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Abstract

Correlating Structure with Dynamics in Supercooled Liquids Using Machine
Learning Tools
By Tomilola M. Obadiya

Understanding the relationship between structure and dynamics in supercooled lig-
uids remains a central challenge in glass physics. Machine learning techniques, par-
ticularly Support Vector Classification (SVC), have provided insights into structural
predictors of dynamics, such as the “softness” order parameter, which correlates with
energy barriers for particle rearrangements. This dissertation critically examines the
methodology and interpretability of machine learning models in this context, focusing
on their ability to predict rearrangement probabilities and energy barriers. We first
investigate whether classification hyperplanes trained on structural data from high-
temperature, diffusive regimes can predict energy barriers in the supercooled regime.
By introducing a Z-score-based binning approach, we demonstrate that structural
features associated with purely diffusive motion retain predictive power for activated
events, challenging conventional assumptions about structure-dynamics correlations
at high temperatures. Building on this, we explore the physical interpretability of
various regression-based machine learning models, including Ridge Regression, Sup-
port Vector Regression, and Multilayer Perceptron, in predicting energy barriers. Our
analysis, leveraging the iso-configurational ensembles, shows that these models cap-
ture similar structural signatures as SVC, reinforcing the idea that predictive success
is rooted in the ability to learn high-dimensional structure-dynamics relationships. We
then extend our investigation to the role of memory effects in supercooled liquids, us-
ing softness as a structural order parameter to probe system responses under thermal
cycling. Preliminary findings suggest that supercooled liquids exhibit memory effects
typically associated with glasses, raising new questions about the glass transition.
This dissertation highlights key challenges in using machine learning to understand
glassy dynamics, particularly regarding feature selection, model interpretability, and
the physical significance of learned representations. Our findings contribute to ongo-
ing efforts to develop more robust and interpretable machine learning frameworks for
studying supercooled liquids and other complex systems.
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Chapter 1

Introduction

1.1 Background and Motivation

The most familiar states of matter—gas, liquid, and solid—are not merely different
forms but represent distinct physical phases characterized by their underlying symme-
tries and mechanical properties. Consider a simple system: an ensemble of particles
confined within a container. In the gaseous state, these particles move freely, bounc-
ing off each other and the container walls in a seemingly chaotic dance. This freedom
of movement reflects the continuous translational and rotational symmetry of the gas:
we can shift the entire system by any arbitrary distance or rotate it by any angle,
and it would appear unchanged. Cooling this gas reduces the kinetic energy of the
particles, decreasing the frequency and intensity of their collisions. Eventually, the
particles become closely packed, forming a liquid.

While denser than a gas, a liquid retains the continuous translational and rota-
tional symmetry. Like the gas, it can flow and adapt to the shape of its container.
However, if we continue to cool the liquid, it will eventually reach its crystallization
point. At this temperature, a profound transformation occurs: the continuous sym-

metries are broken, and the system adopts a crystalline solid structure. This solid is



characterized by discrete symmetries, meaning that only specific rotations and trans-
lations will leave the system looking the same. Crucially, this breaking of symmetry
is accompanied by a dramatic change in the mechanical properties: the solid becomes
rigid, able to resist deformation and support mechanical loads [6].

However, if we cool the liquid rapidly enough, we can bypass the crystallization
point and enter a metastable state known as a supercooled liquid. This state is
fascinating because it exhibits the structural characteristics of a liquid—disordered
and lacking long-range order—yet displays solid-like rigidity at short timescales —
typically around the picosecond to nanosecond range [3]. Imagine a dense crowd
of people jostling about: at any given moment, an individual might feel “trapped”
by their neighbors, unable to move freely. Yet, given enough time, the crowd as a
whole can rearrange and flow. This is the essence of a supercooled liquid: it behaves
like a solid on short timescales but flows like a liquid at longer timescales, relaxing
any imposed stresses, whether thermal or mechanical. As we continue to cool, the
time it takes for this relaxation to occur increases dramatically over a narrow range
of temperature. Eventually, we reach a temperature, known as the glass transition
temperature (7}), where the relaxation time becomes so long that it exceeds any
practical observation time. At this point, the system falls out of equilibrium with its
surroundings, becoming trapped in a disordered, non-crystalline state: a glass. The
system retains the continuous rotational and translational symmetry of the liquid,
yet it is puzzlingly rigid.

Like all solids this rigidified systems will fail upon the application of sufficiently
high mechanical load. In crystalline solids, failure typically originates from sites
exhibiting local deviations from the crystalline order. These initiation sites are readily
identifiable because we can define parameters that quantify local order. However, in
glasses, the absence of a well-defined local order parameter makes the identification

or prediction of failure points a significant challenge.



To address this challenge, researchers have sought to identify order parameters
that can capture the underlying structural features governing the dynamics of su-
percooled liquids and glasses. Throughout this dissertation, the term “dynamics”
specifically refers to particle rearrangements. Particle rearrangements are the fun-
damental microscopic events that initiate material failure. Unlike thermodynamic
quantities like density which remain largely homogeneous, these rearrangements are
highly heterogeneous and localized, typically involving only a few neighboring parti-
cles. Given that the dominant structural length scales in these disordered materials
are indeed microscopic, extending at most a few particle diameters, these localized
rearrangements become critical precursors to larger-scale material failure. These ef-
forts have ranged from intuitive ideas like local free volume [7, 8, 9, 10] to data-driven
methods like “softness”. As I will describe in more details in Section 1.6, “softness”
was identified using machine learning techniques, specifically Support Vector Ma-
chines (SVM). Softness quantifies the local structural environment of a particle and
has been shown to correlate with its propensity for rearrangement and stress relax-
ation. However, the precise reasons for the effectiveness of this order parameter are
still not fully understood.

This dissertation delves into the intricate relationship between structure and dy-
namics in supercooled liquids, with a particular emphasis on understanding why soft-
ness is predictive of particle rearrangement from structure through a systematic test of
the assumptions implemented in the softness machinery. We examine the underlying
assumptions in the construction of the datasets employed to train the Support Vector
Machine (SVM). Furthermore, we investigate the dependence of the machine-learned
order parameter on the specific machine learning algorithm utilized. By exploring the
assumptions employed in developing this order parameter, we aim to shed light on
the fundamental mechanisms governing the behavior of these fascinating and techno-

logically important materials.



In the remainder of this introductory chapter, I provide a comprehensive overview
of the key concepts and challenges addressed in this dissertation. The rest of this
chapter is structured as follows: Section 1.2 introduces the KA model, a canoni-
cal glass-forming system and the primary system used in our computational studies.
Section 1.3 introduces the phenomenon of heterogeneous dynamics in supercooled lig-
uids and glasses, highlighting its significance in understanding the complex relaxation
behavior of glassy materials. Section 1.4 delves into the mechanisms of structural re-
laxation in supercooled liquids, examining the interplay between different relaxation
processes and their temperature dependence, referencing the KA model. In Section
1.5, we explore the abstract potential energy landscape framework, illustrating how
the exploration of this landscape governs the dynamics of supercooled liquids and
connects the concepts introduced in the previous sections. Section 1.6 outlines the
challenges in the field concerning the correlation of structure with dynamics in su-
percooled liquids, and introduces a promising approach based on machine learning.
Section 1.7 focuses on specific challenges that we deem particularly important and
aim to resolve within this dissertation. Finally, Section 1.8 provides a detailed outline

of the dissertation’s structure, objectives, and key contributions.

1.2 Kob-Andersen glass model

Throughout this dissertation, our investigations utilize the Kob-Andersen (KA) model
[11], a widely studied glass-forming system. This model comprises a binary mixture
of two particle species, A and B, differing only in size. The mixture consists of 80%

A particles and 20% B particles, interacting via the Lennard-Jones potential:

=], =

Uij

Vij(r) = 4ey; {<7>12 -



where i,j € {A, B} denote the particle species, r is the interparticle distance, €;;
represents the interaction energy scale, and o;; represents the interaction length
scale. The specific values of these parameters, namely ¢; € {1.0,1.5,0.5} and
oij € {1.0,0.8,0.88}, for the AA, AB and BB pairs respectively, were chosen to
imitate the nickel-phosphorus mixture [12]. These parameters were carefully selected
to promote mixing and prevent phase separation between the two species, facilitating
the formation of a structurally homogeneous supercooled liquid. Distance is mea-
sured in the unit of the large particle, c44; energy is measured in the unit of €44.
The mass for both particle specie is set to unity. With the Boltzmann’s constant set
to unity, temperature is measured in the unit of €44 (which has a value of unity).
The computational simplicity of the KA model and its ability to capture key features
of glassy dynamics has established it as a standard model for computational studies
of the glass transition and the behavior of viscous liquids. For a reduced density of
p = 1.2, the reduced melting temperature is observed to be T,, ~ 1.028 [12] — the

exact value depends on pressure.

1.3 Dynamical Heterogeneity

Contrary to the uniform behavior of particles in crystalline solids, supercooled liquids
and glasses exhibit heterogeneous dynamics, characterized by spatial and temporal
fluctuations in particle mobility [13]. Fig. 1.1 shows an heterogeneous display of
particle mobilities; mobile and immobile regions vary in space in a non-homogeneous
fashion. This phenomenon, observed in a wide range of amorphous solids with glassy
dynamics [14], emerges as the system is cooled below the onset temperature (7,) of
dynamical heterogeneity. The onset temperature, which is within the supercooled
regime, is between the crystallization/freezing temperature and 7},. In three dimen-

sions, the onset temperature of dynamical heterogeneity, T,, for the KA model at



Figure 1.1: Dynamics varying heterogeneously in space in a supercooled
liquid. Particles are colored based on how much they have displaced from their initial
position. The deep red particles have moved several particle diameters while the deep
blue particles have not moved at all. Particles with intermediate displacements are
colored correspondingly. The dynamics of particles varies heterogeneously across the
volume of the supercooled liquid. This figure is from [1].

p = 1.2 falls within the approximate range of 0.87 < T, < 1.2. While this onset
temperature is not sharply defined in finite-dimensional systems, it marks the point
where distinct differences in particle mobilities arise within the supercooled liquid
[15, 13] leading to a broad distribution of relaxation times. Some regions of the liquid
readily relax by orders of magnitude, compared to the system average, in response
to perturbations, while others remain relatively immobile. The regions themselves
fluctuate and evolve in time; a region can be fast-relaxing at one instant, and in the
next instant, it is a slow-relaxing region.

This spatial heterogeneity in dynamics becomes increasingly pronounced upon

cooling, with mobile particles forming clusters that grow significantly in size, often



exhibiting a string-like morphology [16, 17, 18]. This clustering behavior stands in
stark contrast to the Gaussian distribution of particle mobilities observed in the high-
temperature liquid phase. The spatial extent of these dynamic correlations can be
substantial, with studies suggesting that a single-particle rearrangement can influence
the dynamics of neighboring particles up to 5 to 10 particle diameters away [13, 16].
This lengthscale is long compared to how far local structural order extends (usually 1-
2 particle diameters [19]), indicating the need for cooperative motion of many particles
for structural rearrangements.

Since dynamical heterogeneity is not reflected in thermodynamic quantities like
density, which remain largely homogeneous, one has to directly observe particle tra-
jectories and their fluctuations over time [14]. The fact that the lengthscale for coop-
erative rearrangement is long compared to the lengthscale of structural order implies
that simply observing the disordered arrangement of particles in a supercooled liquid
or glass does not readily reveal which particles will exhibit greater or lesser mobility
— what particle will rearrange or not. Given this challenge, a fundamental question
arises: is there a hidden order parameter, encoded within the disordered structure,
that can predict the observed dynamic heterogeneity [14]7? In other words, is there a
correlation between the local structural environment of a particle and its propensity
for motion and relaxation? This question lies at the heart of efforts to understand the
microscopic origins of heterogeneous dynamics and the complex relaxation behavior

of supercooled liquids and glasses.

1.4 Relaxation Behavior in Supercooled Liquids

The radial distribution function, which characterizes the local density surrounding a
particle at a given distance using a shell as shown in the cartoon in Figure 1.2, ex-

hibits nearly identical peak positions and overall shape in both the high-temperature
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Figure 1.2: Radial distribution function for a KA model as a function of
radial distance.The radial distribution function shows nearly identical peak posi-
tions and shape between liquid and supercooled states, with only a slight increase
in nearest, next-nearest etc. neighbors upon cooling, indicating minimal changes in
average spatial arrangement. Legend represents different temperatures. The cartoon
illustrates how the local density at a distance r from a reference particle (in red) is
calculated using a thin spherical shell of width dr.

liquid and supercooled states. As depicted in Fig. 1.2, while a slight increase in the
number of nearest and next-nearest neighbors is observed upon cooling, their spatial
positions remain largely invariant. This suggests that the average spatial arrangement
of particles remains largely unchanged upon supercooling. The small linear change
in the radial distribution over the temperature range does not commensurate with
the (super-) exponential change in dynamics. The dynamic behavior of the liquid
and supercooled states diverges dramatically. In a typical liquid, the response to a
perturbation, such as an applied stress, decays exponentially, indicating a single re-
laxation process with a well-defined short timescale. Contrarily, supercooled liquids
and glasses exhibit a profound slowing down of dynamics.

Additionally, on supercooling, dynamics qualitatively change in character, dis-

playing a complex, multi-step relaxation process. This complex relaxation behav-
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Figure 1.3: Self-Intermediate scattering function for Kob-Andersen glass
model at density p = 1.2 for different temperatures. A two-step relaxation
process become more obvious as temperature (legend) decreases. On supercooling,
structural relaxation develops a stretched-exponential form, deviating from an expo-
nential process and reflecting the complexity that develops. The dashed horizontal
line show when Fi(q,t) = 1/e.

ior is evident in the self-intermediate scattering function, which probes the time-
dependent correlations of particle displacements. Specifically, when we examine the
self-intermediate scattering function, which is the Fourier transform of particle sep-
arations, at the wavevector corresponding to the first peak of the radial distribution
function, a two-step relaxation pattern and a stretched-exponential profile emerge as
the temperature is decreased, as illustrated in Figure 1.3.

