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Abstract 

A Study of Option Pricing Models – 

Lognormal or Hyperbolic Levy ? 

By Chen Chen 

This paper is an investigation into two option pricing models: widely-used Black-Scholes 

model and one of its augmented extensions – hyperbolic Levy model. Firstly, we have a detailed 

discussion about the celebrated Black-Scholes model. However, clearly there are many 

deficiencies in Black-Scholes assumptions. In order to refine Black-Scholes model, Eberlein and 

Keller(1995) introduce the hyperbolic Levy motion and claim that the new pricing model can 

provide a better valuation of derivative securities. Following suggestions in that paper, we want 

to replicate their claims. We perform several statistical tests and show that the hyperbolic 

distributions can be well fitted to the financial data. This observation suggests us to replace the 

geometric Brownian motion by the hyperbolic Levy process and build the hyperbolic Levy 

pricing model. After an introduction into the Levy process theory, we attempt to numerically 

calculate the value of options according to the hyperbolic Levy model. But it turns out that the 

price implied by the hyperbolic model cannot be approximated as usual by regular method. This 

upsetting outcome leads us to look for explanations for the failure of computation, and according 

to Eberlein, Keller, and Prause (1998) Fast Fourier Transform should be able to efficiently 

compute the integral. Due to the limited time constraint, we leave it to interested readers. In 

conclusion, the hyperbolic Levy motion is a better process to fit into empirical data, but it 

demands an advanced numerical method to compute. Though the observed data is a poorly fit for 

Black-Scholes, its tractability (elegant solution forms, numerical calculation and other 

implications) trumps the realism of the hyperbolic Levy model.    
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1. Introduction     

Many of the innovations in modern finance have become increasingly dependent 

on the complex techniques of mathematics, to some extent that problems in financial 

theories are now driving research in mathematics. Modern option pricing theories are 

often considered as the subject of “rocket science” and the most mathematically 

complicated field among all applied areas of finance. In the financial industry most of 

option valuation models are rooted in a celebrated option pricing formula developed by 

Fischer Black and Myron Scholes. However, the Black-Scholes formula is far from being 

perfect. This paper will firstly examine the evolution of Black-Scholes pricing formula, 

and then test the distributional assumptions upon which the Black-Scholes model is based. 

After analyzing historical stock prices, it is not hard to find out that the normal 

distribution assumed by Black and Scholes is a poor fit for the underlying stock returns. 

Consequently we need to explore alternative distributional assumptions for the returns on 

stocks. After performing a few statistical tests, it becomes clear that the class of 

hyperbolic distributions can be well fitted to the empirical data. Based on this observation, 

we study the Esscher transform of the process with hyperbolic distribution and derive the 

option pricing formula based on this hyperbolic Levy motion. According to the derived 

formula, we numerically calculate the value of some stock options. Surprisingly we see 

that the price of a stock option based on hyperbolic Levy motion cannot be calculated as 

usual by quadratic methods. This upsetting result leads us to look for the reasons why the 

quadratic computation method fails, and we suggest that Fast Fourier Transform should 

be a powerful tool to evaluate the numerical calculation. In summary, while the normal 

return distribution assumption cannot be accurately justified, the Black-Scholes formula 
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provides an elegant way to compute the option price; the hyperbolic Levy theory is a 

more precise and accurate model but it demands more sophisticated techniques to handle.      

 Fundamentally, this paper deals with option pricing. In order to develop an 

advanced mathematical model to fairly price an option, we need to become familiar with 

some necessary financial jargons and see how the stock underlying financial derivatives 

moves. 

 

1.1 Preliminaries  

  In finance, a derivative is a security whose value is dependent upon or derived 

from one or more underlying assets. The derivative itself is merely a contract between 

two parties that specifies conditions (especially the expiration the dates, the values of the 

underlying assets, and notional amount) under which payoffs are to be made between the 

parties. Among many financial derivative products, we will mainly focus on a specific 

kind of derivative – stock option. There are two simple types of stock option: call option 

and put option. A call option gives the holder the right to buy the underlying stock by a 

certain date for a pre-specified price. A put option gives the holder the right to sell the 

underlying stock by a certain date for a pre-specified price. The pre-specified price is 

known as strike price; the certain date in the contract is known as the expiration date. 

American options can be exercised at any time up to the expiration date whereas 

European options can be exercised only on the expiration date. For example, today’s date 

is 16th March 2012 and on 20th April 2012 the holder of the European call option may 

purchase one XYZ share at strike price K specified in the contract. 
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 In order to gain an intuitive idea for the price of this option, one can imagine on 

the expiration date 20th April 2012, XYZ share price S might be either above or below the 

strike price K. Let’s say K = 100. If the XYZ share price S is 120 on 20th April 2012, then 

the holder of the option would be able to purchase the asset for only 100 and get an 

immediate profit of 20. In this situation, the call would have a value of 20 on the 

expiration date. On the other hand, if the XYZ share price S is only 90 on 20th April 2012, 

then no one would want to exercise this call option and the call would be worthless at that 

time. We can see from the simple example that the value of a call on the expiration date 

is max{S-K,0}, where K is the strike price and S is the underlying stock price. For 

notation ease, we will write max{S-K, 0} as (S-K)+ . This value is often known as the 

intrinsic value of a call option. Intrinsic value can be seen as the current exercise value. 

Apart from its intrinsic value, a call has time value. Time value is the value the option has 

in addition to its intrinsic value. In other words, it is the premium an investor would pay 

over its intrinsic value, based on its potential to increase in value before expiring.   

Now we have known that a call option’s value can be decomposed into two parts: 

intrinsic value and time value. The next step is to consider what factors would affect a 

call’s price and the boundary for the call’s price. Since in this paper we mainly deal with 

non-dividend paying European calls, we assume there will be no dividend payment for 

the underlying stock throughout the lifetime of a call option. We claim the following 

factors will affect the price of a call option: the current stock price S0, the strike price K, 

the time to expiration T, the volatility of the stock price σ, and the risk-free interest rate r. 

We will examine these factor one after another. If a call option is exercised at expiration, 

the payoff will be the amount by which the stock price is more than the strike price. 
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Though we cannot know the future share price in advance, it seems reasonable that the 

higher price today, the more likely the higher price in the future. Thus a call is more 

valuable if the current stock price increases and the strike price decreases. Now consider 

the effect of the expiration date and the volatility of stock price. The longer life a call, the 

more uncertain we are about the underlying stock prices. The same analysis holds for the 

volatility of the stock price: higher volatility, higher uncertainty. It means the chance that 

the stock will do very well or very badly increases. The owner of a call benefits from 

stock prices increase but has limited downside risk in the event of price decreases as the 

worst case for a call owner is to lose the price of the option. Hence calls price increases 

as expiration time and volatility increase. The risk-free interest rate affects the price of an 

option in a less clear-cut way. As interest rate goes up, the expected return required by 

investors from the stock will increase. In addition, the present value of any future cash 

flow received by the holder of the option decreases. The combined impact of these two 

effects is to increase the value of a call. The following table summarizes the above 

analysis.  

