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Abstract

Knowledge-Aware User Intent Inference for Web Search and Conversational Agents

By Ali Ahmadvand

User intent inference is a critical step in designing intelligent information systems
(e.g., conversational agents and e-commerce search engines). Accurate user intent
inference improves user experience and satisfaction, but is a challenging task since
user utterances or queries can be short, ambiguous, and contextually dependent.
Moreover, in an e-commerce setting, the collected datasets are often labeled by weak
supervision (e.g., click-through data), resulting in an imbalanced and sparse dataset.
To address these problems, my dissertation proposes integrating entity knowledge-
bases, conversation context, and user profile information to improve user intent in-
ference for conversational agents. Additionally, I investigate joint learning, product
taxonomies, and unlabeled domain-specific corpora (e.g., catalog) to improve query
intent inference in e-commerce search.

To evaluate the proposed models, I examine the user intent inference for two
main settings: 1) open-domain conversational agents and 2) e-commerce search en-
gines. The conversational agent research is evaluated on conversations collected from
real users as part of Amazon Alexa Prize competitions, and the e-commerce efforts
use real query logs collected from The Home Depot’s search engine. My dissertation
shows that leveraging entity knowledge-base, conversation context, and user profile
information accounts for most improvements for the conversational setting. The re-
sults demonstrate that the proposed models significantly enhance topic classification
accuracy by 15% and dialogue act accuracy by 8% for conversational agents. For e-
commerce search, the dissertation shows that joint-learning, product taxonomies, and
unlabeled domain-specific corpora can significantly improve intent inference accuracy.
The proposed models improve the performance of the top-1 retrieved documents by
6%-8% on standard metrics for e-commerce search. The results in both settings offer
a significant improvement over state-of-the-art deep learning methods. The insights
and findings in this dissertation suggest a promising direction for developing the user
intent inference in both open-domain conversational agents and e-commerce search.
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Chapter 1

Introduction and Motivation

Artificial intelligence systems that have real-time interactions with humans are
ubiquitous in our modern society. Two main paradigms of intelligent information
systems are 1) conversational agents (e.g., Amazon Alexa, Apple Siri, and Microsoft
Cortana), and 2) search engines such as those in e-commerce (e.g., The Home De-
pot, Amazon, and eBay). Although intelligent information systems under each of
these paradigms support different modalities such as speech and query, both require
efficiently understanding user to provide an accurate response for the user’s request.
Since user intent understanding is a preliminary and fundamental step in the user
journey while interacting with intelligent information systems. A misunderstanding
of the user intent can cause a cascading effect throughout the system and degrade
the overall performance. The new problems towards user intent understanding raised
by these new applications open opportunities for researchers to develop new ideas in
these fields. To keep bridging these gaps, my Ph.D. dissertation focuses on user intent
inference for both conversational agents and e-commerce search engines. I discuss the
different methodologies to improve user intent inference throughout this dissertation.
Each model proposed in this dissertation focus on addressing a specific element of

user intent inference (e.g., topic classification, dialogue act prediction, query catego-



rization, etc.) depending on the application. The ultimate aim is to improve the user
intent inference by improving these underlying components. My dissertation consists
of two phases of research development. The first phase is my work on the Amazon
Alexa Prize competitions! and my contributions within them [138, 1, 43]. In the
second section, my research on query understanding for e-commerce search engines is
discussed.

The following section discusses the open-domain conversational agents, e-commerce
search, and the challenges for an accurate user intent inference. Finally, I summarize

research contributions to address some of the challenges in user intent inference.

1.1 User Intent Inference in Open-Domain
Conversational Agents

In the first phase of my dissertation, I plan to address specific issues related to
knowledge-aware user intent inference and classification for open-domain conversa-
tional agents. In this dissertation phase, I tested my proposed models on the Amazon
Alexa Prize projects developed as part of the annual Amazon Alexa Prize competi-
tions. Alexa Prize is a global grand challenge that Amazon has held since 2017, and
it seeks to advance conversational Al. In this competition, users were asked to talk
to our conversational agent and give it a rating from 1.0 to 5.0 (inclusive) based on
their experience.

Current conversational agents use a component-based architecture for design-
ing an open-domain conversational agent [138, 1, 43]. In these systems, domain-
specific components such as Movie Bot? are responsible to generate an answer for

assigned utterance. To assign the incoming utterances to proper components, an

Ihttps: // developer. amazon. com/ alezaprize
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Figure 1.1: Conversational agent flowchart, where ASR stands for Automatic Speech
Recognition.

open-domain conversational agent requires an accurate user intent inference module
to determine the conversation, which consists of three major parts, including topic,
intent, and slot filling. To understand user intent, I need to identify that each ut-
terance follows a specific structure and training phrases (slot filling). For example,
when a user says “who won The Hawks and Boston Celtics game,” they want to
talk about Sports, with a Information-Request intent, where it follows the slot filling
pattern of “who/OTHER, won/OTHER, the/SPORTTEAM, Hawks/SPORTTEAM,
and/OTHER, Boston/SPORTTEAM, Celtics/SPORTTEAM, game/OTHER .” As
a result, an accurate intent inference results in a coherent and engaging conversation,
which spurs dramatic improvements of conversational agents. Figure. 1.1 shows an
open-domain conversational agent flowchart with associate components.

In the next section, I discuss the challenges for the user intent inference in open-

domain conversational agents.



1.1.1 Challenges for User Intent Inference in

Conversational Agents

User intent inference for open-domain conversations is a more challenging task com-
pared to a regular text classification due to different factors. 1) Human-machine
utterances are often short and ambiguous and suffer from the lack of textual informa-
tion. 2) conversations contain contextual evidence between the preceding utterances
which need to be addressed. 3) the quality of current Automatic Speech Recognition
(ASR) is not in a human-level performance, where they often suffer from recognizing
specific types of entities that do not appear much on trained corpus such as names,
companies, or locations [1, 2, 3, 31, 138, 43].

Open-domain conversational agents increasingly require accurate identification of
the utterance’s topic (domain) and intent. Often, domain classification is one of
the first steps, and an error in this step can cause a cascading effect throughout the
system and degrade the overall performance. Most current conversational systems use
a component architecture [114], where each user utterance is assigned to a domain-
specific component such as Movie Bot®. Mis-classifying the intent of an utterance and
assigning it to the wrong component can produce erroneous responses and degrade
the user experience.

An important challenge for conversational domain classification is that keyword-
based classification is not sufficient. Domain-specific keywords or triggers might help
for queries like “Let’s talk about my dog”, since the word “dog” frequently appears
in utterances from the Pets_Animals domain. However, they do not enable us to
correctly classify utterances containing ambiguous keywords that can refer to multiple
entities. For example, to correctly classify utterances like “When is the next Hawks
game?”, I need to take into account all the possible types of entities that the word

“Hawks” might be referring to, i.e., the bird hawk and the sports team Atlanta Hawks,
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and the context, which mentions “game.”

Moreover, creating new entities, like recent movies, makes the model obsolete
with time. To fix this problem, it would be necessary to constantly update the model
by incorporating new information about people, organizations, movies, and other
entities, which can cause unintended effects and be inefficient.

In order for a conversational system to respond properly, it must first understand
the intent of the user utterance. Dialogue Act (DA) identification is a traditional
approach in dialogue system research, which aims to predict the goal of each utterance,
such as information request, statement of opinion, greeting, opinion request, and
others. [109] categorized DAs as having two main categories: 1) primary intents;
2) secondary intents. Each of these intents can further be divided into implicit or
explicit. Since identifying these intents correctly is crucial for dialogue systems, this
problem has been studied extensively for decades for human-human conversations.
Recently, this idea was also extended to human-machine conversations [120, 89, 74].

Utterances in natural conversations are contextually dependent, making the DA
prediction challenging. For example, an utterance like ”Oh, yeah” can be interpreted
as” Yes-Answer,” ” Accept-Agree,” or ” Backchannel”, which requires the previous con-
text to disambiguate [89, 18]. Therefore, I propose a context-aware model for this
task. As mentioned above, utterance understanding is heavily dependent on context.
Considering utterances independently from contextual information can cause ambigu-
ity and errors. For example, voice-based conversational agents rely on ASR models,
which, despite significant progress, still tend to introduce mistakes. For instance, the
utterance “hmm tell me about the new Mercedes” can be mistakenly transcribed as
“hmm tell me about the new Sadie’s.” In these instances, contextual information is
helpful, as I show in our empirical results. Even without ASR errors, contextual infor-
mation is crucial. Users commonly say short utterances without explicitly specifying

the domain, for instance, by saying, “Let’s talk about eagles.” This query would be



ambiguous even to humans since it is unclear whether the person wants to talk about
the bird eagle or the Eagles’ sports team. Contextual information, like the previous
utterances and the system’s state, would help identify the domain of this utterance.

In the next section, I explain user intent inference for Web search engines.

1.2 User Intent Inference in Web Search Engines

This part of my research focuses on the user intent inference in web search engines,
focusing on e-commerce search engines. All the models were developed during my
collaboration with The Home Depot?. The Home Depot receives billions of search
queries every year and collects terabytes of data logs from the user experience during
their interaction with the website. My research focused on enhancing their high-level
user intent understanding module. To this end, I proposed a hierarchical architecture
for the user intent classification, where in the first layer, the intent of the users in
purchasing a product or seeking information (product vs. informational) is discovered.
Then, in the next layer, if the user intent is purchasing, another intent classifier is
applied to determine whether the query is either broad or specific. Otherwise, if the
user’s intent is information seeking, the type of information the user is looking for is
determined using another classifier. As a result, the search engine can guide a user
to an appropriate web page to handle the user’s request. Figure 1.2 shows how an
intent hierarchy looks like in a general e-commerce search engine.

Query intent understanding and ranking are the building blocks of advanced re-
trieval systems (e.g., e-commerce search engines) [36]. Large commercial websites
collect billions of product information in a hierarchical structure across various gran-
ularities called taxonomy or catalog. The taxonomy is prudently developed by human
supervision based on the product document descriptions. Query understanding can

be defined as mapping search queries to at least one of the fine-grained product cat-
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Figure 1.2: Intent hierarchy in an e-commerce search engine. Each color shows an
intent hierarchy level.

egories that exist in the taxonomy [156] (except non-commercial queries, which are
rare and only cover 1.5% of our traffic). In other words, the goal is returning the
most semantically relevant fine-grained categories to a query. Query understanding
is just the beginning of the search process. Later, the output of this step can provide
reliable signals for a ranker to improve the final ranking results [42]. For instance,
when a customer inputs a query such as “grass cutter with 18-Volt Lithium-Ion bat-

* an e-commerce search engine should suggest the relevant product categories

tery, ’
such as (e.g., lawn mower, string trimmer, brush cutter, and hedge trimmer). These
categories satisfy the customer’s intent and more relevant ranking results, resulting in
a successful shopping experience. Therefore, an accurate user intent understanding
profoundly impacts the overall system performance and, consequently, the company’s

revenue from online sales.

In the next section, I discuss the challenges for the user intent inference in e-



commerce search engines.

1.2.1 Challenges for User Intent Inference in

E-commerce Search

User intent inference in e-commerce search is a non-trivial task. 1) queries are short,
vague, and ambiguous. Utilizing only textual information from the queries is not suf-
ficient for an accurate product category mapping [49]. 2) queries with similar textual
information and only slight variations such as “3-cup white rice cooker” and “3-cup
white pressure cooker” belong to different fine-grained categories. However, queries
with no term overlap like “French door 32-inch refrigerator” and “white fridge” are
semantically matched and may belong to similar categories. 3) customers have dif-
ferent ways to express the same intent. For example, “blocktile white-colored - 12
in. x 12 in.” and “block tile white 12x12 inches” are the same queries while their
word-level representations are far away from each other. Fourth, product category
mapping is a non-exclusive problem. When a customer inputs a broad concept like
“Kitchenware” or a brand name like “ryobi,” results could cover a wide range of
correct product categories. In other words, a search engine must include a broader
range of possible correct categories while simultaneously keeping precision as high as
possible [156]. 4) not only is query understanding an extreme multi-label text classifi-
cation problem (XMTC), which raises challenges such as data sparsity and scalability
[86], it also represents a soft distribution over relevant categories. Concerning this
issue, a knowledge-aware model needs to develop to extract the unbiased relevance
score for each query and product category pair. 5) the severe data imbalance prob-
lem resulted from customer bias towards some specific products in general or at a
particular time. Also, the product categories’ correlations directly impact customer
click behavior, where some of them received more click rates than usual, and others

get fewer click rates, and 6) queries with low customer behavior feedback (e.g., tail
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Figure 1.3: Query understanding procedure.

and torso) are more challenging to classify as they have a high signal-to-noise ratio.
Current neural models achieve a softer representation with richer compositionality of
the queries compared to conventional term-based models [154, 4, 6, 7].

Query understanding is an essential step in developing advanced retrieval sys-
tems (e.g., e-commerce search engines) [36]. In an e-commerce setting, one aspect
of query understanding is achieved by mapping a query to a set of relevant product
categories [156]. For example, for the query “ motion activated kitchen faucet”, an
e-commerce search engine should return products from relevant categories like bath,
plumbing, kitchen. These categories match the customer’s intent and provide signals
for downstream tasks such as retrieval and ranking. In this dissertation, I develop a
new model for query understanding in an e-commerce search engine, depicted in Fig.
1.3. Fig. 1.3 shows the query understanding procedure where a search query like
“motion activated kitchen faucet” is mapped to a set of relevant product categories
in a hierarchical product taxonomy.

In summary, in this phase of my dissertation, I addressed specific issues related
to user intent inference for e-commerce search engines. The next section describes
my contributions in knowledge-aware user intent inference for open-domain conver-

sational agents and e-commerce search engines.
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1.3 Dissertation Research Questions

In summary, the main research objectives for advancing user intent inference that

this dissertation plan to address are as follows:

1. RQ1: What external source of knowledge could be leveraged to effectively
improve user intent inference in intelligent information systems (e.g., conversa-

tional agents and e-commerce search engines)?

2. RQ2: What are efficient approaches to represent and incorporate the external

source of knowledge for both applications?

3. RQ3: In what ways can external sources mitigate the data imbalance problem

and data sparsity for user intent inference?

In the next section, I describe my contributions to the field and the methods that

I developed to address the research questions in this dissertation.

1.4 Contributions and Dissertation Structure

This section introduces my research questions and contributions to the user intent
inference for both conversational agents and e-commerce search engines. To address
the challenges that I discussed in sections 1.1.1 and 1.2.1, T proposed to leverage
knowledge from relevant resources to enhance the quality of intent understanding.
These external sources of information (e.g., entity type, product documents, and user

clicks) are utilized to enrich the representation of utterance or search queries.
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1.4.1 Contributions to Open-Domain

Conversational Agents

The first part of my dissertation focuses on developing multiple machine learning
models to advance user intent inference for conversational agents. During Amazon
Alexa Prize 2018 [1], we developed an open-domain social bot named IrisBot that
can converse in multiple domains with real users. The real conversation logs during
these interactions are used to evaluate our models. I developed mainly three different
knowledge-aware user intent understanding models.

First, I introduced the Concurrent Conversational Entity-aware Topic classifier
(ConCET), which incorporates entity-type information and the utterance content
features for topic classification. Specifically, ConCET utilizes entity information to
enrich the utterance representation, combining character, word, and entity-type em-
beddings into a single representation [3]. Next, a version of the ConCET was used
in a mixture of experts to make it more stable and accurate [1]. Second, I proposed
a novel method, CDAC (Contextual Dialogue Act Classifier), a simple yet effective
deep learning approach for contextual dialogue act classification. Specifically, I used
transfer learning to adapt models trained on human-human conversations to pre-
dict dialogue acts in human-machine dialogues [2]. To investigate the effectiveness
of our method, I train our model on the well-known Switchboard® human-human
dialogue dataset and fine-tune it for predicting dialogue acts in human-machine con-
versation data. Finally, current intent inference models have trouble understanding
particular user intents (e.g., topic switching intent). To improve this capability of
IrisBot, I developed a knowledge-aware recommendation component to propose the
next most exciting macro-topic to the user [1, 5]. Since the right topic to recommend
user depends on both prior user interests and the conversation context, I leverage

knowledge from user profile information to incorporate into the prediction process.
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Finally, I complimented our quantitative results with a detailed analysis of system

performance, which could be used to improve conversational agents.

1.4.2 Contributions to E-commerce Search

The second part of my dissertation focuses on developing multiple machine learning
models to improve the quality of user intent inference for conversational agents. The
real search logs during user interactions with the Home Depot Search engine are used
to evaluate the proposed models. The dissertation focused on multiple knowledge-
aware models to generate the datasets and intent inference.

First, I proposed an active learning model in conjunction with distant supervision
to generate a labeled dataset for the users’ intents. This model utilizes user behavior
data (e.g., click rate) to create the category labels associated with each commercial
query. To generate the labels for non-commercial queries, I incorporate weak human
supervision signals combined with a machine learning model. This section is followed
by implementing different individual classifiers for each intent hierarchy. Later, my
main focus was implementing a joint and multi-task learning model named JointMAP
to study the search query’s commercial category simultaneously. JointMap works by
leveraging the transfer bias that exists between these two related tasks through a
joint-learning process. Then, I proposed a new label representation to incorporate
knowledge from category interactions into user intent understanding. In this model,
category-category concurrences are leveraged to enrich the textual query represen-
tations. Finally, I proposed a deep learning model to incorporate pseudo-relevance
feedback from product documents to enhance the query representation in the latent
space. The proposed model leverages a hierarchical attention mechanism on each

particular product document field.
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1.5 Summary and Dissertation Structure

In summary, modern artificial intelligence systems have a long way to go before reach-
ing a level of behavior as intelligently as humans. One of the fundamental steps in
designing intelligent information systems is understanding what the real user (hu-
mans) is looking for while interacting with them. I focus on this critical step for two
types of intelligent information systems throughout my dissertation: conversational
agents and e-commerce search engines. The research questions guiding my disser-
tation focus on improving the quality of current user intent inference methods. A
better understanding of user intents can be leveraged to enhance the performance of
various downstream tasks such as ranking, resulting in an enriched user experience
for both conversational agents and e-commerce search. The insights from my study
can enable more intelligent conversational systems and e-commerce search qualities
and can be used for further improvements of conversational agents and e-commerce
search.

In the next chapter, I present related work to place my contributions in the con-
text. It follows by chapter 3 where I explain the different sources of external knowl-
edge that I leveraged to improve user intent inference in both conversational agents
and e-commerce search. Chapter 4 describes my contributions in knowledge-aware
user intent inference for open-domain conversational agents. In chapter 5, I explain
my contributions in knowledge-aware user intent inference for e-commerce search. I
discuss the strengths of the proposed approaches and then present some potential
limitations in chapter 6. Finally, in chapter 7, I summarize what [ have done so far
and present the potential future research directions for user intent inference, which
focuses on user intent inference for both conversational agents and e-commerce search

engines.
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Chapter 2

Related Work

In this chapter, I present related work to place my contributions in context. I briefly
review the published research on general user intent inference, then discuss the pub-
lished work on open-domain conversational agents, critical techniques used for user
intent inference in the Web search engine, focusing on e-commerce search, and finally
provide a summary for the section. The chapter’s content related to conversational
agents is based on references [3, 2, 5], published in CIKM’2019, SIGIR’2019, and
CHIIR’2020. Also, the content related to e-commerce search is based on references

[4, 6, 7], published in SIGIR’2020, SIGIR e-com 2021, and SIGIR’2021.

2.1 User Intent Inference

User intent inference has been a fundamental topic in Web search since the first search
engines like AliWeb, and later Google and Yahoo emerged [72]. In commercial com-
panies like Amazon and The Home Depot, user intent inference has a direct impact
on the overall revenue of the company [156]. Developing an effective conversational
search that can interact with users in a conversation-like manner has been a long-
term goal in designing a search engine. Companies like Google began developing

conversation-wise search methods for users in an attempt to make the experience as
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close as possible to the way people interact in daily life [52]. Thus, unlike traditional
Web search, which typically consists of one-sided interactions from a user making
a request or question, the search session can be designed in a two-sided style. In
other words, a conversational search system should include at least two capabilities:
1) being able to retrieve information instantly upon users’ requests and proactively
recommend information if the user does not know what to ask; and 2) maintaining
the state and flow of conversation to allow the user to naturally refine or participate
in the search process [62]. Recently, with the new developments in speech recognition
technology [146], companies like Amazon have gone further by investing heavily in de-
veloping their social bots, which can keep a coherent conversation in an open-domain
and human-like manner with their customers [138, 1]. As a result, developing an
accurate and efficient Natural Language Understanding (NLU) unit for these social
bots has been in the spotlight in recent years [48]. In this dissertation, I developed
several models to improve the quality of user intent inference in both conversational

agents and e-commerce search engines.

2.2 User Intent Inference in Open-Domain
Conversational Agents

The concept of conversation has been considered as a human trait for a long time [126].
In the early '50s, Alan Turing [50] connected the concept of "true intelligence” to the
capability of maintaining a human-like conversation; where not only is a machine re-
quired to think, it also needs to converse indistinguishably like humans. In the ’60s,
Joseph Weizenbaum developed ELIZA [140], the first conversational bot that can use
similar patterns to carry human-like conversations. Recently, with the advancements
in ASR systems, conversational Al agents have been gaining traction. The Ama-

zon Alexa Prize annual challenges are one of the platforms that provide monetary



16

incentives for researchers to advance conversational Al [114, 64]. Currently, several
conversational systems have been developed for application in a variety of fields, such
as mental well-being [104] and therapy [44]. Conversational agents [45] are also ap-
plied to educational purposes such as tutoring. Moreover, unlike traditional Web
search or automatic question answering, conversational agents could enable users to
formulate their information needs better and even help them ask suitable topics.

Conversational agents such as Amazon’s Alexa, Apple’s Siri, and Microsoft’s Cor-
tana are becoming increasingly popular. Yet, there is yet much room for improvement,
and this has inspired extensive recent research, such as references [141, 142, 138, 1].
Su et al. [121] categorized dialogue systems into two main paradigms: task-based
and chatbot style. Chatbot-style models are designed for chit-chatting with the user,
while task-based models follow a goal-oriented conversation [113]. One of the early
models for chatbot-style is Artificial Intelligence Markup Language (AIML). Richard
Wallace developed this template-based model. Likewise, the Ravenclaw system is
an example of early task-based conversational agents [14]. This model was built for
an online room reservation service. Papaioannou et al. [108] developed a system
that is trained by reinforcement-learning techniques, and it combined both the AIML
template-based chatbot and a task-specific dialogue management system.

Currently, most of the conversational agents are designed for a single domain
like Movie or Music. Having an open-domain conversational agent that coherently
and engagingly converses with humans on a variety of topics is a long-term goal for
dialogue systems [48, 129]. Deploying a user intent inference module to understand the
conversational topics is crucial for the success of open-domain conversational systems.
Despite current advancements in designing the open-domain conversational agent,
generating coherent and engaging conversations is challenging. To help address some
challenges in current conversational systems, the first part of my Ph.D. dissertation

focuses on user intent understanding for open-domain conversational agents.
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2.2.1 Topic Classification: NLU

Topic classification, which determines the conversation topic, is the first stage in an
NLU component to infer the user’s intent. Topic classification in open-domain di-
alogue systems can be treated as a text classification problem, although utterance
classification is a much more challenging task compared to general text classification
due to four main factors: 1) Human utterances are often short; 2) Errors in Automatic
Speech Recognition (ASR); 3) Users frequently mention out-of-vocabulary words and
entities; 4) Lack of available labeled open-domain human-machine conversation data
[3, 63]. Text classification models have traditionally used handcrafted features like
bag-of-words, tf  idf, part-of-speech tagging, and tree kernels [136, 112]. However,
current models put more focus on the semantic and implicit information in the text
using features like the word to vector representation described in [98] and universal
sentence encoder proposed in [23]. Wang et al. in [136] classified text classifica-
tion algorithms into two main categories: implicit representation based models and
explicit representation based models. Both types of representations have their ad-
vantages. Therefore, the method proposed in this dissertation uses both handcrafted

and semantic features of the utterance.

Entity-based text representation: Entity linkers identify entity mentions in a
text and resolve and map the mentions to a unique identifier in an associated knowl-
edge base. A common choice is Wikipedia. Belfry [103] uses a graph-based approach
for jointly performing word sense disambiguation and entity linking. DBpedia Spot-
light [96] links entity mentions to their DBpedia [10] URIs. The SMAPH [35] system
for linking web-search queries piggybacks on a web search engine to put the query
into a larger context and further uses a supervised ranking model to predict the joint
annotation of the full query. Entity-based text representation has been studied in

different fields such as information retrieval [145], question answering [147], and co-
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herence modeling [58, 59]. Yamada et al. [147] proposed a model to encode entity
information in a corpus such as Wikipedia into a continuous vector space. This model
jointly learns word and entity representations from Wikipedia and DBpedia. [133]
proposed a CNN-based model for merging the text and entities extracted from a large
taxonomy knowledge base for short-text classification.

Moreover, despite these efforts, I am not aware of a published result evaluating
entity linking for conversational topic classification beyond the utterance content
itself[63]. In this dissertation, I propose a neural network architecture and processing
pipeline for conversational topic classification where the entities, their significance,

and positional order are taken into account.

Deep learning approaches: Both CNN [66, 34] and RNN [87] models show promis-
ing results for text classification. Lecun et al. proposed VDCNN [34] for text classi-
fication based on a popular model in computer vision, which they redesigned for text
classification. FastText [16] is another character-embedding-based text classification
model that Facebook released for efficient learning of word representations and text
classification. Character-embedding-based models have shown higher robustness in
representing misspellings and out-of-domain words. My approach in this dissertation
builds on the success of deep learning models for classification, and I explore both
CNN and RNN models in my implementation. Moreover, I employ character-based
modeling to make further the classification robust to ASR errors and out-of-domain

words, which are frequent in conversations.

Conversational topic classification: Contextual evidence extracted from the
preceding utterances could provide essential clues to predict the user intent in each
stage of conversations. Incorporating contextual features has long been studied in
human-human conversations [90][17][61]. In contrast, open-domain human-machine

conversations is a relatively new field of research [114][2] in which topic classification
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plays an important role in having a coherent and engaging conversation [48][129].
Khatri et al. propose one of the first contextual topic classification methods for open-
domain conversational bots [63]. This method is the contextual version of ADAN [48],
in which they demonstrated that using both dialogue acts and context of the previous
utterances improves topic classification accuracy in open-domain dialogue agents. In
this dissertation, we developed multiple models to incorporate the knowledge from

the previous utterances into user intent inference.

2.2.2 Dialogue Act Classification: NLU

For a conversational system to respond appropriately, it must first understand the
intent of the user utterance. Dialogue Act (DA) identification is a traditional approach
to intent classification in dialogue system research, which aims to predict the goal of
each utterance, such as information request, statement of opinion, greeting, opinion
request, and others. [109] categorized DAs as having two main categories: 1) primary
intents; 2) secondary intents. Each of these intents can further be divided into implicit
or explicit. Since correctly identifying these intents is crucial for dialogue systems, this
problem has been studied extensively for decades for human-human conversations.
Recently, this idea was also extended to human-machine conversations [120, 89, 74].

Utterances in natural conversations are contextually dependent, which makes the
DA prediction challenging. For example, the utterance like ”Oh, yeah” can be inter-
preted as ”Yes-Answer,” ” Accept-Agree,” or ”Backchannel,” which requires the pre-
vious context to disambiguate [89, 18]. Therefore, I propose a context-aware model
for this task.

For human-machine conversations, DA classification is more challenging due to
three additional factors: 1) Often, human utterances are short (only 2.8 words on
average in this data); 2) Automatic Speech Recognition (ASR) is still not quite a

human-level performance; 3) Lack of available open-domain labeled human-machine
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conversation data. To address these challenges, I propose a deep learning-based
model, which utilizes contextual evidence, such as preceding utterances alongside
the system state information, for more accurate predictions. To reduce requirements
for labeled training data, I follow the approach of pre-training the model followed by
fine-tuning, which has proven its effectiveness on various natural language processing
tasks such as question answering [105, 33].

To represent the utterance and system state for each conversation turn, I built on
previous studies which identified effective features for human-human DA classifica-
tion, including syntax, prosody, and lexical cues (e.g., [120, 47]. T integrate many of
these ideas into the proposed lexical and syntactic features in my CDAC system and
augment these with representation learning.

Recently, deep learning and representation learning approaches have shown promis-
ing results on many tasks, including text classification and DA classification (e.g.,
[13]). For instance, reference [13] proposed a context-based RNN model for dialogue
act classification for the human-human Switchboard dataset, while reference [89] pro-
posed a hierarchical CNN and RNN model for this task.

Reference [63] demonstrated the benefits of accurate DA classification for topic
classification in open-domain dialogue systems. Inspired by the promising results
of [63], [134], and [28], I propose a novel, yet relatively simple Contextual Dialogue
Act Classifier (CDAC) model, which incorporates lexical, syntactic, semantic, and
contextual evidence into DA classification. To my knowledge, CDAC is the first
to extend and adapt the ideas [63] for contextual DA classification in open-domain
conversational systems, such as those fielded in the Amazon Alexa 2018 Challenge.
Interestingly, previous state-of-the-art DA models (e.g., References [89], and [74]),
rely on complete conversations for context, including future utterances. At the same
time, CDAC uses only the utterances from earlier in the conversation, which makes

CDAC feasible for online (real-time) conversational DA classification. As far as I
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know, CDAC is also the first successful attempt to fine-tune a DA classification model
trained on a dataset of human-human conversations, to predict DAs in open domain
human-machine conversations.