The two-step relaxation process observed in supercooled liquids is characterized by
distinct timescales associated with different modes of particle motion. The faster re-
laxation, termed the [-relaxation, is primarily attributed to the localized vibrational
motion of particles within the “cages” formed by their neighbors. This process, with

a characteristic timescale of 73, reflects the restricted mobility of particles in the

dense supercooled state. The slower relaxation, known as the a-relaxation, attains a
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stretched-exponential profile and arises from the cooperative rearrangement of par-
ticles. These cooperative relaxation lead to structural relaxation and the eventual
flow of the supercooled liquid as indicated by the fact that the 7, is related to the
viscosity.

In “strong” glass formers, 7, increases with decreasing temperature following an

Arrhenius law:

To ~ eNE/T (1.2)

where AFE represents an effective activation energy barrier for structural rearrange-
ments. This behavior reflects the thermally activated nature of particle rearrange-
ments in these systems. That is, as temperature decreases, the probability of particles
possessing sufficient thermal energy to overcome the fixed energy barrier decreases
exponentially, which to the relaxation time increasing rapidly.

However, many glass formers exhibit a more complex temperature dependence,
deviating from the Arrhenius trend as the temperature decreases. These “fragile”
glass formers display a super-Arrhenius behavior, as illustrated in Figure 1.4 for
the KA model and Figure 1.5 for several fragile glass-formers, where the increase in
To With decreasing temperature is more dramatic than predicted by the Arrhenius
law. To capture this super-Arrhenius behavior, one can use equation 1.2, but with
AE = AE(T) to capture the super-Arrhenius behavior. Additionally, empirical
functions such as the Vogel-Fulcher-Tammann (VFT) equation can be employed. The
VFT equation, 7, ~ eAﬁ, suggests a divergence of the relaxation time at Ty pr.

While the VFT equation is widely used, it is essential to recognize that it is an
empirical fit, and other non-diverging functions [20, 21] can also be used to describe
the observed temperature dependence of 7, in fragile glass formers. The underlying
mechanisms responsible for the super-Arrhenius behavior and the potential existence

of a critical temperature remain active areas of research in the field of glass physics.
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Figure 1.4: Alpha-relaxation time against inverse temperature for the Kob-
Andersen model. The relaxation time for the KA model increases in a super-
Arrhenius form as temperature decreases. For the temperature range for which struc-
ture changes linearly, there is a super-Arrhenius change in dynamics. The data points
for this figure are from [2] for a KA model at density p = 1.2.

In contrast to the super-Arrhenius behavior exhibited by fragile glass formers,
certain systems display a sub-Arrhenius temperature dependence of the relaxation
time. In this regime, the relaxation time increases more gradually with decreasing
temperature compared to the Arrhenius trend, indicating a weaker temperature sen-
sitivity of the dynamics. While sub-Arrhenius behavior is very rare compared to
the super-Arrhenius behavior, it has been observed in specific model systems, such
as vitrimeric polymers [22]; Voronoi cell model; and the vertex model [23]. These
models, which represent liquids as a collection of Voronoi cells or vertices, capture
certain geometrical aspects of liquid structure and provide insights into the origins of
sub-Arrhenius behavior.

The stark difference between the super-Arrhenius behavior of fragile glass formers
and the sub-Arrhenius behavior of these model systems highlights the diversity of

relaxation mechanisms in supercooled liquids. The dramatic growth of the relaxation

time in fragile glass formers, without a corresponding significant change in the av-
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Figure 1.5: The viscosity of several glass-formers as a function of tempera-
ture. The viscosity, so also the relaxation time, for strong glass-formers grow in an
Arrhenius fashion. Fragile glass-formers exhibit super-Arrhenius growth as tempera-
ture decreases. This figure is from [3].
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erage structure, remains a puzzle and a subject of intense research. Understanding
the microscopic origins of this super-Arrhenius behavior is crucial for developing a
comprehensive theory of the glass transition and for predicting the behavior of these

materials.

1.5 The Potential Energy Landscape

The dynamics of supercooled liquids and glasses can be conceptualized within the
framework of the potential energy landscape, a high-dimensional abstract space in-
troduced by Goldstein in 1968 [24]. This landscape, with its intricate topography
of hills and valleys, represents the potential energy of the system as a function of
the particle coordinates. The dimensionality of this landscape is determined by the
degrees of freedom of the system; for a system of N particles in three-dimensional
space with no internal degrees of freedom, the landscape is a function of 3N degrees
of freedom. The 3N dimensions are the coordinates of the particles which describes
the hypersurface and an extra one dimension is the height of the hypersurface.

The potential energy landscape provides a powerful tool for understanding the
complex behavior of supercooled liquids. For a fixed number of particles N and
fixed volume V| the landscape is also fixed. However, the way the landscape is
sampled by the particle system is dictated by temperature 25, 15, 26, 27]. At high
temperatures, the system explores the landscape through diffusive motion, readily
crossing energy barriers and sampling a wide range of configurations. In this regime,
the system is ergodic, meaning that the time-averaged behavior of a single particle is
equivalent to the ensemble average at a given time. Mathematically, this is expressed
as: (A)time = (A(t))ensemble; Where A represents a physical quantity, (...)yme denotes
the time average, and (...)ensemble denotes the ensemble average at time .

As the temperature approaches the onset temperature of dynamical heterogeneity,
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T,, and decreases further, the system’s exploration of the landscape becomes increas-
ingly constrained. The system begins to sample deeper minima, and the landscape’s
topography starts to influence the dynamics. It is important to acknowledge the in-
herent complexity of the potential energy landscape, which may exhibit a hierarchical
structure near the proposed Gardner transition [28, 29, 30|, although the existence
of this transition remains a topic of active debate. Due to the landscape’s rugged
nature, characterized by a distribution of minima with varying energy barriers, the
growing influence of the landscape on the system’s exploration leads to the emer-
gence of complex relaxation behavior. With further cooling, the system eventually
lacks the kinetic energy to overcome energy barriers, becoming trapped in local min-
ima. At this point, ergodicity is broken, and the system’s dynamics are governed by
the structure of the landscape [25].

This confinement to deeper minima leads to the stretched-exponential relaxation
behavior observed in supercooled liquids, as exemplified by the self-intermediate scat-
tering function shown in Figure 1.3 [25]. This stretched-exponential relaxation ob-
served in supercooled liquids is commonly attributed to the spatial averaging of het-
erogeneous, locally exponential relaxation processes [31, 13]. This interpretation sug-
gests that the non-exponential behavior arises from the superposition of different
regions relaxing with distinct exponential timescales. However, recent studies have
demonstrated that a combination of spatial averaging and locally non-exponential
relaxation can also give rise to stretched-exponential behavior [32]. This finding
highlights the complexity of relaxation dynamics in supercooled liquids and suggests
that multiple mechanisms may contribute to the observed non-exponential behav-
ior. However, at high temperatures where diffusion dominates, the system explores
shallow minima, resulting in simple exponential relaxation.

In Chapter 2, we leverage on the concept that the exploration of the potential en-

ergy landscape is tied to local rearrangements of particles to demonstrate that even a
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heated fluid, in the supercritical state where there is no distinction between liquid and
gas phases, can retain information about the fine details of the landscape. That is,
we investigate how local structure above T, is predictive of the barriers bwtween min-
ima. This finding highlights the enduring influence of the landscape on the system’s
dynamics, even at high temperatures where the system exhibits seemingly simple

diffusive behavior.

1.6 Challenge in defining an order parameter cor-
relating structure with dynamics

While liquids and gases both exhibit continuous translational and rotational sym-
metry, they are distinguished by their density, a physical quantity that serves as an
order parameter. Order parameters describe the degree of order in different phases of
matter and play a crucial role in modeling phase transitions and ordering phenomena.

In the context of linking structure with dynamics in supercooled liquids and struc-
tural glasses, various order parameters have been explored. For example, the free-
volume order parameter, which quantifies the amount of unoccupied space available
for particle movement, has been shown to decrease with decreasing temperature, lead-
ing to reduced particle mobility [7, 8]. However, the correlation between free volume
and dynamics has been shown to be weak [33, 34, 35, 36]. Another class of intuitive
order parameters such as bond-orientational order parameters [37], has been used to
identify locally favored structures in supercooled liquids and glasses. These order
parameters quantify the degree to which the local arrangement of particles around a
central particle resembles specific geometric motifs, such as icosahedra. While bond-
orientational order parameters have shown some correlation with dynamics in certain
glass-forming models [38, 39, 40, 41], the strength and nature of this correlation vary

depending on the specific system under study [42].
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These other parameters have been insightful, however, a key challenge remains:
identifying an order parameter that explicitly and consistently correlates local struc-
ture with dynamics across a wide range of supercooled liquids and glasses. Subsection
1.6.1 provides a detailed account of a computational methodology employed to estab-
lish a correlation between structure and dynamics. Subsection 1.6.2 further elaborates
on the “softness” parameter, a machine-learned order parameter central to our inves-

tigations.

1.6.1 Particle Mobility from Iso-configurational ensemble

One method to link structure with dynamics via particle mobility is through the iso-
configurational ensemble [43, 44, 45]. The iso-configurational ensemble is implemented
by keeping an initial configurational setup fixed and implementing various thermal

trajectories of the configurational setup. The idea is as follows:

1. An initial configuration Ry(t,) = {r?(t,),r5(ts),m3(ts)..., 7% (t,)} of N number
of particles where ¥ is the position of particle ¢ at the initial time ¢ = ¢, is

considered.

2. Various thermal trajectories of this initial configuration is made by drawing the
initial velocities Vi(t,) = {vF(t,), v5(t,), vi(t,)..., v% (t,)} for trajectory k from

the Maxwell-Boltzmann’s distribution.

3. The resulting set of configurations with position Ry(t) and velocity V(t) at
time t is used to determine the impact of the local structure on dynamics by
averaging out the noise associated with velocity. The isoconfigurational average
of a dynamical quantity A[Ry(t), Vi(t)] for M different thermal trajectories is
then given as (A(t))iso = 77 Sov ARk (1), Va(t)).

In our case, A[Ry(t), Vi(t)] is the displacement of individual particles which we

use to signify rearrangements. While the iso-configurational ensemble can be used to
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test hypothesized order parameters connecting structure and dynamics [43, 45, 44],
and can be used to bound the maximum effectiveness of any such order parameter
[46], it does not on its own suggest what structural order parameter should be used.
Nonetheless, the iso-configurational ensemble technique has proven to be quite useful
in correlating structure with dynamics using machine learning tools as shown by works
like [4, 47, 48, 49]. These works have used various machine learning models to show
correlations between structure and the iso-configurational average of particle displace-
ments. In chapter 3 we show how we utilize this methodology to identify a particle’s
probability of rearrangements for which we analyzed the physical interpretability of

various machine learning techniques.

1.6.2 Correlating structure and dynamics through machine

learning

Data-driven approaches, particularly machine learning, have become increasingly
valuable tools for unraveling the complex relationship between structure and dynam-
ics in supercooled liquids. A seminal work by Schoenholz et al. [4] demonstrated the
power of Support Vector Classification (SVC) to identify a structural order param-
eter that strongly correlates with particle dynamics. This order parameter, termed

Y

“softness,” is a quantitative measure of the local structural environment surrounding
a particle.

The “softness” parameter is determined by encoding the local structural environ-
ment of particle ¢ as a M-dimensional vector, F;. The components of this vector can
be quite generic. For instance, the environment is often quantified using techniques

inspired by the pair correlation function, such as Gaussian weighting functions [50],

which count the number of neighboring particles at various distances. For a particle
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i, this two-point radial structure functions Gx (i;r,d) [50] is defined as

Gx(iir,6) = Y _exp (%ﬁ) : (1.3)

jEX

where X denotes which of the components of the KA mixture is being considered,
r is varied to describe local environment at different distances, and the parameter
0 controls the width of the Gaussian shells. R;; is the distance between particles ¢
and j. Angular or other many-body correlations can also be incorporated through
three-point functions, which capture the arrangement of triplets of particles. Subse-
quently, a dataset is constructed, comprising two distinct classes of local structures.
Structures deemed unlikely to undergo rearrangement within a defined time window
are labeled —1, while those that rearrange in the near future are labeled 4+1. Since
the correlation between structure and dynamics weakens at temperatures above the
onset temperature, T,, the training data set is typically drawn from deeper within
the supercooled regime. This binary classification dataset is then employed to train a
SVC algorithm. The SVC algorithm then seeks to find the optimal hyperplane, with
normal vector w and bias b, that maximizes the separation between these two classes
of structures in the feature space while minimizing misclassification. Mathematically,

the softness S* of particle i is defined as:

M
S'=Y w.F.—b, (1.4)
a=1

where F! represents a component of the local structure F* in the M-dimensional
feature space.

Geometrically, the softness S represents the signed distance of a local structure
from the hyperplane in the feature space. A positive softness value indicates a struc-
ture that is more likely to rearrange, while a negative value indicates a structure that

is less likely to rearrange. This softness value, surprisingly, is then associated with an
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energy barrier, AFE, reflecting the energetic cost for a particle to undergo an activated
rearrangement or “hopping” event. For example, based on the labeling of the training
dataset stated above, a particle with a negative softness would be considered “hard”
and require a higher energy barrier to rearrange, while a particle with a positive soft-
ness would be considered “soft” and require a lower energy barrier. This is a key
result that has fueled extensive research in this area. There is no inherent reason,
a priori, to expect that a distance in a classification hyperplane would have a direct
physical interpretation as an energy scale to rearrangement.

To determine the relationship between softness and the energy barrier, the trained
SVC model is applied to configurations at higher temperatures, up to 7,,. The fraction
of similar local structures that rearrange within a short time window, which represents
the probability of rearrangement given a certain softness value, P(R | S), is evaluated
at each temperature. As shown in Figure 1.6, this probability exhibits an Arrhenius
dependence on temperature:

P(R|S) = "S)-ABE)/T, (1.5)

where (%) is a prefactor related to the entropic contribution and the local curvature
of the energy landscape. Studies have shown that the energy barrier AF is linearly re-
lated to the softness S, both in equilibrium [4] and out-of-equilibrium [51] conditions:
AFE =¢y— € S.