Variable Current 

Stock Price 

Strike Price Time to 

expiration 

Volatility Risk-free 

rate 

European 

Call 

+ - + + + 

(+ indicates that an increase in the variable causes the option price to increase; - indicates 

that an increase in the variable causes the option price to decrease) 

Knowing that a call’s option price is affected by strike price, current stock price, 

expiration date, volatility, and risk-free rate, i.e.  C = f (S0, K, T, σ, r), we now move to 
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   S0 

uS0 

dS0 

derive upper and lower bounds for a call option. This derivation will present us a simple 

but important concept arbitrage. We claim the stock price is an upper bound to the option 

price: C ≤ S0. If this relation were not to hold, a person could easily make a riskless profit 

by buying the stock and selling the call option. Regardless whether the buyer of the call 

exercise the option or not, this person will at least have a sure cash inflow of C – S0. A 

trading strategy like this involves no negative cash flow at any probabilistic or temporal 

state and a positive cash inflow at least one state. In a complete market, the market prices 

cannot allow for profitable arbitrage. If an arbitrage exhibits, everyone will want to take 

advantage of this opportunity and drive the price back to the arbitrage-free state. By using 

similar analysis, we can establish a lower bound for the price of a European call option 

on a non-dividend-paying stock is S0 – Ke-rT. In this way, we have established a range for 

a call’s option price, i.e.  S0 – Ke-rT ≤ C ≤ S0 .           

 To conclude the preliminary section, we will present a simple one-period 

binomial asset-pricing model to price a call option. More importantly it provides us a 

powerful tool to understand arbitrage pricing theory and risk-neutral valuation that 

underlie in the later part of this paper. The simple binomial situation is described as the 

following graph:  

          

 

 

                                                                     
Figure 1: One‐period Binomial Model
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Suppose that current stock price is S0 and at expiry the stock can be either moved 

up to uS0 or moved down to dS0. If the stock the price moves up to uS0, the payoff from 

the call is fu; if the stock the price moves down to dS0, the payoff from the call is fd. To 

rule out arbitrage, we must assume d<1+r<u. In turns out that a relatively simple 

argument can be used to price the option in this one-period binomial model. We set up a 

portfolio consisting of a long position in ∆ shares of stock and a short in one option. If the 

stock goes up, the value of the portfolio at expiry is uS0∆ - fu. If the stock goes down, the 

value of the portfolio becomes dS0∆ - fd. The two are equal when uS0∆ - fu = dS0∆ - fd. In 

other words, ∆ൌ ୳ି	ୢ

୳ୗି	ୢୗ
	ሺ1.1.1ሻ. In this case, the portfolio is riskless and, to rule out 

arbitrage, it must earn the risk-free interest rate. That is to say, the present value of the 

portfolio must be equal to the cost of setting up the portfolio S0∆ - C.  

It follows that S0∆ - C = (uS0∆ - fu )e
-rT. Substituting from (1.1.1),  

we obtain ܥ ൌ 	S ቀ
୳ି	ୢ

୳ୗି	ୢୗ
ቁ ሺ1 െ ்ሻି݁ݑ  ௨݂݁ି்  

or C = ݁ି்ሾ ௨݂  ሺ1 െ ሻ ௗ݂ሿ  (1.1.2) where  ൌ ೝିௗ

௨ିௗ
 (1.1.3) 

The option pricing formula in (1.1.2) does not involve the probabilities of the 

stock price moving up or down. For instance, the option will be worth the same when the 

probability of an upward movement is 0.5 as the value when the stock moving up 

probability is 0.7. The reason is that we are valuing an option in the terms of the price of 

the underlying stock. The probabilities of up or down in the future are already taken 

account into the stock price: there is no need to consider them again.  
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Now we will introduce a very crucial principle in pricing derivatives known as 

risk-neutral valuation. Returning to equation (1.1.2), the parameter p can be interpreted as 

the probability of an up movement and 1-p is the probability of down movement. Under 

this interpretation,  C = ݁ି்ሾ ௨݂  ሺ1 െ ሻ ௗ݂ሿ  shows that the call price is the expected 

present value of its payoff under up and down scenario probabilities p and 1-p. It means 

we can price the option as if investors are indifferent to its risk. That is to say investors 

do not require compensation for assuming risk nor are they willing to pay extra for risk. 

Under the risk-neutral world the expected return on any investment is the risk-free rate. 

Again, note p and 1-p are not actual probabilities of up and down movement. We only 

interpret them as if p and 1-p are up and down movement probabilities. This important 

principle will be discussed in other models again in the later part of this paper.    

 1.2 Classical Modeling of Stock Movements 

As mentioned above, we can simply model stock prices as if the price movement 

at each step is governed by a one-step binomial tree, and the one-step model can be 

generalized to a multistep binomial tree. In this way, we can treat each binomial step 

separately and work back from the end of the life of the option to the beginning to derive 

today’s option price. However, the binomial model is not very accurate to capture the 

movements of the stock price in real life. It is entirely possible at each step there are more 

than two possible outcomes for the stock price. It is necessary for us to look for a better 

way to mathematically describe the evolution the stock price.  

Stochastic process is introduced here to develop an accurate way to model the 

stock movements. Any variable whose value changes over time in an uncertain way is 
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said to follow a stochastic process. Similar to random variables, stochastic processes can 

also be classified as continuous variable or discrete variable. In a continuous-variable 

process, the variable can take any value within a certain range, whereas in a discrete-

variable process, the values of the variable are restricted to some possible values. In the 

rest of this section, we will present a step-by-step approach to understand the classical 

continuous-time stochastic process that describes the evolution of stock price. 

1.2.1 The Markov Property and Martingale  

A Markov process is a process where only the current value of a variable is 

relevant for predicting the future. The mathematical definition is as follows:  

Def  The process X is a Markov chain if it satisfies the Markov condition: 

ঐሺܺ	 ൌ ܺ|	ݏ ൌ ,ݔ ଵܺ ൌ ,ଵݔ …	, ܺିଵ ൌ ିଵሻݔ ൌ 	ঐሺܺ	 ൌ ିଵܺ|	ݏ ൌ  	ିଵሻݔ

݊	݈݈ܽ	ݎ݂  ,ݏ	݈݈ܽ	݀݊ܽ	1 ,ଵݔ … , ିଵݔ ∈ ܵ	  (1.2.1) 

If a variable is following a Markov process, then the past history of the variable 

and the way how if emerged from the past to the present are irrelevant. Stock prices are 

usually assumed to follow a Markov process. For instance, supposing that GOOGLE 

stock price is $300 now and the stock price follows a Markov process, our predictions for 

the future should not be affected by the path followed by the price in the past. This 

Markov property of stock prices is consistent with the weak form of market efficiency 

hypothesis. It states that all the information about historical prices of is contained in 

present price of the stock. If the weak for of market efficiency were not true, technical 

analysis (i.e. interpreting charts of the past history of stock prices) could be used to 
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predict and beat a market. In fact there is very little evidence that they are able to make 

above-average returns.  