In summary, my contributions in this dissertation for intent classification are
twofold: (1) development of a novel context-aware Dialogue Classification model,
CDAC, for open-domain human-machine conversations; (2) demonstrating promising
results after fine-tuning CDAC trained on human-human conversations to human-
machine conversations, which is a necessary step for intelligent open-domain conver-

sational agents.

2.2.3 Smart Topic Suggestion for Open-Domain Conversa-

tional Agents

I briefly review the published research on open-domain conversational agents, key
techniques used for general recommender systems, utterance suggestion approaches
used in conversational agents, and recent research on the single-domain conversational

recommendation.

General chatbots and conversational agents: Recent years witnessed signif-
icant research activity in developing a coherent and engaging conversational agent
(142, 125, 143, 150]. Conversational agents have been generally categorized [121] into
two main categories, namely task-oriented and general chat. Chatbots are tradition-
ally aimed primarily at small talk, while task-oriented models are designed to carry
out information-oriented and transactional tasks [8, 113]. Recently, several shared
tasks and challenges have been proposed to push the boundaries of conversational Al
to develop more intelligent chatbots to carry on in-depth conversations about several
topics, not just small talk. This research has been evaluated by both crowd workers

[41] and live users as part of the Alexa Prize Conversational Al challenge [114, 64].
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General Recommender Systems Research: Recommender systems have been
studied for decades and are now pervasive [115]. Traditional recommendation al-
gorithms have been classified as primarily model-based or content-based, where a
classifier model is trained for each user’s profile, and collaborative filtering, where
a user’s unknown preferences are estimated based on the neighborhood of similar
users [53]. More effective methods have been shown to be a hybrid of the two ap-
proaches [95], with increasingly sophisticated methods reported for movie [70, 71]
and news recommendation [39]. However, there are significant challenges that still
remain active topics for research in all cases. The most closely related issue is the
cold start problem, i.e., recommending an item for a new user with no existing profile
or recommending new (or dynamic or changing) items with no prior likes from any
users. Model-based or content-based recommendations have been shown to perform
better in such scenarios[132, 92]. This is the primary approach I attempt to adopt
here for the conversational topic recommendation. Other approaches have explored
online experimentation (e.g., [82]), and using social media or other metadata (e.g.,
[26, 111] for recommendation. Unfortunately, these signals are not easily available in
the conversational setting. All the attributes of users and their preferences need to

be inferred from their interaction with the conversational agent.

Utterance Suggestion in conversational agents: Yan et al. [148] describe an
end-to-end generative model, which gives a user query, generates a response, and
a proactive suggestion to continue the conversation. However, generative models
like this still strictly rely on training corpora or restricted information without the
ability to query external data sources, thus limiting their capacity for an informative
conversation. In the other work, Yan et al. [149] describe a next-utterance suggestion
approach for retrieving utterances from a conversational dataset to use as suggestions,

along with the response. The proposed model learns to give suggestions related to the
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response, to continue the conversation on the same topic. In practice, due to the vast
number of possible utterances coming into a social bot, many conversational systems
rely on multiple response modules where each response module would be responsible
for a particular domain or set of domains [65]. Fine-grained utterance suggestions
would be applicable to the implementation of each domain-specific module. However,
when the user is passive or gets fatigued with a particular topic, the system needs
to switch to a different component with domain-specific capabilities to keep the user
engaged. In this dissertation, I attempt to formalize the problem of suggesting the

best next interesting topic.

Conversational Recommendation: Recently, the idea of conversational recom-
mendation was introduced [32], primarily as a way to elicit the user’s interest in
item recommendation. For example, Sun et al. [122] introduced an end-to-end re-
inforcement learning framework for a personalized conversational sales bot, and in
[83], a combination of deep learning-based models is used for conversational movie
recommendation. Currently, most existing conversational agents are designed for a
single domain, such as Movies or Music. An open-domain conversational agent that
coherently and engagingly converses with humans on a variety of topics remains an
aspirational goal for dialogue systems [129, 114]. To address this problem, I propose
a conversational topic suggestion method for open-domain conversational agents in
which the conversational agent proactively suggests the following best topic to discuss
based on the conversation so far, as I describe next.

This dissertation introduced a smart topic suggestion with three main contribu-
tions: 1) formalizing the conversational topic suggestion problem for open-domain
conversational agents; 2) development of a sequential contextual topic suggestion
model for this task; 3) empirical exploration of the effectiveness of model-based,

collaborative filtering-based, and hybrid approaches to topic suggestions in the con-
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versational setting. The experiments indicate the value of the proposed hybrid recom-
mendation solution, highlight the challenges and opportunities inherent in the con-

versational topic recommendation and suggest promising directions for future work.

2.3 User Intent Inference for Web Search

User intent inference for general Web search engines has been studied for decades|21,
56]. Five different research tracks are: 1) defining a predefined set of categories,
then map queries into this categories (e.g., informational, navigational, and trans-
actional) [21] or (e.g., commercial or noncommercial, navigational or informational)
9], 2) Using graph click and utilizing semi-supervised learning for prediction [84],
3) considering temporal query intent modeling [51], 4) understanding word-level user
intent [116], and 5) leveraging relevance feedback alongside user behavior for a better
understanding of the user intents [117|. Despite recent advances in understanding
user intents while interacting with a search engine, it is still not in human-level per-
formance. In an e-commerce setting [118], this problem is even more challenging since
enough research has not been done. To keep filling this gap, I propose several models
for user intent inference for e-commerce search engines in this dissertation.

An effective query representation is crucial for an accurate user intent inference.
Traditional models are generally based on bag-of-words techniques, tf * ¢df, and so
forth. The enhanced version of these models with a combination of machine learning
models has been the backbone of many advanced search engines and retrieval systems
[154]. For example, utilizing query term weighting methods [94], extracting n-gram
term dependencies [97], and particularly expanding query with relevant terms [37, 77].
Unfortunately, term-based query representations have difficulties modeling queries
with similar textual information and different intents [156]. In this dissertation, I

developed multiple models for query understanding to link customers’ search queries
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to a set of product categories in the product taxonomy. In this dissertation, I consider
all types of traditional features like lexical information as well as dense representation
of the query and relevant documents.

User queries are often short and suffer from a lack of textual information. Utiliz-
ing external information and expanding search queries are two groups of methods to
alleviate this problem [77, 40]. Relevance feedback [77] is a part of external methods
that incorporates user’s knowledge and other resources such as Wikipedia into the
user intent inference process [55]. To expand query with relevant terms, recently, two
groups of methods based on the word representation are developed, which attract
much attention, such as local embedding [40] and global embedding[75]. This dis-
sertation will leverage pseudo-relevance feedback and incorporate external knowledge
from product documents into the user intent inference process.

Deep neural networks become favored in various search applications by providing
softer matches [99], richer compositionality [110], and the more excellent capability
of transferring knowledge [88]. Deep networks utilize the distributed representation
of rich semantics of term proximity in a large corpus. For information retrieval tasks,
it has been shown that enriching word embedding is effective [54]. Zamani and Croft
[153] proposed the relevance likelihood maximization model (RLM) and relevance
posterior estimation model (RPE) to compute the relevance between the document’s
words to a particular query. Ha et al. [49] proposed the DeepCN method to incorpo-
rate metadata information to predict the appropriate category to place a new produc-
tID. However, word-level query representations cannot always capture users’ intents
in search queries because typos and misspellings frequently create out-of-vocabulary
words [67, 154]. To this end, there have been different studies conducted to represent
characters and subwords using deep neural networks [34, 128]. Utilizing both repre-
sentations has been useful for both the search engine and the conversational agents.

Zhang et al. [154] proposed GEneric iNtent Encoder (GEN) for user intent predic-
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tion in Microsoft Bing, and Kim et al. [68] proposed the ONESET model to learn
user topic and intent for Amazon Alexa jointly. According to the promising results
reported in recent years that show the effectiveness of the deep learning models for
user intent inference, this dissertation mainly focuses on deep neural networks while
utilizing the strength of popular features like lexical information.

Finally, with a drastic increase in online shopping and e-commerce sales growth
in recent years, there is a high demand for designing practical user intent and un-
derstanding models to optimize search results [127, 20]. Moreover, there is a crucial
difference between web search and e-commerce search engines, that is, the imme-
diate impact of the query understanding step on different business metrics such as
click-through rate, search conversion, and gross demand [38, 156]. Due to the grow-
ing demand to improve the current query understanding models for the e-commerce
domain, the second part of my dissertation focuses on user intent inference for e-
commerce search engines. To keep filling this gap, in this dissertation, I implemented
several deep neural network models for different tasks such as product category map-
ping and intent classification.

In the following sections, I discuss the related works for three main approaches I

proposed in this dissertation to address user intent inference for e-commerce search.

2.3.1 Joint Learning for User Intent Inference

Query intent understanding is a key step in designing advanced retrieval systems like
e-commerce search engines [36]. Various approaches have been proposed to address
query understanding, such as 1) considering predefined high-level categories (i.e., in-
formational, navigational, and transactional), 2) deploying semi-supervised learning
with click graphs, 3) considering temporal query intent modeling, 4) understand-
ing word-level user intent and 5) applying relevance feedback and user behaviors.

Although there has been a significant improvement in user intent inference, query
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understanding remains a significant challenge [154].

E-commerce search queries have multiple intents associated with them. Ashkan et
al. [9] categorized search queries for e-commerce websites into commercial and non-
commercial intents. However, Zhao et al. [156] ignore the non-commercial queries due
to a small percentage of the search traffic. Commercial queries are queries with pur-
chasing intent, while non-commercial queries cover a wide range of customer services
(e.g., "military discounts” and ”installation guides”), as shown in Table. 5.1.

Query understanding in e-commerce search is challenging: 1) queries are often
short, vague, and suffer from the lack of textual evidence [49], 2) small variation in
textual evidence causes a drastic change in query intent; for example, 730 in. 5.8
cu. ft. gas range installation kit” has commercial intent but 730 in. 5.8 cu. ft.
gas range installation”, has non-commercial intent, 3) product category mapping is a
multi-label and non-exclusive problem. A practical solution must include a broader
possible set of correct categories while simultaneously keeping precision as high as
possible [156], 4) there is a class imbalance in both commercial vs. non-commercial
and product category mapping tasks because only a small fraction of data (1.5%
in this domain) has a non-commercial intent, and within the commercial queries,
some product categories contain significantly more samples compared to others, and
5) commercial queries are easy to identify using user behavior information like click
rates; however, that is not the case for non-commercial queries.

To address these problems, I introduce a new method of jointly learning query
intent and category mapping, which allows transferring the inductive bias between
these two relevant tasks. Also, I leverage label representation, which provides a richer
representation to model the product categories. Finally, I propose an active learning
algorithm to generate data for commercial vs. non-commercial intent. To address the
class imbalance problem, I deploy focal loss borrowed from computer vision.

Joint learning has been proposed as a practical approach to simultaneously learn
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relevant tasks due to the transfer of the inductive bias among them. Joint-learning
finds applications in computer vision and natural language understanding [63]. Joint-
learning improves the regularization and generalization of the learning models by
utilizing the domain information [22]. In addition, with a joint model that addresses
multiple tasks, only one model needs to be deployed; this contributes to reducing
overhead and facilitates the maintenance of the system [135]. In this dissertation,
I propose a joint-learning model that simultaneously learns both commercial and
non-commercial query intents and maps the incoming commercial query to a set of
relevant product categories.

This dissertation introduces a data-driven approach called Joint Query Intent
Mapping (JointMap). JointMap leverages the label representation proposed by Guoyin
et al. [130] and modifies it to be applicable for a joint-learning task. JointMap also
utilizes a self-attention mechanism to improve the quality of the joint word-label at-
tention vectors. For product category mapping, JointMap handles the imbalanced
class problem using focal loss [85] which has been well-studied in the computer vision
field to control the sparse set of candidate object locations. Finally, I propose an ap-
proach based on distant supervision in the combination of active learning to generate
both commercial and non-commercial queries.

In summary, my contributions in this dissertation are: 1) proposing a deep learn-
ing model to jointly learn product category mapping as well as users’ non-commercial
intents, 2) developing an active learning algorithm in conjunction with distant super-
vision to generate a user intent dataset from e-commerce data logs, and 3) modifying
the joint word-category representation for query intent mapping tasks in e-commerce,

as described in detail next.
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2.3.2 Label Representation for User Intent Inference

Query understanding is an essential step in developing advanced retrieval systems
(e.g., e-commerce search engines) [36]. In an e-commerce setting, one aspect of query
understanding is achieved by mapping a query to a set of relevant product categories
[156]. For example, for the query "motion activated kitchen faucet,” an e-commerce
search engine should return products from relevant categories like bath, plumbing,
kitchen. These categories match the customer’s intent and provide signals for down-
stream tasks such as retrieval and ranking. In this dissertation, I develop a new model
for query understanding in an e-commerce search engine where a search query like
"motion activated kitchen faucet” is mapped to a set of relevant product categories
in a hierarchical product taxonomy.

Query understanding is a challenging task since 1) queries are often short, vague,
and suffer from the lack of textual evidence [49], 2) queries with similar textual
information with slight variations such as 79 cu. ft. chest freezer in white” and 79
cu. ft. upright white freezer” belong to different categories. However, queries with
no term overlap like ”french door 32 inch. refrigerator” and ”black fridge with glass
panes” are semantically similar and may belong to related categories, 3) The severe
data imbalance problem resulted from customer bias towards some specific products
in general or at a particular time. Also, the product categories’ correlations directly
impact customer click behavior, where some of them received more click rates than
usual, and others get fewer click rates, and 4) queries with low customer behavior
feedback (e.g., tail and torso) are more challenging to classify as they have a high
signal-to-noise ratio. Current neural models achieve a softer representation with
richer compositionality of the queries compared to conventional term-based models
[154].

There have been numerous studies in neural models for text representation in dif-

ferent levels, such as characters, subwords, words [34, 86, 128]. These models utilize
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distributed representation by transferring knowledge from other resources to enrich
the query representation [15, 66]. However, they still have difficulty addressing chal-
lenges (3) and (4) for query understanding. To alleviate these problems, inspired by
work in information networks [124], I propose a joint word-category (label) representa-
tion to provide both word and category embeddings. Then, category representations
are leveraged to boost the model’s efficiency on both tail queries and the minority
classes.

Tang et al. [123] introduce the idea of heterogeneous text network embedding
to model the word and label interactions. Guoyin et al. [130] expand the concept
to extract the relative spatial information among consecutive terms with their as-
sociated labels. Although these models leveraged the joint word-label interactions,
they still lose the knowledge in label-label correlations. Extracting category (label)
co-occurrence information is essential for query understanding, where product cate-
gories inherent this correlation during taxonomy formation. Product categories are
not mutually exclusive and are semantically related to each other. This correlation
between product categories impacts the customer click behavior, which utilizes as su-
pervision signals in dataset generation. Thus, category co-occurrences can be used to
improve the quality of minority classes and tail queries, where there is less customer
feedback available. To this end, I consider the product categories as an undirected
homogeneous graph, where the edges represent category correlations.

In this dissertation, I introduce a data-driven approach named DeepCAT for query
understanding. My model consists of a pipeline of deep learning models that utilize
both word-category and category-category interactions. In summary, my contribu-
tions are: (1) proposing a novel deep learning model for joint word-category repre-
sentation and (2) introducing a new loss function to incorporate pairwise category

information into the query understanding process.
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2.3.3 Pseudo-relevance feedback for User Intent Inference

In the realm of Web and e-commerce search, query categorization is an important
step in query intent understanding, which in e-commerce can be viewed as mapping
search queries to relevant fine-grained product categories [156]. It has been shown
that query categorization could play a pivotal role in increasing user satisfaction by
returning more relevant products in e-commerce search [154]. Query categorization
is challenging due to multiple reasons: (i) queries are generally short and might
suffer from lack of concrete evidence of customers’ intents [102], (ii) customers have
different ways to express the same intent. For example, ”"blocktile white-colored -
12 in. x 12 in.” and ”block tile white 12x12 inches” (iii) query categorization is
an extreme multi-label text classification problem (XMTC), which raises challenges
such as data sparsity and scalability [86, 131, 15], and (iv) the most challenging case
is handling rare queries (a.k.a. tail queries). Tail queries suffer from the lack of
customer behavior signals (e.g., click-through data), leading to poor representation of
rare queries. Typos, synonyms, morphological variants generally cause rare queries,
and, more importantly, when customers express their intent in a unique fashion [152].
Different methodologies have been proposed to deal with tail queries in retrieval
systems, such as corpus-based and knowledge-based query expansion methods [77]
and [102]. Although standard query expansion models are effective, they might not
be sufficient since even perfect expansion terms for a tail query might produce another
tail query [119]. Also, adding new terms in query expansion may result in a higher
recall but sometimes a lower precision, and (ii) the suggested terms are not ordered,
which could be problematic for text embedding models trained on natural language
text. Unlike standard query expansion techniques, my model is trained to attend
across document fields based on their semantic similarities with a query, which, as
will show, improves the performance on the query categorization task.

In this dissertation, inspired by [80], I propose a deep learning-based PRF model,
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named Attentive Pseudo-Relevance Feedback Network (APRF-Net). Unlike [80] that
was developed to boost ranking performance, APRF-Net is an extreme multi-label
classifier that is specifically developed for e-commerce query categorization. APRF-
Net utilizes PRF to enrich the tail queries’ representations with the information in
the retrieved product documents to mitigate tail queries’ sparsity. The product doc-
uments in e-commerce websites are well-structured and contain fields like (e.g., title,
short description, color). In my setting, fields form product documents, and top-
ranked documents create a corpus. APRF-Net jointly generates query and product
field-level embeddings to capture this existing hierarchical structure and utilizes hier-
archical attention to prioritize the top-k retrieved product documents at three levels
of abstractions (field, document, and corpus). In summary, my main contribution is
proposing a new model to address the customer signal gap between frequent and rare
queries by leveraging the informative signals from PRF for query categorization in

e-comimerce.

2.4 Summary

In summary, my Ph.D. dissertation focuses on addressing the questions relevant to
natural language and query understanding in both conversational agents and search
engines, respectively. My dissertation aims to develop advanced models to aid in in-
ferring what the user is looking for while interacting with these intelligent information
systems. Based on my research, I proposed several models to solve these problems,
and I evaluated them on real data collected from Amazon Alexa Prize and The Home
Depot search engine.

In the next section, I present my research on user intent inference in conversational

agents. I explain my contributions in this field and place them in context.
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Chapter 3

Integrating knowledge in User

Intent Inference

This chapter describes different resources that this dissertation utilizes to incorpo-
rate into the intent inference process for conversational agents and e-commerce search.
In section 3.1, I present the external resources that I used for conversational agent
setting, including entity knowledge-base, conversation context, and user profile infor-
mation. Section 3.2 describes resources, including inductive bias from relevant tasks,
product taxonomy structure, and unlabeled domain-specific corpora for e-commerce
search. The chapter’s content related to conversational agents is based on references
13, 2, 5], published in CIKM’2019, SIGIR’2019, and CHIIR’2020. Also, the content
related to e-commerce search is based on references [4, 6, 7], published in SIGIR2020,

SIGIR e-com 2021, and SIGIR’2021.

3.1 Integrating Knowledge for Conversational Agents

My dissertation claims that integrating external knowledge into the user intent in-
ference for conversational agents is effective. This section explicitly describes three

different resources this dissertation studies for conversational agent settings.
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Entity Knowledge-base: An essential challenge for conversational domain classifi-
cation is that human users tend to use many entities in their conversations. Moreover,
the creation of new entities, like recent movies, makes the model obsolete with time.
It would be necessary to constantly update the model by incorporating new infor-
mation about people, organizations, movies, and other entities to fix this problem.
Updating the training set might cause unintended effects in the model and be inef-
ficient. Also, constantly retraining the NLU is not a good answer for such scenarios
as many downstream components are tuned on different parameters of the previously
trained model.

An answer for this issue is using an entity knowledge-base where instead of updat-
ing the training set and frequently retraining the topic classifier on the new training
set, we can only update the entity knowledge-base. As a result, an entity inference
step is needed to assist the topic classifier for an accurate prediction. According to
this idea, the model will depend on the entity types rather than the actual entity
text. Two different entity-knowledge-based are used in this section, such as DBpe-
dia Spotlight and PMI-based Entity Linker. DBpedia Spotlight annotates DBpedia
resources mentioned in the text as described in reference [96]. It annotates DBpedia
resources of any 272 classes (more than 30 top-level ones) in the DBpedia Ontology.
Moreover, PMI-based Entity Linker that annotates a customized entity knowledge-
based for IrisBot. PMI-based Entity Linker created a domain-specific entity linker
called PMI-EL for IrisBot, annotating the 20 entity-types most relevant to the IrisBot

design.

Conversation Context: I utilized conversation context information for both topic
classification and dialogue act classifications. The proposed model for contextual topic
classification, which I deployed in our Amazon Alexa Prize, consists of three phases:

Independent Topic Classification, Topic Merging, and Contextual Topic Merging.
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Individual Topic Classification: The individual topic classifier is the classifier
that only uses the current utterance for topic prediction. The result of this step is
a nonexclusive classification vector. During Amazon Alexa Prizes, we developed a
mixture of the expert model, which was a combination of three different classifiers
trained on different datasets and with different parameters and architecture (Section
4.2.4). This mixture of the expert model includes a customized classifier, an entity-

aware classifier, and an Amazon annotator.

Contextual Topic Merging: In this step, the contextual information is included
for final classification. For this purpose, the topic distribution for the previous ut-
terances is used as input to inform the final topic classification results. To apply
contextual merging, a transition matrix between topics is computed based on the
conversation logs. This transition matrix represents the transition probability be-
tween topic 7 and j through the conversation log. As a result, in turn, 7, this value

indicates the transition probability from the previous topic ¢ — 1 to the current topic.

| Topic Distribution I

Tt 1

| Transition Topic Matrix I

o

Contextual Topic

Merging
| T
Topic Distribution | Topic Distribution Topic Distribution
Utterance 1 Utterance i-1 Utterance i
A
UNIT 1 UNIT i-1 UNIT i

Figure 3.1: Contextual Topic Merging [1].

For dialogue act classification, we leverage the different types of conversation

context. This dissertation proposes a deep learning model that utilizes contextual
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evidence, such as preceding utterances alongside the system state information. To
represent the utterance and system state for each conversation turn, I built on pre-
vious studies which identified effective features for human-human DA classification,
including syntax, prosody, and lexical cues (e.g., [120, 47]. T integrate many of
these ideas into the proposed lexical and syntactic features in the context-aware deep
learning model and augment these with representation learning. An exciting idea
for end-to-end context learning is to let deep models learn the transitions between
two consecutive turns instead of using the transition matrix idea that I develop for

contextual topic classification.

User Profile Information: swhile keeping the actual features constant.

I explore a list of users’ profile information to improve the user intent inference
process, which can be categorized into three types: 1) user information; 2) general
behavioral user features; 3) system features; 4) topic preference features. These fea-
tures are concatenated to produce one feature vector per turn. The first group of
user information is user information. It contains the inferred gender of the user [-1,1]
based on the provided name and whether they gave their name at the start of the
conversation or not (a weak indicator of the user’s openness to sharing information
with the bot). Other features like age and location, often used for user profiling,
are usually not available in the conversational setting. General behavioral features
encode user behaviors in various dimensions, including lexical, semantics, and con-
versational. First, we define engagements as subsets of conversation that have 4+
conversational depth on the same topic. Count of engagements and max length of
engagements are derived, respectively. Sentiment analysis using Valence Aware Dic-
tionary for sEntiment Reasoning (VADER) [46] on utterances is applied to obtain
positive and negative sentiment scores. To capture how much topic transition occurs,

the state change ratio is derived by dividing total transitions by the current turn
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index. Similarly, agreement and disagreement ratios are derived based on intent clas-
sification results. To measure the repetition between (U;, R;), (Ri;, R;) and (U,
U;), counts of token overlaps are computed. Lastly, the average and total word count

of user utterances and system responses are extracted.

Local Features ‘ Short Description

NumFEngagements | #Engagements
MaxEngagements | Max engagement in # of turns
UtterancePos Positive sentiment in U,
UtteranceNeg Negative sentiment in U;
AvgPos Sum of pos sentiment counts / i
AvgNeg Sum of neg sentiment counts / i
StateChangeRatio | #Topic Transitions / i

YesRatio #Yes Responses/Agreements / i
NoRatio #No Responses/Disagreements / i
TokenQuverlap Token overlap in U;, U,_;
TokenQwverlapg Token overlap in R;, R;_;
TokenOverlapyr Token overlap in U;, R;
TotalWordy Total #Words in U;

TotalWordg Total #Words in R;

AvgWordy Average #Words in U; ... U;
AvgWordpg Average #Words in R; ... R;
Wordy #Words only in U;

Wordg #Words only in R;

System features are directly related to systematic aspects of our conversational

agent. Two binary session-level features capture if a user agreed to provide his name
or if he is a returning user. We define two types of latency: system latency and user
latency, both measured in seconds. System latency measures how long a user had to
wait to hear the system response; user latency measures how long a user had to think
before issuing an utterance. Lastly, every token in our utterances was annotated
with an ASR confidence value ranging from 0.0 to 1.0. Using these values, minimum,

maximum, and average token confidence on each U; are added.
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Session-level Features ‘ Short Description

NameProvided Name provided or not
ReturningUser Returning user or not
Local Features ‘ Short Description
Latency System latency on U;
Latencyqyg Average system latency
Latencymag Max system latency
UserLatency User latency on R;
UserLatencyay, Average user latency
UserLatencymaz Max user latency

ASR i Min token confidence on Uj;
ASR 0 Max token confidence on Uj;
ASR g Average token confidence on U;

The next section will discuss the external resources used to improve the user intent

inference for e-commerce search.

3.2 Integrating Knowledge for E-commerce Search

This dissertation also investigates integrating external knowledge into the user intent
inference for e-commerce search. In this section, I discuss three different resources

that are studied.

Inductive Bias from Relevant Tasks: Joint learning is a practical approach to
learning relevant tasks due to the transfer of the inductive bias among them. Joint
learning has shown its efficiency in different fields, such as computer vision. It mainly
attracts much attention in designing the natural language understanding unit of spo-
ken dialogue systems. There have been recent efforts to learn different utterance in-
tents simultaneously. Unfortunately, it has not been explored enough for e-commerce
settings. Moreover, user intent understanding is challenging, as there are complex
relationships among different user intents. Implementing independent and individual

classifiers loses the transferable inductive bias. We thus, in this dissertation, propose
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a joint learning model to improve the quality of intent understanding of two relevant
user intent tasks on e-commerce search data.

Furthermore, in the e-commerce domain, accurate query classification will help
identify the correct product groupings from which relevant products can be retrieved.
For product search, it might be necessary to identify intents associated with a query
across various granularities (e.g., category intent, accessory intent, vertical intent).
As these intent classification tasks are related, knowledge from one task might help
improve the performance of other tasks. Joint learning has been shown to improve the
performance of related tasks due to the transfer of the inductive bias across tasks. In
this dissertation, we then leverage a joint learning model of high-level intent prediction
and query categorization to improve the performance of these two individual intent

classification tasks.

Product Taxonomy: Many query understanding models solely focus on query tex-
tual and session representation. Although these models extract valuable information
for user intent inference, they are still missing some incorporated knowledge in the
taxonomy or product catalog. For the e-commerce setting, extracting category (la-
bel) co-occurrence information is essential for query understanding, where product
categories inherent this correlation during taxonomy formation. Product categories
are not mutually exclusive and are semantically related to each other. This correla-
tion between product categories impacts the customer click behavior, which utilizes
supervision signals in dataset generation.

Node representation is helpful to model the interaction between the related nodes
in knowledge graphs. Researchers such as Jian et al. [124] proposed a local pairwise
proximity embedding to model large-scale information networks. In this network, a
node represents an entity, and the edges represent the relations among the entities.

In this dissertation, the product categories are considered as nodes of a knowledge



40

graph, and the connection between them is computed based on the user click rate.
As a result, an undirected graph can be formed to represent the co-occurrence of each
product category pair. As a result, a local pairwise proximity model between the

vertices (labels) can be created in the form of a Co-occurrence Matrix (CM).

Unlabeled Domain-Specific Corpora (Product Catalog): The last source of
knowledge this dissertation utilizes for user intent inference in e-commerce search is
unlabeled domain-specific corpora or product catalog. Unlike most web documents,
the product documents in e-commerce websites are well-structured and contain fields
like title, short description, color, and so forth. In our setting, fields form product
documents, and top-ranked documents create a corpus. APRF-Net jointly gener-
ates a query and product field-level embeddings to capture this existing hierarchical
structure and utilizes hierarchical attention to prioritize the top-k retrieved product
documents at three levels of abstractions (field, document, and corpus). The table

below summarizes the fields included in a product document.

Fields Short Description
Title Product title
Description Product descriptions

Taxonomy path | Product taxonomy path from root to leaf
Color/material | Color and material information

Numerical Numeric values (e.g., height, width)

Brand Brand information (brand name)

3.3 Summary

In this chapter, I discussed different sources of knowledge used in this dissertation to
improve the user intent inference process for conversational agents and e-commerce

search. I presented different resources, including entity knowledge-base, contextual



41

information, and user profile information. Moreover, I described other resources for e-
commerce search, including the inductive bias in the relevant tasks, product taxonomy
structure, and unlabeled domain-specific corpora.