This linear relationship allows for the construction of a free energy barrier, AF(S) =
AE(S)—T3%(S), associated with the softness field. This free energy barrier field pro-
vides a valuable tool for understanding the dynamics of supercooled liquids, as it
captures the interplay between energetic and entropic contributions to particle rear-
rangements. For example, [52] used this to show that the free energy for fragile glass
formers increases on cooling while it decreases for a strong glass former.

The methodology of employing machine learning to identify structural predictors
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Figure 1.6: The Arrhenius dependence of P(R|S) on temperature. The proba-
bility of rearrangements for different soft particles becomes orders of magnitude apart
with temperature decrease. At the onset temperature, T, (around 0.8 to 1.2), dynam-
ics is uncorrelated with structure as shown by the merge of the Arrhenius fit (dotted
line). The colored lines represent values of S = —3 (blue) to S = +3 (red). The inset
show a collapse of P(R|S)/P, when plotted against AE/T. Here, P, = ¢*. This
Figure is from [4].
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of dynamics, exemplified by the “softness” order parameter, has proven fruitful across
a diverse range of supercooled liquid systems. This approach has been successfully
applied to strong glass formers [53], systems with density-dependent fragility [54],
and even sub-Arrhenius glass formers like the Voronoi cell model [54]. Furthermore,
in the context of thin films, this methodology has been instrumental in disentangling
the origins of faster dynamics near the film edges from the influence of local structure
[55].

The ability to physically interpret the “softness” order parameter as encoding an
energy barrier has enabled researchers to gain deeper insights into the underlying
mechanisms governing glassy dynamics. For instance, “softness” has been used to ex-
plain the emergence of dynamic heterogeneity in supercooled liquids [56]. In another
study, it provided crucial information about the role of near-field effects, specifically
the changes in the local structure of neighboring particles, in controlling the duc-
tility of glasses [57]. By tuning these near-field effects, for example, by introducing
more randomness in the local structure, it is possible to manipulate the mechanical
properties of the material.

Furthermore, “softness” has been employed to investigate the concept of facilita-
tion, which is the idea that local rearrangements in a supercooled liquid can trigger
or facilitate rearrangements in other regions of the system. Simple trap models which
assume that particles hop between energy ‘traps’ with different heights, and that each
hop is independent of the previous ones have been used to explain dynamics in glasses
and supercooled liquids [58, 59, 60]. However, a trap-like model using ‘softness’ have
shown that these simple models do not fully capture what happens in real supercooled
liquids [61]. The models fail to account for the fact that one rearrangement can in-
fluence the likelihood of another. This study also suggests that supercooled liquids,
even above the temperature where they become glasses, have a kind of ‘memory’ of

past rearrangements. This ‘memory’ challenges the traditional view that such effects
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are only important in the glassy state itself.

Beyond “softness,” other machine learning techniques have also contributed to our
understanding of the structure-dynamics relationship in supercooled liquids. Bapst et
al. [5] employed a graph neural network with a message-passing algorithm to predict
the inherent state propensity, a measure of a particle’s long-time mobility. Their work
revealed high correlations between the predicted and true propensities at timescales
on the order of 7, and showed that the length scale over which the model learns
structural information grows with decreasing temperature, reflecting the increasing
influence of structure on dynamics. Further work by Shiba et al. [47] showed that
incorporating information about the edges of the graph into the loss function can
further improve the the correlation between the actual and predicted propensity.

The graph neural network implemented by Bapst et al. had at its core a message-
passing algorithm which is the means by which a node learned by collecting informa-
tion from other neighboring nodes. This message-passing algorithm initially posed
challenges for physical interpretation, but it was demonstrated in [48] that it is equiv-
alence to a particle receiving information about the average structure of its neighbors
through a simpler Ridge regression model.

However, it is important to acknowledge that more sophisticated machine learning
techniques do not always guarantee better answers to the question of correlating
structure with dynamics. Alkemade et al. [62] demonstrated that a linear regression
model, with fewer parameters than a graph neural network, can perform equally
well in predicting dynamics when higher-order structural information, such as the
average structure of a particle’s neighbors, is included. This finding suggests that
while machine learning offers powerful tools for analyzing complex systems, there is
a need for careful consideration of the relevant structural features and the choice of

appropriate models.
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1.7 Dissertation: Challenges in correlating struc-
ture with dynamics in supercooled liquids us-
ing machine learning tools

The need for careful feature and model selection, coupled with the broader chal-
lenges in understanding the physical meaning of its outputs, underscore the central
motivation of this dissertation: to advance our understanding of the limitations and
potential of machine learning in correlating structure with dynamics in supercooled
liquids. While machine learning models like graph neural networks etc. have shown
promise in predicting dynamics from structure in supercooled liquids, they often lack
the clear physical interpretability afforded by methods like SVC. In the case of SVC,
the distance of a structure from the classifying hyperplane was found to have a di-
rect physical interpretation as an energy scale. This lack of interpretability in other
models is often overlooked because the focus is primarily on the correlation between
predicted and true dynamical quantities. However, a crucial open question remains:
can these models, beyond simply predicting particle rearrangements, also provide in-
sights into the underlying physics, such as the energy barriers associated with local
structural rearrangements?

Even for SVC, where physical interpretability is more readily achieved, there are
still gaps in our understanding of the process used to construct the classifying hyper-
plane. Previous work [5] utilized labeled structural data obtained from inherent states
(energy-minimized configurations) to train the SVC model. However, obtaining a suf-
ficient number of inherent state configurations for training can be computationally
expensive. This raises several questions: Could training data derived from thermal
configurations, which are more readily accessible, achieve comparable performance?
Or do the thermal fluctuations inherent in these configurations obscure the relation-

ship between structure and dynamics? Furthermore, is the assumption that structure
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and dynamics are uncorrelated above the onset temperature, T,, strictly valid? Or
could structural features from the high-temperature, diffusive regime still encode in-
formation about the glassy dynamics at lower temperatures?

Beyond the training data, open questions regarding the nature of the feature space
itself. While SVC partitions the feature space into regions that favor or disfavor
mobility, the underlying organization of this space remains largely unexplored. Given
that the basis vectors of the feature space are not orthogonal, to what extent are the
different directions in this space correlated? How does the choice of kernel function
influence the model’s performance and the structure of the feature space? And how
does the dimensionality of the feature space impact the inferred energy barriers and
the overall interpretability of the model? To summarize, significant open questions
surround what aspect of the softness protocol are actually necessary and physical
interpretability actually means.

This dissertation addresses these unanswered questions, delving deeper into the
methodology of using SVC to predict dynamics in supercooled liquids. Through
a combination of molecular dynamics simulations and advanced data analysis tech-
niques, we investigate the influence of training data, the structure of the feature space,
and the physical interpretation of the resulting models. By exploring these facets of
the SVC approach, we aim to gain a more comprehensive understanding of the rela-
tionship between structure and dynamics in supercooled liquids and contribute to the
development of more robust and interpretable machine learning models for complex

systems.

1.8 Dissertation Outline and Contributions

This dissertation is structured as follows:

e Chapter 2: The objective of this chapter is to investigate whether a classifi-
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cation hyperplanes trained on structural data from the liquid regime,
where dynamics are purely diffusive, can discriminate between diffu-
sive events and can effectively predict energy barriers for activated
events in the supercooled regime. We introduce a novel approach based on
binning local structures by their Z-score values to demonstrate the correlation
between energy barriers predicted by different classification hyperplanes. These
hyperplanes are trained on datasets from distinct temperature regimes, includ-
ing the supercritical regime where dynamics are purely diffusive. Our analysis
reveals that structural features associated with diffusive events can indeed pre-
dict energy barriers for activated events in the supercooled regime, challenging
the conventional assumption that structure and dynamics are uncorrelated at

high temperatures.

Chapter 3: Building upon the Z-score approach developed in Chapter 2, this
chapter centers on investigating the physical interpretability of various
machine regression-based learning models, beyond SVC, in terms of
their ability to predict energy barriers for rearrangements in super-
cooled liquids. We employ the iso-configurational ensembles to compare the
performance of regression models like Ridge Regression, Support Vector Re-
gression, and Multilayer Perceptron with Support Vector Classification (SVC)
in predicting energy barriers. Our findings demonstrate that these regression
models capture similar details of the energy landscape as SVC, further sup-
porting the notion that the predictive power of these models stems from their
ability to capture complex, high-dimensional relationships between structure

and dynamics.

Chapter 4: I present ongoing work focused on investigating the presence

of memory effects in supercooled liquids using the machine-learned
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order softness. This chapter explores the response of the system to thermal
cycling protocols and discusses the potential implications of memory effects for
understanding the dynamics of supercooled liquids and the nature of the glass
transition. Our initial analysis of the response to thermal cycling protocols
suggests the presence of memory effects in supercooled liquids, although further
investigation is needed to confirm this observation. This would challenge the
conventional view that memory effects are exclusive to the glassy state and may

have implications for understanding the nature of the glass transition.

Chapter 5: I summarize the key findings of this dissertation and discuss their
implications for the field of supercooled liquids and glass physics. I also identify
open questions and challenges that remain to be addressed, as well as promising
avenues for future research. This chapter concludes by highlighting the broader
implications of our work for understanding complex systems and developing

more robust and interpretable machine learning models for materials science

and other fields.
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Chapter 2

Using fluid structures to encode

predictions of glassy dynamics

This chapter draws from our research published in [63]. We investigate how the
local arrangements of particles in a liquid, even in its freely flowing state, can be
utilized to predict rearrangements upon cooling to the supercooled state, where flow
is significantly restricted. Here, I will explain what motivated this work, how we
created a training dataset from the liquid state, how our analysis compares to the
established “softness” approach, and what our findings mean for our understanding

of glassy systems.

2.1 Introduction

Consider a common liquid: its constituent molecules are in perpetual motion, continu-
ally shifting and rearranging. While the liquid appears macroscopically homogeneous,
significant local structural variations exist at the molecular level. Certain molecules
reside in environments that facilitate diffusion exceeding the average rate, while others
become momentarily confined within regions of diminished mobility. Upon cooling,

this liquid may undergo crystallization, forming a highly ordered lattice. However,
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if crystallization is bypassed, the liquid may instead transition into a glassy state,
akin to the glass windows. Glasses are intriguing because they retain the disordered,
liquid-like structure [64], yet they exhibit the mechanical rigidity of a solid. They’re
not crystalline, but they do not flow like a liquid either, at least not on experimen-
tally relevant timescales. This dichotomy arises because intermolecular interactions
constrain molecular motion as temperature decreases, leading to molecules becoming
kinetically arrested in specific configurations. Consequently, the dynamics of a glass
are radically different from those of a simple liquid [3], although their structures may
appear superficially similar.

As the liquid is cooled, a critical temperature known as the onset temperature
(T,) emerges, signaling a fundamental shift in molecular motion [15, 25, 65, 66].
Above T,, the system behaves much like a normal liquid, with molecules moving in
a largely uncorrelated, random manner. However, below T, the dynamics undergo
a dramatic transformation. Instead of uniform motion, the system exhibits dynam-
ical heterogeneity [20, 13, 14, 67, 12]: certain molecules become significantly more
mobile, relaxing orders of magnitude faster than the system average, while others
remain nearly frozen. This heterogeneity manifests both spatially, with some regions
more mobile than others, and temporally, as individual molecules alternate between
periods of mobility and confinement. Furthermore, below T,, the local arrangement
of molecules plays a critical role. The specific configuration of neighboring molecules
strongly influences the way in which a molecule can move. Some local structures
facilitate motion, while others effectively cage the molecule, hindering its movement.
And for certain types of glass-forming liquids, known as ”fragile” glass formers, the
slowing down of molecular motion below T, becomes super-exponential - much faster
than a simple Arrhenius law.

A central theme in the study of supercooled liquids and glasses is the connection

between structure and dynamics [46, 68, 69, 70, 71, 45]. How does the arrangement
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of molecules influence their movement? Researchers are tackling this question using a
variety of techniques, including sophisticated data-driven approaches. These methods
often involve large-scale computer simulations to generate the necessary data for
training machine learning algorithms such as Support Vector Machines (SVMs) [72,
4, 55] or Graph Neural Networks [5], among others [49, 48]. These techniques have
shown considerable promise in identifying structural features that correlate strongly
with dynamics across different timescales, and have been applied to various systems,
including “strong” glass formers [53], “fragile” glass formers [4, 5, 73], and even more
exotic, biologically-inspired models [54]. The work by [4] using linearSVMs is of
particular interest. They showed that the SVMs learn to recognize patterns in the
structure and assigns a “softness” value to each molecule. “Softness” acts like a local
order parameter, quantifying how likely a molecule is to rearrange. Geometrically,
it is the signed distance of a local structure to linearSVM classifier. Importantly,
“softness” has been argued to be physically interpretable. This physical interpretation
arises from training the algorithm at low temperatures and then applying it to data
at other temperatures. By finding the strongest correlations between structure and
dynamics, the algorithm effectively learns combinations of structural features that
can be understood as representing a local energy barrier that must be overcome for
a molecule to rearrange.

However, some question remains: Why do these methods work? What are they
really telling us about the physics of glasses and supercooled liquids? And can we
use these techniques to learn something about the liquid state before it becomes a
glass? One key unresolved questions include why these particular approaches lead to
what is apparently a local order parameter for the supercooled liquids, and how the
learned energy barriers actually depend on the construction of the classifiers.

In this chapter, we explore this question by applying machine learning technique

(SVM), typically used for supercooled liquids, to the liquid state above the onset
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temperature. We ask: Can we find patterns in the liquid structure that predict how
the molecules will behave later, when the liquid is cooled down? This is equivalent to
asking if one can find patterns in the vapor/liquid phase that can predict dynamics
in the supercooled or glass phase. Surprisingly, the answer is yes! We first show that
the same machine learning techniques that have successfully correlated structure and
dynamics in the supercooled phase can be used to classify “extreme diffusive” events
even far above the onset temperature. In the spirit of a transfer learning approach,
we show that these liquid-state classifiers can statistically identify activated events in
the supercooled phase, even though the character of the activated dynamics below T,
changes dramatically. We further show that not only can accuracy on a classification
task be maintained, but that the physical interpretability is maintained: apparently

fluid-phase classifiers also learn energy barriers in the super-cooled phase.