 Another important concept that we will use is martingale in the later part of the 

paper. Martingale is basically defined as follows:  

Def   A sequence { : 1}nS n  is a martingale with respect to the sequence { : 1}nX n  if, 

for all 1n  :  

 (a). ܧ|ܵ| ൏ ∞ 

(b) 1 1( | ,..., )n n nE S X X S                                                                      (1.2.2) 

Suppose nS represents one’s capital at time n. Martingale means conditional on 

past information upon time n, one will expect no change in his present capital. In other 

words, a martingale has no tendency to rise or fall as its value at the current time is the 

expected value in next period. In the case of stock prices, in the real markets stock prices 

should have a tendency to go up and have a higher rate of return than the risk-free rate in 

order to compensate investor’s risk (i.e. E(Sn+1) > Sn). Thus stock prices in the real world 

are semi martingales. However, in the later part of the paper, we will see under a new 

world – risk neutral world, how we will make the discounted stock price a martingale and 

use it to price options.     
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1.2.2 Wiener Processes 

 A particular type of Markov stochastic process with a mean change of zero and a 

variance rate of 1.0 per year is called Wiener process. The Wiener process is 

characterized by the following two properties:  

Supposing a variable z follows a Wiener process, then  

PROPERTY 1 The change ∆z during a small period of time ∆t is  

∆z = ߳√∆t  (1.2.2)   

where ߳ has standard normal distribution Z (0,1). 

PROPERTY 2 The values of ∆z for any tow different short intervals of time, ∆t, 

are independent.  

From these two properties, it is easy to see that ∆z itself has a normal distribution  

N (0 ,∆t) and that z follows a Markov process.  

Now consider the change in the value of z during a relatively long period of time 

T, i.e. ݖሺܶሻ െ ሺ0ሻ. It can be seen as the sum of ∆z in N small time intervals, whereܰݖ ൌ

	்
∆୲

. Thus ݖሺܶሻ െ ሺ0ሻݖ ൌ ∑ 	߳√∆t
ே
ୀଵ   (1.2.3), where the 	߳ (݅=1, 2, 3…, ܰ) are 

distributed Z (0,1).  

By the additive property of normal distribution, it immediately follows that 

ሺܶሻݖ െ  . N (0, ܶ)	ሺ0ሻ~ݖ
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The mean change per unit time for a stochastic process is known as the drift rate 

and the variance per unit time known as the variance rate. The basic Wiener process,  , 

that has been defined as in (1.2.2) with a drift rate of zero and a variance rate of 1.0. Now 

we will define a generalized Wiener process for a variable in terms of dz as dx ൌ adt 

bdz	ሺ1.2.4ሻ,	where a and b are constants. Implicit in (1.2.4) is that x has an expected drift 

rate of a	per unit of time and a variance rate of bଶ.  

To illustrate these two processes, we make a simulation with a = 0.3 and b =1.5. 

 

 

 

 

 

 

 

 

 

 

 

 

TIME 

Value of variable, x 

Wiener process, ݀ݖ 

Generalized Wiener process, 

ݔ݀ ൌ ݐ݀ܽ   ݖܾ݀

ݔ݀ ൌ ݐ݀ܽ

Figure 2: Simulation of Wiener Process 
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1.2.3 The Classical Model for the Stock Price 

 In this section we will discuss the stochastic process usually assumed for the price 

of a non-dividend-paying stock. Seemingly a stock price follows a generalized Wiener 

process. However, this is a misrepresentation of the evolution of stock prices. A key 

aspect of stock prices is that the expected percentage return required by an investor from 

a stock is independent of the stock’s price. For instance, if an investor requires a 10% 

annual expected return when stock A’s price is $20, then fixing other conditions constant, 

he will also require a 10% annual expected return for stock A even when stock A’s price 

is $50. Thus a reasonable assumption is that the expected drift divided by the stock price, 

µ, is constant. Mathematically, if the coefficient of  ݀ݖ is zero, then this assumption 

implies that
ௗௌ

ௌ
ൌ μ݀ݐሺ1.2.5ሻ. More specifically, if S0 and ST are the stock price at time 0 

and T, then by integrating both sides of (1.2.5) we get ்ܵ ൌ ܵ݁ஜ (1.2.6). It means that 

when there is no uncertainty, the stock price grows at a continuously compounded rate of 

µ per unit of time. Of course, there is uncertainty in reality. Similarly it is reasonable to 

assume the variability of the percentage return during a short length of time, ∆t, is the 

same regardless of the stock price. Adding this assumption to our previous model, it leads 

to the model  

݀ܵ
ܵ
ൌ μ݀ݐ   ሺ1.2.7ሻ	ݖ݀ߪ

Equation (1.2.7) is the most widely used and classical model of stock price 

behavior. The variable μ is the stock’s expected rate of return and the variable ߪ is the 

volatility of the stock price. (1.2.7) represents the stock price process in the real world 

and in a risk-neutral world, μ equals the risk-free rate r. Observing that stock prices are 
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restricted to discrete values (e.g. it can only take multiples of a cent), we need to adapt 

the continuous model (1.2.7) to a discrete case. So the discrete time version of the model 

is   

 	

∆ܵ
ܵ
ൌ μ∆ݐ   ሺ1.2.7ሻ																										t∆√߳ߪ

and 
∆ௌ

ௌ
	~ N (μ∆ߪ, ݐଶ∆t) (1.2.8) 

  

1.2.4 Ito’s Lemma 

 As mentioned in the preliminaries, the price of a stock option is a function of the 

underlying stock’s price and time. In other words, the price of an option is a function of 

the stochastic variables: underlying stock and time. There is an important result about the 

behavior of functions of stochastic variables. It is known as Ito’s lemma and paves the 

way for our derivation of Black-Scholes formula in the next section. 

 

 :ࢇࢋ	࢙ෝᇱ࢚ࡵ 

 Suppose that the value of a variable x follows the ݐܫොᇱݏ process 

ݔ݀ ൌ ܽሺݔ, ݐሻ݀ݐ  ܾሺݔ,  ሺ1.2.9ሻ					ݖሻ݀ݐ

where ݀ݖ is a Wiener process and a and b are functions of x and t. The variable x has a 

drift rate of a and a variance rate of ܾଶ . ݐܫොᇱݏ	݈݁݉݉ܽ shows that a function G of x and t 



14 
 

follows the process ݀ܩ ൌ ቆ
G

x




ܽ 
G

t




 ଵ

ଶ

2

2

G

x




ܾଶቇ ݐ݀ 
G

x




 ݖ݀ ሺ1.2.10ሻ where	ݖܾ݀

is the same Wiener process as in (1.2.9). In other words, G also follows an ݐܫොᇱݏ process, 

with a drift rate of 

 G

x




ܽ 
G

t




 ଵ

ଶ

2

2

G

x




ܾଶ
 

and a variance rate of  

2
2G

b
x

 
  

 

We leave out the proof of this lemma as it is not our main focus in this paper.  