The next chapter presents three knowledge-aware models that incorporate entity
knowledge base, conversation context, and user profile information into user intent

inference in the conversational agents.
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Chapter 4

User Intent inference in

Conversational Agent

This chapter describes my previous research on Conversational Al by focusing on
user intent inference. I studied three external sources of information, including entity
knowledge base, conversation context, and user profile information, to improve user
intent inference. I adopt four papers published in [1, 3, 2, 5]. I start the chapter
by explaining the details of IrisBot in section 4.1, which is an open-domain conver-
sational agent that our team at Emory developed for the Amazon Alexa Prize 2018.
It was published in the 2nd Proceedings of Alexa Prize titled “Emory IrisBot: An
open-domain conversational bot for personalized information access.” The remaining
sections cover my specific contributions in user intent inference for conversational
agents working on the real data during these three global challenges. In section 4.3,
I discuss my paper about the entity-aware topic classification, which was published
in CIKM 2019 titled “ConCET: Entity-Aware Topic Classification for Open-Domain
Conversational Agents.” This paper examines how entity-type information should
be utilized as an external source of information to improve the topic prediction. It

follows by section 4.4, where I describe my work on contextual-based dialogue act
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classification, which was published in SIGIR 2018 titled “Contextual Dialogue Act
(Classification for Open-Domain Conversational Agent.” This paper investigates the
effective way to represent and integrate conversation context information into user
intent inference. In section 4.5, I explain my research on the smart topic suggestion
to improve user topic switching intent, which was published in CHIIR 2020 titled
“Would you Like to Talk about Sports Now? Towards Contextual Topic Suggestion
for Open-Domain Conversational Agents.” This paper investigates a method to lever-
age user profile information to improve user intent and engagement in a conversational

agent.

4.1 Emory IrisBot: An Open-Domain Conversa-
tional Bot for Personalized Information Access

In this section, I describe IrisBot, a conversational agent that aims to help a customer
be informed about the world around them, while being entertained and engaged. Our
bot attempts to incorporate real-time search, informed advice, and latest news rec-
ommendation into a coherent conversation. IrisBot can already track information
on the latest topics and opinions from News, Sports, and Entertainment and some
specialized domains. The key technical innovations of IrisBot are novel algorithms for
contextualized classification of the topic and intent of the user’s utterances, modular
ranking of potential responses, and personalized topic suggestions. Our preliminary
experimental results based on overall customer experience ratings and A/B testing
analysis, focus on understanding the contribution of both algorithmic and surface
presentation features. Finally, promising directions for continued research are sug-
gested, primarily focusing on increasing the coverage of topics for in-depth domain
understanding, further personalizing the conversation experience, and making the

conversation interesting and novel for repeating customers.
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IrisBot is designed through loose coupling of domain-specific components that
interact through the Dialogue Manager. Each utterance is processed to identify the
key entities, topics, and intents (as described below), and is heavily annotated with
NLP information helpful for the domain specific components to respond to the query.

it was chosen to do “lazy” response evaluation in that the final response ranking
is performed after each component returns a candidate response, at which point the
responses are ranked and selected based on the combination of the utterance inter-
pretation and the estimated response coherence and relevance. Thus, each query is
processed by every component, which has a computational drawback of significant
processing for each utterance, and the benefit of redundancy and multiple available
fallback responses. It was chosen to optimize the expected response quality from
having redundant options available. Each domain component implements a common
set of interfaces, and is expected to return a score of the response, the response type
and topic, and follow-up suggestion (which could be the same component or a switch
to another topic). As a result, adding new components turned out to be quite easy
with the main challenge being to expand the topic classifier to identify when the new

component is relevant.

4.1.1 Language Understanding and Entity Recognition pipeline

IrisBot’s NLP pipeline is executed during the pre-processing stage in the Dialogue
Manager. Many different functions, including both heavy and light NLP modules
are executed in parallel to reduce latency. Once each thread is finished, its output is
stored in the utterance context maintained by the Dialogue Manager, enabling easy

backtracking for components to make smarter decisions.

Knowledge-Based Named Entity Recognition: To recognized key entities we

created an index of 3.5 million entities and their types. That includes all the entities
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that are present in our relational ontology, and all the entities that our domain-specific
components can currently handle. Given an utterance, we use it to query our index

and and retrieve all the entities present in it and their types.

Relational Ontology: IrisBot has its own knowledge-base that is modeled as a
graph, and stores attributes of and relations between millions of entities in the in-
dex. It has been initially derived from DBPedia [79] and extended with the entities
important to our components. Given an entity, the ontology server allows us to look
up entities related to it, for example for a movie it might a directory and cast list,
or for a person it might be a spouse or a place of birth, and many other relations as

defined by DBPedia.

Co-reference resolution: Co-reference resolution in a dialogue setting becomes
challenging because our system expects continuous influx of many different types of
entities. It also remains uncertain whether we should prioritize entities appearing on
our responses or on user’s utterance. For IrisBot, co-reference resolution depends on
knowledge-based named entity recognition, along with two main parameters: half-life
and bias. Based on half-life, co-reference module continuously discounts the confi-
dence score as time passes, prioritizing newly appeared entity to selection process.
Bias is used to control weights between entities appeared on utterances and responses.
We tuned these parameters over our development period, and they are incorporated

with handcrafted tie-breaking features to assist selection process.

4.1.2 Domain-specific Components:

IrisBot currently has a total of 12 domain-specific components, listed below. This
is a fluid list as components are added and occasionally retired (e.g., the WorldCup

component was retired after the conclusion of the 2018 FIFA World Cup).
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Movies and Shows | Music and Concerts
News Travel and Activities
Animals Video Games

Cars Sports

Opinions Wikipedia

World Cup Emotional Support

Table 4.1: Domain-specific retrieval components

4.2 Topic and Intent Classification

We chose to follow the current state of the art and the Amazon practice, and to
identify both topic and intent. For example, a customer may request an opinion or
recommendation (intent) for a particular movie (topic). We developed our own state
of the art classifiers for this task, as described next, as our component capabilities
and boundaries did not easily map to available classes provided by existing Amazon
Comprehend services and similar. However, we do use these services as input to our

own classification.

4.2.1 Contextual Topic Classification

Our proposed model for contextual topic classification consists of three phases: Inde-

pendent Topic Classification, Topic Merging, and Contextual Topic Merging.

Phase 1: Independent Topic Classification: For this step, the current utter-
ance is only used. The result of this step is a nonexclusive classification vector.
A Mixture of Experts Model is applied for topic classification, consisting of three
different classifiers trained on different datasets and with different parameters and
architecture. Topic classifier includes a customized classifier, an entity classifier, and

an amazon annotator.
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Phase 2: Topic Merging from Mixture of Experts: In this step, the outputs
of three classifiers are merged to produce a single topic distribution based on evidence

from all of the “expert” base classifiers.

Phase 3: Contextual Topic Resolution: The third step is Contextual Topic
Merging, where the topic distribution for the previous utterances is used as input to
inform the final topic classification results. To apply contextual merging, a transition
matrix between topics is computed based on the conversation logs, which indicates
the transition probability from the previous topic to the current one.

The logic and motivation for using the mixture of experts model for this task
come from the “No Free Lunch Theorem” in machine learning, which suggests multi-
ple classifiers for decision making instead of a single powerful model[107]. Moreover,
according to the promising results for Convolutional Neural Networks (CNN) models
in text classification, the CNN model is used as the base classifiers [144][69]. Fi-
nally, a mixture of entity-aware models and the Amazon Annotator (another expert)
is deployed for the Topic Classification step. The three different models are 1. a
customized classifier based on the CNN, an entity-aware classifier, and an Amazon
Annotator, all of which are used in a mixture of expert models. The customized
classifier is trained on a customized dataset, and the word embeddings are tuned on
this data. The entity classifier was trained on the DBPedia and a customized entity
knowledge-base that simultaneously train on both textual and entity-type informa-
tion of the utterances. Consequently, the topic merging step merges all the results
from these three classifiers to make the final prediction. Finally, a topic distribution

across all possible covered topics are generated.
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4.2.2 Language Understanding and Entity Recognition Pipeline

IrisBot’s NLP pipeline is executed during the pre-processing stage in the Dialogue
Manager. Many different functions, including both heavy and light NLP modules
are executed in parallel to reduce latency. Once each thread is finished, its output is
stored in the utterance context maintained by the Dialogue Manager, enabling easy

backtracking for components to make smarter decisions.

Knowledge-Based Named Entity Recognition: To recognized key entities, an
index of 3.5 million entities and their types are created. That includes all the entities
that are present in our relational ontology, and all the entities that our domain-specific
components can currently handle. Given an utterance, we use it to query our index

and and retrieve all the entities present in it and their types.

Relational Ontology: IrisBot has its own knowledge-base that is modeled as a
graph, and stores attributes of and relations between millions of entities in the in-
dex. It has been initially derived from DBPedia [79] and extended with the entities
important to our components. Given an entity, the ontology server allows us to look
up entities related to it, for example for a movie it might a directory and cast list,
or for a person it might be a spouse or a place of birth, and many other relations as

defined by DBPedia.

Co-reference resolution: Co-reference resolution in a dialogue setting becomes
challenging because our system expects continuous influx of many different types of
entities. It also remains uncertain whether we should prioritize entities appearing on
our responses or on user’s utterance. For IrisBot, co-reference resolution depends on
knowledge-based named entity recognition, along with two main parameters: half-life
and bias. Based on half-life, co-reference module continuously discounts the confi-

dence score as time passes, prioritizing newly appeared entity to selection process.
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Bias is used to control weights between entities appeared on utterances and responses.
These parameters over our development period were tuned, and they are incorporated

with handcrafted tie-breaking features to assist selection process.

4.2.3 Domain-specific Components

IrisBot currently has a total of 12 domain-specific components, listed below. This
is a fluid list as components are added and occasionally retired (e.g., the WorldCup

component was retired after the conclusion of the 2018 FIFA World Cup).

Movies and Shows | Music and Concerts
News Travel and Activities
Animals Video Games

Cars Sports

Opinions Wikipedia

World Cup Emotional Support

Table 4.2: Domain-specific retrieval components

4.2.4 Topic and Intent Classification

Irisbot chose to follow the current state of the art and the Amazon practice, and
to identify both topic and intent. For example, a customer may request an opin-
ion or recommendation (intent) for a particular movie (topic). Developed classifiers
for this task were developed, as described next, as our component capabilities and
boundaries did not easily map to available classes provided by existing Amazon Com-
prehend services and similar. However, we do use these services as input to our own

classification.
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Semantic and Lexical Classification using Convolutional Neural Networks

(CNN)

CNN models are used as basic classifier for both Customized and Entity classifiers,
because of promising results in text classifications in the recent years. The basic clas-
sifier is a CNN model consisting of 4 layers, an embedding layer of size 300 followed
by 3 Convolution layers, any of which consists of a convolution and a max pooling
layer. A Fully Connected Neural Networks (FCNN) was used for the final classifica-
tion. In each Convolution layer, 256 filters of size 2, 3 and 4 were used, respectively.
We used 12-regularization of 0.01 and a dropout of 0.5 to avoid over fitting during
training. Lexical and unsupervised features were extracted from text utterances and
concatenated with CNN features to utilize the CNN features. The final vector was

used as input of the FCNN model for classification.

Customized Classifier: We generated more that 50,000 utterances which are cus-
tomized to our bot, and the components that bot supported. Google Word2Vec is
used for initialization of each word embedding. Then, each word has been trained
during training to be more customized to our bot. To use maximum possible num-
ber of vocabularies for conversation data 4 different popular dialogue or conversation
datasets such as Cornell, ubuntu and scenarios and reddit, in addition to our dataset.
Finally, more than 25,000 frequent words were extracted from these datasets and
were been used as lexical features. To leverage training, we also extracted different
unsupervised features like LDA and cosine similarity between LDA topics, to extract

high level clustering features from the utterances.

Entity classifier: The architecture for this classifier is the same as the previous
classifier, but this classifier uses one more Convolution layer; and 256 filters in each

Convolution layer. Finally, a FCNN was applied for final classification. External
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features such as cosine-similarity and LDA and LSI features had been used as unsu-
pervised features [137][25]. DBpedia entities were used to generate the dataset. Some
general rules were applied to assign every entity to a special topic. E.g. University
Names can be categorized in both News and Tech topics. Each entity is considered as
one word and average Google Word2Vector is used as word embeddings. This dataset
contains millions of samples, as a result the generated dataset is much larger than
the customized dataset. We used 3M Google word2vector as vocabularies to train
this model. The word vectors are not retrained during training to make model more

generalized.

Contextual topic post-processing: Contextual information plays an important
role in conversational AI. To leverage our model using contextual information in a
real conversation, contextual Topic Merging phase is proposed. This phase contains
two sub steps. First, specific contextual topic merging and second global contextual
topic merging. In the specific contextual topic merging, different heuristics based on
our domain knowledge about a specific topic are used to refine the probabilities for
a special topic. For example, specific regular expressions were used to capture some
corner cases, which the proposed Topic Classifier could not classify them correctly.
In the global step, a transition matrix was used which had been computed based
on the conversation logs. This matrix represents the transition probabilities between

different topics.

4.2.5 Intent Classification

Building on the Amazon intent ontology, we considered 11 different intent classes,
such as Opinion-request, opinion-delivery, info-request, user-instruction, personal-
delivery, topic-switch, topic-acceptance, DontKnow, repetition, self-harm, clarifica-

tion and user-correction (to support ASR) as our intent classes. The classes of
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Figure 4.1: Contextual Topic Merging [1].

TopicAcceptance and UserCorrection have been added to the original classes from
Amazon. Also, the information-delivery intent is the main (default) intent supported
by domain-specific components, thus did not need to be predicted with the intent
classifier.

Similar to the Topic Classifier architecture, for the intent classifier a 4-layer CNN
model was used. For word embeddings, Google Word2Vec for representing the words,
and 512 filters in each step are used. Whole 3M vocabularies are used and word
vectors did not retrain during training. We also used transfer learning to improve
the generalization of the model. For this purpose, TensorflowHub features are used
as an external feature [23]. TensorflowHub represents a sentence in the vector space.
Those vectors are extracted based on the pre-trained models that had been trained
on different domains and large corpus of data. Moreover, another embedding layer of
size 16 was added to train POS features, and they have been trained during training.
Finally, 37 different POS tags from NLTK have been trained.

The dataset for intent classifier is highly unbalanced, which makes training chal-
lenging and might cause over-fitting on the more popular classes such as Information-
Request. To solve this problem, we created balanced training dataset, and used the

output of the topic classifier as an input to provide additional contextual features for
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intent classifier. Thus, pipeline of Topic and Intent classifiers is ultimately used for
intent classification. For some classes, such as user-correction and repetition (user
asking for repetition), which related to previous utterances, we designed a Post In-
tent Merging phase, similar to the Contextual Topic Merging described above. In this
phase, contextual features are taken into account to decide and potentially modify
the intent decision to a more likely one given the conversation context. This is done
primarily to deal with important special cases such as recovering from an error, or

remaining in a component for following up to a question asked to a customer.
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Figure 4.2: Intent Classifier [1].

4.2.6 Dialogue Manager and Response Ranking

The Dialogue Manager is at the heart of the IrisBot engine. It manages the conversa-
tion context, which stores all the NLP annotations, classification results, and is passed

to each domain component to record their responses. The context object is used for
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ranking and selecting the responses and post-processing them before returning to the

customers.

4.2.7 Dialogue Manager: Implementation

The dialogue manager is a pipeline of utterance processing for NLU, component task
execution, response ranking and filtering, and relevant information pre-fetching.

The utterance processing includes utterance ASR thresholding, profanity check-
ing, and multi-threaded NLP processing. The ASR thresholding checks on the ASR
probability input on each possible speech transcription and compares the largest prob-
ability with an empirical threshold. The conversation goes to an utterance ambiguity
state and the user would be requested to repeat the utterance if the probability is less
than the threshold. Profanity check is applied on the utterance and a default answer
and a deflection suggestion would be returned if the utterance is detected profane. If
the utterance passes the previous two checkpoints, a multi-processing NLP processing
is executed to extract features in context for later decision makings. For each NLP
function, a thread is designated with a processing timeout limit of 1.5 seconds. The
total processing time limit of all threads is 2 seconds.

The features extracted by NLP processes are maintained in the conversation con-
text. Based on context information, the dialogue manager then selects components
to take in context and retrieve responses. The are 6 scenarios, as shown in Table 4.3,
for the dialogue manager to make different decisions. For example, if the user intent
is Repetition, only the Special State Component will be selected to repeat the last
response. If the user intent is Information Request, all domain components would
have an equal chance to retrieve responses. Domain components retrieve responses
in parallel threads sharing context information with a timeout limit of 2 seconds for
each thread and 2.5 seconds in total.

Assigned by the dialogue manager, components retrieve responses, assign them
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Scenario Decision

Instruction Request Special State Component

Pause and Hesitation | Special State Component
SelfHarm Special State Component

Stop Special State Component
Opening and Greeting | Conversation Opening Component
Repetition Special State Component
Information Request Domain Components

Table 4.3: Conversation States and Component Assignment for Retrieving Responses.

with relevance scores and follow up scores, and pass them to the response ranking
function. The ranking function assigns each response with a final ranking score.
The final step is profanity check on the candidate responses and the best response
satisfying all requirements will be returned.

Pre-fetching is a separate thread during the period between returning the response
back to a user and waiting for the next input from the user. It extracts information
from the responses, such as entities, and pre-fetches relevant information for the next

turn of conversation.

4.2.8 Personalized Topic Suggestion

One of the key aspects of a successful conversation is topic transitions and recom-
mending the next topic of conversation. IrisBot initially attempted to recommend
topics randomly, which turned out to be disastrous for cohesive conversation flow.
Instead, our next version pre-defined reasonable topic sequences, or scripts for con-
versations, and suggested topics following a predefined sequence if a customer did
not express a preference or interest in any specific topic. However, we learned that a
small number of default topic sequences does not work for all customers, and instead
developed a personalized topic suggestion module, trained on past conversations, that
attempts to predict which topic a customer would be interested in discussing next.

We believe this is an important innovation as it allows our bot to tailor the topic
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order to each customer based on a variety of traits and characteristics.

4.2.9 Personalized Sequential Topic Suggestion Model

To propose the next interesting topic for each customer, I introduce a Conditional
Random Field (CRF)-based sequence model. To make the suggestion personalized,
I investigated two approaches, outlined below. First, I introduce the CRF model for
Topic suggestion, and then discuss personalization later in this section.

First, every conversation is divided into different turns, then three different fea-
ture groups were extracted from each turn. The first group is Accepted and Reject
suggestions, this features vectors has the value of 1 for the accepted topics and -1 for
the rejected topic and 0 for the topics that has not been proposed. This features help
our model to be more eager to pick the 0 and 1 topics in the future, and consequently
more reluctant to suggest ones rejected from similar conversation states. The second
group is topic classification features, which represents the the current conversation
topic. This feature could indicate the historical probability that a current state is a
potential topic-switching point, or whether it should be a follow-up for the previous
state. The third group is a set of contextual features, which represents the previous
visited states, and the previous suggested topic also if it had been accepted or not.
The fourth group is high level features such as the Infer-gender of user [-1,1], and
friendly users [GIVENAME or NOT].

To evaluate our approach I first experimented with the topic suggestion model in
simulation mode on off-line data. To label the data, two different scenarios have been
followed for training and test data, for training data if topic X was suggested in turn
1, and user starts talking about topic X in turn ¢ + 1, the the label of “X-ACC” is
assigned to turn ¢. If the customer rejects the suggestion and asked for something
else, the label was “X-REJ”, otherwise the label is a “FOLLOW-UP” for one of the

components. There is a small difference between labeling of the test data compared
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to training data, in which, if a customer in turn 7, rejects the suggested topic and in
turn ¢ + n wanted to talk about topic “X”, the the label for turn ¢ is modified from

“X-REJ” to “X-ACC”, because it ultimately matched the customer interests.

Personalized topic suggestion: I developed a Mixture of Experts model, in which
each model had been trained on a specific group of customers. Two different ways to
cluster customers into different groups had been attempted. The first one is clustering
customers based on their past visiting frequency with the bot, resulting in two groups:
returning, and new customers. The second way for clustering is based on time of day
information, which is expected to correlate with customer demographics: dividing
every day into into 4 different time buckets such as, morning, afternoon, evening and
midnight. then assign every customer to one of these time buckets.

For the first experiment, I used a history field in context data which keeps track
of accepted and rejected topics for all customers. In this model, the customers that
previously talked to the bot, a history was recorded. For feature extraction, a cus-
tomer that previously accepted and n times rejected our suggestions on topic X, a
history vector like history-X [n,m] is extracted and added to original feature vector.
Finally, two different models are trained on each cluster and each customer in the
test is assigned for one of these clusters then the corresponding model is used for
prediction. In other words a separate model is trained for repeat customers from the
model used to predict topics for new customers who have never spoken to IrisBot
before.

In the second experiment, 4 different models had been train on 4 different time
buckets, and the corresponding model has been used for personalized suggestion for
each customer based on the time of the days that they talk to the bot. A potential
problem with this model is time zone difference, which make prediction less effective

in our experiments described below.
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4.2.10 Cross-Component topic suggestion

In addition to reactive topic suggestion to move the conversation forward if the cus-
tomer does not express an interest, Irisbot also propose proactive cross-component
topic suggestion, whereas a component may recommend a another component as part
of its response. For example, a Movie recommendation may include a famous actor,
and IrisBot would pro-actively suggest to the customer to look up the latest news on
that actor. Another scenario Irisbot explored centers around locations: if a location
is mentioned in the news or in a movie plot, that location would be recommended
as potential point of exploration for the customer and then offered to explore the
Travel and Attractions component. These two initial ideas are implemented in Iris-
Bot and other cross-component connections and suggestions are being explored in

current extensions to IrisBot.

4.2.11 Results and Discussion

First, we report the overall performance of topic and intent classifiers. Then, we dive
into specific technical component evaluation to analyze how our proposed techniques
work in isolation and together to improve the system performance. Specifically, we
first report results of topic and intent classifier, which exceed the current state of the
art as represented by the Amazon Annotate system (Section 4.2.12). Then, we report
results on personalized topic suggestion (Section 4.2.13). We conclude this section
by analyzing topic suggestion performance in live A/B testing for different groups of
customers (Section 4.2.13), and other effects of personalization on customer behavior

and satisfaction.
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4.2.12 Topic and Intent Classifier: Internal Evaluation

To evaluate the topic classifier, I developed a test dataset containing 1,121 utterances
of different conversations from logs. These utterances were manually labeled by three
different human annotators, whom I call annotator A and B. The matching score
between the annotators is 1.0, as both annotators reach an agreement on a label.
The results for the classifier on 6 major topics that has intersection with the Amazon
topics is reported in Table 4.4. The average (accuracy and Micro Fl-score) for the
Customized Classifier (CC), Entity Classifier (EC) and Contextual Topic Merging
(CTM) on all covered topics in our bot are (0.669, 0.605), (0.676, 0.616) and (0.766,

0.719), respectively.

Topic CC-accuracy | EC-accuracy | AA-accuracy | CTM-accuracy
Movie 0.693 0.851 0.840 0.912
Music 0.836 0.916 0.875 0.891
Sports 0.923 0.693 0.693 0.851
Celebrities | 0.969 0.866 0.814 0.903
Politics 0.770 0.854 0.915 0.861
Fashion 0.823 0.95 0.76 0.851
| Average | 0.835 [ 0.855 [ 0.816 [ 0.878 |

Table 4.4: Classification accuracy for CC: Customized Classifier, EC: Entity Classi-
fier, AA: Amazon Annotator, CTM: Contextual Topic Merging Classifier .

training set containing 20K samples generated from logs and other resources,
where 80% is used for training and 20% for validation. To evaluate the intent classifier,
I developed a test sets of 350 utterances based on our manual labels, and Amazon
annotation labels. The average Micro F1 and Macro F1 scores for this dataset is 0.79
and 0.83 respectively. The detailed results for different intent classes are reported in

Table 4.5.
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Suggested Topic | Accuracy
user instruction 0.727
Opinion Request | 0.980
Opinion delivery | 0.560
Personal Delivery | 0.880

Topic Switch 0.901
Topic acceptance | 0.956
unknown 0.752
Repetition 0.941
Info Request 0.951
Dont know 0.833
Self harm 0.98
] Average \ 0.831 ‘

Table 4.5: Intent classification accuracy.
4.2.13 Topic Suggestion Results

I evaluated our proposed CRF-based topic suggestion model on 3,606 different con-
versations from August 1 to August 15, the first 10 days of conversations are used for
training and validation, and the rest for testing. The off-line results for comparisons
two methods of Heuristic suggestion and CRF model are reported on Table. 4.25.
In the Heuristic method, the method always suggests the next topic based on their

overall popularity.

Suggested Topic | Heuristic Accuracy | CRF Accuracy
Movie 0.508 0.800
Music 0.648 0.811
Attraction 0.498 0.778
Pets-animals 0.486 0.775
news 0.397 0.796
politics 0.389 0.569
sports 0.270 0.6125
Scitech 0.417 0.639
cars 0.397 0.756
games 0.473 0.698

’ Average \ 0.476 \ 0.772

Table 4.6: CRF for Topic suggestion.

If customers are clustered into returning and new cohorts, as I described above,
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two different models can be trained on each group. If I train a model on returning
customers and try to predict the suggested topic for just the returning customers,
the average acceptance rate is expected to be 0.629; However, the regular model that
has been trained on all users predicts 0.655. the results shows, first, the returning
customers are more difficult to predict, and second using specialized classifier to
model just returning customers is not more effective than one general model. I also
experimented with clustering customers into 4 different groups by conversation time.
However, preliminary results show that using all data is still more accurate than

having four different models for each special time period.

Preliminary A /B testing results: Due to lack of time I were not able to fully test
the personalized predictions in the live setting. One preliminary result on 36 conver-
sations on live data in A/B testing is inconclusive: it shows only slight improvement
from 0.460 to 0.461 for returning users, which is insignificant; therefore, more data is
needed to decide whether a new model is needed or a different algorithm for using the
suggested predictions. I plan to explore this in our immediate current work over the
next several weeks, combined with other improvements to the experience of returning

customers.

4.2.14 Effects of Personalization on conversation behavior

and ratings

In order to compare the effect of personalization suggestion feature, a controlled
experiment was conducted: identical system with and without personalization sug-
gestion feature was ran side-by-side for one day. The results are promising, indicating
that personalization could play a significant role on increasing customer satisfaction.

One bucket which had personalization suggestion received an average of 4.02 rating

from 360 returning users and 3.22 rating from 2,161 new users. Another bucket which
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didn’t have personalization suggestion scored the average of 3.65 rating from 178 new
users, while receiving only 2.80 average rating from 52 returning users.

As a result, it is clear that treating returning customers as new, is devastating
to their conversation experience. It seems natural for customers to remember their
previous experience regardless of anonymous setting of this competition. Recovering
previous context, and providing personalized suggestions or diversifying the topics of
conversation could potentially improve experience of the customers dramatically, and

is a central focus of our ongoing work.

4.3 ConCET: Entity-Aware Topic Classification for
Open-Domain Conversational Agents

Identifying the topic (domain) of each user’s utterance in open-domain conversational
systems is a crucial step for all subsequent language understanding and response tasks.
In particular, for complex domains, an utterance is often routed to a single compo-
nent responsible for that domain. Thus, correctly mapping a user utterance to the
right domain is critical. To address this problem, I introduce ConCET: a Concurrent
Entity-aware conversational Topic classifier, which incorporates entity-type informa-
tion together with the utterance content features. Specifically, ConCET utilizes en-
tity information to enrich the utterance representation, combining character, word,
and entity-type embeddings into a single representation. However, for rich domains
with millions of available entities, unrealistic amounts of labeled training data would
be required. To complement our model, I propose a simple and effective method
for generating synthetic training data, to augment the typically limited amounts of
labeled training data, using commonly available knowledge bases as to generate addi-
tional labeled utterances. I extensively evaluate ConCET and our proposed training

method first on an openly available human-human conversational dataset called Self-
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Dialogue, to calibrate our approach against previous deep learning-based methods;
second, I evaluate ConCET on a large dataset of human-machine conversations with
real users, collected as part of the Amazon Alexa Prize. Our results show that Con-
CET significantly improves topic classification performance on both datasets, includ-
ing 8-10% improvements over deep learning methods. I complement our quantitative
results with detailed analysis of system performance, which could be used for further
improvements of conversational agents.

In summary, our contributions are: (1) The development of ConCET, a novel
entity-aware topic classifier by combining implicit and explicit representations of
an utterance and fusing them with handcrafted features; (2) Incorporating exter-
nal knowledge about entities retrieved from a knowledge base; and (3) creation of a
new large-scale synthetic yet realistic dataset for training topic classification systems
designed for open-domain conversational agents. Next, I present related work to place

our contributions in context.

4.3.1 ConCET System Overview

I now introduce our ConCET system at a high level, before diving into implementation
details. Our proposed ConCET model is illustrated in Figure 4.3.

ConCET utilizes both textual and entity information from an utterance. To rep-
resent textual and entity information, ConCET extracts both sparse and dense rep-
resentations. To this end, a pipeline of deep neural networks and handcrafted feature
extraction modules is designed. This pipeline consists of four components namely
Utterance-to-Vector (Utt2Vec) network, feature engineering module, Entity-to-Vector
(Ent2Vec) network, and the Entity-type distribution generator. The Entity-type dis-
tribution generator module uses an entity linker to get the entity-type distribution
corresponding to each entity in the utterance.

Utt2Vec and the feature engineering module extract the textual representation.
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Utt2Vec is a deep neural network model which utilizes character, word, and POS
tags for utterance representation. Feature engineering module extracts handcrafted
features such as LDA and LSA topical distribution from an utterance. Finally, they
are combined through a fully-connected neural network.

To model the entity information, ConCET utilizes both the entity-type distribu-
tion and the order of entity-types appearing in the utterances.

Ent2Vec network is responsible for mapping this entity sequence representation
to a high dimensional vector. Entity-type distribution features and the output of the
Ent2Vec network are combined through a fully-connected neural network.