2.2 Methods

In Section 2.2.1, we provide a detailed description of the glass model employed in our
simulations and the simulation methodology itself. Section 2.2.2 elaborates on the
methods used to quantify both dynamics and local structure. Finally, Section 2.2.3
outlines the procedure for constructing the training datasets used in our machine
learning analysis, specifically detailing how we determine the datasets above and

below the onset temperature.

2.2.1 Model and simulations

To study the behavior of our model liquid, we used computer simulations. Specifi-
cally, we performed a large number of molecular dynamics simulations, tracking the
positions and displacements of N = 4096 particles. We used a well-established model

for glass-forming liquids called the 80 : 20 Kob-Andersen model [11] (with a cutoff
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distance of 2.5). This model represents a mixture of two types of particles (80% of
type A and 20% of type B) that interact via the Lennard-Jones (LJ) potential. We
set the density of the liquid to p = 1.2 which is typical of the density used in these
studies. Our simulations were performed in a virtual box with periodic boundary
conditions; periodic boundary conditions ensured that our results were not affected
by the edges of our simulation box.

In our simulations, we used a standard set of dimensionless (reduced) units, often
called Lennard-Jones (LJ) units, to measure distances, energies, and masses. These
units can be though of as convenient units tailored to the model. The base units
for distance is measured in units of the large particle diameter, o44; energy is in
units of the interaction parameter, €44; and mass is in units of the particle mass, m.
For this model the dimensionless onset temperature is often reported as Ty =~ 0.87
20, 4]; given the broad crossover in the dynamics, values between 0.8 and 1.2 are also
reasonable estimates for this temperature scale [25, 12].

Our simulations were performed at constant number of particles (V) and volume
(V) which implies that we explore the same potential energy landscape. We also
kept the temperature (7). Keeping N,V and T constant implies our simulations
were performed in the canonical ensemble NVT. In this ensemble, the system is
connected to a fictitious thermal reservoir, making temperature fluctuations possible
while maintaining the average energy of the system. The temperature is kept constant
using a deterministic Nose-Hoover thermostat [74] which is expected to not affect our
main results. We expect that if anything our results would improve quantitatively
if we used a constant N, V' and energy (F) ensemble, that is, the microcanonical
(NVE) ensemble. We examined how our system explores the energy landscape by
varying temperature in the range T € [0.45,2.0].

To prepare our simulations, we started with a random arrangement of particles and

let the system equilibrate (i.e. settle into a stable state) for 50007 at a temperature
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of T'= 0.45. We then used this equilibrated configuration as the starting point for
simulations at other temperatures. At each temperature, we again allowed the system
to equilibrate for 10007 before collecting data. We saved the particle positions and

other relevant information at regular intervals of 17 during the simulations.

2.2.2 Local structure and dynamics

To understand the local environment around each particle, we used a function which,
based on the radial distribution function, essentially count the number of neighboring
particles of each type at different distances from a central particle. This two-point

radial structure functions Gx(i;7,6) [50] is defined for a target particle i as

Glisr,0) = 3 exp (W) | 2.1)

where X denotes which of the components of the binary mixture is being considered,
r is a parameter controlling the distance from which dominant contributions to the
feature come, 0 is a parameter controlling the width of the Gaussian shells, and R;;
is the distance between particles ¢ and j. We characterize the local environment of
particle ¢ as a vector in a 100-dimensional feature space, ﬁi, with 0 =0.2,0<r <5
in increments of 0.1, and X = A, B. Each feature is standardized [75] so has zero
mean and unit variance at the training temperature.

To measure how much particles moved, we used a quantity called ppp; to be
consistent with work on activated dynamics as introduced in Ref. [76]. This quantity
measures the displacement of a particle over a certain time window. We use an

observational time window of 10 LJ time units, for which

Prop(is t) = V(T (8) = (Fidua) 2 un (5 (8) = (Fidus)?)un



33

where w; = [t — 5,t], wy = [t,t + 5], and thus (---),, averages over one half of
the observation window. We chose this time window because it is long enough that
is excludes intra-basin vibrations and short enough to identify rare rearrangements
compared to numerous rearrangements that occur at 7, for the supercooled regime.
A large value of pp,, indicates that the particle has moved a lot, while a small value
indicates that it has stayed close to its initial position. We do not believe that using
Dhop @s & dynamical label is crucial; we show in Chapter 3 that choosing instead to
measure particle dynamics using their cumulative displacement over the same time

window leads to qualitatively identical results.

2.2.3 Machine learning protocol

We train SVMs connecting structural features with dynamic observables largely fol-
lowing the “softness” methodology [4]. We build a training set by combing through
MD trajectories for examples of dynamically active (“rearranging”) and inactive
(“non-rearranging”) particles, and train a linear soft margin SVM (using the Scikit-
learn package [77]) to classify these examples. We can then use the learned classifier
(here: a hyperplane in feature space) to try to predict dynamics based on a particle’s
instantaneous environment, and we define the softness of particle i at time ¢, S;(¢),
as the shortest distance between its vector of structural features and this classifying
hyperplane.

The training set construction for our “softness” classifier closely followed the pro-
tocol outlined in Ref. [4]. We constructed a balanced 7600-sample training set using
the coldest temperature considered (7" = 0.45): 3800 rearranging samples and 3800
non-rearranging samples. We adopted the previously-used convention of associating
the structural data of a particle ¢ at time ¢ — 27 with the dynamical state at time
t. We defined a rearranging particle if, at time ¢, ppop(4,t) > p. where p. = 0.2. We

defined a non-rearranging particle by requiring its pp,(i,t) value to remain less than
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a lower threshold of p; = 0.0085 for at least 1207 duration of time. We then used
the local structure of the non-rearranging particle in the middle of its time of low
activity. Unlike in previous work, we take structure and p,, values directly from the
thermal configurations rather than quenching to the inherent states (in part because
the fluid-phase simulations would be far from any minima). Unless otherwise stated,
we used a soft-margin misclassification hyperparameter of C' = 1072

A major finding of Ref. [4] was that this signed distance — softness — encodes
the probability the target particle would rearrange at a given temperature. The
corresponding curves for the probability of rearranging at different values of S as a
function of T all intersected at a common temperature, which in turn suggested the
existence of an onset temperature above which structure was no longer predictive of
dynamical events. The predicted value of T was consistent with alternative defini-
tions [25, 20, 4] and with the numerical values cited above. Before we return to this
finding, we first ask: Can we learn to classify dynamical events based on structure
not in the supercooled regime but at and even above the onset temperature?

For T' > T} individual particle motion is diffusive rather than activated, and it is
not clear that using ppp, as a dynamical label is the most natural choice. We continue
to use it as an indicator function — it is still large for dynamical trajectories that move
a particle far from its initial position and small for diffusive motions that stay near a
particle’s initial position — and will show in a later work that this choice is not crucial
to our results. To identify “extreme events” to classify, we select particles in high
and low tails of the probability density function of py,, at different temperatures. To
have similarly sized training sets as in the case of softness, we choose lower and upper
cutoffs (p, and p,) that captured the most extreme 0.033% of low- and high-activity
events, respectively. We identify particle ¢ at a given time t as “extremely diffusive”
if prop(i,t) > py, and associate it with the particle’s local structure at time ¢ — 27.

Similarly, if ppep(i,t) < pi, the particle is identified as “extremely non-diffusive,” and
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its structure at time ¢ — 27 is included in the training set. The training set for each
temperature we considered above T contained 10400 balanced samples.

Aside from this difference in choosing “rearranging” and “non-rearranging” labels,
we follow the methodology above: we find a linear soft margin SVM that best classifies
a labeled training set, and then apply this classifier to new data. To distinguish it
from softness we call the distance of a point in feature space to such a classifying
hyperplane the “fluidity,” and we use we F;] to denote the fluidity of particle i
with respect to a classifier trained from data at temperature 7. Given any of our
classifiers, one can compute a particle’s softness or fluidity by computing its feature
vector (which depends only on the instantaneous structure around the particle) and
evaluating o;(t) = W, - F;(t) — b,, where w, is the normal vector and b, the bias
defining a classifying hyperplane, and where « refers to either softness S or a fluidity
FT. We note that the term “fluidity” has previously been used to describe an average
rate of plastic events in models of soft glassy rheology [78]; while our definition is
different, we will see that highly “fluid” particles have more active dynamics at high
temperatures and, indeed, are more likely to undergo plastic rearrangement events at

low temperatures.

2.3 Classification in the fluid phase

We find that we can learn to classify extreme diffusive events even far above the onset
temperature using local structure. Hyperplanes are characterized by a normal vector
and a bias; the direction of the normal corresponds to the linear combination of fea-
tures that has been learned, and the bias is an offset that bests separates the training
set given that direction. We expect the direction to encode the key physical features
governing rearrangements, whereas we expect the bias may be strongly dependent on

details such as the choice of time window or the temperature of the training set. For
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Figure 2.1: Fluidity classifies rare events at high and low temperatures. The
points show the 5-fold cross-validation accuracy of linear SVMs trained on extreme
diffusive samples at 7" = 1.0,1.2,1.4,1.8,2.0 (dark blue to light red) as a function of
the classifier’s bias. Each classifier achieves near-peak accuracy for small values of
the bias. In contrast, the inset shows the test classification accuracy of the “softness”
classifier trained on activated dynamics at T=0.45 and applied to the extremes of
diffusive events at different temperatures, for which very different values of the bias
optimize performance.
instance: with our fixed-threshold definition of a rearrangement the total number of
rearranging particles increases as T’ increases, so even if the same underlying struc-
tural variable controls rearrangements the optimal bias of the hyperplane will shift to
maximize the soft margin in the training set data. Because of this, we want to remove
the influence of the bias on our later results. In Fig. 2.1 we show the training accuracy
of fluidity as a function of the bias, and during our transfer learning approach later
we will select values that maximize our classification accuracy not on the training but
on a low-temperature test set.

It is noteworthy that at such high temperatures, any structural features predictive

of dynamics can be found. We find that even a softness classifier — i.e., a classifier

trained on activated dynamics — has some ability to classify diffusive events in the fluid
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Figure 2.2: A transfer learning approach connects extreme diffusive

events above T with activated dynamics below 7. The main figure shows
the test accuracy of linear SVMs, trained on extreme diffusive samples at T' =
1.0,1.2,1.4,1.8,2.0 (dark blue to light red), as applied to a test set of activated dy-
namics at 7' = 0.47 as a function of the classifier’s bias relative to the optimal bias for
that choice of temperature. The inset show the self part of the Van-Hove correlation
function for large particles at a time scale of 10 LJ time units. (Black dots are for
T=0.45.)

phase: as shown in the inset, the accuracy on the high-T" training sets is almost as
good as the classifiers trained at those temperatures. The optimal bias that needs to
be chosen is quite different, but the direction in feature space learned is quite similar.
This finding encourages us to more explicitly frame a transfer learning task from
the high-temperature to the low-temperature regime. Concretely, we apply the fluid-
phase classifiers — trained at temperatures ranging from 7' =1 to T' = 2 — to labeled
data from T = 0.47. As shown in Fig. 2.2, even though we have trained on data
well above T we find that our classifiers maintain substantial classification accuracy.
Again, the optimal bias varies strongly with training and testing temperature, but

the direction in feature space is extremely highly correlated.

To highlight how surprising this is, in the inset we show the self part of the van
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Hove function characterizing single-particle displacements, choosing as a time scale
the same window we used for pp,,. At high temperatures this distribution is essentially
Gaussian and involves a substantial numbers of particles moving many times their own
size; at low temperatures this distribution is non-trivial and has an exponential tail
corresponding to hopping motions whose size is less than a single particle diameter.
This is reflective of the fact that diffusive events and activated events arise from
mechanisms that are fundamentally different. Diffusive events are often driven by
thermal fluctuations without significant energy barriers. In contrast, activated events
involve rare, collective rearrangements that require surmounting an energy barrier,
making them non-trivially different from diffusive motion. The successful prediction
of activated events by the model suggests that the model has learned some underlying

structural features that are shared between the two processes.

2.4 Interpretability of fluidity and softness

Using T' > Tj classifiers we are able to obtain reasonable accuracy on training sets
(which are by definition constructed from atypical particles at the various training
temperatures), but similar to the distribution of softness shown in Ref. [4], the dis-
tributions of fluidity, when measured at different test temperatures, remains approx-
imately Gaussian. This is shown in Fig. 2.3 for two training temperatures (7" = 1.2
and 7" = 2.0). The mean of the distribution behaves monotonically as the test tem-
perature changes as was equally observed in [4].

Remarkably, we find that fluidity has the same kind of physical interpretability
as softness. We define a rearrangement as a particle having an instantaneous value
of prop > pe, and fit the probability of rearranging, Pg, to a Kramers form [79]:
Pr = Fexp (X(FT)) exp (—AE(FT)/T). Just as for softness, we show in Fig. 2.4

that fluidity partitions the overall system dynamics into a collection of barrier-hopping
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processes characterized by an energy barrier scale (AFE) and an entropic contribution
(X). We also find that our prediction of the onset temperature itself — whether from
the intersection of the Kramers form fits or more qualitatively from where the data
collapses — is the same across our softness and fluidity classifiers, suggesting that a
consistent physical interpretation is being learned.

The identification of a scalar value — fluidity — that encodes the energy barrier
characterizing an activated process by training a classifier on diffusive events is strik-
ing. Given the cross-over nature of the onset temperature, perhaps this qualitative
result could have been expected for training temperatures close to Ty, but it holds
even when training far above Tp, as shown in Fig. 2.4a. How do the energy barri-
ers learned by these classifiers compare to the energy barriers learned by classifiers
trained on supercoooled data, i.e., to those from softness? A direct answer to this
question is complicated by two aspects of the training and testing procedure.