As in (1.2.7), we already have ൌ μS݀ݐ   Applying the lemma to it, we get that the . ݖ݀ܵߪ

process followed by a function G of S and t is  

ܩ݀ ൌ ቆ
G

S




μS 
G

t





1
2

2

2

G

S




ଶܵଶቇߪ ݐ݀ 
G

S




 ሺ1.2.11ሻ								ݖ݀ܵߪ

Note that both S and G are affected by the same underlying source of 

uncertainty݀ݖ. This will play an important role in the derivation of the Black-Scholes 

formula. 
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2. The Black-Scholes Model 

 The model of stock price behavior used by Black and Scholes is the model we 

presented in the introductory section. In this section we will cover how we can get the 

celebrated Black-Scholes formula.  

 2.1 Lognormal Property of Stock Prices 

 To develop the Balck-Scholes model, firstly we need to know the lognormal 

property of stock prices. If we define the function G described in section 1.24 as ܩ ൌ ln ܵ, 

it is followed from (1.2.11) that 
2

2
dG dt dz

 
 

   
 

 ( 2.1.1) 

Since  and ߪ are constant, it indicates that ܩ ൌ 	 ln ܵ follows a generalized Wiener 

process. The constant drift rate is 
2

2

  and constant variance rate is 2 . Therefore  

2
2

0

ln ~ [( ) , ]
2

TS
N T T

S

            (2.1.2) 

In addition, it can be shown shat the expected value E (்ܵ) = ܵ݁ஜ  (2.1.2*) 

 The lognormal property of stock prices provides useful information on the 

probability distribution of the continuously compounded rate of return earned on a stock 

between times 0 and T. If we define the continuously compounded rate of return per year 

between times 0 and T as x, then ்ܵ ൌ ܵ݁୶. So 
0

1
ln TS

x
T S

 . It means   

    
2

2~ [( ) , / ]
2

x N T T
               (2.1.3) 
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 2.2 Black-Scholes Model’s Ideas And Assumptions 

 Before deriving the Black-Scholes formula, it might be better for us to consider 

the assumptions and ideas lying behind the model. Moreover, in the later part of this 

paper, we will see some assumptions cannot be justified by empirical data and we need to 

explore alternative models.   

The nature of the arguments in Black-Scholes model is basically the same as the 

no-arbitrage arguments we used to value stock options in the preliminary section where 

stock price movements are binomial. We set up a riskless portfolio comprised of the 

options and the underlying stock and argue that if the portfolio is riskless, then by no-

arbitrage the rate of return on the portfolio over a short period of time must be the same 

as the risk-free interest rate. Note that here we say the portfolio is riskless for only a short 

period of time. In other words, it remains riskless only for an instantaneously short period 

of time. To remain riskless, the portfolio must be rebalanced constantly.  

The assumptions made in the Black Scholes model are as follows: 

1. The stock price follows the process developed (1.2.7) 

2. The short selling of securities with full use of proceeds ipermitted. 

3. Transactions costs or taxes do not exist. All securities are  perfectly divisible. 

4. There are no dividend payments for the underlying stock during the life of the 

option. 

5. No arbitrage opportunities exist in the market. 
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6. The risk-free rate of interest, r, is constant. 

As we will see in the later part of this paper, we will re-examine some 

assumptions and change some assumptions to reach different models.  

2.3 Black-Scholes formula’s derivation 

With the assumptions stated above, now we will see how we can reach the 

celebrated Black-Scholes formula. If the stock price follows 	

݀ܵ
ܵ
ൌ μ݀ݐ   ሺ1.2.7ሻ	ݖ݀ߪ

 Suppose that f is the price of a call option whose underlying stock is S. so f must 

be a some function of S and t. By the Ito’s lemma presented in 1.2.4, we get  

      
2

2 2
2

1

2

f f f f
df S S dt Sdz

S t S S
  

    
        

   (2.3.1) 

It turns out that we can construct a portfolio consist of the stock and the option so 

that the Wiener process ݀ݖ is eliminated. The portfolio is as follows: short one option and 

long an amount of 
f

S




shares stock. Define  as the value of the portfolio: 

f
f S

S


   


(2.3.2). 

Thus the change in the value of the portfolio during the time interval ∆ݐ is given 

by 
f

f S
S


    


   (2.3.3) 

From the discrete version of equation (1.2.7), we can rewrite (2.3.3) as 
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2

2 2
2

1
( )

2

f f
S t

t S
 

    
 

   (2.3.4) 

Since equation (2.3.4) does not involve z , the noise or uncertainty variable, the 

portfolio must be riskless during time t . By the no-arbitrage assumption listed in the 

preceding section, the portfolio must instantaneously earn the corresponding short-term 

risk-free interest rate. It follows that r t   (2.3.5), where r is the risk-free interest 

rate. 

Plugging (2.3.4) into (2.3.5), we get  

2
2 2

2

1
( ) ( )

2

f f f
S t r f S t

t S S
  

    
  

 

so that  

2
2 2

2

1

2

f f f
rS S rf

t S S
  

  
  

 (2.3.6) 

We call equation (2.3.6) the Black-Scholes differential equation. It has many 

solutions, corresponding to all the different options that can be defined with S as the 

underlying asset. A particular solution can be obtained when the values of the option at 

the boundaries of possible values of S and t are specified. In the case of a European call 

option, the key boundary condition is f = (S-K)+, when t = T. 

Another approach to solve (2.3.6) is from the important risk-neutral valuation 

principle. Looking at equation (2.3.6) again, it does not involve the expected return µ and 

all the variables involved in (2.3.6) are independent of risk preferences. Since risk 

preferences do not enter the equation, they cannot affect its solution. Any risk preference 
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can be used to solve the Black-Schole differential equation. So why not assume investors 

are risk-neutral.   

Recalling from our discussion about binomial model in the preliminary section, 

we conclude that to rule out arbitrage, the call price is the expected present value of its 

payoff under up and down scenario probabilities p and 1-p, i.e. C = ݁ି்ሾ ௨݂ 

ሺ1 െ ሻ ௗ݂ሿ. Moreover it can be shown that if we are under risk-neutral world, i.e. 

measuring all probabilities in terms of risk-neutral measure, then we can obtain the 

financial derivative’s price by taking the expectation under this new probability 

distribution and discounting the expected value to the present. This fact is the immediate 

result from the following theorem and its corollary. 

Theorem (First Fundamental Theorem of Asset Pricing) If a market model has 

a risk-neutral probability measure (i.e. a)   and 
~

 are equivalent, and b) under 
~

 the 

discounted stock price is a martingale), then it does not admit arbitrage. 

Corollary: the price at time t of any security that pays V(T) at time T is 

~1
( ) [ ( ) ( )]

( )
V t E D T V T

D t
   (2.3.7) , where the discount process is defined as 

0
( )

( )
t
R u du

D t e
 (2.3.8) and the interest rate process ( )R t is adapted. 

In the case of an European call option, that is, 

ܿ ൌ ݁ି்ܧ෨ሾሺܵ െ   ሻାሿ      (2.3.9)ܭ

where ܧ෨  denotes the expected value in a risk-neutral world.  
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To obtain the explicit form for the Black-Scholes formula implied by risk-neutral 

method in (2.3.9), we need to use the following useful result. 