Next, the cosine similarity! between textual and entity representations is com-
puted. This similarity value, concatenated with the textual and entity representa-
tions, is fed to a feed-forward layer to compute the final softmax distribution of topics.

To summarize, ConCET proposes an entity-aware text representation model that
learns a ternary representation of character, word and entity information. In the next
section, I introduce the entity linking methods used to derive entity-based informa-
tion. I conducted our experiments using two different entity linkers to measure the
sensitivity of the ConCET model to the entity linking step. Then, in Section 4.3.5 [

explain the details of the ConCET model.

4.3.2 Conversational Entity Linking

In this section, I describe the two entity linkers that were used for detecting entities
and their type distributions. The type information is used for semantic representation
in the ConCET model.

I emphasize that the focus of this work is not on developing a novel entity linker,
which is an important area of research on its own. Rather, I experiment with an off-

the-shelf entity linker, DBPedia Spotlight?, and our own PMI-based domain-specific

Dot product also can be used. In this case, the entity vector should be normalized to unit length.
Zhttps://github.com/dbpedia-spotlight /spotlight-docker
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entity linker (PMI-EL), designed to cover in more depth some of the conversation
domains and entity-types most relevant to our conversational agent. Our experiments
with different off-the-shelf entity linkers during the development of our conversational
agent showed these two linkers are the most effective for topics that our bot supported.
I describe both entity linkers in depth in the next section, here I want to emphasize
that the proposed classifier model can incorporate the output of any available entity

tagger or linker.

4.3.3 DBpedia Spotlight

DBpedia Spotlight annotates DBpedia resources mentioned in the text as described
in reference [96]. It annotates DBpedia resources of any of the 272 classes (more than
30 top-level ones) in the DBpedia Ontology. It performs entity annotations in 3 steps,
1) spotting, 2) candidate selection, and 3) disambiguation. It uses the Aho-Corasick
string matching algorithm for finding all the phrases which could potentially be entity
mentions or surface forms. It then finds candidate entities for each surface form
using the DBpedia Lexical Dataset. For disambiguation, each candidate DBpedia
resource is first modeled in a Vector Space Model (VSM) as the aggregation of all
paragraphs mentioning that concept in Wikipedia. The candidates are then ranked
by their ¢ f xicf cosine similarity score with respect to the context, where the icf score
estimates how discriminating a word is, which is assumed to be inversely proportional

to the number of DBpedia resources it is associated with.

4.3.4 PMl-based Entity Linker (PMI-EL)

I created a domain-specific entity linker called PMI-EL for our conversational sys-
tem for the Alexa Prize, which annotates the 20 entity-types most relevant to our
system. It links entities to an associated knowledge base containing all the entities

supported by our conversational agent. PMI-EL follows similar steps to DBpedia
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Spotlight. However, it does not use the utterance context in the disambiguation step
and relies solely on an estimated prior distribution of types for a given entity for
disambiguation. The main reason was that most of the user utterances were short
(average utterance length of 3.07 words), and sometimes consisted of just the entity
name. Thus, the context was often not helpful or present, and type inference based
on prior probabilities may be sufficient for this setting. I next describe the process
by which the knowledge base was constructed, and how the prior type probabilities

were estimated for entity-type inference.

Movie_Name Celebrities Authors Bands
Sports_Team Sportname Companies Food
Organization Politicians Universities  Singers
Songname Animal Country Actors

Hotels_Foodchains Tourist_points Genre_Books City

Table 4.7: Entity-types recognized by PMI-EL.

PMI-EL knowledge base construction

Our knowledge base starts with entities from a snapshot of DBpedia from 2016.
Additionally, to provide coverage of current entities of potential interest to the user, I
augment the knowledge base by adding entities that our open-domain conversational

agent supports. I periodically retrieve entities from the following sources and domains:

e Persons, Organizations and Locations: from news provided by Washington

Post?
e Cities and Tourist Attractions: from Google Places API*

e Bands and Artists: from Spotify® and Billboard®

Shttps: //www. washingtonpost. com/

inttps: //developers. google. com/places/web-service/search
Shttps: //www. spotify. com/us/

Shttps: //www. billboard. com/


https://www.washingtonpost.com/
https://developers.google.com/places/web-service/search
 https://www.spotify.com/us/
https://www.billboard.com/
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e Books and Authors: from Goodreads” and Google Books®
e Actors and Movies: from IMDb? and Rotten Tomatoes'”

I maintain an index of all the entities and their corresponding types using Elas-

ticSearch!!, which is used in the online entity linking step.

PMI-based type distribution

For entities with more than one type, I also index the estimated pointwise mutual
information (PMI) [19] of the entity with all its types. PMI is a measure of how much
the actual probability of a particular co-occurrence of events p(x, y) differs from what
I would expect it to be on the basis of the probabilities of the individual events and

the assumption of independence of events x and y, and is calculated as:

I p(z,y)
PMI(z.y) =1 (p<x>p<y>> (4.1

To predict the most likely type for entities with multiple types, I estimate the
point-wise mutual information (PMI) of the entity with each type by counting the
co-occurrences of the entity and the type’s name in a large corpus, which has been
shown to correlate with the probability of association [19]. More formally, the entity-

type PMI score is computed as:

Docs(m,C) N Docs(t;, C))|
|Docs(m, C')|

PMI(m, ;) = L (4.2)

"https: //www. goodreads. com/

8https: // developers. google. com/books/

Snttps: //www. imdb. com/

Onttps: //www. rottentomatoes. com/

Yhttps: //www. elastic. co/products/elasticsearch


 https://www.goodreads.com/
 https://developers.google.com/books/
https://www.imdb.com/
https://www.rottentomatoes.com/
 https://www.elastic.co/products/elasticsearch
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where m is an entity mention, t; is a type, C' is a corpus and Docs(phrase,C')
is a set of documents in C' containing a given phrase. For our experiments, as C' [
used a publicly available corpus of 46 million social media posts from a snapshot of
Reddit.'? For example, to disambiguate the mention “Kings” in a user’s utterance, I
compute the number of times each type name co-occurred with the word “Kings” in
the corpus, normalized by the total number of occurrences of the word “Kings” itself.

In this example, the type distribution for a string “Kings” is: [Sports Team :
0.54, Movie_Name : 0.44, C'ity : 0.02]. Because of the large size and diversity of the
corpus, PMI is expected to be a good estimate of type distribution. Despite potential
noise in estimating type distribution for some polysemous entities, the ConCET model
is able to use the type distribution, as I demonstrate empirically under a variety of

conditions.

PMI-EL entity detection in utterances

To support efficient entity linking at run-time, an inverted n-gram entity index was
constructed for all entities in the knowledge base. At runtime, entities are detected via
n-gram matching against an entity index. For example, if the utterance is “who won
the Hawks and Kings game”, I query the index for “the Hawks”, “Kings”, “Hawks”
and every other possible n-gram with less than 6 words. For this utterance, the
response from the entity index would be the entities and the type distributions as-
sociated with them, e.g. “Hawks”: [Sports_Team : 0.88, Animal : 0.11, City : 0.01]
and “Kings”: [Sports Team : 0.54, Movie_Name : 0.44, City : 0.02].

The entity detection step has time complexity O(n?) in the number of words in
the utterance since I perform O(1) look-ups for O(n?) n-grams for each utterance.
The running time for entity linking is 16 ms on an average for utterances with 4 words

which were common, and 100 ms for utterances with 32 words, which were among

R2https: // files. pushshift. 10/ reddit/ submissions/


https://files.pushshift.io/reddit/submissions/
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the longest utterances I encountered. However, PMI-EL would not be efficient if used
on very long text.

The output from the entity linker is passed to the Entity Representation Model,
described in 4.3.7, which converts it into a suitable representation for the ConCET

model.

4.3.5 ConCET: Concurrent Entity-Aware Topic Classifier

In this section, I present the details of ConCET model. First, Section 4.3.6, de-
scribes our model for the textual representation of the utterance. Then, Section 4.3.7,
presents the proposed entity representation model. Finally, Section 4.5.6 discusses the

merging and decision layer of the ConCET model.

4.3.6 Textual Representation

I use character, word, and POS tagging to model the textual representation. Then,
I enrich the representation with the unsupervised topic distribution, as described in

detail next.

Utterance to vector (Utt2Vec) network

Utt2Vec network takes word tokens Utt,, characters Utt, and POS tags Utt, of an

utterance Utt as inputs:

Utty, = [wy; we; wsy ... wy) (4.3)
Uttc = [[Cll'--clk]; [021...021(]; [Cnl...anH (44)

Utt, = [p1;p2;P3 - Pn (4.5)
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Figure 4.4: Utt2Vec network [3].

I use the NLTK!? library for extracting POS tags. Utt2Vec network allows free-
dom of combining different deep learning architectures such as CNN and RNN to
extract features. I define three functions f,, f., and f, that each take these inputs

and output learned hidden representations (h):

he = fu(Utty) (4.6)
he = f.(Utt.) (4.7)
hy = fp(Utty) (4.8)

Bhuttp: //www. nltk. org


http://www.nltk.org
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For our implementation, fy, is a 3-layered CNN with max pooling. For f. and
fp, I use 1-layered BiLSTM network with global attention. For the word embedding
layer, I pre-initialize the weights using Word2Vec vectors with size 300. The weights
on the word embedding layer are tuned during training. For character and POS
embeddings, I randomly initialize the embedding layer with size 16. Given the hidden
representations of each timestamp h; in LSTM cells, dot product similarity score s;
is computed based on a shared trainable matrix M, context vector ¢ and a bias term
b;. Softmax activation is applied on similarity scores to obtain attention weights «.
Lastly, using learned «, weighted sum on BiLSTM hidden representations is applied

to obtain the output h as follows:

exp(si'c)

a; =
b X eap(siTo)

h=>Y ol (4.11)
=1

(4.10)

M, ¢, and b are randomly initialized and jointly learned during training. The

~ ~

three outputs from word-CNN (hy,), char-BiLSTM (h.), and POS-BiLSTM (h.) are

concatenated to produce Utt2Vec output:

~

Utt2Vecon, = [hw; he; hAp] (4.12)

This final output is fed to a linear layer of size 256 with ReLU activation and a
dropout rate of 0.5 to obtain the utterance vector.
Feature engineering module

The goal of this module is to provide the flexibility of incorporating various external

features in ConCET. Since I are focusing on domain classification, I extract unsu-



73

pervised topic modeling features. However, depending on the data and the task, any
type of feature extraction pipeline can be incorporated here. I combined two different
topic modeling algorithms, LDA and LSA, and implemented models using the Gen-
sim library'*. Given hyperparameter n, these models output the unsupervised topic
distribution of size n. By concatenating the two outputs described in the table below,

I obtain a topic distribution vector of size 2n.

Features | Short Description

Fipa LDA topic distribution

Fisa LSA topic distribution

The outputs of these two vectors are concatenated to produce Fl,;:

Fout = [FLpa; FLsal (4.13)

4.3.7 Entity Representation

I now describe how I encode the entity information from the linker as input to our
model. I have two modules to do this encoding, 1) Entity-type sequence generator and
2) Entity-type distribution generator. Entity-type sequence generator converts the
input word sequence to an entity-type sequence so that the model can learn to predict
the topic based on the order in which different entity-types appeared in the utterance.
This sequence is fed into the Ent2Vec network, which creates a high-dimensional vec-
tor representation for the sequence. The Entity-type distribution generator constructs
an overall entity-type distribution for the utterance by aggregating type distributions
for all the entities. Finally, the output of Ent2Vec is concatenated with the entity-
type distribution to generate the final entity representation. I now describe these

modules in detail.

YUhttps: // radimrehurek. com/ gensim/
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Entity-type sequence generator

The input of this module is the list of entities and their type distributions derived
from the entity linker. To generate this entity sequence, I need to assign the best
type corresponding to each entity. The words that are not a part of an entity are
assigned Other or O. For example, for “who won the Hawks and Kings game”, a pos-
sible entity sequence vector would be [“who” /O, “won” /0O, “the” /ST, “Hawks” /ST,
“and” /O, “Kings” /ST, “game” /O |. However, different entity linkers can differently
assign entity-types to each word. Consequently, the resulting entity vector has the

exact length of the utterance.

Utteny = le1;€0;€3 ... €, (4.14)

Entity-type distribution generator

For this module, I first have to determine the total number of entity-types that I
want the model to support. For example, for the PMI-based linker, I support 20
types, and for DBpedia Spotlight, I support the 1000 most frequent entity-types
from the training set. After determining the size, the distribution value for each
entity-type is either 0, or the maximum value for that type in the list of entity-type
distributions. For the example from the previous section, “who won the Hawks and
Kings game”, the type distributions for the two entities from the PMI-based linker
are, respectively, [Sports Team : 0.88, Animal : 0.11,City : 0.01] for “Hawks”, and
[Sports_Team : 0.54, Movie_Name : 0.44,City : 0.02] for “Kings”. In that case,
if the entity linker identifies 20 types in total, the final entity-type distribution is
[Sports_team : 0.88, Movie_Name : 0.44, Animal : 0.11,City : 0.02]. The value
corresponding to the remaining types in Table 4.7 is 0.0 in the final output vector of

length 20.
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Entity to vector (Ent2Vec) network

The input to Ent2Vec network is a list of resolved entity-types per word for Utt,,,

from entity-type sequence generator:

Utty, = [w; we; wsg ... wy) (4.15)

Utlens = [e1; €25 €5 ... €] (4.16)

I define a function f, that takes Utt.,; and outputs learned hidden representations

as follows:

he = fe(Uttent) (417)

I also use 1-layered BiLSTM network as our f, function. I randomly initialize
an entity embedding layer that has 16 trainable weights per each entity-type. Then,
the same attention mechanism as in Section 4.3.6 is applied to h. to obtain h. or
Ent2Vec,,. Lastly, entity-type distribution Enty, is concatenated with fLe to obtain

the final Entity output:

Entow = [Ent2V ecou; Ent s (4.18)

This output is fed to a linear layer of size 100 with ReLLU activation and a dropout

rate of 0.5 to obtain the final entity vector.

4.3.8 Merging and FeedForward Layer

I obtained the three different outputs each from Utt2Vec network, feature engineering
module and Ent2Vec network. Utt2Vec,,; is first concatenated with F,,; to obtain

the following final textual representation Tezt,,; of an utterance:
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Textyy = [Utt2Vecous; Foutl (4.19)

I feed Text,,; to a linear layer of size 100 with ReLU activation to obtain vector of
the same length as FEnt,,;. Cosine similarity between these two vectors are computed

and concatenated to obtain 201-dimensional ConCET,,,;:

ConCET,u = [Entous; Text,ys; Cos(Entyy, Textyy)] (4.20)

According to [147], cosine similarity represents the normalized likelihood that
entity-type Ent,,; appears in Text,,;. Finally, softmax activation is applied to generate

a probability distribution over n possible domains.

4.3.9 Conversational Dataset Overview

In this section, I describe the conversational data collected during the 2018 Alexa
Prize and another publicly available dataset called Self-Dialogue. I also describe the
algorithm I designed to generate synthetic training samples, which will be used to

augment the original data.

4.3.10 Amazon Alexa Prize 2018

The data for evaluation of the proposed models is collected from the 2018 Alexa Prize,
a competition held by Amazon every year since 2017 to advance conversational Al.
Our team was one of the 8 semi-finalist teams funded by Amazon for the competition.
Users were asked to talk to our conversational bot and give a rating from 1.0 to 5.0

(inclusive) based on their experience.
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4.3.11 Obtaining True Labels for Alexa Data

Two hundred conversations from the Alexa Prize data were randomly chosen, which
consist of 3,000 utterances and responses. These utterances were manually labeled by
three different human annotators, whom I call annotator A, B, and C. The matching
and kappa scores between the annotator pairs (A, B), (A, C), and (B, C) are (0.82,
0.78), (0.72, 0.65), and (0.80, 0.75), respectively. Overall, these metrics indicate
substantial agreement between all annotators. The final true labels were selected
by majority voting. When there was no majority, one of the labels was randomly

selected. The final distribution of annotated topics is shown in Table 4.24.

Movie 31% | Music 20% | News 16%
Pets_Animal 6% | Sci_Tech 6% | Sports 6%
Travel Geo  2.5% | Celebrities 2.5% | Weather 1.5%
Literature 1.5% | Food_Drinks 1.5% | Other 1.5%
Joke 1% | Fashion 1% | Fitness 1%
Games 1%

Table 4.8: Topics distribution in Alexa Data.

I randomly selected 90 conversations for training and 10 conversations for valida-

tion. The remaining 100 conversations were reserved for evaluation.

4.3.12 Self-Dialogue Dataset

Self-Dialogue dataset!'® released by one of the Alexa Prize teams [73] is a human-
human conversational dataset collected by using Amazon Mechanical Turk. Given a
predefined topic, two workers talked about anything related to this topic for 5 to 10
turns. Although this dataset is not comprised of human-machine conversations, it is
one of the few publicly available datasets which has a very similar structure to real
human-machine conversations, except that the utterances are syntactically richer.

This dataset contains 24,165 conversations from 23 sub-topics and 4 major topics:

Yhttps: // github. com/ jfainberg/self_ dialogue_ corpus
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Mowvie, Music, Sports, and Fashion. The topic distribution for the Self-Dialogue
dataset is 41.6%, 35.1%, 22.2%, and 1.1% for Movie, Music, Sports, and Fashion,
respectively.

For training, all subtopics are merged into the 4 major topics. I also filtered
198 conversations that were designed only for transitions from Mowvie to Music top-
ics and 216 conversations with mixed Movie and Music labels because I could not
assign a unique label. In addition, some of the utterances in the dataset are non-
topical chit-chat utterances. They are mostly used for conversational follow-ups such
as Yes-Answers, Backchannel, and Conventional-opening. Since these utterances are
unrelated to domain classification, I removed these types in both the training and
the test set. To do this, I annotated all the utterances using pre-trained ADAN [63]
classifier, which supports 25 topical domains and one Phatic domain. The Phatic
domain represents all chit-chat and non-topical utterances and any utterance anno-
tated as Phatic is removed from both the training set and the test set. To verify the
accuracy of ADAN classifier, I randomly selected 20 conversations and asked one hu-
man annotator to label each utterance as Phatic or Non-Phatic. Based on this setup,
inter-annotator agreement of 0.87 and Kappa score of 0.82 were achieved, indicating
substantial agreement. The final processed dataset consists of 23,751 conversations
(363,003 utterances) on 4 main topics. Finally, I divided the dataset into 70%, 10%
and 20% for training, validation, and evaluation, respectively.

A summary of the Alexa data and Self-Dialogue dataset statistics is reported in
Table 4.9. Utterances from the Alexa data are significantly shorter (3.07 words on
average compared to 9.79 in Self-Dialogue), indicating that often entities may be

mentioned without extensive context, e.g., as a response to a system question.
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Dataset Words per Turns per | Vocabulary
Utterance | Conversation Size

Alexa 3.07 16.49 16,331

Self-Dialogue 9.79 5.84 117,068

Table 4.9: Alexa and Self-Dialogue data statistics.

4.3.13 Synthetic Training Data Generation

I propose a simple yet effective approach to generate many synthetic utterances for
training topic classification models. As I will show, this ability can be particularly
useful for augmenting real data when limited manual labels are available, to train
deep neural network models which require large amounts of labeled training data.
The approach is summarized in Algorithm 1.

For each topic, a small number of predefined intent templates are created. These
templates are designed by engineers who developed each domain-specific module.
The rules described in Amazon Alexa developers’ guide!® were applied in order to
capture the most common topic-specific intents and accommodate enough lexical
and syntactic variations in the text. The templates contain slots to be filled with
either entities or keywords, for example, “Play a KEYWORD_MUSICGENRE music
from NER_SINGER’ and “tell me some KEYWORD_MOVIEGENRE films played
by NER_ACTOR”.

Each slot starting with NER is filled by an entity from the knowledge base, and
each slot starting with KEYWORD is filled using a predefined list of intent-oriented
keywords. For instance, the slot KEYWORD_MUSICGENRE is randomly filled using
a list of popular music genres like rock, pop and rap. I first generated these predefined
keywords manually and expanded the lists with the 10 most similar words from Word-
Net!” for each keyword. To fill in the entity slots, I used the corresponding lists from

our knowledge base (described above), prioritizing the most popular entities, and the

Y6 https: //developer.amazon.com,/docs/custom-skills /best-practices-for-sample-utterances-and-
custom-slot-type-values. html
Yhttps: //wordnet. princeton. edu
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most common templates according to domain knowledge and most frequent utterance
statistics. While the possible number of generated utterances is the direct product of
the number of templates, keyword values, and entity-values, the process ends after a
predefined number of synthetic utterances is reached. For our experiments, I control
the size of the synthetic dataset with a parameter named p. This value is determined
based on the number of available templates for a topic, importance of a topic, and the
overall number of covered topics. I conducted an experiment on this value described
in Section 4.3.20. I decided to choose 400K to make a trade-off between time and

accuracy and to make the experiments manageable.

Movie 28% | Music 15% | Pets_Animal 13%
Travel_Geo  12% | News 10% | Games 10%
Sports 5% | Sci_Tech 3% | Celebrities  2.5%
Fashion 1% Weather 1% Literature 1%
Food_Drinks 0.9% | Other 0.1%

Table 4.10: Topics distribution in Synthetic Dataset.

Any other external dataset can be incorporated into the synthetic generator above
to enrich classes lacking sufficient samples. In our experiments, I did not have as many
entities from Technology and Sports domain compared to Movies and Music domains.
Hence, I used an open-source Yahoo-Answers question-answer corpus to add questions
for these classes. Since human-machine utterances tend to be short, as reported in
Table 4.9, I only added questions shorter than 10 words. The final topic distribution

of the synthetic dataset is shown in Table 4.10.

4.3.14 Experimental Setup

In this section, I first describe baseline methods in Section 4.3.15. Experimental
metrics and procedures are described in Section 4.3.17.

All experiments were implemented in Python 2.7 using TensorFlow 1.12.0'8 li-

Bhttps: //www. tensorflow. org
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Template and Entity-based Synthetic Utterance Generator
for topic in topic_list do

for template in common_topical_templates do

tmp = read(template);
p=SYNTHETIC_DATASET_SIZF;

e.g. tmp = “Fun facts for NER_ANIMALS”

e.g. tmp = “The best KEYWORD_LEAGUE team”

slot_list = find(slots);

for entity_type and keyword_type in slot_list do

for entity in entity_type and keyword in keyword_type do
if entity tn common_entity_list and keyword in

common_keyword_list then
generate_utterance(temp);
generate_label();

if len(dataset) s p then
| return dataset;

else
end

else

| continue;
end
end
end
end
end

Algorithm 1: Algorithm to generate the synthetic template-, keyword-, and
entity-oriented utterances.
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brary.

4.3.15 Baselines

Three deep learning based methods were used as baselines:

e ADAN [63]: ADAN was proposed by Amazon for conversational topic classi-
fication, and it was trained on over 750K utterances from internal Alexa user

data for 26 topics.

e FastText[16]: FastText is a text classification model from Facebook Research.
FastText operates on character n-grams and uses a hierarchical softmax for pre-
diction, where word vectors are created from the sum of the substring character

n-grams.

e VDCNN [34]: This model was proposed as a character-based text classifica-
tion model. VDCNN; like FastText, can model misspelled words (potentially
mitigating ASR problems in human-machine conversations) more robustly than

word-embedding based models.

4.3.16 Training Parameters

To train the ConCET model, the parameters for CNN and BiLSTM described in
Figure 4.4 were chosen based on our experience and previous literature. Finally, I
trained the overall model with an Adams optimizer and a learning rate of 0.001. All
experiments for ADAN were conducted using the topic classifier API made available to
the teams by the Amazon Alexa Prize [63]. To train the FastText model'®, character
5-grams with word embedding of size 300 were used. Finally, VDCNN results are

0

reported based on a publicly available implementation.?°. The results are reported

Yhttps: // fasttext. cc
2Onttps: // github. com/ zonetrooper32/ VDCNN


https://fasttext.cc
 https://github.com/zonetrooper32/VDCNN
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for a 29-layer VDCNN, based on the original paper.

4.3.17 Evaluation metrics

I used two standard classification metrics, Micro-Averaged Accuracy and Micro-

Averaged F1 [100], to evaluate our approach.

4.3.18 Results and Discussion

I begin this section by reporting the performance of ConCET in comparison to the
baseline models described in Section 4.3.15. Then, I illustrate the impact of the entity,

external, and utterance features through a feature ablation study.

4.3.19 Main Results

Table 4.11 summarizes the performance of the models on Alexa and Self-Dialogue
datasets.

The results show that both variations of ConCET outperform the baselines Fas-
text, VDCNN, and ADAN on Alexa dataset by large margins of 13%, 23%, and 10%,
respectively in terms of Micro-Averaged F1 score. Among the baselines, ADAN has
the best results on the Alexa dataset, while VDCNN achieves the best results on
the Self-Dialogue dataset. All the improvements are statistically significant using
one-tailed Student’s t-test with p-value  0.05.

Interestingly, the performance of the VDCNN and ADAN methods switches for
the human-machine and human-human datasets, as ADAN relies only on keywords,
which is not sufficient for complex human-human utterances, while VDCNN exhibits
the worst performance for short human-machine utterances. In contrast, ConCET
exhibits robust and consistently high performance on both human-human and human-

machine conversations.
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Dataset
Method Alexa Self-Dialogue
Accuracy F1 | Accuracy F1

FastText [16] || 54.54 58.34 79.21 79.32
ADAN [63] 62.01 66.10 46.64 59.66
VDCNN [34] || 46.48 48.56 79.98 80.61
ConCET (S) || 68.75 (+10.9%) 68.73 (+4.0%) 84.58 (+5.7%) 84.71 (+5.1%)
ConCET (P) || 71.46 (+15.2%) 71.72 (+8.5%) || 84.59 (+5.7%) 84.66 (+5.0%)

Table 4.11: Topic classification on Alexa and Self-Dialogue datasets, where (S) stands
for Spotlight entity linker and (P) stands for the domain-specific PMI-EL entity linker.
The relative improvements over ADAN and VDCNN are shown on the Alexa and Self-
Dialogue datasets, respectively.

4.3.20 Detailed Performance Analysis

ConCET is a complex model consisting of different steps built based on deep learning
models like CNN and RNN. I performed a comprehensive feature ablation analysis to

evaluate the effect of each subsection on the overall performance of the system.

Entity linker evaluation

While entity linking is not the focus of this dissertation, since entities and their types
play a central role in our approach, entity linking performance could have a significant
effect on the overall classifier performance. To quantify the downstream effects of
the entity linking accuracy, and to understand whether ConCET can operate with
inaccurate entity linkers, I manually annotated entity-types for 350 utterances, which
contained entities spotted by at least one entity linker. The distribution over classes
is similar to that indicated in Table 4.24, with a higher number of utterances from
Mowies, Music, and Travel_Geo compared to the other classes. Table 4.12 presents the
accuracy and F1 values of PMI-EL and Spotlight on different classes of utterances.
The two entity linkers exhibit comparable performance, with PMI-EL showing
higher Accuracy on the Mowvies, Music, Travel_Geo, and News topics, but DBpedia

Spotlight exhibiting higher overall F1 scores. As I will show later in this section,



Entity Linker

Class PMI-EL Spotlight
Accuracy F1 || Accuracy F1
Movie 80.00 77.19 || 71.83 78.46
Travel_Geo || 80.77 87.50 || 75.47 82.47
Music 65.51 59.37 || 64.44 72.5
Sports 70.56 63.16 || 84.00 91.30
News 76.47 78.78 || 66.66 70.59
Others 53.68 54.84 50.69 62.12
Overall || 68.30  68.18 | 63.48 72.67
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Table 4.12: Accuracy and F1 scores of entity detection by PMI-EL and DBPedia

Spotlight entity linkers.

ConCET can perform well with either entity linker.

Impact of textual representation

To evaluate the impact of the textual representation choices, I conducted a feature

ablation study.

Table 4.13 summarizes the results, which indicate that all of the

implemented components are significantly contributing to the final performance. Both

Utt2Vec and TopicDist representations contribute to the classification performance,

but the contributions are greater in Alexa dataset, due to a stronger correlation

between the keywords with the user topics.

Dataset

Method Alexa Self-Dialogue
Accuracy F1 H Accuracy F1

CNN 47.59 42.93 79.61 79.73
CNN—i—B’iLSTMpOS 51.60 48.14 82.82 82.75
(+8.4%) (+12.1%) || (+4.0%) (+3.8%)

CNN+BiLST M pqr || 52.40 48.65 83.12 83.01
(+10.1%) (+13.3%) || (+4.4%) (+4.1%)

Utt2Vec 54.27 50.84 83.33 83.35
(4+14.0%) (+18.4%) || (+4.6%) (4+4.5%)

Utt2Vec+TopicDist || 55.88 53.09 83.45 83.75
(+17.4%) (+23.6%) || (+4.8%) (+5.0%)

Table 4.13: Topic classification Accuracy and F1 for different textual representations

Alexa and Self-Dialogue datasets.
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Impact of entity-type representation

Our model utilizes two variants of entity-type representations, namely entity-type dis-
tribution (TypeDist) and entity-type sequence modeling (Ent2Vec). I evaluate both
entity representation vectors separately on both Alexa and Self-Dialogue datasets.
Moreover, I report the result when different combinations of the entity representa-
tions are joined with the Utt2Vec network. Table 4.14 reports the contribution of each
entity representation to the final performance. While both representations contribute
greatly to the classifier performance, the effects are greater in the Alexa dataset, due

to the strong correlation between the entity-types and the user topics of interest.