The first is that there is no reason to think that the hyperplane bias should be held
constant when moving from one task to another. This is implicit in the relatively large
shifts in bias needed in the inset of Fig. 2.1 and in the test accuracy for sub-optimal
choices of bias in Fig. 2.2. The second issue relates to the fact that we study systems
across such a wide temperature range that the distribution of the structural features
changes substantially (a similar issue arose in the context of applying classifiers to
systems at different densities [52]). To account for these, we compare the physical
interpretations of the different classifiers by defining z, = (ﬁa F— bgf“) /04. That
is, we adjust the bias to the optimal value when the classifier is applied to a common
(T = 0.47) training set, and rescale the feature vector by the standard deviation of
the distribution of fluidity (or softness) at the training temperature. With this choice,
in Fig. 2.5 we show that the learned aspects of the landscape associated with particle
structure — including both the energy barrier and entropic contribution — are almost

tdentical. We note that fitting the data only in the regime unambiguously below the
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T b or pPest Wg - Wq
0.45 | 0.0096 | 1.1188 | 0.55710 | 1.0000
1.0 | -0.0056 | 0.7653 | -0.2385 | 0.8246
1.2 | -0.0171 | 0.7028 | -0.4644 | 0.8071
1.4 | -0.0099 | 0.6760 | -0.4644 | 0.6643
1.8 | -0.0262 | 0.6286 | -0.5774 | 0.7104
2.0 | -0.0341 | 0.6286 | -0.6151 | 0.7198

Table 2.1: Table of the optimal bias, b, of the hyperplane during training;
the standard deviation of fluidity (or softness for T=0.45) at the training
temperatures; and the optimal bias, 4!, that maximizes test accuracy at
T=0.47. The final column displays the projection of our classifiers onto
the softness classifier.

onset temperature — i.e., the points for which 7" < 0.8 — does not qualitatively change
these results. We speculate that there may be some correlation between training at
higher temperatures and a hint of a slight curvature in the data, but do not yet have
sufficient data to confirm this.

Given these results, Table 2.1 reports several values that contribute to the forma-
tion of the results: the bias (i.e., the bias that achieves the highest accuracy during
training), standard deviation of fluidity and softness, and the optimal choice of bias
when the classifier is applied to a test set at T" = 0.47. We also report, as a simple
measure of the similarity of the classifiers, the dot product between the normal vector
describing each classifier and that of the softness classifier. From the dot product, it is
clear that these classifiers point nearly in the same direction in the high dimensional

feature space.

2.5 Discussion

Taken together, our work establishes a surprising connection between the structural
features that control activated events at low temperatures and those apparently re-
sponsible for the tails of the distribution of diffusive events above the onset temper-

ature. Although many approaches have considered the link between local structural



41

arrangements and dynamical arrest in the supercooled regime [41], much of this knowl-
edge is set aside when studying the liquid phase. Our finding that structure is relevant
even above the temperature of liquid-gas critical point (roughly 7" = 1.2 in this model
[80]) suggests that further pursuing this avenue of research may prove fruitful. The
connections between structure and dynamics across temperatures that we find may
be a consequence of the only modestly growing structural length scales over the tem-
perature range studied, but we again emphasize that the qualitative character of the
dynamics changes significantly over these same temperatures.

A natural hypothesis might be that our classification accuracy stems from an
ability to identify fluid phase particles that do not diffuse very much: perhaps we are
identifying rare particles that consistently sample a similar, high-barrier part of the
energy landscape, and are not truly distinguishing both immobile and highly-mobile
particles? We show in the Appendix that this hypothesis fails, and that using both
tails of the diffusive-motion distribution is crucial to our results. We comment that
our main finding — that one can take a classifier built on fluid-phase data without
barrier-hopping dynamics, apply it to data in a dynamically heterogeneous phase,
and infer the existence of energy barriers there — is reminiscent of the results reported
in Ref. [54]. That work considered a biologically-inspired model with highly unusual
glassy dynamics [23, 81, 82] meant to mimic the behavior of dense cellular materials.
There it was speculated that it was the anomalous, sub-Arrhenius behavior of the
model that was responsible for the success of the transfer learning task; the results
presented here suggest an alternative explanation may be needed.

Our work highlights what we believe continue to be crucial unanswered questions:
why do these machine learning methodologies learn simple structural order parame-
ters that correspond to local energy barriers in disordered phases of matter? What
aspects of the training lead to this result? And to what extent can we use this result

to uncover new, relevant descriptions for the physics of amorphous solids? We note
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that there is some indication that the specific methodology used here and earlier —
linear SVMs — may not be crucial to recover this physical interpretation; Ref. [48]
hinted at a similar result using a GNN-inspired linear-regression-based model. We
believe it will be crucial to compare different machine learning techniques as applied
to predicting glassy dynamics [62, 5] not only along dimensions of predictive capac-
ity, generalizability, efficiency, and training cost, but also in terms of their physical

interpretability.
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Figure 2.3: The distribution of fluidity at different test temperatures for
two considered training temperatures. Training at both 7’ = 1.2 (a) and 7" = 2.0
(b) the distribution of fluidity is approximately Gaussian. The mean is a monotonic
function of the test temperature (legend).
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Figure 2.4: The probability of rearrangement conditioned on fluidity reveals
energy barriers below the onset temperature. (a) The log probability of re-
arrangement conditioned on F?? vs inverse temperature. Point colors correspond to
different bins of fluidity, as indicated in the legend. Part (b) shows the same features
for rearrangements conditioned on S. In all cases, dotted lines are Kramers-form fits.
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Figure 2.5: Collapse of inferred landscape features from different training
temperatures. The energy barrier as a function of distance to optimized classifier,
AFE vs. x,, as inferred from Kramers fits to Pg(.S) shows little variation across a wide
range of classifier training temperatures. The inset showing the entropic contribution
similarly collapses in this representation.
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Chapter 3

Machine Learning of Energy
Barriers to Rearrangements from
Local Structure in Supercooled

Liquids

In this chapter, we delve into the physical interpretability of regression models, by
which we mean their ability to predict the energy barriers associated with particle
rearrangements. Specifically, we aim to map local structural features to the proba-
bility of rearrangement, as determined through the iso-configurational ensemble. We
depart from the discrete classification approach, which categorizes local structures
into two distinct classes, and instead explore a continuous mapping of local structure
to a continuous dynamical quantity. We directly compare inferred energy barriers
from classification-based model to regression-based models. Our results demonstrate
that these regression models can accurately predict energy barriers from structural
information. First, we detail the methodology used to calculate the probability of re-

arrangement for a given local structure within the iso-configurational ensemble. Then,
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we present our investigations into how various factors, including model inputs, the
choice of regression algorithm, and the method of supervision, influence the physical
interpretability of these models and their ability to accurately predict energy barriers.

This work is based on [83].

3.1 Introduction

Understanding the physics of glassy systems remains a fascinating challenge. Schemat-
ically, they are often described as systems for which their structural properties — as
indicated, e.g., by two-point density correlation functions — resemble those of ordi-
nary liquids [67, 84]. And yet, when cooled rapidly into and beyond the supercooled
regime they fall out of equilibrium and have a dramatic change in the their dynamics
[3]. Below a characteristic onset temperature dynamically heterogeneous dynamics
sets in, with spatially correlated regions of more quickly and slowly relaxing regions
appearing [17, 13, 16], and as the temperature decreases these domains increase in
both timescale and spatial extent [85]. The link between structure and dynamics —
and particularly the link between the local structures that characterize the arrange-
ment of particles relative to a given particle and the activated “hopping” dynamics
of that particle — remains a challenging and active area of research.

In this context, data-driven and machine learning (ML) approaches have been
increasingly used to study the correlations between structure and dynamics. These
approaches typically work with relatively general descriptors of the local structure,
and in this way represent a method complementary to more traditional works that
use physical intuition to attempt to write down good low dimensional descriptions of
the local environment (such as local free volume [8] or locally favored structures [41]).
Several notable studies have pursued this approach, leading to important insights into

how structural features do (and do not) impact dynamical behaviors [48, 4, 86, 5, 47,
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87, 55, 88,49, 89, 90, 91]. A challenge inherent in these approaches is that in adopting
general, often quite high-dimensional descriptions of local structure, a strong ability
to correlate structure and dynamics often comes at the expense of having a physically
interpretable order parameter associated with the local structure.

A notable and early exception was the claim that using linear support vector
classification (SVC) models could ultimately lead to a prediction of energy barriers
to particle-scale rearrangements based on local structure [4]. This SVC-based super-
vised learning approached introduced an order parameter, “Softness,” derived from
the signed distance between a local structure in a high-dimensional feature space and
the SVC classifying hyperplane. Softness was shown to map linearly to the energy
barrier corresponding to rearrangements associated with that local structure. Despite
the many studies that followed, a number of aspects of this result (and the method-
ology leading to it) remain unclear. For instance, to what extent is the eventual
interpretability of the softness model actually physical [92]7 Furthermore, to what
extent was it informed by (a) the choice of local structural features, (b) the source of
the training data, (c) the choice of dynamical label in performing supervised learning
with that data, and (d) the choice of machine learning methodology? In our view
these open questions both make it harder to develop theories based on softness as
an order parameter, and make it harder to extend what one might call the softness
methodology to other physical problems.

Some work has begun exploring these issues. Boattini et al. showed prelim-
inary data suggesting that using a ridge regression model might lead to physical
interpretability in terms of describing energy barriers to particle rearrangements [48].
By binning particles according to their propensity to rearrange, they demonstrated
that the probability of particle rearrangement in the Kob-Andersen model shows an
Arrhenius dependence on temperature. This Arrhenius temperature dependence is

similarly observed when the probability of rearranging is conditioned on softness, but
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it is not clear whether these two models (ridge regression and SVC, each using differ-
ent descriptors of the local structures) infer the same energy barriers for similar local
structures. Moreover, recent work by Swain et al. revealed that in the context of a
toy model with known energy barriers, linear SVC models themselves typically do not
capture the full underlying physics of the energy barriers they are trying to quantify
[92]. Instead, they characteristically underestimate the variance in the distribution of
energy barriers. This raises concerns about the accuracy of energy barriers inferred
using the linear SVC approach in more complex settings such as the glassy systems
currently under consideration.

In this work, we systematically explore the physical interpretability of multiple
machine learning methodologies (varying the feature sets used, the ML algorithms
employed, and the choice of labeling for the supervised learning) on multiple shared
training sets. In order to have statistics for the true probability of particle rearrange-
ment conditioned on different local structures, we make heavy use of the isoconfig-
urational ensemble [43], in which many random thermal trajectories are launched
from the same initial configurational state. We identify a broad range of settings in
which very different models and training choices all lead to similarly interpretable
features, and that the energy barriers identified by these very different models are
often strongly correlated with the predictions of the softness methodology.

Notably, using this isoconfigurational data we are able to compare classification-
based and regression-based models directly. This shows that the common interpre-
tation of softness as being trained on data at a single temperature and successfully
generalizing to other temperatures neglects an implicit use of data outside the training
set. At the same time, by using isoconfigurational runs we are able to systematically
compare the extent to which these different approaches underestimate the variance
in the true distribution of energy barriers. Using this as a metric for how successfully

a methodology is able to capture the underlying physics, our results (a) emphasize



50

the importance of how model weights need to be varied with test temperature and
(b) confirm that the details of local structural features chosen can dramatically af-
fect a model’s ability to capture the relevant physics at the training temperature and
generalize across temperatures.

The remainder of our work is structured as follows. In 3.2 we describe our model
computational glassformer, our protocol for performing isoconfigurational simula-
tions, the way we choose labels for rearranging and non-rearranging particles, and
the set of structural features we consider in our work. In 3.3 we study the energy
barriers learned by different ML algorithms on a common isoconfigurational training
set, and emphasize differences between regression and classification approaches to in-
ferring energy barriers. In 3.4 we show how the choice of structural features affects
the energy barriers learned and the generalization of the physical interpretability as-
sociated with different models. In 3.5 we show how the choice of dynamical label used
to define a rearranging particle influences these results. Finally, in 3.6 we discuss the
implications of our work for the project of learning glassy physics by these means,

and discussion potential extensions of this work.

3.2 Methods

3.2.1 Model and Simulations

In this work we focus on simulations of N = 4096 particles using the standard Kob-
Andersen model [11]: a canonical fragile computational glassformer composed of an
80 : 20 binary mixture of particles interacting via a non-additive Lennard-Jones
(LJ) potential truncated at 2.5 times the larger particle diameter. All simulations
were done at a particle density of p = 1.2 in a cubic box with periodic boundary
conditions. Throughout we report all quantities in reduced units using the standard

LJ convention in which 044, the diameter of the large particles, is the base unit of
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distance; the interaction parameter €44 is the unit of energy; m, which is set to unity
for both particle species, is the unit of mass; and 7 = \/@ , is the LJ unit of time.
The Boltzmann constant kp is set to unity and temperature is measured in units
of exa/kp. We consider a temperatures in the range T' € [0.45,0.86], for which the
system is supercooled and exhibits modest dynamical heterogeneity. The simulations
were carried out in the NVT ensemble with a Nosé-Hoover thermostat [74], using the
HOOMD-BLUE [93] package. In our analysis, as is standard, we will focus on the
large particle species unless otherwise noted.

We make use of some of the configurational and trajectory data in Ref. [63, 94].
We additionally perform a large number of short-duration isoconfigurational simula-
tions [44, 45] in order to quantify the probability of rearranging, p,, for particles in
snapshots drawn from a range of temperatures. Rather than performing first quench-
ing a configuration and then performing simulations with independent realizations of
particle velocities consistent with a target temperature, we instead perform isoconfig-
urational ensemble runs directly from the thermal configurations. That is, we evolve
the dynamics of a given thermal configuration multiple times, assigning new velocities
drawn from the Maxwell-Boltzmann distribution at the target temperature for each
run. The time length of each isoconfigurational evolution was limited to 307, and at
t = 257 we recorded the fraction of runs for which a particle experienced an activated
event (as quantified below). We have checked that when the time ¢ is chosen to be a
relatively short time scale our results for the probability of rearrangement, p,, is not
qualitatively affected.