Lemma: If V is log-normally distributed and the standard deviation of ln ܸ is w, 

then  

ሾሺܸܧ െ ሻାሿܭ ൌ ሺܸሻܰሺ݀ଵሻܧ െ  ሺ2.3.8ሻ					ሺ݀ଶሻܰܭ

where	݀ଵ ൌ
୪୬ቂಶ

ሺೇሻ
಼

ቃା௪మ/ଶ

௪
 , ݀ଶ ൌ

୪୬ቂಶ
ሺೇሻ
಼

ቃି௪మ/ଶ

௪
 and E denotes the expected value. 

 

This lemma can be shown by directly calculating the expectation. In the 

calculation we need t0 transform the normal distribution of  ln V into the standardized 

normal distribution and then perform the integration.  

  Under the stochastic process assumed by Black Scholes, S is log-normal and from 

(2.1.2*) under risk-neutral measure we have ܧ෨ሺ்ܵሻ ൌ ்ܵ݁ and it can also be shown that 

the standard deviation of ln	ܵ ்is σ T .From the above lemma, equation (2.3.7) implies 

that   

0 1 2( ) ( )rTc S N d Ke N d            (2.3.9) 

where 	݀ଵ ൌ
୪୬ቂௌబ ൗ ቃ	ା	ሺାఙమ/ଶሻ்

ఙ√்
, and ݀ଶ ൌ

୪୬ቂௌబ ൗ ቃ	ା	ሺି	ఙమ/ଶሻ்

ఙ√்
 

This is the celebrated Black-Scholes formula. 
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3. Testing Black-Scholes Assumptions 

There is little doubt that Black-Scholes model makes the most important 

breakthrough in the past few decades in finance and is applied on a large scale in 

everyday trading operation. The stock price in the Black-Scholes model is assumed to 

move in the way described by (1.2.7). This implies that  
2

2

0

ln ~ [( ) , ]
2

TS
N T T

S

   

( 2.1.2) as described in section 2. In other words, the continuously compounded rate of 

return on a stock is assumed to follow a normal distribution. However, it turns out this 

assumption is poorly fitted into empirical data. 

Here we examine one year’s stocks price of GOOGLE(GOOG), IBM and Bank of 

America Corporation(BAC). As the model is to consider non-dividend stocks, if there is a 

dividend payment, then we need to adjust the price by adding the dividend back. Thus 

allowing for the dividend payment, we record observed daily adjusted close prices, 

denote as iS , and calculate	ݑ ൌ ln ቀ ௌ
ௌషభ

ቁ ݅	ݎ݂ ൌ 1,2, … , ݊.  

a. Quantile-Quantile plots 

A qualitative yet powerful tool to test the goodness of fit is quantile-quantile plots. 

a Q-Q plot is a probability plot, which is a graphical method for comparing two 

probability distributions by plotting their quantiles against each other. The following 

figures show normal QQ plots for the returns of GOOG, IBM and BAC. 
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Figure 3: BAC Normal Q‐Q Plot

Figure 4: GOOG Normal Q‐Q Plot 
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Obviously, the data deviate from the theoretical straight line and there exists large 

discrepancy between the empirical distribution of the returns of underlying stock and 

normal distribution.  

 b. Kurtosis and Skewness  

 Another standard way of testing for normality is to compute certain moment 

functions of sample data and to make comparison between the empirical results and the 

theoretical values for a normal distribution. Here we measure kurtosis and skewness of 

the sample. If we denote the sample moment of order k by ݉ ൌ
ଵ


∑ ሺݔ

ୀଵ െ  , ݇^ഥሻ	ݔ

then the test statistics are given by ܭ ൌ ݉ସ
݉ଶ

ଶൗ െ 3 and ܵ ൌ ݉ଷ
݉ଶ

ଷ/ଶൗ . The following 

table summarizes the test results. 

Figure 5: IBM Normal Q‐Q Plot 
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 BAC GOOG IBM 

Kurtosis (K) 6.3093 8.7923 2.1455 

Skewness (S) 0.4491 -0.1840 0.2250 

 

 From the above table, the kurtosis and skewness for all these three stocks are far 

away from zero, which is the theoretical value under the assumption of normality. Again, 

for all these three stocks, the hypothesis that kurtosis and skewness are both zeros is 

rejected at the 1% level.  

 c. Cramér–von Mises criterion 

 In statistics, the Cramér–von Mises test is a useful tool for testing the goodness of 

fit of a cumulative distribution function F1 compared to a given empirical distribution 

function F2. The advantage of Cramér–von Mises is that it can compare the empirical 

distribution not only with normal distribution but also with any other specified 

distribution. In the hyperbolic package of R (2.13.2 version), the built-in Cramér–von 

Mises test function will estimate parameters from the financial data and perform the p-

value analysis. By testing in R, we obtain the following result: 

 BAC GOOG IBM 

P-value for CvM 

normality test 

4.17E-10 6E-8 4.4E-7 
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 Expectedly, the p-value for all these three stocks is extremely small and we are 

highly confident to reject the null hypothesis that the continuously compounded rate of 

return on stocks is normally distributed.  

  

d. Implied Volatility 

 Besides the lognormal distributional assumption, the other assumptions used in 

Black-Scholes do not hold either. In the Black-Scholes formula, one cannot directly 

observe the volatility of the stock prices. One way to obtain the volatility is to estimate it 

from a history of the stock price. On the other hand: given the current market price of the 

option, we can calculate the volatility implied by the market price and the corresponding 

pricing formula and we call this volatility implied volatility. That is to say, in Black-

Scholes case, implied volatility is the volatility that makes the option value calculated by 

the Black-Scholes formula equal to the market price of that option. If the assumptions 

except from the lognormal distribution in Black-Scholes were correct, then we should 

obtain the same volatilities for different options with the same expiry. However the 

following figure shows this is not true. We plot the implied volatility against strike price 

for the above three stock call options. Obviously it is not a straight line and look like a U-

shaped smile. 
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Figure 6: BAC implied volatility 

Figure 7: IBM implied volatility 
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(All option prices are obtained on March 20th and they will be expired on April 20th)  

 

 

 

 

 

 

 

 

 

Figure 8: GOOG implied volatility 
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4. Modeling Stock Price by Discontinuous Lévy Process   

One may be curious why the normal distribution assumed by Black-Scholes is 

poorly fitted into the empirical data. Looking back the stock modeling section (1.2.3) 

again, it is not hard to find that Wiener process (also called Brownian motion, we will use 

these two terms interchangeably in the rest of the paper) explained there fails to capture a 

key characteristic of stock prices. Stock prices are definitely not continuous. They are 

only allowed to take discrete values. Thus the proposed log normal distribution of total 

returns by Wiener process is expected to deviate far away from the empirical data. In 

order to devise a model that is well fitted into empirical result, it is necessary for us to 

introduce pure jump processes that capture the discrete-value taking characteristic of 

stock price. But how do we model jumps and what jumps should we model? We believe 

there are two types we need to consider:  
Small jumps term describes the day-to-day jitter that causes minor fluctuations in 

stock prices; 

Big jumps term describes large stock price movements caused by major market 

upsets arising from, e.g., earthquakes, etc. 