Dataset
Method Alexa Self-Dialogue
Accuracy F1 H Accuracy F1
Utt2Vec 54.27 50.84 83.33 83.35
Ent2Vec 26.93 19.93 52.45 50.32
TypeDist 33.73 25.54 58.95 57.00
Ent2Vec+TypeDist 35.66 26.33 60.22 57.91
Utt2Vec+Ent2Vec 60.26 57.93 84.48 84.83
(+11.3%) (+14.6%) || (+1.4%) (+1.5%)
Utt2Vec+TypeDist 63.46 61.03 84.43 84.71
(+17.0%) (+20.0%) || (+1.4%) (+1.6%)
Utt2Vec+TypeDist+Ent2Vec || 64.80 61.59 84.51 84.86
(+17.4%) (4+23.6%) || (+1.4%) (+1.8%)

Table 4.14: Ablation study for different entity representations.

Impact of synthetic dataset on ConCET

To evaluate the effectiveness of the synthetic dataset, I augmented the Alexa and
Self-Dialogue datasets using the synthetic data described above and re-trained the
models. The results are reported in Table 4.15. Even though the synthetic dataset
is effective in the real human-machine conversations with Alexa, it has a negligible
impact on the Self-Dialogue dataset. I attribute this effect to the large size of the

Self-Dialogue dataset. I argue that even a portion of this dataset is enough for a
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Dataset
Train On Alexa Self-Dialogue
Accuracy  F1 [ Accuracy F1
Synthetic (S) 61.60 57.44 75.62 75.52
Synthetic (P) 62.93 63.83 || 58.73 59.03
Alexa data (S) 64.81 61.92 - -
Alexa data (P) 62.93 60.24 || - -
Alexa data+Synthetic (S) 68.75 68.73 || - -
(+6.1%) (+10.7%) || - -
Alexa data+Synthetic (P) 71.46 71.72 | - -
(+13.5%) (+19.0%) || - -
Self-Dialogue (S) - - 84.61 85.86
Self-Dialogue (P) - - 84.55 84.71
Self-Dialogue+Synthetic (S) || - - 84.58 84.71
- - (-0.0%) (-1.3%)
Self-Dialogue+Synthetic (P) || - - 84.59 84.66
- - (-0.0%) (-1.4%)

Table 4.15: Performance of ConCET with and without training on the synthetic
dataset, where “S” stands for the Spotlight entity linker and “P” stands for domain-
specific PMI-EL entity linker.

model to reach its asymptotic performance. To evaluate this hypothesis, I re-trained
ConCET in two different settings. First, I randomly sampled 1% of Self-Dialogue
dataset and used it as the training set. Then, I added the synthetic dataset to the
sampled portion and trained the model again. In the former case, ConCET reached
the Accuracy of (72.01 + 0.1), while in the latter case it reached the Accuracy of
(73.12 £ 0.09). I performed each experiment 5 times. This confirms that the size of
the labeled dataset is indeed affecting the extent to which the synthetic data can be
helpful. I conducted an experiment to determine an estimate for the value of p using
DBPedia Spotlight as the entity linker. The results are shown in Figure 4.5, which
indicate that a value of 400K samples is appropriate for p in Algorithm 1, due to the

classifier peaking at this point with more than 61% Accuracy.
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Figure 4.5: ConCET Accuracy on Alexa Prize dataset for varying p values in Algo-
rithm 1 [3].

4.4 Contextual Dialogue Act Classification for Open-
Domain Conversational Agents

Classifying the general intent of the user utterance in a conversation, also known
as Dialogue Act (DA), e.g., open-ended question, statement of opinion, or request
for an opinion, is a key step in NLU for conversational agents. While DA classifi-
cation has been extensively studied in human-human conversations, it has not been
sufficiently explored for the emerging open-domain automated conversational agents.
Moreover, despite significant advances in utterance-level DA classification, full under-
standing of dialogue utterances requires conversational context. Another challenge
is the lack of available labeled data for open-domain human-machine conversations.
To address these problems, I propose a novel method, CDAC (Contextual Dialogue
Act Classifier), a simple yet effective deep learning approach for contextual dialogue

act classification. Specifically, I use transfer learning to adapt models trained on
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human-human conversations to predict dialogue acts in human-machine dialogues.
To investigate the effectiveness of our method, I train our model on the well-known
Switchboard human-human dialogue dataset, and fine-tune it for predicting dialogue
acts in human-machine conversation data, collected as part of the Amazon Alexa
Prize 2018 competition. The results show that the CDAC model outperforms an
utterance-level state of the art baseline by 8.0% on the Switchboard dataset, and is
comparable to the latest reported contextual DA classification results. Furthermore,
our results show that fine-tuning the CDAC model on a small sample of manually
labeled human-machine conversations allows CDAC to more accurately predict di-
alogue acts in real users’ conversations, suggesting a promising direction for future
improvements

In summary, our contributions are twofold: (1) development of a novel context-
aware Dialogue Classification model, CDAC, for open domain human-machine con-
versations; (2) demonstrating promising results after fine-tuning CDAC trained on
human-human conversations to human-machine conversations, which is a necessary

step for intelligent open-domain conversational agents.

4.4.1 Contextual Dialogue Act Classifier (CDAC) Model

In this section, I describe our proposed method, CDAC, for contextual dialogue act
classification. First, I describe the features used to represent user utterances, and
the conversation and system context. Then, I present the CDAC model architecture,

implementation, and training details.

Content and Context Representation

For individual utterance representation, I use both word embedding, and surface
(lexical and syntactic) features, described next. The word representation weights are

initialized using pre-trained Word2Vec embeddings (300 dimensions), and updated
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Figure 4.6: Contextual Dialogue Act Classifier (CDAC) architecture overview (left),
where “DAC” is the dialogue act classifier for individual utterances (shown in detail
on right). The extracted features, system state features, and details of the convolution
(Conv) layers are described in detail in (Section 4.4.1) [31].

during training. The embedding-based utterance representation is augmented using

three types of features: 1) lexical; 2) syntactic; 3) system state information (SSI),

summarized below.

Lexical Features

Short Description

Fi - Word Count

Fy - Char Count

Fs - Sentence Count

F4 - Average Word Count
F5 - Average Char Count
F¢ - IsQuestion

Wordount in utterance

Chareguyt In utterance
Sentenceg,ut in utterance
Average Word o, in utterances
Average Chargyu,; in utterances
Binary feature to check for 7?7

Syntactic & SSI Features

Short Description

F7 - POS Tagging

Fg - Topic Distribution
Fyg - Suggested Topic
F1o - Suggested Item
F11 - Speaker Id

Part of speech tags
Topic distribution vector
Suggested topic to user
Suggested entity to user
ID assigned to each user

The CDAC model combines individual Dialogue Act Classifiers (DACs) for each

utterance. Each DAC uses textual features as well as syntactic features, i.e., part of

speech tags, are modeled using a convolutional layer pipeline, as shown in Figure 4.6
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(right). Each “Conv Layers” in Figure 4.6 is a 3-layer CNN with kernels of size 1,
2, and 3, with 100 filter maps for each kernel. Each layer is implemented using a
2D-convolution followed by a max-pooling, batch normalization, and relu activation
function. To implement the batch normalization, I used a momentum of M = 0.997
and an epsilon of € = 1e — 5. Then, the output of both pipelines (syntactic and word
embeddings) for each utterance representation, and the lexical features, as well as
SSI features, are combined through a Fully Connected Neural Network layer (FCNN)
with the size of 100. A dropout rate of 0.5 is applied at the FCNN layer to prevent
the model from overfitting to the limited training data. Finally, softmax activation is
used to obtain the final multi-class DA distribution. For training, categorical cross-
entropy loss is minimized using Adam optimizer, with a « = le — 3 learning rate and
mini-batch size of 64.

The full Contextual DA Classifier model, CDAC, uses the DAC predictions from
up to m previous turns in the conversation, where m effectively controls the scope of
the conversation context. These DA predictions for the previous turns are appended
to the current utterance representation vector through the FCNN layer, as shown in
Figure 4.6 on right.

The window size m and other hyper-parameters above, largely follow the previous
literature. Overall, our CDAC architecture and implementation choices builds on the
ideas from the recent state of the art models for DA classification on the Switchboard

dataset, while keeping the model simple and inexpensive to train.
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System State Information (SSI) Features

I hypothesized that modeling context in human-machine conversations is similar to
human-human conversations, but with a major difference that the system state infor-
mation (SSI), unlike the state of a human, can be directly captured and represented
as features. I incorporate SSI features alongside the utterance and context represen-
tation features for each turn of the conversation. The SSI features include system
topic distribution, the suggested topics (e.g., “Music”), and suggested items (e.g.,
specific artists). To encode topic distribution features, I used one-hot encoding, while
specific items are represented using Word2Vec word embeddings of the words in the
item names.

Note that the SSI features were not used or available for human-human conversa-

tions.

Transfer Learning from Human-Human Conversations: To fine-tune the
CDAC model from human-human to human-machine conversations, all the weights in
the CDAC model are first trained on the human-human Switchboard dataset. Then,
all of the network weights are tuned using the Alexa Prize data, but with a smaller

learning rate of a = le — 4.

4.4.2 Experimental Setup

I now introduce the human-human (Switchboard) and human-machine (Alexa Prize)
conversation datasets used for training and evaluating CDAC. Then, I explain the
human annotation procedure to obtain ground truth labels for the human-machine

conversations, followed by the experimental design and metrics.
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Switchboard Dataset (Human-Human Conversations)

Switchboard DA corpus [60] is a well-known telephone speech corpus, which contains
42 main DA labels?'. The Switchboard corpus contains two official splits: the training
split with 1,115 conversations and 196,258 utterances, and the test split, with 40

conversations and 7535 utterances.

Alexa Prize 2018 Dataset (Human-Machine Conversations)

I collected the human-machine conversation data during the Amazon Alexa Prize
2018. 200 conversations of real users with our open-domain conversational agent,
containing more than 3,000 utterances were randomly selected. Table 4.21 shows an

2 of a hypothetical (not real) user with the actual system re-

example conversation?
sponses. Two different human annotators were asked to manually label two hundred
conversations in the human-machine Alexa prize data. The inter-annotator agreement
was 0.790, and Kappa was 0.755, indicating strong agreement between the annota-
tors. For the final ground truth label values, in case of disagreements, the label was
randomly chosen between the two annotator labels. The distribution of annotated

DAs?3 is reported in Table 4.17. The top four most frequent dialogue acts observed are

Agree/Accept (aa), Conventional Opening (fp), Reject (ar), and Statement Opinion

(sv), accounting for over 68.2% of the user utterances.

Switchboard Experimental Design

For CDAC model training, the training conversations were split into 1,000 for training
and 115 for validation, leaving the test split untouched during training. For testing,

some of the previous studies [120, 13, 78] used only 19 conversations of the available

2Lhttps: // github. com/ cgpotts/ swda

22This is a representative conversation between the authors and the real system, since user utter-
ances from live system deployment cannot be reported to protect user privacy.

23See http: // compprag. christopherpotts. net/ swda. html for full description of DA labels.


https://github.com/cgpotts/swda
http://compprag.christopherpotts.net/swda.html
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DA | Frequency | DA | Frequency
aa | 655 (21.7%) | fp | 501 (16.6%)
ar | 478 (15.8%) || sv | 425 (14.1%)
go | 227 (7.5%) | fe | 198 (6.6%)
sd | 154 (5.1%) | b'm | 114 (3.8%)
no | 107 (3.5%) || quw | 80 (2.7%)
qu | 48 (1.6%) % 24 (0.8%)
ft | 7(0.2%)

Table 4.17: Dialogue Acts (DA) frequency distribution in user utterances in the Alexa
Prize dataset.

40 test conversations. Instead, I follow the convention of Liu et al. [89] and use all
40 test conversations for evaluation. The main baseline model for this experiment
is [120], based on a hidden Markov model, as it remained an effective method for
more than 10 years. Other reported results are from the three recent DA classifiers

described in references [18, 13, 78] respectively.

Alexa Prize Experimental Design

For the Alexa prize dataset experiment, Support Vector Machines (SVM) and Multi-
nomial Bayes models are selected as baseline models, using lexical features (words)
with tf-idf term weights due to simplicity and low requirements for labeled training
data. Contextual features such as previous utterances and system state features are
appended to the bag of words feature vector for each utterance. 5-fold cross-validation
was used, where 4 folds were used for tuning the weights, and the last fold for the
prediction. Finally, following the conventions of the DA classification literature, the

main evaluation metric was overall (micro-averaged) Accuracy.

4.4.3 Results and Discussion

In this section, I report the overall accuracy of CDAC in comparison to previous
baselines on Switchboard and Alexa data. Feature ablation and error analysis are

also reported to provide insights into CDAC system performance.
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DA Prediction Results on Switchboard Data

Our main results on the Switchboard dataset are summarized in Table 4.18. CDAC
improves the baseline model [120] by 8.0%. Moreover, compared to the best known
contextual model, I reach comparable results with a more general and simple model.
Context window of size 3 yields the strongest performance. However, our results are
on all 40 conversations in Switchboard dataset, while [18] used only 19 of the text
conversations. I were unable to replicate the model and results reported in reference
[18], due to the required model complexity and not having access to a working im-
plementation or sufficient details to reproduce their exact system. In contrast, our
proposed model is simpler, while producing state-of-the-art DA classification accuracy

on the standard benchmark of human-human conversations.

Methods \ Accuracy
Baseline Stolcke et al. [120] 71.00
Previous state of the art methods

Kalchbrenner et al. [13] 73.90
Young et al. [78] 73.10
Bothe et al. [18]* 77.34 (4+8.9%)
CDAC-2 76.40
CDAC-3 76.70 (+8.0%)
CDAC-H4 76.51
Annotator Agreement 84.00

Table 4.18: DA classification Accuracy (micro-averaged) on Switchboard dataset,
where (*) represents the latest reported contextual DA classification[18]. CDAC-2,-3,
and -4 stands for the model using on contexts of size 2, 3 and 4 turns, respectively.

DA Prediction Results on Alexa Prize dataset

Table 4.19 summarizes the baseline and CDAC performances on the human-machine
Alexa Prize conversation data. CDAC outperforms traditional classification mod-
els such as SVM and Multinomial Bayes (without context) by about 22.7%. Fur-

thermore, by adding context to SVM and Multinomial Bayes, there are 1.8% and
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4.5% improvements over the respective baselines. Encouragingly, by pre-training the
CDAC model on human-human Switchboard data, and then fine-tuning on the (lim-
ited) labeled human-machine data, CDAC achieves an additional 2.7% improvement.
It is important to note that despite annotating for only 13 most common DA classes
observed in the human-machine conversation data, compared to the 42 classes in
Switchboard human-human data, DA performance degrades on human-machine con-
versations. This confirms our observation that human-machine DA classification is a

more challenging task than for human-human conversations.

Methods Accuracy
Without context

Multinomial Bayes 58.21

SVM 65.73

With context

Multinomial Bayes 59.26
SVM 68.70
CDAC 73.25%(+6.6%)
CDAC + Transfer Learning | 75.34*(4+9.6%)

Table 4.19: DA prediction micro-averaged Accuracy on Alexa dataset with and with-
out context information (size 3 turns), where (*) represents significance levels of p <
0.05.

Feature Ablation and Error Analysis

Table 5.9 summarizes the change in accuracy by systematically removing feature
sets on the Alexa prize human-machine conversation data. Both lexical and syn-
tactic features are important for DA classification since removing either group de-
creased the accuracy. Interestingly, the most common error is distinguishing between
statement-opinion and open-question labels. For instance, the utterance "I like to
talk about animals” is challenging to classify, since without context, it is difficult to
determine whether a user expressed an opinion, or requested information from the

system. Knowing the context and the system state can enable such disambiguation.
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Syntactic Features Lexical Features Accuracy
- - 73.94 (-1.64%)
- v 74.80 (-0.50%)
v - 74.91 (-0.35%)
v v 75.18

Table 4.20: Feature ablation on CDAC with context window size 1. - and v'indicates
features removed and added respectively.

4.5 Knowledge-Aware Contextual Topic Sugges-
tion for Open-Domain Conversational Agents

To hold a true conversation, an intelligent agent should be able to occasionally take
initiative and recommend the next natural conversation topic. This is a challenging
task. A topic suggested by the agent should be relevant to the person, appropriate
for the conversation context, and the agent should have something interesting to say
about it. Thus, a scripted, or one-size-fits-all, popularity-based topic suggestion is
doomed to fail. Instead, I explore different methods for a personalized, contextual
topic suggestion for open-domain conversations. I formalize the Conversational Topic
Suggestion problem (CTS) to more clearly identify the assumptions and requirements.
[ also explore three possible approaches to solve this problem: (1) model-based se-
quential topic suggestion to capture the conversation context (CTS-Seq), (2) Collab-
orative Filtering-based suggestion to capture previous successful conversations from
similar users (CTS-CF), and (3) a hybrid approach combining both conversation con-
text and collaborative filtering. To evaluate the effectiveness of these methods, I use
real conversations collected as part of the Amazon Alexa Prize 2018 Conversational
AT challenge. The results are promising: the CTS-Seq model suggests topics with
23% higher accuracy than the baseline, and incorporating collaborative filtering sig-
nals into a hybrid CTS-Seq-CF model further improves recommendation accuracy by

12%. Together, our proposed models, experiments, and analysis significantly advance
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the study of open-domain conversational agents, and suggest promising directions for
future improvements.

While the art of conversation can be considered a uniquely human trait [126],
“artificial” conversational intelligence (Conversational AI) agents have been gaining
traction, especially with the recent series of Amazon Alexa Prize Challenges provid-
ing a competition platform and monetary incentives to spur development [114, 64].
Many practical applications of conversational agents have been proposed, e.g., for
companionship to improve mental well-being, (e.g., [104]) and for therapy (e.g., [44]).
Open-domain conversational agents can also be used in educational settings as tu-
tors and evaluators, as proposed in [45]. While much room for improvement remains
in the current implementations of the conversational AI systems, the potential for
intelligent, empathic, and broad-coverage conversational agents is widely recognized.

However, for an open-domain conversational agent to be coherent and engaging,
it must be able to drive the conversation to the next topic, and in a way that does not
appear scripted. This task is complicated. As for many realistic and complex tasks,
extensive knowledge engineering is needed for in-depth domain-specific capabilities,
usually handled by specialized components. For a user to remain engaged, the overall
conversational Al system should be able to recommend the next conversation topic (or
component) in a natural and coherent fashion. Appropriate topic recommendations
are also critical to expose the capabilities of the system to the user, who otherwise
may not know that a conversational agent is an expert in particular topics like sports,
cars, or video games.

Yet, the right topic to recommend depends on both prior user interests and the
conversation context. Extensive work has been done in topic and content recommen-
dation using content-based [91] and collaborative filtering methods [101, 71]. However,
it is unclear just how to adapt recommender system techniques to the conversational

setting. In open-domain conversational agents, the recommended items might be
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agent’s sub-components with dynamically changing content and interactions under-
neath, specific items, general suggestions, or even clarification questions. In this
paper, I extend model-based and collaborative filtering recommendation algorithms
for topic and content recommendation in the conversational setting. Our contribu-
tions are threefold: (1) Formalizing the conversational topic suggestion problem for
open-domain conversational agents; (2) Development of a sequential contextual topic
suggestion model for this task; (3) Empirical exploration of the effectiveness of model-
based, collaborative filtering-based, and hybrid approaches to topic suggestions in the
conversational setting. Our experiments indicate the value of our proposed hybrid
recommendation solution, highlight the challenges and opportunities inherent in the

conversational topic recommendation, and suggest promising directions for research.
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4.5.1 Conversational Topic Suggestion (CTS): Problem Def-
inition

I now define the conversational topic suggestion problem and introduce our proposed

solutions in the following section.

Consider the example conversation in Table 4.21. While this is not a real user?*,
the conversation is typical of those observed with our system during the Alexa Prize
challenge. In a regular Alexa conversation, a user may have an initial interest or infor-
mation need (e.g., “recent songs”) which is handled by a particular system component
(in this case, the Music component); however, the user might quickly lose his/her in-
terest, and the system (conversational agent) must take the initiative to find the next
topic of conversation that this user is likely to be interested in, for example, Travel.
In the example conversation, the user accepts the suggestion to talk about the topic
Travel, and a different system component starts interacting with the user to drive the
conversation. The next suggested topic News, however, is not accepted by the user,
and the system has to make another recommendation, which would degrade the user
experience.

I define Conversational Topic Suggestion (CTS) as follows:

Setting: Open-Domain mixed initiative conversation with a
multi-component conversational agent.
Given: A conversation C, consisting of a sequence of user

utterances U ;, a sequence of system states Sy,
and a set of possible conversation topics t € T,
(e.g., system components or mini-skills).

Problem: At conversation turn 7, select a topic t; to suggest
for the current user u, to maximize the likelihood
of acceptance (i.e., the probability that user u
would like to talk about the topic ¢; next).

Figure 4.7: Definition 1: Conversational Topic Suggestion (CTS) Problem Statement.

24Exact user conversations cannot be reproduced due to Alexa Prize terms.
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Note that this definition focuses on the acceptance of the topic suggestion, and
does not explicitly consider the user’s future satisfaction or engagement with the
selected topic (e.g., as measured in reference [30]). I also emphasize that I formulate
CTS based only on short-term history (conversation or session-level), and not on
long-term user interests. Still, it is worth noting that in many practical situations,
a conversational agent must make coherent topic suggestions for new (cold-start) or
inactive users. Secondly, note that I do not require a set of other users (e.g., as would
be required for collaborative filtering approaches for recommendation), which might
be an attractive setting for privacy and security considerations. Finally, unlike in a
traditional recommendation setting, a suggested topic represents a system component
which, if accepted, begins interacting with the user dynamically, and thus cannot be
easily mapped to a single item that can be easily represented and compared across
users. Our models, described next, attempt to capture both the conversation context

and the internal system information for this task.

4.5.2 CTS-Seq Approach

For relevant and coherent topic suggestions, it is necessary to consider the conversa-
tion context, e.g., the sequence of previous user utterances and system states. For
example, if a user is talking about Mowvies, it might be more natural to suggest Music
as the next topic, as opposed to Cars. Also, if a user declined to talk about Movies
in the past, the system should not suggest this topic or a related topic like Television
unless explicitly requested. For this reason, I propose to use a sequence modeling ap-
proach for the conversational topic suggestion. I will further show how this approach
can be combined with more traditional collaborative filtering-based methods.

Before I describe the specific sequence models, I first discuss the conversation

features, used for both sequence modeling and collaborative filtering-based methods.
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4.5.3 System State and User Profile Features

To represent the conversation context, two different groups of features are extracted
for each conversation turn, as summarized in Table 5.1. The first group is Topic and
Behavior features, which represents the user’s previous responses, i.e., the accepted
and rejected topic suggestions. These features have the values of 1 for accepted topics,
—1 for rejected topics, and 0 for the topics that have not been proposed yet. This
group of features is designed to prioritize the topics that have been accepted 1 or
unexplored 0. Topic and Behavior features also model topic classification features
and the current conversation context and system state. These features could indicate
the historical probability that the current state is a potential topic-switching point, or
whether it should be a follow-up for the previous topic. The second group of features
is User Profile features. They contain the inferred gender of the user [-1,1] based on
the provided name, and whether they gave their name at the start of the conversation
or not (a weak indicator of the user’s openness to sharing information with the bot).
Other features like age and location, which are often used for user profiling, are usually
not available in the conversational setting. Table 5.1 shows different categories of
features that are used in all the CTS-CRF, CTS-CNN, and CTS-RNN models. The
values of these feature groups are computed for each conversation turn and stored
in separate vectors, which are then concatenated to produce the full conversational

state representation, fuv, specifically:

fv=[F1;Fy;..; Fi5] (4.21)

I emphasize that these features will be used for all sequence and CF-based model
variations, to explore the trade-offs in modeling, while keeping the actual features

constant.
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4.5.4 CTS-Seq: Models

In this section, I list three different implementations of the proposed CTS-Seq method.
First, I describe the Conditional Random Fields (CRF) implementation. Then, I

describe the CNN-based followed by the RNN-based implementation.

4.5.5 CRF Implementation of CTS-Seq: CTS-CRF

As the first and most straightforward implementation of CTS, I use the well-known
and robust CRF model. CRF is an undirected graphical model, which estimates the
conditional probability of a sequence of labels (tags) with respect to the observed
features, and requires relatively small amounts of training data [76, 151].

Each conversation is represented as a sequence of turns, with observable features
extracted from each utterance and system state. Recall that I represent a conver-
sation j as a sequence of turns Conuv(;) = [utt(y), ..., utt(y, ..., utl,y]. Then, for each
sequence of utterances, a sequence of labels (topics) [t1, ..., ;, ..., t,] is generated. The
recommended topic ¢ is modeled as the CRF hidden state, and X is the observed
variable represented by the features described above. Thus, the CTS-CRF model
aims to predict the most likely next topic ¢(;11) after observing the first ¢ conversation
turns and system states.

More formally, Eq. 4.22 computes the probability of a topic ¢ given the sequence
of previous turns and topic decisions, where Z(X) indicates the normalization factor
and 6 and 7 are weights that can be tuned using maximum likelihood estimation.
Moreover, f(t;; X;) and g(t;;t;—1; X¢) jointly represent the next topic to predict, the

context (previous topic) and the features for the current turn x.

1 i 0Lt X )T titi1; X }
p(t|x) o Z(X) Hexp 2171 ij( t) Zk,l Wkgk( 1 t) (422)
=1
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The CRF-based implementation of CTS, CTS-CRF, is illustrated in Figure 4.8.
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Figure 4.8: CTS-CRF topic suggestion model for conversation turn ¢. Feature details
are reported in Table 5.1 and Section 4.5.3. ASR stands for authomatic speech

recognition [5].

4.5.6 Deep-learning based implementation of CTS-Seq: CTS-

CNN and CTS-RNN

Deep learning approaches such as Convolutional Neural Networks (CNNs) and Re-

current Neural Networks (RNNs) have shown promising results for different natural

language processing tasks, from text classification to dialogue act classification (e.g.,

[12, 155, 34, 23, 66, 13, 78]). Lee et al. [78] proposed a pipeline of deep learning meth-

ods to model a sequence of short texts. Inspired by [78], I propose two deep learning
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Sure, Do you wanna talk about recent movies?
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Figure 4.9: CTS-RNN-CF or CTS-CNN-CF model architecture, where Topic and
Behavior features include the list of all previously suggested, accepted and rejected
topics from the beginning of the conversation. User Profile features contain the list of
Name, predicted Gender, and time of the day. CF features also include the suggested
topic distribution extracted from the collaborative filtering model. Feature details
are reported in Table 5.1. ASR stands for automatic speech recognition [5].

models for implementing CTS, namely CTS-CNN and CTS-RNN. CTS-CNN and
CTS-RNN respectively use a CNN and a BiLSTM to incorporate textual and contex-

tual evidence gathered so far from the conversation to recommend (predict) the next

conversation topic.

CTS-CNN Implementation.

Here, I walk through different steps in the CTS-CNN model. CTS-CNN-CF network

takes word tokens, from m consecutive utterances. utt(;y stands for the words in the
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i-th utterance, where w;; stands for j-th word in ¢-th utterance.

ULt (i—m) = [W(imm)1} Wimm)2; W(imm)3 - W(imm)n] (4.23)
utt(i—1y = [W-1)15 Wi—1)2; W(i-1)3 - W(i—1)n) (4.24)

I define a function f. that takes an utterance as input and outputs the learned utter-

ance representation y.n,:

Y(enngy) = Je(utt(py) (4.26)

fe is a 3-layered CNN with max pooling, which is applied in parallel on all the
utterances in a window of size m. The first layer is a word embedding layer with pre-
initialized weights from Word2Vec vectors of size 300. The weights on the embedding

layer are tuned during training using the cross-entropy loss function.

CTS-RNN Implementation.

CTS-RNN uses a BILSTM network followed by an attention layer to model the utter-
ance representation. In CTS-RNN, a function f, is defined that takes an utterance

as input and outputs a hidden representation h; for each utterance:

hay = fr(uttp) (4.27)

where f,. is a BILSTM model with 256 hidden layers. It is also applied in parallel
on a window of size m in the same way as for f.. Then, the hidden representation for

the 7-th utterance is passed to an attention layer to generate the final representation
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Yrnngy)- Given the hidden representations of each timestamp of j in LST M; is hy;,
dot product similarity score s;; is computed based on a shared trainable matrix M,
context vector ¢; and a bias term b;;. M;, ¢; and b;; are initialized randomly and
jointly learned during training. Softmax activation is applied on similarity scores to
obtain attention weights «;;. Lastly, using learned «;;, a weighted sum on BiLSTM
hidden representations is applied to obtain the output Yy, for the i-th utterance

as follows:

Sij = tanh ((Mz) hij + sz) (428)
e(sij)Tci n

YT o ()T = Y(rongy)) = Za’jhij (4.29)
Zj:l ey j=1

Finally y(rnn,) is computed for every utterance located in the window.

Merging and FeedForward Layers

This step is similar for both CTS-CNN and CTS-RNN models, where the output of
the textual representation of each utterance is merged with Topic and Behavior, and
User Profile features. Here I describe all the details of these layers for the CTS-CNN
model.