In order to collect sufficient statistics, at low temperatures we performed between
10* isoconfigurational runs (at higher temperatures) and 10° isoconfigurational runs
(at lower temperatures) for between three and five snapshots at each target temper-

ature.
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3.2.2 Identifying Rearrangements

As noted above, defining the isoconfigurational probability of rearranging on a per-
particle level requires a metric to identify activated events from a particle’s trajectory.
We focus on the common choice of using a thresholded version of the py,, indicator
function introduced in Ref. [76]. The indicator function for particle ¢ at time ¢ is

defined as

Phop(ist) = (75 (8) = (732, (Fol) = (7)) D

Here 7 is the position of particle 4, n = [t — 5,t], 9o = [t,t + 5], and (---),, is an
average over the designated time interval. This corresponds to a total observation
time window of 107, which is short compared to the alpha relaxation time in our cold
samples but long compared to the duration of a particle rearrangement event.
Consistent with Ref. [4], we use a threshold to define activated events for particle
i at time ¢, choosing ppe(i,t) > 0.20% 4 as a threshold for a particle rearrangement,
In Appendix A.0.2 we explore the effect of alternate dynamical labels for rearranging

and non-rearranging particles.

3.2.3 Structural descriptors

Our supervised learning methods require a choice of the parameterization of the local
structure around particles in our simulations. We predominantly use a combination
of standard (Behler-Parrinello) features to characterize local two-point correlations
[50], and bond-orientational order parameters to characterize the local angular en-
vironment [37]. Specifically, for particle i we quantify the radial structure via the

functions
g —(T' — R1>2
Gx(i;r,0) = Zexp (2—52j : (3.1)

Here X = A, B denote the component of the binary mixture being considered, the

sum is over particles j of the given component near particle ¢, and R;; is the dis-
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tance between particles ¢ and j. The parameter r is varied to describe local density
correlations at different distances, and the parameter § controls the width of the
Gaussian shells. We characterize the local structure with the choice d = 0.2044 and
with 0 < r < 5044 chosen in increments of 0.1044. In total, this gives 100 structural
features describing the radial structure for a particle.

The angular structure function for the particle ¢ is characterized by the functions

Q:1(%; "min, Tmaz), similar to work done in Ref. [4]. We build this up by first considering
<le F) Z}/Zm 7 Tmin < Rij < T'max> (32)

where Y}, is a standard spherical harmonic. Thus, (Q;,(7)) is the average of the
spherical harmonics contributions for all particle j in a shell near particle :. We then

define a rotationally invariant combination of these (), as our angular descriptors:

Qi(%; Tmin, Tmaz) = (2l+1 Z (Qum (7 > : (3.3)

The inner radius of the shell, r,,;,, is determined from a set. That is, from
Tmin € {1.0044,1.5044,2.0044,2.5044,3.0044} and 70 = Tmin + 0.5044. The [
parameter is chosen from the set [ € {2,4,6,8,10,12,14}. This leads to an additional
35 structural features describing the angular environment of particle :. Thus, the
local environment of a particle i is described as a vector, Fi = {F{,F% ..., Fi} in
a feature space of dimensionality M = 135. Unless otherwise noted, we standardize
all features [75] so that at the training temperature, each has zero mean and unit

variance.
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3.2.4 Standard training datasets

For classification tasks (i.e., in computing Softness), we use a balanced training
dataset described in Ref. [63]. This consists of the same particle configurations used
in that work, with the analysis extended so that the feature vector contains both
the radial features computed in the earlier work and the angular features described
above. For regression tasks we create a new training dataset composed of the local
structures, F , and the associated probabilities of rearrangement, p,, for all particles
in each of the independent thermal configurations from which isoconfigurational sim-
ulations were run. For both regression and classification, we focus on models trained

with datasets from the T' = 0.45 temperature states.

3.3 Inferring energy barriers with different data-

driven approaches

3.3.1 Correlating structure with dynamics using linear mod-

els

We begin by considering simple regression models that map local structure to the
probability of rearrangement. We make the common choice of regressing on the log-
odds (logit) of p,, and focus on linear soft margin Support Vector Regression (SVR)
and a Ridge Regression (RR) models. Concretely, for a particle i with probability of
rearranging p,(i) and local structure Fi= {F},Fy, ..., Fi/} we try to learn the bias b

and weight vector w that best predicts the log-odds:

; M
logit p;. =In —— = woF, +b 3.4
T ; (34)
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The free parameters for the models (the weights and biases) were optimized using the
SCIKIT-LEARN package [77].

The most straightforward measure of the ability of these models to generalize to
unseen structure at the training temperature is by testing them on additional data
taken at the training temperature. The correlation between the true and predicted

log-odds is quantified using Pearson correlation,

cov (ytrue ) ypred)
Pcorr =

\/Val" (ytrue ) var (ypred)

where ;e is calculated from the isoconfigurational data and yp..q = logit pimedel) g

the prediction from the given model. That is, we calculate the ratio of the covariance
(cov(...)) between the true and predicted values and the product of the variance
(var(...)) of those quantities. We observed average correlations when testing on three
new T = 0.45 configurations of pSVE ~ 0.36 and pff ~ 0.38. This value is close to
that value reported by [95] for the athermal system they studied.

This relatively low correlation, while suggesting that these models capture some
relevant structural information, also indicates that predicting dynamics from local
structures is inherently challenging. The limited correlation also implies that while
we can proceed with exploring the models’ physical interpretation in terms of energy
barriers, we should treat these values with caution (as highlighted by recent work on
simpler model systems [92]). We next apply the learned models to isoconfigurational
data sets generated at higher temperatures. The distribution of predicted p, for the
SVR model is shown in Fig. 3.1 for temperatures ranging from 7' = 0.45 (supercooled)
to T" = 0.86 (comparable to the onset temperature). Comparing this plot to the
literature, one notices that the trends in these distributions mirror those of softness
quite closely [4]. The distribution of the In of p, is very nearly Gaussian, with a mean

that shifts to the right with temperature at a rate comparable to the shift in the
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distribution of softness (as shown in Appendix A.0.1).

To quantify more precisely the similarity between an SVR trained on isoconfigura-
tional data and the softness SVM trained on hand-selected examples of “rearranging”
and “non-rearranging” particles drawn from the thermal states of molecular-dynamics
trajectories, we apply a trained Softness SVM to our isoconfigurational data and com-
pare the distributions. We use the Jensen-Shannon Divergence (JSD), a symmetric
version of the Kullback-Leibler Divergence (D): JSD(P||Q) = (D(P||M) + D(Q||M)) /2,

where M = (P + @Q)/2 is a mixture distribution of P and ) and

DPIIQ) = [ bl tog (@) .

oo q(x)

The JSD is bounded between zero and one, and is a measure of the information lost
when one distribution is used to approximate another distribution, where a value of
zero implies a perfect similarity between the distributions. We find that the distribu-
tion of the log-odds of the regression models are extremely similar to the distribution
of softness, with a JSD between the softness distribution and the distribution associ-
ated with either the SVR or RR models of the order O(1072). Thus, the distribution

of softness and those from the regression models are essentially the same.

3.3.2 Inferring energy barriers

The ability to infer energy barriers to particle rearrangement based on local structure
is a key goal of many of these methods, and in the Softness picture this was how the
model generalized across different temperatures: binning particles equally far from
the classifying hyperplane at different temperatures revealed an Arrhenius form for
the probability of rearranging at a given softness, suggesting that the local structure
set an energy barrier scale that could be closely correlated with this classification

protocol.
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Figure 3.1: Predictions from the SVR model strongly correlates with Soft-
ness. The distribution of the log of the rearrangement probability predicted by the
SVR model follows an approximately Gaussian shape. This distribution shifts pro-
gressively to the right as the temperature (legend) increases. The inset scatter plot
further demonstrates a correlation between the SVR model predictions and Softness,
suggesting that both quantities capture related structural information.

In the context of regression models, there are two different (and not obviously
equivalent) ways to study how the predictions generalize across temperatures. The
first, most direct, is to simply apply the said regression model to data at different
temperatures: because the system is at a different temperature than the training
temperature the local structures will on average be different, but it is certainly plau-
sible that over the kind of modestly varying temperature range studied in supercooled
KA simulations the distribution of observed structures at the training temperature
will be sufficiently broad so as to allow for good generalization. The second is to
repeat in the context of the regression models’ predictions the Softness protocol for
finding energy barriers. To pursue this second avenue, we bin particles by their

(model)

value of Inp;, and evaluate the fraction of particles, f, in that bin that re-

arrange in a short future time window of 27. Just as was found in the Softness
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Figure 3.2: SVR predictions have an Arrhenius form. Binning particles by

In p,(«mOdel) and finding the fraction of the binned particles that rearranges at different

temperature has an Arrhenius decomposition. The energy barrier, AFE, and the
entropic piece, 2, are extracted by fitting to these Arrhenius form (dashed lines show
a Kramer’s fit). The gradient from light green to dark purple indicates In pSV%

2V values
ranging from -6.5 to -10.

methodology, we find that In f(In pﬁmadd)) vs. 1/T has the typical Arrhenius form:
In f(In p,(ﬂmOdel)) = 3(In pq(andel)) — AE(In p&mOdel)) /T. This is shown in figure 3.2 for
the SVR model, In f vs. 1/T for different values of Inp?V*.

From such Arrhenius forms, we examine the “physical interpretability” of the
regression models in terms of the inferred energy barrier, AE, by considering the same
set of particles (with the same sets of structural descriptors) and comparing the energy
barriers that each model “learns”. To facilitate a direct comparison of energy barriers
across models (which may exhibit different scales in their predictions), we normalize
the output using a Z-score approach, similar to our earlier work [63]. We define the
Z-score ¥ = 0 - F /0y, where oy, is the standard deviation of the distribution of

(model

In py ) for the respective regression model at the training temperature. In the case

of softness, o, is the standard deviation of the softness distribution at the training
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temperature. The actual bias, standard deviations, and mean of the predicted Inp,

at the training temperature in Table 3.1.
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Figure 3.3: Different models predict similar energy barriers to local rear-
rangements. Energy scale and (inset) entropic terms characterizing the local energy
barrier to particle rearrangement. A strong correlation between regression models and
Softness is observed. Different symbols correspond to different regression and classi-
fication models, as noted in the plot legend — the chosen symbol shapes consistently
correspond to the indicated model in all future figures.

Figure 3.3 shows that the energy barriers learned by these regression models are
highly correlated with the energy barriers identified by softness. Given this high
correlation with softness and the relatively low Pearson correlation coefficient that
characterize the SVR and RR models on new data at their training temperature, we
examine the directions of the SVR and RR regression hyperplanes relative to the
Softness classification hyperplane. One would expect that regression and classifica-
tion hyperplanes would typically be orthogonal, and that (e.g.) the SVR and RR
hyperplanes would point in similar directions. As shown in 3.1, the regression hy-
perplane is not completely orthogonal to the classification hyperplane. Furthermore

the projection of the SVR and RR hyperplanes is only wgg - wsyr &~ 0.4, indicating
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Model | Wg - Wioger | (INPy)er bin Ty
SVR 0.13264 -8.41951 | -8.35800 | 1.01994
RR 0.75145 -8.33924 | -8.28735 | 0.86906
rbfSVR - -8.47193 | —8.84931 | 0.86576
MLP — -8.29172 — 0.78949

Table 3.1: Features of linear and non-linear models For linear and non-linear
models we show (where appropriate) the projection of hyperplanes onto the softness
hyperplane, the average of the predicted Inp, at the training temperature, the bias,
and the standard deviation of the distribution of the predicted Inp, at the training
temperature.

that there is a substantial range of linear regression directions that are almost equally
good at predicting dynamics.

Taken together, these results analyzing performance on and generalization across
isoconfigurational datasets indicates that all of the models are capturing only a por-
tion of the underlying physical observables. As suggested in Ref [92], this can be more
fully buttressed by quantifying the fraction of the true variance of the distribution of
rearranging predicted by each model. We implement the Law of Total Variance to
quantify the fraction of the variance of the true distribution of logit p/™¢ explained by
our models. Based on the Law of Total Variance, the fraction of the true variance of Y’
explained by a random variable X, is the variance of the mean of Y conditioned on X
and then normalized by the variance of Y, i.e. Var((Y|X))/Var(Y). Figure 3.4 shows
the fraction of the true variance explained by models all trained at T = 0.45 when
applied to iso-configurational snapshots across a range of temperatures. The fraction
of the variance explained by the models is not significant across temperature; it is
below a value of 0.5 for across temperatures. This shows that the models, whether

classification-based or regression-based, are poorly explaining relevant details of the

landscape from structure.
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Figure 3.4: Fraction of the true variance explained by the ML models when
applied to iso-configurational snapshots across a range of temperatures.
The explained variance remains lesser than 0.5 across temperatures, indicating that
both classification-based and regression-based models poorly capture relevant struc-
tural features of the energy landscape. The error bars are standard error on the mean
from 40 bins each containing 177 uncorrelated particles.

3.3.3 Correlating structure with dynamics using non-linear
models

The original Softness methodology used a support vector classifier with a linear kernel
— while it was not a priori clear that the dynamics would be linearly separable in
the given feature space, this choice made more straightforward the assignment of a
scalar value as the signed distance of a point in feature space to the classification
hyperplane. We have seen, though, that using linear methods results in a wide range
of regression or classification [63] hyperplanes with similar predictive performance.
We thus investigate whether non-linear methods provide better predictive power and
/ or physical interpretability.

To do so, we focus on two quite different methods: a SVR model using a radial

basis function (rbf) kernel for the nonlinear transformation (which we label rbfSVR),
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and a multilayer perceptron (MLP) with rectified linear unit activation functions.
For the MLP we use architectures that have five hidden layers and a total number
of parameters equal to half, the same, or double the number of training examples
(results when the number of parameters equals the number of training examples are
reported here, and the other results are shown in Appendix A.0.3). For all of these
nonlinear models, we use the same structural descriptors and the same training sets
as described in Section 3.3.1.