 It turns out that the hyperbolic Levy process provides a fairly accurate model to 

capture the above jumps and its assumed distribution of return is well fitted into data. 

4.1 The Hyperbolic Density and Empirical Data  

 

 In this section, we will introduce the hyperbolic distribution and see how 

empirical data are fitted. As mentioned above, the hyperbolic Levy motion will be used to 
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model the movement of stock prices and it is a stochastic process associated with the 

hyperbolic distribution. Hence we need firstly to know the basics about the hyperbolic 

distribution and see whether it is a good fit to the data. The name hyperbolic derives the 

fact that their log-density being a hyperbola. The parameterization of the hyperbolic 

density is given by 

  

 
2 2

2 2
( ) ( )

( , , , ) 2 2
1

( )
2 ( )

x xf x e
K

    
   

 

   
    




     (4.1.1) 

where K1 denotes the Modified Bessel function of  second kind with index 1.  It has four 

parameters µ,  >0, and 0 ≤ |β| < α. Roughly speaking, α and β are parameters that 

determine the shape;  and µ are scale and location parameters. The following graph 

shows the difference between the hyperbolic pdf and the normal pdf with the same mean 

and standard deviation on the same plot.  
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Clearly, the hyperbolic distribution allows for heavier tails and decreases slower 

than the normal distribution. Thus it is more suitable to model phenomena where large 

values are more likely to occur than is the case for the normal distribution, and is 

expected to be better fitted to the financial data than the normal distribution.   

 

Now consider the stocks we examined in the previous section and see if the 

hyperbolic distribution provides a better fit.  

a. Quantile-Quantile plots 

Again, we plot the Q-Q plots for the three stocks analyzed above:  

Hyperbolic 

Normal 

Figure 9: Normal PDF V.S. Hyperbolic PDF 
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Figure 10: BAC Hyperbolic Q-Q Plot 

 

Figure 11: GOOG Hyperbolic Q-Q Plot 
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Figure 12: IBM Hyperbolic Q-Q Plot 

 

 

Obviously, the data are very close to the hyperbolic distribution. The deviation 

from the theoretical straight line is very small and it is a much better fit than the normal 

distribution. 

b. the Cramér–von Mises test 

As with the test for normality, we perform the Cramér–von Mises test again for 

the hyperbolic distribution. The following table summarizes the result:  
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 BAC GOOG IBM 

p-value Cramér–von 

Mises test for 

hyperbolic 

distritution 

>0.25 >0.25 >0.25 

 

The p-value is so large that it is extremely unlikely that we obtain the hyperbolic 

distribution just by chance. With no doubt that the hyperbolic distribution provides a 

better fit into the data.  

Given the empirical results on stock returns where in most cases β = µ = 0, we 

will mainly concentrate on the symmetric centered cases in the later part of the paper. As 

a consequence, using 2 2     for notational ease and 0  , (4.1.1) can be written 

as   

2
,

1

1
( ) exp( 1 ( ) )

2 ( )

x
hyp x

K  
  

           (4.1.2) 

4.2 Lévy Processes  

The Lévy processes, which include both Poisson process and Brownian motion as 

special cases, were a class of stochastic processes to be firstly used to investigate 

trajectories. This modeling process can be borrowed into study of finance and turns out it 

plays a crucial role in describing stock price movements.  

 

Def A process X is called a Lévy process if it has the following properties: 
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1. Independent increments: for any u ≤ s < t, t sX X is independent of uX   

2. Stationary increments: for any s,t >0, s t sX X  has the same distribution as 

0tX X  

3.  Continuity in probability: s tX X in probability as s tends to t. 

 

 From the above definition, it is clear that the most common example of a Lévy 

process is Brownian motion, where t sX X is independently normally distributed with 

mean of zero and variance of t s . There are other examples like Poisson processes, 

compound Poisson processes, the Cauchy process, gamma processes and the variance 

gamma process.   

One important result that has a direct impact on option pricing is the expression of 

the characteristic function of tX , often known as Lévy-Khintchine formula: 

( )
1[ ] t uE iuX e   (4.2.1)  

where t≥0 and   has the following representation: 

2
2

| | 1 | | 1

( ) (1 ) ( ) (1 ) ( )
2

iux iux

x x

u u iau e k dx e iux k dx


 

         (4.2.2) where a is called 

the drift rate of for the Lévy process and k(dx) is a measure on R 0such that 

 infሺ1, xଶሻ	kሺdx) < and called the Lévy measure of the process X. 

Observing that there is a one-to-one correspondence between Lévy processes and 

characteristic functions described as above. Then we can start build our process with 
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equation (4.2.2) by specifying different characteristic function for X1. The following 

building experiment can show that why Lévy processes appear as a wide natural class of 

candidates for stock prices. Beginning with formula (4.2.2), we build three processes 

(1)X , (2)X , and (3)X as follows:  

1. Let (1)
t tX at W     where tW  is a Brownian motion. The characteristic function of 

(1)X  is simple and equal to 2 2
1

1
( )

2
u iau u   . 

2. (2)

1

tN

t i
i

X Y


 where N is a Poisson process (The detail about Poisson process can be 

found at Chapter 11 of Shreve’s Stochastic Calculus for Finance II)  the number whose 

intensity λ = 
| | 1

( )
x

k dx

 and iY  are i.i.d with distribution  

| | 1

( )
x

k dx

 . We call (2)

tX  the 

Compound Poisson Process. It’s characteristic function is 2 ( )ue , where 

2

| | 1

( ) ( 1) ( )iux

x

u e k dx


    

3. (3)
tX is obtained as limit of compounded Poisson processes. 

With these built processes, if we look at back again at (4.2.2), it is easy to see that any 

Lévy process can be written as (1) (2) (3)X X X X    (4.2.3). The decomposition 

exhibited in (4.2.3) illuminates the fact that (1)X , (2)X  , and (3)X  are semi martingales, 

so is X. As it is known that stock prices are semi martingales under the real probability 

measure P and it is natural to choose Lévy processes candidates for stock prices. The 

above discussion shows that in order to get continuity for the process X, the components 

(2)X and (3)X need to be zero. That is to say the process is reduced to the geometric 

Brownian motion. Hence, the important property: 
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The only Lévy process with continuous paths is the geometric Brownian motion. 

  From previous sections it is clearly seen that if we start with a continuous Lévy 

process (i.e. geometric Brownian motion) to describe the stock movements, we obtain 

normality. But the empirical test shows the empirical data deviates far from lognormal 

return.  Expressed differently, it means that it is necessary to introduce discontinuous 

Lévy processes whenever deviations from normality are clearly exhibited by the data. 

 

4.3 Hyperbolic Lévy Motion model  

 As mentioned in section 4.1, the hyperbolic distribution is well fitted into the data. 