To create the final representation of a w;) in a conversation, I extract Y(enny) from
all the utterances located in the window in parallel. Then, the window is fed to an
LSTM network with 100 hidden states. I deploy an LSTM instead of an Bi-LSTM

since in real conversation, there is not a backward signal. Finally, the output of the
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last layer going through

w(i) = [utt(i_m); eeey utt(i_mﬂ); el utt(i)] (430)
Tep(wm) - [y(cnn@,m)); ees y(cnn(i,m+j)); - y(cnnw)] (43]—)
output = LSTM <T€p(w<i))> (4.32)

Where, in this equation j < m < ¢. The final output is fed to a feed forward layer
of size 256 with a dropout rate of 0.5. A softmax function f(s) is applied to generate
a probability distribution over C' possible topics. The network was trained with an
Adam optimizer with a learning rate of 0.001 using the softmax cross-entropy loss
function CE. C' is the number of classes, t; is the one-hot representation of the target

label, and s; are the scores inferred by the model for the i-th class:

Si

C
f(s) = o = CE = = t;log (f(output))) (4.33)

i=j €7 i=1

I summarize the parameters of the (CNN-) and (RNN-) based models in Table
4.23. The parameters were not tuned and were chosen based on our experience and

previous literature.

4.5.7 Hybrid Sequential and Collaborative Filtering: CTS-

Seq-CF

I now introduce our new model, CTS-Seq-CF, which augments the sequence mod-
eling approach described above, with additional signals extracted from other users’
experiences using collaborative filtering. The proposed models, CTS-CNN-CF and
CTS-RNN-CF, incorporate the probability of acceptance of each topic based on sim-

ilar users’ preferences (I describe the collaborative filtering methods used in Section
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Parameters Values
Pooling type Max-pooling
L2-regularization 0.001
Word embedding length 300
Momentum 0.997
Epsilon le-5
Learning rate 0.001
Dropout 0.5
Batch Size 64
Number of layers (CNN) 3
Number of filters(CNN) 128
Filter sizes (CNN) 1,2,3
Hidden state (RNN) 100
Feed forward layer (RNN) 256

Table 4.23: Detailed configuration parameters of the CTS-CNN and CTS-RNN im-
plementations.
4.5.10.) as features into the CTS-CNN and CTS-RNN models, respectively. One of
the resulting hybrid models, CTS-RNN-CF, is illustrated in Figure 4.9. CTS-CNN-CF
follows the same pattern as CTS-RNN-CF, with the semantic utterance representa-
tion being generated using a CNN model. They aggregate contextual evidence from
the preceding states by considering a window of size m for each turn. Then, all the
system state information for the turns in that window is extracted, which includes
all the features in Table 5.1, as well as suggested topic distribution predicted by the
collaborative filtering method described in Section 4.5.10. Finally, all the utterance
vector embeddings within the window are concatenated with them to form the window
vector embedding. Here, I walk through the details for CTS-RNN-CF.

Y(rnny) is first concatenated with fvg) to obtain the enriched representation
TE€P(rnn i)+ fogs) of an utterance. Then, I concatenate them with the CF features,
which were extracted by collaborative filtering module to generate the final utterance

representation T€Putt ;) -
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rep(cnn(¢)+fv(i)) = [y(cnnm); fv(i)] (434)

rep(utt(i)) = [Tep(cnn(i)Jrfv(i)); CF(’L)] (435)

To create the final representation of a w; in a conversation, I extract TD(utt )
from all the utterances located in the window in parallel. Finally, all the outputs are

concatenated together to form the final vector.

Wy = [utt(,;_m); s U G —mag)s - utt(i)] (4.36)
T€D(w(ry) = [TED(utt )5 -+ TED utt (s )} -5 T€D(utt )] (4.37)
output = LSTM (frep(w(i))> (4.38)

Then, T€P(w,)) 18 fed to an LSTM network with 100 hidden states, later the output
of the last layer going through a feed-forward layer followed by a softmax layer as

described in Section 4.5.6.

4.5.8 Experimental Setup

I now describe the baselines, data, metrics, and experimental procedures used to

evaluate our proposed conversational topic suggestion models.

4.5.9 Baseline 1: Popularity Method

The Popularity method is a heuristic method, which suggests the next conversation
topic based on overall frequency (popularity) in previous conversation data and previ-
ous user ratings, and the approximate time of day. The order of suggestion is Mowies,
followed by Music, followed by Video Games or Travel or Animals depending on the

time of day to accommodate the expected differences in user demographics. This
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heuristic popularity baseline was deployed during the Alexa Prize competition [1].

4.5.10 Baseline 2: Collaborative Filtering (CF)

I adapt the classical approach of CF, originally introduced for item recommendation
to the conversational setting using the K-Nearest Neighbors (KNN) model. Each user

is represented by the following features:
e User and time features: Fi3, Fi4, Fi5 from Table 5.1.

e Suggestion acceptance and rejection rate: The fraction of topic suggestions

accepted by the user and the fraction rejected by the user.
e Topical features: Fi - Fg from Table 5.1.

For each conversation turn, the feature vector described above is calculated based
on the conversation up to this turn. For example, if a user has accepted a suggestion
to talk about Mowies and rejected a suggestion for Music, the accept and reject rates
would be 0.5. The topical feature vector would contain 1 for Mowvies and —1 for Music,
and then top k£ users with most similar conversation histories would be retrieved.

More formally,

U, = [Fi(a) : Fy(a), Fi3(a) : Fis(a), r*"(a), " (a)] (4.39)
: U, G,
stm(U,, Up) = AR (4.40)

sim(U,g,, Uy) X s
pred(U,, T) = ZUbGN ( _ 0) (Oe.T) (4.41)
ZUbeN sim(Uq, Up)

where U, is the user who I are calculating the topic scores for, U, is one of the

neighbors from set N, which is the set of 33 nearest neighbors of U,, r*“?(a) is the

suggestion acceptance rate of user U,, 7"%*(q) is the suggestion rejection rate of
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user Uy, s(u, ) indicates the score of topic T for user Uy, and pred(U,, T') represents
the predicted score of a topic T for the active user.

For final classification, the predicted topic scores based on 33 nearest neighbors’
preferences are fed to a feed-forward layer followed by a softmax layer, as described

in Section 4.5.6.

4.5.11 Baseline 3: Contextual Collaborative Filtering: Contextual-
CF

Contextual-CF utilizes the collaborative filtering signals extracted from the preceding
utterances. Then, a fully connected neural network followed by a softmax is applied
to combine the features and provide the final prediction result. To this end, I applied
the CF model described in Section 4.5.10 to extract the suggested topics for all the
utterances located in a window of size m. To represent the CF features, I considered a
one-hot-vector, where the length of the one-hot-vector is equal to the number of avail-
able topics that are supported by the conversational agent. The value corresponding
to the topic selected by the CF model is assigned as 1. Then, the one-hot-vectors are
concatenated together to create the final vector for the corresponding window. As a
result, a vector of size [window_size xlen(one — hot — vector)] is generated. Eq. 4.43

represents the feature vector of w;.

w(i) = [utt(i_m); ceey utt(i_mﬂ); ceed utt(i)] (442)

CCF(w(i)) = [CF(utt( . CF(U«tt(ifmJﬁj ), eeey CF(utt(i))] (443)

)

Where C’CF(w(i)) indicates the contextual CF features extracted from i-th window
and C’F(uttm) represents the CF features extracted from the i-th utterance. For final
classification, CCF{y,) is fed to a feed forward layer followed by a softmax layer as

described in Section 4.5.6.
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4.5.12 Methods Compared

For convenience, I summarize the methods compared in the next section for reporting
the experimental results.

Popularity:A heuristic method, described in Section 4.5.9, using topic frequency
in previous conversations.

CF: The collaborative filtering approach, described in Section 4.5.10, using the
conversation state (accepted/rejected topic suggestions) as the user profile.

Contextual-CF: The contextual collaborative filtering approach, described in
Section 4.5.11, incorporating CF signals from preceding utterances into CF features
from the current utterance using a fully connected neural network.

CTS-CRF: The CRF implementation of the CTS approach, described in Sec-
tion 4.5.5, using only the conversational context (model-based recommendation).

CTS-CNN: The CNN implementation of the CTS approach, presented in Sec-
tion 4.5.6, using only the conversational context features (model-based recommenda-
tion).

CTS-RNN: The RNN implementation of the CTS approach, presented in Sec-
tion 4.5.6, using only the conversational context features (model-based recommenda-
tion).

CTS-CRF-CF: The hybrid model-based and collaborative-filtering based ap-
proach, enhancing the CTS-CRF model with collaborative filtering features (Sec-
tion 4.5.5).

CTS-CNN-CF': The hybrid model-based and collaborative-filtering based ap-
proach, enhancing the CTS-CNN model with collaborative filtering features (Sec-
tion 4.5.6).

CTS-RNN-CF: The hybrid model-based and collaborative-filtering based ap-
proach, enhancing the CTS-RNN model with collaborative filtering features (Sec-
tion 4.5.6).
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Movie 20.1% | Music 14.4% | News 18.4%
Pets_Animal 10% | Sci_Tech 6% Sports 6%
Travel 9.1% | Games 6% Celebrities  2.5%
Literature 1.5% | Food_Drinks 1.5% | Other 1.5%
Weather 1.5% | Fashion 1% Fitness 1%
Entertainment and Cars 1%

Table 4.24: Topics distribution in Alexa dataset.

4.5.13 Dataset: Amazon Alexa Prize 2018

The conversation data were collected by participating in Amazon Alexa Prize 2018
competition [64]. The conversation dataset consisted of 14,707 open-ended conver-
sations longer than four turns (because the first 2-3 turns usually consisted of the
required introduction and exchanges of greetings). These conversations were col-
lected from August 1, 2018, to August 15, 2018. The first ten days of conversations
were used for training and the rest for testing. The relative topic popularity is shown
in Table 4.24. The conversations have an average length of 11.5 turns, where 91% of
the conversations contain at least one suggestion, and 60% have at least two explicit

topic suggestions.

4.5.14 Evaluation Metrics

To evaluate our approach, I computed the topic suggestion models on off-line data
for each of the methods compared. Following the established recommender system

research, I used the following metrics:

e Micro-averaged Accuracy: The accuracy is averaged across each topic sug-
gestion individually, thus prioritizing more popular topics and potentially longer

conversations.

e Macro-averaged Accuracy: The accuracy is averaged across each topic class,

equally weighing both popular and “tail” topics.
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4.5.15 Ground Truth Labels

To create the ground-truth labels, two different scenarios have been followed for train-
ing and test data.

For training, if a topic t was suggested in turn ¢, and the talks about topic ¢ in turn
1+ 1, the label of T _accept is assigned to turn i. If the user rejects the suggestion, or
asked for something else, the label was T'_reject. Otherwise the label is a follow —up
if a user continues to engage with the same topical component, or chat if the utterance
is classified as non-informational or phatic.

At test time, the ground truth labels were assigned as follows: if at turn 7, a
user rejects the suggested topic T' and subsequently, in turn (i + n), requests topic
T, then the label for turn ¢ is modified from T _reject to T _accept, because it ulti-
mately matched the user interests. Only the turns with T _accept labels were used
as ground truth labels, because users accepted those suggestions at some point dur-
ing the conversation. Other turns, without a true (accepted) topic, were not used
for evaluation. The same ground truth labels were used for all the baseline and the

proposed methods.

4.5.16 Training CTS-CRF Model

To train both Seq-CTS-CRF and CTS-CRF-CF models, a maximum likelihood algo-
rithm is applied, where the parameters are optimized using Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method. For both methods, the context of
length five turns is considered. In addition, elastic net (L1 + L2) regularization
is used to avoid overfitting. Finally, a grid search is deployed to find the optimal
values for L1 and L2, where the values of 0.03 and 0.01 are assigned to L1 and L2,
respectively.

To implement the CF method, I trained the KNN model on the training set with

a K value of 33, and the cosine similarity is used as a measure of similarity.
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4.5.17 Results And Discussion

I first report the main results of evaluating our proposed topic suggestion models
against the popularity-based, CF, and Contextual-CF baselines. I then analyze the
recommendation performance for different conversation settings and discuss some

limitations of the reported experiments.

4.5.18 Main Results

The main results on most popular classes are reported in Table 4.25. The proposed
CTS models outperform the strongest baseline Contextual-CF method, where CTS-
CRF, CTS-CNN, CTS-RNN, CTS-CRF-CF, CTS-CNN-CF, and CTS-RNN-CF out-
perform the Contextual-CF method by 23%, 4%, 8%, 27%, 18%, and 20% respectively.

The results show that CRF significantly outperforms CNN and RNN models,
which is surprising for a sequence tagging problem. RNN-based models typically
outperform CRF-based methods in similar tasks like entity tagging [29]. I conjecture
that CRF outperforms RNNs on this task due to two main reasons: first, the available
dataset is relatively small compared to standard entity recognition datasets such as
DBpedia [96] and OntoNotes 5.0 [139] with more than 1200K and 1600K samples,
respectively. Second, random transitions (e.g., due to dialogue breakdowns) in con-
versations are more frequent compared to conventional, coherent text. Users usually
do not follow a standard conversation with the bot, and may randomly jump be-
tween topics. Therefore, even more data are needed to properly model the sequences.
However, in contrast to deep RNNs, CRF models need significantly fewer data to be
trained.

In general, the collaborative filtering approach appears to perform worse than the
other models, including the Popularity-based heuristic baseline (which was manually
tuned to optimize the experience of the majority of users). However, incorporating

contextual information into the prediction process with CF improves accuracy by
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Dropout ‘ Num Filters ‘ Hidden States ‘ Batch Size ‘ Accuracy

0.5 128 100 64 0.765

0.25 128 100 64 0.762(-0.0%)
0.5 512 100 64 0.774(+1.2%)
0.5 128 300 64 0.770(+0.7%)
0.5 128 100 16 0.764(-0.0%)

Table 4.26: Macro-averaged accuracy for CTS-CNN-CF with different parameter
settings.
23%. Contextual-CF produces the best results on Entertainment and Cars, while it
is among the worst results on the other topics like Games and Animals. 1 conjecture
that this is because Entertainment and Cars is a tail topic that few users chose to
engage with, and CF is designed to work well for users with rare preferences.
Similar to Contextual-CF, CTS-CNN, CTS-RNN, and CTS-CRF can effectively
capture each specific conversation context, for dramatically more accurate recommen-
dations. In contrast, they are reliable, where they provide high accuracy in all the
classes. Interestingly, a hybrid of CTS (model-based) and CF model resulted in a
more effective model for the topic suggestion, where CTS-CRF-CF and CTS-CNN-
CF boost performance by 4% and 9% respectively compared to the CTS-CRF and
CTS-CNN models.
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4.5.19 Feature Ablation on CTS

CTS-based methods are complex models consisting of different steps built based on
deep learning algorithms like CNN and RNN. I performed a comprehensive feature
ablation analysis to evaluate the effect of each feature group on the overall perfor-
mance of the system. Table 5.9 reports the results. Using all the CF, topical, and user
profile features in combination, is the most effective approach for CTS-based models.
Moreover, the results indicate that the impact of Topic and Behavior is higher than
User Profile information. I conjecture that the Topic and Behavior features contain
contextual information from previous utterances. Also, as conversations progress,
the values of these features are updated for each user. In contrast, User Profile in-
formation contains static and global information about users, which remain largely

unchanged during the conversation, thus having a lower impact.

Parameter Tuning.

To evaluate how parameter tuning contributes to the final results, I performed sev-
eral experiments with different parameter settings. Table 4.26 shows macro-averaged

accuracy of the CTS-CNN method with different parameters.

4.5.20 Discussion

I now discuss the strengths and potential limitations of the proposed CTS models
on different topics at different stages in the conversation. Finally, I provide the

limitations that I encountered during our experiments.

User Topic Acceptance Rate.

Some topics are more popular and interesting for users, such as Movie and Music.
The Popularity baseline described in Section 4.5.9 is designed based on these metrics.

Figure 5.2 shows the topic acceptance rate for the most popular topics in Alexa
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Figure 4.10: Topic acceptance rates in Alexa dataset [5].

dataset. The results indicate that Movie is the most popular topic among users with
over 60% acceptance rate, and Scitech is the least favorite topic with an acceptance

rate less than 20%.

Analyzing CF contribution to RNN- based models.

RNN-based methods are known for finely capturing the contextual information within
a sequence. The results in Table 4.25 represents that using CF features contributed
to the CTS-RNN by extracting relevant knowledge from the dataset that is hidden
to CTS-based models. In our specific case, I can elaborate on two reasons, 1) CF
features are generated using all the conversation context, while the LSTM model
generally considers the history window of size m, and 2) CF features utilize the user-
level information like the similarity between user behaviors in accepting or rejecting

topics whereas RNN does not consider the user-level information.

Performance for Different Conversation Stages.

As the conversation progresses, the next topic suggestion becomes increasingly chal-

lenging, as it is challenging to keep people engaged for long conversations. A proper
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Figure 4.11: Micro-averaged accuracy for CTS-CRF-CF, CTS-CNN-CF, and baseline
Popularity model vs. the number of topic suggestions in the conversation [5].

topic suggestion model could encourage a user to engage more with the conversa-
tional agent, which has been shown to be associated with an increase in user sat-
isfaction [30, 129]. Figure 4.11 reports Micro-averaged accuracy for CTS-CRF-CF,
CTS-CNN-CF, CTS-RNN-CF, and the baseline Popularity model for a varying num-
ber of suggested topics per conversation. Surprisingly, the average accuracy of the
suggested topic drops, as the number of suggestions in a conversation increases. I
conjecture that this effect is due to a design decision where a direct topic suggestion
was only invoked if a user was not engaged with the current topic or a domain-specific
component has returned conversation’s control back to the main dialogue manager.
These situations indicate that the user may already be not sufficiently engaged in
continuing a conversation with the conversational agent past the suggestion point.
Also, the rejection of the proposed topic may not be (solely) due to the recommen-

dation algorithm but as a result of user fatigue, or other factors. At the same time,
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fewer people continue talking to the conversational agent for the increased number of
suggestions. The vast majority of people only interacting with the first one or two
suggested topics. Thus, the accuracy of the first handful of suggestions is critical
for user experience, as an incorrect first suggestion may cause the user to end the

conversation immediately.

4.6 Summary

In this chapter, I described my research on user intent inference in conversational
Agents. I explained the architectures of Emersonbot and Irisbot, two open-domain
conversational agents that our team at Emory developed for the Amazon Alexa prize
2017 and 2018. Then, I elaborated on my specific contributions on different aspects
of user intent inference in conversational agents. I discussed my research on an entity-
aware topic classifier named ConCET, a context-aware dialogue act classifier called
CDAC, a smart topic suggestion, and an online and offline satisfaction prediction
module. All research in this section significantly improved the performance of the
current models and was published in well-known conferences and provide insights for
future development in advancing conversational Al.

In the next chapter, I present my research on user intent inference in e-commerce

search. I explain my contributions in this field and place them in context.
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Chapter 5

User Intent inference in

E-commerce Search

This chapter explains my research in user intent inference for e-commerce search
engines. This chapter focuses on three different models that leverage three different
external sources of information, including joint learning, product taxonomies, and
unlabeled domain-specific corpora (e.g., catalog). The research was conducted during
my collaboration with The Home Depot! from Summer 2019 to Spring 2021. In
section 5.1, T adopt my paper [4] that was published in SIGIR 2020 under the title
“JointMap: Joint Query Intent Understanding For Modeling Intent Hierarchies in
E-commerce Search.” The paper describes the effectiveness of joint learning of two
height-level intent tasks in large e-commerce search engines. It follows by section
5.2 that I discuss the proposed model to leverage product category and taxonomy
information for user intent inference in e-commerce [6], which was published in SIGIR
2021-eCom workshop titled “DeepCAT: Deep Category Representation for Query
Understanding in E-commerce Search.” In section 5.7, I explain my research on

pseudo-relevance feedback for query categorization [7], which was published in SIGIR

Yhttps: //www. homedepot. com/
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2021 titled “APRF-Net: Attentive Pseudo-Relevance Feedback Network for Query
Categorization.” In this paper, I investigate product corpus information to improve
product categorization for e-commerce search. The insights from this chapter can

enable more intelligent user intent inference in an e-commerce search engine.

5.1 JointMap: Joint Query Intent Understanding
For Modeling Intent Hierarchies in E-commerce
Search

An accurate understanding of a user’s query intent can help improve the performance
of downstream tasks such as query scoping and ranking. In the e-commerce domain,
recent work in query understanding focuses on query to product-category mapping.
But, a small yet significant percentage of queries (in our website 1.5% or 33M queries
in 2019) have non-commercial intent associated with them. These intents are usu-
ally associated with non-commercial information seeking needs such as discounts,
store hours, installation guides, and so forth. In this dissertation, I introduce Joint
Query Intent Understanding (JointMap), a deep learning model to simultaneously
learn two different high-level user intent tasks: 1) identifying a query’s commercial
vs. non-commercial intent, and 2) associating a set of relevant product categories in
taxonomy to a product query. JointMap model works by leveraging the transfer bias
that exists between these two related tasks through a joint-learning process. As curat-
ing a labeled data set for these tasks can be expensive and time-consuming, I propose
a distant supervision approach in conjunction with an active learning model to gen-
erate high-quality training data sets. To demonstrate the effectiveness of JointMap,
I use search queries collected from a large commercial website. Our results show

that JointMap significantly improves both “commercial vs. non-commercial” intent
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Search Queries intent \ Product Categories
where is my shipped order non-commercial | -

how to install my tiles non-commercial | -

cost to rent a carpet cleaner non-commercial | -

18 volt ryobi commercial [tools, electrical, lighting]
24 in. classic Samsung refrigerator | commercial [appliance, electrical]

Table 5.1: Dataset sample queries and their associated labels.

prediction and product category mapping by 2.3% and 10% on average over deep
learning methods. Our findings suggest a promising direction to model the intent

hierarchies in an e-commerce search engine.

5.1.1 Model Overview

In this section, I present the network architecture of JointMap, as shown in Figure
5.1. JointMap utilizes both word and category embeddings in which both represen-
tations are jointly trained to achieve an efficient semantic representation for a query.
The proposed model consists of two deep learning layers: the first layer for the un-
derstanding of the user’s commercial intent and the second layer for the prediction of
relevant product categories in the taxonomy. As a result, the proposed model con-
tains three embedding layers: a word embedding layer and two category embeddings
layers, i.e., commercial vs. non-commercial and product-categories. Both category
embedding types are concatenated, to compute the final product category represen-
tations. Then, a Compatibility Matrix (CM) is generated by computing the cosine
similarity between the label and word representations. CM represents the relative
spatial information among consecutive words (phrases) with their associated product
category and commercial vs. non-commercial labels. Finally, CM is passed through
a Multi-head self-attention layer to calculate attention scores. The word vectors si-
multaneously go through two Highway layers, and the output of each Highway is

multiplied by their corresponding attention scores to generate the final query repre-
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Figure 5.1:  JointMap network architecture [4].
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sentation. Finally, the loss value of £, is computed using sigmoid cross-entropy for
the product category mapping. Also, the loss value £; is calculated using Softmax
cross-entropy for determining the query’s commercial intent.

In the next section I explain the details of the proposed model.

5.1.2 Joint-Learning of High-Level Intent Tasks

[ now introduce JointMap, a joint-learning model for high-level user intent prediction.

Suppose there is a search query dataset D = {Q,C,U}, where @ is a set of
search queries, U represents user commercial vs. non-commercial intent, and C' is
the candidate product category set. Each query consists of a sequence of words
q = [wi;wy; ... ;w,] of size n = 10, and represents as WWIXV_ Also, €' and U are
mapped to the embedding spaces CI¢I*V and UIVI*V  respectively. Then, the matrices
C and U are concatenated to illustrate the whole label space. The word and label
embeddings are initialized with Word2Vec and random embeddings of size |V | = 300,
respectively. Cosine similarity between L and W is computed for each query ¢ to
extract the relative spatial information among consecutive words with their associated

labels, where ® indicates the cosine similarity function.

H = (C+ U)CHDY g (v (5.1)

To extract the contribution of the words concerning their category, a multi-head
self-attention mechanism with n different heads is implemented on H. Multi-head
self-attention contains a parallel of linear projections of a single scaled dot-product

function. Eq. 5.10 shows a single head of the self-attention mechanism.

HKT
Vi

where K is the key matrix, V' is the value matrix, and dj is the dimension of

G = SoftMazx( )V (5.2)
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the keys. Also, each projection is responsible for extracting the attention between
word-label in a query and computes using weighted sum of the values. Next, G is
split into two matrices of size G = (|C| x n) and G= (|[U| x n). For both tasks, the
word embedding vectors W are fed into a highway encoder layer, which has shown
its effectiveness in improving network capacity by allowing unimpeded information
flow in the network [154]. The output is multiplied by their corresponding attention

scores of G.

a1 = Highway, (W), ag = Highways(W) (5.3)

a; = sigmoid(ry) — 1y = relu(word2vec(w)) (5.4)

W1:ZG1XQ1,W2:Z€}@'XO¢2 (55)
i=1 i=1

Then, resulted W; and Wy have the size of (n x V). They go through a fully
connected layer to generate the semantic representations of both tasks. For product
category mapping, a sigmoid cross-entropy loss function £, is used since in sigmoid,
the loss computed for every output s; is not affected by other component values.
Also, a binary softmax cross-entropy loss £; is applied to train the user commercial

vs. non-commercial intent.

IC|
Ly == t.log(Sigmoid(s.)) (5.6)
L; = —t1log(SoftMaz(s1)) — (1 —t1)log(1 — SoftMax(sy)) (5.7)

where s, represents the prediction distribution and ¢. indicates the target labels.
To address the class imbalance problem, particularly in the product category dataset,
I update the loss values based on focal loss proposed in [85]. The focal loss was

initially proposed for object detection and removing the effect of extreme foreground-
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background class imbalance in the images.

IC]
L ocalye = Z ac(Sigmoid(sc) — tc)V log (Sz’gmoid(sc)) (5.8)

c=1
where ¢ is the target vector, ¢ is the class index, and (f(s) — t)” is a factor to

decrease the influence of well-classified samples.

JointMap overall loss:

The final loss function is computed using a weighted loss over commercial vs. non-

commercial, product category mapping intents.

Liotal = 61'Cfocalpc + 52[’2 (59)

5.1.3 Dataset Overview

In this section, I describe the dataset collected from search logs of a large e-commerce
search engine in July 2019, and provide details the algorithms used for generating
user-intent datasets.

I propose an algorithm to simultaneously generate both datasets, which consists
of three steps: 1) generating the commercial vs. non-commercial queries, 2) over-
sampling of the non-commercial queries to balance the dataset, and 3) creating the
product category dataset based on the commercial queries. Algorithm. 2 represents
the steps for generating commercial vs. non-commercial samples. In this method,
first I need to generate a small-size dataset that covers all expected types of non-
commercial queries. This can be different for different e-commerce websites based on
their resources for intent handling. For example, if they design a specific webpage for
installation guides, this type of queries need to be included in the initial dataset.

Then, I over-sample the non-commercial queries as described in [24] to make the
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Result: Commercial Vs. Non-commercial Dataset
D_init = A small-size Dataset by human supervision ;
Test = Hold-out test set;

while Accuracy ; threshold do

D = Expand(D_init) using KNN;

Confidence Scores = SVM(D);

TS = Find(tricky samples) using confidence scores;
D = Re-label(TS) using human supervision;
D_init = D;

Accuracy = Compute_Accuracy(Test);

end

Algorithm 2: Commercial vs. non-commercial dataset.

dataset balanced (only 1.5% of the queries have a non-commercial intent). Similar
to [156], I utilize user behavior data like click rate, to generate the category labels
associated with each commercial query. Algorithm. 3 describes different steps to
create the product mapping dataset.

Result: Product Category Dataset
Product_category = {};
for each query in () do
pid_list = Extract(pid that user clicks)
for pid in pid_list do
| category_list= Find(category(pid) in taxonomy)
end
for category in category_list do
if if click_rate > r then
| product_category(query).add(category)
end
end

end

Algorithm 3: Product category dataset generator.

Finally, a dataset of size 195K with 32 product categories such as tools, appliance,

outdoors, etc. extracted from the search logs.

5.1.4 Experimental Setup

In this section, I describe the parameter setting, metrics, baseline models, and exper-

imental procedures used to evaluate JointMap.
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Figure 5.2: Product category distribution [4].

Parameter Setting:

I used Adam optimizer with a learning rate of = 0.001 and a mini-batch of size
64 for training. The dropout rate of 0.5 is applied at the fully-connected and ReLLU

layers to prevent the model from overfitting.

Evaluation Metrics:

To evalate JointMap, both Micro- and Macro- averaged F'l-score for both tasks are

reported.

Methods Compared:

I summarize the multi-label classification methods compared in the experimental

results.
o Tf*idf + SVM: One-Vs-Rest SVM with a linear kernel.
e VDCNN: Very Deep Convolutional Neural Network [34].

e FastText: Text classification method developed by Facebook [16].
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e LEAM: Word-label representation model[130].
e XML-CNN: Extreme multi-label text classification [86].

e JointMap: The proposed Joint Query Intent Understanding model.

Dataset Experimental Design:

I use an SVM model with n-gram tf*idf as features to perform distant supervision
method due to multiple reasons: 1) SVM is fast and scalable, 2) the features and
results are interpretable for supervisors, 3) SVM has proved its effectiveness on text
data, 4) SVM provides confidence scores to detect the tricky samples. Moreover, two
different human annotators were asked to label 540 samples manually. The (Matching,
Kappa) scores of (0.98, 0.96) are computed, which is a “significant agreement.” The

category distribution is shown in Figure 5.2.

5.1.5 Main Results and Ablation Analysis

To evaluate the models described in Section 5.7.6, 70% of the dataset is used for
training, 10% for validation, and 20% for test. Table 5.7 summarizes the performance
of the models. The results are reported for both commercial vs. non-commercial
classification and product category mapping. All the improvements are statistically
significant using a one-tailed Student’s t-test with a p-value j 0.05.