Perhaps surprisingly, we do not find that the predictive capacity of these these
nonlinear models is notably different from the linear models reported above. The
MLP model learns roughly the same physical quantities as the RR and SVR models
(Fig. 3.3), and if anything the rbfSVR model is slightly less sensitive to the details
of the energy landscape given the same amount of training data. This may be an
indication that the amount of training data we use is sufficient for training linear but

not non-liner models.

3.4 Impact of structural descriptors on model per-
formance

When considering the results in Fig. 3.4 (or in the other figures above representing
the generalization of these machine learning models), it is unclear how important
the specific choice of structural features was. For instance, Boattini et al. pointed
out that adding features that capture information about the average structure of
neighboring particles to a particle’s feature vector improved the performance of ridge
regression models [48]. While we have chosen relatively common parameterizations of
the two-point and many-body local structural environments, there are many alternate
parameterizations that incorporate more or less physical intuition about what is im-

portant [41]; it is also clear that we are using a feature set which is far from being an



63

orthogonal basis set. Thus, in this section we investigate the fraction of true variance
learned by a regression model as we vary the number and type of descriptors that de-
fine the feature space. To quantify the fraction of the variance learned, we normalize
the variance of the distribution of logit pPV® at T' = 0.45 by the variance of the true
distribution at that temperature. That is, n = Var(logit p5V®) /Var(logit p"“¢). Here

we keep the model constant, focusing on the linear SVR model.
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Figure 3.5: SVR model interpretation as a function of the number of fea-
tures considered. Through RFE, the (a) energy barrier height and (b) entropic
contribution to the probability of rearranging as a function of the dimension of fea-
ture space barely changes. The fraction of the true variance learned by the model (c)
increases modestly over this range.

We first vary the dimensionality of the feature space by varying the number of
structural descriptors considered. We use the Recursive Feature Elimination (RFE)
technique [96], which was also used in Ref. [92] to find the optimal dimensionality
of feature space that maximizes the variance of inferred energy barriers in a simple
model. We show in Fig. 3.5 how the inferred energy barriers of our particle systems
vary with the dimension, M, of the feature space. The trend of AE(x) and X(z) for

M < 16 is shown in Fig. 3.5(a) and (b), respectively. For these small numbers of
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features there are relatively modest changes in the inferred physical quantities, and the
fraction of the true variance explained by the model is relatively small (Fig. 3.5(c)).
As M increases further, 7 increases significantly and the inferred energy barriers vary
modestly more rapidly as the Z-score-like x is varied. This improvement in the model
quickly saturates, though, further emphasizing that the models are in fact inferring
a bounded representation of the true distribution of energy barriers.

We next examine the impact of the specific local descriptors used on the regression
model’s ability to infer energy barriers. We use the higher-order structural descriptors,

XZ-("), proposed by [48]:

—Tij/Tc 1)
xr C > emalrex it (3.5)
VE i <re
Here C' = >’ jirag<re e "i/™ and r, is a cutoff radius whose value is chosen to be

the location of the second minimum in the radial distribution function. The zeroth-
order descriptors, X© are the combination of radial and angular descriptors used in
section 3.3. To this we add first- and second-order descriptors (the combination of
which were shown to be competitive with more complex graph neural network models
[48]), increasing the potential size of the feature space from M = 135 to M = 405.
As shown in Fig. 3.6(a), including these higher-order features leads to inferred
energy barriers that vary less strongly with x than neglecting them. This result is
counter-intuitive, but may stem from the more strongly changing typical higher-order
features with temperature than is seen in the zeroth-order features. It may also be an
indication that we are in a data regime that is too sparse for a three-fold increase in
the dimensionality of the feature space, as we have not systematically checked these
results as a function of performing more independent isoconfigurational simulations.
We do see in Figure 3.6(b) that including up to second-order features does not improve

the fraction of variance explained by the linear SVR model.
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3.5 Impact of dynamical labels on model perfor-
mance

The above results involved varying the machine learning methodology used and the
set of features used to characterize the local structural environment of a particle.
Held fixed was the definition of a “rearrangement.” Previous work showed that con-
tinuing to use a thresholded version of pp, to define rearrangements concluded that
the dependence of the inferred energy barriers on the pj,, threshold amounted to a
simple shift in the energy scales but with identical slopes [4]. This was rationalized
as indicating that characteristic rearrangement size depended linearly on the cutoff
chosen. Other work has indicated that results quite similar to those of the original
softness protocol can be obtained not by using py,, as an indicator function, but using
thresholds on the total magnitude of particle displacements [63] or on other measures
of structural rearrangements [54].

Extending those observations about the relative robustness of inferred energy bar-
riers to the precise choice of dynamical labeling methodology, here we first investigate
the impact of defining the probability of rearrangements using not pp., but the cu-
mulative squared displacement (CSD). The CSD captures the cumulative magnitude
of particle displacements over a time window, with details in Appendix A.0.2. As
indicated in Appendix A.0.2, when using different indicator functions for defining
a particle rearrangement, we choose different thresholds so that we approximately
match some features of the distribution of p, in our isoconfigurational simulations.
Figure 3.7 shows that, indeed, the details of the inferred energy barriers (and entropic
contributions) are extremely highly correlated with those inferred based on dynamical
labels derived from ppp.

Another common choice of dynamical label is not to define and then predict

“rearrangements” but rather to try to predict propensity [46, 44], typically defined
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as the isoconfigurational average of the norm of a particle’s displacement after some
time window. It is, a priori, unclear how important the use of an inherent state
for the isoconfigurational averages are in this protocol, and we thus investigate the
Pearson correlation of a linear SVR model regressing on propensity determined from
isoconfigurational starting from thermalized configurations. Can such a model predict
inherent state propensities? To answer that question, we train a linear SVR model on
t = 257 from thermal configurations at 7' = 0.56, and compare with the T'= 0.56 IS
propensity data in Ref. [5]. Figure 3.8 shows the Pearson correlation of the predictions
from an SVR model trained directly on IS propensities (using the datasets of Ref. [5])
and those of an analogous model trained on our thermal configurations. Although
some information has clearly been lost in using thermal configurations, the difference

is quantitative rather than qualitative.

3.6 Conclusion

In this chapter we have systematically investigated the degree to which different ma-
chine learning methodologies are able to “learn” physically interpretable connections
between structure and dynamics in a prototypical glassforming fluid. By using large-
scale data from isoconfigurational simulations we are able to compare classification
with regression techniques, and have focused on the influence of multiple “researcher
degrees of freedom” related to the implementation of the original softness approach.
This includes the choice of dynamical label for rearrangement events, the need for in-
herent state vs thermal snapshots, the feature space used, the choice of classification
vs regression, and the importance of linear vs non-linear data-driven models.
Several of our results are consistent with existing studies. Aligned with the ar-
guments and observations of Refs. [92, 97], we find that the dimensionality of the

feature space primarily impacts the inferred energy barriers when the variance of the
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distribution of distances increases significantly. Many of the other precise details of
the feature space — the presence or absence of angular features [4] or the use of
higher-order features [48], for instance — has only modest quantitative effects on
the inferred local energy landscape. Similarly, the precise choice of dynamical label
used to identify rearrangements seems to make only a small quantitative difference as
long as roughly equally sparse “rearrangement events” are considered in the training
temperature [54, 4].

Most notably, by assessing the true probability of rearrangement through the iso-
configurational ensemble p,, we identify that the machine-learning models do learn
details of the energy landscape, however, in a limited way. The machine-learned vari-
ables poorly explain significant portion of the distribution of this true probabilities.
These results highlight that the complexity in correlating structure with dynamics in

supercooled liquids.
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Figure 3.6: Model predictions as a function of varying the feature space.
(a) The inferred energy barriers and entropic contributions of an SVR model using
higher-order features are strongly correlated with those using the standard (Behler-
Parrinello) features. (b) Using higher order features does not lead to better estimate
of the variance of logit p"¢. The chosen symbol shapes in (b) consistently cor-

respond to the indicated features in (a). Error bars are standard error on the mean
from 40 different bins each containing 177 uncorrelated particles.
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Figure 3.7: Inferred local landscape features for different choices of dynami-
cal label. The inferred energy barriers (main plot) and entropic contributions (inset)
obtained from an SVR classifier are nearly indistinguishable when training is done

with different dynamical labels.
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Figure 3.8: Pearson correlation between true and predicted inherent state
propensity. The Pearson correlation between true and predicted inherent state
propensities for an SVR model trained on our thermal configurations (light cyan
triangles) and an analogous model trained directly on inherent state data from Ref. [5]

(black triangles).
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Chapter 4

Ongoing Work on Memory Effect

in Supercooled Liquid

This chapter is based on ongoing work. The motivation behind this work is centered
on some of our observations of the iso-configurational data attained for analyses on the
physical interpretability of machine leaning models in Chapter 3. I briefly describe the
current paradigm of memory effects in the context of supercooled liquids and glasses,
some of our observations of memory in the supercooled phase of Kob-Andersen glass
model, and possible directions for the research on correlating structure with dynamics

in supercooled liquids.

4.1 Introduction

In Chapter 3, we implemented at least 10000 iso-configurational runs per snapshot
from different temperatures and identified the number of times each particle surpassed
a rearrangement threshold. The probability that a particle rearranges, p,, is the num-
ber of times such events occur normalized by the total number of iso-configurational
runs; this probability was mapped to structure in the last chapter. If we, however,

look at the evolution of the average probability for different snapshots, we find that
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the average probability evolve towards an asymptotic value. We show the case for
three thermal snapshots at T'= 0.86 in Fig. 4.1. The path through which each snap-
shot takes is distinct and implies a dependence on initial state despite being at a

temperature for which ergodicity holds for the Kob-Andersen glass model.
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Figure 4.1: The evolution of the average probability of rearrangement for
different snapshots approach a common value at long timescale. The prob-
ability of rearrangement averaged for the big particles for three different thermal
snapshots (Legend) evolve in such a way that the path they take depends on the
snapshot.

Furthermore, let us consider a collection, Hg, of particle with softness S at time
t = 0 from a configuration of particles. The average softness for the grouped particles,
(Hg(t)) evolves toward the system average, as shown in Fig. 4.2 for temperature
T = 0.83. It is not surprising that the average softness of each bin evolves toward
the long-time average; however the timescale at which this happens is seen to be of
the order of 10%7,. 7, at this temperature is of the order of 17. In addition, the path
each group of particles takes is unique, implying that the state at ¢ = 0 influences

Y

future states. Thus, the “memory” of the past impacts the present dynamics.

It may be observed that the average softness for each bin exhibits a rapid decay to
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Figure 4.2: The evolution of the average softness of particles grouped by
their softness at time ¢ = 0. The average softness of particles grouped based on
their initial softness (Legend) evolve towards the system average. The paths each
grouped particles follow towards the long-time depends on their initial value.
less than 60% of its initial value at short timescales. To ascertain whether this decay
timescale corresponds to the S-relaxation timescale (75), we perform a normalization
procedure. Specifically, we subtract the system-average softness, (S), from (Hg(?))
and normalize this resulting time-dependent difference by (Hg(t = 0)) — (S). This
normalized values are then compared with the self-intermediate scattering function,
defined as: Fy(k,t) = + Zj\f e~ ik-AT (t), where Arj(t) represents the displacement
of particle 5 at time t, and k is the wavevector corresponding to the first peak of
the static structure factor. This comparison allowed us to assess the relationship
between the decay of local structural order, as measured by softness, and the (-
relaxation dynamics captured by the self-intermediate scattering function. We do
this comparison for a temperature of T = 0.56.

Figure 4.3 reveals that the timescale associated with the initial decay of structural
order, as characterized by softness, is indeed on the order of 75. Furthermore, a

discernible trend emerges in the evolution of the normalized average softness for the
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different particle groups: the soft particle group exhibits a relatively faster decay
compared to the hard particle group. However, due to the presence of statistical
noise in the data, additional simulations are necessary to improve the averaging and
obtain a more precise quantitative measure of this timescale.

Additionally, Figure 4.3 show that the normalized softness for the various grouped
particles exhibit slow-relaxation processes that is linear with the logarithm of time.
This is reminiscent of the aging and memory in glasses. This linear dependence is

unexpected and warrants further analysis on memory effects in supercooled liquids.
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Figure 4.3: The normalized average softness for different particle groups
(binned by initial softness) is compared with the self-intermediate scat-
tering function (F;(k,t)). The decay of the normalized average for various initial
softness (thick lines) at short timescales, on the order of the f-relaxation time (75),
suggests a connection between local structural rearrangements and the fast-relaxation
process. The dash line represents the Fy(k,t) and the numbers on the legend repre-
sents initial softness.

Memory effects manifest in different ways across various forms of matter [98].
In disordered systems, this is the ability to retain information about past states,
histories, or external perturbations after the influences are removed; it has been ad-

vantageous, technologically, leading to devices for information storage and processing,
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energy applications, adaptive and smart applications, to mention but a few. Experi-
ments and simulation studies on spin glasses [99, 100, 101, 102, 103], molecular glasses
[104, 105], and polymers [106, 107] have shown that memory effects are present in
these systems. By memory effects, we mean by inducing some form of temperature
cycle, these studies have shown that these systems remember “something” about their
thermal histories [108].

In glasses, memory is associated with aging and rejuvenation. As the glass ages,
it sinks into deeper minima in the energy landscape, effectively storing the system’s
thermal history. Thermal excitations or external perturbations can cause the system
to rejuvenate essentially escaping a minima which effectively leads to a loss (of some)
of the thermal histories. However, no case of memory effects in supercooled liquids
has been reported to the best of our knowledge. Because supercooled liquids do not
age, memory effects are not expected in supercooled liquids.

In this chapter, we show speculatively that supercooled liquids exhibit memory
effects by grouping particles by their local structure and watching how the aver-
age local structure evolve during a temperature cycle. By observing memory and
rejuvenation in supercooled liquids, we bridge the gap between memory effects in su-
percooled liquids and in glasses essentially improving our understanding of memory
effects in thermal disordered systems. Furthermore, by examining memory effects
through structure, we show the nuances of structuro-dynamical correlations in these

systems.