Thus it’s natural to come up with the idea that we should generate some random process 

taking the hyperbolic distribution into Levy process. In fact, according to Eberlein and 

Keller (1995), by the characteristic function defined in (4.2.2), we can generate a Lévy 

process tX such that the distribution of 1X is given by (4.1.1). This process tX is called 

hyperbolic Levy motion depending on parameters (α,β,µ, ) and we will use a 

standardized tX  with β=µ=0, whose density function is given by (4.1.2), to analyze the 

underlying stock price movements. 

To describe the dynamic movement of stock price, we want to obtain a similar 

equation like (1.2.7). Moreover now the model should involve the hyperbolic Levy 

motion so that the assumption deficiencies in the Black-Scholes can be fixed or at least 

can be more or less improved. Indeed, if we use the hyperbolic Lévy motion to model 

stock price, the mathematical equation is as follows: 

   t t t tdS S dt S X       (4.3.1),  
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where tX is a standardized hyperbolic Lévy motion and tS   is the left side limit. 

However, the solution for (4.2.1) may take negative values with positive probability. 

Thus we need to work out a way to circumvent this problem. According to Eberlin, 

Keller, and Prause(1998), the reformulated equation is  

 

  ( 1 )tX
t t t t t tdS S dt S X S e X  

         (4.3.2) 

Motivated by Ito’s formula, we can solve (4.2.2) and obtain the following solution: 

   

0 exp( )t tS S t X    (4.3.3) 

Apparently, this process can no longer take negative values.  

 

 4.3.1 Esscher Transform 

 Having setting up a clear mathematical description of the underlying stock, we 

now consider how to price the option in the hyperbolic model. The modern technique to 

perform option pricing is the martingale method as we touched in previous sections. Here 

we introduce The Esscher transform, which provides a powerful tool to value financial 

derivatives.  

For a probability density function f(x), let h be a real number such that 

( ) ( )hxM h e f x dx




   (4.3.4) exists and non-zero. As a function in x, 
( )

( ; )
( )

hxe f x
f x h

M h


(4.3.5) is a probability function, and it is called the Esscher transform (parameter h) of the 

original distribution. Note that the original pdf ݂ሺݔሻ is related to the new pdf ݂ሺݔ; ݄ሻ by
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( )

hxe

M h
. Since the exponential function is positive, the modified probability measure is 

equivalent to the original probability; that is to say, both probability measures agree with 

which events have probability zero. Now consider the Esscher transform (parameter h) of 

the process{ ( )}X t . It is basically the same as the Esscher transform of a single random 

variable described above. The difference is that now we have a new variable	ݐ. The 

analogy is as follows: 
( , )

( ; ) ( , ; )
( , )

hxe f x t
f x h f x t h

M h t
   and

( , )
( ; ) ( , ; )

( , )

M x h t
M x h M x t h

M h t


  .  

According to Gerber and Shiu (1994), the Esscher transform is an efficient 

technique to value option if the log of the underlying stock price follows a certain 

stochastic processes with stationary and independent increments. That is to say, let S(t) 

denotes the price of a non-dividend stock at time t. Suppose there is a stochastic process 

{ ( )}X t  such that ܵሺݐሻ ൌ ܵሺ0ሻ݁ሺ௧ሻ,								ݐ  0.	 According to the first fundamental asset 

pricing theorem, we want the discounted stock price process to be a martingale under 

some probability measure. In other words, in order to apply the Esscher transform to 

value derivatives, we seek ݄∗ such that 0{ ( )}rt
te S t
 is a martingale with respect to the 

probability measure corresponding to ݄∗. In particular,  

*

(0) [ ( )]h rtS E e S t ,  where r is the risk free rate.  

To solve	݄∗, we need the following fact.  

Fact:    ( , ; ) ( ,1; )
t

M x t h M x h   (4.3.6)  

Thus 1 ൌ ݁ି௧ܧ
∗
ൣ݁ሺ௧ሻ൧ ൌ ,ሺ1ܯ ;ݐ ݄∗ሻ. From (4.3.6), we will have ݁ ൌ ;ሺ1,1ܯ ݄∗ሻ or 
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ݎ																																										 ൌ ln	ሾܯሺ1,1; ݄∗ሻሿ																						ሺ4.3.7ሻ 

Therefore, if we can find Esscher parameter ݄∗ in (4.3.7), then the price of the option is 

simply calculated as the expectation of the discounted payoffs with respect to the 

equivalent martingale measure. Clearly, both the assumed Wiener process in the Black-

Scholes model and the process described in the hyperbolic Levy motion model have 

analytical expression for their moment generating functions. Hence we can apply the 

Esscher transform technique to price option price for both Black-Scholes and hyperbolic 

models. For a European call option, using the Esscher transform arguments described 

above we obtain, 

 

*[ ( ) ]h rTC E e S K     (4.3.6) 

 where *h is the Esscher parameter such that 0( )rt
t te S

  is a martingale. In the Black-

Scholes case S is modeled as (1.2.7) whereas in the hyperbolic model S is modeled as 

(4.3.2).   

 4.3.2 Applying Esscher Transform to the Hyperbolic Model 

In the case of the hyperbolic model, if we know ܯሺ1,1;  ሻ for the hyperbolic∗ߠ

distribution, then it’s easy to solve	݄∗.  By the definition of the Esscher transform of 

stochastic process, we have ܯሺ1,1; ሻ∗ߠ ൌ ெሺఏ∗ାଵሻ

ெሺఏ∗ሻ
.  

 

Lemma: The moment-generating function of the hyperbolic distribution is given by

2 22 2
1

2 2 2 2
1

( ( )
( ) ,| |

( ( )

x K x
M x e x

K x

    
 

    

 
  

  
 (4.3.7) 
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In the symmetric centered case with   , 

2 2
1

2 2
1

( ( )
( ) ,| |

( ) ( )

K x
M x x

K x

  
  


 


  (4.3.8) 

Plug (4.3.8) back into (4.3.7), it is easy to get	݄∗ as the solution of       

2 2 2 2 2 2
1

2 2 22 2 2
1

( ( 1) ) 1 ( 1)
ln ln

2( )

K
r

K

     
    

   
 

            

 

Therefore, we can obtain the option price as in (4.3.6) by taking the expectation of the 

discounted payoff under the risk neutral measure. The expectation under 
*hP can be 

written explicitly as  

 

* *
0 ( ; 1) ( ; )rT

hyp T TC S f x dx e K f x dx
 

 
 

      (4.3.9) 

where 0ln( / )K S  and *( ; )tf x  is the density of the distribution of tX under the 

equivalent martingale measure.   

 

  

4.4 Numerical Approximation 

 

Having known the option pricing formula for hyperbolic Levy motion explicitly, 

it is natural to consider applying (4.3.9) to the empirical data and see how these values 

differ from the market and Black-Scholes prices.  
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Methodology to compute (4.3.9):   

The general goal is to re-write (4.3.9) as an explicit integral with all the 

parameters that can be obtained from empirical data, and then approximate its value in 

MATLAB  

1. *( ; )tf x   is related to the original function 
( )

( ; )
( )

x
t

t t

e f x
f x

M






  (4.4.1), where M is 

moment-generating function of the hyperbolic distribution and t is the trading days. 