For the user commercial intent mapping task, the results indicate that the Macro-
averaged F1 improves 4.5%,3.8%,2.8%,1.0%, and 1.8% compared to tf*idf, VDCNN,
FastText, LEAM, and XML-CNN models respectively. In product category mapping
task, the improvements are more significant. There is improvement of 28.4%, 22.1%,
4.2%, 6.3%, and 7.2% over tf*idf, VDCNN, FastText, LEAM, and XML-CNN models,
respectively. As a results, JointMap improves macro-averaged F1 scores over deep

learning baselines by 2.3% on commercial vs. non-commercial intents, and a 10%



137

Dataset
Method Commercial vs. Non-commercial Product Category Mapping
Macro-F1 Micro-F1 || Macro-F1 Micro-F1
tf*idf+SVM 90.71 90.26 48.75 76.84
VDCNN |[34] 91.28 91.34 51.41 79.34
FastText [16] 92.18 92.15 60.06 79.69
XML-CNN [130] || 93.11 93.01 58.40 81.61
LEAM [130] 93.96 93.66 58.90 81.31
JointMap | 94.80 (+1.1%) 94.63 (+1.0%) || 62.60 (+6.3%) 83.01 (2.1%)

Table 5.2: Macro- and Micro- averaged F1 for different models. The improvements
reported against LEAM.
improvement over product category mapping.

In reference to user commercial intent prediction, a 2.3% improvement is consid-
erable since it is in the context of a large e-commerce search engine that receives
billions of search queries per year. For product category mapping, the Fl-averaged
macro experiences a higher jump when compared to the Fl-averaged micro (6.3%
vs. 2.1%). This improvement indicates the positive impact of inductive bias between
these two tasks, which not only boosts the performance of majority classes, but it
also contributes to minority classes. For instance, the Macro-average F1 for 8-button
minority classes shows in Figure. 5.2 for XML-CNN and LEAM are 21.76% and

18.33%, respectively, while this number jumps to 31.28% for JointMap.

Parameter Tuning

To evaluate the impact of hyper-parameter tuning in JointMap, I implemented a grid
search approach on 8 and (35 in Eq. 5.9. I observed that using a smaller 8 for each
task in Eq. 5.9 causes a slower convergence for that specific task. However, the final
results is not significantly different. In our experiments, a simple average works as
good as a fine-tuned hyper-parameter model. For focal loss hyper-parameter tuning,
I repeat the experiments with different ~ values of 1, 1.2, 1.5, and 2. I observe that

the best results achieve using the v = 1.5, where the original dissertation suggested
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using v = 2 for computer vision application.

Focal Loss Impact on JointMap

Using focal loss deteriorates the overall micro- and macro- averaged Fl-scores by
0.6%, 1.5%, respectively. However, the macro-average F1 on 8-button minority classes
without focal loss is 31.28%, while with presence of focal loss is 33.81%. This shows a
relevant improvement of 8.1%. Furthermore, I observed that in absence of focal loss,
the performance of at least two of the minority classes is 0%, therefore making the

use of focal loss necessary.

5.2 Label Representation for Product Category
Mapping in E-commerce Search

In this dissertation, I introduce a data-driven approach named DeepCAT for query
understanding. Our model consists of a pipeline of deep learning models that utilize
both word-category and category-category interactions. In summary, our contribu-
tions are: (1) proposing a novel deep learning model for joint word-category repre-
sentation, and (2) introducing a new loss function to incorporate pairwise category

information into the query understanding process.

5.3 DeepCAT: Model and Implementation

In this section, I present our DeepCAT model. First, I provide a high-level overview of
the model architecture and then describe the model implementation’s details. Then , I
describe query representation and word-category representation, and category-category
representation models, followed by our new loss function to incorporate category co-

occurrences.
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Figure 5.3: DeepCAT architecture, (a) query representation (b) word-category represen-
tation (c) category-category representation [6].

5.3.1 Model Overview

The DeepCAT network architecture is illustrated in Figure 5.3. DeepCAT consists
of three main components: (a) query representation, (b) joint-word-category repre-
sentation, and (c) category-category representation. Any deep network could be used
to develop the query representation (Query2Vector Network). I deploy a CNN-based
model, which consists of convolutional layers followed by highway layers [154], to add
more non-linearity to the model and improve the model capacity by allowing infor-
mation flow in the network. Recurrent [27] or transformer [128] neural models could
also be used as an alternative for Query2Vector network. However, due to their high
latency time during inference compared to feed-forward neural models, I decided to
choose the convolutional neural network-based models for query representation.

I leverage the word-category co-occurrence concepts for joint-word-category rep-
resentation, which computes using a cosine similarity between query words and their
associated categories. Then, a multi-head self-attention deploys to generate the con-
tribution of each word to each specific product category. These attention scores utilize
to modify the word’s contribution in the query modeling. Finally, category and query
representations are concatenated to create the final query representation. A sigmoid
cross-entropy is deployed to compute the loss values for this multi-label problem.

For category-category representation, first, I extract the experimental category co-
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occurrence matrix CM from the training set. Next, it normalized using the Cosine
normalization method. In each training step, the CM is estimated using the category
representations, and the loss values are propagated through the network using matrix

approximation [81].

5.3.2 Query Representation (Query2Vector Network)

Suppose there is a search query dataset D = {@Q,C}, where @ is a set of search
queries and C' is candidate product categories. Each query consists of a sequence
of words g = [wy;we; ... ;wy] of size n = 10, and is represented as ql,?lxv. Also, C'
is mapped to embedding spaces of CI¢*V . The word and category embeddings are
initialized with Word2Vec and random embedding of size |V | = 100, respectively. For
the query representation, any complex deep learning model could be used. Our imple-
mentation of Query2Network uses a 3-layer CNN model, where it receives the word
embeddings and produces the query representation. cnn(q,), goes through a highway
layer [154]. A highway layer combines a ReLLU function for a non-linear projection,

followed by a sigmoid function for smoothing the projection of each convolutional

layer, highway(q,) = relu (sigmoid(cnn)).

5.3.3 Word-Category Representation

To train category representation, first, in each training step, I form a word-category
co-occurrence matrix. The index (7,7) of this matrix indicates the co-occurrence
of word ¢ and associated category j of the query. To estimate this matrix during
the training, I need a dot-product between word representations of query (n x V)
with the category representations (|C| x V). The output is of size (n x |C]), where
n,|C|, and |V| indicate the query length, number of categories, and embedding size,
respectively. After estimating the word-category co-occurrence matrix, I need to

extract each word’s contribution in the query to all product categories. I deploy a
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self-attention mechanism with n = 10 different heads to compute the scores. I use ten
heads since I consider each query at most includes ten words. Finally, an attention
matrix of size (n x |C|) creates Ay, = Sel f_Attention(I12-norm(g,) ® (2-norm(C)),
where the value at (i, j) represents the contribution of word i to category j. The
output goes through a max-pooling layer to form the attention weights. The attention
weights multiples to the word vectors to generate the weighted word embeddings
Rye = qu ® Aye. A multi-head self-attention mechanism applies to ¢,,. Multi-head

self-attention contains several linear projections of a single scaled dot-product function

that are parallelly implemented head; = SoftM am(q%i:) V. Where ® indicates a
dot-product. Finally, R,, and R,. go through a linear layer to form R, the final joint

word-category representation.

5.3.4 Category-Category representation

A co-occurrence matrix creates on training data to model the category-category inter-
actions. In this matrix each element (i, j) represents the co-occurrence frequency be-
tween label-pair of (¢;, ¢;) in the training set. Finally, category-category co-occurrence
matrix has the size of |C| x |C|. Then, the final matrix is calculated by applying a ma-
trix normalization. I deployed Cosine normalization to normalize the CM, where the
values on the main diagonal are one. Moreover, the experimental category-category
CM is computed using category co-occurrences in the training set. To estimate the

normalized matrix, Cosine similarity is used between category representations.

5.3.5 Computation of Loss Function
Joint Word-Category Loss

A sigmoid cross-entropy loss function £, uses for final product category classification.

Sigmoid cross-entropy applies since, in sigmoid, the loss computed for every output s;
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is not affected by other component values. £, = — Zﬁl tclog (Sigmoid(s.)). Where

s. represents the predictions and t. indicates the targets.

Category-Category Loss

The estimation error is calculated based on a matrix approximation loss [81], Loy =

% Zm.ec log(1+ exp(CMij © CM,;)).

The Overall Loss

To compute the overall loss, a weighted average of Ly, and Loy, is computed as

Coverall = )\I‘CCM + /\2£W

5.4 Experimental Evaluation

This section describes dataset overview, experimental design, parameter setting, met-

rics, baseline models, and evaluation.

5.4.1 Dataset Overview

Similar to [156], I utilize customer behavior feedback (e.g., click rate) to obtain the
category labels associated with each search query. I collect two weeks of search log to
create both training and test sets, where the first week is used to create the training
set and the second week for the test set. The training set contains more than 11M
search queries. I used 25% of the training data for validation. To generate the test
set, I map queries into three different buckets using a simple query frequency. Queries
with only one occurrence experimental period are considered as tail queries; the ones
between 2 and 100 impressions are counted as torso, and the rest as head queries.

Then, to fairly evaluate the models’ performance, stratified sampling [11] is used to
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Method Leaf Nodes (Product Categories)

pal R@1 Fl@l | p@3 R@3 Fl@3 | p@5 R@5 Fl1@5 | MAP@5
TF*IDF BOW || 0.783  0.259  0.356 | 0.617 0.478  0.538 | 0.514 0.594  0.551 | 0.623
FastText [15] 0.856 0.2001  0.324 0.634 0.444 0.522 0.504  0.557 0.542 0.666
XML-CNN [86] || 0.875  0.314  0.463 | 0.683 0.549  0.609 | 0.568 0.666  0.613 | 0.703
LEAM [130] 0.862 0302 0.447 | 0.676 0.5631  0.595 | 0.566 0.651  0.606 | 0.697
DeepCAT 0.888* 0.325* 0.475* | 0.690 0.560* 0.619* | 0.576 0.680" 0.624* | 0.717*

Table 5.3: Performances on Product Categories with about 4200 categories. “*” indicates
statistically significant improvements p < 0.05.
generate the test set, where I randomly select 2000 different queries from each bucket

to create the test set.

5.4.2 DeepCAT Experimental Design

I designed two different experiments to evaluate DeepCAT. In the first experiment,
I assess the DeepCAT capability in mapping an input query to the first level in
the taxonomy hierarchies, L1, with 33 different classes. The LI level contains the
most abstract product categories (e.g., “appliances”, “tools”, and “flooring”). This
experiment is mainly outlined to estimate the performance of minority classes. The
minority classes include the categories that contain a fairly small number of samples in
the training set due to customer click behavior and category overlaps or correlations.
The second experiment evaluates DeepCAT on actual product categories in the last
layer of taxonomy Product Categories with 4115 distinct categories (e.g., “replacement

engine parts”, “wood adirondack chair”, and “window evaporative coolers”).

5.4.3 Parameter Setting

I used an Adam optimizer with a learning rate of n = 0.001, a mini-batch of size 64
for training, and embedding of size 100 for both word and category. The dropout rate
of 0.5 is applied at the fully-connected and ReLU layers to prevent the model from

overfitting.
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5.4.4 FEvaluation Metrics

Following the conventions of the search literature to evaluate DeepCAT, I reported
the overall Macro- and Micro- averaged F1, PQK, RAK, F1@K and MAPQ@QK on
the top-K results. Also, query understanding is a multi-label problem; I reported
precision and recall since a practical solution must cover broader possible correct

categories while simultaneously keeping precision as high as possible [156].

5.4.5 Methods Compared

I summarize the multi-label classification methods compared in the experimental

results.

e TF-IDF + SVM: One-Vs-Rest SVM with a linear kernel.

FastText: Text classification method by Facebook [15].

XML-CNN: Extreme multi-label text classification [86].

LEAM: Word-label representation model [130].

DeepCAT: The proposed word-label representation.

5.5 Results and Discussion

Table. 5.4 and 5.3 summarizes the performance of different baselines on curated
datasets described in section 5.4.1. The results show that DeepCAT significantly
improves Macro- and Micro-average F1, and MAP@3 by (3.6%, 1.5%, and 1.2%)
over LEAM, as the best model among deep networks, on LI level. As a results, an
average improvements of (6%, 2.8%, and 4%) on Macro- and Micro-averaged F1, and
MAP@S3 over deep learning baselines. For product categories, DeepCAT outperforms
LEAM by (6.2%, 4%, 3%, and 3%) on F1@1, F1@3, F1@5, and MAP@J, respectively.
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Method First Layer (L1)
Macro-F1 Micro-F1 MAP@3
TE*IDF BOW || 0.466 0.669 0.669
FastText [15] 0.496 0.686 0.653
XML-CNN [86] || 0.511 0.706 0.694
LEAM [130] 0.521 0.709 0.701
DeepCAT 0.540* 0.720* 0.710*

Table 5.4: Performances on LI with 33 categories. “*” indicates statistically significant
improvements p < 0.05.

5.5.1 Results on Minority Classes

Table. 5.4 indicates that Macro-averaged F'I improves by 2% over Micro-averaged F1,
which shows a higher impact on the minority classes. This impact is more noticeable
on 8-button minority classes, where the Macro-averaged F'I for the for XML-CNN
and LEAM are 0.41.01%, 42.90%. At the same time, this number jumps to 47.16% for

DeepCAT, which shows more than 12% and 10% relative improvements, respectively.

5.5.2 Results on Traffic Buckets

Table. 5.8 shows the performance of the models described in section. 5.7.6 across

three main buckets of tail, torso, and head.

Method || FastText | LEAM | XML-CNN | DeepCAT

Head 0.508 0.563 0.560 0.565 (+0.0%)
Torso 0.584 0.646 0.648 0.682 (+5.3%)
Tail 0.381 0.337 0.373 0.401 (+7.1%)

Table 5.5: F1@3 results on head, torso, and tail buckets.

The results show that DeepCAT significantly outperforms the other models on
both tail and torso buckets, while it reaches competitive results to XML-CNN and
LEAM on “head” bucket. According to higher traffic on both tail and torso queries,
the overall performance of DeepCAT is significantly higher compared to the other

models. The F1@3 is lower on head compared to torso queries due to a significantly
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higher number of correct (relevant) categories, which causes a higher P@3 and a

significantly lower R@S5.

5.6 Ablation Analysis

DeepCAT is a complex model that consists of several components. I performed a
comprehensive ablation study to evaluate each component’s impact on the overall
performance of DeepCAT. Table. 5.9 reports the contribution of each component on
performance. The results illustrate that utilizing the category representation describe
in section. 5.3.4 provides a (5.1%, 3.2%) improvement on Macro- and Micro-averaged

F1, respectively. Moreover, using L improves Macro-averaged F1 by (2.8%, 1.3%),

respectively.
Method Macro-F1 Micro-F1
Word Rep. 0.500 0.689
Joint Word-Category Rep. 0.526 (+5.0%) 0.711 (+3.1%)
Joint Word-Category Rep. + Lo || 0.540 (4+2.9%) 0.720 (4+1.3%)

Table 5.6: Ablation analysis results.

5.7 APRF-Net: Attentive Pseudo-Relevance Feed-
back Network for Query Categorization

Query categorization is an essential part of query intent understanding in e-commerce
search. A common query categorization task is to select the relevant fine-grained
product categories in a product taxonomy. For frequent queries, rich customer be-
havior (e.g., click-through data) can be used to infer the relevant product categories.
However, for more rare queries, which cover a large volume of search traffic, relying
solely on customer behavior may not suffice due to the lack of this signal. To im-

prove categorization of rare queries, I adapt the Pseudo-Relevance Feedback (PRF)
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Figure 5.4: Architecture of the proposed attentive pseudo-relevance feedback network
(APRF-Net) [7].

approach to utilize the latent knowledge embedded in semantically or lexically similar
product documents to enrich the representation of the more rare queries. To this end,
I propose a novel deep neural model named Attentive Pseudo Relevance Feedback
Network (APRF-Net) to enhance the representation of rare queries for query cate-
gorization. To demonstrate the effectiveness of our approach, I collect search queries
from a large commercial search engine, and compare APRF-Net to deep learning mod-
els for text classification. Our results show that the APRF-Net significantly improves
query categorization by 5.9% on F1@1 score over the baselines, which increases to
8.2% improvement for the rare (tail) queries. The findings of this dissertation can be

leveraged for further improvements in search query representation and understanding.

5.7.1 Model Overview

APRF-Net aims to map a query to one or multiple product categories by incorporating
its top-ranked retrieved products’ content. As illustrated in Figure 5.4, APRF-Net is

comprised of three components:

1. Initial Retrieval Step: This component is devised to return top-k relevant

product documents for an issued query.
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2. Representation Layers: These layers jointly learn sophisticated query and

product field context vectors (Figure. 5.5).

3. Corpus-Aware Attention Network: A hierarchical attention network that
models the hierarchical structure of the top retrieved product documents (field,

document, and corpus).

5.7.2 Initial Retrieval Step

APRF-Net uses BM25 model to retrieve the top-k relevant product documents (cor-
pus) Cy = {dy, ..., dy} for an initial query ¢. Each product document is broken down
into its corresponding fields (title, color,...). Finally, The query and its corresponding

documents’ fields are fed into the representation layers (subsection 5.7.3).

5.7.3 Representation Layers

The objective of these layers is to generate context vectors for a query and its retrieved
product documents’ fields. Representation Layers consist of the following layers: (i)
Embedding (ii) Mix Encoder (iii) Query-product-to-vector (QP2Vec). All the layers
above are shared between queries and products. A shared embedding could bridge
the vocabulary gap between queries and documents. Also, shared encoders enable
the network to transfer the captured knowledge across both product documents and

queries.

Mix Encoder Layer.

Tail queries generally contain many infrequent terms due to different reasons, such as
typos. To make the model less susceptible to out-of-vocabulary issues and spelling er-
rors, I enrich word-level representations with character-aware embeddings introduced

by [154].
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Figure 5.5: (a) Mix Encoder layer (b) QP2V layer [7].

Query-Product-to-Vector Layer (QP2Vec):

QP2Vec composes enhanced word representations from mix encoder to generate a
query or products’ field-level representations (Figure 5.5.b). The network takes word
embeddings and passes them into three parallel neural layers. (i) A three-layer CNN
model followed by a max-pooling layer, (ii) an average pooling layer, and (iii) a
multi-head self-attention network. Multi-head self-attention contains several linear
projections of a single scaled dot-product function that are parallelly implemented.
Eq. 5.10 shows a single head in self-attention.

T

EK
head; = softmax<2—> Vit=0,..h (5.10)
Vdy,

Where K is the key matrix, V' is the value matrix, and d;, is the dimension of the keys,
E; is word embedding for ¢ — th token generated by the mix encoder. Finally, heads’
outputs are concatenated and multiplied to a linear transformation, and passed to a

max-pooling layer to generate the final representation (Eq. 5.11).

Sel f Attention(E) = Max Pooling([heady; ...; heady]. W) (5.11)
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Where W is the weights of a linear function. All the three outputs from previous

steps are concatenated for final representations of query or product’s field (Eq. 5.12).

QP = [Avg(E); Sel f Attention(E); CNN(E)],QP € R (5.12)

Where F' is the dimension of the query or fields. The ()P vectors are sent to the

corpus-aware attention network (section. 5.7.4).

5.7.4 Corpus-Aware Attention Network

It is a hierarchical attention network which enriches query representations by incor-
porating informative contents from top retrieved documents. Corpus-aware attention
network contains three levels of abstractions: (i) query-field attention layer: I
apply a separate query-field attention operation, Attgr,, across all document fields
i € {1l,.., N} and top-K retrieved documents. As a result of this operation, (K x N)
vectors of size (1 x F') are produced, where N is the number of document fields and
K is the number of top retrieved documents. To form document attention represen-
tation Attp, € RV*F' T stack document’s query-field attentions: A QP lx N:(k+1)x N]
where k € {0, .., K —1}, (ii) query-document attention layer: Attp, matrices are
fed into another attention layer to generate query-document attention matrix Attgp
(Eq. 5.13).

To implement the attention layers for both (i) and (ii), I used Loung-style attention

[93)].

Attop = [Q © Attp,;...;Q ® Attp, ], Attgp € RF*P (5.13)

Where D is the dimension of query-document attention.
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(iii) query-corpus attention layer: the query-document attentions are passed into
a self-attention with K heads followed by a max-pooling to generate query-corpus

attention Attge (Eq. 5.14).

Attgo = Maxpooling(sel fattention(Attgp)), Attge € R™C (5.14)

Where ® and ; indicate the attention layer and concatenation, respectively. Attgc
is the final PRF signal from top-K returned documents to expand the query represen-
tations. To do so, I concatenate Attge to the original query representation. In other
words, I expand the query model using the document model in the latent space. Fi-
nally, the output is fed into a dense layer to fuse query and document representations

before the final category prediction.

5.7.5 Dataset Overview

This section describes our dataset creation process from e-commerce search logs. 1
use six months of search data to create train, validation, and test sets. Similar to
[156], T utilize click-through data to approximate ground truth labels (product cat-
egories) by considering the following steps: for a query, (i) leverage query-product
clicks to find candidate categories, (ii) aggregate the number of clicks across these cat-
egories, and (iii) assign only categories with more than 5% of total clicks. The most
fine-grained product categories located in the leaf nodes of taxonomy paths are consid-
ered as final classes (e.g., “Bath > BathroomFaucets > BathroomSinkFaucets >
Single Hole BathroomFaucets”— >" SingleHole BathroomFaucets”). For each query,
I also collect the top-ranked product documents. The table below summarizes fields
included in a product document. I randomly sample 60% of the data to create the
training, 10% for validation, and the remaining 30% for test sets. I collect 60M search

queries (2.5M unique queries) that contain customer signal information, including
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4,665 unique product categories.

Fields Short Description
Title Product Title
Description Product descriptions

Taxonomy path | Product taxonomy path from root to leaf
Color/material | Color and material information

Numerical Numeric values (height, width, etc.)

Brand Brand information (brand name)

I segment the test set into two types: (i) Traffic Type (TT): I utilize the query’s
frequency information from one year (the refined queries are used to compute the
query frequency) with a certain threshold to map each test query to a traffic bucket
(head, torso, and tail). The distributions of head, torso, and tail queries in the Traffic
Type test set are 8%, 62%, and 30%, respectively. (ii) Query Type (QT): queries
could contain one or several attributes. I randomly sample 10k queries from the
initial test set to assign them to these five attributes: brand name, product name, 1D
(model number, universal product code, and serial number), numerical (dimension,
units, etc.), and color/material. Note that the aforementioned query types are not
mutually exclusive, i.e., a query could be mapped to multiple attributes. I leverage
some rule-based algorithms to create the initial query type; later, the ones with low

confidence scores are relabeled by human annotators.

5.7.6 Experimental setup

This section describes the parameter settings, metrics, baselines, results, and experi-

mental procedures used to evaluate our model.
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Parameter Settings

An Adam optimizer was used with a learning rate of n = 0.001, a dropout rate
of 0.5, a mini-batch of size 64, and embedding sizes of 300 and 16 for word and
characters, respectively. For convolutional layers, I employed 128 filters with kernel
sizes of 1, 2, and 3. I utilized Word2Vec to initialize the word embeddings, and
character embeddings were initialized randomly. I employed Sigmoid Cross-Entropy
(SCE) for the loss function as it shows superior results compared to the rank loss for
XMTC problems [106]. All models were implemented by Tensorflow 2.1 with a single
NVIDIA P100 GPU.

Evaluation Metrics

Following the conventions of the literature for XMTC problems and specifically in
product categorization [156], I reported Precision@K (PQK), RecallaK (RQK),
F1QK, and Mean Average Precision@K (M APQK) on the top-K results.

Methods Compared

I employed the following deep learning models as baselines to evaluate the effectiveness

of APRF-Net.
e CNN+SCE: 3-layers convolutional neural network.

BiLSTM+4SCE: Bidirectional recurrent neural network.

FastText: Bag of tricks for efficient text classification[15].

XML-CNN: Deep learning for XMTC [86].

LEAM: Joint label embedding attentive model [131].

APRF-Net: The proposed model.



155
5.7.7 Empirical Results and Discussion

Table. 5.7 summarizes the performances of models in section. 5.7.6. As shown in
Table 5.7, APRF-Net achieved 5.9% relative improvement on F'1@1 compared to
LEAM, the best performing baseline @1. As K increases, PQK scores drop since
each query on average has 1.26 relevant categories (head : 3.3, torso : 1.2, and tail :

1.0).

Results on Traffic and Query Types.

Table 5.8 shows the performance of APRF-Net compared to LEAM on different buck-
ets. APRF-Net advantages are promising, stable, and stronger consistently across all
metrics and buckets. I can conclude that APRF-Net has a more significant impact on
rare queries across all metrics from our experimental results. For instance, in terms of
F@1 score, it achieves (3.8%, 5.2%, and 8.2%) relative improvements on (head, torso,
and tail), compared to LEAM, respectively. This result proves our earlier claim that
our proposed model can make the tail queries less sparse by transferring knowledge
from semantically similar documents across queries, specifically, from frequent to rare
queries.

Results on the QT test set are also promising. In particular, the improvement is
significant for queries with ID attributes (with 38% relative improvement on F'1@1
over LEAM). This low performance is caused by the lack of natural language content

in ID queries, which can be alleviated by including PRF signals.

Results on Minority Classes.

Due to the intrinsic imbalanced nature of e-commerce query categorization, our train-
ing data exhibits a power-law distribution. I used the method introduced by [57] to
select the minority classes, then evaluate APRF-Net on the picked minority cate-

gories. As a result, 3,130 out of 4,665 categories are considered as minority classes
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Test | Bucket | Method | F1@Q1 | F1@2 | F1@3 | MAP@3

TT | head LEAM 0.444 | 0.428 | 0.412 | 0.567
torso LEAM 0.541 | 0.426 | 0.351 | 0.384
tail LEAM 0.539 | 0.418 | 0.339 | 0.362

TT | head APRF-Net,3 | 0.461 | 0.436 | 0.414 | 0.576
torso APRF-Net,3 | 0.569 | 0.445 | 0.367 | 0.402

tail APRF-Net,3 | 0.583 | 0.449 | 0.365 | 0.391
Test ‘ Bucket ‘ Method ‘ Fl1Qil ‘ F1@2 ‘ Fl@3 ‘ MAPQ@3
QT | brand LEAM 0.605 | 0.475 | 0.391 | 0.437

product | LEAM 0.604 | 0.477 | 0.395 | 0.442

num LEAM 0.663 | 0.503 | 0.409 | 0.456

1D LEAM 0.174 | 0.140 |0.114 | 0.122

c/m LEAM 0.730 | 0.548 | 0.439 | 0.498

QT | brand APRF-Net,3 | 0.641 | 0.500 | 0.410 | 0.460
product | APRF-Net,3 | 0.626 | 0.495 | 0.409 | 0.457
num APRF-Net,3 | 0.701 | 0.535 | 0.427 | 0.482
ID APRF-Net,3 | 0.241 | 0.191 | 0.162 | 0.441
c/m APRF-Net,3 | 0.744 | 0.546 | 0.441 | 0.503

Table 5.8: Performances across buckets. ¢/m:color/material

in our dataset. The LEAM achieved (0.293%, 0.257%, 0.226%, and 0.222%), and
APRF-Net reached (0.350%, 0.295%, 0.257%, and 0.256%) on (F'1Q1, F1@2 F1Q@3,
and M AP@3), respectively. The results show a 19.5% F'1Q1 relative improvement

over LEAM.

5.7.8 Ablation Analysis

APRF-Net is a complex model that consists of several components: shared embed-
ding, mix encoder, QP2Vec, and corpus-aware attention network. I performed a
comprehensive ablation study to evaluate each component’s impact on the overall
performance (Table. 5.9). The results illustrate that by utilizing PRF signals, APRF-
Net achieved relative boosts by (8.0%, 5.4%, 3.9%, and 8.9%) compared to QP2Vec
on (F1@1, F1@2, F1@Q3, and M AP@Q3), respectively.

To analyze the impact of the number of retrieved documents on APRF-Net model,
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Method | F1@1 | F1@2 | F1@3 | MAP@3

QP2Vec 0.525 0.427 0.362 0.371
QP2Vec+MixEncoder | 0.536(+2.1%) 0.431(+0.1%) | 0.366(+0.1%) | 0.383(+2.2%)
APRF-Net,1 w/o SE | 0.553(+5.3%) 0.441(+3.2%) | 0.369 (+1.9%) | 0.396(+6.7%)
APRF-Net,1 0.567(+8.0%) 0.450(+5.4%) | 0.376 (+3.9%) | 0.404(+8.9%)
APRF-Net,3 0.578(+10.1%) | 0.460(+7.7%) | 0.383 (+5.8%) | 0.412(+11.1%)

Table 5.9: Impact of APRF-Net components: QP2Vec, added by MixEncoder, corpus-
aware attention network, and shared embedding. SE stands for the shared embedding.
I ran experiments with different top-K (document) values. As shown in Figure. 5.6,
there is a sharp increase from 1 to 3, and it plateaus out afterward. This is due to
two reasons: (i) after 3, the relevancy of documents drops, and (ii) the model has
already captured the informative contents. Thus, I chose 3 the optimal value for our

model.

Comparing Corpus-Aware Attention Network with RM3.

To further investigate the robustness of the corpus-aware attention network for ex-
panding queries in a latent space, I compared it with standard PRF models (e.g., RM3
[77]) that expand queries at the term-level. To do so, first, I expanded the queries
using the top 10 relevant documents to [query < expand > new terms| utilizing
RM32, then, a multi-label classifier such as QP2Vec was used for final classification.
QP2Vec+RM3 obtained (0.548, 0.442, 0.371, and 0.394) on (F'1Q1, F1@2, F1@3, and
M AP@3), which showed 4.4% relative improvement on F'1@Q1 compared to QP2Vec.
Although RM3 provided improvements on all metrics compared to QP2Vec, I experi-
enced a more significant improvement when I expanded the queries in a latent space

using APRF-Net (Table. 5.9).