4.2 Methods

4.2.1 Model and Simulations

To investigate the dynamic properties of our model system, we performed molecular

dynamics simulations using the Kob-Andersen binary mixture [11]. Our simulations
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comprised N=4096 particles, with an 80:20 ratio of A-type to B-type particles, in-
teracting via the standard Lennard-Jones potential truncated at a cutoff radius of
2.5044. The simulations were carried out at a constant particle density of p = 1.2
within a cubic simulation box, employing periodic boundary conditions to eliminate
surface effects. We utilized reduced Lennard-Jones (LJ) units throughout our simu-
lations: distances are measured in units of 044, energies in units of €44, and masses
was set to unity for both particle types. Time is expressed in units of 7 = \/@ )
The Boltzmann constant kg was set to unity, and temperature is reported in units
of €44. The simulations were conducted in the canonical ensemble (NVT) using the
Nosé-Hoover thermostat thermostat [74] to maintain a constant temperature. We
explored the temperature regime for which the system is supercooled and far above

the mode-coupling temperature for our simulation. The simulations were performed

using the HOOMD-BLUE [93] package.

4.2.2 Temperature Cycle

Following the established simulation protocol, we initiated a temperature cycle by
evolving a thermal snapshot at 7' = 0.51 for an equilibration period of 307. Subse-
quently, the temperature was linearly ramped up to 7' = 0.56 over a duration of 107.
The system was then held at this elevated temperature for another 307 to allow for
equilibration at the new temperature. Finally, the temperature was linearly ramped
back down to T = 0.51 over another 107 period, and the simulation was continued
at this initial temperature for further analysis. We chose a temperature of 7' = 0.51
because 7, for this temperature is of the order of 107 which is comparable to the
duration of our heating cycle.

To further investigate the influence of thermal history on the system’s dynamics,
we plan to perform the aforementioned temperature cycle on a set of iso-configurational

snapshots. This will allow us to probe memory effects and the role of initial configura-
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tions in the exploration of the energy landscape. Due to the computational demands
of such an analysis, we will focus on examining memory effects for particles within a
specific configuration, grouped according to their local structural order. This targeted
approach will enable us to efficiently investigate the interplay between local structure

and the system’s memory of past thermal cycles.

4.3 Results

To investigate the impact of the temperature cycle on local structural order, we ana-
lyzed the temporal evolution of particle softness. Particles were binned according to
their initial softness, and the average softness within each bin was tracked throughout
the simulation. As depicted in Fig. 4.4, we observed a change in the average softness
of the binned particles during the temperature cycle, with initially soft and hard par-
ticles all becoming softer. However, it is currently unclear whether this behavior is a
direct consequence of the temperature cycle or merely an artifact of statistical noise.

To address this ambiguity, we are conducting a comparative analysis by subtract-
ing the average softness observed in a control simulation from that of the temperature-
cycled system. We hypothesize that a significant deviation from zero in the softness
difference during the temperature cycle, followed by a return to zero, would indicate
a memory effect. This analysis is currently underway and will provide further insight

into the relationship between thermal history and local structural rearrangement.

4.4 Discussion

Should further analysis, as detailed in Sec. 4.3, confirm the presence of memory ef-
fects in our supercooled liquid system, this would establish that such effects are not
exclusive to the glassy state. Previous work has demonstrated that even a simple sort-

ing algorithm, designed to mimic thermally activated processes, can exhibit memory
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Figure 4.4: The evolution of average softness for particles grouped by their
initial softness. The red vertical line marks the time at which the temperature
began to increase. The blue vertical line marks the time at which temperature is
returned back to the initial value. There seem to be a consistent bump in the average
structure for each bins during the temperature cycle. At the moment, it is too soon
to tell. The bumps seem to show that both soft and hard particles become softer
during the temperature cycle. The path of the particles return back to their initial
state when the temperature is reverted back to the initial value.
effects when subjected to a thermal cycling protocol [109]. This algorithm, which
displays hallmarks of glassy behavior such as aging and rejuvenation, requires the
incorporation of a Boltzmann factor—containing an effective temperature and an en-
ergy term defined by the difference between adjacent numbers—to weight the cost
of swapping nearest-neighbor pairs. Without this thermal activation component, no
glassy behavior or memory effects are observed.

The potential observation of memory effects in supercooled liquids could imply
that the influence of the energy landscape on the system’s dynamics, which becomes
increasingly pronounced with decreasing temperature, can be manifested through

these memory effects. Specifically, by grouping particles based on their initial softness,

we effectively categorize them according to their initial energy barriers for activated
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rearrangements. As the distribution of softness within each group broadens over
time, so too do the corresponding energy barriers. This behavior may reflect the
exploration of different minima in the energy landscape, akin to aging processes in
glassy systems, although the explored minima are not necessarily deeper in our case.
However, these remain speculative interpretations that require further investigation
and rigorous analysis.

Notwithstanding the need for further analysis, Fig. 4.3 suggests a potential con-
nection between structural relaxation and the f-relaxation timescale (73) in the Kob-
Andersen model. It is widely accepted that 75 represents the timescale for which
a particle remains trapped within its cage, undergoing localized vibrational mo-
tion [67, 110]. In contrast, the Johari-Goldstein f[-relaxation involves cooperative
intermolecular rearrangements and is associated with processes occurring on a faster
timescale [111, 112, 113, 114, 115, 116]. The observed decay of the normalized aver-
age softness at the 75 timescale appears to support the presence of Johari-Goldstein
[-relaxation in this system, suggesting an interplay between local structural rear-
rangements and the faster [-relaxation processes. Additionally, [117] reported that
the fast-relaxation due to fast-moving particles are responsible for the fast-relaxation
timescale. Taken together with our premilinary analysis shows the complex relaxation

processes that take place in supercooled liquids and glasses.

4.5 Future Directions

An observation of memory effects in supercooled liquids, if such effect is confirmed,
could open up several promising avenues for future research. One intriguing direc-
tion could be to systematically investigate the dependence of these memory effects on
various factors, such as the cooling and heating rates during the temperature cycle,

duration of the cooling or heating period, and the composition of the liquid to mention
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but a few. This will help to explain the underlying mechanisms responsible for the
observed memory effects and their relationship to the dynamics of the supercooled
state. Another promising avenue could be to explore the connection between mem-
ory effects and other dynamic phenomena in supercooled liquids, such as dynamic
heterogeneity and spatially correlated particle motion. This will help us understand
how memory effects are manifested in the spatial and temporal organization of the

liquid, eventually providing valuable insights into the nature of the glass transition.
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Chapter 5

Conclusion

This dissertation has undertaken a comprehensive investigation into the application
of machine learning models for predicting and interpreting the structural signatures of
dynamics in supercooled liquids. By scrutinizing the relationship between local struc-
ture and energy barriers for particle rearrangements, we have significantly advanced
our understanding of the physical implications associated with machine-learned order
parameters, such as “softness.” The principal findings of this research are summarized

below:

1. Structure-Dynamics Correlations Persist Above the Onset Tempera-
ture: We have provided evidence demonstrating that structural features orig-
inating from the high-temperature, diffusive regime possess the capability to
predict energy barriers for activated events within the supercooled regime. This
observation suggests the existence of shared underlying structural characteris-
tics between diffusive and activated events, implying a continuity of structural

influence across temperature regimes.

2. Various Machine Learning Models Identify Correlated Energy bar-
rier from Structure in Glassy Systems: Through a comparative analysis

of Support Vector Classification (SVC) with regression-based models, including
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Ridge Regression, Support Vector Regression, and Multilayer Perceptron, we
have shown that these diverse machine learning approaches consistently extract
analogous structural signatures relevant to glassy dynamics. This finding re-
inforces the hypothesis that predictive models are effectively learning complex,
high-dimensional structure-dynamics relationships, rather than merely perform-

ing arbitrary classification or regression tasks.

3. Evidence Suggesting Memory Effects in Supercooled Liquids: Our pre-
liminary investigations have yielded evidence indicating that supercooled liquids
retain a memory of past rearrangement events, as evidenced by their response
to thermal cycling protocols. This suggests that memory effects, traditionally
attributed to the glassy state, may also play a crucial role in the dynamics of su-
percooled liquids. If substantiated, this discovery could significantly impact our
understanding of the glass transition and the emergence of long-lived structural

correlations in supercooled systems.

Despite these advances several open questions persist. In Section 5.1 some of these
open questions and promising avenues for future research are outlined. A concluding

remark is provided in Section 5.2.

5.1 Open Questions and Future Directions

Notwithstanding these advancements, a number of fundamental inquiries persist with-

out definitive resolution. A few of these are:

1. In Chapter 3, we compared various machine learning models and showed that
they infer similar physical quantity from structure. However, the work can be
expanded to both classification and regression techniques, to a wider range of
models, such as deep learning architectures, graph neural networks, and ker-

nel methods. This will provide a more comprehensive understanding of the
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strengths and weaknesses of different approaches for correlating structure with
dynamics in glassy systems which will uncover new physical insights. Further-
more, while we showed that the precise details of the feature space have a
modest impact, there is still room for optimization. Research on more alterna-
tive feature engineering approaches, including those based on physical insights
or advanced feature selection techniques, is needed to potentially improve model

performance and interpretability.

Additionally, the number of iso-configurational runs especially at low temper-
atures and the number of snapshots used as seeds for the iso-configurational
runs were limited. Also, it is not necessarily the case, especially at low temper-
atures, that the probability of rearrangements we used for training had reached
a steady state value. More research is needed on how these factors impact the
results in the chapter especially in the aspects of the regression models to ac-
curately explain the variance distribution of rearrangement probabilities across

temperatures.

. In Chapter 2 we showed that the tails of the distribution of diffusive dynamics
are informative of activated dynamics in the supercooled regime, it is not clear
if this result is unique to Kob-Andersen glass models or universal. An applica-
tion of the same analysis techniques to other model glass-forming liquids with
varying fragility, interaction potentials, and compositions will help assess the
generality of the observed structure-dynamics connections and identify poten-
tial universal features. Additionally, insights gained from this study may be
channeled into existing theoretical frameworks, such as Mode-Coupling Theory
(MCT), to improve their predictive capabilities and extend their applicability to
higher temperatures. This could involve incorporating structural information
into the dynamic descriptions or developing new theoretical approaches that

account for the correlation between structure and dynamics across different
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temperature regimes.

Furthermore, the insights gained from this chapter facilitate the use of more
cost-effective and readily accessible datasets, such as those obtainable from ex-
perimental glass-formers like colloids, enabling the application of this method-
ology to experimental systems. A particularly promising avenue for future re-
search lies in correlating structure with dynamics within these experimental
settings. In similar fashion, connections between force chains in granular mat-
ter and the machine-learned order parameter can give further insight about

correlation in disordered solids.

5.2 Final Remarks

This dissertation has illuminated both the efficacy and the inherent constraints of em-
ploying machine learning to decipher the complexities of supercooled liquids. While
these models afford substantial predictive power, the attainment of clear physical
interpretability remains a critical endeavor. Through a systematic analysis of the
structure-dynamics relationship and a rigorous evaluation of how diverse machine
learning methodologies capture fundamental physical principles, we have progressed
towards a more comprehensive framework for understanding glassy dynamics. Our
findings underscore the significant role of structural information, even in seemingly
disordered systems, in dictating long-time relaxation behavior. The ongoing refine-
ment of machine learning methodologies, informed by a deep understanding of phys-
ical phenomena, holds considerable potential for advancing our comprehension of

supercooled liquids and the glass transition, and condensed matter in general.
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Appendix A

Supplemental Information to

Chapter 3

In this section, I detail the following: Sec. A.0.1 compares the average local structure
obtained from various regression models with that derived from softness; Sec. A.0.2
defines the Cumulative Squared Displacement (CSD) function used in Chapter 3;
Sec. A.0.3 details the energy barrier and entropic contributions for the multilayer
perceptron models under parameter regimes where the total number of training ex-

amples is either half or double the total number of model parameters.

A.0.1 Mean trend for softness and log of the probability of

rearrangement

In the chapter, we demonstrated that the distribution of Inp5V# is approximately
Gaussian, similar to the distribution of softness. Figure A.1 further shows that the
mean predictions from the various models, particularly the SVR model, closely follow
the trend observed for softness. For fairness in comparison, we plot the projections
of the feature vector unto the hyperplane corresponding to the models as a function

of temperature.
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Figure A.1: Trend of the mean of the distribution from the models as a
function of Temperature. The mean of the outputs from the models increases
with temperature. However, the mean from the linearSVR and linearSVC models
increases at almost the same rate as a function of temperature.

A.0.2 Definition of Cumulative Squared Displacement (CSD)

In the chapter, we mentioned quantifying dynamics using CSD in addition to ppep. In-
spired by the definition of the mean-squared displacement, we defined the cumulative

squared displacement for a particle ¢ at time ¢ as

. 1 — — /) — ()
Ar(i,t) = 0 D O lIFEE) = = 1)

t'=t

where 7; is the position of particle i. The particle ¢+ at time ¢ is said to undergo
a rearrangement if Ar?(i,t) > 0.0966. This cutoff value is chosen such that the
total number of activated events identified matches those identified through py,, for
a reference temperature of 7' = 0.86. The choice of cutoff used does not impact the

qualitative result in chapter 3.
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A.0.3 Influence of the ratio of training examples to model

parameters

In the chapter, we presented the inferred energy barrier and the entropic compo-
nent for the case where the number of training examples matches the total number of
parameters in the Multilayer Perceptron (MLP) model, referred to as MLP. Addition-
ally, we examined two other scenarios: one where the number of training examples
is half the total number of parameters (MLP_H) and another where it is double
(MLP_D). Figure A.2 illustrates that the inferred energy landscape is influenced by
the ratio of training examples to the total number of parameters in the MLP models.
While the energy barrier and entropic component remain correlated, the MLP_H and
MLP_D models demonstrate slightly reduced sensitivity to the finer details of the

energy landscape compared to the baseline MLP model.
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Figure A.2: Details of the energy landscape inferred by the multilayer per-
ceptron models. The energy barrier AE, and the entropic piece, X, are correlated
for the different MLP.
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