2.   According to Elberlin and Keller (1995), the moment generating function of the 

hyperbolic distribution is given by 
2 2 2

1

2 2 2
1

( )
( )

( )

K u
M u

K u

 
  





  (4.4.2) where 

2 2     ; α, β are estimated from empirical data. Hence the denominator in (4.4.1) 

can be numerically computed if we know θ. 

 

3. We obtain the value * by numerically solving the equation 

2 2 2 2 2 2
1

2 2 22 2 2
1

( ( 1) ) 1 ( 1)
ln ln

2( )

K
r

K

     
    

   
 


 (4.4.3) where r is the given daily risk-

free interest rate 

4. ( )tf x  is also given as 
0

1
( ) cos( ) ( )t tf x ux u du





   (4.4.4), where  is the characteristic 

function of the hyperbolic distribution represented as 

2 2 2
1

2 2 2
1

( )
( ; , )

( )

K u
u

K u

   
  





 (4.4.5) and by the property of characteristic 
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functions, we know how to handle the sums of independent variables and can obtain 

( ) ( )t
t u u   (4.4.6) 

 

5. From the above four steps, we will be able to re-write the first term in (4.3.9) as 

*

0

( 1)
0

*
ln( / ) 0

cos( ) ( )
( 1)

t

K S

S e
ux u dudx

M




 

 

   (4.4.7).  In the same way we can obtain 

the expression for the second term in (4.3.9). All the parameters in (4.4.7) can either be 

obtained from the empirical data or solved from the equations given in the previous four 

steps.  

 

Implementation: we write a few lines in the MATLAB script to numerically approximate 

(4.4.7). 

 

The code is as written in the next page:  
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function result = hyper_update( delta, alpha, beta, r_annual, s0, T, t) 

 

zeta= delta.*sqrt(alpha.^2-beta.^2); 

r = (1+r_annual).^(1/365)-1; 

fun_theta=@ (u)log((besselk(1,sqrt(zeta.^2-

delta.^2.*(u+1).^2)))./besselk(1,sqrt(zeta.^2-delta.^2.*u.^2)))-

1/2*log((zeta.^2-delta.^2.*(u+1)^2)/(zeta.^2-delta.^2.*u.^2))-r; 

theta_star = fzero(fun_theta,0.05); 

phi= @(u) 

zeta/besselk(1,zeta).*besselk(1,sqrt(zeta.^2+delta.^2.*u.^2))./sq

rt(zeta.^2+delta.^2.*u.^2); 

M = @(u) zeta/besselk(1,zeta).*besselk(1,sqrt(zeta.^2-

delta.^2.*u.^2))./sqrt(zeta.^2-delta.^2.*u.^2); 

integrnda = @(x,y) 

s0./M(theta_star+1).*exp((theta_star+1).*y).*(1/pi).*cos(x.*y).*p

hi(x).^t; 

integrndb = @(x,y) exp(-

r*t)*T./M(theta_star).*exp((theta_star).*y).*(1/pi).*cos(x.*y).*p

hi(x).^t; 

a = quad2d(integrnda,0,100,log(T/s0),10); 

b = quad2d(integrndb,0,100,log(T/s0),10); 

result = a - b; 

 

end 
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However, the outcome is very frustrating. We cannot obtain any reasonable 

values for the hyperbolic option values. It is because the behavior of the integrand is 

bizarre and the regular quadratic approximation method may not be applied to evaluate 

the integral.   The above graph is the plotted integrand.  

Looking back at the expression of ( )tf x  in (4.5.4), if we plot the density function 

using the parameters obtained from empirical data (the German stock Deustche Bank 

from Oct 2nd 1989 to Sep 30th 1992) against time t (in trading days) and parameter θ, we 

can see that it does not look like a regular pdf it is supposed to be. Are the equations 

wrong? Of course not. We examine every equation in previous sections carefully. It is 

because we cannot numerically approximate 
0

1
( ) cos( ) ( )t tf x ux u du





   in a regular way. 

Thus our plot is an unfaithful representation of the equations because of the unsuccessful 

numerical integration. The following graphs are the plotted graphs for ( )tf x     

Figure 13: Integrand of (4.4.7) 
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Figure 14: The graph in the special case, where  = σ = 1, shows 

what the density function  ( )tf x should look like 

x

t 

( )tf x  
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One possible reason for the strange behavior exhibited by the hyperbolic model is 

that though the hyperbolic Levy motion stochastic variables are identically independently 

distributed and additive, we do not know the distributional form of the sum of these 

hyperbolic increments and may lead to some strange result. In contrast, the normal 

distributional assumption of returns does not present any problem in calculation because 

Figure 15: The graph in the case, where  = 0.3258 and σ = 0.003, 

shows the density function  ( )tf x behaves abnormally 
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we know the sum of normal random variables still follow a normal distribution and we 

have enough tools to deal this familiar distribution. 

 

For reader’s interest, according to Carr(1999), the Fast Fourier Transformation 

may be a useful technique to perform the numerical approximation when there is an 

analytical expression for the characteristic function of the risk-neutral density. It may 

circumvent the issues come across by the quadratic method we used above. 
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5.Conclusion  

 

 Let us summarize what we have discussed above. We investigate the basic models 

for option pricing - binomial, Black-Scholes, and the hyperbolic model. Each model has 

its own advantage. Binomial is simple and presents the basic idea for further investigation; 

Black-Schole can be seen as a continuation of binomial model and shows how risk 

neutral valuation works in the analysis of derivatives; the hyperbolic has an excellent fit 

to empirical data and replaces the geometric Brownian motion with pure jump process to 

better model the evolution of stock prices. It seems that the hyperbolic model is better 

than the other models as the observed distribution of returns is well fitted and it still has 

closed form solution. However, after a careful examination of the hyperbolic option 

pricing formula, we find the hyperbolic model cannot be computed as easily as Black-

Scholes. Due to the limited time constraint, we suggest the reader can try the Fast Fourier 

Transformation and it may provide an accurate approximation to the hyperbolic price. 

Though these models are completely different from one another, risk-neutral valuation 

can be used to value all of them. More generally, we discover that the Esscher transform 

is a powerful tool to value financial derivatives. Any Esscher transform of a stochastic 

process gives a new probability measure for the process; if we can find the parameter of 

the Esscher transform such that the discounted value of each underlying security is 

martingale under the new probability measure, then the price of  a derivative is simply 

calculated as the expectation, with respect to the equivalent martingale measure, of the 

discounted payoffs. In summary, the underlying tradeoff between distributional 

assumptions is between tractability (closed-form solutions, and other implications) and 
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more accurate description of stock price movements. Even though we understand that the 

observed data is not log normal, the tractability of the geometric Brownian motion trumps 

the realism of other processes. As in our case, the implied prices by the hyperbolic model 

cannot be easily computed and require advanced computation whereas the Black-Scholes 

price can be easily to be computed. 
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