponding synthetic data, sampler parameter is 0.05

43

Figure A.17: First row: real data in MINIFE, from 14000000 to 14003000
instances; Second row: corresponding synthetic data, sampler parameter is
0.5; Third row: corresponding synthetic data, sampler parameter is 0.2; Forth
row: corresponding synthetic data, sampler parameter is 0.05

44

Figure A.18: First: heatmap of real data in MINIFE, from 14000000 to
14003000 instances; Second: heatmap of the corresponding synthetic data,
sampler parameter is 0.5; Third: corresponding synthetic data, sampler
parameter is 0.2; Forth: corresponding synthetic data, sampler parameter is
0.05

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,

Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath

Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek

Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,

Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay

Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-

tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:

Large-scale machine learning on heterogeneous systems, 2015. URL

http://tensorflow.org/. Software available from tensorflow.org.

[2] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan

Günnemann. NetGAN: Generating graphs via random walks. In Jennifer

45

http://tensorflow.org/

46

Dy and Andreas Krause, editors, Proceedings of the 35th International

Conference on Machine Learning, volume 80 of Proceedings of Machine

Learning Research, pages 610–619. PMLR, 10–15 Jul 2018. URL http:

//proceedings.mlr.press/v80/bojchevski18a.html.

[3] Edward Choi, Siddharth Biswal, Bradley A. Malin, Jon Duke, Wal-

ter F. Stewart, and Jimeng Sun. Generating multi-label discrete elec-

tronic health records using generative adversarial networks. CoRR,

abs/1703.06490, 2017. URL http://arxiv.org/abs/1703.06490.

[4] MILC Collaboration. Mimd lattice computation (milc) collaboration

home page. Information available at http://physics.indiana.edu/

sg/milc.html.

[5] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik

Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten

Von Eicken. Logp: Towards a realistic model of parallel computation. In

Proceedings of the fourth ACM SIGPLAN symposium on Principles and

practice of parallel programming, pages 1–12, 1993.

[6] Linton C. Freeman. A set of measures of centrality based on betweenness.

http://proceedings.mlr.press/v80/bojchevski18a.html
http://proceedings.mlr.press/v80/bojchevski18a.html
http://arxiv.org/abs/1703.06490
http://physics.indiana.edu/sg/milc.html
http://physics.indiana.edu/sg/milc.html

47

Sociometry, 40(1):35–41, 1977. ISSN 00380431. URL http://www.jstor.

org/stable/3033543.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-

erative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,

N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural In-

formation Processing Systems, volume 27, pages 2672–2680. Curran As-

sociates, Inc., 2014. URL https://proceedings.neurips.cc/paper/

2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[8] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring

network structure, dynamics, and function using networkx. In Gaël

Varoquaux, Travis Vaught, and Jarrod Millman, editors, Proceedings of

the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA USA,

2008.

[9] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Wil-

lenbring, H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R

Keiter, Heidi K Thornquist, and Robert W Numrich. Improving perfor-

http://www.jstor.org/stable/3033543
http://www.jstor.org/stable/3033543
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

48

mance via mini-applications. Sandia National Laboratories, Tech. Rep.

SAND2009-5574, 3, 2009.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural Computation, 9(8):1735–1780, 1997.

[11] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. Loggopsim:

Simulating large-scale applications in the loggops model. In Proceed-

ings of the 19th ACM International Symposium on High Performance

Distributed Computing, HPDC ’10, page 597–604, New York, NY, USA,

2010. Association for Computing Machinery. ISBN 9781605589428. doi:

10.1145/1851476.1851564. URL https://doi.org/10.1145/1851476.

1851564.

[12] Diederik P Kingma and Max Welling. Auto-encoding variational bayes,

2014.

[13] Steve Plimpton. Fast parallel algorithms for short-range molecular dy-

namics. Journal of Computational Physics, 117(1):1–19, 1995. ISSN 0021-

9991. doi: https://doi.org/10.1006/jcph.1995.1039. URL https://www.

sciencedirect.com/science/article/pii/S002199918571039X.

[14] Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards gen-

https://doi.org/10.1145/1851476.1851564
https://doi.org/10.1145/1851476.1851564
https://www.sciencedirect.com/science/article/pii/S002199918571039X
https://www.sciencedirect.com/science/article/pii/S002199918571039X

49

eration of small graphs using variational autoencoders, 2018. URL

https://openreview.net/forum?id=SJlhPMWAW.

[15] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure

Leskovec. Graphrnn: A deep generative model for graphs. CoRR,

abs/1802.08773, 2018. URL http://arxiv.org/abs/1802.08773.

[16] Liming Zhang, Liang Zhao, Shan Qin, and Dieter Pfoser. Tg-gan:

Continuous-time temporal graph generation with deep generative models,

2020.

[17] Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. A data-

driven graph generative model for temporal interaction networks. In

Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery amp; Data Mining, KDD ’20, page 401–411, New

York, NY, USA, 2020. Association for Computing Machinery. ISBN

9781450379984. doi: 10.1145/3394486.3403082. URL https://doi.org/

10.1145/3394486.3403082.

https://openreview.net/forum?id=SJlhPMWAW
http://arxiv.org/abs/1802.08773
https://doi.org/10.1145/3394486.3403082
https://doi.org/10.1145/3394486.3403082

	Introduction
	Background and Motivation
	Synthetic Trace Generation
	Contribution and Structure

	Background and Related Work
	Data Generation
	Generative Adversarial Networks
	Temporal Graph Generative Adversarial Network

	Approach
	Applications
	Application Trace
	Workflow
	Data Preprocessing
	Adjusted TG-GAN
	Evaluation Methods

	Results and Analysis
	Topology and Temporal Features
	Communication Intensity
	Synthetic Generation Time

	Summary and Future Work
	Summary
	Future Work

	Appendix - The Complete Set of Visualization Results