2T used Lucene available at https://github.com/castorini/pyserini


https://github.com/castorini/pyserini
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Figure 5.6: Impact of top-K documents on APRF-Net [7].

5.8 Summary

In this chapter, I described my research on user intent inference in an e-commerce
search engine. I primarily worked on the real data collected from a large e-commerce
search engine like The Home Depot. I started the chapter by describing my research
on joint learning of high-level user intents. Then, it was followed by my research on
category representation to improve the quality of query categorization. Our findings
related to user intent inference in e-commerce search suggest a promising direction to
improve search quality in the e-commerce platforms.

In the next chapter, I discuss the results of the proposed approaches by providing

their strengths and potential limitations.
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Chapter 6

Discussion

In this chapter, I start by discussing the strengths of the proposed approaches and
then presenting some potential limitations. The chapter’s content related to conver-
sational agents is based on references [3, 2, 5], published in CIKM’2019, SIGIR’2019,
and CHIIR’2020. Also, the content related to e-commerce search is based on refer-
ences [4, 6, 7], published in SIGIR’2020, SIGIR e-com 2021, and SIGIR’2021.

My dissertation introduces several models to utilize knowledge from different re-
sources and actual utterance or query text to improve the performance of the intent
inference. Moreover, as the results showed, incorporating an external source of knowl-
edge can improve user intent inference for imbalanced e-commerce datasets and for
queries that are not well represented in the training set, a.k.a tail and torso queries.
Also, this dissertation investigates the overfitting problem that might happen on the
available external data, a case study on the entity knowledge base. In the next sec-
tion, I discuss the effectiveness of the proposed knowledge-aware models on addressing
imbalanced extreme multi-label classification, queries that are not well represented
in the training set, and avoiding overfitting on the frequent meta-data information.
Incorporating knowledge from other resources is effective, as I have shown through-

out this dissertation, while sometimes it might have some restrictions that must be
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investigated carefully.

6.1 Strengths of Knowledge-aware Based Models:
Addressing RQ1, RQ2, and RQ3

This section discusses the research questions and how the proposed models addressed

them throughout the dissertation.

6.1.1 Addressing RQ1

Incorporating knowledge from external resources can improve the overall performance
of the user intent inference, as we discussed through chapter 4 and 5 on different met-
rics and over deep learning baselines. The proposed models in this dissertation show
that integrating entity knowledge-bases, conversation context, and user profile infor-
mation effectively improves user intent inference for conversational agents. The results
indicated that the ConCET model significantly improves topic classification accuracy
by 15%, the CDAC model can increase the dialogue act accuracy by 8%, and CTS
base models can enhance user engagement performance by 16% for conversational
agents.

Moreover, I examine three external information sources for e-commerce to improve
query intent inference: relevant task, product taxonomies, and unlabeled domain-
specific corpora (e.g., catalog). To do so, I proposed three different deep learn-
ing models: JointMap, DeepCAT, and AFRF-NET that incorporate relevant tasks,
product taxonomies, and product catalog information, respectively. The results are
promising; I achieved a 6%-8% average boost on the performance of the top-1 re-

trieved documents.
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6.1.2 Addressing RQ2

In this dissertation, I proposed six different external sources of information to be
integrated with the textual information from both utterance and query to improve
the performance of user intent inference in both conversational agents and e-commerce
search. I discuss the different methods that this dissertation proposed for each specific

underlying problem for user intent inference.

e ConCET

— External source: ConCET leverages an entity knowledge base to improve
the conversation topic prediction. It uses an entity-linker to extract the

entity-type distributions from the entity knowledge-base.

— Process to incorporate the external information: ConCET utilizes
both sparse and dense representation through a feature engineering module

and a pipeline of deep neural networks to incorporate this knowledge.

e CDAC

— External source: CDAC leverages conversation context and domain
adaptation to enhance dialogue act prediction. The model uses preced-

ing utterances and system state information from the dialogue manager.

— Process to incorporate the external information: CDAC utilizes
both sparse and dense representation through feature engineering modules

and a cascade of deep neural networks to incorporate this information.
e CTS

— External source: CTS leverages user profile information to enhance con-
versational topic suggestion. The model uses collaborative filtering signals,

user profile, and behavioral features.
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— Process to incorporate the external information: CTS models both
sparse and dense representation through a collaborative filtering module

and pipeline of deep networks across a conversation window.
e JointMap

— External source: JointMap leverages inductive bias from relevant tasks

to enhance query intent understanding in e-commerce search engines.

— Process to incorporate the external information: JointMap uti-
lizes a dense representation through a joint word-label network to transfer

knowledge among two relevant tasks.
e DeepCAT

— External source: DeepCAT utilizes taxonomy information to improve
user intent inference in e-commerce search. DeepCAT uses a co-occurrence

matrix collected from user co-click behavior through the search process.

— Process to incorporate the external information: DeepCAT lever-
ages dense representation of word-label and label-label interactions to

model the user co-click behavior.
e APRF-NET

— External source: APRF-NET utilizes product corpus (catalog) informa-
tion to improve user intent inference in e-commerce search. APRF-NET

uses top-k relevant structured product data.

— Process to incorporate the external information: APRF-NET uti-
lizes dense representation of the structured and relevant product docu-
ments through a hierarchical attention network and expands query’s dense

representation using document representation in latent space.
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The results indicated that leveraging external sources of information can signifi-
cantly improve the performance of the base model without using the external knowl-
edge. In the conversational agent setting, incorporating a knowledge base can improve
the ConCET base model by 17%, adding context can improve the base DAC model
by 10%, and user profile information has a 35% relative improvement over the base
CTS model. For e-commerce search setting, incorporating relevant task information
can improve the base JointMAP model by 6%, adding taxonomy information can
enhance the base DeepCAT model by 3%, and product corpus information has 10%

relative improvement over the base APRF-NET.

6.1.3 Handling Data Imbalance: Addressing RQ3

Three different external sources of knowledge, such as joint learning of relevant tasks,
product taxonomy (catalog), and product documents, are used to enhance user in-
tent inference. This section examines their impact on the imbalance dataset and
how they can handle minority classes. Due to the intrinsic imbalanced nature of e-
commerce query categorization, our training data exhibits a power-law distribution.
This dissertation uses the method introduced in [57] to select the minority classes,
then evaluate three different strategies mentioned above to enrich user intent infer-
ence on the picked minority categories. As a result, 3,130 out of 4,665 categories are
considered as minority classes in the available dataset.

The proposed model, JointMap, leverages inductive bias from relevant classes
through joint and multi-task learning for user intent inference. Deploying JointMap
on the curated dataset show that the Fl-averaged macro experiences a higher jump
when compared to the Fl-averaged micro (6.3% vs. 2.1%). This improvement indi-
cates the positive impact of inductive bias between commercial and non-commercial
user intent classification, which boosts the performance of majority classes and con-

tributes to minority classes. For instance, the Macro-average F1 for 8-button mi-
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nority classes for XML-CNN and LEAM are 21.76% and 18.33%, respectively, while
this number jumps to 31.28% for JointMap, which indicates a higher impact on the
extreme minority classes.

The results are also promising in the case of product taxonomy and catalog knowl-
edge through the DeepCAT model. The results indicate that Macro-averaged F1
improves by 2% over Micro-averaged F'1, which shows a higher impact on the minor-
ity classes. This impact is more noticeable on 8-button minority classes, where the
Macro-averaged F'1 for the for deep learning baselines such as XML-CNN and LEAM
are 0.41.01%, 42.90%. At the same time, this number jumps to 47.16% for DeepCAT,
which shows more than 12% and 10% relative improvements, respectively.

Finally, In this dissertation, I introduce APRF-NET, a deep learning model that
incorporates product corpus knowledge into the user intent inference process. The
impact of APRF-NET on minority classes is also promising. The LEAM model
as a strong deep learning model baseline achieved (0.293%, 0.257%, 0.226%, and
0.222%), and APRF-Net reached (0.350%, 0.295%, 0.257%, and 0.256%) on (F'1@1,
F1@2,F1@3, and M APQ3), respectively. The results show a 19.5% F1Q1 relative
improvement, over LEAM.

The results show that including product corpus information has the highest im-
pact on the minority classes, followed by joint learning of relevant tasks, and finally,

incorporating the product taxonomy structure.

6.1.4 Handling tail and torso Queries: Addressing RQ3

In Web search, the query intent inference models require a robust performance on
queries that do not represent well in the training set (e.g., tail and torso queries). Tail
and torso queries cover a significant amount of search traffic, and different mechanisms
need to be designed to handle them efficiently. E-commerce search as a subcategory

of the Web search is not an exception. In this dissertation, I study the impact of
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document corpus and product taxonomy information on these queries. To this end,
we first partitioned data into different buckets and separately reported results on each
partition.

In the case of leveraging product documents into the intent inference process, we
evaluate the APRF-Net model with the other state-of-the-art deep learning models for
extreme multi-label problems. APRF-Net compared to LEAM on different buckets.
APRF-Net advantages are promising, stable, and more robust consistently across all
metrics and buckets. I can conclude that APRF-Net has a more significant impact on
rare queries across all metrics from our experimental results. For instance, in terms of
FQ1 score, it achieves (3.8%, 5.2%, and 8.2%) relative improvements on (head, torso,
and tail), compared to LEAM, respectively. This result proves our earlier claim that
our proposed model can make the tail queries less sparse by transferring knowledge
from semantically similar documents across queries, specifically, from frequent to rare
queries.

Also leveraging the product catalog, the results show that DeepCAT significantly
outperforms the other models on both tail and torso buckets by 7.1% and 5.3% on
F@1. At the same time, it reaches competitive results to XML-CNN and LEAM on
head bucket. According to higher traffic on both tail and torso queries, the overall
performance of DeepCAT is significantly higher compared to the other models.

The results show that utilizing both product documents and catalog effectively
improves the user intent inference in e-commerce search. Moreover, incorporating
product documents is more effective on all three traffic buckets, where using a prod-
uct catalog can be helpful on tail and torso queries. Moreover, both models have
competitive results for torso queries, and in the case of tail queries, product docu-

ment information shows a more significant positive impact on the results.
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6.1.5 Handling Overfitting: Addressing RQ3

This section discusses a specific case where the knowledge-aware-based models might
cause overfitting on the source of transferred knowledge, with particular focus on the
proposed entity-aware-based model, ConCET, introduced in this dissertation.

Generally, entity-aware classifiers are prone to overfitting to the majority entity-
type. I addressed this difficulty by adding sparse and dense representations of the
entity-types, which helps in smoothing the entity representation. In other words,
using an additional network and separately training the entities reduced the bias
towards entity-types.

Furthermore, there are entity-types like Movie_Names, which are notoriously prob-
lematic for classification. For example, the utterance “Fabulous how are you echo”
can be easily misclassified if the entity-aware model is biased toward certain entity-
types. In this example, “Fabulous” could be a Movie_Name, and “Echo” could be a
City located in Oregon. In such cases, the proposed model avoids this error in two
different ways. First, because combinations like these appear in all classes, the classi-
fier tends to be less biased to these entities. Second, two different joint deep network
layers are used in the proposed model, making the system more robust to entity-type
errors. Third, the proposed model enriches the textual representation of an utterance
with entity information for topic classification. By simultaneously learning the text
and entity-types, the proposed model captures the likelihood of the appearance of a
specific entity-type in an utterance text to learn a specific topic label. Moreover, to
model semantic (dense) representations of the entity-types, I computed an entity-type
sequence as Equation 4.14. The interactions among entity-types, when more than one
entity-type appear in utterance, and the order of their appearances in utterance, can,
therefore, be inferred. As a result, the proposed model can jointly learn a semantic
(dense) representation and the distribution of entity-types with textual information

to represent an utterance. Training dense and sparse representation of the entity-type
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will give the model a higher generalization and makes it more robust to overfitting

on the frequent entity-types.

6.2 Limitations of Using External
Sources of Information

This dissertation proposed deploying entity knowledge base, contextual information,
and user profile information for user intent inference for conversational agents. Also,
joint learning of the relevant tasks, product catalog, and unlabeled domain-specific
corpora information for e-commerce search. Although considering these sources of
knowledge is effective, it might cause an increase in the response latency or inference
time (section 6.2.1). As the model becomes more complex, the latency increases
accordingly. Moreover, our results show that the proposed models become even more
effective when the external source of knowledge selectively provides information or
is better aligned with the target domains (section 6.2.2). Finally, offline and online
evaluations are another factor that needs to be conceded for an efficient user data

analysis (section 6.2.3).

6.2.1 Higher Latency

Incorporating external resources into the user intent inference process resulted in a
more complex model. Deploying a more complex system in production could po-
tentially degrade system performance by introducing higher response latency. This
latency is an important issue, as response latency has a dramatic effect on the user
experience. Interestingly, the classification latency for the proposed approach is not
substantially higher compared to the baseline classifier that operates on an utterance
text alone. The main reason is that all four stages of the proposed model can be run

in parallel. In addition, while entity linking requires a knowledge base lookup, mod-
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ern in-memory knowledge-based storage implementations support candidate entity
retrieval and matching in only 10s of milliseconds, which does not introduce per-
ceptible increases to response latency. Finally, the proposed model can be executed
in parallel for different conversations, allowing the system higher overall throughput

without increasing latency for each user.

6.2.2 Aligning Knowledge Source with the Target Dataset

This dissertation investigates the impact of source knowledge base on the overall
performance of the user intent inference. A case study examined how much a size-
able generic entity knowledge base and entity linker (e.g., DBpedia) and a curated
customized, small knowledge base and entity linker (e.g., PMI-EL) effectively af-
fect the topic classification process for the conversational agents. Although the pro-
posed model outperforms all of the state-of-the-art baselines with both general and
customized entity linkers introduced in section 4.3.2, I observe more significant im-
provements on Alexa data with the PMI-EL domain-specific linker. I conjecture
that PMI-EL is designed to identify the entity-types supported by the conversational
agent, which are better aligned with the target domains. Nevertheless, ConCET ex-
hibits significant improvements over the previous state-of-the-art with an off-the-shelf
generic entity linker and, when available, can take advantage of the domain-specific

entity linking for additional improvements.

6.2.3 Offline vs. Online Evaluation

The experimental evaluations for the proposed user profile information suggest the
next most interesting topic used offline analysis, and the results might differ in the
online setting. As such, I plan to explore it in a follow-on live user study. However, I
do not anticipate that the conclusions would change: I emphasize that our reported

results are a lower bound on performance since I rely on conversations continuing be-
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yond the current turn in order to give “credit” to our proposed suggestions that were
not recommended at the appropriate time during the live competition. Another po-
tential limitation is the form of the suggestions themselves. In this study, the system
proposed a general topic like Sports for some topics. Still, I found that proposing a
specific item for the topic, e.g., “News about the Yankees” instead of just Sports may
be more effective and would be a promising complementary direction to the current

work.

6.3 Summary

In this chapter, I presented the strength and limitations of the proposed approaches in
this dissertation. I explicitly discussed the impact of an individual source of knowledge
on the final intent inference. The results showed a positive impact on imbalanced data,
tail and torso, and potential impact on avoiding overfitting. Finally, I presented three
limitations that need to be investigated before using an external source of information,
including higher latency, aligning source and target knowledge resources, and offline
and online evaluations.

In the next chapter, I present the research conclusion and the potential future

research to advance the current models proposed in this dissertation.
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Chapter 7

Conclusions

This chapter concludes the dissertation by providing summary of the main results in
section 7.1, potential future directions in section 7.2, and a summary of the disser-
tation in section 7.3. The chapter’s content related to conversational agents is based
on references [3, 2, 5], published in CIKM’2019, SIGIR’2019, and CHIIR’2020. Also,
the content related to e-commerce search is based on references [4, 6, 7], published in

SIGIR’2020, SIGIR e-com 2021, and SIGIR’2021.

7.1 Summary of the Results:

In this section, I provide a summary of the results for diffident models presented in

this dissertation.

ConCET: Entity-Aware User Intent Inference: Iintroduced ConCET, a novel
and effective entity-aware classifier that fuses textual and semantic entity-oriented
information to determine the topic of the utterance. The results of the extensive
experimental evaluation on two different datasets indicated that ConCET significantly
outperformed all the existing deep learning based utterance classifiers introduced both

for generic text and for conversational data. The results showed that both variations
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of ConCET outperformed the classifier baselines Fastext, VDCNN, and ADAN on
the Alexa dataset by large margins of 13%, 23%, and 10%, respectively in terms of

Micro-Averaged F1 score.

CDAC: Context-Aware User Intent Inference: 1 proposed a contextual di-
alogue cct classification model, CDAC, which incorporated lexical, syntactic, and
semantic information in context. Additionally, I introduced a new group of context
features to capture the internal system information. Finally, I demonstrated good use
of fine-tuning on a limited set of labeled human-machine conversations to decrease
manual annotation requirements and utilize the existing human-human labeled con-
versation data. As a result, CDAC was able to outperform DA classification baselines:
by 8.0% on Switchboard data, and by 9.6% on the Alexa Data, and performed com-
parably to the latest reported and more complex contextual DA classification model.
CDAC was also shown to be general enough to be easily fine-tuned for DA classi-
fication in human-machine conversations. I believe CDAC represents a promising

advance in general user intent classification for intelligent conversational agents.

CTS: User Profile-Aware Intent Inference: 1 developed and formalized the
problem of conversational topic suggestions for mixed-initiative open-domain conver-
sational agents, specifically designed to deliver relevant and interesting information
to the user. I presented and explored three approaches for this problem: 1) a collab-
orative filtering-based approach, 2) a model-based sequential topic suggestion model
(CTS-Seq), implemented using CRF, CNN, and RNN models, and 3) a hybrid model
which combined sequence modeling approach with traditional collaborative filtering
methods (CTS-CRF-CF and CTS-CNN-CF). Topic sequence models I introduced
demonstrated significant improvements over previous methods by incorporating col-
laborative filtering signals derived from the previous choices of similar users. I showed

that contextual, sequence-based recommendation significantly outperforms a heavily
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tuned, popularity- and time-based baseline, which does not consider the current con-

versation context and prior user preferences even if available.

JointMap: Relevant Task-Aware User Intent Inference: 1 proposed a joint
learning model that leverages inductive bias among relevant tasks into the user intent
inference process. I introduced JointMap, a deep learning model designed for jointly
learning two high-level intent tasks on e-commerce search data. JointMap utilized
word and label representations and leveraged focal loss to tackle the class imbalance
problem in catalog categories. Compared to the strong deep learning models, the
results were promising, with an average raise of 2.3% and 10.9% on Macro-averaged

F1 in user commercial vs. non-commercial intent and product category mapping.

DeepCAT: Product Catalog-aware User Intent Inference: 1 developed a
deep learning model, DeepCAT, for query understanding in e-commerce search. Deep-
CAT contains a new joint word-category representation component in which category
representations are learned using word-category co-occurrences. Then, I proposed
a novel loss function utilizing category representations to model category-category
co-occurrences. The comprehensive experiments showed that using category repre-
sentation significantly improved the results, particularly on minority classes and tail
queries. DeepCAT achieved a 10% improvement on minority classes and a 7.1%
increase on tail queries over a strong label embedding model.

The experimental results showed the robust performance of DeepCAT compared
to deep learning based models. For minority classes, tail, and torso queries, 1 ob-
served 10%, 7%, and 5.3% relative improvements, respectively. I also reported the
performance on the last layer (leaf nodes) of product taxonomy consisting of 4115
categories. The results showed that DeepCAT achieves (6.2%, 4%, 3%, and 3%)
increase on F1@1, F1@3, F1@5, and MAP@J5, respectively. In ablation analysis, I

proved that the improvements from all three components of DeepCAT and especially
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the joint word-category representation that improved the query representation by 5%,

and the loss function could improve it by 2.9%.

APRF-Net: Product Corpus-Aware User Intent Inference: I introduced
APRF-Net, which adapts the idea of pseudo-relevance feedback (PRF) for the query
categorization task in e-commerce search, especially to improve performance for rare
queries. I proposed APRF-Net, a novel corpus-aware attention neural model to in-
corporate the PRF information, representing a query using three abstraction levels
(e.g., fields, documents, and corpus) on top-K retrieved products. The goal was trans-
ferring customer signal information from head queries to tail queries by leveraging
semantic knowledge shared in the overlapping or similar retrieved product documents.
The results demonstrated the APRF-Net significantly improved query categorization
by 5.9% relative improvement on F1@1 score over the baseline, particularly 8.2%

improvement for tail queries.

7.2 Future Research Directions

In this section, I present some potential future research directions. Although there
have been many breakthroughs in user intent inference for conversational agents and
e-commerce search, many fundamental research challenges remain open and need
further improvements. The following research tracks are among the important issues

that require to be addressed in the future.

Topic Switching in conversational Agents: Topic switching is one of the critical
challenges in designing a conversational agent. The performance of topic switching
has a direct impact on the conversation’s coherency and final user satisfaction. An
abrupt change in conversation topic or not properly switching to a new one frustrates

the user and reduces their engagement with the agent. Although topic switching
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is essential to design a coherent conversation, it remains an open problem and re-
quires further research to address the issue. Throughout the Amazon Alexa Prizes,
we developed different methodologies to handle topic switchings, such as leveraging
system-driven requests (do you wish to continue talking about “X”), sentiment-based
signals, turn-based info, and combinations of the above. However, all of these could be
improved with additional customer information to make personalized decisions. An-
other method I specifically developed in this dissertation was leveraging an embedded
recommender system to reduce the rate of topic switching. Although it is interesting
to address the problem by reducing its occurrence rate, it does not directly address
it. As a result, an exciting research direction is leveraging conversation context and
user profile information such as user demographic information to reduce the topic
switching rate and improve the performance when the model needs to handle a topic

switching intent.

Complex Agreement/Rejection in Conversational Agents: In daily conver-
sations with an accountant in a grocery store, with a banking agent, or even with loved
ones, the conversations involve different ways to express the agreement or disagree-
ment with the other person. Humans can state these agreements and disagreements
in a complex way that is straightforward for us to understand. We found this very
challenging for a machine (conversational agent). For example, imagine a chatbot
suggesting a user start talking about an actor. In the response, the user says, “No,
I do not want to talk about this, I like to talk about Cristiano Ronaldo”. This
situation becomes even more challenging when it also involves a topic switching in-
tent. I found handling this highly difficult, and I suggest implementing primary and
secondary topic classification (primary = NO, secondary = Movies in the example
above). However, many exceptional cases exist, and this problem remains unsolved.

I believe that contextual topic and intent classification appears promising, but more
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work is needed to improve the performance on such intents to the human level.

Topic classification for conversational Agents: A potential future work for
topic classification in the conversational agent can be improving the ConCET model
in a more robust way to handle unexpected ASR errors. ASR errors are common in
conversational Agents as the current models are not in the human-level performance.
For example, by relying less on the exact and complete entity detection and exper-
imenting with character-based representation models. Improving entity recognition
models to incorporate contextual information from the preceding utterances can im-
prove the entity recognition module’s quality and directly impact the performance of
the entity-aware topic classifier.

Another promising direction is to explore other neural network architectures (e.g.,
transformer-based models) which can incorporate longer contextual dependencies into
the prediction process. Finally, Current user topic classification models considered a
predefined list of topic information. In real-world scenarios, the conversation chatbot
learns new conversation topics and updates its policies by modifying the class bound-
aries while not forgetting previous knowledge (catastrophic forgetting phenomena).
Current trends in machine learning, such as meta-learning-based models and contin-
ual learning methods, are other attractive research tracks. These models gradually
learn new topics without experiencing catastrophic forgetting phenomena that future

research should explore for topic classification in conversational agents.

Smart topic suggestion for Conversational Agents: A key challenge for having
a smooth and coherent conversation is to balance familiarity (proposing topics well-
received by customers in the past) and surprising and delighting returning customers
by helping them discover new and interesting information. A critical future plan is to
build on the initial personalization work I started with IrisBot to design new experi-

ences that combine the best previously explored topics and the novelty and value of
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proposing novel information. Another major challenge is combining different domains
(hobbies/activities and potentially more) to the search process. It becomes challeng-
ing to retrieve and rank the results that are semantically relevant to the context.
Traditional keyword-based search on metadata information works well for finding en-
tities containing keywords but performs poorly for finding entities that share similar
concepts without matching keywords. Incorporating “concept relatedness” and “con-
textual relevance” into the search process remains challenging. A promising direction
for future work is to explore representation learning and deep learning techniques
further, more effectively model the conversation context, and experiment with rein-
forcement learning-based methods for studying the space of interests for new users
during the conversation more rapidly. These approaches would naturally fit into and
extend the CTS models proposed in this paper, ultimately enabling more intelligent

and proactive conversational agents.

Contextual Intent Modeling for Taxonomy Learning: One possible future
research is tuning the proposed JointMap model to accept other user behavior in-
formation, particularly incorporating contextual information from previous queries
within a session. The idea of using contextual information can even be expanded to
leveraging multiple sessions in a search log where all the sessions belong to a user
for performing a complex search task. Moreover, the idea of learning the correlations
between fine-grained categories for label representation is practical; however, it still
loses the essential information in the hierarchical information encoded in product tax-
onomy. A model can be used to train the dependencies to learn the interaction and
correlation between the product categories within a product-category level and learn

the structural information during product taxonomy mapping.

Dynamic Intent Modeling for Product taxonomy mapping in E-Commerce

Search: Current user intent modelings only consider a predefined tree structure on
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the product category hierarchy, which is barely the case for colossal e-commerce
product data. This taxonomy structure updates over time in real scenarios while
getting outdated as the new product is coming or removed from the taxonomy. As
a result, new product categories are formed or removed from the current taxonomy.
Having a dynamic model that can be updated with the latest changes in the tax-
onomy is an attractive direction for future research in user intent inference. Like
the conversation topic prediction models, current trends in machine learning, such as
meta-learning-based models and continual learning methods that gradually learn new
product categories, can provide a robust roadmap for future research. These models
can learn new tasks without experiencing catastrophic forgetting phenomena, making

them practical for dynamic intent modeling tasks.

7.3 Summary of the Dissertation

My dissertation work focused on knowledge-aware user intent inference for both con-
versational agents and e-commerce search engines. In my dissertation, I proposed
several methods related to knowledge-aware user intent inference for intent under-
standing for conversational agents leveraging different sources of knowledge, includ-
ing entity knowledge base, conversation context, and user profile information. As a
result, I presented three other models in this dissertation that focus on these three

sources of knowledge:

1. ConCET: a deep learning model for entity-aware topic classification, where
ConCET incorporated entity and entity-type information from an entity-knowledge

base into textual representation for topic modeling.

2. CDAC: a deep learning model for context-aware classification, where CDAC
utilized contextual information and transfer learning to adapt models trained

on human-human conversation corpus to infer dialogue acts in open-domain
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human-machine dialogues.

3. CTS: a deep learning model for user profile-aware topic switching, where CTS
leveraged user profile information to design a knowledge-aware topic suggestion

component to propose the next most interesting macro-topic to the user.

All the models were evaluated on real data logs collected from Amazon Alexa
Prize.

For user intent inference in Web search, with a focus on e-commerce search, my
dissertation extended the latest knowledge-aware based methods in Web search intent

understanding to the e-commerce domain, including:

1. JointMap: a deep learning model for relevant task-aware user intent inference,
where it introduced a join-learning model to transfer the inductive bias between

relevant query understanding tasks.

2. DeepCAT: a deep learning model for taxonomy-aware user intent understand-
ing, where DeepCAT proposed a new label-representation to incorporate knowl-

edge from category interactions into user intent understanding.

3. APRF-Net: a deep pseudo-relevance-based model for corpus-aware user intent
inference, where APRF-Net developed a pseudo-relevance feedback model to

enhance the representation of rare queries for query categorization.

All the models were evaluated on real search logs collected from The Home Depot
search engine.

The results showed that incorporating knowledge from external resources can sig-
nificantly improve the overall performance of the user intent inference on different
metrics and over deep learning baselines for both settings (e.g., conversational agents
and e-commerce search). The results indicated that the proposed models signifi-

cantly improve topic classification accuracy by 15% and dialogue act accuracy by
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8% for conversational agents. For the e-commerce search setting, the dissertation
demonstrated that joint learning, product taxonomies, and product corpus (catalog)
could significantly improve intent inference accuracy. The proposed models boosted
the performance of the top-1 retrieved documents by 6%-8% on the standard metrics.
I also demonstrate that incorporating an external source of knowledge can improve
user intent inference for imbalanced e-commerce datasets and for queries that were
not well represented in the training set, a.k.a tail and torso queries. The results
showed that the proposed models improved the data imbalance problem on average
by 19.5%, and they achieved (5.2% and 8.2%) relative improvements on tail and torso
queries, respectively on standard metrics over strong deep learning baselines.

To sum up, this dissertation explained methods and approaches to enhance the
user intent inference in intelligent information systems for two settings: 1) conver-
sational agents and 2) e-commerce search. Throughout the dissertation, I comple-
mented the quantitative results with a detailed system performance analysis, which
can be used for further improvement in both fields of conversational agents and the
e-commerce search. The proposed methods can also be integrated into the new gen-
eration of social bots (e.g., Amazon Alexa and Google Home) and e-commerce search
engines (e.g., Amazon and The Home Depot) that daily interact with hundreds of
millions of users. Finally, the proposed models in this dissertation that focused on
user intent inference, a fundamental building block of information seeking processes,
can find various new applications, from healthcare and education to media and en-

tertainment.
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